MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
NASA Astrophysics Data System (ADS)
Tsai, C. H.; Yeh, G. T.
2015-12-01
In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.
Investigation of hydrate formation and transportability in multiphase flow systems
NASA Astrophysics Data System (ADS)
Grasso, Giovanny A.
The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the
Investigation of hydrate formation and transportability in multiphase flow systems
NASA Astrophysics Data System (ADS)
Grasso, Giovanny A.
The oil and gas industry is moving towards offshore developments in more challenging environments, where evaluating hydrate plugging risks to avoid operational/safety hazards becomes more difficult (Sloan, 2005). Even though mechanistic models for hydrate plug formation have been developed, components for a full comprehensive model are still missing. Prior to this work, research efforts were focused on flowing hydrate particles with relatively little research on hydrate accumulation, leaving hydrate deposition in multiphase flow an unexplored subject. The focus of this thesis was to better understand hydrate deposition as a form of accumu- lation in pipelines. To incorporate the multiphase flow effect, hydrate formation experiments were carried out at varying water cut (WC) from 15 to 100 vol.%, liquid loading (LL) from 50 to 85 vol.%, mixture velocity (vmix) from 0.75 to 3 m/s, for three fluids systems (100 % WC, water in Conroe crude oil emulsions and King Ranch condensate + water) on the ExxonMobil flowloop (4 in. nominal size and 314 ft. long) at Friendswood, TX. For the 100 % WC flowloop tests, hydrate particle distribution transitions beyond a critical hydrate volume concentration, observed values were between 8.2 to 29.4 vol.%, causing a sudden increase in pressure drop (DP). A revised correlation of the transition as a function of Reynolds number and liquid loading was developed. For Conroe emulsions, DP starts increasing at higher hydrate concentrations than King Ranch condensate, many times at 10 vol.%. Experiments with King Ranch show higher relative DP (10 to 25) than Conroe (2 to 10) performed at the same vmix and LL. Cohesive force measurements between cyclopentane hydrate particles were reduced from a value of 3.32 mN/m to 1.26 mN/m when 6 wt.% Conroe was used and to 0.41 mN/m when 5 wt.% Caratinga crude oil was used; similar values were obtained when extracted asphaltenes were used. King Ranch condensate (11 wt.%) did not significantly change the
Yortsos, Yanis C.
2001-08-07
This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Yortsos, Y.C.
2001-05-29
This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
NASA Astrophysics Data System (ADS)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1989-01-01
Measurements and predictions of the structure of several multiphase flows are considered. The properties of dense sprays near the exits of pressure-atomizing injectors and of noncombusting and combusting dilute dispersed flows in round-jet configurations are addressed. It is found that the properties of dense sprays exhibit structure and mixing properties similar to variable-density single-phase flows at high Reynolds numbers within the atomization regime. The degree of development and turbulence levels at the injector exit have a surprisingly large effect on the structure and mixing properties of pressure-atomized sprays, particularly when the phase densities are large. Contemporary stochastic analysis of dilute multiphase flows provides encouraging predictions of turbulent dispersion for a wide variety of jetlike flows, particle-laden jets in gases and liquids, noncondensing and condensing bubbly jets, and nonevaporating, evaporating, and combusting sprays.
Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.
2008-10-15
During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.
Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor
Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.
2002-02-01
The need to control gas and leachate production and minimize refuse volume in municipal solid waste landfills has motivated the development of landfill simulation models to predict and design optimal treatment processes. We have developed a multiphase and multicomponent nonisothermal module called T2LBM for the three-dimensional TOUGH2 flow and transport simulator. T2LBM can be used to simulate aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. Acetic acid is used as a proxy for all biodegradable substrates in the refuse. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. We have verified the model against published data, and applied it to our own mesoscale laboratory aerobic landfill bioreactor experiments. We observe spatial variability of flow and biodegradation consistent with permeability heterogeneity and the geometry of the radial grid. The model is capable of matching results of a shut-in test where the respiration of the system is measured over time.
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
2007-07-16
Numerical modeling has become a critical tool to the U.S. Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present SciDAC-funded research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.
NASA Astrophysics Data System (ADS)
Hammond, Glenn; Lichtner, Peter; Lu, Chuan
2007-07-01
Numerical modeling is a critical tool to the U.S. Department of Energy for evaluating the environmental impact of remediation strategies for subsurface legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most state of the art groundwater models. Of particular concern is the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. There is clearly a need for higher-resolution modeling (i.e. increased spatial and temporal resolution) and increasingly mechanistic descriptions of subsurface physicochemical processes (i.e. increased chemical degrees of freedom). We present SciDAC-funded research being performed in furthering the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers. We are employing PFLOTRAN to simulate uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.
DH Bacon; MD White; BP McGrail
2000-03-07
The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan
2007-08-01
Numerical modeling has become a critical tool to the Department of Energy for evaluating the environmental impact of alternative energy sources and remediation strategies for legacy waste sites. Unfortunately, the physical and chemical complexity of many sites overwhelms the capabilities of even most “state of the art” groundwater models. Of particular concern are the representation of highly-heterogeneous stratified rock/soil layers in the subsurface and the biological and geochemical interactions of chemical species within multiple fluid phases. Clearly, there is a need for higher-resolution modeling (i.e. more spatial, temporal, and chemical degrees of freedom) and increasingly mechanistic descriptions of subsurface physicochemical processes. We present research being performed in the development of PFLOTRAN, a parallel multiphase flow and multicomponent reactive transport model. Written in Fortran90, PFLOTRAN is founded upon PETSc data structures and solvers and has exhibited impressive strong scalability on up to 4000 processors on the ORNL Cray XT3. We are employing PFLOTRAN in the simulation of uranium transport at the Hanford 300 Area, a contaminated site of major concern to the Department of Energy, the State of Washington, and other government agencies where overly-simplistic historical modeling erroneously predicted decade removal times for uranium by ambient groundwater flow. By leveraging the billions of degrees of freedom available through high-performance computation using tens of thousands of processors, we can better characterize the release of uranium into groundwater and its subsequent transport to the Columbia River, and thereby better understand and evaluate the effectiveness of various proposed remediation strategies.
Tomographic multiphase flow measurement.
Sætre, C; Johansen, G A; Tjugum, S A
2012-07-01
Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (Corneliussen et al., 2005). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100 ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. PMID:22341954
Pore-scale Simulation and Imaging of Multi-phase Flow and Transport in Porous Media (Invited)
NASA Astrophysics Data System (ADS)
Crawshaw, J.; Welch, N.; Daher, I.; Yang, J.; Shah, S.; Grey, F.; Boek, E.
2013-12-01
We combine multi-scale imaging and computer simulation of multi-phase flow and reactive transport in rock samples to enhance our fundamental understanding of long term CO2 storage in rock formations. The imaging techniques include Confocal Laser Scanning Microscopy (CLSM), micro-CT and medical CT scanning, with spatial resolutions ranging from sub-micron to mm respectively. First, we report a new sample preparation technique to study micro-porosity in carbonates using CLSM in 3 dimensions. Second, we use micro-CT scanning to generate high resolution 3D pore space images of carbonate and cap rock samples. In addition, we employ micro-CT to image the processes of evaporation in fractures and cap rock degradation due to exposure to CO2 flow. Third, we use medical CT scanning to image spontaneous imbibition in carbonate rock samples. Our imaging studies are complemented by computer simulations of multi-phase flow and transport, using the 3D pore space images obtained from the scanning experiments. We have developed a massively parallel lattice-Boltzmann (LB) code to calculate the single phase flow field in these pore space images. The resulting flow fields are then used to calculate hydrodynamic dispersion using a novel scheme to predict probability distributions for molecular displacements using the LB method and a streamline algorithm, modified for optimal solid boundary conditions. We calculate solute transport on pore-space images of rock cores with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone and Portland carbonate. We observe that for homogeneous rock samples, such as bead packs, the displacement distribution remains Gaussian with time increasing. In the more heterogeneous rocks, on the other hand, the displacement distribution develops a stagnant part. We observe that the fraction of trapped solute increases from the beadpack (0 %) to Bentheimer sandstone (1.5 %) to Portland carbonate (8.1 %), in excellent agreement with PFG
Review of multiphase flow and pollutant transport models for the Hanford site
Kincaid, C.T.; Mitchell. P.J.
1986-11-01
This report provides a review of the physical processes, geochemical reactions, and microbiological kinetics that interact to determine the migration and fate of these pollutants. This review of processes and reactions provides a background from which codes for the analysis of contaminant migration and fate can be evaluated. Single codes representing classes of pollutant migration problems are cited to show how commonly employed and publicly available codes are not always applicable to the complex problems of multiphase fluid flow and pollutant migration. This review provides guidance on selecting and using codes; it also provides recommendations for development work needed to address deficiencies identified in existing models, codes, and data bases.
NASA Astrophysics Data System (ADS)
Meakin, Paul; Tartakovsky, Alexandre M.
2009-07-01
In the subsurface, fluids play a critical role by transporting dissolved minerals, colloids, and contaminants (sometimes over long distances); by mediating dissolution and precipitation processes; and by enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks, and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well-developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone; water/oil, water/gas, gas/oil, and water/oil/gas in hydrocarbon reservoirs; water/air/nonaqueous phase liquids (nonaqueous phase liquids/dense nonaqueous phase liquids) in contaminated vadose zone systems; and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines and their impact on dynamic contact angles must also be taken into account and coupled with the fluid flow. Here we review the methods that are currently being used to simulate pore-scale multiphase fluid flow and reactive transport in fractured and porous media. After the introduction, the review begins with an overview of the fundamental physics of multiphase fluids flow followed by a more detailed discussion of the complex dynamic behavior of contact lines and contact angles, an important barrier to accurate pore-scale modeling and simulation. The main part of the review focuses on five different approaches: pore network models, lattice gas and lattice Boltzmann methods, Monte Carlo methods, particle methods (molecular dynamics, dissipative particle dynamics, and smoothed particle hydrodynamics), and traditional grid-based computational fluid dynamics coupled with interface tracking and a contact angle model. Finally, the review closes with a
Xu, Tianfu; Pruess, Karsten
2000-08-08
Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).
Meakin, Paul; Tartakovsky, Alexandre M.
2009-07-14
In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity
Paul Meakin; Alexandre Tartakovsky
2009-07-01
In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity
Modelling the Hydrodynamics and Transport in Multiphase Microreactors
NASA Astrophysics Data System (ADS)
Yang, Lu; Shi, Yanxiang; Abolhasani, Milad; Jensen, Klavs
2015-11-01
Multiphase flow is prevalent in a variety of industrial applications, but the extent of these processes is often limited by the innate mass transfer resistance across phase boundaries. Microscale multiphase systems, owing to their reduced characteristic length scales, increase specific interfacial areas and unique hydrodynamic patterns, can significantly enhance the rate of mass transfer, thereby improving the efficiency of multiphase processes. However, many uncertainties still remain in the prediction of multiphase hydrodynamics and scalar transport on the microscale, primarily due to the complex nature of the multiphase flow. In this work, to elucidate the mechanism of mass transfer enhancement in microscale multiphase flows, a computational fluid dynamic (CFD) model using the volume-of-fluid (VOF) method is developed, and the method is validated with experiments. By introducing a scalar transport equation with sink/source terms using the one-fluid formulation, we enable the simultaneous capturing of multi-phase hydrodynamics, mass transfer and reactions. In tandem with the numerical simulations, we also perform mass transfer analysis of multiphase flows based on the penetration theory and a two-stage theory, which further examines the mechanism of mixing enhancement in multiphase flow, and reveals a two-fold increase in mass transfer coefficients in the microreactors compared to conventional multiphase contactors.
Yorstos, Yanis C.
2002-03-11
The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.
Yannis C. Yortsos
2003-02-01
This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.
Nonisothermal multiphase subsurface transport on parallel computers
Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.
1997-10-01
We present a numerical method for nonisothermal, multiphase subsurface transport in heterogeneous porous media. The mathematical model considers nonisothermal two-phase (liquid/gas) flow, including capillary pressure effects, binary diffusion in the gas phase, conductive, latent, and sensible heat transport. The Galerkin finite element method is used for spatial discretization, and temporal integration is accomplished via a predictor/corrector scheme. Message-passing and domain decomposition techniques are used for implementing a scalable algorithm for distributed memory parallel computers. An illustrative application is shown to demonstrate capabilities and performance.
Turbulent Mixing of Multiphase Flow
NASA Technical Reports Server (NTRS)
Young, Y.-N.; Ferziger, J.; Ham, F. E.; Herrmann, M.
2003-01-01
Thus we conduct numerical simulations of multiphase fluids stirred by two-dimensional turbulence to assess the possibility of self-similar drop size distribution in turbulence. In our turbulence simulations, we also explore the non-diffusive limit, where molecular mobility for the interface is vanishing. Special care is needed to transport the non-diffusive interface. Numerically, we use the particle level set method to evolve the interface. Instead of using the usual methods to calculate the surface tension force from the level set function, we reconstruct the interface based on phase- field modeling, and calculate the continuum surface tension forcing from the reconstructed interface.
Yorstos, Yannis C.
2003-03-19
The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.
Report on Multiphase Flow Panel
NASA Technical Reports Server (NTRS)
2003-01-01
This paper presents viewgraphs on a multiphase flow panel. The topics include: 1) Discussion of Priorities; 2) Critical Issues Reduced Gravity Instabilities; 3) Severely Limiting Phase Separation; 4) Severely-Limiting Phase Change; 5) Enhancements; 6) Awareness Instabilities; 7) Awareness; 8) Methods of Resolution; 9) 2008 Space Flight; 10) 2003-2008 Ground-Based Microgravity Facilities; 11) 2003-2008 Other; 12) 2009-2015 Space Flight; 13) 2009-2015 Ground-Based Microgravity Facilities; 14) 2009-2015 Other; and 15) 2016.
Yortsos, Yanis C.
2002-10-08
In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.
Multiphase Flow Analysis in Hydra-TH
Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.; Lowrie, Robert B.; Nourgaliev, Robert
2012-06-20
This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.
Reactive multiphase flow simulation workshop summary
VanderHeyden, W.B.
1995-09-01
A workshop on computer simulation of reactive multiphase flow was held on May 18 and 19, 1995 in the Computational Testbed for Industry at Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. Approximately 35 to 40 people attended the workshop. This included 21 participants from 12 companies representing the petroleum, chemical, environmental and consumer products industries, two representatives from the DOE Office of Industrial Technologies and several from Los Alamos. The dialog at the meeting suggested that reactive multiphase flow simulation represents an excellent candidate for government/industry/academia collaborative research. A white paper on a potential consortium for reactive multiphase flow with input from workshop participants will be issued separately.
Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.
2010-08-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.
NASA Astrophysics Data System (ADS)
Xu, Tianfu; Spycher, Nicolas; Sonnenthal, Eric; Zhang, Guoxiang; Zheng, Liange; Pruess, Karsten
2011-06-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO 2 geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO 2 in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.
Experimental techniques for multiphase flows
NASA Astrophysics Data System (ADS)
Powell, Robert L.
2008-04-01
This review discusses experimental techniques that provide an accurate spatial and temporal measurement of the fields used to describe multiphase systems for a wide range of concentrations, velocities, and chemical constituents. Five methods are discussed: magnetic resonance imaging (MRI), ultrasonic pulsed Doppler velocimetry (UPDV), electrical impedance tomography (EIT), x-ray radiography, and neutron radiography. All of the techniques are capable of measuring the distribution of solids in suspensions. The most versatile technique is MRI, which can be used for spatially resolved measurements of concentration, velocity, chemical constituents, and diffusivity. The ability to measure concentration allows for the study of sedimentation and shear-induced migration. One-dimensional and two-dimensional velocity profiles have been measured with suspensions, emulsions, and a range of other complex liquids. Chemical shift MRI can discriminate between different constituents in an emulsion where diffusivity measurements allow the particle size to be determined. UPDV is an alternative technique for velocity measurement. There are some limitations regarding the ability to map complex flow fields as a result of the attenuation of the ultrasonic wave in concentrated systems that have high viscosities or where multiple scattering effects may be present. When combined with measurements of the pressure drop, both MRI and UPDV can provide local values of viscosity in pipe flow. EIT is a low cost means of measuring concentration profiles and has been used to study shear-induced migration in pipe flow. Both x-ray and neutron radiographes are used to image structures in flowing suspensions, but both require highly specialized facilities.
Effects of multiphase flow on corrosion inhibitor
Chen, Y.; Jepson, W.P.; Chen, H.J.
1999-11-01
This paper investigates the inhibition performance of a typical imidazoline based inhibitor under multiphase flow. Electrochemical impedance spectroscopy (EIS) measurements were carried out in a 101.6 mm I.D., 15 m long acrylic flow loop using ASTM substitute saltwater and carbon dioxide gas. This flow loop system can generate slug flow, fill pipe flow and other multiphase flow patterns. Effects of different flow conditions on inhibition performance of this typical inhibitor were examined. The system was maintained at a pressure of 0.136 MPa and a temperature of 40 C. EIS measurements for this inhibitor in a Rotating Cylinder Electrode (RCE) system were also conducted. Different equivalent circuit models were used to fit the experiment data for both the RCE and flow loop systems. The high shear stress and turbulence due to the mixing vortex and the bubble impact in multiphase flow can enhance the corrosion or reduce the inhibition performance of inhibitors.
Measurement in multiphase reacting flows
NASA Technical Reports Server (NTRS)
Chigier, N. A.
1979-01-01
A survey is presented of diagnostic techniques and measurements made in multiphase reacting flows. The special problems encountered by the presence of liquid droplets, soot and solid particles in high temperature chemically reacting turbulent environments are outlined. The principal measurement techniques that have been tested in spray flames are spark photography, laser anemometry, thermocouples and suction probes. Spark photography provides measurement of drop size, drop size distribution, drop velocity, and angle of flight. Photographs are analysed automatically by image analysers. Photographic techniques are reliable, inexpensive and proved. Laser anemometers have been developed for simultaneous measurement of velocity and size of individual particles in sprays under conditions of vaporization and combustion. Particle/gas velocity differentials, particle Reynolds numbers, local drag coefficients and direct measurement of vaporization rates can be made by laser anemometry. Gas temperature in sprays is determined by direct in situ measurement of time constants immediately prior to measurement with compensation and signal analysis by micro-processors. Gas concentration is measured by suction probes and gas phase chromatography. Measurements of particle size, particle velocity, gas temperature, and gas concentration made in airblast and pressure atomised liquid spray flames are presented.
Viscous and gravitational fingering in multiphase compositional and compressible flow
NASA Astrophysics Data System (ADS)
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
Development of Next Generation Multiphase Pipe Flow Prediction Tools
Cem Sarica; Holden Zhang
2006-05-31
basic continuity and momentum equations is established for each phase, and used for both flow pattern and flow behavior predictions. The required closure relationships are being developed, and will be verified with experimental results. Gas-oil-water experimental studies are currently underway for the horizontal pipes. Industry-driven consortia provide a cost-efficient vehicle for developing, transferring, and deploying new technologies into the private sector. The Tulsa University Fluid Flow Projects (TUFFP) is one of the earliest cooperative industry-university research consortia. TUFFP's mission is to conduct basic and applied multiphase flow research addressing the current and future needs of hydrocarbon production and transportation. TUFFP participants and The University of Tulsa are supporting this study through 55% cost sharing.
Multiphase flow in wells and pipelines
Sharma, M.P. ); Rohatgi, U.S. )
1992-01-01
This conference focuses primarily on multi-phase flow modeling and calculation methods for oil and gas although two papers focus more on the fluid mechanics of fluidized beds. Papers include theoretical, numerical modeling, experimental investigation, and state-of-the-art review aspects of multiphase flow. The theme of the symposium being general, the papers reflect generality of gas-liquid, liquid-solid, and gas solid flows. One paper deals with nuclear reactor safety as it relates to fluid flow through the reactor.
KINEMATIC MODELING OF MULTIPHASE SOLUTE TRANSPORT IN THE VADOSE ZONE
The goal of this research was the development of a computationally efficient simulation model for multiphase flow of organic hazardous waste constituents in the shallow soil environment. Such a model is appropriate for investigation of fate and transport of organic chemicals intr...
Mixing and Demixing Processes in Multiphase Flows With Application to Propulsion Systems
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor); Schafer, Charles F. (Editor)
1988-01-01
A workshop on transport processes in multiphase flow was held at the Marshall Space Flight Center on February 25 and 26, 1988. The program, abstracts and text of the presentations at this workshop are presented. The objective of the workshop was to enhance our understanding of mass, momentum, and energy transport processes in laminar and turbulent multiphase shear flows in combustion and propulsion environments.
Ultrasonic rate measurement of multiphase flow
Dannert, D.A.; Horne, R.N.
1993-01-01
On of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow, regime. Spinner tools are inaccurate at extremely high or low, flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether gas/ oil, gas/water or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. This goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter. It has many advantages besides the ones previously mentioned and is in full in that chapter.
Ultrasonic rate measurement of multiphase flow
NASA Astrophysics Data System (ADS)
Dannert, David A.; Horne, Roland N.
1993-01-01
One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.
Anisotropic distributions in a multiphase transport model
NASA Astrophysics Data System (ADS)
Zhou, You; Xiao, Kai; Feng, Zhao; Liu, Feng; Snellings, Raimond
2016-03-01
With a multiphase transport (AMPT) model we investigate the relation between the magnitude, fluctuations, and correlations of the initial state spatial anisotropy ɛn and the final state anisotropic flow coefficients vn in Au+Au collisions at √{s NN}=200 GeV. It is found that the relative eccentricity fluctuations in AMPT account for the observed elliptic flow fluctuations, both are in agreement with the elliptic flow fluctuation measurements from the STAR collaboration. In addition, the studies based on two- and multiparticle correlations and event-by-event distributions of the anisotropies suggest that the elliptic-power function is a promising candidate of the underlying probability density function of the event-by-event distributions of ɛn as well as vn. Furthermore, the correlations between different order symmetry planes and harmonics in the initial coordinate space and final state momentum space are presented. Nonzero values of these correlations have been observed. The comparison between our calculations and data will, in the future, shed new insight into the nature of the fluctuations of the quark-gluon plasma produced in heavy ion collisions.
EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Murai, Yuichi
2009-11-01
Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.
MSTS - Multiphase Subsurface Transport Simulator theory manual
White, M.D.; Nichols, W.E.
1993-05-01
The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.
NASA Astrophysics Data System (ADS)
Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.
2013-12-01
Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead
NMR studies of multiphase flows II
Altobelli, S.A.; Caprihan, A.; Fukushima, E.
1995-12-31
NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.
NASA Astrophysics Data System (ADS)
Jordan, Amy
Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of
NASA Astrophysics Data System (ADS)
Jordan, Amy
Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of
Software determines multiphase flow without meters
Saether, G.
1998-12-01
A software package devised by Loke Inc., a member of Norway`s CorrOcean Group, is routinely calculating multiphase flows from North Sea wells by monitoring only static measurements-pressures, temperatures and other available measurement quantities. A collection of three modeling programs, the software can also control the production mix and set choke values from individual wells for optimum reservoir production. Calculated flows have proven so accurate that operators now have no need for conventional flow meters or dedicated test lines. In a tuning step taken during initial well testing, Loke establishes parameters for the mathematical models in the software. Thereafter, static measurements of pressure and temperature in the producing well or manifold are converted by the software to flow. These predictions are then used to command choke valves to regulate flow. A representation of the measurement and control scheme is shown.
Lagrangian particle model for multiphase flows
Tartakovsky, Alexandre M.; Ferris, Kim F.; Meakin, Paul
2009-10-01
A Lagrangian particle model for multiphase multicomponent fluid flow, based on smoothed particle hydrodynamics (SPH), was developed and used to simulate the flow of an emulsion consisting of bubbles of a non-wetting liquid surrounded by a wetting liquid. In SPH simulations, fluids are represented by sets of particles that are used as discretization points to solve the Navier-Stokes fluid dynamics equations. In the multiphase multicomponent SPH model, a modified van der Waals equation of state is used to close the system of flow equations. The combination of the momentum conservation equation with the van der Waals equation of state results in a particle equation of motion in which the total force acting on each particle consists of many-body repulsive and viscous forces, two-body (particle-particle) attractive forces, and body forces such as gravitational forces. Similarly to molecular dynamics, for a given fluid component the combination of repulsive and attractive forces causes a phase separation. The surface tension at liquid-liquid interfaces is imposed through component dependent attractive forces. The wetting behavior of the fluids is controlled by phase dependent attractive interactions between the fluid particles and stationary particles that represent the solid phase. The dynamics of fluids away from interface is governed by purely hydrodynamic forces. Comparison with analytical solutions for static conditions and relatively simple flows demonstrates the accuracy of the SPH model.
Edited by Guenther, Chris; Garg, Rahul
2013-08-19
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.
Impact of normal stress on multiphase flow through rough fractures
NASA Astrophysics Data System (ADS)
Alves da Silva Junior, J.; Kang, P. K.; Yang, Z.; Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
Fluid flow and transport through geologic fractures plays a key role in several areas such as groundwater hydrology, geothermal energy, oil and gas production, CO2 sequestration and nuclear waste disposal. High-permeability zones associated with fracture corridors often serve as fast fluid conduits for both single and multiphase flow in otherwise low-permeability media. When multiphase flow occurs, the presence of one phase interferes with the flow of the other phase, resulting in complex displacement patterns through the fracture, and macroscopic descriptors (such as fracture-scale capillary pressure and relative permeability) that depend on the phase concentration of both phases. Here, we investigate the impact of normal stress on single and multiphase flow through rough-walled fractures: (1) we generate synthetic aperture fields that honor the fractal roughness structure observed in real fractures; (2) we model the effect of normal stress on the fracture aperture geometry by solving the contact problem between fracture walls; and (3) we use invasion percolation with trapping to model immiscible fluid displacement and then compute relative permeability numerically for each stress scenario. Our results indicate that normal stress increases the amount of contact area in the fracture wall, which results in an increase of the tortuosity of the available path for fluid displacement. Increasing normal stress results in low relative permeability for the wetting phase due to a decrease of the available path for fluid flow, and therefore a small amount of non-wetting fluid has a large impact on the flow of the wetting fluid. We find that the relative permeability of the non-wetting fluid shows less variation with stress than the wetting fluid, and that both fluids exhibit strong phase interference at intermediate saturations. Finally, we show early results from our experimental work currently underway to validate the modeling results.
Quantitative tomographic measurements of opaque multiphase flows
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O'HERN,TIMOTHY J.; CECCIO,STEVEN L.
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.
NASA Astrophysics Data System (ADS)
Moortgat, J.
2015-12-01
Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.
Oscillatory multiphase flow strategy for chemistry and biology.
Abolhasani, Milad; Jensen, Klavs F
2016-07-19
Continuous multiphase flow strategies are commonly employed for high-throughput parameter screening of physical, chemical, and biological processes as well as continuous preparation of a wide range of fine chemicals and micro/nano particles with processing times up to 10 min. The inter-dependency of mixing and residence times, and their direct correlation with reactor length have limited the adaptation of multiphase flow strategies for studies of processes with relatively long processing times (0.5-24 h). In this frontier article, we describe an oscillatory multiphase flow strategy to decouple mixing and residence times and enable investigation of longer timescale experiments than typically feasible with conventional continuous multiphase flow approaches. We review current oscillatory multiphase flow technologies, provide an overview of the advancements of this relatively new strategy in chemistry and biology, and close with a perspective on future opportunities. PMID:27397146
Multiphase groundwater flow near cooling plutons
Hayba, D.O.; Ingebritsen, S.E.
1997-01-01
We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.
Shock Scattering in a Multiphase Flow Model
Klem, D
2003-04-08
Multiphase flow models have been proposed for use in situations which have combined Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities. Such an approach work poorly for the case of a heavy to light shock incidence on a developed interface. The physical original of this difficulty is traced to an inadequate model of the interfacial pressure term as it appears in the momentum and turbulence kinetic energy equations. Constraints on the form of a better model from a variety of sources are considered. In this context it is observed that a new constraint on closures arises. This occurs because of the discontinuity within the shock responsible for the RMI. The proposed model (Shock Scattering) is shown to give useful results.
A Pressure Based Multi-Fluid Algorithm for Multiphase Flow
NASA Astrophysics Data System (ADS)
Ming, P. J.; Zhang, W. P.; Lei, G. D.; Zhu, M. G.
A new finite volume-based numerical algorithm for predicting multiphase flow phenomena is presented. The method is formulated on an orthogonal coordinate system in collocated primitive variables. The SIMPLE-like algorithms are based on the prediction and correction procedure, and they are extended for all speed range. The object of the present work is to extent single phase SIMPLE algorithm to multiphase flow. The overview of the algorithm is described and relevant numerical issues are discussed extensively, including implicit process of the moment interaction with “partial elimination” (of the drag term), introduction of under-relaxation factor, formulation of momentum interpolation, and pressure correction equation. This model is based on the k-ɛ model assumed that the turbulence is dictated by the continuous phase. Thus only the transport equation for the continuous phase turbulence energy kc needed to be solved while a algebraic turbulence model is used for dispersed phase. The present author also designed a general program with FORTRAN90 program language for the new algorithm based on the household code General Transport Equation Analyzer (GTEA). The performance of the new method is assessed by solving a 3D bubbly two-phase flow in a vertical pipe. A good agreement is achieved between the numerical result and experimental data in the literature.
NASA Astrophysics Data System (ADS)
Paolini, C.; Park, A. J.; Mellors, R. J.; Castillo, J.
2009-12-01
A typical CO2 sequestration scenario involves the use of multiple simulators for addressing multiphase fluid and heat flow, water-rock interaction and mass-transfer, rock mechanics, and other chemical and physical processes. The benefit of such workflow is that each model can be constrained rigorously; however, the drawback is final modeling results may achieve only a limited extent of the theoretically possible capabilities of each model. Furthermore, such an approach in modeling carbon sequestration cannot capture the nonlinearity of the various chemical and physical processes. Hence, the models can only provide guidelines for carbon sequestration processes with large margins of error. As an alternative, a simulator is being constructed by a multi-disciplinary team with the aim of implementing a large array of fundamental phenomenologies, including, but not limited to: water-rock interaction using elemental mass-balance and explicit mass-transfer and reaction coupling methods; multi-phase and heat flow, including super-critical CO2 and oil; fracture mechanics with anisotropic permeabilities; rheological rock mechanics based on incremental stress theory; and a composite petrophysics model capable of describing changing rock composition and properties. The modules representing the processes will be solved using a layered iteration method, with the goal of capturing the nonlinear feedback among all of the processes. The simulator will be constructed using proven optimization and modular, object-oriented, and service-oriented programming methods. Finally, a novel AJAX (asynchronous JavaScript and XML) user interface is being tested to host the simulator that will allow usage through an Internet browser. Currently, the water-rock interaction, composite petrophysics, and multi-phase fluid and heat flow modules are available for integration. Results of the water-rock interaction and petrophysics coupling has been used to model interaction between a CO2-charged water and
Multiphase flows with digital and traditional microfluidics
NASA Astrophysics Data System (ADS)
Nilsson, Michael A.
Multi-phase fluid systems are an important concept in fluid mechanics, seen every day in how fluids interact with solids, gases, and other fluids in many industrial, medical, agricultural, and other regimes. In this thesis, the development of a two-dimensional digital microfluidic device is presented, followed by the development of a two-phase microfluidic diagnostic tool designed to simulate sandstone geometries in oil reservoirs. In both instances, it is possible to take advantage of the physics involved in multiphase flows to affect positive outcomes in both. In order to make an effective droplet-based digital microfluidic device, one must be able to precisely control a number of key processes including droplet positioning, motion, coalescence, mixing, and sorting. For planar or open microfluidic devices, many of these processes have yet to be demonstrated. A suitable platform for an open system is a superhydrophobic surface, as suface characteristics are critical. Great efforts have been spent over the last decade developing hydrophobic surfaces exhibiting very large contact angles with water, and which allow for high droplet mobility. We demonstrate that sanding Teflon can produce superhydrophobic surfaces with advancing contact angles of up to 151° and contact angle hysteresis of less than 4°. We use these surfaces to characterize droplet coalescence, mixing, motion, deflection, positioning, and sorting. This research culminates with the presentation of two digital microfluidic devices: a droplet reactor/analyzer and a droplet sorter. As global energy usage increases, maximizing oil recovery from known reserves becomes a crucial multiphase challenge in order to meet the rising demand. This thesis presents the development of a microfluidic sandstone platform capable of quickly and inexpensively testing the performance of fluids with different rheological properties on the recovery of oil. Specifically, these microfluidic devices are utilized to examine how
Workshop on Scientific Issues in Multiphase Flow
Hanratty, Thomas J.
2003-01-02
This report outlines scientific issues whose resolution will help advance and define the field of multiphase flow. It presents the findings of four study groups and of a workshop sponsored by the Program on Engineering Physics of the Department of Energy. The reason why multiphase flows are much more difficult to analyze than single phase flows is that the phases assume a large number of complicated configurations. Therefore, it should not be surprising that the understanding of why the phases configure in a certain way is the principal scientific issue. Research is needed which identifies the microphysics controlling the organization of the phases, which develops physical models for the resultant multi-scale interactions and which tests their validity in integrative experiments/theories that look at the behavior of a system. New experimental techniques and recently developed direct numerical simulations will play important roles in this endeavor. In gas-liquid flows a top priority is to develop an understanding of why the liquid phase in quasi fully-developed pipe flow changes from one configuration to another. Mixing flows offer a more complicated situation in which several patterns can exist at the same time. They introduce new physical challenges. A second priority is to provide a quantitative description of the phase distribution for selected fully-developed flows and for simple mixing flows (that could include heat transfer and phase change). Microphysical problems of interest are identified – including the coupling of molecular and macroscopic behavior that can be observed in many situations and the formation/destruction of interfaces in the coalescence/breakup of drops and bubbles. Solid-fluid flows offer a simpler system in that interfaces are not changing. However, a variety of patterns exist, that depend on the properties of the particles, their concentration and the Reynolds number characterizing the relative velocity. A top priority is the
Online recognition of the multiphase flow regime and study of slug flow in pipeline
NASA Astrophysics Data System (ADS)
Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu
2009-02-01
Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of
APPROXIMATE MULTIPHASE FLOW MODELING BY CHARACTERISTIC METHODS
The flow of petroleum hydrocarbons, organic solvents and other liquids that are immiscible with water presents the nation with some of the most difficult subsurface remediation problems. One aspect of contaminant transport associated releases of such liquids is the transport as a...
Pruess, Karsten
2003-08-08
Numerical simulation has become a widely practiced andaccepted technique for studying flow and transport processes in thevadose zone and other subsurface flow systems. This article discusses asuite of codes, developed primarily at Lawrence Berkeley NationalLaboratory (LBNL), with the capability to model multiphase flows withphase change. We summarize history and goals in the development of theTOUGH codes, and present the governing equations for multiphase,multicomponent flow. Special emphasis is given to space discretization bymeans of integral finite differences (IFD). Issues of code implementationand architecture are addressed, as well as code applications,maintenance, and future developments.
Multiphase pumps and flow meters avoid platform construction
Elde, J.
1999-02-01
One of the newest wrinkles in efficiency in BP`s Eastern Trough Area Project (ETAP) is the system for moving multiphase oil, water and gas fluids from the Machar satellite field to the Marnock Central Processing Facility (CPF). Using water-turbine-driven multiphase pumps and multiphase flow meters, the system moves fluid with no need for a production platform. In addition, BP has designed the installation so it reduces and controls water coning, thereby increasing recoverable reserves. Both subsea multiphase booster stations (SMUBS) and meters grew out of extensive development work and experience at Framo Engineering AS (Framo) in multiphase meters and multiphase pump systems for subsea installation. Multiphase meter development began in 1990 and the first subsea multiphase meters were installed in the East Spar Project in Australia in 1996. By September 1998, the meters had been operating successfully for more than 1 year. A single multiphase meter installed in Marathon`s West Brae Project has also successfully operated for more than 1 year. Subsea meters for ETAP were installed and began operating in July 1998.
NASA Astrophysics Data System (ADS)
Pedone, Richard; Korman, Valentin; Wiley, John T.
2006-05-01
Accurate and reliable multiphase flow measurements are needed for liquid propulsion systems. Existing volumetric flow meters are adequate for flow measurements with well-characterized, clean liquids and gases. However, these technologies are inadequate for multiphase environments, such as cryogenic fluids. Although, properly calibrated turbine flow meters can provide highly accurate and repeatable data, problems are still prevalent with multiphase flows. Limitations are thus placed on the applicability of intrusive turbine flow meters.
Development of predictive simulation capability for reactive multiphase flow
VanderHeyden, W.B.; Kendrick, B.K.
1998-12-31
This is the final report of a Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient methods for handling particle size distribution in multiphase flow simulation codes, the incorporation of precipitation growth and agglomeration kinetics in LANL's CFDLIB multiphase flow code library and the evaluation of multiphase turbulence closure models for bubbly flow simulations.
Massively Parallel Direct Simulation of Multiphase Flow
COOK,BENJAMIN K.; PREECE,DALE S.; WILLIAMS,J.R.
2000-08-10
The authors understanding of multiphase physics and the associated predictive capability for multi-phase systems are severely limited by current continuum modeling methods and experimental approaches. This research will deliver an unprecedented modeling capability to directly simulate three-dimensional multi-phase systems at the particle-scale. The model solves the fully coupled equations of motion governing the fluid phase and the individual particles comprising the solid phase using a newly discovered, highly efficient coupled numerical method based on the discrete-element method and the Lattice-Boltzmann method. A massively parallel implementation will enable the solution of large, physically realistic systems.
FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)
NASA Astrophysics Data System (ADS)
Wu, Yulin
2015-01-01
The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and
Multiphase transport in polymer electrolyte membrane fuel cells
NASA Astrophysics Data System (ADS)
Gauthier, Eric D.
Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the
A model for multiphase flows through poroelastic media
Ahmadi, Goodarz; Mazaheri, Ali Reza; Smith, D.H
2003-01-01
A continuum model for multiphase fluid mixture flows through poroelastic media is presented. The basic conservation laws developed via a volume averaging technique are considered. Effects of phasic equilibrated forces are included in the model. Based on the thermodynamics of the multiphase mixture flows, appropriate constitutive equations are formulated. The entropy inequality is exploited, and the method of Lagrangian multiplier is used along with the phasic conservation laws to derive the constitutive equations for the phasic stress tensors, equilibrated stress vectors, and the interactions terms. The special cases of wave propagation in poroelastic media saturated with multiphase fluids, and multiphase flows through porous media, are studied. It is shown that the present theory leads to the extended Darcy’s law and contains, as a special case, Biot’s theory of saturated poroelastic media.
FOREWORD: International Symposium of Cavitation and Multiphase Flow (ISCM 2014)
NASA Astrophysics Data System (ADS)
Wu, Yulin
2015-01-01
The International Symposium on Cavitation and Multiphase Flow (ISCM 2014) was held in Beijing, China during 18th-21st October, 2014, which was jointly organized by Tsinghua University, Beijing, China and Jiangsu University, Zhenjiang, China. The co-organizer was the State Key Laboratory of Hydroscience and Engineering, Beijing, China. Cavitation and multiphase flow is one of paramount topics of fluid mechanics with many engineering applications covering a broad range of topics, e.g. hydraulic machinery, biomedical engineering, chemical and process industry. In order to improve the performances of engineering facilities (e.g. hydraulic turbines) and to accelerate the development of techniques for medical treatment of serious diseases (e.g. tumors), it is essential to improve our understanding of cavitation and Multiphase Flow. For example, the present development towards the advanced hydrodynamic systems (e.g. space engine, propeller, hydraulic machinery system) often requires that the systems run under cavitating conditions and the risk of cavitation erosion needs to be controlled. The purpose of the ISCM 2014 was to discuss the state-of-the-art cavitation and multiphase flow research and their up-to-date applications, and to foster discussion and exchange of knowledge, and to provide an opportunity for the researchers, engineers and graduate students to report their latest outputs in these fields. Furthermore, the participants were also encouraged to present their work in progress with short lead time and discuss the encountered problems. ISCM 2014 covers all aspects of cavitation and Multiphase Flow, e.g. both fundamental and applied research with a focus on physical insights, numerical modelling and applications in engineering. Some specific topics are: Cavitating and Multiphase Flow in hydroturbines, pumps, propellers etc. Numerical simulation techniques Cavitation and multiphase flow erosion and anti-erosion techniques Measurement techniques for cavitation and
Multi-phase multi-component reactive flow in Geodynamics
NASA Astrophysics Data System (ADS)
Oliveira, Beñat; Afonso, Juan Carlos; Zlotnik, Sergio
2016-04-01
Multi-phase multi-component reactive flow (MPMCRF) controls a number of important complex geodynamic/geochemical problems, such as melt generation and percolation, metasomatism, rheological weakening, magmatic differentiation, ore emplacement, and fractionation of chemical elements, to name a few. These interacting processes occur over very different spatial and temporal scales and under very different physico-chemical conditions. Therefore, there is a strong motivation in geodynamics for investigating the equations governing MPMCRF, their mathematical structure and properties, and the numerical techniques necessary to obtain reliable and accurate results. In this contribution we present results from a novel numerical framework to solve multiscale MPMCRF problems in geodynamic contexts. Our approach is based on the effective tracking of the most basic building blocks: internal energy and chemical composition. This is achieved through the combination of rigorous solutions to the conservation equations (mass, energy and momentum) for each dynamic phase (instead of the more common "mixture-type" approach) and the transport equation for the chemical species, within the context of classical irreversible thermodynamics. Interfacial processes such as phase changes, chemical diffusion+reaction, and surface tension effects are explicitly incorporated in the context of ensemble averaging. Phase assemblages, mineral and melt compositions, and all other physical parameters of multi-phase systems are obtained through dynamic free-energy minimization procedures.
System for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2003-01-01
An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.
MSTS Multiphase Subsurface Transport Simulator User's Guide and Reference
Nichols, W.E.; White, M.D.
1993-05-01
This User's Guide and Reference provides information and instructions on the use of the Multiphase Subsurface Transport Simulator (MSTS) code and the associated MSTS Graphical Input. The MSTS code is used to simulate water flow, air flow, heat transfer, and dilute species mass transport in variably saturated geologic media for one, two, or three dimensions using an integrated finite-difference numerical scheme. Any or all of these processes may be simulated in a fully coupled manner. MSTS is a two-phase, two-component code with secondary processes that include binary diffusion and vapor pressure lowering. The geologic media may be homogeneous or heterogeneous, isotropic or anisotropic, and unfractured or highly fractured. A problem geometry may be described by either Cartesian or cylindrical coordinates. MSTS is written in FORTRAN 77, following the American National Standards Institute (ANSI) standards, and is machine-independent with the exception of some time and date calls required for quality control (provisions are made in the code for relatively easy adoption to a number of machines for these calls).
Development of predictive simulation capability for reactive multiphase flow
VanderHeyden, W.B.; Kendrick, B.K.
1998-12-31
This is the final report of a proposed three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project was terminated after the first year due to changes in funding priorities. The objective of the project was to develop a self-sustained research program for advanced computer simulation of industrial reactive multiphase flows. The prototype research problem was a three-phase alumina precipitator used in the Bayer process, a key step in aluminum refining. Accomplishments in the first year included the development of an improved reaction mechanism of the alumina precipitation growth process, the development of an efficient method for handling particle size distribution in multiphase flow simulation codes and finally the incorporation of precipitation growth and agglomeration kinetics in LANL`s CFDLIB multiphase flow code library.
Multi-phase reactive transport theory
Lichtner, P.C.
1995-07-01
Physicochemical processes in the near-field region of a high-level waste repository may involve a diverse set of phenomena including flow of liquid and gas, gaseous diffusion, and chemical reaction of the host rock with aqueous solutions at elevated temperatures. This report develops some of the formalism for describing simultaneous multicomponent solute and heat transport in a two-phase system for partially saturated porous media. Diffusion of gaseous species is described using the Dusty Gas Model which provides for simultaneous Knudsen and Fickian diffusion in addition to Darcy flow. A new form of the Dusty Gas Model equations is derived for binary diffusion which separates the total diffusive flux into segregative and nonsegregative components. Migration of a wetting front is analyzed using the quasi-stationary state approximation to the Richards` equation. Heat-pipe phenomena are investigated for both gravity- and capillary-driven reflux of liquid water. An expression for the burnout permeability is derived for a gravity-driven heat-pipe. Finally an estimate is given for the change in porosity and permeability due to mineral dissolution which could occur in the region of condensate formation in a heat-pipe.
Multiphase flow parameter estimation based on laser scattering
NASA Astrophysics Data System (ADS)
Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.
2015-07-01
The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.
MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER
Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...
Modeling the multiphase flow in a dense medium cyclone
Wang, B.; Chu, K.W.; Yu, A.B.; Vince, A.
2009-04-15
A mathematical model is proposed to describe the multiphase flow in a dense-medium cyclone (DMC). In this model, the volume of fluid multiphase model is first used to determine the shape and position of the air core, and then the mixture multiphase model is employed to describe the flow of the dense medium (comprising finely ground magnetite in water) and the air core, where the turbulence is described by the Reynolds stress model. The results of fluid flow are finally used in the simulation of coal particle flow described by the stochastic Lagrangian particle tracking model. The validity of the proposed approach is verified by the reasonably good agreement between the measured and predicted results under different conditions. The flow features in a DMC are then examined in terms of factors such as flow field, pressure drop, particle trajectories, and separation efficiency. The results are used to explain the key characteristics of flow in DMCs, such as the origin of a short-circuit flow, the flow pattern, and the motion of coal particles. Moreover, the so-called surging phenomenon is examined in relation to the instability of fluid flow. The model offers a convenient method to investigate the effects of variables related to geometrical and operational conditions on the performance of DMCs.
Gasificaton Transport: A Multiphase CFD Approach & Measurements
Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan
2009-02-14
The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.
FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...
Finite-Element Analysis of Multiphase Immiscible Flow Through Soils
NASA Astrophysics Data System (ADS)
Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.
1987-04-01
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.
Calculation of mass transfer in multiphase flow
Wang, L.; Gopal, M.
1998-12-31
This paper summarizes the results of mass transfer mechanisms under disturbed liquid-gas flow in 10 cm diameter pipe using electrochemical limiting current density and potentiostatic noise technique. The solution used is potassium ferro/ferricyanide dissolve in 1.3 N sodium hydroxide system. Mass transfer coefficients in full pipe flow and slug flow are obtained. The relationship between mass transfer coefficient with full pipe flow velocities and with slug flow Froude numbers are studied. The impact of bubbles in slugs on the mass transfer coefficient is revealed, The impact of flow disturbance, including weld beads and pits, are discussed for both full pipe flow and slug flow.
Grain transport mechanics in shallow flow
Technology Transfer Automated Retrieval System (TEKTRAN)
A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...
Grain transport mechanics in shallow overland flow
Technology Transfer Automated Retrieval System (TEKTRAN)
A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...
Toward an improved understanding of multiphase flow in porous media
NASA Astrophysics Data System (ADS)
Muccino, Julia C.; Gray, William G.; Ferrand, Lin A.
1998-08-01
Physical description of multiphase flow in porous media ideally should be based on conservation principles. In practice, however, Darcy's law is employed as the foundation of multiphase flow studies. Darcy's law is an empirical surrogate for momentum conservation based on data obtained from experimental study of one-dimensional single-phase flow. In its original form [Darcy, 1856], Darcy's law contained a single, constant coefficient that depended on the properties of the medium. Since 1856, Darcy's relation has been heuristically and progressively altered by allowing this coefficient to be a spatially dependent, nonlinear function of fluid and solid phase properties, particularly of the quantities of these phases within the flow system. The shortcoming of this approach is that the governing flow equation is obtained by enhancing a simple empirical coefficient with complex functional dependencies rather than by simplifying general conservation principles. As a result, some of the important physical phenomena are not properly accounted for. Also, some assumptions intrinsic to the equations are overlooked, making accurate simulation more of an art than an entirely scientific exercise. A more general and more theoretically appealing approach to the derivation of conservation principles for multiphase flow has been evolving over the last 30 years. This approach employs a mathematical procedure for deriving conservation principles at the length scale of interest, followed by imposition of thermodynamic constraints to restrict the generality of these expressions. The product of this approach is a set of balance equations that provides a framework in which the assumptions inherent in a hypothesized model of multiphase flow are clearly stated. Requirements for more comprehensive and physically complete models can then be specified.
Applying uncertainty quantification to multiphase flow computational fluid dynamics
Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C
2013-07-01
Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.
Development of Next Generation Multiphase Pipe Flow Prediction Tools
Tulsa Fluid Flow
2008-08-31
The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and
Multiphase flow of miscible liquids: jets and drops
NASA Astrophysics Data System (ADS)
Walker, Travis W.; Logia, Alison N.; Fuller, Gerald G.
2015-05-01
Drops and jets of liquids that are miscible with the surrounding bulk liquid are present in many processes from cleaning surfaces with the aid of liquid soaps to the creation of biocompatible implants for drug delivery. Although the interactions of immiscible drops and jets show similarities to miscible systems, the small, transient interfacial tension associated with miscible systems create distinct outcomes such as intricate droplet shapes and breakup resistant jets. Experiments have been conducted to understand several basic multiphase flow problems involving miscible liquids. Using high-speed imaging of the morphological evolution of the flows, we have been able to show that these processes are controlled by interfacial tensions. Further multiphase flows include investigating miscible jets, which allow the creation of fibers from inelastic materials that are otherwise difficult to process due to capillary breakup. This work shows that stabilization from the diminishing interfacial tensions of the miscible jets allows various elongated morphologies to be formed.
Compressible flow of a multiphase fluid between two vessels:
Chenoweth, D.R. ); Paolucci, S. . Dept. of Aerospace and Mechanical Engineering)
1990-06-01
The transfer of a multiphase fluid from a high pressure vessel to one initially at lower pressure is investigated. The fluid is composed of two phases which do not undergo any change. The phases consist of an ideal gas, and solid particles (or liquid droplets) having constant density. The mixture is assumed to be stagnant and always perfectly mixed as well as at thermal equilibrium in each constant volume vessel. The fluid also remains homogeneous and at equilibrium while flowing between vessels. The transport properties of the mixture are taken to be zero. One important finding is that the expanding mixture or pseduo-fluid behaves similar to a polytropic Abel-Noble gas. The mixture thermodymanic properties, the end state in each vessel at pressure equilibrium, the critical parameters, and time dependent results are given for the adiabatic and isothermal limiting cases. The results include both initially sonic and initially subsonic transfer. No mathematical restriction is placed on the particle concentration, although some limiting results are given for small particle volume fraction. The mass transferred at adiabatic pressure equilibrium can be significantly less than that when thermal equilibrium is also reached. Furthermore, the adiabatic pressure equilibrium level may not be the same as that obtained at thermal equilibrium, even when all initial temperatures are the same. Finally, it is shown that the transfer times can be very slow compared to those of a pure gas due to the large reduction possible in the mixture sound speed. 18 refs.
Numerical modeling of a compressible multiphase flow through a nozzle
NASA Astrophysics Data System (ADS)
Niedzielska, Urszula; Rabinovitch, Jason; Blanquart, Guillaume
2012-11-01
New thermodynamic cycles developed for more efficient low temperature resource utilization can increase the net power production from geothermal resources and sensible waste heat recovery by 20-40%, compared to the traditional organic Rankine cycle. These improved systems consist of a pump, a liquid heat exchanger, a two-phase turbine, and a condenser. The two-phase turbine is used to extract energy from a high speed multiphase fluid and consists of a nozzle and an axial impulse rotor. In order to model and optimize the fluid flow through this part of the system an analysis of two-phase flow through a specially designed convergent-divergent nozzle has to be conducted. To characterize the flow behavior, a quasi-one-dimensional steady-state model of the multiphase fluid flow through a nozzle has been constructed. A numerical code capturing dense compressible multiphase flow under subsonic and supersonic conditions and the coupling between both liquid and gas phases has been developed. The output of the code delivers data vital for the performance optimization of the two-phase nozzle.
Direct Numerical Simulation of Disperse Multiphase High-Speed Flows
Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T
2004-02-17
A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.
Multiphase flow in geometrically simple fracture intersections
Basagaoglu, H.; Meakin, P.; Green, C.T.; Mathew, M.
2006-01-01
A two-dimensional lattice Boltzmann (LB) model with fluid-fluid and solid-fluid interaction potentials was used to study gravity-driven flow in geometrically simple fracture intersections. Simulated scenarios included fluid dripping from a fracture aperture, two-phase flow through intersecting fractures and thin-film flow on smooth and undulating solid surfaces. Qualitative comparisons with recently published experimental findings indicate that for these scenarios the LB model captured the underlying physics reasonably well.
Multiphase Flow: The Gravity of the Situation
NASA Technical Reports Server (NTRS)
Hewitt, Geoffrey F.
1996-01-01
A brief survey is presented of flow patterns in two-phase, gas-liquid flows at normal and microgravity, the differences between them being explored. It seems that the flow patterns in zero gravity are in general much simpler than those in normal gravity with only three main regimes (namely bubbly, slug and annular flows) being observed. Each of these three regimes is then reviewed, with particular reference to identification of areas of study where investigation of flows at microgravity might not only be interesting in themselves, but also throw light on mechanisms at normal earth gravity. In bubbly flow, the main area of interest seems to be that of bubble coalescence. In slug flow, the extension of simple displacement experiments to the zero gravity case would appear to be a useful option, supplemented by computational fluid dynamics (CFD) studies. For annular flow, the most interesting area appears to be the study of the mechanisms of disturbance waves; it should be possible to extend the region of investigation of the onset and behavior of these waves to much low gas velocities where measurements are clearly much easier.
A Virtual Reality Technique for Multi-phase Flows
NASA Astrophysics Data System (ADS)
Loth, Eric; Sherman, William; Auman, Aric; Navarro, Christopher
2004-04-01
A virtual reality (VR) technique has been developed to allow user immersion (stereo-graphic rendering, user tracking and object interactivity) in generic unsteady three-dimensional multi-phase flow data sets. This article describes the structure and logic used to design and construct a VR technique that employs a multi-phase flow-field computed a priori as an input (i.e. simulations are conducted beforehand with a researcher's multi-phase CFD code). The input field for this flow visualization is divided into two parts: the Eulerian three-dimensional grid nodes and velocities for the continuous fluid properties (specified using conventional TECLOT data format) and the Lagrangian time-history trajectory files for the dispersed fluid. While tracking the dispersed phase trajectories as animated spheres of adjustable size and number, the continuous-phase flow can be simultaneously rendered with velocity vectors, iso-contour surfaces and planar flood-contour maps of different variables. The geometric and notional view of the combined visualization of both phases is interactively controlled throughout a user session. The resulting technique is demonstrated with a 3-D unsteady data set of Lagrangian particles dispersing in a Eulerian description of a turbulent boundary layer, stemming from a direct numerical simulation of the Navier-Stokes equations.
Experimental and computational analysis of pressure response in a multiphase flow loop
NASA Astrophysics Data System (ADS)
Morshed, Munzarin; Amin, Al; Rahman, Mohammad Azizur; Imtiaz, Syed
2016-07-01
The characteristics of multiphase fluid flow in pipes are useful to understand fluid mechanics encountered in the oil and gas industries. In the present day oil and gas exploration is successively inducing subsea operation in the deep sea and arctic condition. During the transport of petroleum products, understanding the fluid dynamics inside the pipe network is important for flow assurance. In this case the information regarding static and dynamic pressure response, pressure loss, optimum flow rate, pipe diameter etc. are the important parameter for flow assurance. The principal aim of this research is to represents computational analysis and experimental analysis of multi-phase (L/G) in a pipe network. This computational study considers a two-phase fluid flow through a horizontal flow loop with at different Reynolds number in order to determine the pressure distribution, frictional pressure loss profiles by volume of fluid (VOF) method. However, numerical simulations are validated with the experimental data. The experiment is conducted in 76.20 mm ID transparent circular pipe using water and air in the flow loop. Static pressure transducers are used to measure local pressure response in multiphase pipeline.
Multiphase Flow and Cavern Abandonment in Salt
Ehgartner, Brian; Tidwell, Vince
2001-02-13
This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment
Multiphase Flow Modeling of Biofuel Production Processes
D. Gaston; D. P. Guillen; J. Tester
2011-06-01
As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant
Considerations for developing models of multiphase flow in deformable porous media.
Martinez, Mario J.; Stone, Charles Michael
2008-09-01
This document summarizes research and planning for the development of a numerical simulation capability for nonisothermal multiphase, multicomponent transport in heterogeneous deformable porous materials. Particular attention is given to describing a mathematical formulation for flow in deformable media and for numerical techniques for dealing with phase transitions. A development plan is formulated to provide a computational capability motivated by current and future needs in geosystems management for energy security.
Multiphase flow in fractured porous media
Firoozabadi, A.
1995-02-01
The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
2003-01-01
NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel
Yang, Lu; Shi, Yanxiang; Abolhasani, Milad; Jensen, Klavs F
2015-08-01
We study microreactors with internal fields of posts as typical examples of structured microreactors to elucidate flow fields and their implications for mass transfer. Laser-induced fluorescence (LIF) visualization combined with image analysis is used to systematically quantify key features such as interfacial area, phase holdup and the characteristics of the post-wetting layer. The subsequent mass transport analysis yields insight into how the posts contribute to the overall enhanced mass transfer performance compared to open channels, and provides predictions of mass transfer performance under varying operating conditions. Computational fluid dynamic (CFD) simulations of multiphase flow using the volume-of-fluid (VOF) method are in good agreement with experimentally observed multiphase flows. PMID:26126496
Multiphase flow modeling in centrifugal partition chromatography.
Adelmann, S; Schwienheer, C; Schembecker, G
2011-09-01
The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. PMID:21324465
NASA Astrophysics Data System (ADS)
Saaltink, Maarten W.; Vilarrasa, Victor; De Gaspari, Francesca; Silva, Orlando; Carrera, Jesús; Rötting, Tobias S.
2013-12-01
CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O-CO2-Na-Cl-CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach
State-of-the-art methods for multiphase flow pipelines
Crowley, C.J.; Barry, J.J.; Rothe, P.H.
1989-08-01
This report is the culmination of work on Design Methods for Multiphase Flow in Gas Pipelines'' sponsored by the Pipeline Research Committee of the American Gas Association on projects PR 172--609 and PR 172--904. Results from a series of projects to obtain pipeline data in the field, collect operating pipeline data, perform key laboratory experiments at prototypical conditions (large pipe size and high gas density), and to develop and recommend design methods over the past several years have been synthesized to create this report. Technical supervision of these projects has been provided by the Two-Phase Flow Supervisory Committee. This report concisely documents the state of the art in two-phase flow methods, in a manner suitable for use by analysts who want to develop computerized methods to perform the multiphase calculations. This document updates a previous report prepared approximately four years ago (Crowley and Rothe, 1986). Detailed background discussion of the development and selection of the multiphase models is presented in Volume 3 of that reference.
Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media
Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.
1997-07-01
The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.
Multiphase Flow with Interphase eXchanges
Energy Science and Technology Software Center (ESTSC)
1995-03-01
MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. MFIX has the following modeling capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase andmore » two solids phase energy equation; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesin or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary direct-access output files that minimize disk storage and accelerate data retrieval; extensive error reporting; post-processors for creating animations and for extracting and manipulating output data.« less
Preconditioning methods for ideal and multiphase fluid flows
NASA Astrophysics Data System (ADS)
Gupta, Ashish
The objective of this study is to develop a preconditioning method for ideal and multiphase multispecies compressible fluid flow solver using homogeneous equilibrium mixture model. The mathematical model for fluid flow going through phase change uses density and temperature in the formulation, where the density represents the multiphase mixture density. The change of phase of the fluid is then explicitly determined using the equation of state of the fluid, which only requires temperature and mixture density. The method developed is based on a finite-volume framework in which the numerical fluxes are computed using Roe's approximate Riemann solver and the modified Harten, Lax and Van-leer scheme (HLLC). All speed Roe and HLLC flux based schemes have been developed either by using preconditioning or by directly modifying dissipation to reduce the effect of acoustic speed in its numerical dissipation when Mach number decreases. Preconditioning proposed by Briley, Taylor and Whitfield, Eriksson and Turkel are studied in this research, where as low dissipation schemes proposed by Rieper and Thornber, Mosedale, Drikakis, Youngs and Williams are also considered. Various preconditioners are evaluated in terms of development, performance, accuracy and limitations in simulations at various Mach numbers. A generalized preconditioner is derived which possesses well conditioned eigensystem for multiphase multispecies flow simulations. Validation and verification of the solution procedure are carried out on several small model problems with comparison to experimental, theoretical, and other numerical results. Preconditioning methods are evaluated using three basic geometries; 1) bump in a channel 2) flow over a NACA0012 airfoil and 3) flow over a cylinder, which are then compared with theoretical and numerical results. Multiphase capabilities of the solver are evaluated in cryogenic and non-cryogenic conditions. For cryogenic conditions the solver is evaluated by predicting
Development of a mechanistic model for predicting corrosion rate in multiphase oil/water/gas flows
Zhang, R.; Gopal, M.; Jepson, W.P.
1997-09-01
A mechanistic model has been developed to predict corrosion rates in multiphase (water/oil/CO{sub 2}) flow conditions. The model takes into account electrochemistry, reaction kinetics, and, mass transport effects. This paper describes the equations used to determine pH and bulk concentrations of various ions, which are then used to calculate the mass transfer rates to the corrosion surface. The result includes the determination of the mass transfer coefficients of various ionic species and corrosion rates. Details of relations used for determination of mass transfer coefficients for multiphase flows, and rates of electrochemical reaction kinetics are discussed and predicted results are compared with experimental observations. Agreement between model results and experimental data is good.
Interface effects on multiphase flows in porous media
Zhang, Duan Z
2008-01-01
Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.
Experimental research of multiphase flow with cavitation in the nozzle
NASA Astrophysics Data System (ADS)
Kozubkova, Milada; Bojko, Marian; Jablonska, Jana; Homa, Dorota; Tůma, Jiří
2016-03-01
The paper deals with the problems of cavitation in water flow in the nozzle. The area of research is divided into two directions (experimental and numerical research). During the experimental research the equipment with the nozzle is under the measurement and basic physical quantities such as pressure and volume flow rate are recorded. In the following phase measuring of noise which is generated during flow through the nozzle in the area of cavitation is measured at various operating conditions of the pump. In the second part the appropriate multiphase mathematical model including the consideration of cavitation is defined. Boundary conditions for numerical simulation are defined on the basis of experimental measurements. Undissolved air in the flow is taken into account to obtain pressure distribution in accordance to measured one. Results of the numerical simulation are presented by means of basic current quantities such as pressure, velocity and volume fractions of each phase. The conclusions obtained from experimental research of cavitation were applied to modify the multiphase mathematical model.
Interfacial Pressures and Shocks in a Multiphase Flow mix Model
Klem, D E
2004-10-01
Multiphase flow models have been proposed for use in situations which have combined Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities [2, 3]. Such an approach works poorly for the case of a heavy to light shock incidence on a developed interface. I suggest that this difficulty can be overcome by adding an additional source to the turbulence kinetic energy equation. A variety of constraints on such a source are considered. In this context it is observed that a new constraint on closures arises. This occurs because of the discontinuity within the shock responsible for the RMI. The proposed model (Shock Scattering) is shown to give useful results.
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes.
Misztal, Marek K; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, J Andreas; Bridson, Robert
2013-07-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:23836703
Multiphase flow of immiscible fluids on unstructured moving meshes.
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam; Fursund, Jens; Christensen, Brian Bunch; Bærentzen, Jakob Andreas; Bridson, Robert
2014-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization operations improve element quality and avoid element inversion. In the context of multiphase flow, we guarantee that every element is occupied by a single fluid and, consequently, the interface between fluids is represented by a set of faces in the simplicial complex. This approach ensures that the underlying discretization matches the physics and avoids the additional book-keeping required in grid-based methods where multiple fluids may occupy the same cell. Our Lagrangian approach naturally leads us to adopt a finite element approach to simulation, in contrast to the finite volume approaches adopted by a majority of fluid simulation techniques that use tetrahedral meshes. We characterize fluid simulation as an optimization problem allowing for full coupling of the pressure and velocity fields and the incorporation of a second-order surface energy. We introduce a preconditioner based on the diagonal Schur complement and solve our optimization on the GPU. We provide the results of parameter studies as well as a performance analysis of our method, together with suggestions for performance optimization. PMID:24201322
Equations and simulations for multiphase compressible gas-dust flows
NASA Astrophysics Data System (ADS)
Oran, Elaine; Houim, Ryan
2014-11-01
Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.
Modeling oceanic multiphase flow by using Lagrangian particle tracking
NASA Astrophysics Data System (ADS)
Matsumura, Y.
2014-12-01
While the density of seawater is basically determined by its temperature, salinity and pressure, the effective density becomes higher when the water mass contains suspended sediment. On the other hands, effective density declines when water mass contains fine scale materials of lower density such as bubbles and ice crystals. Such density anomaly induced by small scale materials suspended in water masses sometimes plays important roles in the sub-mesoscale ocean physics. To simulate these small scale oceanic multiphase flow, a new modeling framework using an online Lagrangian particle tracking method is developed. A Lagrangian particle tracking method has substantial advantages such as an explicit treatment of buoyancy force acting on each individual particle, no numerical diffusion and dissipation, high dynamic range and an ability to track the history and each individual particle. However, its numerical cost causes difficulty when we try to simulate a large number of particles. In the present study we implement a numerically efficient particle tracking scheme using linked-list data structure, which is coupled with a nonhydrostatic dynamical core. This newly developed model successfully reproduces characteristics of some interesting small scale multiphase processes, for example hyperpycnal flow (a sediment-rich river water plume trapped at ocean floor) and grease ice cover (a slurry mixture of frazil ice crystals and seawater).
Advanced tomographic flow diagnostics for opaque multiphase fluids
Torczynski, J.R.; O`Hern, T.J.; Adkins, D.R.; Jackson, N.B.; Shollenberger, K.A.
1997-05-01
This report documents the work performed for the ``Advanced Tomographic Flow Diagnostics for Opaque Multiphase Fluids`` LDRD (Laboratory-Directed Research and Development) project and is presented as the fulfillment of the LDRD reporting requirement. Dispersed multiphase flows, particularly gas-liquid flows, are industrially important to the chemical and applied-energy industries, where bubble-column reactors are employed for chemical synthesis and waste treatment. Due to the large range of length scales (10{sup {minus}6}-10{sup 1}m) inherent in real systems, direct numerical simulation is not possible at present, so computational simulations are forced to use models of subgrid-scale processes, the accuracy of which strongly impacts simulation fidelity. The development and validation of such subgrid-scale models requires data sets at representative conditions. The ideal measurement techniques would provide spatially and temporally resolved full-field measurements of the distributions of all phases, their velocity fields, and additional associated quantities such as pressure and temperature. No technique or set of techniques is known that satisfies this requirement. In this study, efforts are focused on characterizing the spatial distribution of the phases in two-phase gas-liquid flow and in three-phase gas-liquid-solid flow. Due to its industrial importance, the bubble-column geometry is selected for diagnostics development and assessment. Two bubble-column testbeds are utilized: one at laboratory scale and one close to industrial scale. Several techniques for measuring the phase distributions at conditions of industrial interest are examined: level-rise measurements, differential-pressure measurements, bulk electrical impedance measurements, electrical bubble probes, x-ray tomography, gamma-densitometry tomography, and electrical impedance tomography.
Multiple light scattering methods for multiphase flow diagnostics
NASA Astrophysics Data System (ADS)
Estevadeordal, Jordi
2015-11-01
Multiphase flows of gases and liquids containing droplets, bubbles, or particulates present light scattering imaging challenges due to the interference from each phase, such as secondary reflections, extinctions, absorptions, and refractions. These factors often prevent the unambiguous detection of each phase and also produce undesired beam steering. The effects can be especially complex in presence of dense phases, multispecies flows, and high pressure environments. This investigation reports new methods for overcoming these effects for quantitative measurements of velocity, density, and temperature fields. The methods are based on light scattering techniques combining Mie and filtered Rayleigh scattering and light extinction analyses and measurements. The optical layout is designed to perform multiple property measurements with improved signal from each phase via laser spectral and polarization characterization, etalon decontamination, and use of multiple wavelengths and imaging detectors.
Inhibition of slug front corrosion in multiphase flow conditions
Chen, H.J.; Jepson, W.P.
1998-12-31
Corrosion at the slug front at the bottom of a pipeline is identified as one of the worst cases of corrosion occurring in the pipeline which carries unprocessed multiphase production with a high level of CO{sub 2} gas. One objective of the study in recommending a subsea completion to shore was to determine if commercial corrosion inhibitors can control this type of corrosion using carbon steel pipeline. Thus, inhibitors which showed excellent performance in the lab using the Rotating Cylinder Electrode system (RCE) were further evaluated to confirm their performance in a flow loop simulating the test conditions predicted from the flow modeling for the proposed pipeline. The performance profile of two commercial inhibitors were determined in a 4 in. flow loop at 7O C, 100 psig CO{sub 2} partial pressure in corrosive brines with or without ethylene glycol and/or light hydrocarbon. Results showed that the carbon steel pipeline could be adequately protected at low temperature using a commercial corrosion inhibitor to meet the designed life of the pipeline. Ethylene glycol, which is used in the pipeline to prevent hydrate formation, reduces the corrosivity of the brine and gives no effect on inhibitor performance under the slug flow conditions. A good agreement in inhibitor performance was observed between the flow loop and the RCE testing. The uninhibited corrosion rate of the test brine in this study is in good agreement with the predicted value using deWaard and Williams correlation for CO{sub 2} corrosion.
Multicomponent, multiphase flow in porous media with temperature variation
Wingard, J.S.; Orr, F.M. Jr.
1990-10-01
Recovery of hydrocarbons from porous media is an ongoing concern. Advanced techniques augment conventional recovery methods by injecting fluids that favorably interact with the oil. These fluids interact with the oil by energy transfer, in the case of steam injection, or by mass transfer, as in a miscible gas flood. Often both thermal and compositional considerations are important. An understanding of these injection methods requires knowledge of how temperature variations, phase equilibrium and multiphase flow in porous media interact. The material balance for each component and energy balance are cast as a system of non-strictly hyperbolic partial differential equations. This system of equations is solved using the method of characteristics. The model takes into account the phase behavior by using the Peng-Robinson equation of state to partition the individual components into different phases. Temperature effects are accounted for by the energy balance. Flow effects are modelled by using fractional flow curves and a Stone's three phase relative permeability model. Three problems are discussed. The first problem eliminates the phase behavior aspect of the problem by studying the flow of a single component as it undergoes an isothermal phase change. The second couples the effects of temperature and flow behavior by including a second component that is immiscible with the original component. Phase behavior is added by using a set of three partially miscible components that partition into two or three separate phases. 66 refs., 54 figs., 14 tabs.
On the lattice Boltzmann method for multiphase flows with large density ratios
NASA Astrophysics Data System (ADS)
Kim, Seung Hyun; Pitsch, Heinz
2015-12-01
An analysis of the lattice Boltzmann (LB) method for multiphase flows with large density ratios is presented. It is shown that for incompressible, multiphase LB methods, the divergence-free condition is not satisfied within the formal accuracy of the LB method, when the density ratio between the two phases is large enough. The discrete differentiation-by-parts rule is responsible for this error. A new multiphase LB method to resolve this issue is proposed.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in
Convection in Multiphase Fluid Flows Using Lattice Boltzmann Methods
NASA Astrophysics Data System (ADS)
Biferale, L.; Perlekar, P.; Sbragaglia, M.; Toschi, F.
2012-03-01
We present high-resolution numerical simulations of convection in multiphase flows (boiling) using a novel algorithm based on a lattice Boltzmann method. We first study the thermodynamical and kinematic properties of the algorithm. Then, we perform a series of 3D numerical simulations changing the mean properties in the phase diagram and compare convection with and without phase coexistence at Rayleigh number Ra˜107. We show that in the presence of nucleating bubbles non-Oberbeck-Boussinesq effects develop, the mean temperature profile becomes asymmetric, and heat-transfer and heat-transfer fluctuations are enhanced, at all Ra studied. We also show that small-scale properties of velocity and temperature fields are strongly affected by the presence of the buoyant bubble leading to high non-Gaussian profiles in the bulk.
TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows
Pruess, K.
1991-06-01
Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
NASA Technical Reports Server (NTRS)
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis
Energy Science and Technology Software Center (ESTSC)
2002-06-01
PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less
PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis
Lottes, Steven A.
2002-06-01
PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cells in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.
A Stochastic Differential Equation Approach To Multiphase Flow In Porous Media
NASA Astrophysics Data System (ADS)
Dean, D.; Russell, T.
2003-12-01
The motivation for using stochastic differential equations in multiphase flow systems stems from our work in developing an upscaling methodology for single phase flow. The long term goals of this project include: I. Extending this work to a nonlinear upscaling methodology II. Developing a macro-scale stochastic theory of multiphase flow and transport that accounts for micro-scale heterogeneities and interfaces. In this talk, we present a stochastic differential equation approach to multiphase flow, a typical example of which is flow in the unsaturated domain. Specifically, a two phase problem is studied which consists of a wetting phase and a non-wetting phase. The approach given results in a nonlinear stochastic differential equation describing the position of the non-wetting phase fluid particle. Our fundamental assumption is that the flow of fluid particles is described by a stochastic process and that the positions of the fluid particles over time are governed by the law of the process. It is this law which we seek to determine. The nonlinearity in the stochastic differential equation arises because both the drift and diffusion coefficients depend on the volumetric fraction of the phase which in turn depends on the position of the fluid particles in the experimental domain. The concept of a fluid particle is central to the development of the model described in this talk. Expressions for both saturation and volumetric fraction are developed using the fluid particle concept. Darcy's law and the continuity equation are then used to derive a Fokker-Planck equation using these expressions. The Ito calculus is then applied to derive a stochastic differential equation for the non-wetting phase. This equation has both drift and diffusion terms which depend on the volumetric fraction of the non-wetting phase. Standard stochastic theories based on the Ito calculus and the Wiener process and the equivalent Fokker-Planck PDE's are typically used to model dispersion
NASA Astrophysics Data System (ADS)
Li, Y.; Ma, X.; Su, N.
2013-12-01
The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.
Towards a Modern Theory of Multiphase Filtration Flow
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W. (Technical Monitor)
1994-01-01
An alternative theoretical model of joint filtration flow of immiscible incompressible fluids is presented. The model takes into account relaxation processes due to the interchange of the fluids between pores of difference sizes which is driven by capillary forces. The fluids occupy connected regions in a four-dimensional space formed by three coordinates and the pore length scale. When the fluid exchange between pores of given sizes is effected by way of successive flow through pores of all the intermediate sizes, the pressure within each region is governed by a hyperbolic equation, the role of time being played by the pore linear scale. Pressure jumps across hypersurfaces separating the regions equal corresponding values of the capillary pressure. A supplementary condition at any such hypersurface requires the speed of its displacement in the four-dimensional space to coincide with the normal velocity components of both the adjoining fluids. As a result, a principally new statement of multiphase filtration flow problems is gained with allowance for capillary relaxation in the porous space.
Multiphase ferrofluid flows for micro-particle focusing and separation.
Zhou, Ran; Wang, Cheng
2016-05-01
Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic (or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and enriching. By utilizing size dependent magnetophoresis velocity, most of the existing techniques employ single phase ferrofluids to push the particles towards the channel walls. In this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-particles by using the laminar fluid interface of two co-flowing fluids-a ferrofluid and a non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to generate strong localized magnetic field gradients and forces. Due to the magnetic force, diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream at the size-dependent velocities. Because of the low Reynolds number and high Péclet number associated with the flow, the fluid interface is sharp and stable. When the micro-particles migrate to the interface, they are accumulated near the interface, resulting in effective focusing and separation of particles. We investigated several factors that affect the focusing and separation efficiency, including susceptibility of the ferrofluid, distance between the microfluidic channel and microscale magnet, and width of the microfluidic channel. This concept can be extended to multiple fluid interfaces. For example, a complete separation of micro-particles was demonstrated by using a three-stream multiphase flow configuration. PMID:27190567
Rheological flow laws for multiphase magmas: An empirical approach
NASA Astrophysics Data System (ADS)
Pistone, Mattia; Cordonnier, Benoît; Ulmer, Peter; Caricchi, Luca
2016-07-01
The physical properties of magmas play a fundamental role in controlling the eruptive dynamics of volcanoes. Magmas are multiphase mixtures of crystals and gas bubbles suspended in a silicate melt and, to date, no flow laws describe their rheological behaviour. In this study we present a set of equations quantifying the flow of high-viscosity (> 105 Pa·s) silica-rich multiphase magmas, containing both crystals (24-65 vol.%) and gas bubbles (9-12 vol.%). Flow laws were obtained using deformation experiments performed at high temperature (673-1023 K) and pressure (200-250 MPa) over a range of strain-rates (5 · 10- 6 s- 1 to 4 · 10- 3 s- 1), conditions that are relevant for volcanic conduit processes of silica-rich systems ranging from crystal-rich lava domes to crystal-poor obsidian flows. We propose flow laws in which stress exponent, activation energy, and pre-exponential factor depend on a parameter that includes the volume fraction of weak phases (i.e. melt and gas bubbles) present in the magma. The bubble volume fraction has opposing effects depending on the relative crystal volume fraction: at low crystallinity bubble deformation generates gas connectivity and permeability pathways, whereas at high crystallinity bubbles do not connect and act as "lubricant" objects during strain localisation within shear bands. We show that such difference in the evolution of texture is mainly controlled by the strain-rate (i.e. the local stress within shear bands) at which the experiments are performed, and affect the empirical parameters used for the flow laws. At low crystallinity (< 44 vol.%) we observe an increase of viscosity with increasing strain-rate, while at high crystallinity (> 44 vol.%) the viscosity decreases with increasing strain-rate. Because these behaviours are also associated with modifications of sample textures during the experiment and, thus, are not purely the result of different deformation rates, we refer to "apparent shear-thickening" and
Electrochemical methods for monitoring performance of corrosion inhibitor under multiphase flow
Chen, Y.; Gopal, M.
1999-07-01
The corrosion inhibitor is the main tool for preventing internal corrosion in carbon steel pipelines, which are used to transport multiphase mixtures from oil production. This paper presents results of an imidazoline based inhibitor using the Electrochemical Noise (ECN) and Electrochemical Impedance Spectroscopy (EIS) techniques in a multiphase flow pipeline. ECN and EIS measurements were made simultaneously in a 101.6mm I.D., 15m long acrylic pipeline using saltwater and carbon dioxide mixtures. Full pipe flow was studied for liquid velocity of 1.25 m/s and slug flow for Froude numbers 6 and 9. Experiments were carried out at a constant pressure of 136kPa and temperature of 40 C. The ECN signals and EIS spectra of blank and inhibition tests were obtained. The ECN technique is able to monitor the inhibitor film formation continuously. The current noise fluctuation is correlated to the corrosion rate for both blank test and inhibitor test. The higher current fluctuation indicates higher corrosion rates. Different EIS spectra were obtained for blank and inhibitor studies. The simple charge transfer process was seen to occur for blank tests while charge transfer and diffusion processes were taking place under inhibitor effects.
Simulation of Multiphase FLOW at the Pore Scale: Doable, Useful?
NASA Astrophysics Data System (ADS)
Tchelepi, H.; Abu AlSaud, M.; Soulaine, C.
2014-12-01
We discuss the shotcomings of Darcy-scale formulations and constitutive relations for (unstable) immiscible multiphase flow in natural porous media, and we argue for a more rigorous connection between the Darcy-scale representation and the pore-scale dynamics. We then discuss the challenges associated with so-called Direct Numerical Simulation (DNS) at the pore scale. The emphasis is on contact-line dynamics for non-zero contact angles. We argue that accurate description of the (1) fluid-fluid and (2) fluid-fluid-solid contact lines, as well as, (3) the hysteretic behavior of immiscible displacement processes are needed before claims that Direct Numerical Simulation (DNS) of pore-scale physics is doable. Then, we describe our early attempts to devise a hybrid level-set and volume-of-fluid approach to model the evolution of sharp immiscible interfaces in natural porous media. We also discuss the challenges associated with the translation of two-phase flow dynamics to "Darcy" scales.
Simulations of soluble surfactants in 3D multiphase flow
NASA Astrophysics Data System (ADS)
Muradoglu, Metin; Tryggvason, Gretar
2014-10-01
A finite-difference/front-tracking method is developed for simulations of soluble surfactants in 3D multiphase flows. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. Simple test cases are designed to validate different parts of the numerical algorithm and the computational results are found to be in a good agreement with the analytical solutions. The numerical algorithm is parallelized using a domain-decomposition method. It is then applied to study the effects of soluble surfactants on the motion of buoyancy-driven bubbles in a straight square channel in nearly undeformable (spherical) and deformable (ellipsoidal) regimes. Finally the method is used to examine the effects of soluble surfactants on the lateral migration of bubbles in a pressure-driven channel flow. It is found that surfactant-induced Marangoni stresses counteract the shear-induced lift force and can reverse the lateral bubble migration completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel when the surfactant-induced Marangoni stresses are sufficiently large.
Laser velocimeter measurements of multiphase flow of solids
Kadambi, J.R.; Chen, R.C.; Bhunia, S.
1989-01-01
A unique refractive index matched facility for studying solid-liquid multiphase flow has been developed. The refractive index matching of the solid and the liquid allows the use of non-intrusive Laser Doppler Velocimetry (LDV) to measure the solid and the liquid velocities. These measurements will be useful in developing a better understanding of solid-liquid flows, especially solid-liquid and solid-solid interactions. Silica gel and 50% sodium iodide solution in water (refractive index {approx}1.443) are used as the refractive index matched solid and liquid respectively. A two color back scatter mode LDV is used for making velocity measurements. Tests were conducted in solid-liquid slurries with volumetric solid concentration levels of 5% and 15% in the Reynolds number (Re) range of 400 to 9200. Silica gel particles of mean diameter 40 microns were used. Measurements included mapping of the solid and liquid velocities and obtaining the pressure drop data. Signal processing technique utilizing histogram of velocity measurements made at a point and signal amplitude discrimination was successfully used for differentiating between solid and liquid velocities. 34 refs., 61 figs., 5 tabs.
Multiphase flow in complex fracture apertures under a wide range of flow conditions
Meakin, Paul; McCreery, Gleen E.; McEligot, Donald; Rothman, Daniel H.
2005-06-01
The primary purpose of this project is to use a combination of computer modeling and laboratory experiments to obtain a better understanding of multiphase flow in geometrically complex fracture apertures under a wide range of flow conditions. Because most traditional grid-based numeral methods perform poorly for multiphase flows with complex dynamic interfaces due to problems such as artificial interface broadening, grid entanglement, loss or gain of mass and their inability to handle fluid-fluid-solid contact line dynamics, the modeling component of the program relies primarily on particle based methods. In particle based models, the fluid-fluid interfaces move as the particles representing the fluids move--there is no need for explicit interface tracking, and no artificial front broadening. In addition, the fluid-fluid-solid contact line dynamics is also handled automatically by adjusting the interactions between the fluid particles and the particles used to represent solid boundaries. However, it can be difficult to select fluid-particle/solid-particle interactions that reproduce the wetting behaviors observed in experimental or natural systems. Because, different model approaches have characteristic strengths and weaknesses, three different classes of particle-based models (lattice Boltzmann, dissipative particle dynamics and smoothed particle hydrodynamics) are being employed in this program. This will allow us to achieve our objective of simulating multiphase flow under a wide range of flow conditions for a wide range of fluid properties.
NASA Astrophysics Data System (ADS)
Cusini, Matteo; van Kruijsdijk, Cor; Hajibeygi, Hadi
2016-06-01
This paper presents the development of an algebraic dynamic multilevel method (ADM) for fully implicit simulations of multiphase flow in homogeneous and heterogeneous porous media. Built on the fine-scale fully implicit (FIM) discrete system, ADM constructs a multilevel FIM system describing the coupled process on a dynamically defined grid of hierarchical nested topology. The multilevel adaptive resolution is determined at each time step on the basis of an error criterion. Once the grid resolution is established, ADM employs sequences of restriction and prolongation operators in order to map the FIM system across the considered resolutions. Several choices can be considered for prolongation (interpolation) operators, e.g., constant, bilinear and multiscale basis functions, all of which form partition of unity. The adaptive multilevel restriction operators, on the other hand, are constructed using a finite-volume scheme. This ensures mass conservation of the ADM solutions, and as such, the stability and accuracy of the simulations with multiphase transport. For several homogeneous and heterogeneous test cases, it is shown that ADM applies only a small fraction of the full FIM fine-scale grid cells in order to provide accurate solutions. The sensitivity of the solutions with respect to the employed fraction of grid cells (determined automatically based on the threshold value of the error criterion) is investigated for all test cases. ADM is a significant step forward in the application of dynamic local grid refinement methods, in the sense that it is algebraic, allows for systematic mapping across different scales, and applicable to heterogeneous test cases without any upscaling of fine-scale high resolution quantities. It also develops a novel multilevel multiscale method for FIM multiphase flow simulations in natural subsurface formations.
Azo Dyes and Their Interfacial Activity: Implications for Multiphase Flow Experiments
Tuck, D.M.
1999-04-21
Interfacial effects play an important role in governing multiphase fluid behavior in porous media (Neustadter 1984; Tuck et al. 1988). For instance, several dimensionless numbers have been developed to express important force ratios applicable to multiphase flow in porous media (Morrow and Songkran 1981; Chatzis and Morrow 1984; Wardlaw 1988; Pennell et al. 1996; Dawson and Roberts 1997). These force ratios emphasize the importance of interfacial properties. Our objectives are to provide chemical information regarding the dyes commonly used in multiphase flow visualization studies and to show the surface chemistry effects of the most commonly used dye, Sudan IV, in the tetrachloroethylene (PCE)-water-glass system
Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor)
1989-01-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.
Statistical analysis on the signals monitoring multiphase flow patterns in pipeline-riser system
NASA Astrophysics Data System (ADS)
Ye, Jing; Guo, Liejin
2013-07-01
The signals monitoring petroleum transmission pipeline in offshore oil industry usually contain abundant information about the multiphase flow on flow assurance which includes the avoidance of most undesirable flow pattern. Therefore, extracting reliable features form these signals to analyze is an alternative way to examine the potential risks to oil platform. This paper is focused on characterizing multiphase flow patterns in pipeline-riser system that is often appeared in offshore oil industry and finding an objective criterion to describe the transition of flow patterns. Statistical analysis on pressure signal at the riser top is proposed, instead of normal prediction method based on inlet and outlet flow conditions which could not be easily determined during most situations. Besides, machine learning method (least square supported vector machine) is also performed to classify automatically the different flow patterns. The experiment results from a small-scale loop show that the proposed method is effective for analyzing the multiphase flow pattern.
The Effect of Surface Treated Nanoparticles on Single and Multi-Phase Flow in Porous Media
NASA Astrophysics Data System (ADS)
DiCarlo, D. A.; Aminzadeh, B.; Chung, D.; Zhang, X.; Wung, R.; Huh, C.; Bryant, S. L.
2013-12-01
Surface treated nanoparticles have been suggested to be an additive to CO2 storage scenarios. This is because 1) the nanoparticles have been shown to freely transport through permeable media, and 2) the nanoparticles can stabilize a CO2 in water foam by adhering to the surface of CO2 bubbles/droplets preventing their coalescence. In terms of storage, The formation of CO2 foam will limit the CO2 mobility which can potentially help limit the CO2 leakage. Here, we will show how nanoparticles in porous media can have many interesting properties in single and multi-phase flow. For multi-phase CO2, we have performed experiments where high pressure liquid CO2 displaces brine and vice versa with and without nanoparticles in the brine. We measure the displacement pattern and in-situ CO2 saturation using CT scanning and measure the pressure drop using pressure transducers. We find that the flow is less preferential and the pressure drop is greater than when nanoparticles are present. This suggest the formation of in-situ foam/emulsion. We also show that on a brine chase, the residual saturation of CO2 is greater in the presence of nanoparticles. In terms of nanoparticle transport, it is observed that nanoparticles accumulate at the front of a brine/octane displacement. We hypothesize that this occurs due to the nanoparticles being size excluded from portions of the pore-space. To determine if this occurs in single phase flow, we have also performed experiments single-phase flow with the nanoparticles and tracer. We find that the nanoparticles arrive roughly 5% faster than the tracer. This also has implications for the positioning of nanoparticles in the pore space and how this can change the effective viscosity of the nanoparticle suspension.
Multidimensional tensor array analysis of multiphase flow during a hydrodynamic ram event
NASA Astrophysics Data System (ADS)
Lingenfelter, A.; Liu, D.
2015-12-01
Flow visualization is necessary to characterize the fluid flow properties during a hydrodynamic ram event. The multiphase flow during a hydrodynamic ram event can make traditional image processing techniques such as contrast feature detection and PIV difficult. By stacking the imagery to form a multidimensional tensor array, feature detection to determine flow field velocities are visualized.
Multiphase Flow Modeling - Validation and Application CRADA MC94-019, Final Report
Madhava Syamlal; Philip A. Nicoletti
1995-08-31
For the development and validation of multiphase flow modeling capability, a cooperative research and development agreement (CRADA) is in effect between Morgantown Energy Technology Center (METC) and Fluent Inc. To validate the Fluent multiphase model, several simulations were conducted at METC and the results were compared with the results of MFIX, a multiphase flow code developed at METC, and with experimental data. The results of these validation studies will be presented. In addition, the application of multiphase flow modeling will be illustrated by presenting the results of simulations of a filter back- flushing and a fluidized bed coal gasifier. These simulations were conducted only with MFIX, since certain features needed in these simulations will be available only in the next release of Fluent.
NASA Astrophysics Data System (ADS)
Larson, T.; Sathaye, K.
2014-12-01
A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish
Compact high-resolution gamma-ray computed tomography system for multiphase flow studies
Bieberle, A.; Nehring, H.; Berger, R.; Arlit, M.; Haerting, H.-U.; Schubert, M.; Hampel, U.
2013-03-15
In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated {sup 137}Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0 Degree-Sign (horizontal) to 90 Degree-Sign (vertical).
Compact high-resolution gamma-ray computed tomography system for multiphase flow studies
NASA Astrophysics Data System (ADS)
Bieberle, A.; Nehring, H.; Berger, R.; Arlit, M.; Härting, H.-U.; Schubert, M.; Hampel, U.
2013-03-01
In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated 137Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0° (horizontal) to 90° (vertical).
Compact high-resolution gamma-ray computed tomography system for multiphase flow studies.
Bieberle, A; Nehring, H; Berger, R; Arlit, M; Härting, H-U; Schubert, M; Hampel, U
2013-03-01
In this paper, a compact high-resolution gamma-ray Computed Tomography (CompaCT) measurement system for multiphase flow studies and tomographic imaging of technical objects is presented. Its compact and robust design makes it particularly suitable for studies on industrial facilities and outdoor applications. Special care has been given to thermal ruggedness, shock resistance, and radiation protection. Main components of the system are a collimated (137)Cs isotopic source, a thermally stabilised modular high-resolution gamma-ray detector arc with 112 scintillation detector elements, and a transportable rotary unit. The CompaCT allows full CT scans of objects with a diameter of up to 130 mm and can be operated with any tilting angle from 0° (horizontal) to 90° (vertical). PMID:23556806
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular “color” LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6× as compared to multi-core CPU solution and 1.8× compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
Gray, W.G.; Tompson, A.; Soll, W.E.
1998-06-01
'Improved capabilities for modeling multiphase flow in the subsurface requires that several aspects of the system which impact the flow and transport processes be more properly accounted for. A distinguishing feature of multiphase flow in comparison to single phase flow is the existence of interfaces between fluids. At the microscopic (pore) scale, these interfaces are known to influence system behavior by supporting non-zero stresses such that the pressures in adjacent phases are not equal. In problems of interphase transport at the macroscopic (core) scale, knowledge of the total amount of interfacial area in the system provides a clue to the effectiveness of the communication between phases. Although interfacial processes are central to multiphase flow physics, their treatment in traditional porous-media theories has been implicit rather than explicit; and no attempts have been made to systematically account for the evolution of the interfacial area in dynamic systems or to include the dependence of constitutive functions, such as capillary pressure, on the interfacial area. This project implements a three-pronged approach to assessing the importance of various features of multiphase flow to its description. The research contributes to the improved understanding and precise physical description of multiphase subsurface flow by combining: (1) theoretical derivation of equations, (2) lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and (3) solution of the field-scale equations using a discrete numerical method to assess the advantages and disadvantages of the complete theory. This approach includes both fundamental scientific inquiry and a path for inclusion of the scientific results obtained in a technical tool that will improve assessment capabilities for multiphase flow situations that have arisen due to the introduction of organic materials in the natural environment. This report summarizes work after 1.5 years of a 3
NASA Astrophysics Data System (ADS)
McPherson, Brian J. O. L.; Han, Weon Shik; Cole, Barret S.
2008-05-01
The purpose of the study presented in this manuscript is to describe and make available two equation-of-state (EOS) algorithms assembled for multiphase flow and transport of carbon dioxide (CO2). The algorithms presented here calculate solubility, compressibility factor, density, viscosity, fugacity, and enthalpy of CO2 in gaseous and supercritical phases, and mixtures or solutions of CO2 in water, as functions of pressure and temperature. Several features distinguish the two algorithms, but the primary distinction concerns treatment of supercritical/gas-phase CO2: one EOS we assembled is based on Redlich and Kwong's original algorithm developed in 1949, and the other is based on an algorithm developed by Span and Wagner in 1996. Both were modified for application to sedimentary basin studies of multiphase CO2 flow processes, including carbon sequestration applications. We present a brief comparison of these two EOS algorithms. Source codes for both algorithms are provided, including "stand-alone" Matlab © scripts for the interactive calculation of fluid properties at specified P-T conditions and FORTRAN subroutines for inclusion in existing FORTRAN multiphase fluid simulation packages. These routines are intended for fundamental analyses of CO2 sequestration and the like; more advanced studies, such as brine processes and reactive transport, require more advanced EOS algorithms.
PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows
NASA Astrophysics Data System (ADS)
Okamoto, Koji; Murai, Yuichi
2009-02-01
Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all
Origin of the mass splitting of elliptic anisotropy in a multiphase transport model
NASA Astrophysics Data System (ADS)
Li, Hanlin; He, Liang; Lin, Zi-Wei; Molnar, Denes; Wang, Fuqiang; Xie, Wei
2016-05-01
The mass splitting of elliptic anisotropy (v2) at low transverse momentum is considered as a hallmark of hydrodynamic collective flow. We investigate a multiphase transport (AMPT) model where the v2 is mainly generated by an anisotropic escape mechanism, not of the hydrodynamic flow nature, and where mass splitting is also observed. We demonstrate that the v2 mass splitting in AMPT is small right after hadronization (especially when resonance decays are included); the mass splitting mainly comes from hadronic rescatterings, even though their contribution to the overall charged hadron v2 is small. These findings are qualitatively the same as those from hybrid models that combine hydrodynamics with a hadron cascade. We further show that there is no qualitative difference between heavy ion collisions and small system collisions. Our results indicate that the v2 mass splitting is not a unique signature of hydrodynamic collective flow and thus cannot distinguish whether the elliptic flow is generated mainly from hydrodynamics or the anisotropic parton escape.
Multiphase Flow in Complex Fracture Apertures under a Wide Range of Flow Conditions
Daniel H. Rothman
2006-12-12
A better understanding of multiphase flow through fractures requires knowledge of the detailed physics of interfacial flows at the microscopic pore scale. The objective of our project was to develop tools for the simulation of such phenomena. Complementary work was performed by a group led by Dr.~Paul Meakin of the Idaho National Engineering and Environmental Laboratory. Our focus was on the lattice-Boltzmann (LB) method. In particular, we studied both the statics and dynamics of contact lines where two fluids (wetting and non-wetting) meet solid boundaries. Previous work had noted deficiencies in the way LB methods simulate such interfaces. Our work resulted in significant algorithmic improvements that alleviated these deficiencies. As a result, we were able to study in detail the behavior of the dynamic contact angle in flow through capillary tubes. Our simulations revealed that our LB method reproduces the correct scaling of the dynamic contact angle with respect to velocity, viscosity, and surface tension, without specification of an artificial slip length. Further study allowed us to identify the microscopic origin of the dynamic contact angle in LB methods. These results serve to delineate the range of applicability of multiphase LB methods to flows through complex geometries.
Modeling of multiphase flow with solidification and chemical reaction in materials processing
NASA Astrophysics Data System (ADS)
Wei, Jiuan
moving the side insulation layer upward. It is possible to produce high quality crystal with a good combination of heating and cooling. SiC based ceramic materials fabricated by polymer pyrolysis and synthesis becomes a promising candidate for nuclear applications. To obtain high uniformity of microstructure/concentration fuel without crack at high operating temperature, it is important to understand transport phenomena in material processing at different scale levels. In our prior work, a system level model based on reactive porous media theory was developed to account for the pyrolysis process in uranium-ceramic nuclear fabrication In this thesis, a particle level mesoscopic model based on the Smoothed Particle Hydrodynamics (SPH) is developed for modeling the synthesis of filler U3O8 particles and SiC matrix. The system-level model provides the thermal boundary conditions needed in the particle level simulation. The evolution of particle concentration and structure as well as composition of composite produced will be investigated. Since the process temperature and heat flux play the important roles in material quality and uniformity, the effects of heating rate at different directions, filler particle size and distribution on uniformity and microstructure of the final product are investigated. Uncertainty issue is also discussed. For the multiphase flow with directional solidification, a system level based on FVM is established. In this model, melt convection, temperature distribution, phase change and solidification interface can be investigated. For the multiphase flow with chemical reaction, a particle level model based on SPH method is developed to describe the pyrolysis and synthesis process of uranium-ceramic nuclear fuel. Due to its mesh-free nature, SPH can easily handle the problems with multi phases and components, large deformation, chemical reactions and even solidifications. A multi-scale meso-macroscopic approach, which combine a mesoscopic model based
Ott, L. J.; Khan, A. A.
1982-09-01
As part of the Oak Ridge National Laboratory's technical support to large coal liquefaction projects, attempts have been made to (1) develop the methodology for characterizing and predicting multicomponent, multiphase, non-Newtonian flow behavior within letdown valves and devices, and (2) analyze the fluid flow in the entire letdown region of the process. An engineering model that can be used in the analysis of multicomponent, multiphase, flashing, flowing systems has been developed. A preliminary version of a user-oriented computer code for this model has been developed and is fully described.
Gel, Aytekin; Pannala, Sreekanth; Syamlal, M; O'Brien, T. J.; Gel, Esma
2007-01-01
Computational Fluid Dynamics (CFD) simulations have emerged as a powerful tool for understanding multiphase flows that occur in a wide range of engineering applications and natural processes. A multiphase CFD code called MFIX has been under development at the National Energy Technology Laboratory (NETL) since the 1980s for modeling multiphase flows that occur in fossil fuel reactors. CFD codes such as MFIX are equipped with a number of numerical algorithms to solve a large set of coupled partial differential equations over three-dimensional grids consisting of hundreds of thousands of cells on parallel computers. Currently, the next generation version of MFIX is under development with the goal of building a multiphase problem solving environment (PSE) that would facilitate the simple reuse of modern software components by application scientists. Several open-source frameworks were evaluated to identify the best-suited framework for the multiphase PSE. There are many requirements for the multiphase PSE, and each of these open-source frameworks offers functionalities that satisfy the requirements to varying extents. Therefore, matching the requirements and the functionalities is not a simple task and requires a systematic and quantitative decision making procedure. We present a multi-criteria decision making approach to determining a major system design decision, and demonstrate its application on the framework selection problem.
Numerical Simulation of the Multiphase Flow in the Rheinsahl-Heraeus (RH) System
NASA Astrophysics Data System (ADS)
Geng, Dian-Qiao; Lei, Hong; He, Ji-Cheng
2010-02-01
Knowledge of gas-liquid multiphase flow behavior in the Rheinsahl-Heraeus (RH) system is of great significance to clarify the circulation flow rate, decarburization, and inclusion removal with a reliable description. Thus, based on the separate model of injecting gas behavior, a novel mathematical model of multiphase flow has been developed to give the distribution of gas holdup in the RH system. The numerical results show that the predicted circulation flow rates, the predicted flow velocities, and the predicted mixing times agree with the measured results in a water model and that the predicted tracer concentration curve agrees with the results obtained in an actual RH system. With a lower lifting gas flow rate, the rising gas bubbles are concentrated near the wall; with a higher lifting gas flow rate, gas bubbles can reach the center of the up-snorkel. A critical lifting gas flow rate is used to obtain the maximum circulation flow rate.
Consistent and conservative framework for incompressible multiphase flow simulations
NASA Astrophysics Data System (ADS)
Owkes, Mark; Desjardins, Olivier
2015-11-01
We present a computational methodology for convection that handles discontinuities with second order accuracy and maintains conservation to machine precision. We use this method in the context of an incompressible gas-liquid flow to transport the phase interface, momentum, and scalars. Using the same methodology for all the variables ensures discretely consistent transport, which is necessary for robust and accurate simulations of turbulent atomizing flows with high-density ratios. The method achieves conservative transport by computing consistent fluxes on a refined mesh, which ensures all conserved quantities are fluxed with the same discretization. Additionally, the method seamlessly couples semi-Lagrangian fluxes used near the interface with finite difference fluxes used away from the interface. The semi-Lagrangian fluxes are three-dimensional, un-split, and conservatively handle discontinuities. Careful construction of the fluxes ensures they are divergence-free and no gaps or overlaps form between neighbors. We have tested and used the scheme for many cases and demonstrate a simulation of an atomizing liquid jet.
MSTS. Multiphase Subsurface Transport Simulator User`s Guide and Reference
Nichols, W.E.; White, M.D.
1993-05-01
This User`s Guide and Reference provides information and instructions on the use of the Multiphase Subsurface Transport Simulator (MSTS) code and the associated MSTS Graphical Input. The MSTS code is used to simulate water flow, air flow, heat transfer, and dilute species mass transport in variably saturated geologic media for one, two, or three dimensions using an integrated finite-difference numerical scheme. Any or all of these processes may be simulated in a fully coupled manner. MSTS is a two-phase, two-component code with secondary processes that include binary diffusion and vapor pressure lowering. The geologic media may be homogeneous or heterogeneous, isotropic or anisotropic, and unfractured or highly fractured. A problem geometry may be described by either Cartesian or cylindrical coordinates. MSTS is written in FORTRAN 77, following the American National Standards Institute (ANSI) standards, and is machine-independent with the exception of some time and date calls required for quality control (provisions are made in the code for relatively easy adoption to a number of machines for these calls).
Wu, Yu-Shu; Forsyth, Peter A.
2006-04-13
Numerical issues with modeling transport of chemicals or solute in realistic large-scale subsurface systems have been a serious concern, even with the continual progress made in both simulation algorithms and computer hardware in the past few decades. The problem remains and becomes even more difficult when dealing with chemical transport in a multiphase flow system using coarse, multidimensional regular or irregular grids, because of the known effects of numerical dispersion associated with moving plume fronts. We have investigated several total-variation-diminishing (TVD) or flux-limiter schemes by implementing and testing them in the T2R3D code, one of the TOUGH2 family of codes. The objectives of this paper are (1) to investigate the possibility of applying these TVD schemes, using multi-dimensional irregular unstructured grids, and (2) to help select more accurate spatial averaging methods for simulating chemical transport given a numerical grid or spatial discretization. We present an application example to show that such TVD schemes are able to effectively reduce numerical dispersion.
Freeze, G.A.; Larson, K.W.; Davies, P.B.; Webb, S.W.
1995-10-01
Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.
Exploring the origins of turbulence in multiphase flow using compressed sensing MRI.
Tayler, Alexander B; Holland, Daniel J; Sederman, Andrew J; Gladden, Lynn F
2012-06-29
Ultrafast magnetic resonance imaging, employing spiral reciprocal space sampling and compressed sensing image reconstruction, is used to acquire velocity maps of the liquid phase in gas-liquid multiphase flows. Velocity maps were acquired at a rate of 188 frames per second. The method enables quantitative characterization of the wake dynamics of single bubbles and bubble swarms. To illustrate this, we use the new technique to demonstrate the role of bubble wake vorticity in driving bubble secondary motions, and in governing the structure of turbulence in multiphase flows. PMID:23004990
Exploring the Origins of Turbulence in Multiphase Flow Using Compressed Sensing MRI
NASA Astrophysics Data System (ADS)
Tayler, Alexander B.; Holland, Daniel J.; Sederman, Andrew J.; Gladden, Lynn F.
2012-06-01
Ultrafast magnetic resonance imaging, employing spiral reciprocal space sampling and compressed sensing image reconstruction, is used to acquire velocity maps of the liquid phase in gas-liquid multiphase flows. Velocity maps were acquired at a rate of 188 frames per second. The method enables quantitative characterization of the wake dynamics of single bubbles and bubble swarms. To illustrate this, we use the new technique to demonstrate the role of bubble wake vorticity in driving bubble secondary motions, and in governing the structure of turbulence in multiphase flows.
NASA Astrophysics Data System (ADS)
Juanes, R.; Jha, B.
2014-12-01
The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around subsurface technologies that tap into water and energy resources. Here we present a new computational approach to model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that illustrate the onset and evolution of earthquakes from fluid injection and withdrawal. We also present the application of the coupled flow-geomechanics simulation technology to the post mortem analysis of the Mw=5.1, May 2011 Lorca earthquake in south-east Spain, and assess the potential that the earthquake was induced by groundwater extraction.
NASA Astrophysics Data System (ADS)
Jin, G.
2012-12-01
Multiphase flow modeling is an important numerical tool for a better understanding of transport processes in the fields including, but not limited to, petroleum reservoir engineering, remedy of ground water contamination, and risk evaluation of greenhouse gases such as CO2 injected into deep saline reservoirs. However, accurate numerical modeling for multiphase flow remains many challenges that arise from the inherent tight coupling and strong non-linear nature of the governing equations and the highly heterogeneous media. The existence of counter current flow which is caused by the effect of adverse relative mobility contrast and gravitational and capillary forces will introduce additional numerical instability. Recently multipoint flux approximation (MPFA) has become a subject of extensive research and has been demonstrated with great success in reducing considerable grid orientation effects compared to the conventional single point upstream (SPU) weighting scheme, especially in higher dimensions. However, the present available MPFA schemes are mathematically targeted to certain types of grids in two dimensions, a more general form of MPFA scheme is needed for both 2-D and 3-D problems. In this work a new upstream weighting scheme based on multipoint directional incoming fluxes is proposed which incorporates full permeability tensor to account for the heterogeneity of the porous media. First, the multiphase governing equations are decoupled into an elliptic pressure equation and a hyperbolic or parabolic saturation depends on whether the gravitational and capillary pressures are presented or not. Next, a dual secondary grid (called finite volume grid) is formulated from a primary grid (called finite element grid) to create interaction regions for each grid cell over the entire simulation domain. Such a discretization must ensure the conservation of mass and maintain the continuity of the Darcy velocity across the boundaries between neighboring interaction regions
NASA Astrophysics Data System (ADS)
Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.
2015-12-01
Multiphase flow of water and supercritical carbon dioxide (CO2) in porous media is central to geological sequestration of CO2 into saline aquifers. However, our fundamental understanding of the coupled flow dynamics of CO2 and water in complex geologic media still remains limited, especially at the pore scale. Recently, studies have been carried out in 2D homogeneous models with the micro-PIV technique, yielding very interesting observations of pore-scale flow transport. The primary aim of this work is to leverage this experimental protocol to quantify the pore-scale flow of water and liquid/supercritical CO2 in 2D heterogeneous porous micromodels under reservoir-relevant conditions. The goal is to capture the dynamics of this multi-phase flow in a porous matrix that mimics the heterogeneity of natural rock. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously measure the spatially-resolved instantaneous velocity field in the water and quantify the instantaneous spatial configuration of both phases. The results for heterogeneous micromodels will be presented and compared with those for homogeneous micromodels, yielding valuable insight into flow processes at the pore scale in natural rock.
NASA Astrophysics Data System (ADS)
Saar, Martin O.
2011-11-01
Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta
2008-10-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.
Local volume-time averaged equations of motion for dispersed, turbulent, multiphase flows
Sha, W.T.; Slattery, J.C.
1980-11-01
In most flows of liquids and their vapors, the phases are dispersed randomly in both space and time. These dispersed flows can be described only statistically or in terms of averages. Local volume-time averaging is used here to derive a self-consistent set of equations governing momentum and energy transfer in dispersed, turbulent, multiphase flows. The empiricisms required for use with these equations are the subject of current research.
Massively parallel simulations of multiphase flows using Lattice Boltzmann methods
NASA Astrophysics Data System (ADS)
Ahrenholz, Benjamin
2010-03-01
In the last two decades the lattice Boltzmann method (LBM) has matured as an alternative and efficient numerical scheme for the simulation of fluid flows and transport problems. Unlike conventional numerical schemes based on discretizations of macroscopic continuum equations, the LBM is based on microscopic models and mesoscopic kinetic equations. The fundamental idea of the LBM is to construct simplified kinetic models that incorporate the essential physics of microscopic or mesoscopic processes so that the macroscopic averaged properties obey the desired macroscopic equations. Especially applications involving interfacial dynamics, complex and/or changing boundaries and complicated constitutive relationships which can be derived from a microscopic picture are suitable for the LBM. In this talk a modified and optimized version of a Gunstensen color model is presented to describe the dynamics of the fluid/fluid interface where the flow field is based on a multi-relaxation-time model. Based on that modeling approach validation studies of contact line motion are shown. Due to the fact that the LB method generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallelization. Hence, it is possible to perform efficient simulations in complex geometries at a large scale by massively parallel computations. Here, the results of drainage and imbibition (Degree of Freedom > 2E11) in natural porous media gained from microtomography methods are presented. Those fully resolved pore scale simulations are essential for a better understanding of the physical processes in porous media and therefore important for the determination of constitutive relationships.
Evans, R.D.; Civan, F.
1992-12-31
The objectives of this research are: Develop a proper theoretical model for characterizing non-Darcy multi-phase flow in petroleum bearing formations. Develop an experimental technique for measuring non-Darcy flow coefficients under multiphase flow at insitu reservoir conditions. Develop dimensional consistent correlations to express the non-Darcy flow coefficient as a function of rock and fluid properties for consolidated and unconsolidated porous media. The research accomplished during the period May 1991--May 1992 focused upon theoretical and experimental studies of multiphase non-Darcy flow in porous media.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael
2016-04-01
Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations
Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten
2001-01-01
FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.
Multiphase Flow Characterization Using Simultaneous High Resolution Neutron and X-Ray Imaging
NASA Astrophysics Data System (ADS)
LaManna, J.; Anovitz, L. M.; Hussey, D. S.; Jacobson, D. L.
2015-12-01
Multiphase flow in geologic materials is an important area of research for hydrology and oil recovery. A valuable tool for determining how liquid water and/or hydrocarbons transport through soils and rocks is neutron tomography due to its high sensitivity to hydrogen. This technique allows for the 3D reconstruction of the liquid phase in the sample. In order to resolve the solid phase structure of the sample it is necessary to perform x-ray tomography which often must be conducted at a separate facility from the neutron imaging. When imaging deformable samples or stochastic flow this delay in imaging modes ruins the analysis as the sample is no longer in an identical state. To address this issue and bring a unique capability to NIST, an instrument has been commissioned for the simultaneous imaging with neutrons and x-rays. The new system orients a micro-focus 90 kV x-ray beam 90° to the neutron beam which facilitates rapid dual-mode tomography of samples. Current highest spatial resolutions are 20 μm and 10 μm for the neutron and x-ray detectors, respectively, with upcoming improvements. This presentation will focus on introducing the new system and demonstrating its ability with several cases. Examples of high resolution water uptake and high speed imaging of uptake dynamics will be given.
Lattice-Boltzmann Simulations of Multiphase Flows in Gas-Diffusion-Layer (GDL) of a PEM Fuel Cell
Mukherjeea, Shiladitya; Cole, J Vernon; Jainb, Kunal; Gidwania, Ashok
2008-11-01
Improved power density and freeze-thaw durability in automotive applications of Proton Exchange Membrane Fuel Cells (PEMFCs) requires effective water management at the membrane. This is controlled by a porous hydrophobic gas-diffusion-layer (GDL) inserted between the membrane catalyst layer and the gas reactant channels. The GDL distributes the incoming gaseous reactants on the catalyst surface and removes excess water by capillary action. There is, however, limited understanding of the multiphase, multi-component transport of liquid water, vapor and gaseous reactants within these porous materials. This is due primarily to the challenges of in-situ diagnostics for such thin (200 - 300 {microns}), optically opaque (graphite) materials. Transport is typically analyzed by fitting Darcy's Law type expressions for permeability, in conjunction with capillary pressure relations based on formulations derived for media such as soils. Therefore, there is significant interest in developing predictive models for transport in GDLs and related porous media. Such models could be applied to analyze and optimize systems based on the interactions between cell design, materials, and operating conditions, and could also be applied to evaluating material design concepts. Recently, the Lattice Boltzmann Method (LBM) has emerged as an effective tool in modeling multiphase flows in general, and flows through porous media in particular. This method is based on the solution of a discrete form of the well-known Boltzmann Transport Equation (BTE) for molecular distribution, tailored to recover the continuum Navier-Stokes flow. The kinetic theory basis of the method allows simple implementation of molecular forces responsible for liquid-gas phase separation and capillary effects. The solution advances by a streaming and collision type algorithm that makes it suitable to implement for domains with complex boundaries. We have developed both single and multiphase LB models and applied them to
Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors
R. A. Berry
2010-11-01
Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single
Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.
1997-07-01
This document reports on the accomplishments of a laboratory-directed research and development (LDRD) project whose objective was to initiate a research program for developing a fundamental understanding of multiphase multicomponent subsurface transport in heterogeneous porous media and to develop parallel processing computational tools for numerical simulation of such problems. The main achievement of this project was the successful development of a general-purpose, unstructured grid, multiphase thermal simulator for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers via message-passing and domain decomposition techniques. The numerical platform provides an excellent base for new and continuing project development in areas of current interest to SNL and the DOE complex including, subsurface nuclear waste disposal and cleanup, groundwater availability and contamination studies, fuel-spill transport for accident analysis, and DNAPL transport and remediation.
NASA Astrophysics Data System (ADS)
Liu, Moubin; Meakin, Paul; Huang, Hai
2007-03-01
Multiphase fluid motion in microchannels and microchannel networks involves complicated fluid dynamics and is fundamentally important to diverse practical engineering applications such as ink-jet printing, DNA and protein micro-/nano-arraying, and fabrication of particles and capsules for controlled release of medicines. This paper presented the simulations of multiphase fluid motion in microchannels and microchannel networks using a modified dissipative particle dynamics method that employs a new conservative particle-particle interaction combining short-range repulsive and long-range attractive interactions to simulate multiphase systems. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids, and solids to be simulated. Three numerical examples that are closely related to engineering applications were simulated. These examples involve multiple fluid motions in (i) a simple microchannel within two parallel plates; (ii) an inverted Y-shaped microchannel junction consisting of a vertical channel that divides into two branch channels with the same aperture; and (iii) a microchannel network. The numerical results obtained by using DPD agreed well with those from other sources, and clearly demonstrated the potential value of this DPD method for modeling and analyzing multiphase flow in microchannels and microchannel networks.
NASA Astrophysics Data System (ADS)
Afanasyev, A.
2011-12-01
Multiphase flows in porous media with a transition between sub- and supercritical thermodynamic conditions occur in many natural and technological processes (e.g. in deep regions of geothermal reservoirs where temperature reaches critical point of water or in gas-condensate fields where subject to critical conditions retrograde condensation occurs and even in underground carbon dioxide sequestration processes at high formation pressure). Simulation of these processes is complicated due to degeneration of conservation laws under critical conditions and requires non-classical mathematical models and methods. A new mathematical model is proposed for efficient simulation of binary mixture flows in a wide range of pressures and temperatures that includes critical conditions. The distinctive feature of the model lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. Such approach allows determination not only single-phase states and two-phase states of liquid-gas type as in classical models but also two-phase states of liquid-liquid type and three-phase states. The proposed mixture model was implemented in MUFITS (Multiphase Filtration Transport Simulator) code for hydrodynamic simulations. As opposed to classical approaches pressure, enthalpy and composition variables together with fully implicit method and cascade procedure are used. The code is capable of unstructured grids, heterogeneous porous media, relative permeability and capillary pressure dependence on temperature and pressure, multiphase diffusion, optional number of sink and sources, etc. There is an additional module for mixture properties specification. The starting point for the simulation is a cubic equation of state that is
Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method
NASA Astrophysics Data System (ADS)
Yang, P.; Xiang, J.; Fang, F.; Pavlidis, D.; Latham, J.-P.; Pain, C. C.
2016-09-01
An immersed-body method is developed here to model fluid-structure interaction for multiphase viscous flows. It does this by coupling a finite element multiphase fluid model and a combined finite-discrete element solid model. A coupling term containing the fluid stresses is introduced within a thin shell mesh surrounding the solid surface. The thin shell mesh acts as a numerical delta function in order to help apply the solid-fluid boundary conditions. When used with an advanced interface capturing method, the immersed-body method has the capability to solve problems with fluid-solid interfaces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid coupling terms are treated implicitly to enable larger time steps to be used. This two-way coupling method has been validated by three numerical test cases: a free falling cylinder in a fluid at rest, elastic membrane and a collapsing column of water moving an initially stationary solid square. A fourth simulation example is of a water-air interface with a floating solid square being moved around by complex hydrodynamic flows including wave breaking. The results show that the immersed-body method is an effective approach for two-way solid-fluid coupling in multiphase viscous flows.
O`Hern, T.J.; Torczynski, J.R.; Shagam, R.N.; Blanchat, T.K.; Chu, T.Y.; Tassin-Leger, A.L.; Henderson, J.A.
1997-01-01
This report summarizes the work performed under the Sandia Laboratory Directed Research and Development (LDRD) project ``Optical Diagnostics for Turbulent and Multiphase Flows.`` Advanced optical diagnostics have been investigated and developed for flow field measurements, including capabilities for measurement in turbulent, multiphase, and heated flows. Particle Image Velocimetry (PIV) includes several techniques for measurement of instantaneous flow field velocities and associated turbulence quantities. Nonlinear photorefractive optical materials have been investigated for the possibility of measuring turbulence quantities (turbulent spectrum) more directly. The two-dimensional PIV techniques developed under this LDRD were shown to work well, and were compared with more traditional laser Doppler velocimetry (LDV). Three-dimensional PIV techniques were developed and tested, but due to several experimental difficulties were not as successful. The photorefractive techniques were tested, and both potential capabilities and possible problem areas were elucidated.
Preface: Recent Advances in Modeling Multiphase Flow and Transportwith the TOUGH Family of Codes
Liu, Hui-Hai; Illangasekare, Tissa H.
2007-11-15
A symposium on research carried out using the TOUGH family of numerical codes was held from May 15 to 17, 2006, at the Lawrence Berkeley National Laboratory. This special issue of the 'Vadose Zone Journal' contains revised and expanded versions of a selected set of papers presented at this symposium (TOUGH Symposium 2006; http://esd.lbl.gov/TOUGHsymposium), all of which focus on multiphase flow, including flow in the vadose zone.
Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.
Li, Q; Luo, K H; Li, X J
2012-07-01
The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model. PMID:23005565
Pattern formation in multiphase flow through porous media: continuum models and phase diagrams
NASA Astrophysics Data System (ADS)
Cueto-Felgueroso, L.; Juanes, R.
2009-12-01
Carbon capture and geologic storage, dissociation of methane hydrates in permafrost, infiltration of water in soil, and enhanced oil recovery, are some relevant examples of multiphase flow in porous media. While flow instabilities and pattern formation play a central role in these processes, our ability to describe them using mathematical models has been hampered by the lack of a macroscopic theory that explains the patterns observed in experimental and field conditions. We propose a new approach —phase-field modeling— to advance our fundamental understanding of multiphase porous media flow. The basic tenet, with origins in the mathematical description of solidification processes, is that the energy of the system is a function of the inhomogeneous distribution of fluid phases in the pore space, and should account for the presence of macroscopic interfaces. We present numerical simulations and compare our predictions with experimental observations. Numerical simulation of viscous fingering in a Hele-Shaw cell using the proposed phase-field modeling approach
Direct simulation of multi-phase MHD flows on an unstructured Cartesian adaptive system
NASA Astrophysics Data System (ADS)
Zhang, Jie; Ni, Ming-Jiu
2014-08-01
An approach for direct simulation of the multi-phase magnetohydrodynamics (MHD) flows has been developed in the present study on an unstructured Cartesian adaptive system. The approach is based on the volume-of-fluid (VOF) method for capturing the interface with the adaptive mesh refinement (AMR) technique used to well resolve the interface and the boundary layer. The Lorentz force is calculated using the consistent and conservative scheme, which is specially designed on a Cartesian adaptive mesh to conserve the physical conservation laws. The continuous-surface-tension (CSF) formulation is adopted for surface tension calculation. Moreover, the interfacial flows driven by thermal Marangoni effects at multifluid interfaces are also studied with a special numerical treatment presented. The method is able to simulate bubble motion in liquid metal under magnetic field irrespective of high density ratio and electric conductivity ratio. The proposed scheme for multi-phase MHD flows is validated by experimental results as well as analytical solutions.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-05-24
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during
Challenges in Modeling Astrophysical Phenomena Involving Radiative, Reactive, and Multiphase Flows
NASA Astrophysics Data System (ADS)
Leung, C. M.
1994-05-01
Computer modeling is an indispensable research tool in advancing our understanding of astrophysical phenomena. With the rapid increase in both quality and quantity of astronomical data from ground-based and space-based facilities, a major challenge facing computational astrophysicists is to construct models with increasing degree of realism (in terms of physical and chemical processes, as well as source geometry) to interpret these data. The continuing advance in computer hardware and the associated increase in computing power allow the inclusion of more realistic microphysics and physico- chemical processes in the models. While many astrophysical phenomena are dominated by the collective effects of gas dynamics, there are many situations in which radiation transport, heterogeneous chemical kinetics, and gas dynamics all play an important role, making the modeling of radiative and reactive flow problems difficult. In particular, the modeling of astrophysical phenomena involving radiative, reactive, and multiphase flows not only increases the number of simultaneous processes occurring but also expands the range of both time and space scales in the problem. Counterintuitive behavior arises from the interactions of the various local, diffusive, convective, and oscillatory phenomena in the flow. Some examples are chemical and dynamical evolution of interstellar clouds involving both gas-phase and grain-surface chemistry, dust formation in radiation-driven stellar winds, and grain alignment in magnetohydrodynamic shocks. In this talk I will first review the basic concepts and computational techniques in modeling astrophysical systems involving radiation hydrodynamics, chemical kinetics, and heterogeneous components. I will describe a few selected results to demonstrate some recent progress made and identify the technical challenges that we still need to overcome.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection
NASA Astrophysics Data System (ADS)
Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.
2012-12-01
CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the
Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise
1993-01-01
It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better
Advanced multi-phase flow CFD model development for solid rocket motor flowfield analysis
NASA Astrophysics Data System (ADS)
Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise
1993-07-01
It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2003-11-11
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-05-10
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2007-06-12
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Multiphase flow modeling of landslide induced impulse wave by VOF method
NASA Astrophysics Data System (ADS)
Paik, J.; Shin, C.
2015-12-01
Numerical simulations of impulse waves induced by landslides are carried out using a multiphase modeling approach. The three-dimensional filtered Navier-Stokes equations are used for reproduces the propagation and interaction of Newtonian water wave and non-Newtonian debris flow along the bottom. A multiphase volume of fluid (VOF) method is employed for tracking of fluid interfaces. The governing equations are solved by a second-order-accurate in space and time, finite volume methods and the no-slip conditions are applied for all solid wall. The turbulent shear stress is calculated the Smagorinsky model and the non-Newtonian behavior of debris flow is computed by the Hershel-Bulkley fluid model. The multiphase flow model is applied to reproduce the laboratory measurements of Fritz (Pure Appl. Geophys., 166, 153, 2009) who experimentally investigated the propagation of impulse wave induced by the 1958 Lituya Bay Landslide. The numerical results shows that the proper treatment of the non-Newtonian behavior of debris flow is essential to reproduce its head speed and shape which control the deformation and propagation of the resulting impulse wave.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-12-07
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.
Laboratory setup and results of experiments on two-dimensional multiphase flow in porous media
McBride, J.F. ); Graham, D.N.; Schiegg, H.O. )
1990-10-01
In the event of an accidental release into earth's subsurface of an immiscible organic liquid, such as a petroleum hydrocarbon or chlorinated organic solvent, the spatial and temporal distribution of the organic liquid is of great interest when considering efforts to prevent groundwater contamination or restore contaminated groundwater. An accurate prediction of immiscible organic liquid migration requires the incorporation of relevant physical principles in models of multiphase flow in porous media; these physical principles must be determined from physical experiments. This report presents a series of such experiments performed during the 1970s at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. The experiments were designed to study the transient, two-dimensional displacement of three immiscible fluids in a porous medium. This experimental study appears to be the most detailed published to date. The data obtained from these experiments are suitable for the validation and test calibration of multiphase flow codes. 73 refs., 140 figs.
Towards Multiphase Periodic Boundary Conditions with Flow Rate Constraint
NASA Astrophysics Data System (ADS)
Sawko, Robert; Thompson, Chris P.
2011-09-01
This paper presents the development of a solver for a two-phase, stratified flow with periodic boundary conditions. Governing equations are supplemented with a specification of constant mass fluxes for each phase. The method allows an estimate steady state phase fraction and pressure drop in the streamwise direction. The analytical solution for two-phase laminar flow is presented and serves as a validation of the numerical technique. For turbulent conditions, Reynolds-Averaged Navier-Stokes equations are employed and closed with a two-equation model. Experimental data is taken as a reference for the purpose of validation. In both flow conditions the method delivers accurate results although in the case of turbulent flow it requires the specification of interfacial viscosity showing that a direct generalisation of two-equation model is unsatisfactory. Further research avenues are outlined.
Modelling of multiphase flow in ironmaking blast furnace
Dong, X.F.; Yu, A.B.; Burgess, J.M.; Pinson, D.; Chew, S.; Zulli, P.
2009-01-15
A mathematical model for the four-phase (gas, powder, liquid, and solids) flow in a two-dimensional ironmaking blast furnace is presented by extending the existing two-fluid flow models. The model describes the motion of gas, solid, and powder phases, based on the continuum approach, and implements the so-called force balance model for the flow of liquids, such as metal and slag in a blast furnace. The model results demonstrate a solid stagnant zone and dense powder hold-up region, as well as a dense liquid flow region that exists in the lower part of a blast furnace, which are consistent with the experimental observations reported in the literature. The simulation is extended to investigate the effects of packing properties and operational conditions on the flow and the volume fraction distribution of each phase in a blast furnace. It is found that solid movement has a significant effect on powder holdup distribution. Small solid particles and low porosity distribution are predicted to affect the fluid flow considerably, and this can cause deterioration in bed permeability. The dynamic powder holdup in a furnace increases significantly with the increase of powder diameter. The findings should be useful to better understand and control blast furnace operations.
El-Alej, M. Mba, D. Yeung, H.
2014-04-11
The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)
VOF Method for Simulation of Multiphase Incompressible Flows with Phase Change
NASA Astrophysics Data System (ADS)
Zhang, S. P.; Ni, M. J.; Ma, H. Y.
2011-09-01
A volume-of-fluid method for simulation of incompressible multiphase flows with phase change is studied. We have simulated a series of processes of the vapor bubble deformation in a three-dimensional film boiling using volume of fluid (VOF) method, which include the generation, detachment and rising deformation of the bubble. Our numerical results show that the VOF method is a useful method to handle complex deformation of the liquid-vapor interface during film boiling.
Sampling device for withdrawing a representative sample from single and multi-phase flows
Apley, Walter J.; Cliff, William C.; Creer, James M.
1984-01-01
A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.
Method and system for measuring multiphase flow using multiple pressure differentials
Fincke, James R.
2001-01-01
An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.
CFD of mixing of multi-phase flow in a bioreactor using population balance model.
Sarkar, Jayati; Shekhawat, Lalita Kanwar; Loomba, Varun; Rathore, Anurag S
2016-05-01
Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kL a) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two-phase flow and turbulence, an Eulerian-Eulerian multiphase model and k-ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613-628, 2016. PMID:26850863
Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications
Lee, Taehun
2015-10-20
The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations, better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.
Simulation of Inviscid Compressible Multi-Phase Flow with Condensation
NASA Technical Reports Server (NTRS)
Kelleners, Philip
2003-01-01
Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.
A Three-Dimensional Vortex Sheet Method for Multiphase Flows
NASA Astrophysics Data System (ADS)
Stock, Mark; Dahm, Werner; Tryggvason, Gretar
2002-11-01
Previous work on a three-dimensional vortex-in-cell method is extended to include baroclinic vorticity generation in flows with large density ratios. A vortex sheet discretization is used both to maintain the boundary between different fluids or fluid phases, and to provide for a divergence-free vorticity field at all times. Automatic insertion and deletion of triangular elements allow the vortex sheet to maintain its connectivity and resolution during the simulation, despite extensive stretching of the material surface. The VIC grid provides regularization, and the simulation is inviscid at resolved scales. Computational results for flows with weak and strong density variations are presented.
Multiphase flow through porous media: an adaptive control volume finite element formulation
NASA Astrophysics Data System (ADS)
Mostaghimi, P.; Tollit, B.; Gorman, G.; Neethling, S.; Pain, C.
2012-12-01
Accurate modeling of multiphase flow in porous media is of great importance in a wide range of applications in science and engineering. We have developed a numerical scheme which employs an implicit pressure explicit saturation (IMPES) algorithm for the temporal discretization of the governing equations. The saturation equation is spatially discretized using a node centered control volume method on an unstructured finite element mesh. The face values are determined through an upwind scheme. The pressure equation is spatially discretized using a continuous control volume finite element method (CV-FEM) to achieve consistency with the discrete saturation equation. The numerical simulation is implemented in Fluidity, an open source and general purpose fluid simulator capable of solving a number of different governing equations for fluid flow and accompanying field equations on arbitrary unstructured meshes. The model is verified against the Buckley-Leverett problem where a quasi-analytical solution is available. We discuss the accuracy and the order of convergence of the scheme. We demonstrate the scheme for modeling multiphase flow in a synthetic heterogeneous porous medium along with the use of anisotropic mesh adaptivity to control local solution errors and increase computational efficiency. The adaptive method is also used to simulate two-phase flow in heap leaching, an industrial mining process, where the flow of the leaching solution is gravitationally dominated. Finally we describe the extension of the developed numerical scheme for simulation of flow in multiscale fractured porous media and its capability to model the multiscale characterization of flow in full scale.
Modification of Fracture Apertures by Reactive Multiphase Flow
NASA Astrophysics Data System (ADS)
Xu, Z.; Sheets, J.; Li, Q.; Kneafsey, T. J.; Cole, D. R.; Jun, Y. S.; Pyrak-Nolte, L. J.
2015-12-01
Geochemical interactions during the withdrawal/injection of fluids into the subsurface can modify fracture apertures through dissolution and/or precipitation of minerals. Modification of fracture apertures during reactive flow is strongly affected by non-reactive, non-wetting fluids that limit the fracture surface area and void volume that can be affected by reactive phases. We present results on the effect of a non-reactive, non-wetting phase during reactive flow on the distribution of precipitates and channelization caused by dissolution in fractures. Transparent acrylic casts of a fracture in Austin chalk were used to image mineral precipitation during reactive flow. Initially, the fracture was saturated with a solution of 0.6mol/L NaHCO3 and 0.00085mol/L NaCl. Then, both the aqueous NaHCO3 - NaCl and a solution containing 3mol/L CaCl2 were pumped into the sample (0.5 ml/min) for 2 hrs. When the two solutions mix inside the fracture, CaCO3 precipitates form and CO2 bubbles are generated. CO2 bubbles affect the amount of precipitation. X-ray CT data show that precipitate thickness varies within the fracture, occurs on both fracture surfaces and also bridges the surfaces. In the test, where a CO2 bubble filled a void, precipitation did not occur. If the CO2 bubble was smaller than the pore, thin films of precipitates occurred on the fracture surfaces above and below the bubble. While fracture apertures controlled the mixing of the fluids, CO2 bubbles affected the thickness and distribution of the precipitates. From our numerical study, channelization in a fracture is affected by the presence of a non-wetting non-reactive phase (e.g. gas) during dissolution. A modified Navier-Stokes approach was used to calculate fluxes through spatially correlated aperture distributions as a function of gas saturation. Dissolution was taken to be proportional to flux. For gas saturations < 15%, channelization occurred along the dominant flow path. However, for gas saturations >25
Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow
NASA Astrophysics Data System (ADS)
Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Mâløy, Knut Jørgen; Flekkøy, Eirik Grude
2016-07-01
We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.
Multiphase ferrofluid flows for micro-particle sorting
NASA Astrophysics Data System (ADS)
Zhou, Ran; Wang, Cheng
2015-11-01
Utilizing negative magnetophoresis, ferrofluids have demonstrated great potential for sorting nonmagnetic micro-particles by size. Most of the existing techniques use single phase ferrofluids by pushing micro-particles to channel walls; the sorting speed is thus hindered. We demonstrate a novel sorting strategy by co-flowing a ferrofluid and a non-magnetic fluid in microchannels. Due to the magnetic force, the particles migrate across the ferrofluid stream at size-dependent velocities as they travel downstream. The laminar interface between the two fluids functions as a virtual boundary to accumulate particles, resulting in effective separation of particles. A stable and sharp interface is important to the success of this sorting technique. We investigate several factors that affect sorting efficiency, including magnetic field, susceptibility difference of the fluids, flow velocity, and channel geometry.
Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow.
Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik Grude
2016-07-01
We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition-and complete evacuation of the granular suspension-when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime. PMID:27447527
Are upwind techniques in multi-phase flow models necessary?
Park, C.-H.; Boettcher, N.; Wang, W.; Kolditz, O.
2011-09-10
Two alternatives of primary variables are compared for two-phase flow in heterogeneous media by solving fully established benchmarks. The first combination utilizes pressure of the wetting fluid and saturation of the non-wetting fluid as primary variables, while the second employs capillary pressure of the wetting fluid and pressure of the non-wetting fluid. While the standard Galerkin finite element method (SGFEM) is known to fail in the physical reproduction of two-phase flow in heterogeneous media (unless employing a fully upwind correction), the second scheme with capillary pressure as a primary variable without applying an upwind technique produces correct physical fluid behaviour in heterogeneous media, as observed from experiments.
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
NASA Astrophysics Data System (ADS)
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
Multiphase flow models of biogels from crawling cells to bacterial biofilms
Cogan, N. G.; Guy, Robert D.
2010-01-01
This article reviews multiphase descriptions of the fluid mechanics of cytoplasm in crawling cells and growing bacterial biofilms. These two systems involve gels, which are mixtures composed of a polymer network permeated by water. The fluid mechanics of these systems is essential to their biological function and structure. Their mathematical descriptions must account for the mechanics of the polymer, the water, and the interaction between these two phases. This review focuses on multiphase flow models because this framework is natural for including the relative motion between the phases, the exchange of material between phases, and the additional stresses within the network that arise from nonspecific chemical interactions and the action of molecular motors. These models have been successful in accounting for how different forces are generated and transmitted to achieve cell motion and biofilm growth and they have demonstrated how emergent structures develop though the interactions of the two phases. A short description of multiphase flow models of tumor growth is included to highlight the flexibility of the model in describing diverse biological applications. PMID:20676304
Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media
NASA Astrophysics Data System (ADS)
Pereira, Gerald G.
2016-06-01
The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that voxel's resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The new model is outlined and then applied to a number of test cases, which show good agreement with theory. This method is subsequently used to model the important case where each voxel may have a different resistance to each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these simulations.
Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media.
Pereira, Gerald G
2016-06-01
The grayscale lattice Boltzmann (LB) model has been recently developed to model single-phase fluid flow through heterogeneous porous media. Flow is allowed in each voxel but the degree of flow depends on that voxel's resistivity to fluid motion. Here we extend the grayscale LB model to multiphase, immiscible flow. The new model is outlined and then applied to a number of test cases, which show good agreement with theory. This method is subsequently used to model the important case where each voxel may have a different resistance to each particular fluid that is passing through it. Finally, the method is applied to model fluid flow through real porous media to demonstrate its capability. Both the capillary and viscous flow regimes are recovered in these simulations. PMID:27415381
Computational modeling for multiphase flows with spacecraft application
NASA Astrophysics Data System (ADS)
Uzgoren, Eray; Singh, Rajkeshar; Sim, Jaeheon; Shyy, Wei
2007-05-01
Many engineering applications involve interactions between solid, gas and liquid phases under normal or micro-gravity conditions. Numerical simulations of such fluid flows need to track the location and the shape of the fluid interface as part of the solution. The merits and basic characteristics of various approaches for numerical computations of interfacial fluid dynamics are reviewed. The computational challenges include: (i) the algorithmic complexity for handling irregularly shaped moving boundaries that can experience merger and break-up; (ii) resolution refinement techniques to maintain desirable resolution of length scales, in accordance with the evolving fluid dynamics; (iii) data structure needed to support identification of the interface and satisfaction of the physical laws in the bulk fluids as well as around the phase boundaries; and (iv) efficient parallel processing techniques required for practical engineering analysis. The present review focuses on these issues related to the Lagrangian-Eulerian approach, utilizing the immersed boundary method with marker-based tracking, as the main framework for interfacial flow computations on Cartesian grids. Specifically, we offer in-depth discussion of the organization and layout of the mesh systems for both fluid and interface representations, local adaptive refinement on two-dimensional/three-dimensional (2D/3D) Cartesian grids, and multi-level domain decomposition method that utilizes Hilbert space filling curves for parallel processing strategy. The effectiveness of individual components and overall algorithm are presented using various tests such as, binary drop-collision computations to highlight grid adaptation and interface tracking algorithms to handle complex interface behavior, and bubble/droplet placed in a vortex field with various density/viscosity ratios across interfaces to address load balancing and scalability aspects of parallel computing. A time-dependent draining flow problem motivated by
NASA Astrophysics Data System (ADS)
Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.
2016-08-01
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.
NASA Astrophysics Data System (ADS)
Jin, G.; Pashin, J. C.
2014-12-01
Ensuring safe and permanent storage of sequestered CO2in naturally fractured geological media is vital for the success of geologic storage projects. Critical needs exist to develop advanced techniques to characterize and model fluid transport in naturally fractured reservoirs and seals. We have developed a scale-independent 3-D stochastic fracture permeability characterization workflow that employs multiple discrete fracture network (DFN) realizations. The workflow deploys a multidirectional flux-based upwind weighting scheme that is capable of modeling multiphase flow in highly heterogeneous fractured media. The techniques employed herein show great promise for increasing the accuracy of capacity determinations and the prediction of pressure footprints associated with injected CO2 plumes. The proposed workflow has been conducted in a simulation study of flow transport and risk assessment of CO2 injection into a deep fractured saline formation using geological parameters from Knox Group carbonate and Red Mountain shale rocks in central Alabama. A 3-D fracture permeability map was generated from multiple realizations of DFN models. A multiphase flow model composed of supercritical CO2 and saline water was applied to simulate CO2 plume evolution during and after injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes. The spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant lateral spreading of CO2 near the top of the fractured formations because of the buoyancy of injectate in rock matrix and strata-bound vertical fractures. Risk assessment shows that although pressure drops faster in the fractured formations than in those lacking fractures, lateral movement of CO2 along natural fractures necessitates that the injectate be confined by widespread seals with high integrity.
Modeling relaxation effects on multiphase fluid transport in wells and pipelines
NASA Astrophysics Data System (ADS)
Michel Villazon, Guillermo German
The effect of relaxation in processes involving phase transition during flow of reservoir fluids in pipelines and wells is investigated and formulated. Applications concerning the steady-state flow of producing wells, waxy-oil rheology during transient cooling, and wax gelation of shut-in submarine pipes are studied by the means of numerical simulation. This is accomplished by description of the transport of reservoir fluids flowing through pipes in terms of spatially-averaged phase properties. Several homogeneous models are developed by introducing the spatially-averaged properties into the equations describing the concurrent transport of phases, referred to as multi-fluid model. Thus, the number of unknown variables is decreased from several sets of properties corresponding to each phase in the multi-fluid model to one set of properties corresponding to a single pseudo-phase in the homogenous model. First, flow of reservoir fluids in oil production wells is described by a three-phase model. Relaxation phenomenon concerning dissolved-gas separation from the oil and water phases is elaborated. Two numerical procedures are presented for simulating the gas/oil/brine flow in production pipes with heat transfer at steady state: one based on liquid holdup estimation and the other based on relaxation of gas separation. Deviation of actual fluid conditions from equilibrium is characterized by a new constitutive equation. Effect of relaxation time and holdup of liquids involving in typical field scenarios is demonstrated for reservoir fluids containing oil, water, and gas phases. It is observed that the liquid holdup phenomenon at steady-state conditions can be described as a metastable state characterized by an incomplete separation of the gas phase. Also, the gas separation from the oil and water phases constitutes two different non-equilibrium processes and, therefore, these phases should not be lumped into one liquid phase. Second, a description of the more relevant
NASA Astrophysics Data System (ADS)
Espinet, Antoine J.; Shoemaker, Christine A.
2013-04-01
Optimization of multi-phase transport models is important both for calibrating model parameters to observed data and for analyzing management options. We focus on examples of geological carbon sequestration (GCS) process-based multi-phase models. Realistic GCS models can be very computationally expensive not only due to the spatial distribution of the model but also because of the complex nonlinear multi-phase and multi-component transport equations to be solved. As a result we need to have optimization methods that get accurate answers with relatively few simulations. In this analysis we compare a variety of different types of optimization algorithms to understand the best type of algorithms to use for different types of problems. This includes an analysis of which characteristics of the problem are important in choice of algorithm. The goal of this paper is to evaluate which optimization algorithms are the most efficient in a given situation, taking into account shape of the optimization problem (e.g. uni- or multi-modal) and the number of simulations that can be done. The algorithms compared are the widely used derivative-based PEST optimization algorithm, the derivative-based iTOUGH2, the Kriging response surface algorithm EGO, the heuristics-based DDS (Dynamically Dimensioned Search), and the Radial Basis Function surrogate response surface based global optimization algorithms 'GORBIT' and 'Stochastic RBF'. We calibrate a simple homogeneous model '3hom' and two more realistic models '20layer' and '6het'. The latter takes 2 h per simulation. Using rigorous statistical tests, we show that while the derivative-based algorithms of PEST are efficient on the simple 3hom model, it does poorly in comparison to surrogate optimization methods Stochastic RBF and GORBIT on the more realistic models. We then identify the shapes of the optimization surface of the three models using enumerative simulations and discover that 3hom is smooth and unimodal and the more realistic
Predictions for √{sNN}=5.02 TeV Pb + Pb collisions from a multiphase transport model
NASA Astrophysics Data System (ADS)
Ma, Guo-Liang; Lin, Zi-Wei
2016-05-01
We present predictions from the string melting version of a multiphase transport model on various observables in Pb+Pb collisions at √{sNN}=5.02 TeV . We use the same version of the model as an earlier study that reasonably reproduced d N /d y , pT spectra and elliptic flow of charged pions and kaons at low-pT for central and semicentral heavy ion collisions at 200 GeV and 2.76 TeV. While we compare with the already-available centrality dependence data on charged particle d N /d η at mid-pseudorapidity in Pb+Pb collisions at 5.02 TeV, we make predictions on identified particle d N /d y , pT spectra, azimuthal anisotropies vn(n =2 ,3 ,4 ) , and factorization ratios rn(ηa,ηb) (n =2 ,3 ) for longitudinal correlations.
Direct and inverse modeling of multiphase flow systems
Finsterle, S.
1995-10-01
A modeling study is presented which demonstrates how the combination of simulation and optimization techniques can be used to improve the design of a multi-component remediation system. A series of computer codes has been developed at the Lawrence Berkeley National Laboratory to solve forward and inverse problems in groundwater hydrology. Simulations of non-isothermal, three-phase flow of volatile organic compounds in three-dimensional heterogeneous media were performed. Inverse modeling capabilities have been developed which can be used for both automatic model calibration and optimization of remediation schemes. In this study, we discuss a sequence of simulations to demonstrate the potential use of numerical models to design and analyze cleanup of a contaminated aquifer.
NASA Astrophysics Data System (ADS)
Diggs, Angela; Balachandar, Sivaramakrishnan
2015-06-01
The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.
NASA Astrophysics Data System (ADS)
Qin, C.; Hassanizadeh, S.
2013-12-01
Multiphase flow and species transport though thin porous layers are encountered in a number of industrial applications, such as fuel cells, filters, and hygiene products. Based on some macroscale models like the Darcy's law, to date, the modeling of flow and transport through such thin layers has been mostly performed in 3D discretized domains with many computational cells. But, there are a number of problems with this approach. First, a proper representative elementary volume (REV) is not defined. Second, one needs to discretize a thin porous medium into computational cells whose size may be comparable to the pore sizes. This suggests that the traditional models are not applicable to such thin domains. Third, the interfacial conditions between neighboring layers are usually not well defined. Last, 3D modeling of a number of interacting thin porous layers often requires heavy computational efforts. So, to eliminate the drawbacks mentioned above, we propose a new approach to modeling multilayers of thin porous media as 2D interacting continua (see Fig. 1). Macroscale 2D governing equations are formulated in terms of thickness-averaged material properties. Also, the exchange of thermodynamic properties between neighboring layers is described by thickness-averaged quantities. In Comparison to previous macroscale models, our model has the distinctive advantages of: (1) it is rigorous thermodynamics-based model; (2) it is formulated in terms of thickness-averaged material properties which are easily measureable; and (3) it reduces 3D modeling to 2D leading to a very significant reduction of computation efforts. As an application, we employ the new approach in the study of liquid water flooding in the cathode of a polymer electrolyte fuel cell (PEFC). To highlight the advantages of the present model, we compare the results of water distribution with those obtained from the traditional 3D Darcy-based modeling. Finally, it is worth noting that, for specific case studies, a
Modelling merging and fragmentation in multiphase flows with SURFER
Lafaurie, B. ); Nardone, C.; Scardovelli, R.; Zanetti, G. ); Zaleski, S. )
1994-07-01
We introduce a new numerical method, called [open quotes]SURFER,[close quotes] for the simulation of two- and three-dimensional flows with several fluid phases and free interfaces between them. We consider incompressible fluids obeying the Navier-Stokes equation with Newtonian viscosity in the bulk of each phase. Capillary forces are taken into account even when interfaces merge or break up. Fluid interfaces are advanced in time using an exactly volume conserving variant of the volume of fluid algorithm, thus allowing for full symmetry between fluid phases. The Navier-Stokes equation is solved using staggered finite differences on a MAC grid and a split-explicit time differencing scheme, while incompressibility is enforced using an iterative multigrid Poisson solver. Capillary effects are represented as a stress tensor computed from gradients of the volume fraction function. This formulation is completely independent of the topology of interfaces and relatively easy to implement in 3D. It also allows exact momentum conservation in the discretized algorithm. Numerical spurious effects or [open quotes]parasite currents[close quotes] are noticed and compared to similar effects in Boltzmann lattice gas methods for immiscible fluids. Simulations of droplets pairs colliding in 2D and in 3D are shown. Interface reconnection is performed easily, despite the large value of capillary forces during reconnection. 22 refs., 19 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Diggs, Angela; Balachandar, S.
2016-05-01
The present work addresses numerical methods required to compute particle volume fraction or number density. Local volume fraction of the lth particle, αl, is the quantity of foremost importance in calculating the gas-mediated particle-particle interaction effect in multiphase flows. A general multiphase flow with a distribution of Lagrangian particles inside a fluid flow discretized on an Eulerian grid is considered. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the grid cell for Eulerian-Lagrangian simulations. In Grid-Based (GB) methods the particle volume fraction is first obtained within each grid cell as an Eulerian quantity and then the local particle volume fraction associated with any Lagrangian particle can be obtained from interpolation. The second class of methods presented are Particle-Based (PB) methods, where particle volume fraction will first be obtained at each particle as a Lagrangian quantity, which then can be projected onto the Eulerian grid. Traditionally, the GB methods are used in multiphase flow, but sub-grid resolution can be obtained through use of the PB methods. By evaluating the total error, and its discretization, bias and statistical error components, the performance of the different PB methods is compared against several common GB methods of calculating volume fraction. The standard von Neumann error analysis technique has been adapted for evaluation of rate of convergence of the different methods. The discussion and error analysis presented focus on the volume fraction calculation, but the methods can be extended to obtain field representations of other Lagrangian quantities, such as particle velocity and temperature.
Pore-Scale Modeling of Reactive-Multiphase-Buoyant Flow for Carbon Capture and Storage
NASA Astrophysics Data System (ADS)
Anwar, S.; Cunningham, J. A.; Trotz, M.; Thomas, M. W.; Stewart, M.
2010-12-01
Physical and geochemical processes at multiple scales are yet to be understood for the storage of carbon dioxide (CO2) in aquifers and the concomitant mitigation of CO2 concentration in the atmosphere. In deep saline aquifers, the pores in the potential aquifers for CO2 storage are initially filled with saline water (brine). The entrapment of brine in pores after injection of CO2 is controlled by capillary forces and by the inertial force driving CO2 inside the carbonate aquifer. The entrapped/residual brine will be a site for geochemical reactions which could alter the pore network and/or the permeability of the formation. Therefore, the pore-scale understanding of displacement of resident brine by CO2 is critical to evaluate the storage efficiency of carbonate aquifers and to quantify any dissolution or precipitation of minerals (e.g., gypsum, calcite, dolomite). In this project, we have developed a multiphase flow model, based on the lattice Boltzmann equation, that can describe pore-scale displacement of brine by invading CO2. The multiphase flow model is applied to three different pore networks saturated with brine. The amount of brine trapped after invasion of the domain by CO2 is strongly dependent on the pore network. We also examine the effects of CO2 density and viscosity (which depend on formation temperature and pressure) on the amount of entrapped brine. Only by resolving the flow at the pore scale can we predict the residual brine saturation and other parameters which control CO2 sequestration in deep saline aquifers. Future work will focus on coupling the pore-scale multiphase flow model to a chemistry model to predict mineral dissolution and precipitation.
Nourgaliev R.; Knoll D.; Mousseau V.; Berry R.
2007-04-01
The state-of-the-art for Direct Numerical Simulation (DNS) of boiling multiphase flows is reviewed, focussing on potential of available computational techniques, the level of current success for their applications to model several basic flow regimes (film, pool-nucleate and wall-nucleate boiling -- FB, PNB and WNB, respectively). Then, we discuss multiphysics and multiscale nature of practical boiling flows in LWR reactors, requiring high-fidelity treatment of interfacial dynamics, phase-change, hydrodynamics, compressibility, heat transfer, and non-equilibrium thermodynamics and chemistry of liquid/vapor and fluid/solid-wall interfaces. Finally, we outline the framework for the {\\sf Fervent} code, being developed at INL for DNS of reactor-relevant boiling multiphase flows, with the purpose of gaining insight into the physics of multiphase flow regimes, and generating a basis for effective-field modeling in terms of its formulation and closure laws.
An open-source toolbox for multiphase flow in porous media
NASA Astrophysics Data System (ADS)
Horgue, P.; Soulaine, C.; Franc, J.; Guibert, R.; Debenest, G.
2015-02-01
Multiphase flow in porous media provides a wide range of applications: from the environmental understanding (aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such flows involves specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-source platform for CFD. The underlying idea of this approach is to provide an easily adaptable tool that can be used in further studies to test new mathematical models or numerical methods. The package provides the most common effective properties models of the literature (relative permeability, capillary pressure) and specific boundary conditions related to porous media flows. To validate this package, solvers based on the IMplicit Pressure Explicit Saturation (IMPES) method are developed in the toolbox. The numerical validation is performed by comparison with analytical solutions on academic cases. Then, a satisfactory parallel efficiency of the solver is shown on a more complex configuration.
Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver
NASA Astrophysics Data System (ADS)
Shi, Y.; Tang, G. H.; Wang, Y.
2016-06-01
In this work, we extend the multiphase lattice Boltzmann flux solver, which was proposed in [1] for simulating incompressible flows of binary fluids based on two-component Cahn-Hilliard model, to three-component fluid flows. In the present method, the multiphase lattice Boltzmann flux solver is applied to solve for the flow field and the three-component Cahn-Hilliard model is used to predict the evolution of the interfaces. The proposed method is first validated through the classical problem of simulation of partial spreading of a liquid lens between the other two components. Numerical results of interface shapes and contact angles agree well with theoretical solutions. After that, to further demonstrate the capability of the present method, several numerical examples of three-component fluid flows are presented, including a bubble rising across a fluid-fluid interface, single droplet falling through a fluid-fluid interface, the collision-coalescence of two droplets, and the non-contact collision of two droplets. It is shown that the present method can successfully handle complex interactions among three components.
NASA Astrophysics Data System (ADS)
Pendota, Premchand
Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.
Effect of multiphase slug flow on the stability of corrosion product layer
Gopal, M.; Rajappa, S.
1999-11-01
Corrosion experiments were carried out under iron carbonate scale-forming conditions in a large diameter, multiphase flow system. Both oil/water and oil/water/gas slug flows were studied at pressures up to 0.79 MPa and temperatures of 60 C and 80 C. It was found that with increasing iron concentration, the corrosion rates were reduced to negligible values in oil/water flows. However, significant corrosion was seen in slug flow with clear evidence of damage to the corrosion product layer due to impact and possible collapse of gas bubbles and a considerable reduction in the layer thickness. Details of corrosion rates and corrosion coupon surface analysis are presented.
Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter
NASA Technical Reports Server (NTRS)
Korman, Valentin
2007-01-01
Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.
Lattice Boltzmann Simulation of Multiphase Transport in Nanostructured PEM Fuel Cells
NASA Astrophysics Data System (ADS)
Stiles, Christopher D.
As the fossil fuel crisis becomes more critical, it is imperative to develop renewable sources of power generation. Polymer electrolyte membrane (PEM) fuel cells are considered a viable option. However, the cost of the platinum catalyst has hindered their commercialization. PEM fuel cells with platinum loading of >0.4 mg cm2 are common. Efforts towards further reducing this loading are currently underway utilizing nanostructured electrodes. A consequence of increased platinum utilization per unit area and thinner nanostructured electrodes is flooding, which is detrimental to fuel cell performance. Flooding causes a two-fold impact on cell performance: a drop in cell voltage and a rise in parasitic pumping power to overcome the increased pressure drop, which together result in a significant reduction in system efficiency. Proper water management is therefore crucial for optimum performance of the fuel cell and also for enhancing membrane durability. The goal of this thesis is to simulate the multiphase fluid transport in the nanostructured PEMFC of H2O in air with realistic density ratios. In order to pursue this goal, the ability of the pseudopotential based multiphase lattice Boltzmann method to realistically model the coexistence of the gas and liquid phases of H2O at low temperatures is explored. This method is expanded to include a gas mixture of O2 and N 2 into the multiphase H2O systems. Beginning with the examination of the phase transition region described by the current implementation of the multiphase pseudopotential lattice Boltzmann model. Following this, a modified form of the pressure term with the use of a scalar multiplier kappa for the Peng-Robinson equation of state is thoroughly investigated. This method proves to be very effective at enabling numerically stable simulations at low temperatures with large density ratios. It is found that for decreasing values of kappa, this model leads to an increase in multiphase interface thickness and a
Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard
2014-12-31
Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore » to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less
Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard
2014-12-31
Carbon stable isotopes can be used in characterization and monitoring of CO_{2} sequestration sites to track the migration of the CO_{2} plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO_{2}-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO_{2} sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO_{2} gas and dissolved inorganic carbon (CO_{2}, CO_{3}^{2-}, HCO_{3}^{-},…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO_{2} injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.
Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows
Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.
1996-04-01
A computer code ICRKFLO was used to simulate the multiphase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that are in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.
Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection
NASA Astrophysics Data System (ADS)
Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.
2015-12-01
This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.
Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow
Rothman, D.H. ); Zaleski, S. )
1994-10-01
Momentum-conserving lattice gases are simple, discrete, microscopic models of fluids. This review describes their hydrodynamics, with particular attention given to the derivation of macroscopic constitutive equations from microscopic dynamics. Lattice-gas models of phase separation receive special emphasis. The current understanding of phase transitions in these momentum-conserving models is reviewed; included in this discussion is a summary of the dynamical properties of interfaces. Because the phase-separation models are microscopically time irreversible, interesting questions are raised about their relationship to real fluid mixtures. Simulation of certain complex-fluid problems, such as multiphase flow through porous media and the interaction of phase transitions with hydrodynamics, is illustrated.
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
NASA Astrophysics Data System (ADS)
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
Fast multiphase MR imaging of aqueductal CSF flow: 2. Study in patients with hydrocephalus.
Mascalchi, M; Ciraolo, L; Bucciolini, M; Inzitari, D; Arnetoli, G; Dal Pozzo, G
1990-05-01
The signal intensity in the region corresponding to the cerebral aqueduct was evaluated in three patients with noncommunicating tension hydrocephalus (caused by aqueductal obstruction in two and type I Arnold-Chiari malformation in the other), seven patients with suspected normal-pressure hydrocephalus (three of whom subsequently underwent successful shunting), and 10 patients with ex vacuo (atrophic) hydrocephalus. A gradient-echo MR sequence, called fast multiphase imaging, was used. Serial images corresponding to different phases of the cardiac cycle were acquired. No flow-related enhancement was observed over the entire cardiac cycle in the patients with noncommunicating hydrocephalus. Patients with normal-pressure hydrocephalus showed a higher aqueductal CSF signal intensity, consistent with increased systolic flow rates, than patients with ex vacuo hydrocephalus. When comparing the above two groups of patients with a control group of healthy volunteers, significantly higher and lower values of the (mean) maximum aqueductal signal intensity were found in the normal-pressure hydrocephalus patients and the ex vacuo hydrocephalus patients, respectively. Fast multiphase MR evaluation of aqueductal CSF flow may help to differentiate patients with different types of hydrocephalus. PMID:2112327
Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.
2009-01-01
Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.
NASA Astrophysics Data System (ADS)
Yang, Lei; Yang, DingHui; Nie, JianXin
2014-06-01
In this paper, we introduce the complex modulus to express the viscoelasticity of a medium. According to the correspondence principle, the Biot-Squirt (BISQ) equations in the steady-state case are presented for the space-frequency domain described by solid displacements and fluid pressure in a homogeneous viscoelastic medium. The effective bulk modulus of a multiphase flow is computed by the Voigt formula, and the characteristic squirt-flow length is revised for the gas-included case. We then build a viscoelastic BISQ model containing a multiphase flow. Through using this model, wave dispersion and attenuation are studied in a medium with low porosity and low permeability. Furthermore, this model is applied to observed interwell seismic data. Analysis of these data reveals that the viscoelastic parameter tan δ is not a constant. Thus, we present a linear frequency-dependent function in the interwell seismic frequency range to express tan δ. This improves the fit between the observed data and theoretical results.
NASA Astrophysics Data System (ADS)
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
NASA Technical Reports Server (NTRS)
Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim
2013-01-01
Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation
A distinguishing feature of multi-phase subsurface flow in comparison to single phase flow is the existence of fluid-fluid interfaces. These interfaces define phase boundaries at the pore scale and influence overall system behavior in many important ways. For example, fluid-fluid...
DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY
Moses Bogere
2011-08-31
The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.
Petitpas, Fabien; Franquet, Erwin; Saurel, Richard . E-mail: Richard.Saurel@polytech.univ-mrs.fr; Le Metayer, Olivier
2007-08-10
The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as
Effects of Gravity and Shear on the Dynamics and Stability of Particulate and Multiphase Flows
NASA Technical Reports Server (NTRS)
Sangani, Ashor S.
1996-01-01
The main objectives of this project are to understand the differing particulate and multiphase flow behaviors that will occur in space and in Earth's gravity. More specifically, the project is concerned with understanding the effect of shear and gravity on two relatively ideal suspensions with significant inertial effects. The first is a gas-solid suspension at small Reynolds numbers and finite Stokes numbers. In this type of suspensions the inertia of the particle phase is significant while the hydrodynamic interactions are dominated by viscous forces in the suspending fluid. The other is a bubble suspension at small Weber and large Reynolds numbers. The hydrodynamic interactions in such suspensions are dominated by the inertial effects in the suspending fluid, but these inertial interactions can be described using potential flow theory. Our main objective is to examine the effects of shear and gravity on the average properties and stability of these two suspensions.
Fast high-resolution prediction of multi-phase flow in fractured formations
NASA Astrophysics Data System (ADS)
Pau, George Shu Heng; Finsterle, Stefan; Zhang, Yingqi
2016-02-01
The success of a thermal water flood for enhanced oil recovery (EOR) depends on a detailed representation of the geometrical and hydraulic properties of the fracture network, which induces discrete, channelized flow behavior. The resulting high-resolution model is typically computationally very demanding. Here, we use the Proper Orthogonal Decomposition Mapping Method to reconstruct high-resolution solutions based on efficient low-resolution solutions. The method requires training a reduced order model (ROM) using high- and low-resolution solutions determined for a relatively short simulation time. For a cyclic EOR operation, the oil production rate and the heterogeneous structure of the oil saturation are accurately reproduced even after 105 cycles, reducing the computational cost by at least 85%. The method described is general and can be potentially utilized with any multiphase flow model.
Hornung, R.D.
1996-12-31
An adaptive local mesh refinement (AMR) algorithm originally developed for unsteady gas dynamics is extended to multi-phase flow in porous media. Within the AMR framework, we combine specialized numerical methods to treat the different aspects of the partial differential equations. Multi-level iteration and domain decomposition techniques are incorporated to accommodate elliptic/parabolic behavior. High-resolution shock capturing schemes are used in the time integration of the hyperbolic mass conservation equations. When combined with AMR, these numerical schemes provide high resolution locally in a more efficient manner than if they were applied on a uniformly fine computational mesh. We will discuss the interplay of physical, mathematical, and numerical concerns in the application of adaptive mesh refinement to flow in porous media problems of practical interest.
Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media
NASA Astrophysics Data System (ADS)
Seol, Yongkoo; Kneafsey, Timothy J.
2011-08-01
An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.
Simulation of Multiphase Water-Carbon Dioxide Mixture Flows in Porous Media
NASA Astrophysics Data System (ADS)
Afanasyev, A. A.
2012-04-01
Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). For deep aquifers where CO2 injection may result a plume of supercritical CO2 compositional simulation approach must be applied. This approach originated from petrol reservoir simulation studies is based on a cubic equation of state and is also capable only of single-phase states and two-phase states of liquid-gas type. The goal of the present study lies in development of a new mathematical approach for compositional simulation of carbon sequestration processes. The approach is supposed to be capable both of single-phase and two-phase states of liquid-gas type as in classical models and also of two-phase states of liquid-liquid type and three-phase states at high pressure. The liquid-liquid states are formed by two liquids. The first liquid is mainly saturated with water while the second is mainly saturated with CO2. These thermodynamic equilibriums with liquefied CO2 phase can be detected experimentally (Takenouchi et. al., 1964). The three-phase states represent a composition of the two-phase states of liquid-gas and liquid-liquid types. The three phases are water and CO2 in liquid and gaseous states. As liquefied CO2 is negatively buoyant at high pressure the described states can result in non-classical hydrodynamic effects in the aquifer with CO2 sinking and consequently in non-classical structural trapping scenarios. The distinctive feature of the proposed approach lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The proposed approach was implemented in MUFITS (Multiphase
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.
2002-12-01
Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNa
Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin
2005-09-01
A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).
Multiphase reacting flow modeling of singlet oxygen generators for chemical oxygen iodine lasers.
Salinger, Andrew Gerhard; Pawlowski, Roger Patrick; Hewett, Kevin B.; Madden, Timothy J.; Musson, Lawrence Cale
2008-08-01
Singlet oxygen generators are multiphase flow chemical reactors used to generate energetic oxygen to be used as a fuel for chemical oxygen iodine lasers. In this paper, a theoretical model of the generator is presented along with its solutions over ranges of parameter space and oxygen maximizing optimizations. The singlet oxygen generator (SOG) is a low-pressure, multiphase flow chemical reactor that is used to produce molecular oxygen in an electronically excited state, i.e. singlet delta oxygen. The primary product of the reactor, the energetic oxygen, is used in a stage immediately succeeding the SOG to dissociate and energize iodine. The gas mixture including the iodine is accelerated to a supersonic speed and lased. Thus the SOG is the fuel generator for the chemical oxygen iodine laser (COIL). The COIL has important application for both military purposes--it was developed by the US Air Force in the 1970s--and, as the infrared beam is readily absorbed by metals, industrial cutting and drilling. The SOG appears in various configurations, but the one in focus here is a crossflow droplet generator SOG. A gas consisting of molecular chlorine and a diluent, usually helium, is pumped through a roughly rectangular channel. An aqueous solution of hydrogen peroxide and potassium hydroxide is pumped through small holes into the channel and perpendicular to the direction of the gas flow. So doing causes the solution to become aerosolized. Dissociation of the potassium hydroxide draws a proton from the hydrogen peroxide generating an HO{sub 2} radical in the liquid. Chlorine diffuses into the liquid and reacts with the HO{sub 2} ion producing the singlet delta oxygen; some of the oxygen diffuses back into the gas phase. The focus of this work is to generate a predictive multiphase flow model of the SOG in order to optimize its design. The equations solved are the so-called Eulerian-Eulerian form of the multiphase flow Navier-Stokes equations wherein one set of the
Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.
2014-05-01
Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg
2016-02-01
We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.
Pore-Scale Modeling of Reactive-Multiphase Flow for Carbon Capture and Storage
NASA Astrophysics Data System (ADS)
Anwar, S.; Cunningham, J. A.; Trotz, M.; Thomas, M. W.; Stewart, M.
2011-12-01
Physical and geochemical processes at multiple scales are yet to be understood for the storage of carbon dioxide (CO2) in aquifers and the concomitant mitigation of CO2 concentration in the atmosphere. In deep saline aquifers, the pores in the potential aquifers for CO2 storage are initially filled with saline water (brine). The entrapment of brine in pores after injection of CO2 is controlled by capillary forces and by the inertial force driving CO2 inside the carbonate aquifer. The entrapped/residual brine will be a site for geochemical reactions which could alter the pore network and/or the permeability of the formation. Therefore, the pore-scale understanding of displacement of resident brine by CO2 is critical to evaluate the storage efficiency of carbonate aquifers and to quantify any dissolution or precipitation of minerals (e.g., gypsum, calcite, dolomite). In this project, we have developed a multiphase flow model, based on the lattice Boltzmann equation, which can describe pore-scale displacement of brine by invading CO2. We also examine the effects of CO2 density and viscosity (which depend on formation temperature and pressure) on the amount of entrapped brine. Only by resolving the flow at the pore scale can we predict the residual brine saturation and other parameters which control CO2 sequestration in deep saline aquifers. The rock is assumed to consist of only calcite minerals. The multiphase flow model is coupled with the diffusion model and the geochemical reaction model to predict mineral dissolution and precipitation. The amount of brine trapped after invasion of the domain by CO2 is strongly dependent on the pore network and viscosity ratio between brine and CO2. The pH drops to 3.0 in brine after injection of CO2 and dissolution of calcite occurs where CO2, brine and mineral comes in contact.
Coupled multiphase flow and geomechanics analysis of the 2011 Lorca earthquake
NASA Astrophysics Data System (ADS)
Jha, B.; Hager, B. H.; Juanes, R.; Bechor, N.
2013-12-01
We present a new approach for modeling coupled multiphase flow and geomechanics of faulted reservoirs. We couple a flow simulator with a mechanics simulator using the unconditionally stable fixed-stress sequential solution scheme [Kim et al, 2011]. We model faults as surfaces of discontinuity using interface elements [Aagaard et al, 2008]. This allows us to model stick-slip behavior on the fault surface for dynamically evolving fault strength. We employ a rigorous formulation of nonlinear multiphase geomechanics [Coussy, 1995], which is based on the increment in mass of fluid phases instead of the traditional, and less accurate, scheme based on the change in porosity. Our nonlinear formulation is capable of handling strong capillarity and large changes in saturation in the reservoir. To account for the effect of surface stresses along fluid-fluid interfaces, we use the equivalent pore pressure in the definition of the multiphase effective stress [Coussy et al, 1998; Kim et al, 2013]. We use our simulation tool to study the 2011 Lorca earthquake [Gonzalez et al, 2012], which has received much attention because of its potential anthropogenic triggering (long-term groundwater withdrawal leading to slip along the regional Alhama de Murcia fault). Our coupled fluid flow and geomechanics approach to model fault slip allowed us to take a fresh look at this seismic event, which to date has only been analyzed using simple elastic dislocation models and point source solutions. Using a three-dimensional model of the Lorca region, we simulate the groundwater withdrawal and subsequent unloading of the basin over the period of interest (1960-2010). We find that groundwater withdrawal leads to unloading of the crust and changes in the stress across the impermeable fault plane. Our analysis suggests that the combination of these two factors played a critical role in inducing the fault slip that ultimately led to the Lorca earthquake. Aagaard, B. T., M. G. Knepley, and C. A
Trial of a gamma-ray multiphase flow meter on the west kingfish oil platform
NASA Astrophysics Data System (ADS)
Hartley, P. E.; Roach, G. J.; Stewart, D.; Watt, J. S.; Zastawny, H. W.; Ellis, W. K.
1995-12-01
The γ-ray multiphase flow meter (MFM) developed by CSIRO determines the flow rates of oil, water and gas in pipelines from oil wells. It is based on two specialized γ-ray transmission gauges mounted on a pipe carrying the full flow of oil. water and gas. One gauge uses γ-ray transmission and the other dual energy γ-ray transmission (DUET). This paper describes a trial of the MFM, undertaken by CSIRO and Esso Australia Ltd, on the West Kingfish offshore oil platform, Bass Strait, Australia. The trial is the most comprehensive platform trial of a MFM ever undertaken, involving measurements on 20 wells over a period of 18 weeks. The relative errors in flow determination were 3.9% for liquids, 7.6% for gas, 7.9% for oil, and 5.2% for water. Water cut was determined to 3.3%. These relative errors include errors due to the MFM and due to the separator and its output meters. The West Kingfish trial and two earlier field trials, demonstrate that, after calibration, the MFM measures flow rates and water cut accurately and performs reliably. CSIRO now expect to appoint a commercial licensee to further industrialize the equipment, manufacture and market the MFM.
Theoretical analysis of multiphase flow during oil-well drilling by a conservative model
NASA Astrophysics Data System (ADS)
Nicolas-Lopez, Ruben
2005-11-01
In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.
Field trial of a gamma-ray multiphase flow meter on Thevenard Island
NASA Astrophysics Data System (ADS)
Roach, G. J.; Watt, J. S.; Zastawny, H. W.; Hartley, P. E.; Ellis, W. K.
1995-02-01
A multiphase flow meter (MFM) for the determination of the flow rates of oil, water and gas in oil well production pipelines has been trialed at Thevenard Island on Australia's North-West Shelf. The flow meter is based on two γ-ray transmission gauges mounted on a pipe carrying the full flow of oil, water and gas. Measurements were made with two MFMs mounted on a test pipeline linking the test manifold and the test separator. One was mounted on a vertical (upflow) pipeline, and the other on, in different phases of the trial, a vertical (downflow) section of the pipeline and two different horizontal positions. The MFMs measured flows of oil, water and gas from eight single wells and up to 17 commingled flows of two or more wells. These flows were in the range of 6570 33,500 BPD for liquids and 1200 4500 MSCF/D for gas. Water cut ranged from 25% to 95.6%. The MFM mounted on the vertical upflow pipeline determined the flow rates to 4.0% relative for liquids, 7.5% for oil, 4.5% for water and 7.9% for gas. Water cut was determined to 3.6% relative. The MFM mounted on the vertical downflow pipeline determined flow rates to 3.3% relative for liquids, 6.1% for oil, 4.5% for water and 7.7% for gas. Water cut was determined to 3.7%. These relative errors include both separator and MFM errors.
Gray, W.G.
2001-01-25
This project has contributed to the improved understanding and precise physical description of multiphase subsurface flow by combining theoretical derivation of equations, lattice Boltzmann modeling of hydrodynamics to identify characteristics and parameters, and simplification of field-scale equations to assess the advantages and disadvantages of the complete theory.
A semi-implicit level set method for multiphase flows and fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Cottet, Georges-Henri; Maitre, Emmanuel
2016-06-01
In this paper we present a novel semi-implicit time-discretization of the level set method introduced in [8] for fluid-structure interaction problems. The idea stems from a linear stability analysis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter operating as a pre-processing on the level set function. It applies to multiphase flows driven by surface tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stability constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It is validated through comparisons with the original explicit scheme and refinement studies on two-dimensional benchmarks.
Abolhasani, Milad; Coley, Connor W; Jensen, Klavs F
2015-11-01
Taking advantage of the difference between the surface energies of aqueous and organic solvents on a Teflon substrate, a fully automated small-scale strategy is developed on the basis of gas-driven oscillatory motion of a biphasic slug for high-throughput in situ measurement and screening of partition coefficients of organic substances between aqueous and organic phases. The developed oscillatory flow strategy enables single partition coefficient data point measurement within 8 min (including the sample preparation time) which is 360 times faster than the conventional "shake-flask" method, while using less than a 30 μL volume of the two phases and 9 nmol of the target organic substance. The developed multiphase strategy is validated using a conventional shake-flask technique. Finally, the developed strategy is extended to include automated screening of partition coefficients at physiological temperature. PMID:26436292
Particle methods for simulation of subsurface multiphase fluid flow and biogeological processes
Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Tartakovsky, Daniel M.; Redden, George; Long, Philip E.; Brooks, Scott C.; Xu, Zhijie
2007-08-01
A number of particle models that are suitable for simulating multiphase fluid flow and biogeological processes have been developed during the last few decades. Here we discuss three of them: a microscopic model - molecular dynamics; a mesoscopic model - dissipative particle dynamics; and a macroscopic model - smoothed particle hydrodynamics. Particle methods are robust and versatile, and it is relatively easy to add additional physical, chemical and biological processes into particle codes. However, the computational efficiency of particle methods is low relative to continuum methods. Multiscale particle methods and hybrid (particle–particle and particle–continuum) methods are needed to improve computational efficiency and make effective use of emerging computational capabilities. These new methods are under development.
TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow
Pruess, K.
1991-05-01
TOUGH2 is a numerical simulation program for nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, and unsaturated zone hydrology. A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures, facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. This report includes a detailed description of governing equations, program architecture, and user features. Enhancements in data inputs relative to TOUGH are described, and a number of sample problems are given to illustrate code applications. 46 refs., 29 figs., 12 tabs.
The impact of interfacial tension on multiphase flow in the CO2-brine-sandstone system
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Blunt, M. J.; Krevor, S. C.
2013-12-01
Two dominant controls on continuum scale multiphase flow properties are interfacial tension (IFT) and wetting. In hydrocarbon-brine systems, relative permeability is known to increase with decreasing IFT, while residual trapping is controlled by the wetting properties of a permeable rock and the hysteresis between drainage and imbibtion (Amaefule & Handy, 1982; Bardon & Longeron, 1980; Juanes et al., 2006). Fluid properties of the CO2-brine system, such as viscosity, density and interfacial tension, are well characterised and have known dependencies on temperature, pressure and brine salinity. Interest in this particular fluid system is motivated by CO2 storage and enhanced oil recovery. Despite increased interest in CO2 storage, the response of the CO2-brine relative permeability to varying IFT has yet to be comprehensively evaluated. Additionally the wide range of thermophysical properties (density, viscosity etc.) that exist across a relatively small range of pressures and temperatures makes it an ideal system with which to investigate the physics of multiphase flow in general. This is the first systematic study to investigate the impact of IFT on drainage and imbibition relative permeability for the CO2-brine-sandstone system. The experimental design has been adapted from a traditional steady state core flood in two ways. First, while conditions may be easily selected to obtain a range of interfacial tensions, isolating the independent impact of interfacial tension on relative permeability is less simple. Thus experimental conditions are selected so as to vary interfacial tension, while minimising the variation in viscosity ratio between CO2 and brine. Second, in order to attribute the impacts of changing conditions, it is necessary to have precise results such that small shifts in observations can be identified. Multiphase flow theory is used to both design the conditions of the test and interpret the observations, leading to a much higher precision in
NASA Astrophysics Data System (ADS)
Percival, James; Xie, Zhihua; Pavlidis, Dimitrios; Gomes, Jefferson; Pain, Christopher; Matar, Omar
2013-11-01
We present results from a new formulation of a numerical model for direct simulation of bed fluidization and multiphase granular flow. The model is based on a consistent application of continuous-discontinuous mixed control volume finite element methods applied to fully unstructured meshes. The unstructured mesh framework allows for both a mesh adaptive capability, modifying the computational geometry in order to bound the error in the numerical solution while maximizing computational efficiency, and a simple scripting interface embedded in the model which allows fast prototyping of correlation models and parameterizations in intercomparison experiments. The model is applied to standard test problems for fluidized beds. EPSRC Programme Grant EP/K003976/1.
NASA Astrophysics Data System (ADS)
Martin, R. M.; Nicolas, A. N.
2003-04-01
A modeling approach of gas solid flow, taking into account different physical phenomena such as gas turbulence and inter-particle interactions is presented. Moment transport equations are derived for the second order fluctuating velocity tensor which allow to involve practical closures based on single phase turbulence modeling on one hand and kinetic theory of granular media on the other hand. The model is applied to fluid catalytic cracking processes and explosive volcanism. In the industry as well as in the geophysical community, multiphase flows are modeled using a finite volume approach and a multicorrector algorithm in time in order to determine implicitly the pressures, velocities and volume fractions for each phase. Pressures, and velocities are generally determined at mid-half mesh step from each other following the staggered grid approach. This ensures stability and prevents oscillations in pressure. It allows to treat almost all the Reynolds number ranges for all speeds and viscosities. The disadvantages appear when we want to treat more complex geometries or if a generalized curvilinear formulation of the conservation equations is considered. Too many interpolations have to be done and accuracy is then lost. In order to overcome these problems, we use here a similar algorithm in time and a Rhie and Chow interpolation (1983) of the collocated variables and essentially the velocities at the interface. The Rhie and Chow interpolation of the velocities at the finite volume interfaces allows to have no oscillations of the pressure without checkerboard effects and to stabilize all the algorithm. In a first predictor step, fluxes at the interfaces of the finite volumes are then computed using 2nd and 3rd order shock capturing schemes of MUSCL/TVD or Van Leer type, and the orthogonal stress components are treated implicitly while cross viscous/diffusion terms are treated explicitly. Pentadiagonal linear systems are solved in each geometrical direction (the so
Chang, Chih-Hao . E-mail: chchang@engineering.ucsb.edu; Liou, Meng-Sing . E-mail: meng-sing.liou@grc.nasa.gov
2007-07-01
In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM{sup +} scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM{sup +}-up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion.
Investigating disequilibrium effects in magma ascent dynamics with a new multiphase flow model
NASA Astrophysics Data System (ADS)
de'Michieli Vitturi, Mattia; Clarke, Amanda B.; Neri, Augusto; Voight, Barry; La Spina, Giuseppe
2013-04-01
Numerical and physical models have greatly enhanced our understanding of eruption dynamics. The multiphase non-equilibrium nature of magma inside a conduit, the development of gas overpressure, and the possibilities for open-system degassing are all recognized as controlling factors affecting changes in eruptive rate and style, yet models of magma ascent considering both distinct velocities and pressures for the different phases have not been deeply studied. The numerical model we present here considers a set of multiphase compressible equations governing magma movement through a subsurface pathway (e.g., from chamber to surface). This model represents a significant advance in its quantitative description of the magma system in that it: 1) is capable of treating both dilute and dense flow regimes; 2) describes flow above and below the fragmentation level in a coupled and consistent way; 3) quantifies the interaction between two phases forming the magmatic mixture with two distinct pressures and two velocities; 4) accounts for disequilibrium crystallization and degassing; and 5) allows for open-system degassing. Here we investigate, through a sensitivity analysis, the role of different disequilibrium processes, in particular those controlling overpressure increase and the retention of gas, in controlling vent conditions and transitions in eruptive style. We develop a reference case using conditions appropriate for the ongoing eruption of Soufrière Hills volcano. As an example, if an andesitic magma with a 5 wt% total water content (about 1.5 vol% of exsolved gas) decompresses to atmospheric pressure from 5km depth as a homogeneous mixture (single pressure and single velocity), the gas volume fraction at the vent should exceed 95 vol% if no further gas exsolution is considered, and 99 vol% with equilibrium exsolution. These values changes significantly when development of gas overpressure and open-system degassing are allowed and considered in the model, and thus
[A multi-phase flow detector system based on gamma-ray].
Ma, Min; Wang, Hua-xiang; Hao, Kui-hong
2010-07-01
In the present paper, a gamma-ray based on-line detection system was designed for multi-phase flow measurement, where the complicated fluid property of multi-phase flow can be studied by using the principle of ray transmission. The system is made up of three parts, i. e., the sensing unit, the signal conditioning & processing unit and the computer imaging unit. The sensing unit consists of five 241 Am sources with principal energy of 59.5 keV and five sets of CdZnTe semiconductor detectors by using the Geant 4 simulating software toolkits. The sources and detectors are mounted equally at the cross section of pipeline to detect different phase medium simultaneously. This function of the system guarantees the real-time performance of the on-line detecting. In order to improve the accuracy of the probe, a low noise probe circuit was designed, including a low noise charge-sensitive preamplifier, a low noise amplifier, filter circuit and an eliminated zero-poles circuit. Some of the emitted gamma-ray photons from the radiation sources are detected by the sensing element, where the photo energy is transferred into electrical energy by using CdZnTe semiconductor detectors. The output of the sensing element is sent to the signal conditioning & processing unit, which is amplified and filtered to be a level-discriminated signal. Finally, the output of the signal conditioning & processing unit is sent to the computer imaging unit, in which the 2D images are reconstructed by using a certain reconstruction algorithm. Under the normal temperature, the system performs the test of energy spectrum and then it has better energy resolution about 4.38% for 241 Am 59.5 keV. The result reveals that our system has higher probe accuracy. Using experimental data, the images are reconstructed with Filter back projection (FBP) reconstruction algorithm. Images of high quality are achieved. PMID:20828018
Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit
Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin
2014-10-01
To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO_{2} from CO_{2}-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO_{2} desorption can be implemented.
Yu, G.S.; Ni, J.J.; Liang, Q.F.; Guo, Q.H.; Zhou, Z.J.
2009-11-15
A comprehensive model has been developed to analyze the multiphase flow and heat transfer in the radiant syngas cooler (RSC) of an industrial-scale entrained-flow coal gasification. The three-dimensional multiphase flow field and temperature field were reconstructed. The realizable {kappa}-{epsilon} turbulence model is applied to calculate the gas flow field, while the discrete random walk model is applied to trace the particles, and the interaction between the gas and the particle is considered using a two-way coupling model. The radiative properties of syngas mixture are calculated by weighted-sum-of-gray-gases model (WSGGM). The Ranz-Marshall correlation for the Nusselt number is used to account for convection heat transfer between the gas phase and the particles. The discrete ordinate model is applied to model the radiative heat transfer, and the effect of ash/slag particles on radiative heat transfer is considered. The model was successfully validated by comparison with the industrial plant measurement data, which demonstrated the ability of the model to optimize the design. The results show that a torch shape inlet jet was formed in the RSC, and its length increased with the diameter of the central channel. The recirculation zones appeared around the inlet jet, top, and bottom of the RSC. The overall temperature decreased with the heat-transfer surface area of the fins. The concentration distribution, velocity distribution, residence time distribution, and temperature distribution of particles with different diameters have been discussed. Finally, the slag/ash particles size distribution and temperature profile at the bottom of the RSC have been presented.
Trangenstein, J.A.
1993-03-15
This is the first year in the proposed three-year effort to develop high-resolution numerical methods for multi-phase flow in hierarchical porous media. The issues being addressed in this research are: Computational efficiency: Field-scale simulation of enhanced oil recovery, whether for energy production or aquifer remediation, is typically highly under-resolved. This is because rock transport properties vary on many scales, and because current numerical methods have low resolution. Effective media properties: Since porous media are formed through complex geologic processes, they involve significant uncertainty and scale-dependence. Given this uncertainty, knowledge of ensemble averages of flow in porous media can be preferable to knowledge of flow in specific realizations of the reservoir. However, current models of effective properties do not represent the observed behavior very well. Relative permeability models present a good example of this problem. In practice, these models seldom provide realistic representations of hysteresis, interfacial tension effects or three-phase flow; there are no models that represent well all three effects simultaneously. Wave propagation: It is common in the petroleum industry to assume that the models have the same well-posedness properties as the physical system. An example of this fallacy is given by the three-phase relative permeability models; they were widely assumed by the petroleum community to produce hyperbolic systems for the Buckley-Leverett equations, but later the mathematics community proved that these models inherently produce local elliptic regions. Since numerical methods must use the models for computations, oscillations that develop could erroneously be attributed to numerical error rather than modeling difficulties. During this year, we have made significant progress on several tasks aimed at addressing these issues.
Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A
2016-06-14
Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. PMID:27033729
Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere
Chen, C.W.
2005-09-01
The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.
NASA Technical Reports Server (NTRS)
Bellan, J.; Lathouwers, D.
2000-01-01
A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.
Evolution of natural gas composition: Predictive multi-phase reaction-transport modeling
Ortoleva, P.J.; Chang, K.A.; Maxwell, J.M.
1995-12-31
A computational modeling approach is used to investigate reaction and transport processes affecting natural gas composition over geological time. Three basic stages are integrated -- gas generation from organic solids or liquids, interactions during source rock expulsion to the reservoir and reactions within the reservoir. Multi-phase dynamics is handled by solving the fully coupled problem of phase-to-phase transfer, intra-phase organic and inorganic reactions and redox and other reactions between fluid phase molecules and minerals. Effects of capillarity and relative permeability are accounted for. Correlations will be determined between gas composition, temperature history, the mineralogy of rocks with which the gas was in contact and the composition of source organic phases. Questions of H{sub 2}S scavenging by oxidizing minerals and the production or removal of CO{sub 2} are focused upon. Our three spatial dimensional, reaction-transport simulation approach has great promise for testing general concepts and as a practical tool for the exploration and production of natural gas.
NASA Astrophysics Data System (ADS)
Leal, Allan; Saar, Martin
2016-04-01
Computational methods for geochemical and reactive transport modeling are essential for the understanding of many natural and industrial processes. Most of these processes involve several phases and components, and quite often requires chemical equilibrium and kinetics calculations. We present an overview of novel methods for multiphase equilibrium calculations, based on both the Gibbs energy minimization (GEM) approach and on the solution of the law of mass-action (LMA) equations. We also employ kinetics calculations, assuming partial equilibrium (e.g., fluid species in equilibrium while minerals are in disequilibrium) using automatic time stepping to improve simulation efficiency and robustness. These methods are developed specifically for applications that are computationally expensive, such as reactive transport simulations. We show how efficient the new methods are, compared to other algorithms, and how easy it is to use them for geochemical modeling via a simple script language. All methods are available in Reaktoro, a unified open-source framework for modeling chemically reactive systems, which we also briefly describe.
NASA Astrophysics Data System (ADS)
Wang, Qiang; Li, Baokuan; He, Zhu; Feng, Naixiang
2013-12-01
A three-dimensional (3D) transient mathematical model has been developed to understand the effect of innovative cathode on molten cryolite (bath)/molten aluminum (metal) interface fluctuation as well as energy-saving mechanism in aluminum electrolytic cell with innovative cathode. Based on the finite element method, the steady charge conservation law, Ohm's law, and steady-state Maxwell's equations were solved in order to investigate electric current field, magnetic field, and electromagnetic force (EMF) field. Then, an inhomogeneous multiphase flow model of three phases including bath, metal, and gas bubbles, based on the finite volume method, was implemented using the Euler/Euler approach to investigate melt motion and bath/metal interface fluctuation. EMF was incorporated into the momentum equations of bath and metal as a source term. Additionally, the interphase drag force was employed to consider different phase interactions. Thus, present work owns three main features: (1) magnetohydrodynamic multiphase flow are demonstrated in detail both in aluminum electrolytic cell with traditional cathode and innovative cathode; (2) bath/metal interface fluctuation due to different driving forces of gas bubbles, EMF, and the combined effect of the two driving forces is investigated, which is critical to the energy saving; and (3) the effect of innovative cathode on melt flow and motion of gas bubbles. A good agreement between the predicated results and measurement is obtained. The velocity difference leading to the melt oscillation decreases due to more uniform flow field. The average velocity of metal in the cell with innovative cathode decreases by approximately 33.98 pct. The gas bubbles in the cell with innovative cathode releases more quickly under the effect of protrusion on the cathode. The average bubble release frequency increases from 1.1 to 1.98 Hz. Hence, the voltage drop caused by gas bubbles would decrease significantly. In addition, the two large vortices
NASA Astrophysics Data System (ADS)
Sakamoto, Yasuhide; Nishiwaki, Junko; Hara, Junko; Kawabe, Yoshishige; Sugai, Yuichi; Komai, Takeshi
In late years, soil contamination due to mineral oil in vacant lots of oil factory and oil field has become obvious. Measure for soil contamina tion and risk assessment are neces sary for sustainable development of industrial activity. Especially, in addition to contaminated sites, various exposure paths for human body such as well water, soil and farm crop are supposed. So it is very important to comprehend the transport phenomena of contaminated material under the environments of soil and ground water. In this study, mineral oil as c ontaminated material consisting of mu lti-component such as aliphatic and aromatic series was modeled. Then numerical mode l for transport phenomena in surface soil and aquifer was constructed. On the basis of modeling for mineral oil, our numerical model consists of three-phase (oil, water and gas) forty three-component. This numerical model becomes base program for risk assessment system on soil contamination due to mineral oil. Using this numerical model, we carried out some numerical simulation for a laboratory-scale experiment on oil-water multi-phase flow. Relative permeability that dominate flow behavior in multi-phase condition was formulated and the validity of the numerical model developed in this study was considered.
Multiphase integral reacting flow computer code (ICOMFLO): User`s guide
Chang, S.L.; Lottes, S.A.; Petrick, M.
1997-11-01
A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air
Shankar Subramaniam
2009-04-01
This final project report summarizes progress made towards the objectives described in the proposal entitled “Developing New Mathematical Models for Multiphase Flows Based on a Fundamental Probability Density Function Approach”. Substantial progress has been made in theory, modeling and numerical simulation of turbulent multiphase flows. The consistent mathematical framework based on probability density functions is described. New models are proposed for turbulent particle-laden flows and sprays.
NASA Astrophysics Data System (ADS)
Shin, Seungwon; Yoon, Ikroh; Juric, Damir
2011-07-01
We present a new interface reconstruction technique, the Local Front Reconstruction Method (LFRM), for incompressible multiphase flows. This new method falls in the category of Front Tracking methods but it shares automatic topology handling characteristics of the previously proposed Level Contour Reconstruction Method (LCRM). The LFRM tracks the phase interface explicitly as in Front Tracking but there is no logical connectivity between interface elements thus greatly easing the algorithmic complexity. Topological changes such as interfacial merging or pinch off are dealt with automatically and naturally as in the Level Contour Reconstruction Method. Here the method is described for both two- and three-dimensional flow geometries. The interfacial reconstruction technique in the LFRM differs from that in the LCRM formulation by foregoing using an Eulerian distance field function. Instead, the LFRM uses information from the original interface elements directly to generate the new interface in a mass conservative way thus showing significantly improved local mass conservation. Because the reconstruction procedure is independently carried out in each individual reconstruction cell after an initial localization process, an adaptive reconstruction procedure can be easily implemented to increase the accuracy while at the same time significantly decreasing the computational time required to perform the reconstruction. Several benchmarking tests are performed to validate the improved accuracy and computational efficiency as compared to the LCRM. The results demonstrate superior performance of the LFRM in maintaining detailed interfacial shapes and good local mass conservation especially when using low-resolution Eulerian grids.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.
Thickness-based adaptive mesh refinement methods for multi-phase flow simulations with thin regions
Chen, Xiaodong; Yang, Vigor
2014-07-15
In numerical simulations of multi-scale, multi-phase flows, grid refinement is required to resolve regions with small scales. A notable example is liquid-jet atomization and subsequent droplet dynamics. It is essential to characterize the detailed flow physics with variable length scales with high fidelity, in order to elucidate the underlying mechanisms. In this paper, two thickness-based mesh refinement schemes are developed based on distance- and topology-oriented criteria for thin regions with confining wall/plane of symmetry and in any situation, respectively. Both techniques are implemented in a general framework with a volume-of-fluid formulation and an adaptive-mesh-refinement capability. The distance-oriented technique compares against a critical value, the ratio of an interfacial cell size to the distance between the mass center of the cell and a reference plane. The topology-oriented technique is developed from digital topology theories to handle more general conditions. The requirement for interfacial mesh refinement can be detected swiftly, without the need of thickness information, equation solving, variable averaging or mesh repairing. The mesh refinement level increases smoothly on demand in thin regions. The schemes have been verified and validated against several benchmark cases to demonstrate their effectiveness and robustness. These include the dynamics of colliding droplets, droplet motions in a microchannel, and atomization of liquid impinging jets. Overall, the thickness-based refinement technique provides highly adaptive meshes for problems with thin regions in an efficient and fully automatic manner.
MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK
Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson
2006-02-28
A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.
Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.
2009-01-15
A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.
Pseudorapidity dependence of short-range correlations from a multi-phase transport model
NASA Astrophysics Data System (ADS)
Mei-Juan, Wang; Gang, Chen; Guo-Liang, Ma; Yuan-Fang, Wu
2016-03-01
Using a multi-phase transport model (AMPT) that includes both initial partonic and hadronic interactions, we study neighboring bin multiplicity correlations as a function of pseudorapidity in Au+Au collisions at . It is observed that for Au+Au collisions, the short-range correlations of final particles have a trough at central pseudorapidity, while for AuAu collisions, the short-range correlations of final particles have a peak at central pseudorapidity. Our findings indicate that the pseudorapidity dependence of short-range correlations should contain some new physical information, and are not a simple result of the pseudorapidity distribution of final particles. The AMPT results with and without hadronic scattering are compared. It is found that hadron scattering can only increase the short-range correlations to some level, but is not responsible for the different correlation shapes for different energies. Further study shows that the different pseudorapidity dependence of short-range correlations are mainly due to partonic evolution and the following hadronization scheme. Supported by GBL31512, Major State Basic Research Devolopment Program of China (2014CB845402), NSFC (11475149, 11175232, 11375251, 11421505, 11221504)
Rapidity bin multiplicity correlations from a multi-phase transport model
NASA Astrophysics Data System (ADS)
Wang, Mei-Juan; Chen, Gang; Wu, Yuan-Fang; Ma, Guo-Liang
2016-03-01
The central-arbitrary bin and forward-backward bin multiplicity correlation patterns for Au+Au collisions at sqrt{s_{NN}} = 7.7-62.4 GeV are investigated within a multi-phase transport (AMPT) model. An interesting observation is that for sqrt{s_{NN}} < 19.6 GeV Au+Au collisions, these two correlation patterns both have an increase with the pseudorapidity gap, while for sqrt{s_{NN}} > 19.6 GeV Au+Au collisions, they decrease. We mainly discuss the influence of different evolution stages of collision system on the central-arbitrary bin correlations, such as the initial conditions, partonic scatterings, hadronization scheme and hadronic scatterings. Our results show that the central-arbitrary bin multiplicity correlations have different responses to partonic phase and hadronic phase, which can be suggested as a good probe to explore the dynamical evolution mechanism of the hot dense matter in high-energy heavy-ion collisions.
Survival rate of initial azimuthal anisotropy in a multiphase transport model
NASA Astrophysics Data System (ADS)
Zhang, Liang; Liu, Feng; Wang, Fuqiang
2015-11-01
We investigate the survival rate of an initial momentum anisotropy (v2ini), not spatial anisotropy, to the final state in a multiphase transport (AMPT) model in Au+Au collisions at √{sN N}=200 GeV. It is found that both the final-state parton and charged hadron v2 show a linear dependence versus v2ini{PP } with respect to the participant plane (PP). It is found that the slope of this linear dependence (referred to as the survival rate) increases with transverse momentum pT, reaching ˜100 % at pT˜2.5 GeV/c for both parton and charged hadron. The survival rate decreases with collision centrality and energy, indicating decreasing survival rate with increasing interactions. It is further found that a v2ini{Rnd } with respect to a random direction does not survive in v2{PP } but in the two-particle cumulant v2{2 } . The dependence of v2{2 } on v2ini{Rnd } is quadratic rather than linear.
NASA Astrophysics Data System (ADS)
Gheribi, Aïmen E.; Autissier, Emmanuel; Gardarein, Jean-Laurent; Richou, Marianne
2016-04-01
The thermal diffusivity of Cu-W sintered alloys microstructures is measured at room temperature at different compositions, using rear face flash experiments. The samples are synthesized with the Spark Plasma Sintering technique. The resulting microstructures are slightly porous and consist of angular nanoscale grains of tungsten with medium sphericity in a copper matrix. The tungsten particles are at the nanoscale with an average grain size of 250 nm in contrast to the copper matrix for which the average grain size lies in the range 20 μm-30 μm; this is large enough to avoid the grains boundary effect upon the thermal transport. The overall porosity of the microstructures lies within the range: 6 %≤P ≤12 % . Along with the experimental work, a predictive model describing the effective thermal conductivity of multiphasic macrostructures is proposed in order to explain the obtained experimental results. The model was developed based only on physical considerations and contains no empirical parameters; it takes into account the type of microstructure and the microstructure parameters: porosity, grain shape, grain size, and grain size distribution. The agreement between the experiments and the model is found to be excellent.
Multiphase flow of carbon dioxide and brine in dual porosity carbonates
NASA Astrophysics Data System (ADS)
Pentland, Christopher; Oedai, Sjaam; Ott, Holger
2014-05-01
The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment
Groundwater flow and transport modeling
Konikow, L.F.; Mercer, J.W.
1988-01-01
Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.
NASA Astrophysics Data System (ADS)
Veziroglu, T. N.
Attempts at analytical predictions of stable operating regimes for multi-phase flows are reported, together with experimental results. The fundamentals and regimes of multi-phase flows are explored, including the behavior of bubbles in liquid flows. Attention is given to incidences of flow pressure drop and heat transfer properties in air-water dispersed flow, during blowdown, and in MHD flows. Mass transfer and phase changes conditions are investigated in turbulent flows, in the cockpit environment, and in the formation of alloys. Consideration is given to boiling and condensation phenomena on surfaces, in pools, and in tubes and fins, and to instabilities and turbulence. Reactor safety is discussed, as are numerical models for multi-phase flow, steam generation and distribution with solar and geothermal heat sources, and characteristics of transients and wave propagation. Fluidized bed flows are examined, together with measurement techniques and the characteristics of suspensions. No individual items are abstracted in this volume
Dynamic coupling of pore-scale and reservoir-scale models for multiphase flow
NASA Astrophysics Data System (ADS)
Sheng, Qiang; Thompson, Karsten
2013-09-01
The concept of coupling pore-scale and continuum-scale models for subsurface flow has long been viewed as beneficial, but implementation has been slow. In this paper, we present an algorithm for direct coupling of a dynamic pore-network model for multiphase flow with a traditional continuum-scale simulator. The ability to run the two models concurrently (exchanging parameters and boundary conditions in real numerical time) is made possible by a new dynamic pore-network model that allows simultaneous injection of immiscible fluids under either transient-state or steady-state conditions. Allowing the pore-scale model to evolve to steady state during each time step provides a unique method for reconciling the dramatically different time and length scales across the coupled models. The model is implemented by embedding networks in selected gridblocks in the reservoir model. The network model predicts continuum-scale parameters such as relative permeability or average capillary pressure from first principles, which are used in the continuum model. In turn, the continuum reservoir simulator provides boundary conditions from the current time step back to the network model to complete the coupling process. The model is tested for variable-rate immiscible displacements under conditions in which relative permeability depends on flow rate, thus demonstrating a situation that cannot be modeled using a traditional approach. The paper discusses numerical challenges with this approach, including the fact that there is not a way to explicitly force pore-scale phase saturation to equal the continuum saturation in the host gridblock without an artificial constraint. Hurdles to implementing this type of modeling in practice are also discussed.
Gable, C.; Travis, B.J.; O`Connell, R.J.; Stone, H.A.
1995-06-01
Flow in the mantle of terrestrial planets produces stresses and topography on the planet`s surface which may allow us to infer the dynamics and evolution of the planet`s -interior. This project is directed towards understanding the relationship between dynamical processes related to buoyancy-driven flow and the observable expression (e.g. earthquakes, surface topography) of the flow. Problems considered include the ascent of mantle plumes and their interaction with compositional discontinuities, the deformation of subducted slabs, and effects of lateral viscosity variations on post-glacial rebound. We find that plumes rising from the lower mantle into a lower-viscosity upper mantle become extended vertically. As the plume spreads beneath the planet`s surface, the dynamic topography changes from a bell-shape to a plateau shape. The topography and surface stresses associated . with surface features called arachnoids, novae and coronae on Venus are consistent with the surface expression of a rising and spreading buoyant volume of fluid. Short wavelength viscosity variations, or sharp variations of lithosphere thickness, have a large effect on surface stresses. This study also considers the interaction and deformation of buoyancy-driven drops and bubbles in low Reynolds number multiphase systems. Applications include bubbles in magmas, the coalescence of liquid iron drops during core formation, and a wide range of industrial applications. Our methodology involves a combination of numerical boundary integral calculations, experiments and analytical work. For example, we find that for deformable drops the effects of deformation result in the vertical alignment of initially horizontally offset drops, thus enhancing the rate of coalescence.
NASA Astrophysics Data System (ADS)
De'Michieli Vitturi, M.; Neri, A.; La Spina, G.; Clarke, A. B.
2013-12-01
The study of deposits produced by explosive eruptions of Campi Flegrei and Vesuvio suggests that important phases of these events have been characterized by a significant interaction of magma with external water. Despite that, the influence of external water on eruption dynamics and its potential hazard have not been studied in depth. In this work we adopted a 1D non-isothermal multi-phase flow model describing the dynamics of magma ascent inside a volcanic conduit. The new model is based on the theory of thermodynamically compatible systems that allows formulation of the governing transport equations as a hyperbolic system of partial differential equations in conservative form. The model represents a significant advance with respect to previous simplified descriptions of the magma ascent dynamics in that it: 1) is capable of treating both dilute and dense flow regimes; 2) describes flow above and below the fragmentation level in a coupled and consistent way; 3) quantifies the interaction between the two phases forming the magmatic mixture (both in the bubbly-flow and gas-particle regimes) with two distinct pressures and velocities; 4) accounts for disequilibrium crystallization and degassing; 5) treats the dissolved water as a separate phase with its own equation of state and; 6) allows for instantaneous or delayed vaporization of the external water from an aquifer. Here we investigate, through a sensitivity analysis, the role of different system parameters, in particular those related to the inflow of non-magmatic volatiles, in controlling vent conditions and eruptive style for conditions representative of Plinian (e.g. Agnano Monte Spina) eruptions at Campi Flegrei. Model results show that mass flux at the vent is primarily controlled by the quantity of engulfed external water, when this inflow occurs below the fragmentation level, whereas small changes in mass flux are produced when the interaction occurs above the fragmentation level. In particular it is worth
NASA Astrophysics Data System (ADS)
Chen, Gujun; He, Shengping; Li, Yugang; Guo, Yintao; Wang, Qian
2016-02-01
In the present work, a mathematical model was developed to understand the multiphase flow behavior in a Rheinsahl-Heraeus (RH) reactor by using the Euler-Euler approach, and the effects of initial bubble diameter, nonequilibrium expansion of bubble caused by sudden thermal effect and sharp pressure drop, and various interphase forces were considered and clarified. The simulation results of mixing time, liquid circulation rate, and local liquid velocity in RH agree well with the measured results. The result indicates that the initial bubble diameter has a weak impact on the multiphase flow but that the bubble expansion has a tremendous impact on it for an actual RH. Meanwhile, the drag force and turbulent dispersion force strongly influence the multiphase flow, whereas the lift force and virtual mass force only have negligible influence on it. Furthermore, the turbulent dispersion force should be responsible for reasonable prediction of multiphase flow behavior in the RH reactor.
Modest, Michael
2013-11-15
The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.
Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows.
Li, Q; Luo, K H; Gao, Y J; He, Y L
2012-02-01
The existing lattice Boltzmann models for incompressible multiphase flows are mostly constructed with two distribution functions: one is the order parameter distribution function, which is used to track the interface between different phases, and the other is the pressure distribution function for solving the velocity field. In this paper, it is shown that in these models the recovered momentum equation is inconsistent with the target one: an additional force is included in the recovered momentum equation. The additional force has the following features. First, it is proportional to the macroscopic velocity. Second, it is zero in every single-phase region but is nonzero in the interface. Therefore it can be interpreted as an interfacial force. To investigate the effects of the additional interfacial force, numerical simulations are carried out for the problem of Rayleigh-Taylor instability, droplet splashing on a thin liquid film, and the evolution of a falling droplet under gravity. Numerical results demonstrate that, with the increase of the velocity or the Reynolds number, the additional interfacial force will gradually have an important influence on the interface and affect the numerical accuracy. PMID:22463354
A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model.
Trusov, P V; Zaitseva, N V; Kamaltdinov, M R
2016-01-01
A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the "macrolevel" that allow describing processes in a human body as a whole. Currently we are working at the "mesolevel" of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown. PMID:27413393
Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2013-09-08
Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.
Entropic lattice Boltzmann method for multiphase flows: Fluid-solid interfaces
NASA Astrophysics Data System (ADS)
Mazloomi M., Ali; Chikatamarla, Shyam S.; Karlin, Iliya V.
2015-08-01
The recently introduced entropic lattice Boltzmann model (ELBM) for multiphase flows [A. Mazloomi M., S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. Lett. 114, 174502 (2015), 10.1103/PhysRevLett.114.174502] is extended to the simulation of dynamic fluid-solid interface problems. The thermodynamically consistent, nonlinearly stable ELBM together with a polynomial representation of the equation of state enables us to investigate the dynamics of the contact line in a wide range of applications, from capillary filling to liquid drop impact onto a flat surfaces with different wettability. The static interface behavior is tested by means of the liquid column in a channel to verify the Young-Laplace law. The numerical results of a capillary filling problem in a channel with wettability gradient show an excellent match with the existing analytical solution. Simulations of drop impact onto both wettable and nonwettable surfaces show that the ELBM reproduces the experimentally observed drop behavior in a quantitative manner. Results reported herein demonstrate that the present model is a promising alternative for studying the vapor-liquid-solid interface dynamics.
NASA Astrophysics Data System (ADS)
Zhao, Hong-Liang; Liu, Yan; Zhang, Ting-An; Gu, Songqing; Zhang, Chao
2014-07-01
The large-scale mechanically agitated tank has been widely used in the decomposition process of sodium aluminate solution in the alumina industry. The mixing process in three types of seed precipitation tanks (Robin, Ekato, and improved Ekato) stirred with multiple impellers was compared by using computational fluid dynamics, respectively. The flow field, solid distribution, mixing time, and power consumption were numerically simulated by adopting a Eulerian granular multiphase model and a standard k- ɛ turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. Compared with the Robin tank, the Ekato tank can generate an axial circulation loop, which is better for fluid mixing and solid suspension; meanwhile about half of the power can be saved. With future improvements in the Ekato tank, the fluid mixing and exchanging can be enhanced under the interaction of a lengthened Intermig impeller coupled with sloped baffles. With a little increase in power consumption, the maximum of the relative solid concentration difference in the whole tank can be maintained within 3%, which meets the design requirement.
A Multiphase Flow in the Antroduodenal Portion of the Gastrointestinal Tract: A Mathematical Model
Trusov, P. V.
2016-01-01
A group of authors has developed a multilevel mathematical model that focuses on functional disorders in a human body associated with various chemical, physical, social, and other factors. At this point, the researchers have come up with structure, basic definitions and concepts of a mathematical model at the “macrolevel” that allow describing processes in a human body as a whole. Currently we are working at the “mesolevel” of organs and systems. Due to complexity of the tasks, this paper deals with only one meso-fragment of a digestive system model. It describes some aspects related to modeling multiphase flow in the antroduodenal portion of the gastrointestinal tract. Biochemical reactions, dissolution of food particles, and motor, secretory, and absorbing functions of the tract are taken into consideration. The paper outlines some results concerning influence of secretory function disorders on food dissolution rate and tract contents acidity. The effect which food density has on inflow of food masses from a stomach to a bowel is analyzed. We assume that the future development of the model will include digestive enzymes and related reactions of lipolysis, proteolysis, and carbohydrates breakdown. PMID:27413393
Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz
2003-01-01
As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.
Bubble transport in subcooled flow boiling
NASA Astrophysics Data System (ADS)
Owoeye, Eyitayo James
Understanding the behavior of bubbles in subcooled flow boiling is important for optimum design and safety in several industrial applications. Bubble dynamics involve a complex combination of multiphase flow, heat transfer, and turbulence. When a vapor bubble is nucleated on a vertical heated wall, it typically slides and grows along the wall until it detaches into the bulk liquid. The bubble transfers heat from the wall into the subcooled liquid during this process. Effective control of this transport phenomenon is important for nuclear reactor cooling and requires the study of interfacial heat and mass transfer in a turbulent flow. Three approaches are commonly used in computational analysis of two-phase flow: Eulerian-Lagrangian, Eulerian-Eulerian, and interface tracking methods. The Eulerian- Lagrangian model assumes a spherical non-deformable bubble in a homogeneous domain. The Eulerian-Eulerian model solves separate conservation equations for each phase using averaging and closure laws. The interface tracking method solves a single set of conservation equations with the interfacial properties computed from the properties of both phases. It is less computationally expensive and does not require empirical relations at the fluid interface. Among the most established interface tracking techniques is the volume-of-fluid (VOF) method. VOF is accurate, conserves mass, captures topology changes, and permits sharp interfaces. This work involves the behavior of vapor bubbles in upward subcooled flow boiling. Both laminar and turbulent flow conditions are considered with corresponding pipe Reynolds number of 0 -- 410,000 using a large eddy simulation (LES) turbulence model and VOF interface tracking method. The study was performed at operating conditions that cover those of boiling water reactors (BWR) and pressurized water reactors (PWR). The analysis focused on the life cycle of vapor bubble after departing from its nucleation site, i.e. growth, slide, lift-off, rise
NASA Astrophysics Data System (ADS)
Lad, N.; Aroussi, A.; Adebayo, D.
2011-06-01
Particle image velocimetry (PIV) is a successful flow mapping technique which can optically quantify large portions of a flow regime. This enables the method to be completely non-intrusive. The ability to be non-intrusive to any flow has allowed PIV to be used in a large range of industrial sectors for many applications. However, a fundamental disadvantage of the conventional PIV technique is that it cannot easily be used with flows which have no or limited optical access. Flows which have limited optical access for PIV measurement have been addressed using endoscopic PIV techniques. This system uses two separate probes which relay a light sheet and imaging optics to a planar position within the desired flow regime. This system is effective in medical and engineering applications. The present study has been involved in the development of a new endoscopic PIV system which integrates the illumination and imaging optics into one rigid probe. This paper focuses on the validation of the images taken from the novel single stem endoscopic PIV system. The probe is used within atomized spray flow and is compared with conventional PIV measurement and also pitot-static data. The endoscopic PIV system provides images which create localized velocity maps that are comparable with the global measurement of the conventional PIV system. The velocity information for both systems clearly show similar results for the spray characterization and are also validated using the pitot-static data.
Leggett, R.B.; Borling, D.C.; Powers, B.S.; Shehata, K.; Halvorsen, M.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platform in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.
Yang, Dali; Zhang, Duan; Currier, Robert
2008-01-01
A bundle-of-tubes construct is used as a model system to study ensemble averaged equations for multiphase flow in a porous material. Momentum equations for the fluid phases obtained from the method are similar to Darcy's law, but with additional terms. We study properties of the additional terms, and the conditions under which the averaged equations can be approximated by the diffusion model or the extended Darcy's law as often used in models for multiphase flows in porous media. Although the bundle-of-tubes model is perhaps the simplest model for a porous material, the ensemble averaged equation technique developed in this paper assumes the very same form in more general treatments described in Part 2 of the present work (Zhang 2009). Any model equation system intended for the more general cases must be understood and tested first using simple models. The concept of ensemble phase averaging is dissected here in physical terms, without involved mathematics through its application to the idealized bundle-of-tubes model for multiphase flow in porous media.
Subsurface Flow and Contaminant Transport
Energy Science and Technology Software Center (ESTSC)
2000-09-19
FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less
Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.; Parmar, M.
2016-03-01
The present paper addresses important fundamental issues of inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows through scaling analysis. In typical point-particle or two-fluid approaches, the fluid motion and convective heat transfer at the particle scale are not resolved and the momentum and energy coupling between fluid and particles are provided by proper closure models. By examining the kinetic energy transfer due to the coupling forces from the macroscale to microscale fluid motion, closure models are obtained for the contributions of the coupling forces to the energy coupling. Due to the inviscid origin of the added-mass force, its contribution to the microscale kinetic energy does not contribute to dissipative transfer to fluid internal energy as was done by the quasi-steady force. Time scale analysis shows that when the particle is larger than a critical diameter, the diffusive-unsteady kernel decays at a time scale that is smaller than the Kolmogorov time scale. As a result, the computationally costly Basset-like integral form of diffusive-unsteady heat transfer can be simplified to a non-integral form. Conventionally, the fluid-to-particle volumetric heat capacity ratio is used to evaluate the relative importance of the unsteady heat transfer to the energy balance of the particles. Therefore, for gas-particle flows, where the fluid-to-particle volumetric heat capacity ratio is small, unsteady heat transfer is usually ignored. However, the present scaling analysis shows that for small fluid-to-particle volumetric heat capacity ratio, the importance of the unsteady heat transfer actually depends on the ratio between the particle size and the Kolmogorov scale. Furthermore, the particle mass loading multiplied by the heat capacity ratio is usually used to estimate the importance of the thermal two-way coupling effect. Through scaling argument, improved estimates are established for the energy coupling parameters of each
Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution
Dillard, L.A.; Essaid, H.I.; Herkelrath, W.N.
1997-01-01
Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal log normally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.
Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale
Chang, Y.C.; Mani, V.; Mohanty, K.K.
1997-08-01
Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.
Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis
NASA Astrophysics Data System (ADS)
Rajendran, Rahul; Banerjee, Arindam
2015-11-01
Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.
Laminar flow control for transport aircraft applications
NASA Technical Reports Server (NTRS)
Wagner, R. D.
1986-01-01
The incorporation of laminar flow control into transport aircraft is discussed. Design concepts for the wing surface panel of laminar flow control transport aircraft are described. The development of small amounts of laminar flow on small commercial transports with natural or hybrid flow control is examined. Techniques for eliminating the insect contamination problem in the leading-edge region are proposed.
The role of fault zone in affecting multiphase flow at Yucca Mountain
Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.
1993-12-31
Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large-scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, is as observed from the measured data of Yucca Mountain welded and nonwelded tuffs, Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or in enhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.
The role of fault zones in affecting multiphase flow at Yucca Mountain
Tsang, Y.W.; Pruess, K.; Wang, J.S.Y.
1993-01-01
Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, as is observed from the measured data of Yucca Mountain welded and nonwelded tuffs. Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or inenhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.
Micro-Ct Imaging of Multi-Phase Flow in Carbonates and Sandstones
NASA Astrophysics Data System (ADS)
Andrew, M. G.; Bijeljic, B.; Blunt, M. J.
2013-12-01
One of the most important mechanisms that limits the escape of CO2 when injected into the subsurface for the purposes of carbon storage is capillary trapping, where CO2 is stranded as pore-scale droplets (ganglia). Prospective storage sites are aquifers or reservoirs that tend to be at conditions where CO2 will reside as a super-critical phase. In order to fully describe physical mechanisms characterising multi-phase flow during and post CO2 injection, experiments need to be conducted at these elevated aquifer/reservoir conditions - this poses a considerable experimental challenge. A novel experimental apparatus has been developed which uses μCT scanning for the non-invasive imaging of the distribution of CO2 in the pore space of rock with resolutions of 7μm at temperatures and pressures representative of the conditions present in prospective saline aquifer CO2 storage sites. The fluids are kept in chemical equilibrium with one-another and with the rock into which they are injected. This is done to prevent the dissolution of the CO2 in the brine to form carbonic acid, which can then react with the rock, particularly carbonates. By eliminating reaction we study the fundamental mechanisms of capillary trapping for an unchanging pore structure. In this study we present a suite of results from three carbonate and two sandstone rock types, showing that, for both cases the CO2 acts as the non-wetting phase and significant quantities of CO2 is trapped. The carbonate examined represent a wide variety of pore topologies with one rock with a very well connected, high porosity pore space (Mt Gambier), one with a lower porosity, poorly connected pore space (Estaillades) and one with a cemented bead pack type pore space (Ketton). Both sandstones (Doddington and Bentheimer) were high permeability granular quartzites. CO2 was injected into each rock, followed by brine injection. After brine injection the entire length of the rock core was scanned, processed and segmented into
Xu, Tianfu; Pruess, Karsten
1998-09-01
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.
Richard Saurel; Fabien Petitpas; Ray A. Berry
2009-03-01
Numerical approximation of the five-equation two-phase flow of Kapila et al. [A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002–3024] is examined. This model has shown excellent capabilities for the numerical resolution of interfaces separating compressible fluids as well as wave propagation in compressible mixtures [A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics 202(2) (2005) 664–698; R. Abgrall, V. Perrier, Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flows, SIAM Journal of Multiscale and Modeling and Simulation (5) (2006) 84–115; F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, Journal of Computational Physics 225(2) (2007) 2214–2248]. However, its numerical approximation poses some serious difficulties. Among them, the non-monotonic behavior of the sound speed causes inaccuracies in wave’s transmission across interfaces. Moreover, volume fraction variation across acoustic waves results in difficulties for the Riemann problem resolution, and in particular for the derivation of approximate solvers. Volume fraction positivity in the presence of shocks or strong expansion waves is another issue resulting in lack of robustness. To circumvent these difficulties, the pressure equilibrium assumption is relaxed and a pressure non-equilibrium model is developed. It results in a single velocity, non-conservative hyperbolic model with two energy equations involving relaxation terms. It fulfills the equation of state and energy conservation on both sides of interfaces and guarantees correct transmission of shocks across them. This formulation considerably simplifies numerical
Saurel, Richard Petitpas, Fabien; Berry, Ray A.
2009-03-20
Numerical approximation of the five-equation two-phase flow of Kapila et al. [A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024] is examined. This model has shown excellent capabilities for the numerical resolution of interfaces separating compressible fluids as well as wave propagation in compressible mixtures [A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics 202(2) (2005) 664-698; R. Abgrall, V. Perrier, Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flows, SIAM Journal of Multiscale and Modeling and Simulation (5) (2006) 84-115; F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, Journal of Computational Physics 225(2) (2007) 2214-2248]. However, its numerical approximation poses some serious difficulties. Among them, the non-monotonic behavior of the sound speed causes inaccuracies in wave's transmission across interfaces. Moreover, volume fraction variation across acoustic waves results in difficulties for the Riemann problem resolution, and in particular for the derivation of approximate solvers. Volume fraction positivity in the presence of shocks or strong expansion waves is another issue resulting in lack of robustness. To circumvent these difficulties, the pressure equilibrium assumption is relaxed and a pressure non-equilibrium model is developed. It results in a single velocity, non-conservative hyperbolic model with two energy equations involving relaxation terms. It fulfills the equation of state and energy conservation on both sides of interfaces and guarantees correct transmission of shocks across them. This formulation considerably simplifies numerical resolution
Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR
Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex
2005-10-03
Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.
NASA Technical Reports Server (NTRS)
Rothe, Paul H.; Martin, Christine; Downing, Julie
1994-01-01
Adiabatic two-phase flow is of interest to the design of multiphase fluid and thermal management systems for spacecraft. This paper presents original data and unifies existing data for capillary tubes as a step toward assessing existing multiphase flow analysis and engineering software. Comparisons of theory with these data once again confirm the broad accuracy of the theory. Due to the simplicity and low cost of the capillary tube experiments, which were performed on earth, we were able to closely examine for the first time a flow situation that had not previously been examined appreciably by aircraft tests. This is the situation of a slug flow at high quality, near transition to annular flow. Our comparison of software calculations with these data revealed overprediction of pipeline pressure drop by up to a factor of three. In turn, this finding motivated a reexamination of the existing theory, and then development of a new analytical and is in far better agreement with the data. This sequence of discovery illustrates the role of inexpensive miniscale modeling on earth to anticipate microgravity behavior in space and to complete and help define needs for aircraft tests.
Formulation and numerical analysis of nonisothermal multiphase flow in porous media
Martinez, M.J.
1995-06-01
A mathematical formulation is presented for describing the transport of air, water and energy through porous media. The development follows a continuum mechanics approach. The theory assumes the existence of various average macroscopic variables which describe the state of the system. Balance equations for mass and energy are formulated in terms of these macroscopic variables. The system is supplemented with constitutive equations relating fluxes to the state variables, and with transport property specifications. Specification of various mixing rules and thermodynamic relations completes the system of equations. A numerical simulation scheme, employing the method of lines, is described for one-dimensional flow. The numerical method is demonstrated on sample problems involving nonisothermal flow of air and water. The implementation is verified by comparison with existing numerical solutions.
NASA Astrophysics Data System (ADS)
Kazemifar, Farzan; Blois, Gianluca; Kyritsis, Dimitrios C.; Christensen, Kenneth T.
2015-04-01
This paper presents a novel methodology for capturing instantaneous, temporally and spatially resolved velocity fields in an immiscible multiphase flow of liquid/supercritical CO2 and water through a porous micromodel. Of interest is quantifying pore-scale flow processes relevant to geological CO2 sequestration and enhanced oil recovery, and in particular, at thermodynamic conditions relevant to geological reservoirs. A previously developed two-color microscopic particle image velocimetry approach is combined with a high-pressure apparatus, facilitating flow quantification of water interacting with supercritical CO2. This technique simultaneously resolves (in space and time) the aqueous phase velocity field as well as the dynamics of the menisci. The method and the experimental apparatus are detailed, and the results are presented to demonstrate its unique capabilities for studying pore-scale dynamics of CO2-water interactions. Simultaneous identification of the boundary between the two fluid phases and quantification of the instantaneous velocity field in the aqueous phase provides a step change in capability for investigating multiphase flow physics at the pore scale at reservoir-relevant conditions.
Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David
2012-07-01
Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filled tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is
Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.
2002-01-01
Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.
Johnson, R.H.; Poeter, E.P.
2007-01-01
Perchloroethylene (PCE) saturations determined from GPR surveys were used as observations for inversion of multiphase flow simulations of a PCE injection experiment (Borden 9??m cell), allowing for the estimation of optimal bulk intrinsic permeability values. The resulting fit statistics and analysis of residuals (observed minus simulated PCE saturations) were used to improve the conceptual model. These improvements included adjustment of the elevation of a permeability contrast, use of the van Genuchten versus Brooks-Corey capillary pressure-saturation curve, and a weighting scheme to account for greater measurement error with larger saturation values. A limitation in determining PCE saturations through one-dimensional GPR modeling is non-uniqueness when multiple GPR parameters are unknown (i.e., permittivity, depth, and gain function). Site knowledge, fixing the gain function, and multiphase flow simulations assisted in evaluating non-unique conceptual models of PCE saturation, where depth and layering were reinterpreted to provide alternate conceptual models. Remaining bias in the residuals is attributed to the violation of assumptions in the one-dimensional GPR interpretation (which assumes flat, infinite, horizontal layering) resulting from multidimensional influences that were not included in the conceptual model. While the limitations and errors in using GPR data as observations for inverse multiphase flow simulations are frustrating and difficult to quantify, simulation results indicate that the error and bias in the PCE saturation values are small enough to still provide reasonable optimal permeability values. The effort to improve model fit and reduce residual bias decreases simulation error even for an inversion based on biased observations and provides insight into alternate GPR data interpretations. Thus, this effort is warranted and provides information on bias in the observation data when this bias is otherwise difficult to assess. ?? 2006 Elsevier B
NASA Astrophysics Data System (ADS)
Aursand, Eskil; Gjennestad, Magnus Aa.; Yngve Lervåg, Karl; Lund, Halvor
2016-03-01
A one-dimensional multi-phase flow model for thermomagnetically pumped ferrofluid with heat transfer is proposed. The thermodynamic model is a combination of a simplified particle model and thermodynamic equations of state for the base fluid. The magnetization model is based on statistical mechanics, taking into account non-uniform particle size distributions. An implementation of the proposed model is validated against experiments from the literature, and found to give good predictions for the thermomagnetic pumping performance. However, the results reveal a very large sensitivity to uncertainties in heat transfer coefficient predictions.
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.
2015-12-01
Leakage to the atmosphere of a significant fraction of injected CO2 would constitute a failure of a geological CO2 storage project from a greenhouse gas mitigation perspective. We present a numerical model that simulates flow and transport of CO2 into heterogeneous subsurface systems. The model, StoTran, is a flexible numerical environment that uses state-of-the-art finite element and finite volume methods and unstructured adaptive mesh refinement scheme implemented using MPI and OpenMP protocols. Multiphase flow equations and the geomechanical equations are implicitly solved and either fully or sequentially coupled. StoTran can address inverse and forward problems under deterministic or stochastic conditions. For the current study, StoTran has been used to simulate several scenarios spanning from a homogeneous single layered reservoir to heterogeneous multi-layered systems, which including cap-rock with embedded fractures, have been simulated under different operations of CO2 injection and CO2 leakages conditions. Results show the impact of the injection and leakage rates on the time evolution of the spread of the CO2 plume, its interception of the fractured cap-rock and the risk associated with the contamination of the overlaying aquifer. Spatial and temporal moments have been calculated for different, deterministic of stochastic, subsurface physical and chemical properties. Spatial moments enable assessing the extent of the region of investigation under conditions of uncertainty. Furthermore, several leakage scenarios show the intermittence behavior and development of the CO2 plume in the subsurface; its first interception with the fractures located further far from the injection well then, at a second stage, its interception with the fracture within the immediate vicinity of the injection well. We will present a remedy to CO2 leakages from the reservoir in order to enhance a long term containment of the injected CO2. This work performed under the auspices of
Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal
2010-09-01
The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The
Rugged Energy Landscapes in Multiphase Porous Media Flow: A Discrete-Domain Description
NASA Astrophysics Data System (ADS)
Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
Immiscible displacements in porous media involve a complex sequence of pore-scale events, from the smooth, reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion cascades. Discontinuous changes in pressure or saturation have been referred to as Haines jumps, and they emerge as a key mechanism to understand the origin of hysteresis in porous media flow. Hysteresis persists at the many-pore scale: when multiple cycles of drainage and imbibition of a porous sample are conducted, a dense hysteresis diagram emerges. The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the heart of early hysteresis models, and in recent experiments, and points to an inherently non-equilibrium behavior. For a given volume fraction of fluids occupying the pore space, many stable configurations are possible, due to the tortuous network of nonuniform pores and throats that compose the porous medium, and to complex wetting and capillary transitions. Multistability indicates that porous media systems exhibit rugged energy landscapes, where the system may remain pinned at local energy minima for long times. We address the question of developing a zero-dimensional model that inherits the path-dependence and `'bursty'' behavior of immiscible displacements, and propose a discrete-domain model that captures the role of metastability and local equilibria in the origin of hysteresis. We describe the porous medium and fluid system as a discrete set of weakly connected, multistable compartments, charaterized by a unique free energy function. This description does not depend explicitly on past saturations, turning points, or drainage/imbibition labels. The system behaves hysteretically, and we rationalize its behavior as sweeping a complex metastability diagram, with dissipation arising from discrete switches among metastable branches. The hysteretic behavior of the pressure-saturation curve is controlled by
Accounting for Surface Concentrations Using a VOF Front Tracking Method in Multiphase Flow
NASA Astrophysics Data System (ADS)
Martin, David W.
In this dissertation, we present a numerical method for tracking surfactants on an interface in multiphase flow, along with applications of the method to two physical problems. We also present an extension of our method to track charged droplets. Our method combines a traditional volume of fluid (VOF) method with marker tracking. After describing this method in detail, we present a series of tests we used to validate our method. The applications we consider are the coalescence of surfactant-laden drops, and the rising of surfactant-laden drops in stratifications. In our study of the coalescence of surfactant-laden drops, we describe conditions under which coalescence is partial, rather than total. In particular, we examine the dependence of the critical Ohnesorge number, above which coalescence is total, on surfactant effects. We find that the surfactant potency has a surprising non-monotonic effect on the critical Ohnesorge number. This effect is explained by a balancing interface area loss and tangential stresses, which we describe using a scaling argument. Our argument is confirmed by forming a predicted critical Ohnesorge number profile, which qualitatively matches the data. We also discuss gravity effects, varying initial conditions, and daughter drops resulting from partial coalescence. In our study of rising drops, we examine three distinct physical setups. In the first setup, we examine a drop coated in insoluble surfactant rising in a uniform ambient. Our results for an unstratified ambient show good agreement with earlier work, and fill a gap between results for zero Reynolds number and intermediate Reynolds number. In our second setup, we study drops rising in a linear density stratification, with and without surfactant. Entrainment effects on the rising drop are isolated and used to compute an effective buoyancy of entrained fluid. In our third setup, we present velocity profiles of a clean drop entering a layer of soluble surfactant. The surfactant
NASA Astrophysics Data System (ADS)
Archer, Philip J.; Bai, Wei
2015-02-01
A novel non-overlapping concept is augmented to the Hybrid Particle Level Set (HPLS) method to improve its accuracy and suitability for the modelling of multi-phase fluid flows. The concept addresses shortcomings in the reseeding algorithm, which maintains resolution of the surface at runtime. These shortcomings result in the misplacement of newly seeded particles in the opposite signed domain and necessitate a restriction on the distance that a particle can escape without deletion, which reduces the effectiveness of the method. The non-overlapping concept judges the suitability of potential new particles based on information already contained within the particle representation of the surface. By preventing the misplacement of particles it is possible to significantly relax the distance restriction thereby increasing the accuracy of the HPLS method in multi-phase flows. To demonstrate its robustness and efficiency, the concept is examined with a number of challenging test cases, including both level-set-only simulations and two-phase fluid flows.
Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting
NASA Astrophysics Data System (ADS)
Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming
2016-02-01
In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.
NASA Astrophysics Data System (ADS)
Dutta, Sourav; Daripa, Prabir; Fluids Team
2015-11-01
One of the most important methods of chemical enhanced oil recovery (EOR) involves the use of complex flooding schemes comprising of various layers of fluids mixed with suitable amounts of polymer or surfactant or both. The fluid flow is characterized by the spontaneous formation of complex viscous fingering patterns which is considered detrimental to oil recovery. Here we numerically study the physics of such EOR processes using a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics. We investigate the effect of different types of heterogeneity on the fingering mechanism of these complex multiphase flows and determine the impact on oil recovery. We also study the effect of surfactants on the dynamics of the flow via reduction of capillary forces and increase in relative permeabilities. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Trangenstein, J.A.
1994-03-15
This is the second year in the proposed three-year effort to develop high-resolution numerical methods for multi-phase flow in hierarchical porous media. The issues being addressed in this research are: Computational efficiency: Field-scale simulation of enhanced oil recovery, whether for energy production or aquifer remediation, is typically highly under-resolved. This is because rock transport properties vary on many scales, and because current numerical methods have low resolution. Effective media properties: Since porous media are formed through complex geologic processes, they involve significant uncertainty and scale-dependence. Given this uncertainty, knowledge of ensemble averages of flow in porous media can be preferable to knowledge of flow in specific realizations of the reservoir. However, current models of effective properties do not represent the observed behavior very well. Relative permeability models present a good example of this problem. In practice, these models seldom provide realistic representations of hysteresis, interfacial tension effects or three-phase flow; there are no models that represent well all three effects simultaneously.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2008-09-29
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured
A distinguishing feature of multiphase subsurface flow in comparison to single phase flow is theexistence of fluid-fluid interfaces. These interfaces define phase boundaries at the pore scale and influence overall system behavior in many important ways. For example, fluid-fluid ...
A modelling study of the multiphase leakage flow from pressurised CO2 pipeline.
Zhou, Xuejin; Li, Kang; Tu, Ran; Yi, Jianxin; Xie, Qiyuan; Jiang, Xi
2016-04-01
The accidental leakage is one of the main risks during the pipeline transportation of high pressure CO2. The decompression process of high pressure CO2 involves complex phase transition and large variations of the pressure and temperature fields. A mathematical method based on the homogeneous equilibrium mixture assumption is presented for simulating the leakage flow through a nozzle in a pressurised CO2 pipeline. The decompression process is represented by two sub-models: the flow in the pipe is represented by the blowdown model, while the leakage flow through the nozzle is calculated with the capillary tube assumption. In the simulation, two kinds of real gas equations of state were employed in this model instead of the ideal gas equation of state. Moreover, results of the flow through the nozzle and measurement data obtained from laboratory experiments of pressurised CO2 pipeline leakage were compared for the purpose of validation. The thermodynamic processes of the fluid both in the pipeline and the nozzle were described and analysed. PMID:26774983
Chuan Lu; CHI Zhang; Hai Hanag; Timothy C. Johnson
2014-04-01
Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoring the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.
Wilson, J.L.
1997-01-01
Pore level laboratory experiments using microscopy permit the in situ visualization of flow and transport phenomena, that can be recorded on film or videotape. One of the principal tools for visualization is the etched glass micromodel, which is composed of a transparent two dimensional network of three dimensional pores. The spatial scale of interest in these models extends from the individual pore, up to a network of pores, perhaps with small scale heterogeneities. Micromodels are best used to help validate concepts and assumptions, and to elucidate new, previously unrecognized phenomena for further study. They are not quantitative tools, but should be used in combination with quantitative tools such as column studies or mathematical models. There are three applications: multi-phase flow, colloid transport, and bacterial transport and colonization. Specifically the authors have examined behavior of relevance to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); mathematical models of multi-phase pressure-saturation relationships; colloid movement, attachment and detachment in the presence of fluid-fluid interfaces, clay interference with multi-phase flow; and heterogeneity effects on multi-phase flow and colloid movement.
Rockhold, M L
1993-02-01
A field-scale, unsaturated flow and solute transport experiment at the Las Cruces trench site in New Mexico was simulated as part of a blind'' modeling exercise to demonstrate the ability or inability of uncalibrated models to predict unsaturated flow and solute transport in spatially variable porous media. Simulations were conducted using a recently developed multiphase flow and transport simulator. Uniform and heterogeneous soil models were tested, and data from a previous experiment at the site were used with an inverse procedure to estimate water retention parameters. A spatial moment analysis was used to provide a quantitative basis for comparing the mean observed and simulated flow and transport behavior. The results of this study suggest that defensible predictions of waste migration and fate at low-level waste sites will ultimately require site-specific data for model calibration.
Simulating subsurface flow and transport on ultrascale computers using PFLOTRAN
NASA Astrophysics Data System (ADS)
Tran Mills, Richard; Lu, Chuan; Lichtner, Peter C.; Hammond, Glenn E.
2007-07-01
We describe PFLOTRAN, a recently developed code for modeling multi-phase, multi-component subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop—with a relatively modest investment in development effort—a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.
Simulating Subsurface Flow and Transport on Ultrascale Computers using PFLOTRAN
Mills, Richard T; Lu, Chuan; Hammond, Glenn; Lichtner, Peter
2007-01-01
We describe PFLOTRAN, a recently developed code for modeling multi-phase, multicomponent subsurface flow and reactive transport using massively parallel computers. PFLOTRAN is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation. Leveraging PETSc has allowed us to develop--with a relatively modest investment in development effort--a code that exhibits excellent performance on the largest-scale supercomputers. Very significant enhancements to the code are planned during our SciDAC-2 project. Here we describe the current state of the code, present an example of its use on Jaguar, the Cray XT3/4 system at Oak Ridge National Laboratory consisting of 11706 dual-core Opteron processor nodes, and briefly outline our future plans for the code.
A computer code for multiphase all-speed transient flows in complex geometries. MAST version 1.0
NASA Technical Reports Server (NTRS)
Chen, C. P.; Jiang, Y.; Kim, Y. M.; Shang, H. M.
1991-01-01
The operation of the MAST code, which computes transient solutions to the multiphase flow equations applicable to all-speed flows, is described. Two-phase flows are formulated based on the Eulerian-Lagrange scheme in which the continuous phase is described by the Navier-Stokes equation (or Reynolds equations for turbulent flows). Dispersed phase is formulated by a Lagrangian tracking scheme. The numerical solution algorithms utilized for fluid flows is a newly developed pressure-implicit algorithm based on the operator-splitting technique in generalized nonorthogonal coordinates. This operator split allows separate operation on each of the variable fields to handle pressure-velocity coupling. The obtained pressure correction equation has the hyperbolic nature and is effective for Mach numbers ranging from the incompressible limit to supersonic flow regimes. The present code adopts a nonstaggered grid arrangement; thus, the velocity components and other dependent variables are collocated at the same grid. A sequence of benchmark-quality problems, including incompressible, subsonic, transonic, supersonic, gas-droplet two-phase flows, as well as spray-combustion problems, were performed to demonstrate the robustness and accuracy of the present code.
NASA Astrophysics Data System (ADS)
Carcano, Susanna; Bonaventura, Luca
2014-05-01
During explosive volcanic eruptions a mixture of gases, magma fragments, crystals and eroded rocks is injected in the atmosphere at high velocity, pressure and temperature. In the proximity of the volcanic vent, the erupted underexpanded multiphase mixture can manifest the features of supersonic flows, while the subsequent column behaviour is controlled by the (subsonic) turbulent mixing and mass and thermal exchange between the gas-particle mixture and the atmosphere. One of the main difficulties of the numerical simulation of explosive volcanic eruptions is therefore the need of modeling a multiphase process where different fluid dynamic regimes coexist and develop on on a wide range of temporal and spatial scales. From a computational point of view, this requires robust numerical techniques able to resolve supersonic regimes and to capture flow discontinuities (shock waves), as well as to reduce, where needed, the so-called numerical diffusion (while increasing the numerical accuracy) in order to simulate gas-particle non-equilibrium phenomena. Several examples of numerical approximation of multiphase gas-particle equations based on finite volume approach have been proposed in the literature, able to simulate the multiphase mixture up to second-order accuracy in space and time. However, achieving higher order of accuracy in the finite volume framework implies an increasing computational cost related to the extension of the computational stencil, in particular when a parallel implementation has to be employed. In this work, a mixture of gas and solid particles is described with a set of coupled partial differential equations for the mass, momentum and energy of each phase. Solid particles and the gas phase are considered as non-equilibrium interpenetrating continua, following an Eulerian-Eulerian approach. Each phase is compressible and inviscid. The gas and particles dynamics are coupled through the drag term in the momentum equations and the heat exchange term
NASA Astrophysics Data System (ADS)
Benage, M. C.; Dufek, J.; Geist, D.; Harpp, K. S.
2011-12-01
simulations in concert with detailed measurements of these flows from both up flow and down flow from the transformation to document the process of dense to dilute flow transition. The field characterization includes mapping of the flows, grain size analysis, documenting flow direction indicators, comminution rounding, thermal proxies for air entrainment, and bed form documentation. We used a three-dimensional, multiphase (Eulerian-Eulerian-Lagrangian, EEL) modeling approach to describe size sorting, concentration gradients, and stresses in these evolving flows using the topography of the near Chambo River crossing (Dufek and Bergantz, 2007). The numerical models reveal extensive entrainment in the surge-generating phase of the flow, and secondary plume generation as fine ash in transported by hot gases higher into the atmosphere. Granular waves develop in the confined channels of the dense flow resulting bed shear stress perturbations. These granular instabilities and entrainment result in pulsing conditions in the surge, accounting for much of the unsteady behavior that results in fluctuations in grain size and bed form in the surge deposits.
NASA Astrophysics Data System (ADS)
Xiao, Kai; Yi, Li; Liu, Feng; Wang, Fuqiang
2016-08-01
Momentum-space azimuthal harmonic event planes (EP) are constructed from final-state midrapidity particles binned in transverse momentum (pT) in √{sN N}=200 GeV Au+Au collisions in a multiphase transport (AMPT) model. The EP correlations between pT bins, corrected by EP resolutions, are smaller than unity. This indicates that the EP's decorrelate over pT in AMPT, qualitatively consistent with data and hydrodynamic calculations. It is further found that the EP correlations approximately factorize into single pT-bin EP correlations to a common plane. This common plane appears to be the momentum-space EP integrated over all pT, not the configuration-space participant plane (PP).
Simulations of Flow, Transport, and Biodegradation in Landfills
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Borglin, S. E.; Hazen, T. C.
2002-12-01
Biotreatment of landfill materials may involve coupled nonisothermal flow and transport of water and gas in the refuse mass. With the objective of carrying out analyses that depend on flow and transport processes, we are developing T2LBM, a module for the TOUGH2 multiphase flow and transport simulator that implements a Landfill Bioreactor Model. T2LBM models the processes of aerobic and anaerobic biodegradation of municipal solid waste and the associated three-dimensional flow and transport of gas, liquid, and heat through the refuse mass. The components modeled in T2LBM are water, acetic acid, carbon dioxide, methane, oxygen, and nitrogen in aqueous and gas phases, with partitioning specified by temperature-dependent Henry's coefficients. The local oxygen concentration is used to control whether aerobic or anaerobic biodegradation reactions occur to produce carbon dioxide, or methane and carbon dioxide, respectively. Acetic acid is used as a proxy for all of the biodegradable components in the refuse. The biodegradation rate of acetic acid is modeled using a Monod kinetic rate law for the exothermic reactions in the aqueous phase. The compaction rate is specified by the user and modeled as a linear decrease with time of porosity and contraction of the vertical grid dimension by generation of a new grid at each time step. Local differences in moisture content, pressure, gas composition, aerobicity, and temperature, among other properties, within the heterogeneous refuse can be modeled with T2LBM. Comparison of simulation results against observations of an aerobic landfill bioreactor laboratory experiment and an anaerobic field pilot study show good agreement for oxygen consumption and gas production. Predictions and sensitivity analyses of different biotreatments can be made using this new simulation capability. This work was supported by Laboratory Directed Research and Development Funds at Lawrence Berkeley National Laboratory under Department of Energy Contract
Xu, T.; Senger, R.; Finsterle, S.
2008-10-15
Corrosion of steel canisters, stored in a repository for spent fuel and high-level nuclear wastes, leads to the generation and accumulation of hydrogen gas in the backfilled emplacement tunnels, which may significantly affect long-term repository safety. Previous studies used H{sub 2} generation rates based on the volume of the waste or canister material and the stoichiometry of the corrosion reaction. However, iron corrosion and H{sub 2} generation rates vary with time, depending on factors such as amount of iron, water availability, water contact area, and aqueous and solid chemistry. To account for these factors and feedback mechanisms, we developed a chemistry model related to iron corrosion, coupled with two-phase (liquid and gas) flow phenomena that are driven by gas-pressure buildup associated with H{sub 2} generation and water consumption. Results indicate that by dynamically calculating H{sub 2} generation rates based on a simple model of corrosion chemistry, and by coupling this corrosion reaction with two-phase flow processes, the degree and extent of gas pressure buildup could be much smaller compared to a model that neglects the coupling between flow and reactive transport mechanisms. By considering the feedback of corrosion chemistry, the gas pressure increases initially at the canister, but later decreases and eventually returns to a stabilized pressure that is slightly higher than the background pressure. The current study focuses on corrosion under anaerobic conditions for which the coupled hydrogeochemical model was used to examine the role of selected physical parameters on the H{sub 2} gas generation and corresponding pressure buildup in a nuclear waste repository. The developed model can be applied to evaluate the effect of water and mineral chemistry of the buffer and host rock on the corrosion reaction for future site-specific studies.
Multiphase Carbon-14 Transport in a Near-Field-Scale Unsaturated Column of Natural Sediments
D. T. Fox; Mitchell A. Plummer; Larry C. Hull; D. Craig Cooper
2004-03-01
Wastes buried at the Subsurface Disposal Area (SDA) of the Idaho National Engineering and Environmental Laboratory include activated metals that release radioactive carbon-14 (14C) as they corrode. To better understand 14C phase partitioning and transport in the SDA sediments, we conducted a series of transport experiments using 14C (radio-labeled sodium carbonate) and nonreactive gas (sulfur hexafluoride) and aqueous (bromide and tritiated water) tracers in a large (2.6-m high by 0.9-m diameter) column of sediments similar to those used as cover material at the SDA. We established steady-state unsaturated flow prior to injecting tracers into the column. Tracer migration was monitored using pore-water and pore-gas samples taken from co-located suction lysimeters and gas ports inserted at ~0.3-m intervals along the column’s length. Measurements of 14C discharged from the sediment to the atmosphere (i.e., 14CO2 flux) indicate a positive correlation between CO2 partial pressure (pCO2) in the column and changes in 14CO2 flux. Though 14CO2 diffusion is expected to be independent of pCO2, changes of pCO2 affect pore water chemistry sufficiently to affect aqueous/gas phase 14C partitioning and consequently 14C2 flux. Pore-water and -gas 14C activity measurements provide an average aqueous/gas partitioning ratio, Kag, of 4.5 (±0.3). This value is consistent with that calculated using standard carbonate equilibrium expressions with measured pH, suggesting the ability to estimate Kag from carbonate equilibrium. One year after the 14C injection, the column was cored and solid-phase 14C activity was measured. The average aqueous/solid partition coefficient, Kd, (1.6 L kg-1) was consistent with those derived from small-scale and short-term batch and column experiments using SDA sediments, suggesting that bench-scale measurements are a valid means of estimating aqueous/solid partitioning at the much larger spatial scale considered in these meso-scale experiments. However
NASA Astrophysics Data System (ADS)
Marchesin, Dan; Mailybaev, Alexei A.
2006-09-01
We consider shock waves satisfying the viscous profile criterion in general systems of n conservation laws. We study S i, j dual-family shock waves, which are associated with a pair of characteristic families i and j. We explicitly introduce defining equations relating states and speeds of S i, j shocks, which include the Rankine Hugoniot conditions and additional equations resulting from the viscous profile requirement. We then develop a constructive method for finding the general local solution of the defining equations for such shocks and derive formulae for the sensitivity analysis of S i, j shocks under change of problem parameters. All possible structures of solutions to the Riemann problems containing S i, j shocks and classical waves are described. As a physical application, all types of S i, j shocks with i>j are detected and studied in a family of models for multi-phase flow in porous media.
Pak, Tannaz; Butler, Ian B.; Geiger, Sebastian; van Dijke, Marinus I. J.; Sorbie, Ken S.
2015-01-01
Using X-ray computed microtomography, we have visualized and quantified the in situ structure of a trapped nonwetting phase (oil) in a highly heterogeneous carbonate rock after injecting a wetting phase (brine) at low and high capillary numbers. We imaged the process of capillary desaturation in 3D and demonstrated its impacts on the trapped nonwetting phase cluster size distribution. We have identified a previously unidentified pore-scale event during capillary desaturation. This pore-scale event, described as droplet fragmentation of the nonwetting phase, occurs in larger pores. It increases volumetric production of the nonwetting phase after capillary trapping and enlarges the fluid−fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation therefore has implications for a range of multiphase flow processes in natural and engineered porous media with complex heterogeneous pore spaces. PMID:25646491
Freeze, G.A.; Larson, K.W.; Davies, P.B.
1995-10-01
Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.
NASA Astrophysics Data System (ADS)
Wang, Y.; Shu, C.; Yang, L. M.
2015-12-01
An improved multiphase lattice Boltzmann flux solver (MLBFS) is proposed in this work for effective simulation of three-dimensional (3D) multiphase flows with large density ratio and high Reynolds number. As a finite volume scheme, the MLBFS originally proposed in [27] applies the finite volume method to solve for macroscopic flow variables directly. The fluxes are reconstructed locally at each cell interface by using the standard LBM solutions. Due to the modeling error of the standard LBM, the reconstructed fluxes deviate from those in the Navier-Stokes equations; and to compensate this error, a complex tensor is introduced in the original MLBFS. However, the computation of the tensor introduces additional complexity and usually needs a relatively thicker interface thickness to maintain numerical stability, which makes the solver be complex and inefficient in the 3D case. To remove this drawback, in this work, a theoretical analysis to the formulations obtained from the Chapman-Enskog expansion is conducted. It is shown that the modeling error can be effectively removed by modifying the computation of the equilibrium density distribution function. With this improvement, the proposed 3D MLBFS not only avoids the calculation of the compensation tensor but also is able to maintain numerical stability with very thin interface thickness. Several benchmark cases, including the challenging droplet impacting on a dry surface, head-on collisions of binary droplets and droplet splashing on a thin film with density ratio 1000 and Reynolds number up to 3000, are studied to validate the proposed solver. The obtained results agree well with the published data.
NASA Astrophysics Data System (ADS)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2006-03-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic, and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program. The first example deals with injectivity effects of mineral scaling in a fractured geothermal reservoir. A major concern in the development of hot dry rock and hot fractured rock reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths. Rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of these reservoirs. We used recent European studies as a starting point to explore chemically induced effects of fluid circulation in the geothermal systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. The second TOUGHREACT application example is related to CO 2 geologic sequestration in a saline aquifer. We performed numerical simulations for a commonly encountered Gulf Coast sediment
NASA Astrophysics Data System (ADS)
Weinstein, Joel Aaron
Coriolis flow meters measure mass flow and density of liquids and gases to very high accuracies. However, when two or more phases are present simultaneously in a pipeline, measurement accuracy can be severely reduced. Coriolis meters have an inherent advantage over volumetric meters in measuring pure liquid quantities in applications involving liquids with entrained gas because the mass flow rate of an aerated mixture is close to that of the liquid flow rate. However, Coriolis meters use two oscillating flow tubes to make measurements, with the assumption that the fluid moves directly with the tubes in the oscillatory direction. When multiple phases or components of different density are present, this assumption is not valid and errors result. The current research involves analytic and experimental efforts to understand, model, and reduce errors due to multiphase flow in a Coriolis meter. The main error mechanism studied is phase decoupling, or the relative motion of the dispersed phase with respect to the continuous phase. Dilute mixtures involving solid particles in liquids are considered in addition to bubbly fluids. Equations of motion for spherical particles and bubbles in non-inertial oscillating reference frames are non-dimensionalized and solved with a variety of boundary conditions. Theoretical results for amplitude ratio and phase angle between sphere and fluid are verified with high speed video camera experiments. Phase decoupling is found to depend on meter and fluid parameters such as frequency, oscillation amplitude, and viscosity. Practical recommendations based on experimental and model results are made to improve measurement accuracy. Reducing bubble size by turbulent mixing and using a Coriolis meter with a minimum tube oscillation frequency and maximum amplitude are found to be the most practical ways to reduce errors due to relative phase motion. Power dissipation, density error, and other parameters of interest in the design and operation of a
Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework
NASA Astrophysics Data System (ADS)
Rauschenberger, P.; Weigand, B.
2015-06-01
A new method is presented to simulate rigid body motion in the Volume-of-Fluid based multiphase code Free Surface 3D. The specific feature of the new method is that it works within an Eulerian framework without the need for a Lagrangian representation of rigid bodies. Several test cases are shown to prove the validity of the numerical scheme. The technique is able to conserve the shape of arbitrarily shaped rigid bodies and predict terminal velocities of rigid spheres. The instability of a falling ellipsoid is captured. Multiple rigid bodies including collisions may be considered using only one Volume-of-Fluid variable which allows to simulate the drafting, kissing and tumbling phenomena of two rigid spheres. The method can easily be extended to rigid bodies undergoing phase change processes.
Atomization modeling in a multiphase flow environment and comparison with experiments
NASA Technical Reports Server (NTRS)
Liang, P. Y.; Schuman, M. D.
1990-01-01
An atomization model based on Reitz's instability wave analysis has been implemented into the ARICC3D multiphase CFD combustion code. Preliminary test runs with cold non-evaporating liquid jet and coaxial gas-liquid atomization cases appeared to have verified basic performance of the model, generating realistic-looking sprays. Furthermore, the extended liquid jet is explicitly resolved, and predicted jet lengths agree well with classical correlations. Fair agreement with test data is obtained for predicted spray tip penetrations and liquid mass flux radial distributions, with obvious room for improvement. Some numerical problems also appear to have resulted with the current implementation when low gas Mach number and high liquid velocities are involved.
A discontinuous Galerkin conservative level set scheme for interface capturing in multiphase flows
Owkes, Mark Desjardins, Olivier
2013-09-15
The accurate conservative level set (ACLS) method of Desjardins et al. [O. Desjardins, V. Moureau, H. Pitsch, An accurate conservative level set/ghost fluid method for simulating turbulent atomization, J. Comput. Phys. 227 (18) (2008) 8395–8416] is extended by using a discontinuous Galerkin (DG) discretization. DG allows for the scheme to have an arbitrarily high order of accuracy with the smallest possible computational stencil resulting in an accurate method with good parallel scaling. This work includes a DG implementation of the level set transport equation, which moves the level set with the flow field velocity, and a DG implementation of the reinitialization equation, which is used to maintain the shape of the level set profile to promote good mass conservation. A near second order converging interface curvature is obtained by following a height function methodology (common amongst volume of fluid schemes) in the context of the conservative level set. Various numerical experiments are conducted to test the properties of the method and show excellent results, even on coarse meshes. The tests include Zalesak’s disk, two-dimensional deformation of a circle, time evolution of a standing wave, and a study of the Kelvin–Helmholtz instability. Finally, this novel methodology is employed to simulate the break-up of a turbulent liquid jet.
NASA Astrophysics Data System (ADS)
Redapangu, Prasanna; Vanka, Pratap; Sahu, Kirti
2012-11-01
The pressure-driven displacement of two immiscible fluids in an inclined channel in the presence of viscosity and density gradients is investigated using a multiphase lattice Boltzmann approach. The effects of viscosity ratio, Atwood number, Froude number, capillary number and channel inclination are investigated through flow structures, front velocities and fluid displacement rates. Our results indicate that increasing viscosity ratio between the fluids decreases the displacement rate. We observe that increasing the viscosity ratio has a non-monotonic effect on the velocity of the leading front; however, the velocity of the trailing edge decreases with increasing the viscosity ratio. The displacement rate of the thin-layers formed at the later times of the displacement process increases with increasing the angle of inclination because of the increase in the intensity of the interfacial instabilities. Our results also predict the front velocity of the lock-exchange flow of two immiscible fluids in the exchange flow dominated regime. Department of Science and Technology, India.
NASA Astrophysics Data System (ADS)
Ye, Y. J.; Chen, J. H.; Ma, Y. G.; Zhang, S.; Zhong, C.
2016-04-01
Within the framework of a multiphase transport model (AMPT), the ϕ -meson production is studied in d +Au collisions at √{sNN}=200 GeV in the forward (d -going, 1.2
S. Dartevelle
2005-09-05
The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of
Multiphase Fluid Flow in Deformable Variable-Aperture Fractures - Final Report
Detwiler, Russell
2014-04-30
}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high-‐ resolution mechanistic model that couples elastic deformation of contacts and aperture-‐dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.
Numerical Simulation of Liquid Sheet Instability in a Multiphase Flow Domain
NASA Astrophysics Data System (ADS)
Souvick, Chatterjee; Mahapatra, Soumik; Mukhopadhyay, Achintya; Sen, Swarnendu
2013-11-01
Instability of a liquid sheet leading to the formation of droplets is a classical problem finding a wide range of multi-scale applications like gas turbine engines and inkjet printers. Numerical simulation of such a phenomenon is crucial because of its cost and time effective nature. In this work, the hydrodynamics in a custom designed nozzle is analyzed using Volume of Fluid method in Ansys Fluent. This innovative nozzle design includes an annular liquid sheet sandwiched between two air streams such that the inner air channel is recessed to a certain length. Such a recession leads to interaction between the two multiphase streams inside the atomizer resulting to an increased shear layer instability which augments the disintegration process. The numerical technique employed in this work couples Navier Stokes equation with VoF surface tracking technique. A parametric study with the hydrodynamic parameters involved in the problem, as well as the recession length, is performed while monitoring the axial and tangential exit velocities along with the spray cone angle. Comparison between the full 3D model and two different equivalent 2D axisymmetric models have been shown. The two axisymmetric models vary based on conserving different physical parameters between the 2D and 3D cases.
Lan, Wenjie; Li, Shaowei; Lu, Yangcheng; Xu, Jianhong; Luo, Guangsheng
2009-11-21
This article describes a simple method for the fabrication of microscale polymer tubes. A double co-axial microchannel device was designed and fabricated. Liquid/liquid/liquid multiphase co-laminar flows were realized in a microchannel by choosing working systems. Three kinds of polymeric solutions were selected as the middle phase while a polyethyleneglycol aqueous solution was used as the inner and outer phases in the microfluidic process. The outer and inner phases acted as extractants of the polymer solvent. A stable double core-annular flow was formed by optimizing the composition of the outer and inner phases, and highly uniform tubes were successfully fabricated by the solvent extraction method. Both the outer diameter of the tubes and the wall thickness could be adjusted from 300 microm to 900 microm and from 40 microm to 150 microm by varying the flux of the fluids and the rolling velocity of the collection roller. In addition, titanium dioxide (TiO2) nanoparticles were successfully encapsulated into the polymer tubes with this technique. This technology has the potential to generate hollow fiber membranes for applications in separation and reaction processes. PMID:19865737
NASA Astrophysics Data System (ADS)
Wildenschild, D.; Porter, M. L.
2009-04-01
Significant strides have been made in recent years in imaging fluid flow in porous media using x-ray computerized microtomography (CMT) with 1-20 micron resolution; however, difficulties remain in combining representative sample sizes with optimal image resolution and data quality; and in precise quantification of the variables of interest. Tomographic imaging was for many years focused on volume rendering and the more qualitative analyses necessary for rapid assessment of the state of a patient's health. In recent years, many highly quantitative CMT-based studies of fluid flow processes in porous media have been reported; however, many of these analyses are made difficult by the complexities in processing the resulting grey-scale data into reliable applicable information such as pore network structures, phase saturations, interfacial areas, and curvatures. Yet, relatively few rigorous tests of these analysis tools have been reported so far. The work presented here was designed to evaluate the effect of image resolution and quality, as well as the validity of segmentation and surface generation algorithms as they were applied to CMT images of (1) a high-precision glass bead pack and (2) gas-fluid configurations in a number of glass capillary tubes. Interfacial areas calculated with various algorithms were compared to actual interfacial geometries and we found very good agreement between actual and measured surface and interfacial areas. (The test images used are available for download at the website listed below). http://cbee.oregonstate.edu/research/multiphase_data/index.html
A Phase-Field Method for Simulating Fluid-Structure Interactions in Multi-Phase Flow
NASA Astrophysics Data System (ADS)
Zheng, Xiaoning; Karniadakis, George
2015-11-01
We investigate two-phase flow instabilities by numerical simulations of fluid structure interactions in two-phase flow. The first case is a flexible pipe conveying two fluids, which exhibits self-sustained oscillations at high Reynolds number and tension related parameter. Well-defined two-phase flow patterns, i.e., slug flow and bubbly flow, are observed. The second case is external two-phase cross flow past a circular cylinder, which induces a Kelvin-Helmholtz instability due to density stratification. We solve the Navier-Stokes equation coupled with the Cahn-Hilliard equation and the structure equation in an arbitrary Lagrangian Eulerian (ALE) framework. For the fluid solver, a spectral/hp element method is employed for spatial discretization and backward differentiation for time discretization. For the structure solver, a Galerkin method is used in Lagrangian coordinates for spatial discretization and the Newmark- β scheme for time discretization.
Anisotropic flow in transport + hydrodynamics hybrid approaches
NASA Astrophysics Data System (ADS)
Petersen, Hannah
2014-12-01
This contribution to the focus issue covers anisotropic flow in hybrid approaches. The historical development of hybrid approaches and their impact on the interpretation of flow measurements is reviewed. The major ingredients of a hybrid approach and the transition criteria between transport and hydrodynamics are discussed. The results for anisotropic flow in (event-by-event) hybrid approaches are presented. Some hybrid approaches rely on hadronic transport for the late stages for the reaction (so called afterburner) and others employ transport approaches for the early non-equilibrium evolution. In addition, there are ‘full’ hybrid calculations where a fluid evolution is dynamically embedded in a transport simulation. After demonstrating the success of hybrid approaches at high Relativistic Heavy Ion Collider and Large Hadron Collider energies, existing hybrid caluclations for collective flow observables at lower beam energies are discussed and remaining challenges outlined.
Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Yen-Sen
1995-01-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of
Advanced multi-phase flow CFD model development for solid rocket motor flowfield analysis
NASA Astrophysics Data System (ADS)
Liaw, Paul; Chen, Yen-Sen
1995-03-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of
SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION
B.W. ARNOLD
2004-10-27
The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.
Characterization of non-Darcy multiphase flow in petroleum bearing formation. Final report
Evans, R.D.; Civan, F.
1994-04-01
The productive capacity of oil and gas bearing rocks depends on various parameters characterizing the flow conditions in the reservoir. Among these, the non-Darcy flow coefficient specifically plays an important role for cases involving fluid accelerations or decelerations around the well bore and in the reservoir. However, most reservoir simulators used for reservoir management assume Darcy flow, and yield misleading results causing an incorrect analysis or projection of reservoir performance. A few attempts have been made to incorporate non-Darcy effect in reservoir models but many of these lack a reliable accuracy since they use simplified correlations which ignore the effects of the variation of the fluid and formation conditions. The present study developed an accurate non-Darcy flow model that will lead to more accurate reservoir management decisions. First, a rigorous analysis and derivation of the porous media mass and momentum equations are presented considering the non-Darcy flow behavior. Second, steady-state and unsteady-state methods for simultaneous determination of relative permeability, capillary pressure, and interfacial drag during non-Darcy flow in laboratory cores are derived. This work results in several algebraic, integral, and differential interpretation methods. Third, correlations for the non-Darcy flow coefficient are investigated and improved. The study presented in this report provides new insights and formulations in the description of non-Darcy flow in oil and gas bearing formations.
The effect of drag reducing agents on corrosion in multiphase flow
Kang, C.; Jepson, W.P.; Gopal, M.
1998-12-31
The effect of drag reducing agents (DRA) on corrosion and flow regime has been studied in a 10 cm diameter, 18 m long plexiglass flow loop in 50% oil/water mixtures with carbon dioxide gas. Superficial liquid velocities between 0.1 and 1 m/s and gas velocities between 1 and 10 m/s respectively were studied. The corrosion rate was measured for stratified, slug and annular flow. The height of liquid film, slug velocity, and slug frequency were obtained from the video image using a super-VHS camera. The DRA effectiveness was examined for DRA concentrations between 0 and 75 ppm. Flow regimes maps were determined with 25 and 75 ppm DRA. These results were compared to the flow regime map with no DRA. The results indicate that the transition from stratified to slug flow is obtained at a higher superficial liquid velocities. This resulted in much lower corrosion rates due to the elimination of the highly turbulent slugs. The corrosion rate for stratified and annular flow did not generally reduce with adding DRA concentrations. For slug flow, the slug frequency decreased with the addition of 50 ppm DRA. This led to decrease of corrosion rate by almost 50%
Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-11-01
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Simulations of Subsurface Flow and Transport at the Pore and Continuum Scales
Scheibe, Timothy D.; Palmer, Bruce J.; Schuchardt, Karen L.; Fang, Yilin; Tartakovsky, Alexandre M.
2010-07-15
This paper will present recent results of simulations of subsurface and flow using both pore scale and grid-based continuum methods. Large scale simulations of pore scale flow and transport using the Smoothed Particle Hydrodynamic method (SPH) using more than 14 million particles have been performed. These simulations are focused on tracking the behavior of contaminants and multiphase fluids in the subsurface. Simulations are also being performed at the field scale using the Subsurface Transport Over Multiple Phases code (STOMP) using a novel, highly-resolved synthetic model of a braided channel belt deposit to analyze the large scale transport of material in a deposit with multiscale heterogeneity. Both sets of simulations are being performed with codes that have been developed using component-based software engineering principles that result in highly modular codes with few dependencies between components.
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
Multiphase flow of the late Wisconsinan Cordilleran ice sheet in Western Canada
Stumpf, A.J.; Broster, B.E.; Levson, V.M.
2000-01-01
In central British Columbia, ice flow during the late Wisconsinan Fraser glaciation (ca. 25-10 ka) occurred in three phases. The ice expansion phase occurred during an extended period when glaciers flowed westward to the Pacific Ocean and east-southeastward onto the Nechako Plateau from ice centers in the Skeena, Hazelton, Coast, and Omineca Mountains. Initially, glacier flow was confined by topography along major valleys, but eventually piedmont and montane glaciers coalesced to form an integrated glacier system, the Cordilleran ice sheet. In the maximum phase, a Cordilleran ice divide developed over the Nechako Plateau to 300 km inland from the Pacific coast. At this time, the surface of the ice sheet extended well above 2500 m above sea level, and flowed westward over the Skeena, Hazelton, and Coast Mountains onto the continental shelf, and eastward across the Rocky Mountains into Alberta. In the late glacial phase, a rapid rise of the equilibrium line caused ice lobes to stagnate in valleys, and restricted accumulation centers to high mountains. Discordant directions in ice flow are attributed to fluctuations of the ice divide representing changes in the location of accumulation centers and ice thickness. Ice centers probably shifted in response to climate, irregular growth in the ice sheet, rapid calving, ice streaming, and drainage of proglacial and subglacial water bodies. Crosscutting ice-flow indicators and preservation of early (valley parallel) flow features in areas exposed to later (cross-valley) glacier erosion indicate that the ice expansion phase was the most erosive and protracted event.
Ashton, S.L.; Cutmore, N.G.; Roach, G.J.; Watt, J.S.; Zastawny, H.W.; McEwan, A.J.
1994-12-31
A prototype microwave and gamma-ray MFM has been developed for measurement of oil, water and gas flowrates on production pipelines and has been successfully trialed at the Thevenard island oil production facility. The microwave and gamma-ray MFM determined the oil and water flow rates with errors of 5.4 and 5.9% relative respectively for the wide range of wells and flow conditions during the trial period. A prototype non-intrusive microwave MFM is being developed for measurement of oil, water and gas flow rates on production pipelines. The microwave MFM will be trialed on the West Kingfish platform in Bass Strait in late 1994.
NASA Astrophysics Data System (ADS)
Gerhard, J. I.; Grant, G. P.; Kueper, B. H.
2005-12-01
Following a dense, nonaqueous phase liquid (DNAPL) release to the subsurface, little is known about the rate of DNAPL migration and the time required for its eventual immobilization. Numerical simulations can fill this knowledge gap on the condition that the employed models are sufficiently validated; however, to date, validation for transient DNAPL migration has been limited to one-dimensional homogenous systems (Gerhard and Kueper, 2003). This research focuses on spatially and temporally validating the multiphase numerical model DNAPL-3D (and its associated constitutive relationships) for the infiltration, redistribution, and immobilization of a transient, fixed-volume DNAPL release in two-dimensional heterogeneous porous media. For this purpose, a two-dimensional bench scale experiment was conducted involving the release of 1,2-dichloroethane into an initially water saturated, spatially correlated, randomly heterogeneous sand pack. An image capture and analysis system permitted digital tracking of the evolving DNAPL body until migration ceased. The porous media employed in the bench scale experiment consisted of six, single mesh size sand types for which hysteretic nonwetting phase (NWP) relative permeability-saturation (krN-S) relationships were independently measured at the local scale. The local scale experiments revealed a correlation between porous media mean grain diameter and the maximum value of NWP relative permeability. Predictions of the bench scale experiment with DNAPL-3D were successful in reproducing the observed, complex DNAPL release in both space and time without any model calibration. The simulations revealed that model validation is only possible when the correlation of krN-S relationships to porous media type is accounted for in the formulation of the numerical model. Field scale simulations indicate that both the volume of porous media invaded by NWP, and the time required for NWP migration to cease, will be under predicted if correlation
A study of multiphase flow in fractured porous media using a microscale lattice Boltzmann approach
Soll, W.E.; Eggert, K.E.; Grunau, D.W.; Schafer-Perini, A.L.
1994-02-01
The lattice Boltzmann technique has been shown to be an efficient and reliable approach to modeling single- and multi-fluid flow in porous media systems. The flexibility of this approach in discretizing the pore/solid space means it is particularly well suited to capturing fluid behavior, fluid-fluid interactions, and fluid-solid interactions at the scale of the individual pores. Such flexibility readily lends itself to studying processes occurring at physical interfaces, such as between a fracture and the surrounding porous matrix. Here we present pore-level simulations of fluid flow through a fracture embedded in an unsaturated matrix. Simulations are run on the massively parallel Connection Machine 5 (CM-5) using the two-fluid, two-dimensional lattice Boltzmann flow simulator developed at Los Alamos National Laboratory. We look at the effect of pressure gradients and initial matrix saturation on infiltration into the matrix and fluid flow along the fracture.
On Simulations of High-Density Ratio Flows Using Color-Gradient Multiphase Lattice Boltzmann Models
NASA Astrophysics Data System (ADS)
Huang, Haibo; Huang, Jun-Jie; Lu, Xi-Yun; Sukop, Michael C.
2013-04-01
Originally, the color-gradient model proposed by Rothman and Keller (R-K) was unable to simulate immiscible two-phase flows with different densities. Later, a revised version of the R-K model was proposed by Grunau et al. [D. Grunau, S. Chen and K. Eggert, Phys. Fluids A: Fluid Dyn. 5, 2557 (1993).] and claimed it was able to simulate two-phase flows with high-density contrast. Some studies investigate high-density contrast two-phase flows using this revised R-K model but they are mainly focused on the stationary spherical droplet and bubble cases. Through theoretical analysis of the model, we found that in the recovered Navier-Stokes (N-S) equations which are derived from the R-K model, there are unwanted extra terms. These terms disappear for simulations of two-phase flows with identical densities, so the correct N-S equations are fully recovered. Hence, the R-K model is able to give accurate results for flows with identical densities. However, the unwanted terms may affect the accuracy of simulations significantly when the densities of the two fluids are different. For the simulations of spherical bubbles and droplets immersed in another fluid (where the densities of the two fluids are different), the extra terms may not be important and hence, in terms of surface tension, accurate results can be obtained. However, generally speaking, the unwanted term may be significant in many flows and the R-K model is unable to obtain the correct results due to the effect of the extra terms. Through numerical simulations of parallel two-phase flows in a channel, we confirm that the R-K model is not appropriate for general two-phase flows with different densities. A scheme to eliminate the unwanted terms is also proposed and the scheme works well for cases of density ratios less than 10.
Lawrence Livermore National Laboratory capabilities in multiphase dynamics
McCallen, R.C.; Kang, Sang-Wook
1996-04-09
The computer codes at LLNL with capabilities for numerical analysis for multiphase flow; phenomenology and constitutive theory and modeling; advanced diagnostics, advanced test beds, facilities, and data bases; and multiphase flow applications are listed, with brief descriptions.
NASA Astrophysics Data System (ADS)
Abushaikha, Ahmad S.; Blunt, Martin J.; Gosselin, Olivier R.; Pain, Christopher C.; Jackson, Matthew D.
2015-10-01
We present a new control volume finite element method that improves the modelling of multi-phase fluid flow in highly heterogeneous and fractured reservoirs, called the Interface Control Volume Finite Element (ICVFE) method. The method drastically decreases the smearing effects in other CVFE methods, while being mass conservative and numerically consistent. The pressure is computed at the interfaces of elements, and the control volumes are constructed around them, instead of at the elements' vertices. This assures that a control volume straddles, at most, two elements, which decreases the fluid smearing between neighbouring elements when large variations in their material properties are present. Lowest order Raviart-Thomas vectorial basis functions are used for the pressure calculation and first-order Courant basis functions are used to compute fluxes. The method is a combination of Mixed Hybrid Finite Element (MHFE) and CVFE methods. Its accuracy and convergence are tested using three dimensional tetrahedron elements to represent heterogeneous reservoirs. Our new approach is shown to be more accurate than current CVFE methods.
Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.
Rinehart, Alex; Petrusak, Robin; Heath, Jason E.; Dewers, Thomas A.; Yoon, Hongkyu
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.
NASA Astrophysics Data System (ADS)
Cusini, Matteo; Lukyanov, Alexander A.; Natvig, Jostein; Hajibeygi, Hadi
2015-10-01
We develop the first multiscale method for fully implicit (FIM) simulations of multiphase flow in porous media, namely CPR-MS method. Built on the FIM Jacobian matrix, the pressure system is obtained by employing a Constrained Pressure Residual (CPR) operator. Multiscale Finite Element (MSFE) and Finite Volume (MSFV) methods are then formulated algebraically to obtain efficient and accurate solutions of this pressure equation. The multiscale prediction stage (first-stage) is coupled with a corrector stage (second-stage) employed on the full system residual. The converged solution is enhanced through outer GMRES iterations preconditioned by these first and second stage operators. While the second-stage FIM stage is solved using a classical iterative solver, the multiscale stage is investigated in full detail. Several choices for fine-scale pre- and post-smoothing along with different choices of coarse-scale solvers are considered for a range of heterogeneous three-dimensional cases with capillarity and three-phase systems. The CPR-MS method is the first of its kind, and extends the applicability of the so-far developed multiscale methods (both MSFE and MSFV) to displacements with strong coupling terms.
J. Rutqvist; C.F. Tsang; Y. Tsang
2005-05-17
A numerical simulation of coupled multiphase fluid flow, heat transfer, and mechanical deformation was carried out to study coupled thermal-hydrological-mechanical (THM) processes at the Yucca Mountain Drift Scale Test (DST) and for validation of a coupled THM numerical simulator. The ability of the numerical simulator to model relevant coupled THM processes at the DST was evaluated by comparison of numerical results to in situ measurements of temperature, water saturation, displacement, and fracture permeability. Of particular relevance for coupled THM processes are thermally induced rock-mass stress and deformations, with associated changes in fracture aperture and fractured rock permeability. Thermally induced rock-mass deformation and accompanying changes in fracture permeability were reasonably well predicted using a continuum elastic model, although some individual measurements of displacement and permeability indicate inelastic mechanical responses. It is concluded that fracture closure/opening caused by a change in thermally induced normal stress across fractures is an important mechanism for changes in intrinsic fracture permeability at the DST, whereas fracture shear dilation appears to be less significant. Observed and predicted maximum permeability changes at the DST are within one order of magnitude. These data are important for bounding model predictions of potential changes in rock-mass permeability at a future repository in Yucca Mountain.
Ray A. Berry
2005-07-01
At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or multi-material flows. Some examples include: Reactor coolant flows Molten corium flows Dynamic compaction of metal powders Spray forming and thermal plasma spraying Plasma quench reactor Subsurface flows, particularly in the vadose zone Internal flows within fuel cells Black liquor atomization and combustion Wheat-chaff classification in combine harvesters Generation IV pebble bed, high temperature gas reactor The complexity of these flows dictates that they be examined in an averaged sense. Typically one would begin with known (or at least postulated) microscopic flow relations that hold on the “small” scale. These include continuum level conservation of mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or macroscopic conservation equations and entropy inequalities are then obtained from the microscopic equations through suitable averaging procedures. At this stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To render the evolutionary material flow balance system unique, constitutive equations and phase or material interaction relations are introduced from experimental observation, or by postulation, through strict enforcement of the constraints or restrictions resulting from the averaged entropy inequalities. These averaged equations form the governing equation system for the dynamic evolution of these mixture flows. Most commonly, the averaging technique utilized is either volume or time averaging or a combination of the two. The flow restrictions required for volume and time averaging to be valid can be severe, and violations of these restrictions are often found. A more general, less restrictive (and far less commonly used) type of averaging known
NASA Astrophysics Data System (ADS)
Jung, B.; Garven, G.; Boles, J. R.
2011-12-01
Major fault systems play a first-order role in controlling fluid migration in the Earth's crust, and also in the genesis/preservation of hydrocarbon reservoirs in young sedimentary basins undergoing deformation, and therefore understanding the geohydrology of faults is essential for the successful exploration of energy resources. For actively deforming systems like the Santa Barbara Basin and Los Angeles Basin, we have found it useful to develop computational geohydrologic models to study the various coupled and nonlinear processes affecting multiphase fluid migration, including relative permeability, anisotropy, heterogeneity, capillarity, pore pressure, and phase saturation that affect hydrocarbon mobility within fault systems and to search the possible hydrogeologic conditions that enable the natural sequestration of prolific hydrocarbon reservoirs in these young basins. Subsurface geology, reservoir data (fluid pressure-temperature-chemistry), structural reconstructions, and seismic profiles provide important constraints for model geometry and parameter testing, and provide critical insight on how large-scale faults and aquifer networks influence the distribution and the hydrodynamics of liquid and gas-phase hydrocarbon migration. For example, pore pressure changes at a methane seepage site on the seafloor have been carefully analyzed to estimate large-scale fault permeability, which helps to constrain basin-scale natural gas migration models for the Santa Barbara Basin. We have developed our own 2-D multiphase finite element/finite IMPES numerical model, and successfully modeled hydrocarbon gas/liquid movement for intensely faulted and heterogeneous basin profiles of the Los Angeles Basin. Our simulations suggest that hydrocarbon reservoirs that are today aligned with the Newport-Inglewood Fault Zone were formed by massive hydrocarbon flows from deeply buried source beds in the central synclinal region during post-Miocene time. Fault permeability, capillarity
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Benchmarking transport solvers for fracture flow problems
NASA Astrophysics Data System (ADS)
Olkiewicz, Piotr; Dabrowski, Marcin
2015-04-01
Fracture flow may dominate in rocks with low porosity and it can accompany both industrial and natural processes. Typical examples of such processes are natural flows in crystalline rocks and industrial flows in geothermal systems or hydraulic fracturing. Fracture flow provides an important mechanism for transporting mass and energy. For example, geothermal energy is primarily transported by the flow of the heated water or steam rather than by the thermal diffusion. The geometry of the fracture network and the distribution of the mean apertures of individual fractures are the key parameters with regard to the fracture network transmissivity. Transport in fractures can occur through the combination of advection and diffusion processes like in the case of dissolved chemical components. The local distribution of the fracture aperture may play an important role for both flow and transport processes. In this work, we benchmark various numerical solvers for flow and transport processes in a single fracture in 2D and 3D. Fracture aperture distributions are generated by a number of synthetic methods. We examine a single-phase flow of an incompressible viscous Newtonian fluid in the low Reynolds number limit. Periodic boundary conditions are used and a pressure difference is imposed in the background. The velocity field is primarly found using the Stokes equations. We systematically compare the obtained velocity field to the results obtained by solving the Reynolds equation. This allows us to examine the impact of the aperture distribution on the permeability of the medium and the local velocity distribution for two different mathematical descriptions of the fracture flow. Furthermore, we analyse the impact of aperture distribution on the front characteristics such as the standard deviation and the fractal dimension for systems in 2D and 3D.
NASA Astrophysics Data System (ADS)
Hisamoto, Hideaki; Horiuchi, Takayuki; Hibara, Akihide; Tokeshi, Manabu; Kitamori, Takehiko
A new fluid flow inside the microchannel was successfully developed. The flow created here involves segmented flow injection of plural organic phases into a microchannel followed by contact with a single aqueous phase to form stable organic-aqueous two-layer flow inside the microchannel. Fundamental study on the developed flow inside the microchannel was performed by monitoring the dye-doped segmented organic phases by thermal lens microscopy (TLM). Excellent repeatability and very small injection volume in developing segmented flow were realized. The new fluid flow created here is expected to allow us multi-ion sensing, which is not easily demonstrated by conventional ion sensor technology using a solvent polymeric membrane, by combining with neutral ionophore-based ion pair extraction using plural numbers of organic phases containing different ionophore molecules.
NASA Astrophysics Data System (ADS)
Cerminara, Matteo; Esposti Ongaro, Tomaso; Carlo Berselli, Luigi
2014-05-01
We have developed a compressible multiphase flow model to simulate the three-dimensional dynamics of turbulent volcanic ash plumes. The model describes the eruptive mixture as a polydisperse fluid, composed of different types of gases and particles, treated as interpenetrating Eulerian phases. Solid phases represent the discrete ash classes into which the total granulometric spectrum is discretized, and can differ by size and density. The model is designed to quickly and accurately resolve important physical phenomena in the dynamics of volcanic ash plumes. In particular, it can simulate turbulent mixing (driving atmospheric entrainment and controlling the heat transfer), thermal expansion (controlling the plume buoyancy), the interaction between solid particles and volcanic gas (including kinetic non-equilibrium effects) and the effects of compressibility (over-pressured eruptions and infrasonic measurements). The model is based on the turbulent dispersed multiphase flow theory for dilute flows (volume concentration <0.001, implying that averaged inter-particle distance is larger than 10 diameters) where particle collisions are neglected. Moreover, in order to speed up the code without losing accuracy, we make the hypothesis of fine particles (Stokes number <0.2 , i.e., volcanic ash particles finer then a millimeter), so that we are able to consider non-equilibrium effects only at the first order. We adopt LES formalism (which is preferable in transient regimes) for compressible flows to model the non-linear coupling between turbulent scales and the effect of sub-grid turbulence on the large-scale dynamics. A three-dimensional numerical code has been developed basing on the OpenFOAM computational framework, a CFD open source parallel software package. Numerical benchmarks demonstrate that the model is able to capture important non-equilibrium phenomena in gas-particle mixtures, such as particle clustering and ejection from large-eddy turbulent structures, as well
NASA Astrophysics Data System (ADS)
Fan, Xiaofeng; Wang, Jiangfeng
2016-06-01
The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.
Multiphase turbulence in vertical wall-bounded collisional gas-particle flows
NASA Astrophysics Data System (ADS)
Fox, Rodney O.; Capecelatro, Jesse; Desjardins, Olivier
2014-11-01
Wall-bounded particle-laden flows are common in many environmental and industrial applications, and are often turbulent. In vertical flows, strong coupling between the phases leads to the spontaneous generation of dense clusters that fall due to gravity at the walls, while dilute suspensions of particles rise in the central region. Sustained volume fraction and velocity fluctuations caused by the clusters result in the production of fluid-phase turbulent kinetic energy, referred to as cluster-induced turbulence (CIT). To better understand the nature of CIT in wall-bounded flows, Eulerian-Lagrangian simulations of statistically stationary three-dimensional gas-solid flows in vertical pipes are performed. To extract useful information consistent with Eulerian turbulence models, a separation of length scales is introduced to decompose correlated and uncorrelated granular motion. To accomplish this, an adaptive spatial filter is employed on the particle data with an averaging volume that varies with the local particle-phase volume fraction. Radial profiles of turbulence statistics are generated from the Eulerian-Lagrangian results. Details on the nature of the turbulence are described, as well as the challenges they present to turbulence modeling. Marie-Curie Senior Fellow, Ecole Centrale Paris.
Deterministic particle transport in a ratchet flow
NASA Astrophysics Data System (ADS)
Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina
2016-01-01
This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.
Small scale laboratory studies of flow and transport phenonmena in pores and fractures, Phase II
Wilson, J.L.
1993-04-01
Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validateconcepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorded on film and video tape. This technique is coupled with related column studies. Specifically we're examining multiphase flow behavior of relevance, for example, to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); colloid movement, attachment and detachment in the presence of fluid-fluid interfaces; bacteria colonization and motility in porous systems; and heterogeneity effects on multi-phase flow, colloid movement and bacteria behavior.
Process Modeling of Flow, Transport, and Biodegradation in Landfill Bioreactors
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Borglin, S. E.; Hazen, T. C.
2001-12-01
The need to control gas and leachate production and minimize refuse volume has motivated laboratory experiments and model development for design and assessment of bioremediation treatment processes. In parallel with landfill bioreactor laboratory experiments, we have developed T2LBM, a module for the TOUGH2 multiphase flow and transport simulator that implements a Landfill Bioreactor Model. T2LBM provides simulation capability for the processes of aerobic or anaerobic biodegradation of municipal solid waste and the associated three-dimensional flow and transport of gas, liquid, and heat through the refuse mass. T2LBM considers the components water, acetic acid, carbon dioxide, methane, oxygen, and nitrogen in aqueous and gas phases, with partitioning specified by temperature-dependent Henry's coefficients. T2LBM incorporates a Monod kinetic rate law for the exothermic biodegradation of acetic acid in the aqueous phase by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. Methane and carbon dioxide generation due to biodegradation with corresponding thermal effects are modeled. Acetic acid is considered a proxy for all biodegradable substrates in the refuse. Aerobic and anaerobic microbes are assumed to be immobile and not limited by nutrients in their growth. Although a simplification of complex landfill processes, T2LBM shows reasonable agreement to published laboratory experiments of biodegradation and gas production depending on the choice of numerous input parameters. Simulations of the landfill bioreactor laboratory experiments show that the mechanistic approach of T2LBM can be used to model bioremediation assessment indicators such as oxygen consumption associated with respiration tests. This work was supported by Laboratory Directed Research and Development Funds at Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC03-76SF00098.
NASA Astrophysics Data System (ADS)
Bin Said, K.; Meribout, M.
2015-09-01
In this paper, submillimeter three dimensional tomography imaging of paramagnetic contaminants flow rate in multiphase flow pipelines is presented. The device, which is based on Magnetic Particle Imaging (MPI), consists of an array of twelve coils and a pair of permanent magnets and is not influenced with the other phases that constitute the crude oil (e.g. oil, water, sand, and gas) and which are mainly diamagnetic materials. The concentration of the paramagnetic particles can be measured in a three dimensional volumetric space with high spatial and temporal sensitivities which are proportional to the strength of the applied magnetic field. This is also influenced by the size and distribution of the particles and the anisotropy of the permanent magnet. To increase the sensitivity and improve the spatioencoding field, a two dimensional Linear Field Scanning (LFS) technique coupled with a two dimensional excitation field is proposed. The results demonstrate that the technique would constitute a breakthrough in the area of solid flow measurements and imaging.
NASA Astrophysics Data System (ADS)
Tartakovsky, Alexandre M.; Panchenko, Alexander
2016-01-01
We present a novel formulation of the Pairwise Force Smoothed Particle Hydrodynamics (PF-SPH) model and use it to simulate two- and three-phase flows in bounded domains. In the PF-SPH model, the Navier-Stokes equations are discretized with the Smoothed Particle Hydrodynamics (SPH) method, and the Young-Laplace boundary condition at the fluid-fluid interface and the Young boundary condition at the fluid-fluid-solid interface are replaced with pairwise forces added into the Navier-Stokes equations. We derive a relationship between the parameters in the pairwise forces and the surface tension and static contact angle. Next, we demonstrate the model's accuracy under static and dynamic conditions. Finally, we use the Pf-SPH model to simulate three phase flow in a porous medium.
Multiphase Flow Modeling of Slag Entrainment During Ladle Change-Over Operation
NASA Astrophysics Data System (ADS)
Morales, Rodolfo D.; Garcia-Hernandez, Saul; Barreto, Jose de Jesus; Ceballos-Huerta, Ariana; Calderon-Ramos, Ismael; Gutierrez, Enif
2016-08-01
Steel transfer from the ladle to a single-strand tundish using a conventional ladle shroud (CLS), and a dissipative ladle shroud (DLS) is studied during the transient period of ladle change-over operation. Fluid velocities and fluid flow turbulence statistics during this unsteady operation were recorded by an ultrasound velocimetry probe in a 1/3 scale water-oil-air analog model (to emulate steel-slag-air system). Reynolds stress model and volume of fluid model allow the tracking of water-oil, water-air, and oil-air interfaces during this operation. Velocity measurements indicate a very high turbulence with the formation of a water-air bubbles-oil emulsion. Flow turbulence and the intensity of the emulsification decrease considerably due to an efficient dissipation of the turbulent kinetic energy employing the DLS instead of the CLS. The modeling results indicate that DLS is widely recommended to substitute flow control devices to improve the fluid dynamics of liquid steel during this transient operation.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem
Abas, Aizat; Mokhtar, N. Hafizah; Ishak, M. H. H.; Abdullah, M. Z.; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
Multiphase Flow Modeling of Slag Entrainment During Ladle Change-Over Operation
NASA Astrophysics Data System (ADS)
Morales, Rodolfo D.; Garcia-Hernandez, Saul; Barreto, Jose de Jesus; Ceballos-Huerta, Ariana; Calderon-Ramos, Ismael; Gutierrez, Enif
2016-04-01
Steel transfer from the ladle to a single-strand tundish using a conventional ladle shroud (CLS), and a dissipative ladle shroud (DLS) is studied during the transient period of ladle change-over operation. Fluid velocities and fluid flow turbulence statistics during this unsteady operation were recorded by an ultrasound velocimetry probe in a 1/3 scale water-oil-air analog model (to emulate steel-slag-air system). Reynolds stress model and volume of fluid model allow the tracking of water-oil, water-air, and oil-air interfaces during this operation. Velocity measurements indicate a very high turbulence with the formation of a water-air bubbles-oil emulsion. Flow turbulence and the intensity of the emulsification decrease considerably due to an efficient dissipation of the turbulent kinetic energy employing the DLS instead of the CLS. The modeling results indicate that DLS is widely recommended to substitute flow control devices to improve the fluid dynamics of liquid steel during this transient operation.
Lattice Boltzmann Model of 3D Multiphase Flow in Artery Bifurcation Aneurysm Problem.
Abas, Aizat; Mokhtar, N Hafizah; Ishak, M H H; Abdullah, M Z; Ho Tian, Ang
2016-01-01
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required. PMID:27239221
Symposium on unsaturated flow and transport modeling
Arnold, E.M.; Gee, G.W.; Nelson, R.W.
1982-09-01
This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.
NASA Astrophysics Data System (ADS)
Miller, Cass T.; Gray, William G.
2008-03-01
This work is the fourth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. The general TCAT framework and the mathematical foundation presented in previous works are built upon by formulating macroscale models for conservation of mass, momentum, and energy, and the balance of entropy for a species in a phase volume, interface, and common curve. In addition, classical irreversible thermodynamic relations for species in entities are averaged from the microscale to the macroscale. Finally, we comment on alternative approaches that can be used to connect species and entity conservation equations to a constrained system entropy inequality, which is a key component of the TCAT approach. The formulations detailed in this work can be built upon to develop models for species transport and reactions in a variety of multiphase systems.
NASA Astrophysics Data System (ADS)
Yuan, Jinliang; Yu, Jong-Sung; Sundén, Bengt
2015-03-01
During recent years intensive research activities involving both experimental and modeling approaches have appeared for different aspects of Lithium-air (Li-air) battery. Multi-phase transport phenomena including dissolved oxygen and lithium ions (Li+) in the liquid electrolyte, as well as electrons in the solid materials, are strongly coupled with the porous structures and various reactions, particularly the solid product grown in the porous cathode during battery discharge. Understanding the mechanisms of transport phenomena and accurate evaluation of effective transport properties are significant for improving the battery capacities and design, especially at high rate conditions. In this paper, the transport governing equations commonly used for macroscopic continuum models at porous-average level are outlined and highlighted, with a purpose to provide a general overview of the validity and the limitation of these approaches. The most often used models in the open literature are reviewed and discussed focusing on the effective properties involving tortuosity factors, solid product morphologies, as well as effects on the void space clogging, surface area reduction and passivation. Comments and suggestions are also provided for better understanding of multi-phase transport phenomena and implementation of the detailed models for solid product generation and morphology growth in Li-air battery cathodes.
Modeling Unsaturated Flow and Transport Processes in Fractured Tuffs of Yucca Mountain
Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.
2003-07-15
This paper presents a field modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository for storing high-level radioactive waste. The 500 to 700 meter thick unsaturated zone of Yucca Mountain consists of highly heterogeneous layers of anisotropic, fractured ash flow and air fall tuffs. Characterization of fluid flow and heat transfer through such a system has been a challenge due to the heterogeneities prevalent on various scales. Quantitative evaluation of water, gas, and heat flow by means of numerical simulation is essential for design and performance assessment of the repository. A three-dimensional numerical flow and transport model will be discussed. The model has been calibrated against field-measured data and takes into account the coupled processes of unsaturated flow and tracer transport in the highly heterogeneous, unsaturated fractured porous rock. The modeling approach of the model is based on a dual-continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. As application examples, effects of current and future climates on the unsaturated zone processes are evaluated to aid in the assessment of the proposed repository's system performance.
Error handling strategies in multiphase inverse modeling
Finsterle, S.; Zhang, Y.
2010-12-01
Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.
Miller, J.D.
1994-10-18
Air sparged hydrocyclone (ASH) flotation is a new particle separation technology that has been developed at the University of Utah. This technology combines froth flotation principles with the flow characteristics of a hydrocyclone such that the ASH system can perform flotation separations in less than a second. This feature provides the ASH with a high specific capacity, 100 to 600 times greater than the specific capacity of conventional flotation machines. In an effort to develop a more detailed understanding of ASH flotation, multiphase flow characteristics of the air sparged hydrocyclone were studied and the relationship of these characteristics with flotation performance was investigated. This investigation was divided into four phases. In the first phase, the time-averaged multiphase flow characteristics of the ASH during its steady state operation were studied using x-ray computed tomography (x-ray CT). In this regard, a model system, mono-sized quartz flotation with dodecyl amine as collector, using a 2 in. diameter ASH unit (ASH-2C), was selected for study. Various flow regimes, namely, the air core, the froth phase, and the swirl layer, were identified and their spatial extent established for different experimental conditions by x-ray CT analysis. In the second phase, a detailed parametric study of flotation response of the ASH for the same system was carried out in order to establish the effect of various operating variables on flotation response. The findings of this phase of investigation were then correlated with the multiphase flow characteristics as revealed by x-ray CT in the first phase. Thus, the impact of various operating variables on the flow regimes, and hence, on flotation response was established.
NASA Astrophysics Data System (ADS)
Ye, J.; Guo, L. J.; Zhou, H. L.
2012-03-01
A type of capacitance probe performance with two brass electrodes intertwined on the outer wall of insulation pipe like a double helix is investigated numerically in this paper, which can measure water fraction in air-oil-water two or three-phase flow in oil industry. The motivation of this paper is to optimize this kind of probe to improve its electric response and spatial resolution and so a 3-D numerical simulation using finite element method is employed to evaluate the effect of electrodes configuration of this capacitance probe on measuring water fraction in horizontal pipes. The electrostatic field of the probe is preliminarily analyzed referred to stratified flow of air-water two-phase flow regime. Several parameters are considered as main variables which have an important effect on the precision of the probe, such as central angle, position angle and length of the two electrodes. From the electrostatic field analysis, lumped capacitance between the two electrodes is obtained in every different electrode geometry model and the results of each model are compared to each other in order to select a better arrangement of the electrodes that has a better response to water fraction. And by using circuit simulation method, the numerical calculated lumped capacitance is transferred to voltage output through the circuit used in the experiment. The relationship between voltage and water fraction of calculated and experimental result are compared in order to test the reasonableness of the simulation. The results show that at high water fraction, the difference between numerical and measured data agrees very well.
Turbulent momentum transport due to neoclassical flows
NASA Astrophysics Data System (ADS)
Lee, Jungpyo; Barnes, Michael; Parra, Felix I.; Belli, Emily; Candy, Jeff
2015-12-01
Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. For low collisionality, the dominant contributions come from neoclassical particle and parallel flows. For moderate collisionality, there are non-negligible contributions due to neoclassical poloidal electric field and poloidal gradients of density and temperature, which are not important for low collisionality.
Multi-dimensional, multiphase flow analysis of flamespreading in a stick propellant charge
NASA Astrophysics Data System (ADS)
Horst, A. W.; Robbins, F. W.; Gough, P. S.
1983-10-01
The interior ballistic performance of propelling charges employing stick propellant often cannot be simulated using either lumped parameter or two phase flow models. Much of this disparity is usually attributed to enhanced burning within the long perforations, perhaps accompanied by splitting or fracture of the stick to yield additional burning surface. Unusually low (or even reversed) sensitivity of performance to propellant conditioning temperature has also been noted, a factor that, if controllable, may have significant impact on the acceptability of new stick propellant charges. Moreover, the mechanisms responsible for all the above behavior may well be exploitable as high progressivity, high density (HPD) propelling charge concepts. A state of the art version of TDNOVA, a two dimensional, two phase flow interior ballistic code, is employed to probe the ignition and flamespreading processes in stick propellant charges. Calculations of flame propagation on exterior and interior surfaces, as well as pressurization profiles both within the perforations and in the interstices, are described for typical and simplified stick charge configurations. Reconcilation of predicted behavior with experimental observation is discussed, and further specific studies using TDNOVA are identified in order to verify a postulated explanation for ballistic data exhibiting an anomalous temperature sensitivity.
Paul Meakin; Zhijie Xu
2008-06-01
Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included
Akin, Serhat; Castanier, Louis M.; German, Edgar Rene Rangel
1999-08-09
The fluid transfer parameters between rock matrix and fracture are not well known. Consequently, simulation of fractured reservoirs uses, in general, very crude and unproven hypotheses such as zero capillary pressure in the fracture and/or relative permeability linear with saturation. In order to improve the understanding of flow in fractured media, an experimental study was conducted and numerical simulations of the experiments were made. A laboratory flow apparatus was built to obtain data on water- air imbibition and oil-water drainage displacements in horizontal single-fractured block systems. For this purpose, two configurations have been used: a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. During the experiments, porosity and saturation measurements along the cores have been made utilizing an X-ray Computerized Tomography (CT) scanner. Saturation images were reconstructed in 3-D to observe matrix-fracture interactions. Differences in fluid saturations and relative permeabilities caused by changes in fracture width have also been analyzed.
Ensemble Averaged Conservation Equations for Multiphase, Multi-component, and Multi-material Flows
Ray A. Berry
2003-08-01
Many important “fluid” flows involve a combination of two or more materials having different properties. The multiple phases or components often exhibit relative motion among the phases or material classes. The microscopic motions of the individual constituents are complex and the solution to the micro-level evolutionary equations is difficult. Characteristic of such flows of multi-component materials is an uncertainty in the exact locations of the particular constituents at any particular time. For most practical purposes, it is not possible to exactly predict or measure the evolution of the details of such systems, nor is it even necessary or desirable. Instead, we are usually interested in more gross features of the motion, or the “average” behavior of the system. Here we present descriptive equations that will predict the evolution of this averaged behavior. Due to the complexities of interfaces and resultant discontinuities in fluid properties, as well as from physical scaling issues, it is essential to work with averaged quantities and parameters. We begin by tightening up, or more rigorously defining, our concept of an average. There are several types of averaging. The published literature predominantly contains two types of averaging: volume averaging [Whitaker 1999, Dobran 1991] and time averaging [Ishii 1975]. Occasionally combinations of the two are used. However, we utilize a more general approach by adopting what is known as ensemble averaging.
Shear-slip analysis in multiphase fluid-flow reservoir engineeringap plications using TOUGH-FLAC
Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg,Curt; Tsang, Chin-Fu
2006-01-15
This paper describes and demonstrates the use of the coupledTOUGH-FLAC simulator for geomechanical shear-slip (failure) analysis inmultiphase fluid-flow reservoir-engineering applications. Two approachesfor analyzing shear-slip are described, one using continuum stress-strainanalysis and another using discrete fault analysis. The use of shear-slipanalysis in TOUGH-FLAC is demonstrated on application examples related toCO2 sequestration and geothermal energy extraction. In the case of CO2sequestration, the shear-slip analysis is used to evaluate maximumsustainable CO2-injection pressure under increasing reservoir pressure,whereas in the case of geothermal energy extraction, the shear-slipanalysis is used to study induced seismicity during steam productionunder decreasing reservoir pressure and temperature.
Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk
NASA Astrophysics Data System (ADS)
Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Flow and Transport Through Unsaturated Fractured Rock
NASA Astrophysics Data System (ADS)
Evans, Daniel D.; Nicholson, Thomas J.; Rasmussen, Todd C.
This monograph is an update and revision of the first edition, Geophysical Monograph 42, on ground-water flow and transport through unsaturated, fractured rock, published by AGU in 1987. The first edition evolved from a special symposium held during the American Geophysical Union fall meetings in San Francisco in December 1986. Invited and contributed papers at that AGU session, as well as panel presentations, focused on conceptualizing, measuring and modeling flow and transport through unsaturated fractured rock. As noted in the preface to the first edition, "the expanded interest in the topic (water flow and contaminant transport through unsaturated fractured rock) was initiated when the U.S. Geological Survey proposed that deep unsaturated zones in arid regions be considered in the site selection for the first high-level, commercially generated radioactive waste repository." Much of the research reported in that first edition was motivated by the U.S. Department of Energy's program to investigate Yucca Mountain at the Nevada Test Site as a possible geologic repository for commercially generated, high-level radioactive waste. As noted in the overview paper of the first edition, "characterization methods and modeling are in their developmental stage with the greatest lack of knowledge being the interaction between fracture and matrix flow and transport properties." Although the first edition of this monograph reflected the state-of-the science, laboratory and field experimental programs were novel and limited and, in general, followed from the principles and methods developed in the soil science community.
Elmroth, E.; Ding, C.; Wu, Y.-S.
1999-09-01
TOUGH2 is a widely used reservoir simulator for solving subsurface flow related problems such as nuclear waste geologic isolation, environmental remediation of soil and groundwater contamination, and geothermal reservoir engineering. It solves a set of coupled mass and energy balance equations using a finite volume method. This contribution presents a parallel version of TOUGH2. The parallel implementation first partitions the unstructured computational domain. For each time step, a set of coupled non-linear equations is solved with Newtonian iteration. In each Newtonian step, a Jacobian matrix is calculated and an ill-conditioned, non-symmetric linear system is solved using a pre-conditioned iterative solver. Communication is required for convergence tests and data exchange across partitioning borders. Parallel performance results on a Cray T3E-900 are presented for two real application problems arising in the Yucca Mountain nuclear waste site study. The execution time is reduced from 7504 seconds on two processors to 126 seconds on 128 processors for a 2D problem involving 52,752 equations. For a larger 3D problem with 293,928 equations the time decreases from 10055 seconds on 16 processors to 329 seconds on 512 processors.
An Experimenting Field Approach for the Numerical Solution of Multiphase Flow in Porous Media.
Salama, Amgad; Sun, Shuyu; Bao, Kai
2016-03-01
In this work, we apply the experimenting pressure field technique to the problem of the flow of two or more immiscible phases in porous media. In this technique, a set of predefined pressure fields are introduced to the governing partial differential equations. This implies that the velocity vector field and the divergence at each cell of the solution mesh can be determined. However, since none of these fields is the true pressure field entailed by the boundary conditions and/or the source terms, the divergence at each cell will not be the correct one. Rather the residue which is the difference between the true divergence and the calculated one is obtained. These fields are designed such that these residuals are used to construct the matrix of coefficients of the pressure equation and the right-hand side. The experimenting pressure fields are generated in the solver routine and are fed to the different routines, which may be called physics routines, which return to the solver the elements of the matrix of coefficients. Therefore, this methodology separates the solver routines from the physics routines and therefore results in simpler, easy to construct, maintain, and update algorithms. PMID:26171913
Towards an integrated petrophysical tool for multiphase flow properties of core samples
Lenormand, R.
1997-08-01
This paper describes the first use of an Integrated Petrophysical Tool (IPT) on reservoir rock samples. The IPT simultaneously measures the following petrophysical properties: (1) Complete capillary pressure cycle: primary drainage, spontaneous and forced imbibitions, secondary drainage (the cycle leads to the wettability of the core by using the USBM index); End-points and parts of the relative permeability curves; Formation factor and resistivity index. The IPT is based on the steady-state injection of one fluid through the sample placed in a Hassler cell. The experiment leading to the whole Pc cycle on two reservoir sandstones consists of about 30 steps at various oil or water flow rates. It takes about four weeks and is operated at room conditions. Relative permeabilities are in line with standard steady-state measurements. Capillary pressures are in accordance with standard centrifuge measurements. There is no comparison for the resistivity index, but the results are in agreement with literature data. However, the accurate determination of saturation remains the main difficulty and some improvements are proposed. In conclusion, the Integrated Petrophysical Tool is as accurate as standard methods and has the advantage of providing the various parameters on the same sample and during a single experiment. The FIT is easy to use and can be automated. In addition, it can be operated in reservoir conditions.
Computer assisted gamma and X-ray tomography: Applications to multiphase flow systems
Kumar, S.B.; Dudukovic, M.
1998-01-01
In process vessels, involving two or three phases it is often important not only to know the volume fraction (holdup) of each phase but also the spatial distribution of such holdups. This information is needed in control, trouble shooting and assessment of flow patterns and can be observed noninvasively by the application of Computed Tomography (CT). This report presents a complete overview of X-ray and gamma ray transmission tomography principles, equipment design to specific tasks and application in process industry. The fundamental principles of tomography, the algorithms for image reconstruction, the measurement method and the possible sources of error are discussed in detail. A case study highlights the methodology involved in designing a scanning system for the study of a given process unit, e.g., reactor, separations column etc. Results obtained in the authors` laboratory for the gas holdup distribution in bubble columns are also presented. Recommendations are made for the Advanced Fuels Development Unit (AFDU) in LaPorte, TX.
2005-07-01
This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.
NASA Astrophysics Data System (ADS)
Cho, Kevin Young-jin
High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively
Porter, Mark L.; Wildenschild, Dorthe
2010-09-03
Image analysis of three-dimensional microtomographic image data has become an integral component of pore scale investigations of multiphase flow through porous media. This study focuses on the validation of image analysis algorithms for identifying phases and estimating porosity, saturation, solid surface area, and interfacial area between fluid phases from gray-scale X-ray microtomographic image data. The data used in this study consisted of (1) a two-phase high precision bead pack from which porosity and solid surface area estimates were obtained and (2) three-phase cylindrical capillary tubes of three different radii, each containing an air-water interface, from which interfacial area was estimated. The image analysis algorithm employed here combines an anisotropic diffusion filter to remove noise from the original gray-scale image data, a k-means cluster analysis to obtain segmented data, and the construction of isosurfaces to estimate solid surface area and interfacial area. Our method was compared with laboratory measurements, as well as estimates obtained from a number of other image analysis algorithms presented in the literature. Porosity estimates for the two-phase bead pack were within 1.5% error of laboratory measurements and agreed well with estimates obtained using an indicator kriging segmentation algorithm. Additionally, our method estimated the solid surface area of the high precision beads within 10% of the laboratory measurements, whereas solid surface area estimates obtained from voxel counting and two-point correlation functions overestimated the surface area by 20--40%. Interfacial area estimates for the air-water menisci contained within the capillary tubes were obtained using our image analysis algorithm, and using other image analysis algorithms, including voxel counting, two-point correlation functions, and the porous media marching cubes. Our image analysis algorithm, and other algorithms based on marching cubes, resulted in errors
TORAC. Tornado-Induced Flow Material Transport
Andrae, R.W.; Tang, P.K.; Martin, R.A.; Gregory, W.S.
1992-01-13
TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.
Interfacial area transport in bubbly flow
Ishii, M.; Wu, Q.; Revankar, S.T.
1997-12-31
In order to close the two-fluid model for two-phase flow analyses, the interfacial area concentration needs to be modeled as a constitutive relation. In this study, the focus was on the investigation of the interfacial area concentration transport phenomena, both theoretically and experimentally. The interfacial area concentration transport equation for air-water bubbly up-flow in a vertical pipe was developed, and the models for the source and sink terms were provided. The necessary parameters for the experimental studies were identified, including the local time-averaged void fraction, interfacial area concentration, bubble interfacial velocity, liquid velocity and turbulent intensity. Experiments were performed with air-water mixture at atmospheric pressure. Double-sensor conductivity probe and hot-film probe were employed to measure the identified parameters. With these experimental data, the preliminary model evaluation was carried out for the simplest form of the developed interfacial area transport equation, i.e., the one-dimensional transport equation.
Ortiz, Marcos German; Boucher, Timothy J.
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Ortiz, M.G.; Boucher, T.J.
1998-10-27
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
NASA Astrophysics Data System (ADS)
Ongaro, T. E.; Clarke, A.; Neri, A.; Voight, B.; Widiwijayanti, C.
2005-12-01
For the first time the dynamics of directed blasts from explosive lava-dome decompression have been investigated by means of transient, multiphase flow simulations in 2D and 3D. Multiphase flow models developed for the analysis of pyroclastic dispersal from explosive eruptions have been so far limited to 2D axisymmetric or Cartesian formulations which cannot properly account for important 3D features of the volcanic system such as complex morphology and fluid turbulence. Here we use a new parallel multiphase flow code, named PDAC (Pyroclastic Dispersal Analysis Code) (Esposti Ongaro et al., 2005), able to simulate the transient and 3D thermofluid-dynamics of pyroclastic dispersal produced by collapsing columns and volcanic blasts. The code solves the equations of the multiparticle flow model of Neri et al. (2003) on 3D domains extending up to several kilometres in 3D and includes a new description of the boundary conditions over topography which is automatically acquired from a DEM. The initial conditions are represented by a compact volume of gas and pyroclasts, with clasts of different sizes and densities, at high temperature and pressure. Different dome porosities and pressurization models were tested in 2D to assess the sensitivity of the results to the distribution of initial gas pressure, and to the total mass and energy stored in the dome, prior to 3D modeling. The simulations have used topographies appropriate for the 1997 Boxing Day directed blast on Montserrat, which eradicated the village of St. Patricks. Some simulations tested the runout of pyroclastic density currents over the ocean surface, corresponding to observations of over-water surges to several km distances at both locations. The PDAC code was used to perform 3D simulations of the explosive event on the actual volcano topography. The results highlight the strong topographic control on the propagation of the dense pyroclastic flows, the triggering of thermal instabilities, and the elutriation
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
Pollutant Transport and Diffusion in Katabatic Flows.
NASA Astrophysics Data System (ADS)
Nappo, Carmen J.; Shankar Rao, K.; Herwehe, Jerold A.
1989-07-01
The characteristics of pollutant transport and diffusion of a passive contaminant in a two-dimensional katabatic flow over a simple slope are examined using a primitive equation hydrodynamic model. It is shown that pollutants released above the drainage layer can be entrained into the layer and diffused to the ground surface. For elevated release within the drainage layer, subsidence in the flow leads to relatively high surface concentrations of pollutants close to the stack. Pollutants released at ground level can spread through the entire depth of the drainage layer. This vertical diffusion is more effective for a shallow slope, resulting in higher concentrations at all heights, than for a steeper slope. These dispersion characteristics are quite different from those for stable flows over flat terrain. The differences result from increases of boundary-layer depth, wind speed, and turbulence as the katabatic flow develops downslope.The katabatic flow and dispersion model is tested by simulating the perfluorocarbon and heavy methane tracer releases for Night 4 of the 1980 ASCOT field study in Anderson Creek Valley, California. These tests show that the observed concentrations and the depth of the drainage layer in the lower region of the slope are underpredicted because the model could not simulate the convergence of drainage air (pooling) in the valley basin. The nightly average values of the observed concentrations, however, are predicted well. It is concluded that the model is applicable to nearly two-dimensional open slopes.
2-Phase Fluid Flow & Heat Transport
Energy Science and Technology Software Center (ESTSC)
1993-03-13
GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less
Pearson, Natalie C; Shipley, Rebecca J; Waters, Sarah L; Oliver, James M
2014-12-01
A 2D model is developed for fluid flow, mass transport and cell distribution in a hollow fibre membrane bioreactor. The geometry of the modelling region is simplified by excluding the exit ports at either end and focusing on the upper half of the central section of the bioreactor. Cells are seeded on a porous scaffold throughout the extracapillary space (ECS), and fluid pumped through the bioreactor via the lumen inlet and/or exit ports. In the fibre lumen and porous fibre wall, flow is described using Stokes and Darcy governing equations, respectively, while in the ECS porous mixture theory is used to model the cells, culture medium and scaffold. Reaction-advection-diffusion equations govern the concentration of a solute of interest in each region. The governing equations are reduced by exploiting the small aspect ratio of the bioreactor. This yields a coupled system for the cell volume fraction, solute concentration and ECS water pressure which is solved numerically for a variety of experimentally relevant case studies. The model is used to identify different regimes of cell behaviour, and results indicate how the flow rate can be controlled experimentally to generate a uniform cell distribution under regimes relevant to nutrient- and/or chemotactic-driven behaviours. PMID:24036069
Pdf - Transport equations for chemically reacting flows
NASA Technical Reports Server (NTRS)
Kollmann, W.
1989-01-01
The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.
Lagrangian transport properties of pulmonary interfacial flows
Smith, Bradford J.; Lukens, Sarah; Yamaguchi, Eiichiro; Gaver, Donald P.
2012-01-01
Disease states characterized by airway fluid occlusion and pulmonary surfactant insufficiency, such as respiratory distress syndrome, have a high mortality rate. Understanding the mechanics of airway reopening, particularly involving surfactant transport, may provide an avenue to increase patient survival via optimized mechanical ventilation waveforms. We model the occluded airway as a liquid-filled rigid tube with the fluid phase displaced by a finger of air that propagates with both mean and sinusoidal velocity components. Finite-time Lyapunov exponent (FTLE) fields are employed to analyse the convective transport characteristics, taking note of Lagrangian coherent structures (LCSs) and their effects on transport. The Lagrangian perspective of these techniques reveals flow characteristics that are not readily apparent by observing Eulerian measures. These analysis techniques are applied to surfactant-free velocity fields determined computationally, with the boundary element method, and measured experimentally with micro particle image velocimetry (μ-PIV). We find that the LCS divides the fluid into two regimes, one advected upstream (into the thin residual film) and the other downstream ahead of the advancing bubble. At higher oscillatory frequencies particles originating immediately inside the LCS experience long residence times at the air–liquid interface, which may be conducive to surfactant transport. At high frequencies a well-mixed attractor region is identified; this volume of fluid cyclically travels along the interface and into the bulk fluid. The Lagrangian analysis is applied to velocity data measured with 0.01 mg ml−1 of the clinical pulmonary surfactant Infasurf in the bulk fluid, demonstrating flow field modifications with respect to the surfactant-free system that were not visible in the Eulerian frame. PMID:23049141
NASA Astrophysics Data System (ADS)
Fourtakas, G.; Rogers, B. D.
2016-06-01
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.
Massively parallel simulation of flow and transport in variably saturated porous and fractured media
Wu, Yu-Shu; Zhang, Keni; Pruess, Karsten
2002-01-15
This paper describes a massively parallel simulation method and its application for modeling multiphase flow and multicomponent transport in porous and fractured reservoirs. The parallel-computing method has been implemented into the TOUGH2 code and its numerical performance is tested on a Cray T3E-900 and IBM SP. The efficiency and robustness of the parallel-computing algorithm are demonstrated by completing two simulations with more than one million gridblocks, using site-specific data obtained from a site-characterization study. The first application involves the development of a three-dimensional numerical model for flow in the unsaturated zone of Yucca Mountain, Nevada. The second application is the study of tracer/radionuclide transport through fracture-matrix rocks for the same site. The parallel-computing technique enhances modeling capabilities by achieving several-orders-of-magnitude speedup for large-scale and high resolution modeling studies. The resulting modeling results provide many new insights into flow and transport processes that could not be obtained from simulations using the single-CPU simulator.
In-flight surface-flow measurements on a subsonic transport high-lift flap system
NASA Technical Reports Server (NTRS)
Yip, Long P.; Vijgen, Paul M. H. W.; Hardin, Jay D.
1992-01-01
As part of a multiphased program for subsonic transport high-lift flight research, flight tests were conducted on the Transport Systems Research Vehicle (B737-100 aircraft) at the NASA Langley Research Center, to obtain detailed flow characteristics of the high-lift flap system for correlation with computational and wind-tunnel investigations. Pressure distributions, skin friction, and flow-visualization measurements were made on a triple-slotted flap system for a range of flap deflections, chord Reynolds numbers (10 to 21 million), and Mach numbers (0.16 to 0.36). Experimental test results are given for representative flap settings indicating flow separation on the fore-flap element for the largest flap deflection. Comparisons of the in-flight flow measurements were made with predictions from available viscous multielement computational methods modified with simple-sweep theory. Computational results overpredicted the experimentally measured pressures, particularly in the case involving separation of the fore lap, indicating the need for better modeling of confluent boundary layers and three-dimensional sweep effects.
Freeze, G.A.; Larson, K.W.; Davies, P.B.
1995-10-01
A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.
Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal
2011-12-01
The Hybrid Energy Systems Testing (HYTEST) Laboratory at the Idaho National Laboratory was established to develop and test hybrid energy systems with the principal objective of reducing dependence on imported fossil fuels. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions are performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. These SBCRs operate in the churn-turbulent flow regime, which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer. Our team is developing a research tool to aid in understanding the physicochemical processes occurring in the SBCR. A robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) consisting of thirteen species, which are CO reactant, H2 reactant, hydrocarbon product, and H2O product in small bubbles, large bubbles, and the bulk fluid plus catalyst is outlined. Mechanistic submodels for interfacial momentum transfer in the churn-turbulent flow regime are incorporated, along with bubble breakup/coalescence and two-phase turbulence submodels. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield. The model includes heat generation produced by the exothermic chemical reaction, as well as heat removal from a constant temperature heat exchanger. A property method approach is employed to incorporate vapor-liquid equilibrium (VLE) in a robust manner. Physical and thermodynamic properties as functions of changes in both pressure and temperature are obtained from VLE calculations performed external to the CMFD solver. The novelty of this approach is in its simplicity, as well as its
Zhou, Y.G.; Cao, W.C.; Wang, L.; Zhang, M.C.
2008-07-15
A hybrid Eulerian-Lagrangian model was developed to simulate gas-droplet-particle multiphase flow and the collision humidification between sorbent particles and spray droplets in the confined multifluid alkaline spray generator for a novel semidry flue gas desulfurization system. In this model, the motions of discrete phases were tracked simultaneously by using a stochastic trajectory approach, and a probability model of droplets catching particles was presented to judge whether sorbent particles were caught with direct simulation Monte Carlo method. Numerical humidification efficiency of sorbent particles is validated by the experimental one deduced from the measured desulfurization efficiency. The effects of flue gas flow rate, spray droplet diameter, sorbent particle diameter, and particle injection location on the humidification efficiency were optimized. Numerical results show that the collision humidification efficiency of sorbent particles increases significantly at the axial distance of 1.67 times the generator diameter from the nozzle tip and reaches 78.5% without recirculation flow in the alkaline spray generator when the ratio of flue gas mass flow rate to spray water mass flow rate is 6.7. Moreover, there is an optimal droplet diameter ranging from 125 to 150 {mu} m and an optimal particle injection location corresponding to the maximum humidification efficiency in this paper.
Wilson, J.L.
1993-04-01
Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validateconcepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorded on film and video tape. This technique is coupled with related column studies. Specifically we`re examining multiphase flow behavior of relevance, for example, to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); colloid movement, attachment and detachment in the presence of fluid-fluid interfaces; bacteria colonization and motility in porous systems; and heterogeneity effects on multi-phase flow, colloid movement and bacteria behavior.
Nutrient transport as affected by rate of overland flow
Technology Transfer Automated Retrieval System (TEKTRAN)
Little information is currently available concerning the effects of varying flow rate on nutrient transport by overland flow. The objective of this study was to measure the effects of overland flow rate on nutrient transport following the application of beef cattle or swine manure to plots containin...
Transport Of Passive Scalars In A Turbulent Channel Flow
NASA Technical Reports Server (NTRS)
Kim, John; Moin, Parviz
1990-01-01
Computer simulation of transport of passive scalars in turbulent channel flow described in report. Shows flow structures and statistical properties. As used here, "passive scalars" means scalar quantities like fluctuations in temperature or concentrations of contaminants that do not disturb flow appreciably. Examples include transport of heat in heat exchangers, gas turbines, and nuclear reactors and dispersal of pollution in atmosphere.
NASA Astrophysics Data System (ADS)
Adam, A.; Pavlidis, D.; Percival, J. R.; Salinas, P.; Xie, Z.; Fang, F.; Pain, C. C.; Muggeridge, A. H.; Jackson, M. D.
2016-09-01
A general, higher-order, conservative and bounded interpolation for the dynamic and adaptive meshing of control-volume fields dual to continuous and discontinuous finite element representations is presented. Existing techniques such as node-wise interpolation are not conservative and do not readily generalise to discontinuous fields, whilst conservative methods such as Grandy interpolation are often too diffusive. The new method uses control-volume Galerkin projection to interpolate between control-volume fields. Bounded solutions are ensured by using a post-interpolation diffusive correction. Example applications of the method to interface capturing during advection and also to the modelling of multiphase porous media flow are presented to demonstrate the generality and robustness of the approach.
Toward a laminar-flow-control transport
NASA Technical Reports Server (NTRS)
Sturgeon, R. F.
1978-01-01
Analyses were conducted to define a practical design for an advanced technology laminar flow control (LRC) transport for initial passenger operation in the early 1990's. Mission requirements, appropriate design criteria, and level of technology for the study aircraft were defined. The characteristics of the selected configuration were established, aircraft and LFC subsystems compatible with the mission requirements were defined, and the aircraft was evaluated in terms of fuel efficiency. A wing design integrating the LFC ducting and metering system into advanced composite wing structure was developed, manufacturing procedures for the surface panel design were established, and environmental and structural testing of surface panel components were conducted. Test results revealed a requirement for relatively minor changes in the manufacturing procedures employed, but have shown the general compatibility of both the selected design and the use of composite materials with the requirements of LFC wing surface panels.
NASA Astrophysics Data System (ADS)
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2015-12-01
The systems of algebraic equations arising from implicit (backward-Euler) finite-volume discretization of the conservation laws governing multiphase flow in porous media are quite challenging for nonlinear solvers. In the presence of counter-current flow due to buoyancy, the coupling between flow (pressure) and transport (saturations) is often the cause of nonlinear problems when single-point Phase-Potential Upwinding (PPU) is used. To overcome such convergence problems in practice, the time step is reduced and Newton's method is restarted from the solution at the previous converged time step. Here, we generalize the work of Lee, Efendiev and Tchelepi [Advances in Water Resources, 2015] to propose an Implicit Hybrid Upwinding (IHU) scheme for coupled flow and transport. In the pure transport problem, we show that the numerical flux obtained with IHU is differentiable, monotone and consistent for two and three-phase flow. For coupled flow and transport, we prove saturation physical bounds as well as the existence of a solution to our scheme. Challenging two- and three-phase heterogeneous multi-dimensional numerical tests confirm that the new scheme is non-oscillatory and convergent, and illustrate the superior convergence rate of our IHU-based Newton solver for large time steps.
Multiphase monitoring by annihilation radiation coincidence mode
NASA Astrophysics Data System (ADS)
Vidal, A.; Viesti, G.; Osorio, C.; Pino, F.; Horvath, A.; Barros, H.; Caldogno, M.; Greaves, E. D.; Sajo-Bohus, L.
2012-02-01
A multiphase monitoring system employing nuclear techniques is reported, which is aimed to provide a rapid - decision tool in oilfield applications. Liquid phase time variation is monitored employing two large volume BaF2 detectors. The radioisotope source of 22Na is a positron emitter, therefore two antiparallel gammas are produced per decay, and phase flow in pipes is related to the count rate of gamma pulses in coincidence providing information on transient liquid phase during transport. Oil, gas, water fraction measurements were performed at a specialized test station assembled in our laboratory to model a wide range of field operating conditions. The time dependence of the mixed substances is monitored with the two most relevant hydrodynamic parameters, the density (type of the fluid) and the flow rate, in a LabView® environment. Performance of the monitoring system; its limitations and the possibility for further improvements are also provided.
Transport of platelets in flowing blood.
Eckstein, E C; Bilsker, D L; Waters, C M; Kippenhan, J S; Tilles, A W
1987-01-01
Distribution and transport of platelets in flowing blood were studied experimentally using suspensions of washed red cells and fluorescent latex beads as platelet analogues. Distributions of the platelet analogues were obtained from stroboscopic epifluorescence photomicrographs of flow in 50-micron channels and from images of the cut cross sections of cryogenically frozen thin-walled 200-micron tubes. Concentration profiles of platelet analogues had a substantial near-wall excess for situations with a substantial hematocrit (greater than 10%) and a substantial wall shear rate (greater than 400 s-1). The viscosity of the suspending fluid was found to affect the size of the near-wall excess and its shear-dependent onset. Additionally, the shear-rate dependence of the near-wall excess did not occur with suspensions of hardened red cells. The excess extended a substantial distance from the wall in the 200-micron tubes and a portion of the profile could be fitted to an exponential curve. The random walk model that is used to describe enhanced platelet diffusion is envisioned as a walk (lateral platelet motion) caused by shear-induced collisions with red cells. A more comprehensive random walk model that includes biased collisions produces an effective lateral motion of convective nature in addition to a diffusional motion; it is used to explain the observed nonuniform distributions of platelet analogues. PMID:3439741
NASA Astrophysics Data System (ADS)
Cueto-Felgueroso, Luis; Juanes, Ruben
2016-02-01
We propose a discrete-domain model to describe mesoscale (many pore) immiscible displacements in porous media. We conceptualize the porous medium and fluid system as a set of weakly connected multistable compartments. The overall properties of the system emerge from the small-scale compartment dynamics. Our model aims at capturing the rugged energy landscape of multiphase porous media systems, emphasizing the role of metastability and local equilibria in the origin of hysteresis. Under two-phase displacements, the system behaves hysteretically, but our description does not rely on past saturations, turning points, or drainage/imbibition labels. We characterize the connection between micrometastability and overall system behavior, and elucidate the different nature of pressure-controlled and rate-controlled immiscible displacements in porous media.
Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA
Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.
2011-01-01
Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.
Liu, Jianchun; Sonnenthal, Eric L; Bodvarsson, Gudmundur S
2003-01-01
In this study, porewater chloride data from Yucca Mountain, NV are analyzed and modeled by three-dimensional chemical transport simulation and analytical methods. The simulation modeling approach is based on a continuum formulation of coupled multiphase fluid flow and tracer transport processes through fractured porous rock using a dual-continuum concept. Infiltration rate calibrations were performed using the porewater chloride data. Model results of chloride distributions were improved in matching the observed data with the calibrated infiltration rates. Statistical analyses of the frequency distribution for overall percolation fluxes and chloride concentration in the unsaturated zone system demonstrate that the use of the calibrated infiltration rates had an insignificant effect on the distribution of simulated percolation fluxes but significantly changed the predicted distribution of simulated chloride concentrations. An analytical method was also applied to model transient chloride transport. The method was verified by three-dimensional simulation results to be capable of capturing major chemical transient behavior and trends. Effects of lateral flow in the Paintbrush nonwelded unit on percolation fluxes and chloride distribution were studied by three-dimensional simulations with increased horizontal permeability. The combined results from these model calibrations furnish important information for the UZ model studies, contributing to performance assessment of the potential repository. PMID:12714292
Liu, Jianchun; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.
2002-09-01
In this study, porewater chloride data from Yucca Mountain, Nevada, are analyzed and modeled by 3-D chemical transport simulations and analytical methods. The simulation modeling approach is based on a continuum formulation of coupled multiphase fluid flow and tracer transport processes through fractured porous rock, using a dual-continuum concept. Infiltration-rate calibrations were using the pore water chloride data. Model results of chloride distributions were improved in matching the observed data with the calibrated infiltration rates. Statistical analyses of the frequency distribution for overall percolation fluxes and chloride concentration in the unsaturated zone system demonstrate that the use of the calibrated infiltration rates had insignificant effect on the distribution of simulated percolation fluxes but significantly changed the predicated distribution of simulated chloride concentrations. An analytical method was also applied to model transient chloride transport. The method was verified by 3-D simulation results as able to capture major chemical transient behavior and trends. Effects of lateral flow in the Paintbrush nonwelded unit on percolation fluxes and chloride distribution were studied by 3-D simulations with increased horizontal permeability. The combined results from these model calibrations furnish important information for the UZ model studies, contributing to performance assessment of the potential repository.
Micro-CT imaging of reservoir condition CO2 during multi-phase flow in natural rock
NASA Astrophysics Data System (ADS)
Andrew, M. G.; Bijeljic, B.; Menke, H. P.; Blunt, M. J.
2014-12-01
Micron-resolution X-ray microtomography has allowed researchers to examine the processes controlling fluid flow behaviour at the pore scale, offering the promise of a transformation in our understanding of flow and transport in porous media. Until recently wettability has only been directly accessible in extremely simplified systems. A new method is presented for the measurement of the contact angle and capillary pressure of multiple immiscible fluids at the pore scale at reservoir conditions in the scCO2-brine-carbonate system. Contact angle is found by resampling the micro-CT data onto planes orthogonal to the contact lines, allowing for vectors to be traced along the grain surface and the scCO2 - brine interface. A distribution of contact angles ranging from 35o to 55o is observed. This distribution can be understood as the result of contact angle hysteresis and surface heterogeneity on a range of length scales. Ganglion capillary pressure for each ganglion was found by measuring the curvature of the CO2-brine interface, while the pore structure was parameterised using distance maps of the pore-space. The formation of the residual clusters by snap-off was examined by comparing the ganglion capillary pressure to local pore topography. The capillary pressure was found to be inversely proportional to the radius of the largest restriction (throat) surrounding the ganglion, which validates the imbibition mechanisms used in pore-network modelling. The potential mobilization of residual ganglia was assessed using a new formulation of both the capillary and Bond numbers, rigorously based on a balance of pore-scale forces, with the majority of ganglia remobilized at Ncmacro around 1. By the use of synchrotron tomography it is possible to create high quality 4D images of dynamic processes involving the flow of multiple fluid phases. We show how the drainage process take place as a series of discreet Haines jumps. Two different types of Haines jumps were seen, one where CO
NASA Astrophysics Data System (ADS)
Mohnke, O.; Stiebler, M.; Klitzsch, N.
2014-09-01
Nuclear magnetic resonance (NMR) relaxometry is a useful tool to estimate transport and storage properties of rocks and soils. However, as there is no unique relation between the NMR signal and these properties in rocks, a variety of empirical models on deriving hydraulic properties from NMR relaxometry data have been published. Complementary to laboratory measurements, this paper introduces a numerical framework to jointly simulate NMR relaxometry experiments and two-phase flow on the micrometer scale. Herein, the NMR diffusion equations were tied to an established Lattice Boltzmann algorithm used in computational fluid dynamics. The numerically simulated NMR data were validated for both surface-limited and diffusion-limited relaxation regimes using analytical solutions available for fully and partially water-saturated simple pore geometries. Subsequently, simulations were compiled using a complex pore space derived from three-dimensional computer tomography (CT) data of an unconsolidated sand and the results were compared to respective NMR T1 relaxometry data. The NMR transients simulated for different water saturations matched the measured data regarding initial amplitudes (i.e., porosity and saturation) and relaxation behavior (i.e., distribution of water-saturated pores). Thus, we provide a simulation tool that enables study of the influences of structural and physicochemical properties, such as pore connectivity and pore coupling, surface relaxivity, or diffusivity, on partially saturated porous media, e.g, rocks or soils, with NMR T1 relaxometry data.
NASA Astrophysics Data System (ADS)
Riaud, Antoine; Zhao, Shufang; Wang, Kai; Cheng, Yi; Luo, Guangsheng
2014-05-01
Despite the popularity of the lattice-Boltzmann method (LBM) in simulating multiphase flows, a general approach for modeling dilute species in multiphase systems is still missing. In this report we propose to modify the collision operator of the solute by introducing a modified redistribution scheme. This operator is based on local fluid variables and keeps the parallelism inherent to LBM. After deriving macroscopic transport equations, an analytical equation of state of the solute is exhibited and the method is proven constituting a unified framework to simulate arbitrary solute distribution between phases, including single-phase soluble compounds, amphiphilic species with a partition coefficient, and surface-adsorbed compounds.
Riaud, Antoine; Zhao, Shufang; Wang, Kai; Cheng, Yi; Luo, Guangsheng
2014-05-01
Despite the popularity of the lattice-Boltzmann method (LBM) in simulating multiphase flows, a general approach for modeling dilute species in multiphase systems is still missing. In this report we propose to modify the collision operator of the solute by introducing a modified redistribution scheme. This operator is based on local fluid variables and keeps the parallelism inherent to LBM. After deriving macroscopic transport equations, an analytical equation of state of the solute is exhibited and the method is proven constituting a unified framework to simulate arbitrary solute distribution between phases, including single-phase soluble compounds, amphiphilic species with a partition coefficient, and surface-adsorbed compounds. PMID:25353915
Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.
1999-05-06
Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity to error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.
NASA Astrophysics Data System (ADS)
Li, Boxiao; Tchelepi, Hamdi A.
2015-09-01
Nonlinear convergence problems in numerical reservoir simulation can lead to unacceptably large computational time and are often the main impediment to performing simulation studies of large-scale problems. We analyze the nonlinearity of the discrete transport (mass conservation) equation for immiscible, incompressible, two-phase flow in porous media in the presence of viscous, buoyancy, and capillary forces. Although simulation problems are multi-dimensional with large numbers of cells and variables, we find that the essence of the nonlinear behavior can be understood by studying the discretized (numerical) flux function for the interface between two cells. The numerical flux is expressed in terms of the saturations of the two cells. Discontinuities in the first-order derivative of the flux function (referred to as kinks) and inflection lines are identified as the cause of convergence difficulty. These critical features (kinks and inflections) change the curvature of the numerical flux function abruptly, and can lead to overshoots, oscillations, or divergence in Newton iterations. Based on our understanding of the nonlinearity, a nonlinear solver is developed, referred to as the Numerical Trust Region (NTR) solver. The solver is able to guide the Newton iterations safely and efficiently through the different saturation 'trust-regions' delineated by the kinks and inflections. Specifically, overshoots and oscillations that often lead to convergence failure are avoided. Numerical examples demonstrate that our NTR solver has superior convergence performance compared with existing methods. In particular, convergence is achieved for a wide range of timestep sizes and Courant-Friedrichs-Lewy (CFL) numbers spanning several orders of magnitude. In addition, a discretization scheme is proposed for handling heterogeneities in capillary-pressure-saturation relationship. The scheme has less degree of nonlinearity compared with the standard Single-point Phase-based Upstream
Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS
Technology Transfer Automated Retrieval System (TEKTRAN)
Accurate process-based modeling of nonequilibrium water flow and solute transport remains a major challenge in vadose zone hydrology. The objective of this paper is to describe a wide range of nonequilibrium flow and transport modeling approaches available within the latest version of the HYDRUS-1D ...
Code System to Calculate Waste-Isolation Flow and Transport.
Energy Science and Technology Software Center (ESTSC)
1999-10-18
Version 00 SWIFT solves the coupled or individual equations governing fluid flow, heat transport, brine displacement, and radionuclide displacement in geologic media. Fluid flow may be transient or steady state. One, two, or three dimensions are available, and transport of radionuclides chains is possible.
Conceptual and Numerical Models for UZ Flow and Transport
H. Liu
2000-03-03
The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models.
PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers
Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan; Mills, Richard T.
2012-04-18
PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors per realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.
NASA Astrophysics Data System (ADS)
Gable, C. W.; Hyman, J.; Karra, S.; Makedonska, N.; Painter, S. L.; Viswanathan, H. S.
2015-12-01
dfnWorks generates discrete fracture networks (DFN) of planar polygons, creates a high quality conforming Delaunay triangulation of the intersecting DFN polygons, assigns properties (aperture, permeability) using geostatistics, sets boundary and initial conditions, solves pressure/flow in single or multi-phase fluids (water, air, CO2) using the parallel PFLOTRAN or serial FEHM, and solves for transport using Lagrangian particle tracking. We outline the dfnWorks workflow and present applications from a range of fractured rock systems. dfnWorks (http://www.lanl.gov/expertise/teams/view/dfnworks) is composed of three main components, all of which are freely available. dfnGen generates a distribution of fracture polygons from site characterization data (statistics or deterministic fractures) and utilizes the FRAM (Feature Rejection Algorithm for Meshing) to guarantee the mesh generation package LaGriT (lagrit.lanl.gov) will generate a high quality conforming Delaunay triangular mesh. dfnWorks links the mesh to either PFLOTRAN (pflotran.org) or FEHM (fehm.lanl.gov) for solving flow and transport. The various physics options available in FEHM and PFLOTRAN such as single and multi-phase flow and reactive transport are all available with appropriate initial and boundary conditions and material property models. dfnTrans utilizes explicit Lagrangian particle tracking on the DFN using a velocity field reconstructed from the steady state pressure/flow field solution obtained in PFLOTRAN or FEHM. Applications are demonstrated for nuclear waste repository in fractured granite, CO2 sequestration and extraction of unconventional hydrocarbon resources.
NASA Astrophysics Data System (ADS)
Santini, Maurizio
2015-11-01
X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.
Halvorsen, A.M.K.; Santvedt, T.
1999-11-01
A corrosion rate model is developed for carbon steel in water containing CO{sub 2} at different temperatures, pH`s, CO{sub 2} fugacities and wall shear stresses. The model is based on loop experiments at temperatures from 20--160 C. The data are taken from a database containing more than 2,400 data points at various temperatures, CO{sub 2} fugacities, pH`s and wall shear stresses. To find the best fit of the data, data for each temperature present in the data base was evaluated separately to find typical trends for the change in corrosion rate versus CO{sub 2} fugacity, wall shear stress and pH. To facilita