Science.gov

Sample records for multiphoton jaynes-cummings model

  1. Revival-collapse phenomenon in the quadrature squeezing of the multiphoton intensity-dependent Jaynes Cummings model

    NASA Astrophysics Data System (ADS)

    El-Orany, Faisal A. A.

    2006-12-01

    For the multiphoton intensity-dependent Jaynes Cummings model (JCM) described by a two-level atom interacting with a radiation field, we prove that there is a relationship between the atomic inversion and the quadrature squeezing. We give the required condition to obtain best information from this relation. Also we show that this relation is only sensitive to large values of the detuning parameter. Furthermore, we discuss briefly such relation for the off-resonance standard JCM.

  2. Evolution of the superposition of displaced number states with the two-atom multiphoton Jaynes Cummings model: interference and entanglement

    NASA Astrophysics Data System (ADS)

    El-Orany, Faisal A. A.

    2006-11-01

    In this paper, we study the evolution of two two-level atoms interacting with a single-mode quantized radiation field, namely, the two-atom multiphoton Jaynes-Cummings model (JCM). We assume that the field and the atoms are initially prepared in the superposition of displaced number states and excited atomic states, respectively. For this system, we investigate the atomic inversion, Wigner function, phase distribution and entanglement. We show that for symmetric (asymmetric) atoms, the system can generate asymmetric (symmetric) cat states at a quarter of the revival time. Furthermore, the degrees of entanglement for the field-atoms and the one-atom-remainder tangles depend on the rate of energy flow between the parties. The interference in phase space decreases the degree of entanglement in the bipartite.

  3. The revival collapse phenomenon in the quadrature field components of the two-mode multiphoton Jaynes Cummings model

    NASA Astrophysics Data System (ADS)

    El-Orany, Faisal A. A.

    2005-11-01

    In this paper we consider a system consisting of a two-level atom in an excited state interacting with two modes of a radiation field prepared initially in l-photon coherent states. This system is described by a two-mode multiphoton (i.e., k1,k2) Jaynes-Cummings model (JCM). For this system we investigate the occurrence of the revival-collapse phenomenon (RCP) in the evolution of the single-mode, two-mode, sum and difference quadrature squeezing. We show that there is a class of states for which all these types of squeezing exhibit RCP similar to that involved in the corresponding atomic inversion. Also we show numerically that the single-mode squeezing of the first mode for (k1,k2) = (3,1) provides RCP similar to that of the atomic inversion of the case (k1,k2) = (1,1); however, sum and difference squeezing give partial information on that case. Moreover, we show that single-mode, two-mode and sum squeezing for the case (k1,k2) = (2,2) provides information on the atomic inversion of the single-mode two-photon JCM. We derive the rescaled squeezing factors giving accurate information on the atomic inversion for all cases. The consequences of these results are that the homodyne and heterodyne detectors can be used to detect the RCP for the two-mode JCM.

  4. Supersymmetry in the Jaynes-Cummings model

    SciTech Connect

    Castanos, Octavio

    2013-06-12

    A review is presented of the Darboux method and its relation to the supersymmetric quantum mechanics, together with the embedding of a n-dimensional scalar Hamiltonian into a supersymmetric matrix. It is also shown that the Jaynes-Cummings model, with or without rotating wave approximation, admit a supersymmetric quantum mechanics description.

  5. Generalized Jaynes-Cummings model as a quantum search algorithm

    SciTech Connect

    Romanelli, A.

    2009-07-15

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  6. Quantum entangled supercorrelated states in the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Rajagopal, A. K.; Jensen, K. L.; Cummings, F. W.

    1999-08-01

    The regions of independent quantum states, maximally classically correlated states, and purely quantum entangled (supercorrelated) states described in a recent formulation of quantum information theory by Cerf and Adami are explored here numerically in the parameter space of the well-known exactly soluble Jaynes-Cummings model for equilibrium and nonequilibrium time-dependent ensembles.

  7. Negativity as entanglement degree of the Jaynes Cummings model

    NASA Astrophysics Data System (ADS)

    Akhtarshenas, S. J.; Farsi, M.

    2007-05-01

    In this paper, by using the notion of negativity, we study the degree of entanglement of a two-level atom interacting with a quantized radiation field, described by the Jaynes-Cummings model (JCM). We suppose that initially the field is in a pure state and the atom is in a general mixed state. In this case the negativity fully captures the entanglement of the JCM. We investigate the case that the initial state of the field is a coherent state. The influences of the detuning on the degree of entanglement are also examined.

  8. Entropy exchange and entanglement in the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Boukobza, E.; Tannor, D. J.

    2005-06-01

    The Jaynes-Cummings model (JCM) is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight [Ann. Phys. 186, 381 (1988)] of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix.

  9. Quantum Computation with the Jaynes-Cummings Model

    NASA Astrophysics Data System (ADS)

    Azuma, H.

    2011-09-01

    In this paper, we propose a method for building a two-qubit gate with the Jaynes-Cummings model (JCM). In our scheme, we construct a qubit from a pair of optical paths where a photon is running. Generating Knill, Laflamme and Milburn's nonlinear sign-shift gate by the JCM, we construct the conditional sign-flip gate, which works with small error probability in principle. We also discuss two experimental setups for realizing our scheme. In the first experimental setup, we make use of coherent lights to examine whether or not our scheme works. In the second experimental setup, an optical loop circuit made out of the polarizing beam splitter and the Pockels cell takes an important role in the cavity.

  10. Oscillator-like coherent states for the Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Berubelauziere, Y.; Hussin, V.; Nieto, Michael M.

    1995-01-01

    A new way of diagonalizing the Jaynes-Cummings Hamiltonian is proposed, which allows the definition of annihilation operators and coherent states for this model. Mean values and dispersions over these states are computed and interpreted.

  11. From the Jaynes-Cummings-Hubbard to the Dicke model

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Blatter, G.; Keeling, J.

    2013-11-01

    We discuss the Jaynes-Cummings-Hubbard model describing the superfluid-Mott insulator transition of polaritons (i.e., dressed photon-qubit states) in coupled qubit-cavity arrays in the crossover from strong to weak correlations. In the strongly correlated regime the phase diagram and the elementary excitations of lattice polaritons near the Mott lobes are calculated analytically using a slave-boson theory (SBT). The opposite regime of weakly interacting polariton superfluids is described by a weak-coupling mean-field theory for a generalized multi-mode Dicke model. We show that a remarkable relation between the two theories exists in the limit of large photon bandwidth and large negative detuning, i.e., when the nature of polariton quasiparticles becomes qubit-like. In this regime, the weak-coupling theory predicts the existence of a single Mott lobe with a change of the universality class of the phase transition at the tip of the lobe, in perfect agreement with the SBT. Moreover, the spectra of low energy excitations, i.e., the sound velocity of the Goldstone mode and the gap of the amplitude mode match exactly as calculated from both theories.

  12. Partial entangling power for the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Xiong, Heng-Na; Lu, Xiao-Ming; Wang, Xiaoguang

    2012-01-01

    Partial entangling power provides the average amount of entanglement produced by a d1 × d2 bipartite unitary operator. The average is done over the initial distribution of the states of one of the subsystems. In this paper, we extend the expression of the partial entangling power to the case that d1 is finite and d2 is arbitrary. In particular, we give an explicit expression of partial entangling power for the 2 × ∞ system. The expression can be well applicable to the Jaynes-Cummings model (JCM). The results can recover the well-known phenomenon in the JCM. We explicitly discuss its behaviour in the large detuning case and at the resonance case. Comparing the two cases, we find that it is easier for the JCM in the large detuning case to reach and maintain its maximum entangling power, while for the JCM at resonance, the achievable maximum entangling power is larger. In addition, the time average partial entangling power is also discussed.

  13. Entanglement invariant for the double Jaynes-Cummings model

    SciTech Connect

    Sainz, Isabel; Bjoerk, Gunnar

    2007-10-15

    We study entanglement dynamics between four qubits interacting through two isolated Jaynes-Cummings Hamiltonians, via an entanglement measure based on the wedge product. We compare the results with similar results obtained using bipartite concurrence resulting in what is referred to as 'entanglement sudden death'. We find a natural entanglement invariant under evolution, demonstrating that entanglement spreads out over all of the system's degrees of freedom that become entangled through the interaction. We also provide an analysis of why certain initial states lose all their entanglement in a finite time, although their excitation and coherence vanish only asymptotically with time.

  14. Bistability effect in the extreme strong coupling regime of the Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Dombi, András; Vukics, András; Domokos, Peter

    2015-03-01

    We study the nonlinear response of a driven cavity QED system in the extreme strong coupling regime where the saturation photon number is below one by many orders of magnitude. In this regime, multi-photon resonances within the Jaynes-Cummings spectrum up to high order can be resolved. We identify an intensity and frequency range of the external coherent drive for which the system exhibits bistability instead of resonant multi-photon transitions. The cavity field evolves into a mixture of the vacuum and another quasi-classical state well separated in phase space. The corresponding time evolution of the outgoing intensity is a telegraph signal alternating between two attractors.

  15. Berry phase in a two-atom Jaynes-Cummings model with Kerr medium

    NASA Astrophysics Data System (ADS)

    Bu, Shen-Ping; Zhang, Guo-Feng; Liu, Jia; Chen, Zi-Yu

    2008-12-01

    The Jaynes-Cummings model (JCM) is an very important model for describing interaction between quantized electromagnetic fields and atoms in cavity quantum electrodynamics (QED). This model is generalized in many different directions since it predicts many novel quantum effects that can be verified by modern physics experimental technologies. In this paper, the Berry phase and entropy of the ground state for arbitrary photon number n of a two-atom Jaynes-Cummings model with Kerr-like medium are investigated. It is found that there is some correspondence between their images, especially the existence of a curve in the Δ-ɛ plane along which the energy, Berry phase and entropy all reach their special values. So it is available for detecting entanglement by applying Berry phase.

  16. Two-polariton bound states in the Jaynes-Cummings-Hubbard model

    SciTech Connect

    Wong, Max T. C.; Law, C. K.

    2011-05-15

    We examine the eigenstates of the one-dimensional Jaynes-Cummings-Hubbard model in the two-excitation subspace. We discover that two-excitation bound states emerge when the ratio of vacuum Rabi frequency to the tunneling rate between cavities exceeds a critical value. We determine the critical value as a function of the quasimomentum quantum number, and indicate that the bound states carry a strong correlation in which the two polaritons appear to be spatially confined together.

  17. Atom-field entanglement in the Jaynes-Cummings model without rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Mirzaee, M.; Batavani, M.

    2015-04-01

    In this paper, we present a structure for obtaining the exact eigenfunctions and eigenvalues of the Jaynes-Cummings model (JCM) without the rotating wave approximation (RWA). We study the evolution of the system in the strong coupling region using the time evolution operator without RWA. The entanglement of the system without RWA is investigated using the Von Neumann entropy as an entanglement measure. It is interesting that in the weak coupling regime, the population of the atomic levels and Von Neumann entropy without RWA model shows a good agreement with the RWA whereas in strong coupling domain, the results of these two models are quite different.

  18. The f-deformed Jaynes-Cummings model and its nonlinear coherent states

    NASA Astrophysics Data System (ADS)

    de los Santos-Sánchez, O.; Récamier, J.

    2012-01-01

    Based on the f-oscillator formalism, we introduce a nonlinear Jaynes-Cummings model (NJCM) which is constructed from the standard JCM by deforming the single-mode field operators. Such a generalization of the JCM describes the interaction of a two-level atom with a single mode of the electromagnetic field in the presence of a nonlinear Kerr-like medium. Since the medium is modelled as an f-oscillator, it is possible to consider the field f-coherent states (nonlinear coherent states) and their evolution.

  19. Dynamics of Jaynes-Cummings Model in the Absence of Rotating-Wave Approximation

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Xia; Liu, Tao; Feng, Mang; Wang, Ke-Lin

    2007-05-01

    The Jaynes-Cummings model (JCM) is studied in the absence of the rotating-wave approximation (RWA) by a coherent-state expansion technique. In comparison with the previous paper in which the coherent-state expansion was performed only to the third order, we carry out in this paper a complete expansion to demonstrate exactly the dynamics of the JCM without the RWA. Our study gives a systematic method to solve the non-RWA problem, which would be useful in various physical systems, e.g., in a system with an ultracold trapped ion experiencing the running waves of lasers.

  20. Two-Photon Jaynes-Cummings Model Governed by Milburn Equation with Phase Damping

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Yong; Li, Shao-Hua; Liu, Zong-Liang

    2006-04-01

    In this paper, we find an analytic solution of the master equation of a non-resonant two-photon Jaynes-Cummings model (JCM) with phase damping with the help of the super-operator technique. We study the influence of phase damping on non-classical effects in the JCM, such as oscillations of the photon-number distribution, revivals of the atomic inversion, and sub-Possion photon statistics. It is demonstrated that the phase damping suppresses the revivals of the atomic inversion and non-classical effects of the cavity field in the JCM.

  1. Vacuum-induced Berry phases in single-mode Jaynes-Cummings models

    SciTech Connect

    Liu, Yu; Wei, L. F.; Jia, W. Z.; Liang, J. Q.

    2010-10-15

    Motivated by work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.

  2. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices.

    PubMed

    Rodríguez-Lara, B M; Soto-Eguibar, Francisco; Cárdenas, Alejandro Zárate; Moya-Cessa, H M

    2013-05-20

    The interaction of a two-level atom with a single-mode quantized field is one of the simplest models in quantum optics. Under the rotating wave approximation, it is known as the Jaynes-Cummings model and without it as the Rabi model. Real-world realizations of the Jaynes-Cummings model include cavity, ion trap and circuit quantum electrodynamics. The Rabi model can be realized in circuit quantum electrodynamics. As soon as nonlinear couplings are introduced, feasible experimental realizations in quantum systems are drastically reduced. We propose a set of two photonic lattices that classically simulates the interaction of a single two-level system with a quantized field under field nonlinearities and nonlinear couplings as long as the quantum optics model conserves parity. We describe how to reconstruct the mean value of quantum optics measurements, such as photon number and atomic energy excitation, from the intensity and from the field, such as von Neumann entropy and fidelity, at the output of the photonic lattices. We discuss how typical initial states involving coherent or displaced Fock fields can be engineered from recently discussed Glauber-Fock lattices. As an example, the Buck-Sukumar model, where the coupling depends on the intensity of the field, is classically simulated for separable and entangled initial states. PMID:23736508

  3. Single-photon scattering in an optomechanical Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Ng, K. H.; Law, C. K.

    2016-04-01

    We investigate an optomechanical system which realizes the Jaynes-Cummings (JC) model known in cavity QED. Such a system consists of a single photon and an optomechanical cavity with two optical cavity modes and one mechanical mode. Under the resonance condition when the mechanical frequency is close to the frequency difference between the optical modes, the photon and phonons can be strongly coupled. We present an analytic solution of single-photon scattering and show that the spectrum of the scattered photon exhibits excitation-number-dependent Rabi splitting of the JC model. In addition, we examine the response of the mechanical mode to a sequence of single photons, with one photon in the cavity at a time. We show that sequential photon scattering can efficiently excite the mechanical mode and generate sub-Poisson phonon statistics.

  4. Vacuum-induced Berry phases in single-mode Jaynes-Cummings models

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Wei, L. F.; Jia, W. Z.; Liang, J. Q.

    2010-10-01

    Motivated by work [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.89.220404 89, 220404 (2002)] for detecting the vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we show here that, for a parameter-dependent single-mode JCM, certain atom-field states also acquired photon-number-dependent Berry phases after the parameter slowly changed and eventually returned to its initial value. This geometric effect related to the field quantization still exists, even if the field is kept in its vacuum state. Specifically, a feasible Ramsey interference experiment with a cavity quantum electrodynamics system is designed to detect the vacuum-induced Berry phase.

  5. Exact treatment of the Jaynes-Cummings model under the action of an external classical field

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.

    2011-09-01

    We consider the usual Jaynes-Cummings model (JCM), in the presence of an external classical field. Under a certain canonical transformation for the Pauli operators, the system is transformed into the usual JCM. Using the equations of motion in the Heisenberg picture, exact solutions for the time-dependent dynamical operators are obtained. In order to calculate the expectation values of these operators, the wave function has been constructed. It has been shown that the classical field augments the atomic frequency ω0 and mixes the original atomic states. Changes of squeezing from one quadrature to another is also observed for a strong value of the coupling parameter of the classical field. Furthermore, the system in this case displays partial entanglement and the state of the field losses its purity.

  6. Photon spectra and statistics in generalized Jaynes-Cummings model with photon losses and atom motion

    NASA Astrophysics Data System (ADS)

    Gorokhov, A. V.; Sinaiski, I. E.

    2006-03-01

    The Jaynes-Cummings model (JCM) of two-level atom interacting with the photon mode in ideal cavity plays an essential role in modern quantum optics. In previous papers 1,2 an exact form of density matrix of the JCM with fixed atom position and photons dissipation was found. Here, taking into account the classical motion of the atom through the cavity, it is considered a case of nonideal cavity with zero temperature. We have obtained an exact expression for density matrix and calculated photon spectra and spectra of the mean number of photons in a cavity and and time dependencies of some values relevant for the one-atom maser theory.

  7. Equivalent spin-orbit interaction in the two-polariton Jaynes-Cummings-Hubbard model.

    PubMed

    Li, C; Zhang, X Z; Song, Z

    2015-01-01

    A cavity quantum electrodynamics (cavity-QED) system combines two or more distinct quantum components, exhibiting features not seen in the individual systems. In this work, we study the one-dimensional Jaynes-Cummings-Hubbard model in the two-excitation (two-polariton) subspace. We find that the centre momentum of two-excitation induces a magnetic flux piercing the equivalent Hamiltonian Hk in the invariant subspace with momentum k, which can be described as a 4-leg ladder in the auxiliary space. Furthermore, it is shown that the system in π-centre-momentum subspace is equivalent to a lattice system for spin-1 particle with spin-orbit coupling. On the basis of this concise description, a series of bound-pair eigenstates which display long-range polaritonic entanglement is presented as a simple application. PMID:26159665

  8. Linear entropies in the Jaynes Cummings model with intensity-dependent coupling in a phase-damped cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Qing-Chun; Zhu, Shi-Ning

    2005-06-01

    We investigate the evolution of a quantum system described by the Jaynes-Cummings model with an arbitrary form of intensity-dependent coupling by displaying the linear entropies of the atom, field and atom-field system in the large detuning approximation. The cavity field is assumed to be coupled to a reservoir with a phase-damping coupling. The effects of cavity phase damping on the entanglement and coherence loss of such a system are studied.

  9. A note on approximate teleportation of an unknown atomic state in the two-photon Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    dSouza, A. D.; Cardoso, W. B.; Avelar, A. T.; Baseia, B.

    2009-04-01

    We consider recent schemes [J.M. Liu, B. Weng, Physica A 367 (2006) 215] to teleport unknown atomic states and superposition of zero- and two-photon states using the two-photon Jaynes-Cummings model. Here we do the same using the “full two-photon Jaynes-Cumming”, valid for arbitrary average number of photons. The success probability and fidelity of this teleportation are also considered.

  10. Trojan Wave Packets in the Quantum Cavity within the Extended Jaynes-Cummings Model

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2016-05-01

    Some time ago we have developed the theory of the Trojan Wave Packets (TWP) in the classical strong Circularly Polarized electromagnetic field in terms of the Mathieu generating functions. We have discovered that by the proper partitioning of the Coulomb spectrum i.e. by considering the deviation from the circularity and the vertical tilt of the undressed states as the new quantum numbers we can reduce the problem to the problem of several non-interacting quantum pendula for the Stark-Zeeman field dressed states. The TWP in the infinite physical space however turned out to be weakly unstable due to the spontaneous emission. Here we develop the theory in which the TWP is truly eternal when the electromagnetic interactions are considered quantum and the field is confined by the perfect quantum cavity boundary conditions. First we extend the Jaynes-Cummings (JC) model from the two to the infinite number of levels interacting with the one or two perfectly resonant quantum modes of the electromagnetic field. Similarly the model of JC and our previous pendular model the dressed electron-field eigenstates are constructed within the weakly interacting manifolds. Superpositions of those states are possible with the quantum electron density moving on the circular trajectories.

  11. Exact treatment of the Jaynes-Cummings model under the action of an external classical field

    SciTech Connect

    Abdalla, M. Sebawe; Khalil, E.M.; Obada, A.S.-F.

    2011-09-15

    We consider the usual Jaynes-Cummings model (JCM), in the presence of an external classical field. Under a certain canonical transformation for the Pauli operators, the system is transformed into the usual JCM. Using the equations of motion in the Heisenberg picture, exact solutions for the time-dependent dynamical operators are obtained. In order to calculate the expectation values of these operators, the wave function has been constructed. It has been shown that the classical field augments the atomic frequency {omega}{sub 0} and mixes the original atomic states. Changes of squeezing from one quadrature to another is also observed for a strong value of the coupling parameter of the classical field. Furthermore, the system in this case displays partial entanglement and the state of the field losses its purity. - Highlights: > The time-dependent JCM, in the presence of the classical field, is still one of the essential problems in the quantum optics. > A new approach is applied through a certain canonical transformation. > The classical field augments the atomic frequency {omega}{sub 0} and mixes the original atomic states.

  12. Thermal Effects in Jaynes-Cummings Model Derived with Low-Temperature Expansion

    NASA Astrophysics Data System (ADS)

    Azuma, Hiroo; Ban, Masashi

    In this paper, we investigate thermal effects of the Jaynes-Cummings model (JCM) at finite temperature with a perturbative approach. We assume a single two-level atom and a single cavity mode to be initially in the thermal equilibrium state and the thermal coherent state, respectively, at a certain finite low temperature. Describing this system with Thermo Field Dynamics formalism, we obtain a low-temperature expansion of the atomic population inversion in a systematic manner. Letting the system evolve in time with the JCM Hamiltonian, we examine thermal effects of the collapse and the revival of the Rabi oscillations by means of the third-order perturbation theory under the low-temperature limit, that is to say, using the low-temperature expansion up to the third-order terms. From an intuitive discussion, we can expect that the period of the revival of the Rabi oscillations becomes longer as the temperature rises. Numerical results obtained with the perturbation theory reproduce well this temperature dependence of the period.

  13. Quasiperiodicity in time evolution of the Bloch vector under the thermal Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Azuma, Hiroo; Ban, Masashi

    2014-07-01

    We study a quasiperiodic structure in the time evolution of the Bloch vector, whose dynamics is governed by the thermal Jaynes-Cummings model (JCM). Putting the two-level atom into a certain pure state and the cavity field into a mixed state in thermal equilibrium at initial time, we let the whole system evolve according to the JCM Hamiltonian. During this time evolution, motion of the Bloch vector seems to be in disorder. Because of the thermal photon distribution, both a norm and a direction of the Bloch vector change hard at random. In this paper, taking a different viewpoint compared with ones that we have been used to, we investigate quasiperiodicity of the Bloch vector’s trajectories. Introducing the concept of the quasiperiodic motion, we can explain the confused behaviour of the system as an intermediate state between periodic and chaotic motions. More specifically, we discuss the following two facts: (1) If we adjust the time interval Δt properly, figures consisting of plotted dots at the constant time interval acquire scale invariance under replacement of Δt by sΔt, where s(>1) is an arbitrary real but not transcendental number. (2) We can compute values of the time variable t, which let |Sz(t)| (the absolute value of the z-component of the Bloch vector) be very small, with the Diophantine approximation (a rational approximation of an irrational number).

  14. Exact mapping of the 2+1 Dirac oscillator onto the Jaynes-Cummings model: Ion-trap experimental proposal

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-10-15

    We study the dynamics of the 2+1 Dirac oscillator exactly and find spin oscillations due to a Zitterbewegung of purely relativistic origin. We find an exact mapping of this quantum-relativistic system onto a Jaynes-Cummings model, describing the interaction of a two-level atom with a quantized single-mode field. This equivalence allows us to map a series of quantum optical phenomena onto the relativistic oscillator and vice versa. We make a realistic experimental proposal, in reach with current technology, for studying the equivalence of both models using a single trapped ion.

  15. Quantum state collapse and revival under the anti-Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Lv, Dingshun; An, Shuoming; Um, Mark; Zhang, Junhua; Zhang, Jingning; Kim, M. S.; Kim, Kihwan; CenterQuantum Information, IIIS, Tsinghua University Team

    2015-05-01

    We study the evolution of a coherent state of phonon mode by anti-Jaynes-Cummings (AJC) interaction in a trapped 171Yb+ ion system. We observe the quantum collapse and revival phenomena by measuring its Q function at the several time intervals. We measure the Q-function by detecting the probability in the vacuum state through the conventional arithmetic subtraction. We also measure the corresponding Wigner function, and observe the negativity, which clearly shows non-classical state emergence during the AJC dynamic evolution. On top of the standard AJC evolution, we introduce an additional phase or Jaynes-Cummings (JC) coupling and control and reverse the dynamics. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178. M.S. Kim was supported by the UK EPSRC and Royal Society Wolfson Merit Award.

  16. Fifty years of Jaynes-Cummings physics

    NASA Astrophysics Data System (ADS)

    Greentree, Andrew D.; Koch, Jens; Larson, Jonas

    2013-11-01

    This special issue commemorates the 50th anniversary of the seminal paper published by E T Jaynes and F W Cummings [1], the fundamental model which they introduced and now carries their names, and celebrates the remarkable host of exciting research on Jaynes-Cummings physics throughout the last five decades. The Jaynes-Cummings model has been taking the prominent stance as the 'hydrogen atom of quantum optics' [2]. Generally speaking, it provides a fundamental quantum description of the simplest form of coherent radiation-matter interaction. The Jaynes-Cummings model describes the interaction between a single electromagnetic mode confined to a cavity, and a two-level atom. Energy is exchanged between the field and the atom, which leads directly to coherent population oscillations (Rabi oscillations) and superposition states (dressed states). Being exactly solvable, the Jaynes-Cummings model serves as a most useful toy model, and as such it is a textbook example of the physicists' popular strategy of simplifying a complex problem to its most elementary constituents. Thanks to the simplicity of the Jaynes-Cummings model, this caricature of coherent light-matter interactions has never lost its appeal. The Jaynes-Cummings model is essential when discussing experiments in quantum electrodynamics (indeed the experimental motivation of the Jaynes-Cummings model was evident already in the original paper, dealing as it does with the development of the maser), and it has formed the starting point for much fruitful research ranging from ultra-cold atoms to cavity quantum electrodynamics. In fact, Jaynes-Cummings physics is at the very heart of the beautiful experiments by S Haroche and D Wineland, which recently earned them the 2012 Nobel Prize in physics. Indeed, as with most significant models in physics, the model is invoked in settings that go far beyond its initial framework. For example, recent investigations involving multi-level atoms, multiple atoms [3, 4], multiple

  17. Entanglement and the Jaynes-Cummings model with Rydberg-dressed atoms

    NASA Astrophysics Data System (ADS)

    Biedermann, Grant

    2016-05-01

    Controlling quantum entanglement between parts of a many-body system is the key to unlocking the power of quantum information processing for applications such as quantum computation, high-precision sensing, and simulation of many-body physics. Spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform given their long coherence times and our ability to control them with magneto-optical fields, but creating strong coherent coupling between spins has been challenging. We demonstrate for the first time a strong and tunable Rydberg-dressed interaction between spins of individually trapped cesium atoms with energy shifts of order 1 MHz in units of Planck's constant. We spectroscopically demonstrate that this system is isomorphic to a Jaynes-Cummings Hamiltonian, and observe the √{ N} nonlinearity of the Jaynes-Cummings ladder with a single symmetric Rydberg excitation. This interaction enables a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are blockaded due to their mutual interaction. We employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between atoms. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and through the National Science Foundation's Center for Quantum Information and Control NSF-1212445.

  18. On the relationship between the classical Dicke-Jaynes-Cummings-Gaudin model and the nonlinear Schroedinger equation

    SciTech Connect

    Du, Dianlou; Geng, Xue

    2013-05-15

    In this paper, the relationship between the classical Dicke-Jaynes-Cummings-Gaudin (DJCG) model and the nonlinear Schroedinger (NLS) equation is studied. It is shown that the classical DJCG model is equivalent to a stationary NLS equation. Moreover, the standard NLS equation can be solved by the classical DJCG model and a suitably chosen higher order flow. Further, it is also shown that classical DJCG model can be transformed into the classical Gaudin spin model in an external magnetic field through a deformation of Lax matrix. Finally, the separated variables are constructed on the common level sets of Casimir functions and the generalized action-angle coordinates are introduced via the Hamilton-Jacobi equation.

  19. Equivalence of a compressible inviscid flow and the Bloch vector under the thermal Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Azuma, Hiroo; Ban, Masashi

    2015-07-01

    In this paper, we show that the time evolution of the Bloch vector governed by the thermal Jaynes-Cummings model is equivalent to a compressible inviscid flow with zero vorticity. Because of its quasiperiodicity, the dynamics of the Bloch vector includes countably infinite angular momenta as integrals of motion. Moreover, to derive the Bloch vector, we trace out the Hilbert space of the cavity field and remove entanglement between the single atom and the cavity mode. These facts indicate that the dynamics of the Bloch vector can be described with a hidden-variable model that has local determinism and a countably infinite number of degrees of freedom. Our results fit these considerations.

  20. Exact time-dependent pointer state in a Jaynes-Cummings model with intensity-dependent level shift

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xu, Chang; Ren, Zhongzhou

    2015-06-01

    We show that in the Jaynes-Cummings model with an intensity-dependent level shift whose magnitude is tuned to give rise to periodic collapse and revival, there exists a kind of time evolution where the two-level system and a coherent boson field stay absolutely disentangled throughout the evolution, in spite of the nonzero interaction between them. This constitutes an explicit example for an exact time-dependent pointer state of the two-level system, which perhaps distinguishes this evolution from all known disentangled evolutions in JC-related models. The construction of such an evolution is made possible by a vast level degeneracy in the energy level structure. Two possible ways to observe this phenomenon are also discussed. We believe that the present work could contribute to the understanding of pointer states.

  1. Interaction of a Two-Level Atom with the Morse Potential in the Framework of Jaynes-Cummings Model

    NASA Astrophysics Data System (ADS)

    Setare R., M.; Sh., Barzanjeh

    2009-09-01

    A theoretical study of the dynamical behaviors of the interaction between a two-level atom with a Morse potential in the framework of the Jaynes-Cummings model (JCM) is discussed. We show that this system is equivalent to an intensity-dependent coupling between the two-level atom and the non-deformed single-mode radiation field in the presence of an additional nonlinear interaction. We study the dynamical properties of the system such as, atomic population inversion, the probability distribution of cavity-field, the Mandel parameter and atomic dipole squeezing. It is shown how the depth of the Morse potential can be affected by non-classical properties of the system. Moreover, the temporal evolution of the Husimi-distribution function is explored.

  2. Phase Distribution of the Output of Jaynes-Cummings Model with the Superposition of Squeezed Displaced Fock States

    NASA Astrophysics Data System (ADS)

    Abd Al-Kader, G. M.

    2006-05-01

    The Wigner quasi-probability function for the superposition of squeezed displaced Fock states (SDFS's) is reviewed. The interaction of these states with a two-level atom in cavity with the presence of additional Kerr medium is studied. Exact general matrix elements of the time-dependent operators of a Jaynes-Cummings model (JCM), in the presence of a Kerr medium, with these states are derived. We have obtained the phase distribution by two different ways: one is by Pegg-Barnett formalism, the second is by integration of the Wigner function over the radial variable. Results of these two approaches are compared. The Wigner phase distributions for some values of parameters are illustrated. The behaviors of the distributions have been shown as a function of the squeeze parameter in JCM.

  3. Fifty years of Jaynes-Cummings physics

    NASA Astrophysics Data System (ADS)

    Greentree, Andrew D.; Koch, Jens; Larson, Jonas

    2013-11-01

    This special issue commemorates the 50th anniversary of the seminal paper published by E T Jaynes and F W Cummings [1], the fundamental model which they introduced and now carries their names, and celebrates the remarkable host of exciting research on Jaynes-Cummings physics throughout the last five decades. The Jaynes-Cummings model has been taking the prominent stance as the 'hydrogen atom of quantum optics' [2]. Generally speaking, it provides a fundamental quantum description of the simplest form of coherent radiation-matter interaction. The Jaynes-Cummings model describes the interaction between a single electromagnetic mode confined to a cavity, and a two-level atom. Energy is exchanged between the field and the atom, which leads directly to coherent population oscillations (Rabi oscillations) and superposition states (dressed states). Being exactly solvable, the Jaynes-Cummings model serves as a most useful toy model, and as such it is a textbook example of the physicists' popular strategy of simplifying a complex problem to its most elementary constituents. Thanks to the simplicity of the Jaynes-Cummings model, this caricature of coherent light-matter interactions has never lost its appeal. The Jaynes-Cummings model is essential when discussing experiments in quantum electrodynamics (indeed the experimental motivation of the Jaynes-Cummings model was evident already in the original paper, dealing as it does with the development of the maser), and it has formed the starting point for much fruitful research ranging from ultra-cold atoms to cavity quantum electrodynamics. In fact, Jaynes-Cummings physics is at the very heart of the beautiful experiments by S Haroche and D Wineland, which recently earned them the 2012 Nobel Prize in physics. Indeed, as with most significant models in physics, the model is invoked in settings that go far beyond its initial framework. For example, recent investigations involving multi-level atoms, multiple atoms [3, 4], multiple

  4. Influence of the Kerr effect in a Mott insulator on the superfluid transition from the point of view of the Jaynes-Cummings-Hubbard model

    NASA Astrophysics Data System (ADS)

    Gomes, Clélio B. C.; Almeida, Francisco A. G.; Souza, Andre M. C.

    2016-04-01

    We have studied analytically the Jaynes-Cummings-Hubbard model for a one-dimensional optical lattice with the account of the Kerr-type nonlinearity under the fermionic approximation. We have found that an increase in the number of photons or in the detuning parameter favors the superfluid phase. We have also found that the nonlinear Kerr effect favors the Mott insulator phase, which is in agreement with experimental observations.

  5. Application of Abel-Plana Formula for Collapse and Revival of Rabi Oscillations in Jaynes-Cummings Model

    NASA Astrophysics Data System (ADS)

    Azuma, Hiroo

    In this paper, we give an analytical treatment to study the behavior of the collapse and the revival of the Rabi oscillations in the Jaynes-Cummings model (JCM). The JCM is an exactly soluble quantum mechanical model, which describes the interaction between a two-level atom and a single cavity mode of the electromagnetic field. If we prepare the atom in the ground state and the cavity mode in a coherent state initially, the JCM causes the collapse and the revival of the Rabi oscillations many times in a complicated pattern in its time-evolution. In this phenomenon, the atomic population inversion is described with an intractable infinite series. (When the electromagnetic field is resonant with the atom, the nth term of this infinite series is given by a trigonometric function for √ {n} t, where t is a variable of the time.) According to Klimov and Chumakov's method, using the Abel-Plana formula, we rewrite this infinite series as a sum of two integrals. We examine the physical meanings of these two integrals and find that the first one represents the initial collapse (the semi-classical limit) and the second one represents the revival (the quantum correction) in the JCM. Furthermore, we evaluate the first- and second-order perturbations for the time-evolution of the JCM with an initial thermal coherent state for the cavity mode at low temperature, and write down their correction terms as sums of integrals by making use of the Abel-Plana formula.

  6. A transparent mechanism of Q function splitting in a Jaynes-Cummings model with intensity-dependent level shift

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xu, Chang; Ren, Zhongzhou

    2015-10-01

    We investigate the tripartite relationship between the collapse and revival, the Q function splitting and the energy level structure in the Jaynes-Cummings (JC) model with an intensity-dependent level shift whose magnitude is tuned to give rise to periodic collapse and revivals. We show that this constitutes a clearer demonstration of the mechanism of Q function splitting and its relation with the collapse and revival than the standard JC model itself. The eigenstates form two groups, both of which form equidistant ladders with differing energy intervals. This structure gives rise to the periodic splitting and reunion of the Q function. Only when the reunion happens, a non-vanishing mutual interference between the two groups is possible and gives rise to observable Rabi oscillations. The possibility of observing the phenomena using a Rubidium atom in a cavity is also discussed. We believe the present work could contribute to the understanding of the collapse and revival and the Q function-splitting phenomena.

  7. Entanglement, quantum phase transition and fixed-point bifurcation in the N-atom Jaynes Cummings model with an additional symmetry breaking term

    NASA Astrophysics Data System (ADS)

    Chagas, E. A.; Furuya, K.

    2008-08-01

    In the present work we analyze the quantum phase transition (QPT) in the N-atom Jaynes-Cummings model (NJCM) with an additional symmetry breaking interaction term in the Hamiltonian. We show that depending on the type of symmetry breaking term added the transition order can change or not and also the fixed point associated to the classical analogue of the Hamiltonian can bifurcate or not. We present two examples of symmetry broken Hamiltonians and discuss based on them, the interconnection between the transition order, appearance of bifurcation and the behavior of the entanglement.

  8. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  9. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Entropy and Entanglement in Master Equation of Effective Hamiltonian for Jaynes-Cummings Model

    NASA Astrophysics Data System (ADS)

    Hessian, H. A.; Mohammed, F. A.; Mohamed, A.-B. A.

    2009-04-01

    In this paper, we analytically solve the master equation for Jaynes-Cummings model in the dispersive regime including phase damping and the field is assumed to be initially in a superposition of coherent states. Using an established entanglement measure based on the negativity of the eigenvalues of the partially transposed density matrix we find a very strong sensitivity of the maximally generated entanglement to the amount of phase damping. Qualitatively this behavior is also reflected in alternative entanglement measures, but the quantitative agreement between different measures depends on the chosen noise model. The phase decoherence for this model results in monotonic increase in the total entropy while the atomic sub-entropy keeps its periodic behaviour without any effect.

  10. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Properties of Linear Entropy in k-Photon Jaynes-Cummings Model with Stark Shift and Kerr-Like Medium

    NASA Astrophysics Data System (ADS)

    Liao, Qing-Hong; Ashfaq Ahmad, Muhammad; Wang, Yue-Yuan; Liu, Shu-Tian

    2010-05-01

    The time evolution of the linear entropy of an atom in k-photon Jaynes-Cummings model is investigated taking into consideration Stark shift and Kerr-like medium. The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement.

  11. Cavity losses for the dissipative Jaynes Cummings Hamiltonian beyond rotating wave approximation

    NASA Astrophysics Data System (ADS)

    Scala, M.; Militello, B.; Messina, A.; Maniscalco, S.; Piilo, J.; Suominen, K.-A.

    2007-11-01

    A microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses is given, taking into account the terms in the dissipator which vary with frequencies of the order of the vacuum Rabi frequency. Our approach allows us to single out physical contexts wherein the usual phenomenological dissipator turns out to be fully justified and constitutes an extension of our previous analysis (Scala et al 2007 Phys. Rev. A 75 013811), where a microscopic derivation was given in the framework of the rotating wave approximation.

  12. Thermal-light-induced dynamics: Coherence and revivals in V -type and molecular Jaynes-Cummings systems

    NASA Astrophysics Data System (ADS)

    Avisar, David; Wilson-Gordon, A. D.

    2016-03-01

    We examine the interaction of thermal light with matter with emphasis on two aspects that have not been considered before. By employing a fully quantized Jaynes-Cummings-type interaction model on a V -type three-level system, we show that multimode thermal light induces coherence in the excited material states. This is in contrast to previous studies that suggest thermal light cannot induce coherence in material systems. We also show that the ratio between the field detuning and the interaction constant has a significant influence on the characteristic time-dependent dynamics. In particular, for some ratio regimes, the thermal light induces dynamics with a "coherentlike" collapse and revivals pattern rather than the familiar pattern. We then extend the Jaynes-Cummings model to a two-state Born-Oppenheimer potential energy surface molecular system where the internal vibrational degrees of freedom are fully taken into account. The matter-field bipartite system is represented, and propagated, in the full electronic bond-coordinate Fock product space. We show that single-mode thermal light induces extensive excited-state vibrational coherence in the molecule that, when observed in coordinate space, exhibits wave-packet-like dynamics. The molecular Jaynes-Cummings model we propose is useful for cavity molecular dynamics simulations.

  13. Conditional nonlinear operations by sequential Jaynes-Cummings interactions

    NASA Astrophysics Data System (ADS)

    Park, Kimin; Marek, Petr; Filip, Radim

    2016-07-01

    Nonlinear operations are essential for quantum information processing. We propose a way of implementing a class of nonlinear operations by sequential application of conditional gates based on Jaynes-Cummings (JC) interaction and projective measurements. The scheme has many advantages over the previously proposed all-optical methods and can be applied in several available experimental platforms, such as cavity quantum electrodynamics, trapped ions, and others. We demonstrate performance of the approach on the example of the cubic nonlinearity. We show several different ways in which the full nonlinear operation can be decomposed into sequences of the individual gates, and we compare their performance.

  14. Reentrant Behavior in A Multi-connected Superconducting Jaynes-Cummings Lattice

    NASA Astrophysics Data System (ADS)

    Tian, Lin; Seo, Kangjun

    2015-03-01

    Superconducting quantum devices have excellent connectivity, tunable coupling and long decoherence time as demonstrated by recent experiments. These devices provide a powerful platform for constructing analog quantum simulators to study novel many-body effects. Here we present a multi-connected Jaynes-Cummings lattice model, where the qubits and the resonators are connected alternatively. In a one-dimensional configuration, this model bears an intrinsic symmetry between the left and the right qubit-resonator couplings under a mirror reflection. Different from the coupled cavity array (CCA) model, the qubit-resonator couplings in this model induce both onsite Hubbard nonlinearity and hopping of the excitations along the lattice. By analyzing this model in the limiting cases of very different couplings, we show that this model demonstrates a Mott insulator-superfluid-Mott insulator transition at commensurate fillings with symmetric critical points. The reentry to the Mott insulator phase originates from the symmetry between the couplings. This work is supported by the NSF Award 0956064.

  15. Quantum and classical chaos in kicked coupled Jaynes-Cummings cavities

    SciTech Connect

    Hayward, A. L. C.; Greentree, Andrew D.

    2010-06-15

    We consider two Jaynes-Cummings cavities coupled periodically with a photon hopping term. The semiclassical phase space is chaotic, with regions of stability over some ranges of the parameters. The quantum case exhibits dynamic localization and dynamic tunneling between classically forbidden regions. We explore the correspondence between the classical and quantum phase space and propose an implementation in a circuit QED system.

  16. Experimental investigation of a steady-state dynamical phase transition in a Jaynes-Cummings dimer

    NASA Astrophysics Data System (ADS)

    Raftery, James; Sadri, Darius; Mandt, Stephan; Tureci, Hakan; Houck, Andrew

    Experimental progress in circuit-QED has made it possible to study non-equilibrium many-body physics using strongly correlated photons. Such open and driven systems can display new types of dynamical phase transitions. A steady state transition has also been predicted for a Jaynes-Cummings dimer where the photon current between the two cavities acts as an order parameter. Here, we discuss the theory and report measurements of the steady-state behavior of a circuit-QED dimer with in situ tunable inter-cavity coupling and on-site photon-photon interaction. Recently deceased.

  17. Geometric quantum discord of a Jaynes-Cummings atom and an isolated atom

    NASA Astrophysics Data System (ADS)

    Qiang, Wen-Chao; Zhang, Lei; Zhang, Hua-Ping

    2015-12-01

    We studied the geometric quantum discord of a quantum system consisting of a Jaynes-Cummings (JC) atom, a cavity and an isolated atom. The analytical expressions of the geometric quantum discord for two atoms, every atom with a cavity and the total system were obtained. We showed that the geometric quantum discord is not always zero when the entanglement falls to zero for a two-atom subsystem; the geometric measurement of the quantum discord of the total system developed periodically with a single frequency if the initial two-atom state was not entangled, otherwise, it oscillated with two or four frequencies according to whether the cavity was initially empty or not, respectively.

  18. Entanglement dynamics of two independent Jaynes-Cummings atoms without the rotating-wave approximation

    SciTech Connect

    Chen Qinghu; Yang Yuan; Liu Tao; Wang Kelin

    2010-11-15

    Entanglement evolution of two independent Jaynes-Cummings atoms without the rotating-wave approximation (RWA) is studied by a numerically exact approach. Previous results based on the RWA are essentially modified in the strong-coupling regime (g{>=}0.1), which has been reached in the recent experiments on the flux qubit coupled to the LC resonator. For the initial Bell state with anticorrelated spins, entanglement sudden death (ESD) is absent in the RWA but does appear in the present numerical calculation without the RWA. Aperiodic entanglement evolution in the strong-coupling regime is observed. The strong atom-cavity coupling facilitates the ESD. The sign of the detuning plays an essential role in the entanglement evolution for strong coupling, which is irrelevant in the RWA. Analytical results based on an unitary transformation are also given, which could not modify the RWA picture essentially. It is suggested that the activation of the photons may be the origin of ESD in this system.

  19. Dynamics and improvement of quantum correlations in the triple Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Feng, Ling-Juan; Zhang, Ying-Jie; Xia, Yun-Jie

    2016-05-01

    We investigate the dynamics and improvement of tripartite quantum correlations in three atoms interacting with the independent cavities, in terms of genuinely multipartite concurrence, lower bound of concurrence and tripartite geometric quantum discord. By choosing the GHZ and W states as atomic initial states, we study the relationship between the initial state and entanglement transfer, and the robustness of different correlation measures. The results show that the different initial states can control entanglement transfer between the subsystems, and the tripartite geometric quantum discord is more robust than tripartite entanglement in the evolution process. Then, we propose the optimal scheme to improve tripartite entanglement in certain conditions via the weak measurement and quantum measurement reversal. In addition, we find that our study also works for the N-qubit GHZ state by using genuinely multipartite concurrence.

  20. Entanglement transfer from two-mode continuous variable SU(2) cat states to discrete qubits systems in Jaynes-Cummings Dimers

    PubMed Central

    Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao

    2016-01-01

    We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881

  1. Entanglement transfer from two-mode continuous variable SU(2) cat states to discrete qubits systems in Jaynes-Cummings Dimers.

    PubMed

    Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao

    2016-01-01

    We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881

  2. An Alternative Map from a 2 + 1 Dimensional Charged Dirac Oscillator in the Background of a Uniform Perpendicular Magnetic Field to a Quantum Optics Model

    NASA Astrophysics Data System (ADS)

    Hou, Yu-Long; Wang, Qing; Long, Zheng-Wen; Jing, Jian

    2015-05-01

    We propose an alternative map from the the 2-dimensional charged Dirac oscillator in the background of a uniform perpendicular magnetic field onto a quantum optics model which contains both Jaynes-Cummings (JC) and Anti-Jaynes-Cummings (AJC) interactions. Different from previous work, we only introduce one kind of phonons and realize a symmetrical competition which is controlled by the magnetic field. Furthermore, we find that this model behaves as a quantum phase transition when a dimensionless parameter crosses its critical value. Several characteristics of quantum phase transition are exhibited explicitly.

  3. Multiphoton-scattering theory and generalized master equations

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Chang, Darrick E.; Cirac, J. Ignacio

    2015-11-01

    We develop a scattering theory to investigate the multiphoton transmission in a one-dimensional waveguide in the presence of quantum emitters. It is based on a path integral formalism, uses displacement transformations, and does not require the Markov approximation. We obtain the full time evolution of the global system, including the emitters and the photonic field. Our theory allows us to compute the transition amplitude between arbitrary initial and final states, as well as the S matrix of the asymptotic in and out states. For the case of few incident photons in the waveguide, we also rederive a generalized master equation in the Markov limit. We compare the predictions of the developed scattering theory and that with the Markov approximation. We illustrate our methods with five examples of few-photon scattering: (i) by a two-level emitter, (ii) in the Jaynes-Cummings model; (iii) by an array of two-level emitters; (iv) by a two-level emitter in the half-end waveguide; and (v) by an array of atoms coupled to Rydberg levels. In the first two, we show the application of the scattering theory in the photon scattering by a single emitter, and examine the correctness of our theory with the well-known results. In the third example, we analyze the condition of the Markov approximation for the photon scattering in the array of emitters. In the fourth one, we show how a quantum emitter can generate entanglement of outgoing photons. Finally, we highlight the interplay between the phenomenon of electromagnetic-induced transparency and the Rydberg interaction, and show how this results in a rich variety of possibilities in the quantum statistics of the scattering photons.

  4. Effects of the Stark Shift on the Evolution of the Field Entropy and Entanglement in the Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Fang, Mao Fa

    1996-01-01

    The evolution of the field entropy in the two-photon JCM in the presence of the Stark shift is investigated, and the effects of the dynamic Stark shift on the evolution of the field entropy and entanglement between the atom and field, are examined. The results show that the dynamic Stark shift plays an important role in the evolution of the field entropy in two-photon processes.

  5. Exactly solvable models for atom-molecule Hamiltonians.

    PubMed

    Dukelsky, J; Dussel, G G; Esebbag, C; Pittel, S

    2004-07-30

    We present a family of exactly solvable generalizations of the Jaynes-Cummings model involving the interaction of an ensemble of SU(2) or SU(1,1) quasispins with a single boson field. They are obtained from the trigonometric Richardson-Gaudin models by replacing one of the SU(2) or SU(1,1) degrees of freedom by an ideal boson. The application to a system of bosonic atoms and molecules is reported. PMID:15323678

  6. General integrable n-level, many-mode Janes-Cummings-Dicke models and classical r-matrices with spectral parameters

    SciTech Connect

    Skrypnyk, T. E-mail: tskrypnyk@imath.kiev.ua

    2015-02-15

    Using the technique of classical r-matrices and quantum Lax operators, we construct the most general form of the quantum integrable “n-level, many-mode” spin-boson Jaynes-Cummings-Dicke-type hamiltonians describing an interaction of a molecule of N n-level atoms with many modes of electromagnetic field and containing, in general, additional non-linear interaction terms. We explicitly obtain the corresponding quantum Lax operators and spin-boson analogs of the generalized Gaudin hamiltonians and prove their quantum commutativity. We investigate symmetries of the obtained models that are associated with the geometric symmetries of the classical r-matrices and construct the corresponding algebra of quantum integrals. We consider in detail three classes of non-skew-symmetric classical r-matrices with spectral parameters and explicitly obtain the corresponding quantum Lax operators and Jaynes-Cummings-Dicke-type hamiltonians depending on the considered r-matrix.

  7. A simple model of multiphoton micromachining in silk hydrogels

    NASA Astrophysics Data System (ADS)

    Applegate, Matthew B.; Alonzo, Carlo; Georgakoudi, Irene; Kaplan, David L.; Omenetto, Fiorenzo G.

    2016-06-01

    High resolution three-dimensional voids can be directly written into transparent silk fibroin hydrogels using ultrashort pulses of near-infrared (NIR) light. Here, we propose a simple finite-element model that can be used to predict the size and shape of individual features under various exposure conditions. We compare predicted and measured feature volumes for a wide range of parameters and use the model to determine optimum conditions for maximum material removal. The simplicity of the model implies that the mechanism of multiphoton induced void creation in silk is due to direct absorption of light energy rather than diffusion of heat or other photoproducts, and confirms that multiphoton absorption of NIR light in silk is purely a 3-photon process.

  8. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    PubMed Central

    Zhang, Guofeng; Zhu, Hanjie

    2015-01-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model. PMID:25736827

  9. Eigenvalue-based determinants for scalar products and form factors in Richardson-Gaudin integrable models coupled to a bosonic mode

    NASA Astrophysics Data System (ADS)

    Claeys, Pieter W.; De Baerdemacker, Stijn; Van Raemdonck, Mario; Van Neck, Dimitri

    2015-10-01

    Starting from integrable su(2) (quasi-)spin Richardson-Gaudin (RG) XXZ models we derive several properties of integrable spin models coupled to a bosonic mode. We focus on the Dicke-Jaynes-Cummings-Gaudin models and the two-channel (p + ip)-wave pairing Hamiltonian. The pseudo-deformation of the underlying su(2) algebra is here introduced as a way to obtain these models in the contraction limit of different RG models. This allows for the construction of the full set of conserved charges, the Bethe ansatz state, and the resulting RG equations. For these models an alternative and simpler set of quadratic equations can be found in terms of the eigenvalues of the conserved charges. Furthermore, the recently proposed eigenvalue-based determinant expressions for the overlaps and form factors of local operators are extended to these models, linking the results previously presented for the Dicke-Jaynes-Cummings-Gaudin models with the general results for RG XXZ models.

  10. Demonstration of structural alterations in experimental corneal infectious model using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Tan, Hsin-Yuan; Chang, Yuh-Ling; Sun, Yen; Lin, Sung-Jan; Jee, Shiou-Hwa; Dong, Chen-Yuan

    2007-02-01

    The aim of this study is to assess the application of multiphoton autofluorescence and second harmonic generation (SHG) microscopy for investigating the structural alterations and the pattern of microbial spreading during corneal infectious process in an in vitro organ culture model. The autofluorescence spectrum derived from pathogens allows us to monitoring the pattern of microbial spreading within corneal lamellae. In addition, the destruction and regeneration of second harmonic generating collagen during infectious process can also be monitored in a non-invasive fashion. Therefore we propose that multiphoton microscopy may potentially be applied as an effective monitoring tool for corneal infection studies.

  11. Multiphoton imaging of upconverting lanthanide nanoparticles in three dimensional models of cancer

    NASA Astrophysics Data System (ADS)

    Gainer, Christian F.; Romanowski, Marek

    2013-02-01

    While upconverting lanthanide nanoparticles have numerous advantages over other exogenous contrast agents used in scanned multiphoton imaging, their long luminescence lifetimes cause images collected with non-descanned detection to be greatly blurred. We demonstrate herein the use of Richardson-Lucy deconvolution to deblur luminescence images obtained via multiphoton scanning microscopy. Images were taken of three dimensional models of colon and ovarian cancer following incubation with NaYF4:Yb,Er nanoparticles functionalized with an antibody for EGFR and folic acid respectively. Following deconvolution, images had a lateral resolution on par with the optimal performance of the imaging system used, ~1.2 μm, and an axial resolution of ~5 μm. Due to the relatively high multiphoton excitation efficiency of these nanoparticles, it is possible to follow binding of individual particles in tissue. In addition, their extreme photostability allows for prolonged imaging without significant loss in luminescence signal. With these advantageous properties in mind, we also discuss the potential application of upconverting lanthanide nanoparticles for tracking of specific, cancer relevant receptors in tissue.

  12. Multiphoton Imaging of Upconverting Lanthanide Nanoparticles in Three Dimensional Models of Cancer

    PubMed Central

    Gainer, Christian F.; Romanowski, Marek

    2013-01-01

    While upconverting lanthanide nanoparticles have numerous advantages over other exogenous contrast agents used in scanned multiphoton imaging, their long luminescence lifetimes cause images collected with non-descanned detection to be greatly blurred. We demonstrate herein the use of Richardson-Lucy deconvolution to deblur luminescence images obtained via multiphoton scanning microscopy. Images were taken of three dimensional models of colon and ovarian cancer following incubation with NaYF4:Yb,Er nanoparticles functionalized with an antibody for EGFR and folic acid respectively. Following deconvolution, images had a lateral resolution on par with the optimal performance of the imaging system used, ~1.2 μm, and an axial resolution of ~5 μm. Due to the relatively high multiphoton excitation efficiency of these nanoparticles, it is possible to follow binding of individual particles in tissue. In addition, their extreme photostability allows for prolonged imaging without significant loss in luminescence signal. With these advantageous properties in mind, we also discuss the potential application of upconverting lanthanide nanoparticles for tracking of specific, cancer relevant receptors in tissue. PMID:24353385

  13. Quantum Rabi Model with Trapped Ions

    PubMed Central

    Pedernales, J. S.; Lizuain, I.; Felicetti, S.; Romero, G.; Lamata, L.; Solano, E.

    2015-01-01

    We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep strong coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions. PMID:26482660

  14. Quantum Rabi Model with Trapped Ions.

    PubMed

    Pedernales, J S; Lizuain, I; Felicetti, S; Romero, G; Lamata, L; Solano, E

    2015-01-01

    We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep strong coupling regimes of such a paradigmatic light-matter interaction. Furthermore, associated with these extreme dipolar regimes, we study the controlled generation and detection of their entangled ground states by means of adiabatic methods. Ion traps have arguably performed the first quantum simulation of the Jaynes-Cummings model, a restricted regime of the quantum Rabi model where the rotating-wave approximation holds. We show that one can go beyond and experimentally investigate the quantum simulation of coupling regimes of the quantum Rabi model that are difficult to achieve with natural dipolar interactions. PMID:26482660

  15. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  16. MULTIPHOTON PROCESSES

    SciTech Connect

    2002-07-05

    The Gordon Research Conference (GRC) on MULTIPHOTON PROCESSES was held at Tilton School, Tilton, NH. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  17. Use of multiphoton microscopy to diagnose liver cancer and lung metastasis in an orthotopic rat model.

    PubMed

    Yan, Jun; Zhuo, Shuangmu; Chen, Gang; Tan, Changjun; Zhu, Weifeng; Lu, Jianping; Fan, Jia; Chen, Jianxin; Zhou, Jian

    2012-01-01

    Liver or lung biopsy for suspicious lesions has several disadvantages such as bleeding, bile leak or pneumothorax, needle track seeding, and time-consuming histopathological procedure. The ability to directly observe cellular and subcellular details and then perform "optical biopsy" is a major goal in the development of new interventional techniques. Multiphoton microscopy (MPM) enables real-time noninvasive visualization of tissue architecture and cell morphology in live tissue. We performed a study to evaluate whether MPMcan make real-time optical diagnosis for liver cancer and lung metastasis using an orthotopic rat model with Morris hepatoma. We found that real-time high-resolution MPMimaging could clearly show tissue architecture and cell morphology. In the normal liver tissue, MPMimaging clearly revealed the blood-filled sinusoids and cords of hepatocytes. In the cancerous tissue, MPMimaging clearly illustrated that cancer cells displayed marked cellular and nuclear pleomorphism. MPMimages were comparable to golden standard hematoxylin-eosin staining images. Moreover, MPMimaging had deep penetration with the capability of optical sectioning. In short, MPMcan make real-time optical diagnosis for liver cancer and lung metastasis. This study provides the groundwork for further using multiphoton endoscopy to perform real-time noninvasive "optical biopsy" for liver cancer and lung metastasis in the near future. PMID:22331704

  18. Generalized Rabi models: Diagonalization in the spin subspace and differential operators of Dunkl type

    NASA Astrophysics Data System (ADS)

    Moroz, Alexander

    2016-03-01

    A discrete parity {Z}2 -symmetry of a two-parameter extension of the quantum Rabi model which smoothly interpolates between the latter and the Jaynes-Cummings model, and of the two-photon and the two-mode quantum Rabi models, enables their diagonalization in the spin subspace. A more general statement is that the respective sets of 2× 2 Hermitian operators of the Fulton-Gouterman type and those diagonal in the spin subspace are unitary equivalent. The diagonalized representation makes it transparent that any question about integrability and solvability can be addressed only at the level of ordinary differential operators of Dunkl type. Braak's definition of integrability is shown i) to contradict earlier numerical studies and ii) to imply that any physically reasonable differential operator of Fulton-Gouterman type is integrable.

  19. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory

    SciTech Connect

    Nascimento, Daniel R.; DePrince, A. Eugene

    2015-12-07

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field.

  20. Modeling molecule-plasmon interactions using quantized radiation fields within time-dependent electronic structure theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2015-12-01

    We present a combined cavity quantum electrodynamics/ab initio electronic structure approach for simulating plasmon-molecule interactions in the time domain. The simple Jaynes-Cummings-type model Hamiltonian typically utilized in such simulations is replaced with one in which the molecular component of the coupled system is treated in a fully ab initio way, resulting in a computationally efficient description of general plasmon-molecule interactions. Mutual polarization effects are easily incorporated within a standard ground-state Hartree-Fock computation, and time-dependent simulations carry the same formal computational scaling as real-time time-dependent Hartree-Fock theory. As a proof of principle, we apply this generalized method to the emergence of a Fano-like resonance in coupled molecule-plasmon systems; this feature is quite sensitive to the nanoparticle-molecule separation and the orientation of the molecule relative to the polarization of the external electric field. PMID:26646866

  1. A phasor approach analysis of multiphoton FLIM measurements of three-dimensional cell culture models

    NASA Astrophysics Data System (ADS)

    Lakner, P. H.; Möller, Y.; Olayioye, M. A.; Brucker, S. Y.; Schenke-Layland, K.; Monaghan, M. G.

    2016-03-01

    Fluorescence lifetime imaging microscopy (FLIM) is a useful approach to obtain information regarding the endogenous fluorophores present in biological samples. The concise evaluation of FLIM data requires the use of robust mathematical algorithms. In this study, we developed a user-friendly phasor approach for analyzing FLIM data and applied this method on three-dimensional (3D) Caco-2 models of polarized epithelial luminal cysts in a supporting extracellular matrix environment. These Caco-2 based models were treated with epidermal growth factor (EGF), to stimulate proliferation in order to determine if FLIM could detect such a change in cell behavior. Autofluorescence from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) in luminal Caco-2 cysts was stimulated by 2-photon laser excitation. Using a phasor approach, the lifetimes of involved fluorophores and their contribution were calculated with fewer initial assumptions when compared to multiexponential decay fitting. The phasor approach simplified FLIM data analysis, making it an interesting tool for non-experts in numerical data analysis. We observed that an increased proliferation stimulated by EGF led to a significant shift in fluorescence lifetime and a significant alteration of the phasor data shape. Our data demonstrates that multiphoton FLIM analysis with the phasor approach is a suitable method for the non-invasive analysis of 3D in vitro cell culture models qualifying this method for monitoring basic cellular features and the effect of external factors.

  2. Multi-photon microscopy of tobacco-exposed organotypic skin models

    NASA Astrophysics Data System (ADS)

    Dao, Belinda; Yamazaki, Alissa; Sun, Chung Ho; Wang, Zifu; Pham, Nguyen; Oldham, Michael; Wong, Brian J. F.

    2006-02-01

    Cigarette smoking is the most preventable cause of death in the United States. Researchers have extensively studied smoking in regards to its association with cancer, cardiovascular, and pulmonary disease. In contrast, the impact of cigarette smoking on skin has received much less attention. To provide a better understanding of the effect of cigarette smoking on the human dermal layer, this study used multi-photon microscopy (MPM) to examine collagen in organotypic skin models exposed to cigarette smoke condensate (CSC). Adult and neonatal organotypic tissue-engineered artificial skin models (RAFTs) were constructed and exposed to varying concentrations of CSC. Imaging of the RAFTs was performed using MPM and second-harmonic generation signals (SHG), which allowed for collagen structure to be viewed and analyzed as well as for collagen density to be assessed from derived depth-dependent decay (DDD) values. RAFT contraction as related to exposure concentration was monitored as well. Results indicated a dose dependent between contraction rates and CSC concentration. Collagen structure showed more preservation of its original structure at a greater depth in RAFTs with higher concentrations of CSC. No clear trends could be drawn from analysis of derived DDD values.

  3. Structural analysis of articular cartilage using multiphoton microscopy: input for biomechanical modeling.

    PubMed

    Lilledahl, Magnus B; Pierce, David M; Ricken, Tim; Holzapfel, Gerhard A; Davies, Catharina de Lange

    2011-09-01

    The 3-D morphology of chicken articular cartilage was quantified using multiphoton microscopy (MPM) for use in continuum-mechanical modeling. To motivate this morphological study we propose aspects of a new, 3-D finite strain constitutive model for articular cartilage focusing on the essential load-bearing morphology: an inhomogeneous, poro-(visco)elastic solid matrix reinforced by an anisotropic, (visco)elastic dispersed fiber fabric which is saturated by an incompressible fluid residing in strain-dependent pores. Samples of fresh chicken cartilage were sectioned in three orthogonal planes and imaged using MPM, specifically imaging the collagen fibers using second harmonic generation. Employing image analysis techniques based on Fourier analysis, we derived the principal directionality and dispersion of the collagen fiber fabric in the superficial layer. In the middle layer, objective thresholding techniques were used to extract the volume fraction occupied by extracellular collagen matrix. In conjunction with information available in the literature, or additional experimental testing, we show how this data can be used to derive a 3-D map of the initial solid volume fraction and Darcy permeability. PMID:21478075

  4. Multiphoton microscopy for imaging infectious keratitis: demonstration of the pattern of microbial spread in an experimental model

    NASA Astrophysics Data System (ADS)

    Sun, Yen; Lo, Wen; Wu, Ruei-Jhih; Lin, Sung-Jan; Lin, Wei-Chou; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2006-02-01

    The purpose of this study is to assess the application of multiphoton fluorescence and second harmonic generation (SHG) microscopy for imaging and monitoring the disease progress of infectious keratitis in an experimental model, and to investigate the possible correlation of tissue architecture with spreading patterns of pathogens in an experimental model. Porcine eyes are to be obtained from slaughter house and processed and placed in organ culture system. Fungal infections by common pathogens of infectious keratitis are to be induced in porcine cornea buttons. Multiphoton fluorescence and SHG microscopy will be used for imaging and for monitoring the progression and extension of tissue destruction and possibly the pattern of pathogen spreading. We found that SHG imaging is useful in identifying alterations to collagen architecture while autofluorescence microscopy can be used to visualize the fungi and cells within the stroma. In summary, multiphoton fluorescence and second harmonic generation microscopy can non-invasively demonstrate and monitor tissue destruction associated with infectious keratitis. The pattern of pathogen spreading and its correlation with the tissue architecture can also be shown, which can be useful for future studies of the tissue-microbial interactions for infectious keratitis.

  5. The Multiphoton Interaction of Lambda Model Atom and Two-Mode Fields

    NASA Technical Reports Server (NTRS)

    Liu, Tang-Kun

    1996-01-01

    The system of two-mode fields interacting with atom by means of multiphotons is addressed, and the non-classical statistic quality of two-mode fields with interaction is discussed. Through mathematical calculation, some new rules of non-classical effects of two-mode fields which evolue with time, are established.

  6. Modeling extracellular matrix (ECM) alterations in ovarian cancer by multiphoton excited fabrication of stromal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Campagnola, Paul J.; Ajeti, Visar; Lara, Jorge; Eliceiri, Kevin W.; Patankar, Mansh

    2016-04-01

    A profound remodeling of the extracellular matrix (ECM) occurs in human ovarian cancer but it unknown how this affects tumor growth, where this understanding could lead to better diagnostics and therapeutic approaches. We investigate the role of these ECM alterations by using multiphoton excited (MPE) polymerization to fabricate biomimetic models to investigate operative cell-matrix interactions in invasion/metastasis. First, we create nano/microstructured gradients mimicking the basal lamina to study adhesion/migration dynamics of ovarian cancer cells of differing metastatic potential. We find a strong haptotactic response that depends on both contact guidance and ECM binding cues. While we found enhanced migration for more invasive cells, the specifics of alignment and directed migration also depend on cell polarity. We further use MPE fabrication to create collagen scaffolds with complex, 3D submicron morphology. The stromal scaffold designs are derived directly from "blueprints" based on SHG images of normal, high risk, and malignant ovarian tissues. The models are seeded with different cancer cell lines and this allows decoupling of the roles of cell characteristics (metastatic potential) and ECM structure and composition (normal vs cancer) on adhesion/migration dynamics. We found the malignant stroma structure promotes enhanced migration and proliferation and also cytoskeletal alignment. Creating synthetic models based on fibers patterns further allows decoupling the topographic roles of the fibers themselves vs their alignment within the tissue. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology.

  7. In vivo three-dimensional optical coherence tomography and multiphoton microscopy in a mouse model of ovarian neoplasia

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer M.; Marion, Samuel L.; Rice, Photini Faith; Bentley, David L.; Besselsen, David; Utzinger, Urs; Hoyer, Patricia B.; Barton, Jennifer K.

    2013-03-01

    Our goal is to use optical coherence tomography (OCT) and multiphoton microscopy (MPM) to detect early tumor development in a mouse model of ovarian neoplasia. We hope to use information regarding early tumor development to create a diagnostic test for high-risk patients. In this study we collect in vivo images using OCT, second harmonic generation and two-photon excited fluorescence from non-vinylcyclohexene diepoxide (VCD)-dosed and VCD-dosed mice. VCD causes follicular apoptosis (simulating menopause) and leads to tumor development. Using OCT and MPM we visualized the ovarian microstructure and were able to see differences between non-VCD-dosed and VCD-dosed animals. This leads us to believe that OCT and MPM may be useful for detecting changes due to early tumor development.

  8. Multiphoton processes: conference proceedings

    SciTech Connect

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  9. In-vitro visualization of corneal wound healing in an organ culture model using multiphoton autofluorescence and second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Chang, Yuh-Ling; Sun, Yen; Lin, Sung-Jan; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2007-02-01

    The aim of this work is to image the wound healing process of cornea in an in vitro organ culture model with noninvasive multiphoton imaging modality. Autofluorescence and second harmonic generation (SHG) were respectively used to monitor the alterations of cellular and collagenous components during wound healing processes. Within additional developments, this approach may be applied to in vivo visualization of corneal structural destruction and the subsequent regeneration.

  10. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    SciTech Connect

    Tholeti, Siva Sashank; Alexeenko, Alina A.; Shneider, Mikhail N.

    2014-06-15

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  11. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    SciTech Connect

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi-photon

  12. Three-Dimensional Morphology by Multiphoton Microscopy with Clearing in a Model of Cisplatin-Induced CKD.

    PubMed

    Torres, Richard; Velazquez, Heino; Chang, John J; Levene, Michael J; Moeckel, Gilbert; Desir, Gary V; Safirstein, Robert

    2016-04-01

    Traditional histologic methods are limited in their ability to detect pathologic changes of CKD, of which cisplatin therapy is an important cause. In addition, poor reproducibility of available methods has limited analysis of the role of fibrosis in CKD. Highly labor-intensive serial sectioning studies have demonstrated that three-dimensional perspective can reveal useful morphologic information on cisplatin-induced CKD. By applying the new technique of multiphoton microscopy (MPM) with clearing to a new mouse model of cisplatin-induced CKD, we obtained detailed morphologic and collagen reconstructions of millimeter-thick renal sections that provided new insights into pathophysiology. Quantitative analysis revealed that a major long-term cisplatin effect is reduction in the number of cuboidal cells of the glomerular capsule, a change we term the "uncapped glomerulus lesion." Glomerulotubular disconnection was confirmed, but connection remnants between damaged tubules and atubular glomeruli were observed. Reductions in normal glomerular capsules corresponded to reductions in GFR. Mild increases in collagen were noted, but the fibrosis was not spatially correlated with atubular glomeruli. Glomerular volume and number remained unaltered with cisplatin exposure, but cortical tubulointerstitial mass decreased. In conclusion, new observations were made possible by using clearing MPM, demonstrating the utility of this technique for studies of renal disease. This technique should prove valuable for further characterizing the evolution of CKD with cisplatin therapy and of other conditions. PMID:26303068

  13. Examination of diagnostic features in multiphoton microscopy and optical coherence tomography images of ovarian tumorigenesis in a mouse model

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer M.

    Ovarian cancer is a deadly disease owing to the non-specific symptoms and suspected rapid progression, leading to frequent late stage detection and poor prognosis. Medical imaging methods such as CT, MRI and ultrasound as well as serum testing for cancer markers have had extremely poor performance for early disease detection. Due to the poor performance of available screening methods, and the impracticality and ineffectiveness of taking tissue biopsies from the ovary, women at high risk for developing ovarian cancer are often advised to undergo prophylactic salpingo-oophorectomy. This surgery results in many side effects and is most often unnecessary since only a fraction of high risk women go on to develop ovarian cancer. Better understanding of the early development of ovarian cancer and characterization of morphological changes associated with early disease could lead to the development of an effective screening test for women at high risk. Optical imaging methods including optical coherence tomography (OCT) and multiphoton microscopy (MPM) are excellent tools for studying disease progression owing to the high resolution and depth sectioning capabilities. Further, these techniques are excellent for optical biopsy because they can image in situ non-destructively. In the studies described in this dissertation OCT and MPM are used to identify cellular and tissue morphological changes associated with early tumor development in a mouse model of ovarian cancer. This work is organized into three specific aims. The first aim is to use the images from the MPM phenomenon of second harmonic generation to quantitatively examine the morphological differences in collagen structure in normal mouse ovarian tissue and mouse ovarian tumors. The second aim is to examine the differences in endogenous two-photon excited fluorescence in normal mouse ovarian tissue and mouse ovarian tumors. The third and final aim is to identify changes in ovarian microstructure resulting from early

  14. Ground-state phase diagram of the quantum Rabi model

    NASA Astrophysics Data System (ADS)

    Ying, Zu-Jian; Liu, Maoxin; Luo, Hong-Gang; Lin, Hai-Qing; You, J. Q.

    2015-11-01

    The Rabi model plays a fundamental role in understanding light-matter interaction. It reduces to the Jaynes-Cummings model via the rotating-wave approximation, which is applicable only to the cases of near resonance and weak coupling. However, recent experimental breakthroughs in upgrading light-matter coupling order require understanding the physics of the full quantum Rabi model (QRM). Despite the fact that its integrability and energy spectra have been exactly obtained, the challenge to formulate an exact wave function in a general case still hinders physical exploration of the QRM. Here we unveil a ground-state phase diagram of the QRM, consisting of a quadpolaron and a bipolaron as well as their changeover in the weak-, strong-, and intermediate-coupling regimes, respectively. An unexpected overweighted antipolaron is revealed in the quadpolaron state, and a hidden scaling behavior relevant to symmetry breaking is found in the bipolaron state. An experimentally accessible parameter is proposed to test these states, which might provide novel insights into the nature of the light-matter interaction for all regimes of the coupling strengths.

  15. Multiphoton polymerization using optical trap assisted nanopatterning

    NASA Astrophysics Data System (ADS)

    Leitz, Karl-Heinz; Tsai, Yu-Cheng; Flad, Florian; Schäffer, Eike; Quentin, Ulf; Alexeev, Ilya; Fardel, Romain; Arnold, Craig B.; Schmidt, Michael

    2013-06-01

    In this letter, we show the combination of multiphoton polymerization and optical trap assisted nanopatterning (OTAN) for the additive manufacturing of structures with nanometer resolution. User-defined patterns of polymer nanostructures are deposited on a glass substrate by a 3.5 μm polystyrene sphere focusing IR femtosecond laser pulses, showing minimum feature sizes of λ/10. Feature size depends on the applied laser fluence and the bead surface spacing. A finite element model describes the intensity enhancement in the microbead focus. The results presented suggest that OTAN in combination with multiphoton processing is a viable technique for additive nanomanufacturing with sub-diffraction-limited resolution.

  16. Simultaneous optical coherence and multiphoton microscopy of skin-equivalent tissue models

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Tang, Shuo; Lim, Ryan; Tromberg, Bruce J.

    2007-07-01

    Three-layer skin-equivalent models (rafts) were created consisting of a collagen/fibroblast layer and an air-exposed keratinocyte layer. Rafts were imaged with a tri-modality microscope including optical coherence (OC), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) channels. Some rafts were stained with Hoechst 33343 or rhodamine 123, and some were exposed to dimethyl sulfoxide (DMSO). OC microscopy revealed signal in cell cytoplasm and nuclear membranes, and a characteristic texture in the collagen/fibroblast layer. TPEF showed signal in cell cytoplasm and from collagen, and stained specimens revealed cell nuclei or mitochondria. There was little SHG in the keratinocyte layer, but strong signal from collagen bundles. Endogenous signals were severely attenuated in DMSO treated rafts; stained samples revealed shrunken and distorted cell structure. OC, TPEF, and SHG can provide complementary and non-destructive information about raft structure and effect of chemical agents.

  17. Dynamics of entanglement and 'attractor' states in the Tavis-Cummings model

    NASA Astrophysics Data System (ADS)

    Jarvis, C. E. A.; Rodrigues, D. A.; Györffy, B. L.; Spiller, T. P.; Short, A. J.; Annett, J. F.

    2009-10-01

    We study the time evolution of Nq two-level atoms (or qubits) interacting with a single mode of a quantized radiation field. In the case of two qubits, we show that for a set of initial conditions the reduced density matrix of the atomic system approaches that of a pure state at {\\textstyle\\frac{t_{r}}{4}} , halfway between that start of the collapse and the first mini-revival peak, where tr is the time of the main revival. The pure state approached is the same for a set of initial conditions and is thus termed an 'attractor state'. The set itself is termed the 'basin of attraction' and we concentrate on its features. Extending to more qubits, we find that attractors are a generic feature of the multiqubit Jaynes-Cummings model (JCM) and we therefore generalize the discovery by Gea-Banacloche for the one-qubit case. We give the 'basin of attraction' for Nq qubits and discuss the implications of the 'attractor' state in terms of the dynamics of Nq-body entanglement. We observe both the collapse and revival and the sudden birth/death of entanglement depending on the initial conditions.

  18. Quantum-optical model for the dynamics of high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Gombkötő, Ákos; Czirják, Attila; Varró, Sándor; Földi, Péter

    2016-07-01

    We investigate a two-level atom in the field of a strong laser pulse. The resulting time-dependent polarization is the source of a radiation the frequency components of which are essentially harmonics of the driving field's carrier frequency. The time evolution of this secondary radiation is analyzed in terms of the expectation values of the photon-number operators for a large number of electromagnetic modes that are initially in the vacuum state. Our method is based on a multimode version of the Jaynes-Cummings-Paul model and can be generalized to different radiating systems as well. We show that, after the exciting pulse, the final distribution of the photon numbers is close to the conventional (Fourier-transform-based) power spectrum of the secondary radiation. The details of the high-order-harmonic spectra (HHG spectra) are also analyzed; for many-cycle excitations a clear physical interpretation is given in terms of the Floquet quasienergies. A first step towards the determination of the photon statistics of the high-order-harmonic modes reveals states with slightly super-Poissonian distribution.

  19. Multiphoton microscopy in neuroscience

    NASA Astrophysics Data System (ADS)

    Denk, Winfried

    2002-06-01

    The study of the nervous system requires to an exceptional extent observation of and experimentation on intact tissue. There, in particular, high-resolution optical microscopy benefits from the inherent advantages of multi-photon fluorescence excitation. Several cases will be presented from a number of different tissues and organisms, where multi-photon excited laser scanning fluorescence microscopy has been an essential experimental tool. Those examples include the discovery of biochemical coincidence detection in synaptic spines and the clarification of the underlying mechanism; the observation of sensory evoked dendritic signaling in intact animals and the observation of light induced calcium signals in the intact retina. Recently a fiber coupled two-photon microscopy has been developed that allows the imaging in moving animal.

  20. Clinical multiphoton FLIM tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  1. Multiphoton Microwave Ionization of Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Gurian, Joshua Houston

    This thesis describes a series of multiphoton microwave experiments on Rydberg atoms when the microwave frequency is much greater than the classical Kepler frequency of the excited atoms. A new kHz pulse repetition frequency dye laser system was constructed for Rydberg lithium excitation with a linewidth as narrow as 3 GHz. This new laser system is used for first experiments of multiphoton microwave ionization of Rydberg lithium approaching the photoionization limit using 17 and 36 GHz microwave pulses. A multi-channel quantum defect model is presented that well describes the experimental results, indicating that these results are due to the coherent coupling of many atomic levels both above and below the classical ionization limit. Finally, preliminary results of measuring the final-state distributions of high lying Rydberg states after 17 GHz microwave pulses are presented.

  2. Calculation of multiphoton ionization processes

    NASA Technical Reports Server (NTRS)

    Chang, T. N.; Poe, R. T.

    1976-01-01

    We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.

  3. Multiphoton high-resolution 3D imaging of Langerhans cells and keratinocytes in the mouse skin model adopted for epidermal powdered immunization.

    PubMed

    Mulholland, William J; Arbuthnott, Edward A H; Bellhouse, Brian J; Cornhill, J Frederick; Austyn, Jonathan M; Kendall, Mark A F; Cui, Zhanfeng; Tirlapur, Uday K

    2006-07-01

    Langerhans cells (LCs) can be targeted with DNA-coated gold micro-projectiles ("Gene Gun") to induce potent cellular and humoral immune responses. It is likely that the relative volumetric distribution of LCs and keratinocytes within the epidermis impacts on the efficacy of Gene Gun immunization protocols. This study quantified the three-dimensional (3D) distribution of LCs and keratinocytes in the mouse skin model with a near-infrared multiphoton laser-scanning microscope (NIR-MPLSM). Stratum corneum (SC) and viable epidermal thickness measured with MPLSM was found in close agreement with conventional histology. LCs were located in the vertical plane at a mean depth of 14.9 microm, less than 3 mum above the dermo-epidermal boundary and with a normal histogram distribution. This likely corresponds to the fact that LCs reside in the suprabasal layer (stratum germinativum). The nuclear volume of keratinocytes was found to be approximately 1.4 times larger than that of resident LCs (88.6 microm3). Importantly, the ratio of LCs to keratinocytes in mouse ear skin (1:15) is more than three times higher than that reported for human breast skin (1:53). Accordingly, cross-presentation may be more significant in clinical Gene Gun applications than in pre-clinical mouse studies. These interspecies differences should be considered in pre-clinical trials using mouse models. PMID:16645596

  4. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  5. Video-rate resonant scanning multiphoton microscopy

    PubMed Central

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  6. Effect of multiphoton ionization on performance of crystalline lens.

    PubMed

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D; Campbell, M C W; Sharma, R P

    2014-12-15

    This Letter presents a model for propagation of a laser pulse in a human crystalline lens. The model contains a transverse beam diffraction effect, laser-induced optical breakdown for the creation of plasma via a multiphoton ionization process, and the gradient index (GRIN) structure. Plasma introduces the nonlinearity in the crystalline lens which affects the propagation of the beam. The multiphoton ionization process generates plasma that changes the refractive index and hence leads to the defocusing of the laser beam. The Letter also points out the relevance of the present investigation to cavitation bubble formation for restoring the elasticity of the eyes. PMID:25502994

  7. Multiphoton Effects in Rutile.

    NASA Astrophysics Data System (ADS)

    Royce, Gerald A.

    Multiphoton effects are investigated in crystalline rutile TiO(,2) using Nd:YAG laser photons. The 1.06 micron laser is operated in Q-switched mode with intensities up to 1.4 x 10('6) watts/cm('2) on the rutile crystal. Photoconductivity measurements provide data indicating a mixture of modes for electrons to be photoionized. Assuming aluminum impurity as the contributing sites, the first order photionization cross section is found to be 1.5 x 10('-26) cm('2) and second order cross section is found to be 7.7 x 10('-51) cm('4)-s. No appreciable change in cross section is observed for circular versus linear polarization of the laser. Observations of the photo-emission of the laser illuminated crystal provide radiative relaxation times on the order of 100 nanoseconds with emission peaks at 4500 and 5000 angstroms plus a near infrared continuum out to 1 micron. The thermoluminescence of rutile shows a number of trapping levels between 0.4 and 0.8 eV below the conduction band. These are attributed to an aluminum impurity.

  8. Multiphoton tomography of astronauts

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Pietruszka, Anna; Bückle, Rainer; Gerlach, Nicole; Heinrich, Ulrike

    2015-03-01

    Weightlessness may impair the astronaut's health conditions. Skin impairments belong to the most frequent health problems during space missions. Within the Skin B project, skin physiological changes during long duration space flights are currently investigated on three European astronauts that work for nearly half a year at the ISS. Measurements on the hydration, the transepidermal water loss, the surface structure, elasticity and the tissue density by ultrasound are conducted. Furthermore, high-resolution in vivo histology is performed by multiphoton tomography with 300 nm spatial and 200 ps temporal resolution. The mobile certified medical tomograph with a flexible 360° scan head attached to a mechano-optical arm is employed to measure two-photon autofluorescence and SHG in the volar forearm of the astronauts. Modification of the tissue architecture and of the fluorescent biomolecules NAD(P)H, keratin, melanin and elastin are detected as well as of SHG-active collagen. Thinning of the vital epidermis, a decrease of the autofluoresence intensity, an increase in the long fluorescence lifetime, and a reduced skin ageing index SAAID based on an increased collagen level in the upper dermis have been found. Current studies focus on recovery effects.

  9. Quantitative multiphoton imaging

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  10. Modeling of the initiation and evolution of a laser-ionized column in the lower atmosphere - 314.5 nm wavelength resonant multiphoton ionization of naturally occurring argon

    NASA Technical Reports Server (NTRS)

    Fetzer, G. J.; Stockley, J. E.

    1992-01-01

    A 3+1 resonant multiphoton ionization process in naturally occurring argon is studied at 314.5 nm as a candidate for providing a long ionized channel through the atmosphere. Results are presented which indicate peak electron densities up to 10 exp 8/cu cm can be created using laser intensities on the order of 10 exp 8 W/sq cm.

  11. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining. PMID:26830089

  12. High-intensity laser heating in liquids: Multiphoton absorption

    SciTech Connect

    Longtin, J.P.; Tien, C.L.

    1995-12-31

    At high laser intensities, otherwise transparent liquids can absorb strongly by the mechanism of multiphoton absorption, resulting in absorption and heating several orders of magnitude greater than classical, low-intensity mechanisms. The use of multiphoton absorption provides a new mechanism for strong, controlled energy deposition in liquids without bulk plasma formation, shock waves, liquid ejection, etc., which is of interest for many laser-liquid applications, including laser desorption of liquid films, laser particle removal, and laser water removal from microdevices. This work develops a microscopically based model of the heating during multiphoton absorption in liquids. The dependence on pulse duration, intensity, wavelength, repetition rate, and liquid properties is discussed. Pure water exposed to 266 nm laser radiation is investigated, and a novel heating mechanism for water is proposed that uses multiple-wavelength laser pulses.

  13. Advances in multiphoton microscopy technology

    PubMed Central

    Hoover, Erich E.; Squier, Jeff A.

    2013-01-01

    Multiphoton microscopy has enabled unprecedented dynamic exploration in living organisms. A significant challenge in biological research is the dynamic imaging of features deep within living organisms, which permits the real-time analysis of cellular structure and function. To make progress in our understanding of biological machinery, optical microscopes must be capable of rapid, targeted access deep within samples at high resolution. In this Review, we discuss the basic architecture of a multiphoton microscope capable of such analysis and summarize the state-of-the-art technologies for the quantitative imaging of biological phenomena. PMID:24307915

  14. Multiphoton microspectroscopy of biological specimens

    NASA Astrophysics Data System (ADS)

    Lin, Bai-Ling; Kao, Fu-Jen; Cheng, Ping C.; Sun, Chi-Kuang; Chen, RangWu; Wang, YiMin; Chen, JianCheng; Wang, Yung-Shun; Liu, Tzu-Ming; Huang, Mao-Kuo

    2000-07-01

    The non-linear nature of multi-photon fluorescence excitation restricts the fluorescing volume to the vicinity of the focal point. As a result, the technology has the capacity for micro- spectroscopy of biological specimen at high spatial resolution. Chloroplasts in mesophyll protoplast of Arabidopsis thaliana and maize stem sections were used to demonstrate the feasibility of multi-photon fluorescence micro-spectroscopy at subcellular compartments. Time-lapse spectral recording provides a means for studying the response of cell organelles to high intensity illumination.

  15. Multi-photon Imaging of Tumor Cell Invasion in an Orthotopic Mouse Model of Oral Squamous Cell Carcinoma

    PubMed Central

    Gatesman Ammer, Amanda; Hayes, Karen E.; Martin, Karen H.; Zhang, Lingqing; Spirou, George A.; Weed, Scott A.

    2011-01-01

    Loco-regional invasion of head and neck cancer is linked to metastatic risk and presents a difficult challenge in designing and implementing patient management strategies. Orthotopic mouse models of oral cancer have been developed to facilitate the study of factors that impact invasion and serve as model system for evaluating anti-tumor therapeutics. In these systems, visualization of disseminated tumor cells within oral cavity tissues has typically been conducted by either conventional histology or with in vivo bioluminescent methods. A primary drawback of these techniques is the inherent inability to accurately visualize and quantify early tumor cell invasion arising from the primary site in three dimensions. Here we describe a protocol that combines an established model for squamous cell carcinoma of the tongue (SCOT) with two-photon imaging to allow multi-vectorial visualization of lingual tumor spread. The OSC-19 head and neck tumor cell line was stably engineered to express the F-actin binding peptide LifeAct fused to the mCherry fluorescent protein (LifeAct-mCherry). Fox1nu/nu mice injected with these cells reliably form tumors that allow the tongue to be visualized by ex-vivo application of two-photon microscopy. This technique allows for the orthotopic visualization of the tumor mass and locally invading cells in excised tongues without disruption of the regional tumor microenvironment. In addition, this system allows for the quantification of tumor cell invasion by calculating distances that invaded cells move from the primary tumor site. Overall this procedure provides an enhanced model system for analyzing factors that contribute to SCOT invasion and therapeutic treatments tailored to prevent local invasion and distant metastatic spread. This method also has the potential to be ultimately combined with other imaging modalities in an in vivo setting. PMID:21808230

  16. Stochastic scanning multiphoton multifocal microscopy.

    PubMed

    Jureller, Justin E; Kim, Hee Y; Scherer, Norbert F

    2006-04-17

    Multiparticle tracking with scanning confocal and multiphoton fluorescence imaging is increasingly important for elucidating biological function, as in the transport of intracellular cargo-carrying vesicles. We demonstrate a simple rapid-sampling stochastic scanning multifocal multiphoton microscopy (SS-MMM) fluorescence imaging technique that enables multiparticle tracking without specialized hardware at rates 1,000 times greater than conventional single point raster scanning. Stochastic scanning of a diffractive optic generated 10x10 hexagonal array of foci with a white noise driven galvanometer yields a scan pattern that is random yet space-filling. SS-MMM creates a more uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. SS-MMM is verified by simulation and experimentally demonstrated by tracking microsphere diffusion in solution. PMID:19516485

  17. Multiphoton microscopy of atheroslcerotic plaques

    NASA Astrophysics Data System (ADS)

    Lilledahl, Magnus B.; de Lange Davies, Catharina; Haugen, Olav A.; Svaasand, Lars O.

    2007-02-01

    Multiphoton microscopy is a techniques that fascilitates three dimensional imaging of intact, unstained tissue. Especially connective tissue has a relatively strong nonlinear optical response and can easily be imaged. Atherosclerosis is a disease where lipids accumulate in the vessel wall and there is a thickening of the intima by growth of a cap of connective tissue. The mechanical strength of this fibrous cap is of clinically importance. If the cap ruptures a thrombosis forms which can block a coronary vessel and therby causing myocardial infarction. Multiphoton microscopy can be used to image the fibrous cap and thereby determine the thickness of the cap and the structure of the connective fibres. This could possibly be developed into a diagnostic and clincal tool to monitor the vulnerability of a plaque and also to better understand the development of a plaque and effects of treatment. We have collected multiphoton microscopy images from atherosclerotic plaque in human aorta, both two photon excited fluorescens and second harmonic generated signal. The feasability of using this technique to determine the state of the plaque is explored.

  18. Nonlinear magic: multiphoton microscopy in the biosciences.

    PubMed

    Zipfel, Warren R; Williams, Rebecca M; Webb, Watt W

    2003-11-01

    Multiphoton microscopy (MPM) has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals. Coupled with transgenic mouse models of disease and 'smart' genetically encoded fluorescent indicators, its use is now increasing exponentially. Properly applied, it is capable of measuring calcium transients 500 microm deep in a mouse brain, or quantifying blood flow by imaging shadows of blood cells as they race through capillaries. With the multitude of possibilities afforded by variations of nonlinear optics and localized photochemistry, it is possible to image collagen fibrils directly within tissue through nonlinear scattering, or release caged compounds in sub-femtoliter volumes. PMID:14595365

  19. Multiphoton fluorescence microscopy of the live kidney in health and disease.

    PubMed

    Small, David M; Sanchez, Washington Y; Roy, Sandrine; Hickey, Michael J; Gobe, Glenda C

    2014-02-01

    The structural and functional heterogeneity of the kidney ensures a diversity of response in health and disease. Multiphoton microscopy has improved our understanding of kidney physiology and pathophysiology by enabling the visualization of the living kidney in comparison with the static view of previous technologies. The use of multiphoton microscopy with rodent models in conjunction with endogenous fluorescence and exogenous infused dyes permits the measurement of renal processes, such as glomerular permeability, juxtaglomerular apparatus function, tubulointerstitial function, tubulovascular interactions, vascular flow rate, and the intrarenal renin-angiotensin-aldosterone system. Subcellular processes, including mitochondrial dynamics, reactive oxygen species production, cytosolic ion concentrations, and death processes apoptosis and necrosis, can also be measured by multiphoton microscopy. This has allowed valuable insight into the pathophysiology of diabetic nephropathy, renal ischemia-reperfusion injury, hypertensive nephropathy, as well as inflammatory responses of the kidney. The current review presents an overview of multiphoton microscopy with a focus on techniques for imaging the kidney and gives examples of instances where multiphoton microscopy has been utilized to study renal pathophysiology in the living kidney. With continued advancements in the field of biological optics and increased adoption in experimental nephrology, multiphoton microscopy will undoubtedly continue to create new paradigms in kidney disease. PMID:24525825

  20. Multiphoton cryo microscope with sample temperature control

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2013-02-01

    We present a multiphoton microscope system which combines the advantages of multiphoton imaging with precise control of the sample temperature. The microscope provides online insight in temperature-induced changes and effects in plant tissue and animal cells with subcellular resolution during cooling and thawing processes. Image contrast is based on multiphoton fluorescence intensity or fluorescence lifetime in the range from liquid nitrogen temperature up to +600°C. In addition, micro spectra from the imaged regions can be recorded. We present measurement results from plant leaf samples as well as Chinese hamster ovary cells.

  1. The multiphoton AC Stark effect

    NASA Astrophysics Data System (ADS)

    Rudolph, T. G.; Ficek, Z.; Freedhoff, H. S.

    1998-02-01

    We study the interaction of a two-level atom with two intense lasers: a strong laser of Rabi frequency 2Ω on resonance with the atomic transition, and a weaker laser detuned by 2Ω/n, i.e. by a subharmonic of the Rabi frequency of the first. The second laser "dresses" the dressed states created by the first in an n-photon process. We calculate the energy levels and eigenstates of this "doubly-dressed" atom, and find a new phenomenon: the splitting of the energy levels due to an n-photon coupling between them, resulting in a multiphoton AC Stark effect. We illustrate this effect in the fluorescence spectrum, and show that the spectrum contains triplets at the subharmonic as well as harmonic resonance frequencies with a clear dependence on the order n of the resonance and the ratio α of the Rabi frequencies of the lasers

  2. Multiphoton-Excited Serotonin Photochemistry

    PubMed Central

    Gostkowski, Michael L.; Allen, Richard; Plenert, Matthew L.; Okerberg, Eric; Gordon, Mary Jane; Shear, Jason B.

    2004-01-01

    We report photochemical and photophysical studies of a multiphoton-excited reaction of serotonin that previously has been shown to generate a photoproduct capable of emitting broadly in the visible spectral region. The current studies demonstrate that absorption of near-infrared light by an intermediate state prepared via three-photon absorption enhances the photoproduct formation yield, with the largest action cross sections (∼10−19 cm2) observed at the short-wavelength limit of the titanium:sapphire excitation source. The intermediate state is shown to persist for at least tens of nanoseconds and likely to be different from a previously reported oxygen-sensitive intermediate. In addition, the two-photon fluorescence action spectrum for the fluorescent photoproduct was determined and found to have a maximum at ∼780 nm (3.2 eV). A general mechanism for this photochemical process is proposed. PMID:15111435

  3. Differential Multiphoton Laser Scanning Microscopy

    PubMed Central

    Field, Jeffrey J.; Sheetz, Kraig E.; Chandler, Eric V.; Hoover, Erich E.; Young, Michael D.; Ding, Shi-you; Sylvester, Anne W.; Kleinfeld, David; Squier, Jeff A.

    2016-01-01

    Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot. PMID:27390511

  4. Multiphoton ionization of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Armstrong, D. P.; Harkins, D. A.; Compton, R. N.; Ding, D.

    1994-01-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy (TOFMS) and photoelectron spectroscopy (PES) studies of UF6 are reported using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF+x fragment ions, even at the lowest laser power densities at which signal could be detected. In general, the doubly charged uranium ion (U2+) intensity is much greater than that of the singly charged uranium ion (U+). For the case of the tunable dye laser experiments, the Un+ (n=1-4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The MPI-PES studies reveal only very slow electrons (≤0.5 eV) for all wavelengths investigated. The dominance of the U2+ ion, the absence or very small intensities of UF+x (x=1-3) fragments, the unstructured wavelength dependence, and the preponderance of slow electrons all indicate that mechanisms may exist other than ionization of bare U atoms following the stepwise photodissociation of F atoms from the parent molecule. The data also argue against stepwise photodissociation of UF+x (x=5,6) ions. Neither of the traditional MPI mechanisms (``neutral ladder'' or the ``ionic ladder'') are believed to adequately describe the ionization phenomena observed. We propose that the multiphoton excitation of UF6 under these experimental conditions results in a highly excited molecule, superexcited UF6**. The excitation of highly excited UF6** is proposed to be facilitated by the well known ``giant resonance,'' whose energy level lies in the range of 12-14 eV above that of ground state UF6. The highly excited molecule then primarily dissociates, via multiple channels, into Un+, UF+x, fluorine atoms, and ``slow'' electrons, although dissociation

  5. Resummation for Nonequilibrium Perturbation Theory and Application to Open Quantum Lattices

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2016-04-01

    Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting many-body systems. We present a framework for the treatment of such open quantum lattices based on a resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic representation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model of special interest for open-system quantum simulation. We demonstrate that the resummation framework allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.

  6. Multi-photon excitation microscopy

    PubMed Central

    Diaspro, Alberto; Bianchini, Paolo; Vicidomini, Giuseppe; Faretta, Mario; Ramoino, Paola; Usai, Cesare

    2006-01-01

    Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments. PMID:16756664

  7. Multi-photon excitation microscopy.

    PubMed

    Diaspro, Alberto; Bianchini, Paolo; Vicidomini, Giuseppe; Faretta, Mario; Ramoino, Paola; Usai, Cesare

    2006-01-01

    Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too. As well, 2PE implementations in noninvasive optical bioscopy or laser-based treatments point out to the relevance in clinical applications. Here we report about some basic aspects related to the phenomenon, implications in three-dimensional imaging microscopy, practical aspects related to design and realization of MPE microscopes, and we only give a list of potential applications and variations on the theme in order to offer a starting point for advancing new applications and developments. PMID:16756664

  8. Clinical multiphoton and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Weinigel, M.; Darvin, M. E.; Lademann, J.; König, K.

    2012-03-01

    We report on clinical CARS imaging of human skin in vivo with the certified hybrid multiphoton tomograph CARSDermaInspect. The CARS-DermaInspect provides simultaneous imaging of non-fluorescent intradermal lipid and water as well as imaging of two-photon excited fluorescence from intrinsic molecules. Two different excitation schemes for CARS imaging have been realized: In the first setup, a combination of fs oscillator and optical parametric oscillator provided fs-CARS pump and Stokes pulses, respectively. In the second setup a fs oscillator was combined with a photonic crystal fiber which provided a broadband spectrum. A spectral range out of the broadband-spectrum was selected and used for CARS excitation in combination with the residual fs-oscillator output. In both setups, in addition to CARS, single-beam excitation was used for imaging of two-photon excited fluorescence and second harmonic generation signals. Both CARS-excitation systems were successfully used for imaging of lipids inside the skin in vivo.

  9. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n-mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [F. Dell'Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  10. Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    We introduce a formalism of nonlinear canonical transformations for general systems of multiphoton quantum optics. For single-mode systems the transformations depend on a tunable free parameter, the homodyne local-oscillator angle; for n -mode systems they depend on n heterodyne mixing angles. The canonical formalism realizes nontrivial mixing of pairs of conjugate quadratures of the electromagnetic field in terms of homodyne variables for single-mode systems, and in terms of heterodyne variables for multimode systems. In the first instance the transformations yield nonquadratic model Hamiltonians of degenerate multiphoton processes and define a class of non-Gaussian, nonclassical multiphoton states that exhibit properties of coherence and squeezing. We show that such homodyne multiphoton squeezed states are generated by unitary operators with a nonlinear time evolution that realizes the homodyne mixing of a pair of conjugate quadratures. Tuning of the local-oscillator angle allows us to vary at will the statistical properties of such states. We discuss the relevance of the formalism for the study of degenerate (up-)down-conversion processes. In a companion paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, 69, 033813 (2004)
    ], we provide the extension of the nonlinear canonical formalism to multimode systems, we introduce the associated heterodyne multiphoton squeezed states, and we discuss their possible experimental realization.

  11. Zeno physics in ultrastrong-coupling circuit QED

    SciTech Connect

    Lizuain, I.; Casanova, J.; Muga, J. G.; Garcia-Ripoll, J. J.; Solano, E.

    2010-06-15

    We study the Zeno and anti-Zeno effects in a superconducting qubit interacting strongly and ultrastrongly with a microwave resonator. Using a model of a frequently measured two-level system interacting with a quantized mode, we predict different behaviors and total control of the Zeno times depending on whether the rotating-wave approximation can be applied in the Jaynes-Cummings model. As an example, we show the dependence of our results with the properties of the initial field states.

  12. A pragmatic guide to multiphoton microscope design

    PubMed Central

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  13. Polarization phenomena in multiphoton ionization of atoms

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photoelectron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.

  14. Multiphoton absorption in amyloid protein fibres

    NASA Astrophysics Data System (ADS)

    Hanczyc, Piotr; Samoc, Marek; Norden, Bengt

    2013-12-01

    Fibrillization of peptides leads to the formation of amyloid fibres, which, when in large aggregates, are responsible for diseases such as Alzheimer's and Parkinson's. Here, we show that amyloids have strong nonlinear optical absorption, which is not present in native non-fibrillized protein. Z-scan and pump-probe experiments indicate that insulin and lysozyme β-amyloids, as well as α-synuclein fibres, exhibit either two-photon, three-photon or higher multiphoton absorption processes, depending on the wavelength of light. We propose that the enhanced multiphoton absorption is due to a cooperative mechanism involving through-space dipolar coupling between excited states of aromatic amino acids densely packed in the fibrous structures. This finding will provide the opportunity to develop nonlinear optical techniques to detect and study amyloid structures and also suggests that new protein-based materials with sizable multiphoton absorption could be designed for specific applications in nanotechnology, photonics and optoelectronics.

  15. Multiphoton microscopy in defining liver function

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Crawford, Darrell; Burczynski, Frank J.; Liu, Xin; Liau, Ian; Roberts, Michael S.

    2014-09-01

    Multiphoton microscopy is the preferred method when in vivo deep-tissue imaging is required. This review presents the application of multiphoton microscopy in defining liver function. In particular, multiphoton microscopy is useful in imaging intracellular events, such as mitochondrial depolarization and cellular metabolism in terms of NAD(P)H changes with fluorescence lifetime imaging microscopy. The morphology of hepatocytes can be visualized without exogenously administered fluorescent dyes by utilizing their autofluorescence and second harmonic generation signal of collagen, which is useful in diagnosing liver disease. More specific imaging, such as studying drug transport in normal and diseased livers are achievable, but require exogenously administered fluorescent dyes. If these techniques can be translated into clinical use to assess liver function, it would greatly improve early diagnosis of organ viability, fibrosis, and cancer.

  16. New developments in multimodal clinical multiphoton tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    80 years ago, the PhD student Maria Goeppert predicted in her thesis in Goettingen, Germany, two-photon effects. It took 30 years to prove her theory, and another three decades to realize the first two-photon microscope. With the beginning of this millennium, first clinical multiphoton tomographs started operation in research institutions, hospitals, and in the cosmetic industry. The multiphoton tomograph MPTflexTM with its miniaturized flexible scan head became the Prism-Award 2010 winner in the category Life Sciences. Multiphoton tomographs with its superior submicron spatial resolution can be upgraded to 5D imaging tools by adding spectral time-correlated single photon counting units. Furthermore, multimodal hybrid tomographs provide chemical fingerprinting and fast wide-field imaging. The world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph in spring 2010. In particular, nonfluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen have been imaged in patients with dermatological disorders. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution imaging tools such as ultrasound, optoacoustic, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer (malignant melanoma), optimization of treatment strategies (wound healing, dermatitis), and cosmetic research including long-term biosafety tests of ZnO sunscreen nanoparticles and the measurement of the stimulated biosynthesis of collagen by anti-ageing products.

  17. Multiphoton coherent control in complex systems

    PubMed Central

    Goswami, Debabrata

    2005-01-01

    Control of multiphoton transitions is demonstrated for a multilevel system by generalizing the instantaneous phase of any chirped pulse as individual terms of a Taylor series expansion. In the case of a simple two-level system, all odd terms in the series lead to population inversion while the even terms lead to self-induced transparency. The results hold for multiphoton transitions that do not have any lower-order photon resonance or any intermediate virtual state dynamics within the laser pulse width. PMID:17396157

  18. The collapse and revival of Bell-nonlocality of two macroscopic fields interacting with resonant atoms

    NASA Astrophysics Data System (ADS)

    Luo, Cheng-Li; Liao, Chang-Geng; Chen, Zi-Hong

    2010-08-01

    We investigate the nonlocality dynamics of two initially entangled macroscopic fields each interacting with a resonant two-level atom. The nonlocality of macroscopic field is characterized by the extent to which the Bell Clauser-Horne-Shimony-Holt (CHSH)'s inequality for continuous-variable states is violated. We show that the collapse and revival of the Bell-nonlocality are similar to the collapse and revival of the atomic population inversion of the Jaynes-Cummings model (JCM).

  19. One-atom maser theory: photon losses and spectra

    NASA Astrophysics Data System (ADS)

    Gorokhov, A. V.; Sinaiski, I. E.

    2005-06-01

    The Jaynes-Cummings model (JCM) of two-level atom interacting with the photon mode in ideal cavity plays an essential role in modern quantum optics. In previous papers an exact form of density matrix of the JCM with photons dissipation was found. In this article it is considered a partial case of cavity with zero temperature and obtained an exact expression for photon spectra and spectra of the mean number of photons in a cavity.

  20. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble

    SciTech Connect

    Guerlin, Christine; Brion, Etienne; Esslinger, Tilman; Moelmer, Klaus

    2010-11-15

    The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a nonresonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states and that the atomic nonlinearity gives rise to highly nontrivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.

  1. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  2. Multiphoton Microscopy of Nonfluorescent Nanoparticles In Vitro and In Vivo.

    PubMed

    Dietzel, Steffen; Hermann, Stefanie; Kugel, Yan; Sellner, Sabine; Uhl, Bernd; Hirn, Stephanie; Krombach, Fritz; Rehberg, Markus

    2016-06-01

    Nanotechnology holds great promise for a plethora of potential applications. The interaction of engineered nanomaterials with living cells, tissues, and organisms is, however, only partly understood. Microscopic investigations of nano-bio interactions are mostly performed with a few model nanoparticles (NPs) which are easy to visualize, such as fluorescent quantum dots. Here the possibility to visualize nonfluorescent NPs with multiphoton excitation is investigated. Signals from silver (Ag), titanium dioxide (TiO2 ), and silica (SiO2 ) NPs in nonbiological environments are characterized to determine signal dependency on excitation wavelength and intensity as well as their signal stability over time. Ag NPs generate plasmon-induced luminescence decaying over time. TiO2 NPs induce photoluminescent signals of variable intensities and in addition strong third harmonic generation (THG). Optimal settings for microscopic detection are determined and then applied for visualization of these two particle types in living cells, in murine muscle tissue, and in the murine blood stream. Silica NPs produce a THG signal, but in living cells it cannot be discriminated sufficiently from endogenous cellular structures. It is concluded that multiphoton excitation is a viable option for studies of nano-bio interactions not only for fluorescent but also for some types of nonfluorescent NPs. PMID:27120195

  3. Formalism for multiphoton plasmon excitation in jellium clusters

    NASA Astrophysics Data System (ADS)

    Connerade, Jean-Patrick; Solov'yov, Andrey V.

    2002-07-01

    We present a formalism for the description of multiphoton plasmon excitation processes in jellium clusters. By using our method, we demonstrate that, in addition to dipole plasmon excitations, the multipole plasmons (quadrupole, octupole, etc.) can be excited in a cluster by multiphoton absorption processes, which results in a significant difference between plasmon resonance profiles in the cross sections for multiphoton as compared to single-photon absorption. We calculate the cross sections for multiphoton absorption and analyze the balance between the surface and volume plasmon contributions to multipole plasmons.

  4. Multiphoton Microscopy for Visualizing Lipids in Tissue.

    PubMed

    Lee, Martin; Serrels, Alan

    2016-01-01

    Visualizing the appearance of fat droplets and adipocytes in tissue can be realized using a label-free imaging method known as coherent anti-Stokes Raman spectroscopy (CARS). CARS is a nonlinear optical technique that allows label-free imaging of a material with contrast based on the same vibrational signatures of molecules found in Raman spectroscopy. CARS can be combined with other single and multiphoton imaging modes such as second harmonic generation and two-photon fluorescence to image a broad variety of biological structures.Here we describe the construction of a multiphoton microscope that will enable the study of both fluorescently labeled and unlabeled tissue. This has been used to monitor the contribution of Wt1 expressing cells towards the visceral fat depots during gestation. PMID:27417963

  5. Clinical multiphoton endoscopy with FLIM capability

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; König, Karsten

    2013-02-01

    Multiphoton endoscopy can be applied for intra-corporeal imaging as well as to examine otherwise hard-to-access tissue areas like chronic wounds. Using high-NA (NA = 0.8) gradient-index (GRIN) lens-based endoscopes with a diameter of 1.4 mm and effective lengths of 7 mm and 20 mm, respectively, two-photon excitation of endogenous fluorophores and second-harmonic generation (SHG) is used for multimodal in vivo imaging of human skin. A further imaging modality is fluorescence lifetime imaging (FLIM) which allows functional imaging to investigate the healing mechanism of chronic wounds and the corresponding cell metabolism. We performed first in vivo measurements using FLIM endoscopy with the medically-certified multiphoton tomograph MPTflex® in combination with a computer-controlled motorized scan head and a GRIN-lens endoscope.

  6. In vivo multiphoton tomography of skin cancer

    NASA Astrophysics Data System (ADS)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Buckle, Rainer; Dimitrow, Enrico; Kaatz, Martin; Fluhr, Joachim; Elsner, Peter

    2006-02-01

    The multiphoton tomograph DermaInspect was used to perform first clinical studies on the early non-invasive detection of skin cancer based on non-invasive optical sectioning of skin by two-photon autofluorescence and second harmonic generation. In particular, deep-tissue pigmented lesions -nevi- have been imaged with intracellular resolution using near infrared (NIR) femtosecond laser radiation. So far, more than 250 patients have been investigated. Cancerous tissues showed significant morphological differences compared to normal skin layers. In the case of malignant melanoma, the occurrence of luminescent melanocytes has been detected. Multiphoton tomography will become a novel non-invasive method to obtain high-resolution 3D optical biopsies for early cancer detection, treatment control, and in situ drug screening.

  7. Multiphoton tomography of intratissue tattoo nanoparticles

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-02-01

    Most of today's intratissue tattoo pigments are unknown nanoparticles. So far, there was no real control of their use due to the absence of regulations. Some of the tattoo pigments contain carcinogenic amines e.g. azo pigment Red 22. Nowadays, the European Union starts to control the administration of tattoo pigments. There is an interest to obtain information on the intratissue distribution, their interaction with living cells and the extracellular matrix, and the mechanisms behind laser tattoo removal. Multiphoton tomographs are novel biosafety and imaging tools that can provide such information non-invasively and without further labeling. When using the spectral FLIM module, spatially-resolved emission spectra, excitation spectra, and fluorescence lifetimes can pr provided. Multiphoton tomographs are used by all major cosmetic comapanies to test the biosafety of sunscreen nanoparticles.

  8. Multiphoton tomography to detect chemo- and biohazards

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2015-03-01

    In vivo high-resolution multiphoton/CARS tomography provides optical biopsies with 300 nm lateral resolution with chemical fingerprints. Thousands of volunteers and patients have been investigated for early cancer diagnosis, evaluation of anti-ageing cosmetic products, and changes of cellular metabolism by UV exposure and decreased oxygen supply. The skin as the outermost and largest organ is also the major target of CB agents. Current UV-based sensors are useful for bio-aerosol sensing but not for evaluating exposed in vivo skin. Here we evaluate the use of 4D multiphoton/CARS tomographs based on near infrared femtosecond laser radiation, time-correlated single photon counting (FLIM) and white light generation by photonic crystal fibers to detect bio- and chemohazards in human in vivo skin using twophoton fluorescence, SHG, and Raman signals.

  9. Multiphoton microscopy with near infrared contrast agents

    NASA Astrophysics Data System (ADS)

    Yazdanfar, Siavash; Joo, Chulmin; Zhan, Chun; Berezin, Mikhail Y.; Akers, Walter J.; Achilefu, Samuel

    2010-05-01

    While multiphoton microscopy (MPM) has been performed with a wide range of excitation wavelengths, fluorescence emission has been limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared (NIR) fluorescent molecular probes via nonlinear excitation at 1550 nm. This all-NIR system expands the range of available MPM fluorophores, virtually eliminates background autofluorescence, and allows for use of fiber-based, turnkey ultrafast lasers developed for telecommunications.

  10. First multiphoton tomography of brain in man

    NASA Astrophysics Data System (ADS)

    König, Karsten; Kantelhardt, Sven R.; Kalasauskas, Darius; Kim, Ella; Giese, Alf

    2016-03-01

    We report on the first two-photon in vivo brain tissue imaging study in man. High resolution in vivo histology by multiphoton tomography (MPT) including two-photon FLIM was performed in the operation theatre during neurosurgery to evaluate the feasibility to detect label-free tumor borders with subcellular resolution. This feasibility study demonstrates, that MPT has the potential to identify tumor borders on a cellular level in nearly real-time.

  11. Medium-induced multi-photon radiation

    NASA Astrophysics Data System (ADS)

    Ma, Hao; Salgado, Carlos A.; Tywoniuk, Konrad

    2011-01-01

    We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Molière limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.

  12. Fundamental studies of molecular multiphoton ionization

    SciTech Connect

    Miller, J.C.; Compton, R.N.

    1984-04-01

    For several years the authors have performed fundamental studies of molecular multiphoton ionization (MPI). We will present a potpourri of techniques and results chosen to illustrate the interesting complexities of molecular MPI. Techniques used include time-of-flight mass spectroscopy, photoelectron spectroscopy, supersonic expansion cooling of molecular beams, harmonic generation, two-color laser MPI, and polarization spectroscopy. Whenever possible the relevance of these results to resonance ionization spectroscopy schemes will be delineated. 23 references, 10 figures.

  13. Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy.

    PubMed

    Antonello, Jacopo; van Werkhoven, Tim; Verhaegen, Michel; Truong, Hoa H; Keller, Christoph U; Gerritsen, Hans C

    2014-06-01

    Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input-output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration. PMID:24977374

  14. Multiphoton harvesting metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Quah, Hong Sheng; Chen, Weiqiang; Schreyer, Martin K.; Yang, Hui; Wong, Ming Wah; Ji, Wei; Vittal, Jagadese J.

    2015-08-01

    Multiphoton upconversion is a process where two or more photons are absorbed simultaneously to excite an electron to an excited state and, subsequently, the relaxation of electron gives rise to the emission of a photon with frequency greater than those of the absorbed photons. Materials possessing such property attracted attention due to applications in biological imaging, photodynamic therapy, three-dimensional optical data storage, frequency-upconverted lasing and optical power limiting. Here we report four-photon upconversion in metal-organic frameworks containing the ligand, trans, trans-9,10-bis(4-pyridylethenyl)anthracene. The ligand has a symmetrical acceptor-π-donor-π-acceptor structure and a singlet biradical electronic ground state, which boosted its multiphoton absorption cross-sections. We demonstrate that the upconversion efficiency can be enhanced by Förster resonance energy transfer within host-guest metal-organic frameworks consisting of encapsulated high quantum yielding guest molecules. Using these strategies, metal-organic framework materials, which can exhibit frequency-upconverted photoluminescence excited by simultaneous multiphoton absorption, can be rationally designed and synthesized.

  15. Multiphoton harvesting metal–organic frameworks

    PubMed Central

    Quah, Hong Sheng; Chen, Weiqiang; Schreyer, Martin K.; Yang, Hui; Wong, Ming Wah; Ji, Wei; Vittal, Jagadese J.

    2015-01-01

    Multiphoton upconversion is a process where two or more photons are absorbed simultaneously to excite an electron to an excited state and, subsequently, the relaxation of electron gives rise to the emission of a photon with frequency greater than those of the absorbed photons. Materials possessing such property attracted attention due to applications in biological imaging, photodynamic therapy, three-dimensional optical data storage, frequency-upconverted lasing and optical power limiting. Here we report four-photon upconversion in metal–organic frameworks containing the ligand, trans, trans-9,10-bis(4-pyridylethenyl)anthracene. The ligand has a symmetrical acceptor–π–donor–π–acceptor structure and a singlet biradical electronic ground state, which boosted its multiphoton absorption cross-sections. We demonstrate that the upconversion efficiency can be enhanced by Förster resonance energy transfer within host–guest metal–organic frameworks consisting of encapsulated high quantum yielding guest molecules. Using these strategies, metal–organic framework materials, which can exhibit frequency-upconverted photoluminescence excited by simultaneous multiphoton absorption, can be rationally designed and synthesized. PMID:26245741

  16. Visualization of in vivo thromboprophylactic and thrombolytic efficacy of enoxaparin in laser-induced vascular endothelial injury model using multiphoton microscopy

    PubMed Central

    Tanaka, Koji; Koike, Yuhki; Matsushita, Kohei; Okigami, Masato; Toiyama, Yuji; Kawamura, Mikio; Saigusa, Susumu; Okugawa, Yoshinaga; Inoue, Yasuhiro; Uchida, Keiichi; Araki, Toshimitsu; Mohri, Yasuhiko; Mizoguchi, Akira; Kusunoki, Masato

    2015-01-01

    Enoxaparin is used postoperatively for the prevention of venous thromboembolism. In vitro studies and clinical trials have demonstrated the anticoagulant and antithrombotic efficacy of enoxaparin. In this study, we visualised thromboprophylactic and thrombolytic efficacy of enoxaparin in a laser-induced thrombus formation model in vivo using two-photon laser-scanning microscopy (TPLSM). Thrombus was induced by the selective irradiation of vascular endothelium in arterioles of the cecum of green fluorescent protein transgenic mice. The thromboprophylactic and thrombolytic efficacy of enoxaparin was visualised in vivo real-time using TPLSM. Platelet adhesion, aggregation, and platelet-dependent thrombus formation were observed in the laser-induced thrombus formation model with reproducibility. Laser-induced thrombus formation was significantly inhibited by enoxaparin pretreatment as the thromboprophylactic agent, as compared with control. The mean thrombus volumes were 652 microcubic meters in mice pretreated with enoxaparin and 8906 microcubic meter in control mice. Enoxaparin reduced the volume of laser-induced thrombus when using it as a thrombolytic agent. The mean rate of reduction was 59 percent. In a lipopolysaccharide-induced sepsis model, thromboprophylactic efficacy of enoxaparin was also observed in vivo in real-time. In vivo thromboprophylactic and thrombolytic efficacy of enoxaparin can be visualised at the single platelet level in the laser-induced endothelium injury model using TPLSM. PMID:25755830

  17. Some simple mechanisms of multiphoton excitation in many - level systems

    NASA Astrophysics Data System (ADS)

    Donley, E. A.; Marquardt, R.; Quack, M.; Stohner, J.; Thanopulos, I.; Wallenborn, E.-U.

    Results are reported on coherent monochromatic multiphoton excitation in many-level systems, which are representative for some of the basic mechanisms for atomic and molecular multiphoton processes. Numerical solutions are discussed that use the Floquet and quasiresonant approximations in the framework of the URIMIR program package. The excitation schemes include direct three-photon excitation, two-photon excitation with diagonal coupling, Göppert-Mayer-type two-photon processes, multiphoton excitation with off-resonant intermediates, and practically irreversible coherent excitation into dense spectral structures. Several interesting phenomena are observed, such as nonlinear line shifts and broadenings of multiphoton resonances of relevance for multiphoton spectroscopy and almost constant intermediate population inversions, potentially useful for laser design. The accurate numerical results are compared with approximate solutions from perturbation theory, and with simple analytical solutions from Rabi-type formulae.

  18. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  19. Multiphoton intravital microscopy setup to visualize the mouse mammary gland

    NASA Astrophysics Data System (ADS)

    Adur, Javier; Herrera Torres, Ana M.; Masedunskas, Andrius; Baratti, Mariana O.; de Thomaz, Andre A.; Pelegati, Vitor B.; Carvalho, Hernandes F.; Cesar, Carlos L.

    2013-06-01

    Recently, light microscopy-based techniques have been extended to live mammalian models leading to the development of a new imaging approach called intravital microscopy (IVM). Although IVM has been introduced at the beginning of the last century, its major advancements have occurred in the last twenty years with the development of non-linear microscopy that has enabled performing deep tissue imaging. IVM has been utilized to address many biological questions in basic research and is now a fundamental tool that provide information on tissues such as morphology, cellular architecture, and metabolic status. IVM has become an indispensable tool in numerous areas. This study presents and describes the practical aspects of IVM necessary to visualize epithelial cells of live mouse mammary gland with multiphoton techniques.

  20. High-Resolution Multiphoton Imaging of Tumors In Vivo

    PubMed Central

    Wyckoff, Jeffrey; Gligorijevic, Bojana; Entenberg, David; Segall, Jeffrey; Condeelis, John

    2014-01-01

    Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases. Methods capable of the direct visualization and analysis of tumor-cell behavior at single-cell resolution in vivo have become crucial in advancing the understanding of mechanisms of metastasis, the definition of microenvironment, and the markers related to both. This article discusses the use of high-resolution multiphoton imaging of tumors (specifically breast tumors in mice) in vivo. PMID:21969629

  1. Multiphoton and tunneling ionization probability of atoms and molecules in an intense laser field

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Liu, Lu; Zhou, Xiao-Xin

    2014-02-01

    We theoretically studied ionization of atoms exposed to an intense laser field by using three different methods, i.e., the numerical solution of the single-active-electron approximation based time-dependent Schrödinger equation (SAE-TDSE), the Perelomov-Popov-Terent'ev (PPT) model, and the Ammosov-Delone-Krainov (ADK) model. The ionization of several linear molecules in a strong laser field is also investigated with the molecular ADK (MO-ADK) and the molecular PPT (MO-PPT) model. We show that the ionization probability from the PPT and the MO-PPT model agrees well with the corresponding SAE-TDSE result in both the multiphoton and tunneling ionization regimes. By considering the volume effect of the laser field, the ionization signal obtained from the PPT and the MO-PPT model fits well the experimental data in the whole range of the multiphoton and tunneling ionization regimes. However, both the ADK and MO-ADK models seriously underestimate the ionization probabilities (or signals) in the multiphoton regime.

  2. Pulse front adaptive optics in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  3. Polymer microcantilevers fabricated via multiphoton absorption polymerization

    NASA Astrophysics Data System (ADS)

    Bayindir, Z.; Sun, Y.; Naughton, M. J.; LaFratta, C. N.; Baldacchini, T.; Fourkas, J. T.; Stewart, J.; Saleh, B. E. A.; Teich, M. C.

    2005-02-01

    We have used multiphoton absorption polymerization to fabricate a series of microscale polymer cantilevers. Atomic force microscopy has been used to characterize the mechanical properties of microcantilevers with spring constants that were found to span more than four decades. From these data, we extracted a Young's modulus of E =0.44GPa for these microscale cantilevers. The wide stiffness range and relatively low elastic modulus of the microstructures make them attractive candidates for a range of microcantilever applications, including measurements on soft matter.

  4. Widefield multiphoton excited fluorescence microscopy for animal study in vivo

    NASA Astrophysics Data System (ADS)

    Cheng, L.-C.; Chang, C.-Y.; Lin, C.-H.; Su, Y.-D.; Huang, T.-Y.; Chen, S.-J.

    2010-08-01

    Unlike conventional multiphoton excited microscopy according to pixel-by-pixel point scanning, a widefield multiphoton excited microscopy based on spatiotemporal focusing has been developed to construct three-dimensional (3D) multiphoton fluorescence images only with the need of an axial scanning. By implementing a 4.0 W 10 kHz femtosecond laser amplifier with an instant strong peak power and a fast TE-cooled EMCCD camera with an ultra-sensitive fluorescence detection, the multiphoton excited fluorescence images with the excitation area over 100 μm x 100 μm can be achieved at a frame rate up to 80 Hz. A mechanical shutter is utilized to control the exposure time of 1 ms, i.e. average ten laser pulses reach the fluorescent specimen, and hence an uniform enough multiphoton excited fluorescence image can be attained with less photobleaching. The Brownian motion of microbeads and 3D neuron cells of a rat cerebellum have been observed with a lateral spatial resolution of 0.24 μm and an axial resolution of 2.5 μm. Therefore, the developed widefield multiphoton microscopy can provide fast and high-resolution multiphoton excited fluorescence images for animal study in vivo.

  5. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  6. Multiphoton imaging with a nanosecond supercontinuum source

    NASA Astrophysics Data System (ADS)

    Lefort, Claire; O'Connor, Rodney P.; Blanquet, Véronique; Baraige, Fabienne; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-03-01

    Multiphoton microscopy is a well-established technique for biological imaging of several kinds of targets. It is classically based on multiphoton processes allowing two means of contrast simultaneously: two-photon fluorescence (TPF) and second harmonic generation (SHG). Today, the quasi exclusive laser technology used in that aim is femtosecond titanium sapphire (Ti: Sa) laser. We experimentally demonstrate that a nanosecond supercontinuum laser source (STM-250-VIS-IR-custom, Leukos, France; 1 ns, 600-2400 nm, 250 kHz, 1 W) allows to obtain the same kind of image quality in the case of both TPF and SHG, since it is properly filtered. The first set of images concerns the muscle of a mouse. It highlights the simultaneous detection of TPF and SHG. TPF is obtained thanks to the labelling of alpha-actinin with Alexa Fluor® 546 by immunochemistry. SHG is created from the non-centrosymmetric organization of myosin. As expected, discs of actin and myosin are superimposed alternatively. The resulting images are compared with those obtained from a standard femtosecond Ti: Sa source. The physical parameters of the supercontinuum are discussed. Finally, all the interest of using an ultra-broadband source is presented with images obtained in vivo on the brain of a mouse where tumor cells labeled with eGFP are grafted. Texas Red® conjugating Dextran is injected into the blood vessels network. Thus, two fluorophores having absorption wavelengths separated by 80 nm are imaged simultaneously with a single laser source.

  7. The infrared multiphoton dissociation of three nitrolkanes

    NASA Astrophysics Data System (ADS)

    Wodtke, A. M.; Hintsa, E. J.; Lee, Y. T.

    1986-01-01

    Infrared multiphoton dissociation in a molecular beam has been studied in order to elucidate the collision free, 'thermal' chemistry and dynamics of nitromethane, nitroethane and 2-nitropropane. The isomerization of CH3NO2 to CH3ONO was observed by detecting the CH3O and NO products from the dissociation of the very internally hot, isomerized nitromethane. A novel application of RRKM theory was used to estimate the barrier height to isomerization at 55.5 kcal/mol. The barrier height determination method was tested and found to give excellent results by applying it to the determintaion of the barrier height to HONO elimination from nitroethane, a value which is well known from activation energy measurements. The method was then applied to the case of HONO elimination from 2-nitropropane and it appears that there is good to believe that the barrier height is 3-5 kcal/mol lower in 2-nitropropane than in nitroethane. The success of this method for determining barrier heights shows how a microscopic molecular beam experiment, using infrared multiphoton dissociation where the concept of temperature has no place, can be quantitatively related to pyrolysis experiments which are conducted under collisional, thermal conditions and measure phenomenological quantities such as activation energies.

  8. Multimodal optoacoustic and multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sela, Gali; Razansky, Daniel; Shoham, Shy

    2013-03-01

    Multiphoton microscopy is a powerful imaging modality that enables structural and functional imaging with cellular and sub-cellular resolution, deep within biological tissues. Yet, its main contrast mechanism relies on extrinsically administered fluorescent indicators. Here we developed a system for simultaneous multimodal optoacoustic and multiphoton fluorescence 3D imaging, which attains both absorption and fluorescence-based contrast by integrating an ultrasonic transducer into a two-photon laser scanning microscope. The system is readily shown to enable acquisition of multimodal microscopic images of fluorescently labeled targets and cell cultures as well as intrinsic absorption-based images of pigmented biological tissue. During initial experiments, it was further observed that that detected optoacoustically-induced response contains low frequency signal variations, presumably due to cavitation-mediated signal generation by the high repetition rate (80MHz) near IR femtosecond laser. The multimodal system may provide complementary structural and functional information to the fluorescently labeled tissue, by superimposing optoacoustic images of intrinsic tissue chromophores, such as melanin deposits, pigmentation, and hemoglobin or other extrinsic particle or dye-based markers highly absorptive in the NIR spectrum.

  9. Controllable infrared continuum source for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Alfieri, D.; Arrigoni, M.; Armstrong, D.; Pavone, F. S.

    2010-02-01

    We report on multiphoton imaging of biological samples performed with continuum infrared source generated in photonic crystal fibers (PCFs). We studied the spectra generated in PCFs with dispersion profiles designed to maximize the power density in the 700-1000 nm region, where the two-photon absorption cross sections of the most common dyes lie. Pumping in normal dispersion region, with <140 femtosecond pulses delivered by a tunable Ti:Sa laser (Chameleon Ultra II by Coherent Inc.), results in a limitation of nonlinear broadening up to a mean power density above 2 mW/nm. Axial and lateral resolution obtained with a scanning multiphoton system has been measureed to be near the theoretical limit. The possibility of simultaneous two-photon excitation of different dyes in the same sample and high image resolution are demonstrated at tens of microns in depth. Signal-to-noise ratio and general performances are found to be comparable with those of a single wavelength system, used for comparison.

  10. Development of an applicator for multiphoton PDT

    NASA Astrophysics Data System (ADS)

    Graschew, Georgi; Bastian, Matthias; Rakowsky, Stefan; Roelofs, Theo A.; Balanos, Evangelos; Schlag, Peter M.; Steinmeyer, Gunter; Elsaesser, Thomas

    2004-09-01

    Multiphoton excitation of photosensitizers for laser induced fluorescence diagnosis (LIFD) and photodynamic therapy (PDT) of tumors has the advantage of greater tissue penetration due to the longer wavelength of irradiation. However, multiphoton LIFD and PDT are presently not clinically applicable as there are no applicators available for the delivery of the pulsed laser radiation to the operating room. As an approach, in this contribution the beam delivery through photonic crystal fibers has been investigated. Pulses of a Ti:sapphire laser of 100 fs pulse duration and an average power of 150 mW have been transported through such a fiber of 25 m length and the resulting pulses show the absence of nonlinear contributions but still a broadening of the pulse to 2 ps due to the dispersion of the fiber. It is planned to compensate this broadening by a grating in front of the fiber. Alternatively, the transport of laser radiation of 150 fs and 100 mW through a mirror-joint-arm used for conventional CO2 lasers has been tested showing no broadening of the laser pulses. Two-photon photodynamic activity of mTHPC-CMPEG4 shall serve as a test of the laser light transport system.

  11. Multiphoton ionization of large water clusters

    SciTech Connect

    Apicella, B.; Li, X.; Passaro, M.; Spinelli, N.; Wang, X.

    2014-05-28

    Water clusters are multimers of water molecules held together by hydrogen bonds. In the present work, multiphoton ionization in the UV range coupled with time of flight mass spectrometry has been applied to water clusters with up to 160 molecules in order to obtain information on the electronic states of clusters of different sizes up to dimensions that can approximate the bulk phase. The dependence of ion intensities of water clusters and their metastable fragments produced by laser ionization at 355 nm on laser power density indicates a (3+1)-photon resonance-enhanced multiphoton ionization process. It also explains the large increase of ionization efficiency at 355 nm compared to that at 266 nm. Indeed, it was found, by applying both nanosecond and picosecond laser ionization with the two different UV wavelengths, that no water cluster sequences after n = 9 could be observed at 266 nm, whereas water clusters up to m/z 2000 Th in reflectron mode and m/z 3000 Th in linear mode were detected at 355 nm. The agreement between our findings on clusters of water, especially true in the range with n > 10, and reported data for liquid water supports the hypothesis that clusters above a critical dimension can approximate the liquid phase. It should thus be possible to study clusters just above 10 water molecules, for getting information on the bulk phase structure.

  12. Statistical properties of multiphoton time-dependent three-boson coupled oscillators

    SciTech Connect

    Abdalla, M. Sebawe; Perina, Jan; Krepelka, Jaromir

    2006-06-15

    We investigate the quantum statistics of three time-dependent coupled oscillators in the presence of multiphoton processes. The system is connected with the two-atom multiphoton Tavis-Cummings model. The solution of the Heisenberg equations of the motion is obtained in a compact form. We assume that the modes are initially prepared in coherent states, and we discuss nonclassical phenomena (squeezing and sub-Poissonian behavior). Further, we examine the joint quasi-distribution functions as well as photon-number distribution and its factorial moments. The system has shown that the nonclassical effect is apparent in compound modes (1,3) and (2,3). Moreover, the superstructure phenomenon is observed when the photon transition is increased.

  13. Weak-field multiphoton femtosecond coherent control in the single-cycle regime.

    PubMed

    Chuntonov, Lev; Fleischer, Avner; Amitay, Zohar

    2011-03-28

    Weak-field coherent phase control of atomic non-resonant multiphoton excitation induced by shaped femtosecond pulses is studied theoretically in the single-cycle regime. The carrier-envelope phase (CEP) of the pulse, which in the multi-cycle regime does not play any control role, is shown here to be a new effective control parameter that its effect is highly sensitive to the spectral position of the ultrabroad spectrum. Rationally chosen position of the ultrabroadband spectrum coherently induces several groups of multiphoton transitions from the ground state to the excited state of the system: transitions involving only absorbed photons as well as Raman transitions involving both absorbed and emitted photons. The intra-group interference is controlled by the relative spectral phase of the different frequency components of the pulse, while the inter-group interference is controlled jointly by the CEP and the relative spectral phase. Specifically, non-resonant two- and three-photon excitation is studied in a simple model system within the perturbative frequency-domain framework. The developed intuition is then applied to weak-field multiphoton excitation of atomic cesium (Cs), where the simplified model is verified by non-perturbative numerical solution of the time-dependent Schrödinger equation. We expect this work to serve as a basis for a new line of femtosecond coherent control experiments. PMID:21451714

  14. Multiphoton fluorescence imaging of NADH to quantify metabolic changes in epileptic tissue in vitro

    NASA Astrophysics Data System (ADS)

    Chia, Thomas H.; Zinter, Joseph; Spencer, Dennis D.; Williamson, Anne; Levene, Michael J.

    2007-02-01

    A powerful advantage of multiphoton microscopy is its ability to image endogenous fluorophores such as the ubiquitous coenzyme NADH in discrete cellular populations. NADH is integral in both oxidative and non-oxidative cellular metabolism. NADH loses fluorescence upon oxidation to NAD +; thus changes in NADH fluorescence can be used to monitor metabolism. Recent studies have suggested that hypo metabolic astrocytes play an important role in cases of temporal lobe epilepsy (TLE). Current theories suggest this may be due to defective and/or a reduced number of mitochondria or dysfunction of the neuronal-astrocytic metabolic coupling. Measuring NADH fluorescence changes following chemical stimulation enables the quantification of the cellular distribution of metabolic anomalies in epileptic brain tissue compared to healthy tissue. We present what we believe to be the first multiphoton microscopy images of NADH from the human brain. We also present images of NADH fluorescence from the hippocampus of the kainate-treated rat TLE model. In some experiments, human and rat astrocytes were selectively labeled with the fluorescent dye sulforhodamine 101 (SR101). Our results demonstrate that multiphoton microscopy is a powerful tool for assaying the metabolic pathologies associated with temporal lobe epilepsy in humans and in rodent models.

  15. First-principles calculation of multiphoton absorption cross section of α-quartz under femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Qu, Liangti; Lu, Yongfeng

    2016-05-01

    Time-dependent density functional theory-based first-principles calculations have been used to study the ionization process and electron excitation. The results show that the number of excited electrons follows the power law σ k I k at peak intensities of I < 5 × 1013 W/cm2, indicating that the multiphoton ionization plays a key role. The multiphoton absorption cross section of α-quartz σ k is further calculated to be 3.54 × 1011 cm-3 ps-1 (cm2/TW)6. Using the plasma model, the theoretical results of the damage threshold fluences are consistent with the experimental data, which validates the calculated value of multiphoton absorption cross section. By employing the calculated cross section value in the plasma model, the damage threshold fluences are theoretically estimated, being consistent with the experimental data, which validates the calculated value of multiphoton absorption cross section. The preliminary multiscale model shows great potential in the simulation of laser processing.

  16. In vivo multiphoton tomography of inflammatory tissue and melanoma

    NASA Astrophysics Data System (ADS)

    Riemann, Iris; Dimitrow, Enrico; Kaatz, Martin; Fluhr, Joachim; Elsner, Peter; Kobow, Jens; Konig, Karsten

    2005-04-01

    Multiphoton optical tomography provides the capability of non-invasive optical sectioning of skin with high spatial and intracellular resolution as well as high NIR (near infrared) light penetration into pigmented skin areas. The imaging system DermaInspect based on femtosecond laser pulses was used to perform multiphoton optical tomography in clinical studies. Patients with abnormal pigmented tissues were imaged in vivo. After the multiphoton imaging procedure, biopsies were taken, imaged again and further processed with standard histological methods. We report on preliminary results. The visualization of pigmented cell clusters based on non-linear luminescence using the novel multiphoton device was possible. These clusters could be clearly distinguished from non-pigmented cells. Cancerous tissues showed significant differences in the cell structure of the epidermal layers. The system DermaInspect might become a high resolution diagnostic tool for melanoma diagnostics.

  17. Multiphoton imaging of biological samples during freezing and heating

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-02-01

    We applied multiphoton microscopic imaging to observe freezing and heating effects in plant- and animal cell samples. The experimental setups consisted of a multiphoton imaging system and a heating and cooling stage which allows for precise temperature control from liquid nitrogen temperature (-196°C 77 K) up to +600°C (873 K) with heating/freezing rates between 0.01 K/min and 150 K/min. Two multiphoton imaging systems were used: a system based on a modified optical microscope and a flexible mobile system. To illustrate the imaging capabilities, plant leafs as well as animal cells were microscopically imaged in vivo during freezing based on autofluorescence lifetime and intensity of intrinsic molecules. The measurements illustrate the usefulness of multiphoton imaging to investigate freezing effects on animal and plant cells.

  18. REVIEW ARTICLE Multiphoton polymerization of hybrid materials

    NASA Astrophysics Data System (ADS)

    Farsari, Maria; Vamvakaki, Maria; Chichkov, Boris N.

    2010-12-01

    Multiphoton polymerization has been developed as a direct laser writing technique for the preparation of complex 3D structures with resolution beyond the diffraction limit of light. The combination of two or more hybrid materials with different functionalities in the same system has allowed the preparation of structures with advanced properties and functions. Furthermore, the surface functionalization of the 3D structures opens new avenues for their applications in a variety of nanobiotechnological fields. This paper describes the principles of 2PP and the experimental set-up used for 3D structure fabrication. It also gives an overview of the materials that have been employed in 2PP so far and depicts the perspectives of this technique in the development of new active components.

  19. Multiphoton microscopy of cleared mouse organs

    NASA Astrophysics Data System (ADS)

    Parra, Sonia G.; Chia, Thomas H.; Zinter, Joseph P.; Levene, Michael J.

    2010-05-01

    Typical imaging depths with multiphoton microscopy (MPM) are limited to less than 300 μm in many tissues due to light scattering. Optical clearing significantly reduces light scattering by replacing water in the organ tissue with a fluid having a similar index of refraction to that of proteins. We demonstrate MPM of intact, fixed, cleared mouse organs with penetration depths and fields of view in excess of 2 mm. MPM enables the creation of large 3-D data sets with flexibility in pixel format and ready access to intrinsic fluorescence and second-harmonic generation. We present high-resolution images and 3-D image stacks of the brain, small intestine, large intestine, kidney, lung, and testicle with image sizes as large as 4096×4096 pixels.

  20. Enhancing Multiphoton Rates with Quantum Memories

    NASA Astrophysics Data System (ADS)

    Nunn, J.; Langford, N. K.; Kolthammer, W. S.; Champion, T. F. M.; Sprague, M. R.; Michelberger, P. S.; Jin, X.-M.; England, D. G.; Walmsley, I. A.

    2013-03-01

    Single photons are a vital resource for optical quantum information processing. Efficient and deterministic single photon sources do not yet exist, however. To date, experimental demonstrations of quantum processing primitives have been implemented using nondeterministic sources combined with heralding and/or postselection. Unfortunately, even for eight photons, the data rates are already so low as to make most experiments impracticable. It is well known that quantum memories, capable of storing photons until they are needed, are a potential solution to this “scaling catastrophe.” Here, we analyze in detail the benefits of quantum memories for producing multiphoton states, showing how the production rates can be enhanced by many orders of magnitude. We identify the quantity ηB as the most important figure of merit in this connection, where η and B are the efficiency and time-bandwidth product of the memories, respectively.

  1. Point spread function engineering with multiphoton SPIFI

    NASA Astrophysics Data System (ADS)

    Wernsing, Keith A.; Field, Jeffrey J.; Domingue, Scott R.; Allende-Motz, Alyssa M.; DeLuca, Keith F.; Levi, Dean H.; DeLuca, Jennifer G.; Young, Michael D.; Squier, Jeff A.; Bartels, Randy A.

    2016-03-01

    MultiPhoton SPatIal Frequency modulated Imaging (MP-SPIFI) has recently demonstrated the ability to simultaneously obtain super-resolved images in both coherent and incoherent scattering processes -- namely, second harmonic generation and two-photon fluorescence, respectively.1 In our previous analysis, we considered image formation produced by the zero and first diffracted orders from the SPIFI modulator. However, the modulator is a binary amplitude mask, and therefore produces multiple diffracted orders. In this work, we extend our analysis to image formation in the presence of higher diffracted orders. We find that tuning the mask duty cycle offers a measure of control over the shape of super-resolved point spread functions in an MP-SPIFI microscope.

  2. Multiphoton imaging with high peak power VECSELs

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.

    2016-03-01

    Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.

  3. Multi-photon entanglement in high dimensions

    NASA Astrophysics Data System (ADS)

    Malik, Mehul; Erhard, Manuel; Huber, Marcus; Krenn, Mario; Fickler, Robert; Zeilinger, Anton

    2016-04-01

    Forming the backbone of quantum technologies today, entanglement has been demonstrated in physical systems as diverse as photons, ions and superconducting circuits. Although steadily pushing the boundary of the number of particles entangled, these experiments have remained in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both the number of particles and dimensions are greater than two. Two photons in our state reside in a three-dimensional space, whereas the third lives in two dimensions. This asymmetric entanglement structure only appears in multiparticle entangled states with d > 2. Our method relies on combining two pairs of photons, high-dimensionally entangled in their orbital angular momentum. In addition, we show how this state enables a new type of ‘layered’ quantum communication protocol. Entangled states such as these serve as a manifestation of the complex dance of correlations that can exist within quantum mechanics.

  4. Multiphoton double ionization of the He atom

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pindzola, M. S.

    2016-05-01

    Time-dependent close-coupling (TDCC) calculations are made for the multiphoton double ionization of the He atom under the influence of a fast pulse XUV laser. One set of TDCC calculations employs l1m1l2m2 coupling on a 2D (r1 ,r2) numerical lattice, a second set of TDCC calculations employs m1m2 coupling on a 4D (r1 ,θ1 ,r2 ,θ2) numerical lattice, and a third set of TDCC calculations employs m1m2 coupling on a 4D (ρ1 ,z1 ,ρ2 ,z2) numerical lattice. Studies are made to see which TDCC method is the most efficient at explaining measurements as the number of photons absorbed is increased. Work supported in part by Grants from NASA, NSF, and DOE.

  5. Multiphoton nanosurgery in cells and tissues

    NASA Astrophysics Data System (ADS)

    Riemann, Iris; Anhut, Tiemo; Stracke, Frank; Le Harzic, Ronan; Koenig, Karsten

    2005-04-01

    Multiphoton Microscopy with a femtosecond pulsed Ti:sapphire laser in the near infrared (NIR) enables the user not only to image cells and tissues with a subcellular resolution but also to perform highly precise nanosurgery. Intratissue compartments, single cells and even cell organelles like mitochondria, membranes or chromosomes can be manipulated and optically knocked out. Working at transient TW/cm2 laser intensities, single cells of tumor-sphaeroids were eliminated efficiently inside the sphaeroid without damaging the neighbour cells. Also single organelles of cells inside tissues could be optically knocked out with the nanoscalpel without collateral damage. Tissue structures inside a human tooth have been ablated with sizes below 1 μm. This method may become a useful instrument for nano-manipulating and surgery in several fields of science, including targeted transfection.

  6. Multiphoton lasing in atomic potassium: Steady-state and dynamic behavior

    SciTech Connect

    Font, J. L.; Fernandez-Soler, J. J.; Vilaseca, R.; Gauthier, Daniel J.

    2005-12-15

    We show theoretically that it is possible to generate laser light based on two-photon and other high-order multiphoton processes when an atomic beam of optically driven potassium atoms crosses a high-finesse optical cavity. We use a rigorous model that takes into account all the atomic substates involved in the optical interactions and is valid for any drive and lasing field intensities. The polarizations of the drive and lasing fields are assumed to be fixed. Stable and unstable laser emission branches are obtained, which are represented as a function of cavity detuning and are analyzed in terms of the fundamental quantum processes yielding them. Closed-curve laser-emission profiles are obtained for multiphoton lasing based on processes involving more than one lasing photon. Two-photon laser emission branches show relatively long segments of stationary emission, combined in general with some segments of nonstationary emission, or with segments of mixture with three-photon emission processes. Rayleigh and hyper-Rayleigh processes can become simultaneously resonant, entailing in such case a large and fast transfer of population from the atomic initial ground sublevel to other ground sublevels with different z components of the total angular momentum. They could be useful in generating multiphoton correlated field states. In all cases the largest laser emission intensities are obtained from the highest-order processes, rather than the lowest. These results open the way to the understanding of experiments performed in the past years and suggest possibilities for more efficient and varied types of multiphoton laser operation.

  7. Intrinsic Indicator of Photodamage during Label-Free Multiphoton Microscopy of Cells and Tissues

    PubMed Central

    Andresen, Elisabeth F.; Geiger, Kathrin D.; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Multiphoton imaging has evolved as an indispensable tool in cell biology and holds prospects for clinical applications. When addressing endogenous signals such as coherent anti-Stokes Raman scattering (CARS) or second harmonic generation, it requires intense laser irradiation that may cause photodamage. We report that increasing endogenous fluorescence signal upon multiphoton imaging constitutes a marker of photodamage. The effect was studied on mouse brain in vivo and ex vivo, on ex vivo human brain tissue samples, as well as on glioblastoma cells in vitro, demonstrating that this phenomenon is common to a variety of different systems, both ex vivo and in vivo. CARS microscopy and vibrational spectroscopy were used to analyze the photodamage. The development of a standard easy-to-use model that employs rehydrated cryosections allowed the characterization of the irradiation-induced fluorescence and related it to nonlinear photodamage. In conclusion, the monitoring of endogenous two-photon excited fluorescence during label-free multiphoton microscopy enables to estimate damage thresholds ex vivo as well as detect photodamage during in vivo experiments. PMID:25343251

  8. A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.

    2009-06-01

    In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.

  9. Evidence for Multi-photon transitions between energy levels in a large Current-Biased Magnesium Diboride Josephson Heterojunction

    NASA Astrophysics Data System (ADS)

    Ramos, Roberto; Carabello, Steven; Lambert, Joseph; Cunnane, Daniel; Dai, Wenqing; Chen, Ke; Li, Qi; Xi, Xiaoxing

    2013-03-01

    When photons are strongly coupled to a quantum system, multiphoton transitions can be observed between two energy levels when the quantum energy of the exciting radiation, multiplied by an integer, matches the level spacing. This phenomenon can be observed in Josephson junction qubits exposed to weak microwave radiation at very low temperatures. At microwave resonance, the transition probability of a junction from superconducting to normal state is enhanced and these are used to map multiphoton transitions. We report observation of single- and multi-photon transitions between ground and first excited states in current-biased MgB2 thin film junctions by applying RF with frequencies between 0.5 and 3 Ghz. These large (up to 0.2mm x 0.3 mm) junctions consist of an MgB2 electrode insulated by native oxide from a lead (Pb) or tin (Sn) counter-electrode, and have areas at least 600 times bigger than Nb junctions previously shown to exhibit multiphoton transitions. The data is consistent with theoretical models of junctions behaving in the quantum limit and show anharmonicity of the junction potential when biased near the critical current.

  10. Multiphoton and photothermal imaging of molecular events in cancer

    NASA Astrophysics Data System (ADS)

    Skala, Melissa

    2010-10-01

    Optical techniques are attractive for monitoring disease processes in living tissues because they are relatively cheap, non-invasive and provide a wealth of functional information. Multiphoton microscopy (MPM) and Optical Coherence Tomography (OCT) are two types of three-dimensional optical imaging modalities that have demonstrated great utility in pre-clinical models of disease. These techniques are particularly useful for identifying metabolic and molecular biomarkers in cancer. These biomarkers can be used to identify the mechanisms of tumor growth, and to predict the response of a particular tumor to treatment. Specifically, MPM of the co-enzymes NADH and FAD was used to quantify metabolic changes associated with developing cancers in vivo. This imaging technique exploits intrinsic sources of tissue contrast and thus does not require contrast agents. Ongoing work combines this metabolic imaging technique with vascular imaging to provide a comprehensive picture of oxygen supply and demand with tumor therapy. Molecular signaling represents a third critical component in tumor physiology. To this end we have recently developed photothermal OCT, which combines coherent detection with laser-heated gold nanoparticles to achieve high-resolution molecular contrast at deeper depths than MPM. This multi-functional imaging platform will provide unprecedented insight into oxygen supply and demand, and molecular signaling in response to tumor growth and targeted cancer therapies in pre-clinical models.

  11. Tunneling dynamics in multiphoton ionization and attoclock calibration.

    PubMed

    Klaiber, Michael; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2015-02-27

    The intermediate domain of strong-field ionization between the tunneling and multiphoton regimes is investigated using the strong-field approximation and the imaginary-time method. An intuitive model for the dynamics is developed which describes the ionization process within a nonadiabatic tunneling picture with a coordinate dependent electron energy during the under-the-barrier motion. The nonadiabatic effects in the elliptically polarized laser field induce a transversal momentum shift of the tunneled electron wave packet at the tunnel exit and a delayed appearance in the continuum as well as a shift of the tunneling exit towards the ionic core. The latter significantly modifies the Coulomb focusing during the electron excursion in the laser field after exiting the ionization tunnel. We show that nonadiabatic effects are especially large when the Coulomb field of the ionic core is taken into account during the under-the-barrier motion. The simple man model modified with these nonadiabatic corrections provides an intuitive background for exact theories and has direct implications for the calibration of the attoclock technique. PMID:25768761

  12. High-resolution multimodal clinical multiphoton tomography of skin

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  13. The multiphoton ionization of uranium hexafluoride

    SciTech Connect

    Armstrong, D.P. . UEO Enrichment Technical Operations Div.)

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  14. Multiphoton excitation of fluorescent DNA base analogs

    NASA Astrophysics Data System (ADS)

    Katilius, Evaldas; Woodbury, Neal W.

    2006-07-01

    Multiphoton excitation was used to investigate properties of the fluorescent DNA base analogs, 2-aminopurine (2AP) and 6-methylisoxanthopterin (6MI). 2-aminopurine, a fluorescent analog of adenine, was excited by three-photon absorption. Fluorescence correlation measurements were attempted to evaluate the feasibility of using three-photon excitation of 2AP for DNA-protein interaction studies. However, high excitation power and long integration times needed to acquire high signal-to-noise fluorescence correlation curves render three-photon excitation FCS of 2AP not very useful for studying DNA base dynamics. The fluorescence properties of 6-methylisoxanthopterin, a guanine analog, were investigated using two-photon excitation. The two-photon absorption cross-section of 6MI was estimated to be about 2.5×10-50 cm4s (2.5 GM units) at 700 nm. The two-photon excitation spectrum was measured in the spectral region from 700 to 780 nm; in this region the shape of the two-photon excitation spectrum is very similar to the shape of single-photon excitation spectrum in the near-UV spectral region. Two-photon excitation of 6MI is suitable for fluorescence correlation measurements. Such measurements can be used to study DNA base dynamics and DNA-protein interactions over a broad range of time scales.

  15. Multiphoton microscopy of antigen presenting cells in experimental cancer therapies

    NASA Astrophysics Data System (ADS)

    Watkins, Simon C.; Papworth, Glenn D.; Spencer, Lori A.; Larregina, Adriana T.; Hackstein, Holger

    2002-06-01

    The absence of effective conventional therapy for most cancer patients justifies the application of novel, experimental approaches. One alternative to conventional cytotoxic agents is a more defined molecular approach for cancer immune treatment; promotion of the immune system specifically to target and eliminate tumor cells on the basis of expression of tumor-associated antigens (TAA). TAA could be presented to T-cells by professional antigen-presenting cells (APC) that generate a more efficient and effective anti-tumor immune response. In fact, it has been well documented that dendritic cells, the most immunologically potent APC, are capable of recognizing, processing and presenting TAA, in turn initiating a specific antitumor immune response. Results from several laboratories and clinical trials suggested significant but still limited efficacy of TAA-pulsed dendritic cells administered to tumor-bearing hosts. Following such delivery, it is fundamentally necessary to dynamically assess cell abundance within the microenvironment of the tumor in the presence of the appropriate therapeutic agent. Multiphoton microscopy was used to assess the trafficking of pulsed dendritic cells and other APC in skin, lymph nodes and brain of several animal tumor models, following different routes of administration.

  16. Multiphoton population transfer between rovibrational states of HF

    NASA Astrophysics Data System (ADS)

    Topcu, Turker; Robicheaux, Francis

    2011-05-01

    Efficient population transfer by adiabatically chirping through a multiphoton resonance in microwave driven and impulsively kicked Rydberg atoms has been reported both experimentally and theoretically. Previous work has demonstrated that the physical mechanism responsible for the transition can be viewed as a classical process in phase space as well as a quantum mechanical resonant transition. Here we report on our classical and quantum mechanical simulations in which we have exploited this mechanism to vibrationally excite an HF molecule up to | ν = 4 , J > from its ground state using an intense IR pulse. We compare one-dimensional quantum and classical models where there are no rotational degrees of freedom. We find that for low laser intensities, the transition is classically forbidden although it occurs quantum mechanically through tunneling. We show that for larger peak intensities, the transfer can be looked upon as a classical transition in phase space, similar to that observed in the atomic case. We extend our simulations to fully three-dimensional quantum calculations and investigate the effect of coupling between different rotational pathways. We briefly discuss the effect of thermal averaging over the final J-states. This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy.

  17. Post conductive keratoplasty visualization of rabbit cornea by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Wang, Tsung-Jen; Hu, Fung-Rong; Dong, Chen-Yuan

    2007-07-01

    Conductive keratoplasty (CK) is a new refractive surgery for presbyopia and hyperopia patients. By applying radio frequency current at the peripheral regions of cornea, collagen, the most abundant composition of corneal stroma, shrinks due to the heat generated. The shrinkage at the periphery alters the corneal architecture and achieves clearer focus for near vision. In this work we use multiphoton microscopy to observe the post surgery structure variation at both submicron resolution and over a large region within the tissue. Since collagen can be induced to generate strong second harmonic generation (SHG) signal, multiphoton excitation provide direct visualization of collagen orientation within corneal stroma. In addition, since the SHG intensity of collagen tissue deteriorates with increasing thermal damage [1-3], our methodology can be used to characterize the extent of corneal stroma damage from the CK procedure. Finally, the influence of CK on the morphology and distribution of keratocytes can also be investigated by detecting multiphoton excited autofluorescence from the cells.

  18. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  19. Evaluation of multiphoton effects in down-conversion

    SciTech Connect

    Yoshimi, Kazuyoshi; Koshino, Kazuki

    2010-04-15

    Multiphoton effects in down-conversion are investigated based on the full-quantum multimode formalism by considering a three-level system as a prototype nonlinear system. We analytically derive the three-photon output wave function for two input photons, where one of the two input photons is down-converted and the other one is not. Using this output wave function, we calculate the down-conversion probability, the purity, and the fidelity to evaluate the entanglement between a down-converted photon pair and a non-down-converted photon. It is shown that the saturation effect occurs by multiphoton input and that it affects both the down-conversion probability and the quantum correlation between the down-converted photon pair and the non-down-converted photon. We also reveal the necessary conditions for multiphoton effects to be strong.

  20. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  1. Convergent perturbation analysis of intense coherent multiphoton interactions

    NASA Technical Reports Server (NTRS)

    Gower, M. C.; Yee, T. K.; Gustafson, T. K.; Fan, B.

    1979-01-01

    Use has been made of flow graphs to deduce Feenberg perturbation expansions for radiative interactions. It is demonstrated that these expansions can in certain cases be summed to provide closed form expressions for the molecular response. In particular, it is shown that the coherent state response can be obtained by the summation of a continued fraction perturbation expansion for the harmonic oscillator. Anharmonicity in the lower levels is treated and its shown to introduce Rabi flopping identifiable with multiphoton transitions among isolated tightly coupled subsystems of levels. Relevance to laser induced multiphoton excitation and energy level shift calculations in the presence of a strong field are also discussed.

  2. Nonlinear optical imaging characteristics of colonic adenocarcinoma using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Nenrong; Chen, Rong; Li, Hongsheng; Chen, Jianxin

    2012-12-01

    Multiphoton microscopy (MPM), a noninvasive optical method with high resolution and high sensitivity, can obtain detailed microstructures of biotissues at submolecular level. In this study, MPM is used to image microstructure varieties of human colonic mucosa and submucosa with adenocarcinoma. Some parameters, such as gland configuration, SHG/TPEF intensity ratio, and collagen orientation and so on, should serve the indicators of early colorectal cancer. The exploratory results show that it's potential for the development of multiphoton mini-endoscopy in real-time early diagnosis of colorectal cancer.

  3. Optical clearing and multiphoton imaging of paraffin-embedded specimens

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Degan, Simone; Fischer, Martin C.; Warren, Warren S.

    2013-02-01

    New labeling, imaging, or analysis tools could provide new retrospective insights when applied to archived, paraffin-embedded samples. Deep-tissue multiphoton microscopy of paraffin-embedded specimens is achieved using optical clearing with mineral oil. We tested a variety of murine tissue specimens including skin, lung, spleen, kidney, and heart, acquiring multiphoton autofluorescence and second-harmonic generation, and pump-probe images This technique introduces the capability for non-destructive 3-dimensional microscopic imaging of existing archived pathology specimens, enabling retrospective studies.

  4. Fibre-coupled multiphoton microscope with adaptive motion compensation

    PubMed Central

    Sherlock, Ben; Warren, Sean; Stone, James; Neil, Mark; Paterson, Carl; Knight, Jonathan; French, Paul; Dunsby, Chris

    2015-01-01

    To address the challenge of sample motion during in vivo imaging, we present a fibre-coupled multiphoton microscope with active axial motion compensation. The position of the sample surface is measured using optical coherence tomography and fed back to a piezo actuator that adjusts the axial location of the objective to compensate for sample motion. We characterise the system’s performance and demonstrate that it can compensate for axial sample velocities up to 700 µm/s. Finally we illustrate the impact of motion compensation when imaging multiphoton excited autofluorescence in ex vivo mouse skin. PMID:26137387

  5. Photonic near-field imaging in multiphoton photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. P. S.; Word, R. C.; Saliba, S. D.; Könenkamp, R.

    2013-05-01

    We report the observation of optical near fields in a photonic waveguide of conductive indium tin oxide (ITO) using multiphoton photoemission electron microscopy (PEEM). Nonlinear two-photon photoelectron emission is enhanced at field maxima created by interference between incident 410-nm and coherently excited guided photonic waves, providing strong phase contrast. Guided modes are observed under both transverse magnetic field (TM) and transverse electric field (TE) polarized illuminations and are consistent with classical electromagnetic theory. Implications on the role of multiphoton PEEM in optical near-field imaging are discussed.

  6. Unambiguous atomic Bell measurement assisted by multiphoton states

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Bernád, József Zsolt; Alber, Gernot

    2016-05-01

    We propose and theoretically investigate an unambiguous Bell measurement of atomic qubits assisted by multiphoton states. The atoms interact resonantly with the electromagnetic field inside two spatially separated optical cavities in a Ramsey-type interaction sequence. The qubit states are postselected by measuring the photonic states inside the resonators. We show that if one is able to project the photonic field onto two coherent states on opposite sites of phase space, an unambiguous Bell measurement can be implemented. Thus, our proposal may provide a core element for future components of quantum information technology such as a quantum repeater based on coherent multiphoton states, atomic qubits and matter-field interaction.

  7. Multiphoton interband excitations of quantum gases in driven optical lattices

    NASA Astrophysics Data System (ADS)

    Weinberg, M.; Ölschläger, C.; Sträter, C.; Prelle, S.; Eckardt, A.; Sengstock, K.; Simonet, J.

    2015-10-01

    We report on the observation of multiphoton interband absorption processes for quantum gases in shaken light crystals. Periodic inertial forcing, induced by a spatial motion of the lattice potential, drives multiphoton interband excitations of up to the ninth order. The occurrence of such excitation features is systematically investigated with respect to the potential depth and the driving amplitude. Ab initio calculations of resonance positions as well as numerical evaluation of their strengths exhibit good agreement with experimental data. In addition our findings could make it possible to reach novel phases of quantum matter by tailoring appropriate driving schemes.

  8. Quantum critical dynamics of a qubit coupled to an isotropic Lipkin-Meshkov-Glick bath

    SciTech Connect

    Quan, H. T.; Wang, Z. D.; Sun, C. P.

    2007-07-15

    We explore a dynamic signature of quantum phase transition (QPT) in an isotropic Lipkin-Meshkov-Glick (LMG) model by studying the time evolution of a central qubit coupled to it. We evaluate exactly the time-dependent purity, which can be used to measure quantum coherence, of the central qubit. It is found that distinctly different behaviors of the purity as a function of the parameter reveal clearly the QPT point in the system. It is also clarified that the present model is equivalent to an anti-Jaynes-Cummings model under certain conditions.

  9. FAST TRACK COMMUNICATION: \\ {P}\\ {T}-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras

    NASA Astrophysics Data System (ADS)

    Günther, Uwe; Kuzhel, Sergii

    2010-10-01

    Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.

  10. Multiphoton Coherent Manipulation in Large Spin Qubits

    NASA Astrophysics Data System (ADS)

    Chiorescu, Irinel

    2009-03-01

    Manipulation of quantum information allows certain algorithms to be performed at unparalleled speeds. Photons are an ideal choice to manipulate qubits as they interact with quantum systems in predictable ways. They are a versatile tool for manipulating, reading/coupling qubits and for encoding/transferring quantum information over long distances. Spin-based qubits have well known behavior under photon driving and can be potentially operated up to room temperature. When diluted enough to avoid uncontrolled spin-spin interactions, a variety of spin qubits show long coherence times, e.g. the nitrogen vacancies in pure diamonds (1,2), nitrogen atoms trapped in a C60 cage (3), Ho3+ and Cr5+ ions (4,5) and molecular magnets (6,7). We have used large spin Mn2+ ions (S=5/2) to realize a six level system that can be operated by means of single as well as multi-photon coherent Rabi oscillations (8). This spin system has a very small anisotropy whose effect can be tuned in-situ to turn the system into a multi-level harmonic system. This offer new ways of manipulating, reading and resetting a spin qubit. Decoherence effects are strongly reduced by the quasi-isotropic electron interaction with the crystal field and with the 55Mn nuclear spins. [0pt] 1. R. Hanson et al., Science 320, 352 (2008). [0pt] 2. M.V. Gurudev Dutt et al., Science 316, 1312 (2007). [0pt] 3. G.W. Morley et al., Phys. Rev. Lett. 98, 220501 (2007). [0pt] 4. S. Bertaina et al., Nat. Nanotech. 2, 39 (2007). [0pt] 5. S. Nellutla et al., Phys. Rev. Lett. 99, 137601 (2007). [0pt] 6. A. Ardavan et al., Phys. Rev. Lett. 98, 057201 (2007). [0pt] 7. S. Bertaina et al., Nature 453, 203,(2008). [0pt] 8. S. Bertaina et al., submitted.

  11. Physics and Probability

    NASA Astrophysics Data System (ADS)

    Grandy, W. T., Jr.; Milonni, P. W.

    2004-12-01

    Preface; 1. Recollection of an independent thinker Joel A. Snow; 2. A look back: early applications of maximum entropy estimation to quantum statistical mechanics D. J. Scalapino; 3. The Jaynes-Cummings revival B. W. Shore and P. L. Knight; 4. The Jaynes-Cummings model and the one-atom-master H. Walther; 5. The Jaynes-Cummings model is alive and well P. Meystre; 6. Self-consistent radiation reaction in quantum optics - Jaynes' influence and a new example in cavity QED J. H. Eberly; 7. Enhancing the index of refraction in a nonabsorbing medium: phaseonium versus a mixture of two-level atoms M. O. Scully, T. W. Hänsch, M. Fleischhauer, C. H. Keitel and Shi-Yao Zhu; 8. Ed Jaynes' steak dinner problem II Michael D. Crisp; 9. Source theory of vacuum field effects Peter W. Milonni; 10. The natural line shape Edwin A. Power; 11. An operational approach to Schrödinger's cat L. Mandel; 12. The classical limit of an atom C. R. Stroud, Jr.; 13. Mutual radiation reaction in spontaneous emission Richard J. Cook; 14. A model of neutron star dynamics F. W. Cummings; 15. The kinematic origin of complex wave function David Hestenes; 16. On radar target identification C. Ray Smith; 17. On the difference in means G. Larry Bretthorst; 18. Bayesian analysis, model selection and prediction Arnold Zellner and Chung-ki Min; 19. Bayesian numerical analysis John Skilling; 20. Quantum statistical inference R. N. Silver; 21. Application of the maximum entropy principle to nonlinear systems far from equilibrium H. Haken; 22. Nonequilibrium statistical mechanics Baldwin Robertson; 23. A backward look to the future E. T. James; Appendix. Vita and bibliography of Edwin T. Jaynes; Index.

  12. Self-organized pattern formation in laser-induced multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Buschlinger, Robert; Nolte, Stefan; Peschel, Ulf

    2014-05-01

    We use finite-difference time-domain modeling to investigate plasma generation induced by multiphoton absorption of intense laser light in dielectrics with tiny inhomogeneities. Plasma generation is found to be strongly amplified around nanometer-sized inhomogeneities as present in glasses. Each inhomogeneity acts as the seed of a plasma structure growing against the direction of light propagation. Plasma structures originating from randomly distributed inhomogeneities are found to interact strongly and to organize in regularly spaced planes oriented perpendicularly to the laser polarization. We discuss similarities between our results and nanogratings in fused silica written by laser beams with spatially homogeneous as well as radial and azimuthal polarizations.

  13. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    SciTech Connect

    Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-04-13

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

  14. Energetics from Slow Infrared Multiphoton Dissociation of Biomolecules

    PubMed Central

    Jockusch, Rebecca A.; Paech, Kolja

    2005-01-01

    Photodissociation kinetics of the protonated pentapeptide leucine enkephalin measured using a cw CO2 laser and a Fourier-transform mass spectrometer are reported. A short induction period, corresponding to the time required to raise the internal energy of the ion population to a (dissociating) steady state, is observed. After this induction period, the dissociation data are accurately fit by first-order kinetics. A plot of the log of the unimolecular dissociation rate constant, kuni, as a function of the log of laser power is linear at low laser powers (<9 W, kuni <0.05 s−1), but tapers off at high laser power (9–33 W, kuni = 0.05–7 s−1). The entire measured dissociation curve can be accurately fit by an exponential function plus a constant. The experiment is simulated using a master equation formalism. In the model, the laser radiation is described as an energetically flat-topped distribution which is spatially uniform. This description is consistent with experimental results which indicate that ion motion within the cell averages out spatial inhomogeneities in the laser light. The model has several adjustable parameters. The effect of varying these parameters on the calculated kinetics and power dependence curves is discussed. A procedure for determining a limited range of threshold dissociation energy, Eo, which fits both the measured induction period and power dependence curves, is presented. Using this procedure, Eo of leucine enkephalin is determined to be 1.12–1.46 eV. This result is consistent with, although less precise than, values measured previously using blackbody infrared radiative dissociation. Although the blackbody dissociation results were used as a starting point to search for fits of the master equation model to experiment, these results demonstrate that it is, in principle, possible to determine a limited range of Eo from slow infrared multiphoton dissociation data alone. PMID:16467893

  15. Cavity-Assisted Spin Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanzhou; Dong, Lin; Pu, Han

    We consider a single ultracold atom trapped inside a single-mode optical cavity, where a two-photon Raman process induces an effective coupling between atom's pseudo-spin and external center-of-mass (COM) motion. Without the COM motion, this system is described by the Jaynes-Cummings (JC) model. We show how the atomic COM motion dramatically modifies the predictions based on the JC model. We also investigated the situation when cavity pumping and decay are taken into account. We take a quantum Master equation approach to study this open system and again show how the cavity-induced spin-orbit coupling affects the properties of the system.

  16. Cavity-Induced Spin-Orbit Coupling in Cold Atoms

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanzhou; Dong, Lin; Pu, Han

    2016-05-01

    We consider a single ultracold atom trapped inside a single-mode optical cavity, where a two-photon Raman process induces an effective coupling between atom's pseudo-spin and external center-of-mass (COM) motion. Without the COM motion, this system is described by the Jaynes-Cummings (JC) model. We show how the atomic COM motion dramatically modifies the predictions based on the JC model, and how the cavity photon field affects the properties of spin-orbit coupled system. We take a quantum Master equation approach to investigate the situation when the cavity pumping and decay are taken into account.

  17. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    SciTech Connect

    Kadry, Heba Abdel-Aty, Abdel-Haleem Zakaria, Nordin; Cheong, Lee Yen

    2014-10-24

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.

  18. Comparison of objective lenses for multiphoton microscopy in turbid samples.

    PubMed

    Singh, Avtar; McMullen, Jesse D; Doris, Eli A; Zipfel, Warren R

    2015-08-01

    Optimization of illumination and detection optics is pivotal for multiphoton imaging in highly scattering tissue and the objective lens is the central component in both of these pathways. To better understand how basic lens parameters (NA, magnification, field number) affect fluorescence collection and image quality, a two-detector setup was used with a specialized sample cell to separate measurement of total excitation from epifluorescence collection. Our data corroborate earlier findings that low-mag lenses can be superior at collecting scattered photons, and we compare a set of commonly used multiphoton objective lenses in terms of their ability to collect scattered fluorescence, providing guidance for the design of multiphoton imaging systems. For example, our measurements of epi-fluorescence beam divergence in the presence of scattering reveal minimal beam broadening, indicating that often-advocated over-sized collection optics are not as advantageous as previously thought. These experiments also provide a framework for choosing objective lenses for multiphoton imaging by relating the results of our measurements to various design parameters of the objectives lenses used. PMID:26309771

  19. Vacuum Rabi splitting effect in nanomechanical QED system with nonlinear resonator

    NASA Astrophysics Data System (ADS)

    Zhao, MingYue; Gao, YiBo

    2016-08-01

    Considering the intrinsic nonlinearity in a nanomechanical resonator coupled to a charge qubit, vacuum Rabi splitting effect is studied in a nanomechanical QED (qubit-resonator) system. A driven nonlinear Jaynes-Cummings model describes the dynamics of this qubit-resonator system. Using quantum regression theorem and master equation approach, we have calculated the two-time correlation spectrum analytically. In the weak driving limit, these analytical results clarify the influence of the driving strength and nonlinearity parameter on the correlation spectrum. Also, numerical calculations confirm these analytical results.

  20. The influence of phase damping on a two-level atom in the presence of the classical laser field

    NASA Astrophysics Data System (ADS)

    Sebawe Abdalla, M.; Obada, A.-S. F.; Khalil, E. M.; Ali, S. I.

    2013-11-01

    In this paper we consider the influence of phase damping on the Jaynes-Cummings model (JCM) in the presence of the classical laser field. It is shown that for the temporal evolution of the atomic inversion a detuning parameter plays a role in delaying the effect of the damping. Our consideration is also extended to discuss the atomic Wehrl entropy and entropy squeezing. For the case of the marginal distribution, it is noted that the damping factor plays a considerable role in reducing the number of the fluctuations in the function behavior. On the other hand the damping factor removes the phenomenon of squeezing from both quadratures of the entropy squeezing.

  1. Real and imaginary negative binomial states

    NASA Astrophysics Data System (ADS)

    Liao, Jing; Wang, Xiaoguang; Wu, Ling-An; Pan, Shao-Hua

    2001-10-01

    The real and imaginary negative binomial states formed by a superposition of the negative binomial states are introduced. The sub-Poissonian statistics, Wigner function and squeezing properties of the real and imaginary states are studied in detail. The oscillatory character of the photon distribution due to the quantum interference between the two components is shown. Moreover, we find that these states are real and imaginary nonlinear Schrödinger cat states and give the corresponding ladder operator formalisms. We also discuss how to generate these general real quantum superposition states based on the intensity-dependent Jaynes-Cummings model.

  2. Using a hybrid system (Cooper pair box plus nanomechanical resonator) in the presence of Kerr nonlinearities and losses to control the entropy of the subsystems

    NASA Astrophysics Data System (ADS)

    Valverde, C.; Castro, A. N.; Baseia, B.

    2016-05-01

    We consider the Jaynes-Cummings model to describe the interaction of a Cooper pair box and a nanomechanical resonator in the presence of a Kerr medium and losses. The evolution of the entropy of both subsystems and the Cooper pair box population inversion were calculated numerically. It was found that population inversion and entropy increase when the frequency of the nanoresonator is time-dependent, even in the presence of losses; the effect is very sensitive to detuning and disappears in resonant regime. We also compare effects of the losses on each subsystem.

  3. Evolution of entanglement under echo dynamics

    SciTech Connect

    Prosen, Tomaz; Znidaric, Marko; Seligman, Thomas H.

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  4. Transient Sub-Poissonian Distribution for Single-Mode Lasers

    NASA Technical Reports Server (NTRS)

    Zang, J. Y.; Gu, Q.; Tian, L. K.

    1996-01-01

    In this paper, the transient photon statistics for single-mode lasers is investigated by making use of the theory of quantum electrodynamics. By taking into account of the transitive time l,we obtain the master equation for Jaynes-Cummings model. The relation between the Mandel factor and the time is obtained by directly solving the master equation. The result shows that a transient phenomenon from the transient super-Poissonian distribution to the transient sub-Poissonian distribution occurs for single-mode lasers. In addition, the influences of the thermal light field and the cavity loss on the transient sub-Poissonian distribution are also studied.

  5. Deep-tissue multiphoton fluorescence lifetime microscopy for intravital imaging of protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Fruhwirth, G. O.; Matthews, D. R.; Brock, A.; Keppler, M.; Vojnovic, B.; Ng, T.; Ameer-Beg, S.

    2009-02-01

    Fluorescent lifetime imaging microscopy (FLIM) has proven to be a valuable tool in beating the Rayleigh criterion for light microscopy by measuring Förster resonance energy transfer (FRET) between two fluorophores. Applying multiphoton FLIM, we previously showed in a human breast cancer cell line that recycling of a membrane receptorgreen fluorescent protein fusion is enhanced concomitantly with the formation of a receptor:protein kinase C α complex in the endosomal compartment. We have extended this established technique to probe direct protein-protein interactions also in vivo. Therefore, we used various expressible fluorescent tags fused to membrane receptor molecules in order to generate stable two-colour breast carcinoma cell lines via controlled retroviral infection. We used these cell lines for establishing a xenograft tumour model in immune-compromised Nude mice. Using this animal model in conjunction with scanning Ti:Sapphire laser-based two-photon excitation, we established deep-tissue multiphoton FLIM in vivo. For the first time, this novel technique enables us to directly assess donor fluorescence lifetime changes in vivo and we show the application of this method for intravital imaging of direct protein-protein interactions.

  6. Multiphoton ionisation and dissociation of NO 2 by 50 fs laser pulses

    NASA Astrophysics Data System (ADS)

    Singhal, R. P.; Kilic, H. S.; Ledingham, K. W. D.; Kosmidis, C.; McCanny, T.; Langley, A. J.; Shaikh, W.

    1996-04-01

    Multiphoton ionisation and dissociation of NO 2 has been studied experimentally at 375 nm for laser pulse widths of 10 ns and 50 fs. The parent NO 2 ion peak is not seen in the ns data. In all spectra, the main peak observed is due to the ionisation of the NO molecule which results from the dissociation of excited NO 2 formed after absorbing a 375 nm photon. The intensity dependencies of both NO and NO 2 ion peaks have also been measured. The data has been analysed within the context of a rate equation model using published cross-sections and dissociation rates except for the two-photon ionisation cross-section for NO 2 which was chosen to reproduce the NO 2/NO ion signal ratios at 50 fs. The rate equation model provides a good description of the complete set of data. Indirectly, it may be concluded that coherence effects do not play an important role in the multiphoton excitation/ionisation of NO 2. The data also rules out the importance of above-ionisation dissociation in NO 2 — a conclusion which is consistent with previous data at 496 and 248 nm for laser pulse widths ⩾ 300 fs.

  7. Full analysis of multi-photon pair effects in spontaneous parametric down conversion based photonic quantum information processing

    NASA Astrophysics Data System (ADS)

    Takeoka, Masahiro; Jin, Rui-Bo; Sasaki, Masahide

    2015-04-01

    In spontaneous parametric down conversion (SPDC) based quantum information processing (QIP) experiments, there is a tradeoff between the coincidence count rates (i.e. the pumping power of the SPDC), which limits the rate of the protocol, and the visibility of the quantum interference, which limits the quality of the protocol. This tradeoff is mainly caused by the multi-photon pair emissions from the SPDCs. In theory, the problem is how to model the experiments without truncating these multi-photon emissions while including practical imperfections. In this paper, we establish a method to theoretically simulate SPDC-based QIPs which fully incorporates the effect of multi-photon emissions and various practical imperfections. The key ingredient in our method is the application of the characteristic function formalism which has been used in continuous variable QIPs. We apply our method to three examples, the Hong-Ou-Mandel interference and the Einstein-Podolsky-Rosen interference experiments, and the concatenated entanglement swapping protocol. For the first two examples, we show that our theoretical results quantitatively agree with the recent experimental results. Also we provide the closed expressions for these interference visibilities with the full multi-photon components and various imperfections. For the last example, we provide the general theoretical form of the concatenated entanglement swapping protocol in our method and show the numerical results up to five concatenations. Our method requires only a small computational resource (a few minutes by a commercially available computer), which was not possible in the previous theoretical approach. Our method will have applications in a wide range of SPDC-based QIP protocols with high accuracy and a reasonable computational resource.

  8. Multiphoton absorption is probably not the primary threshold damage mechanism for femtosecond laser pulse exposures in the retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Johnson, Thomas E.

    2004-07-01

    Laser induced breakdown has the lowest energy threshold in the femtosecond domain, and is responsible for production of threshold ocular lesions. It has been proposed that multiphoton absorption may also contribute to ultrashort-pulse tissue damage, based on the observation that 33 fs, 810 nm pulse laser exposures caused more DNA breakage in cultured, primary RPE cells, compared to CW laser exposures delivering the same average power. Subsequent studies, demonstrating two-photon excitation of fluorescence in isolated RPE melanosomes, appeared to support the role of multiphoton absorption, but mainly at suprathreshold irradiance. Additional experiments have not found a consistent difference in the DNA strand breakage produced by ultrashort and CW threshold exposures. DNA damage appears to be dependent on the amount of melanin pigmentation in the cells, rather than the pulsewidth of the laser; current studies have found that, at threshold, CW and ultrashort pulse laser exposures produce almost identical amounts of DNA breakage. A theoretical analysis suggest that the number of photons delivered to the RPE melanosome during a single 33-fsec pulse at the ED50 irradiance is insufficient to produce multiphoton excitation. This result appears to exclude the melanosome as a locus for two- or three-photon excitation; however, a structure with a larger effective absorption cross-section than the melanosome may interact with the laser pulses. One possibility is that the nuclear chromatin acts as a unit absorber of photons resulting in DNA damage, but this does not explain the near equivalence of ultrashort and CW exposures in the comet assay model. This equivalence indicated that multiphoton absorption is not a major contributor to the ultrashort pulse laser damage threshold in the near infrared.

  9. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    PubMed

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  10. Chronic imaging of amyloid plaques in the live mouse brain using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bacskai, Brian J.; Kajdasz, Stephen T.; Christie, R. H.; Zipfel, Warren R.; Williams, Rebecca M.; Kasischke, Karl A.; Webb, Watt W.; Hyman, B. T.

    2001-04-01

    Transgenic mice expressing the human Amyloid Precursor Protein (APP) develop amyloid plaques as they age. These plaques resemble those found in the human disease. Multiphoton laser scanning microscopy combined with a novel surgical approach was used to measure amyloid plaque dynamics chronically in the cortex of living transgenic mice. Thioflavine S (thioS) was used as a fluorescent marker of amyloid deposits. Multiphoton excitation allowed visualization of amyloid plaques up to 200 micrometers deep into the brain. The surgical site could be imaged repeatedly without overt damage to the tissue, and individual plaques within this volume could be reliably identified over periods of several days to several months. On average, plaque sizes remained constant over time, supporting a model of rapid deposition, followed by relative stability. Alternative reporters for in vivo histology include thiazine red, and FITC-labeled amyloid-(Beta) peptide. We also present examples of multi-color imaging using Hoechst dyes and FITC-labeled tomato lectin. These approaches allow us to observe cell nuclei or microglia simultaneously with amyloid-(Beta) deposits in vivo. Chronic imaging of a variety of reporters in these transgenic mice should provide insight into the dynamics of amyloid-(Beta) activity in the brain.

  11. Photon-momentum transfer in multiphoton ionization and in time-resolved holography with photoelectrons

    NASA Astrophysics Data System (ADS)

    Chelkowski, Szczepan; Bandrauk, André D.; Corkum, Paul B.

    2015-11-01

    In most models and theoretical calculations describing multiphoton ionization by infrared light, the dipole approximation is used. This is equivalent to setting the very small photon momentum to zero. Using numerical solutions of the two-dimensional (2-D) time-dependent Schrödinger equation for one electron (H-like) systems, we show that, for linear polarization, the radiation pressure on photoelectrons is very sensitive to the details of the ionization mechanism. The directly ionized photoelectrons, those that never recollide with the parent ion, are driven in the direction of the laser photon momentum, whereas a fraction of slower photoelectrons are pushed in the opposite direction, leading to the counterintuitive shifts observed in recent experiments [Phys. Rev. Lett. 113, 243001 (2014), 10.1103/PhysRevLett.113.243001]. This complex response is due to the interplay between the Lorentz force and the Coulomb attraction from the ion. On average, however, the photoelectron momentum is in the direction of the photon momentum as in the case of circular polarization. The influence of the photon momentum is shown to be discernible in the holographic patterns of time-resolved atomic and molecular holography with photoelectrons, thus suggesting a new research subject in multiphoton ionization.

  12. Comparison Study of Atomic and Molecular Single Ionization in the Multiphoton Ionization Regime

    SciTech Connect

    Wu Jian; Zeng Heping; Guo Chunlei

    2006-06-23

    In this Letter, we report, for the first time in the multiphoton ionization regime, a comparison study of single-electron ionization of diatomic molecules versus rare gas atoms with virtually the same ionization potentials. In comparing N{sub 2}{sup +} to Ar{sup +}, a higher ion signal is seen in N{sub 2}{sup +} compared to Ar{sup +} for linear polarization but the difference vanishes in circularly polarized light. In comparing O{sub 2}{sup +} to Xe{sup +}, we observe a suppression in O{sub 2}{sup +} compared to Xe{sup +} for both linear and circular polarization but this suppression exhibits an intensity dependence; i.e., there is little suppression for O{sub 2}{sup +} at the lowest intensity range, but the suppression becomes increasingly stronger as the laser intensity increases. The multielectron screening model is used to discuss possible mechanisms of this intensity dependent suppression in O{sub 2}{sup +} in the multiphoton ionization regime.

  13. In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin.

    PubMed

    Balu, Mihaela; Mazhar, Amaan; Hayakawa, Carole K; Mittal, Richa; Krasieva, Tatiana B; König, Karsten; Venugopalan, Vasan; Tromberg, Bruce J

    2013-01-01

    We employ a clinical multiphoton microscope to monitor in vivo and noninvasively the changes in reduced nicotinamide adenine dinucleotide (NADH) fluorescence of human epidermal cells during arterial occlusion. We correlate these results with measurements of tissue oxy- and deoxyhemoglobin concentration during oxygen deprivation using spatial frequency domain imaging. During arterial occlusion, a decrease in oxyhemoglobin corresponds to an increase in NADH fluorescence in the basal epidermal cells, implying a reduction in basal cell oxidative phosphorylation. The ischemia-induced oxygen deprivation is associated with a strong increase in NADH fluorescence of keratinocytes in layers close to the stratum basale, whereas keratinocytes from epidermal layers closer to the skin surface are not affected. Spatial frequency domain imaging optical property measurements, combined with a multilayer Monte Carlo-based radiative transport model of multiphoton microscopy signal collection in skin, establish that localized tissue optical property changes during occlusion do not impact the observed NADH signal increase. This outcome supports the hypothesis that the vascular contribution to the basal layer oxygen supply is significant and these cells engage in oxidative metabolism. Keratinocytes in the more superficial stratum granulosum are either supplied by atmospheric oxygen or are functionally anaerobic. Based on combined hemodynamic and two-photon excited fluorescence data, the oxygen consumption rate in the stratum basale is estimated to be ∼0.035 μmoles/10(6) cells/h. PMID:23332078

  14. In Vivo Multiphoton NADH Fluorescence Reveals Depth-Dependent Keratinocyte Metabolism in Human Skin

    PubMed Central

    Balu, Mihaela; Mazhar, Amaan; Hayakawa, Carole K.; Mittal, Richa; Krasieva, Tatiana B.; König, Karsten; Venugopalan, Vasan; Tromberg, Bruce J.

    2013-01-01

    We employ a clinical multiphoton microscope to monitor in vivo and noninvasively the changes in reduced nicotinamide adenine dinucleotide (NADH) fluorescence of human epidermal cells during arterial occlusion. We correlate these results with measurements of tissue oxy- and deoxyhemoglobin concentration during oxygen deprivation using spatial frequency domain imaging. During arterial occlusion, a decrease in oxyhemoglobin corresponds to an increase in NADH fluorescence in the basal epidermal cells, implying a reduction in basal cell oxidative phosphorylation. The ischemia-induced oxygen deprivation is associated with a strong increase in NADH fluorescence of keratinocytes in layers close to the stratum basale, whereas keratinocytes from epidermal layers closer to the skin surface are not affected. Spatial frequency domain imaging optical property measurements, combined with a multilayer Monte Carlo-based radiative transport model of multiphoton microscopy signal collection in skin, establish that localized tissue optical property changes during occlusion do not impact the observed NADH signal increase. This outcome supports the hypothesis that the vascular contribution to the basal layer oxygen supply is significant and these cells engage in oxidative metabolism. Keratinocytes in the more superficial stratum granulosum are either supplied by atmospheric oxygen or are functionally anaerobic. Based on combined hemodynamic and two-photon excited fluorescence data, the oxygen consumption rate in the stratum basale is estimated to be ∼0.035 μmoles/106 cells/h. PMID:23332078

  15. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging

    PubMed Central

    Entenberg, David; Wyckoff, Jeffrey; Gligorijevic, Bojana; Roussos, Evanthia T; Verkhusha, Vladislav V; Pollard, Jeffrey W; Condeelis, John

    2014-01-01

    Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via ‘over-clocking’ of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in ~24 h. PMID:21959234

  16. Monitoring photoaging by use of multiphoton fluorescence and second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Sung-Jan; Jee, Shiou-Hwa; Chan, Jung-Yi; Wu, Ruei-Jr; Lo, Wen; Tan, Hsin-Yuan; Lin, Wei-Chou; Chen, Jau-Shiuh; Young, Tai-Horng; Hsu, Chih-Jung; Dong, Chen-Yuan

    2006-02-01

    It is a field of great interest to develop therapies to rejuvenate photoaged skin. However, the treatment response can not be ideally determined due to lack of a reliable non-invasive method to quantify photoaging. In this study, the photoaging process of skin is investigated by use of a multiphoton fluorescence and second harmonic generation microscopy. We obtain the autofluorescence and second harmonic generation images of superficial dermis from facial skin of individuals of different ages. The results show that autofluorescence signals increase with age while second harmonic generation signals decrease with age. The results are consistent with the histological findings in which collagen is progressively replaced by elastic fibers. In the case of severe photoaging, solar elastosis can be clearly demonstrated by the presence of thick curvy autofluorescent materials in the superficial dermis. We propose a second harmonic generation to autofluorescence aging index of dermis to quantify the photoaging changes. This index is shown to be a good indicator of photoaging. Our results suggest that multiphoton fluorescence and second harmonic generation microscopy can be developed into a non-invasive imaging modelity for the clinical evaluation of photoaging.

  17. Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks

    NASA Astrophysics Data System (ADS)

    Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy

    2014-06-01

    Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.

  18. Multiphoton microscopy and microspectroscopy for diagnostics of inflammatory and neoplastic lung

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Flanders, James; Southard, Teresa L.; Weiss, Robert S.; Webb, Watt W.

    2012-03-01

    Limitations of current medical procedures for detecting early lung cancers inspire the need for new diagnostic imaging modalities for the direct microscopic visualization of lung nodules. Multiphoton microscopy (MPM) provides for subcellular resolution imaging of intrinsic fluorescence from unprocessed tissue with minimal optical attenuation and photodamage. We demonstrate that MPM detects morphological and spectral features of lung tissue and differentiates between normal, inflammatory and neoplastic lung. Ex vivo MPM imaging of intrinsic two-photon excited fluorescence was performed on mouse and canine neoplastic, inflammatory and tumor-free lung sites. Results showed that MPM detected microanatomical differences between tumor-free and neoplastic lung tissue similar to standard histopathology but without the need for tissue processing. Furthermore, inflammatory sites displayed a distinct red-shifted fluorescence compared to neoplasms in both mouse and canine lung, and adenocarcinomas displayed a less pronounced fluorescence emission in the 500 to 550 nm region compared to adenomas in mouse models of lung cancer. These spectral distinctions were also confirmed by two-photon excited fluorescence microspectroscopy. We demonstrate the feasibility of applying MPM imaging of intrinsic fluorescence for the differentiation of lung neoplasms, inflammatory and tumor-free lung, which motivates the application of multiphoton endoscopy for the in situ imaging of lung nodules.

  19. Multiphoton dynamics of qutrits in the ultrastrong coupling regime with a quantized photonic field

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Avetissian, A. K.; Mkrtchian, G. F.; Kibis, O. V.

    2015-12-01

    Multiphoton resonant excitation of a three-state quantum system (a qutrit) with a single-mode photonic field is considered in the ultrastrong coupling regime, when the qutrit-photonic field coupling rate is comparable to appreciable fractions of the photon frequency. For ultrastrong couplings, the obtained solutions of the Schrödinger equation that reveal multiphoton Rabi oscillations in qutrits with the interference effects leading to the collapse and revival of atomic excitation probabilities at the direct multiphoton resonant transitions.

  20. The role of resonances in strong-field multiphoton processes

    SciTech Connect

    Perry, M.D.; Kulander, K.C.

    1990-10-01

    Resonantly-enhanced multiphoton ionization (REMPI) has been the subject of extensive experimental and theoretical study since the invention of the laser. Until recently, the overwhelming majority of REMPI research have been conducted at intensities less than 10{sup 12} W/cm{sup 2}. At these intensities, the strength of the applied field remains less than one percent of the atomic Coulomb field experienced by the outer electrons in a typical noble gas atom. In this regime, treatment of the applied field as a weak perturbation on the atomic system yields excellent agreement with experiment. Here, we investigate the role of resonances in multiphoton ionization at much higher intensities, specifically, we examine the behavior and influence of resonances as the strength of the applied field becomes a significant fraction of the atomic field. 33 refs., 7 figs., 2 tabs.

  1. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    PubMed Central

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence. PMID:27283889

  2. Nanoparticle metrology in sol-gels using multiphoton excited fluorescence

    NASA Astrophysics Data System (ADS)

    Karolin, J.; Geddes, C. D.; Wynne, K.; Birch, D. J. S.

    2002-01-01

    We have developed a method of measuring the growth of nanoparticles during sol-gel glass formation based on labelling the particle with a fluorescent dye and determining the multiphoton excited decay of fluorescence anisotropy due to Brownian rotation. Multiphoton excitation is shown to give a higher dynamic range of measurement than one-photon excitation. We illustrate the sub-nanometre resolution and stability of our approach by detecting a 0.8-1.1 nm silica particle hydrodynamic mean radius increase in a tetramethylorthosilicate sol at pH 2.3 labelled with rhodamine 6G and observed over ≈4 weeks and also with a stable silica colloid of radius 6 nm, pH 8.9, labelled with a 6-methoxyquinoline-type dye.

  3. Multiphoton Imaging of Ultrasound Bioeffects in the Murine Brain

    NASA Astrophysics Data System (ADS)

    Raymond, Scott; Skoch, Jesse; Bacskai, Brian; Hynynen, Kullervo

    2006-05-01

    The purpose of this study was to demonstrate the feasibility of multiphoton imaging in the murine brain during exposure to ultrasound. Our experimental setup coupled ultrasound through the ventral surface of the mouse while allowing imaging through a cranial window from the dorsal surface. Field attenuation was estimated by scanning the field after insertion of a freshly sacrificed mouse; beam profile and peak position were preserved, suggesting adequate targeting for imaging experiments. C57 mice were imaged with a Biorad multiphoton microscope while being exposed to ultrasound (f = 1.029 MHz, peak pressure ˜ 200 kPa, average power ˜ 0.18 W) with IV injection of Optison. We observed strong vasoconstriction coincident with US and Optison, as well as permeabilization of the blood-brain barrier.

  4. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging.

    PubMed

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T C; Kim, Ki Hean

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence. PMID:27283889

  5. Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    NASA Technical Reports Server (NTRS)

    Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.

    1987-01-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.

  6. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Tung, Oi-Hong; Lee, Shyh-Yuan; Lai, Yu-Lin; Chen, How-Foo

    2011-06-01

    Subgingival calculus has been recognized as a major cause of periodontitis, which is one of the main chronic infectious diseases of oral cavities and a principal cause of tooth loss in humans. Bacteria deposited in subgingival calculus or plaque cause gingival inflammation, function deterioration, and then periodontitis. However, subgingival calculus within the periodontal pocket is a complicated and potentially delicate structure to be detected with current dental armamentaria, namely dental x-rays and dental probes. Consequently, complete removal of subgingival calculus remains a challenge to periodontal therapies. In this study, the detection of subgingival calculus employing a multiphoton autofluorescence imaging method was characterized in comparison with a one-photon confocal fluorescence imaging technique. Feasibility of such a system was studied based on fluorescence response of gingiva, healthy teeth, and calculus with and without gingiva covered. The multiphoton fluorescence technology perceived the tissue-covered subgingival calculus that cannot be observed by the one-photon confocal fluorescence method.

  7. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  8. Waveguide characterization with multi-photon photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. P. S.; Word, Robert C.; Saliba, Sebastian; Koenenkamp, Rolf

    2012-10-01

    Multi-photon photoemission electron microscopy (PEEM) images surface interactions of visible light with matter, showing electromagnetic (EM) waves that propagate at or near the surface. Images are interferometric, showing where incident and surface waves are in-phase (bright) and out-of-phase (dark), with strong contrast between regions of high and low rates of photoelectron emission. Interferogram analysis can determine the amplitude, wavelength, phase evolution, and propagation decay length of the surface waves. Most multi-photon PEEM studies focus on surface plasmon polaritons. We show that this technique can also be applied to conducting thin-film waveguides, measuring the properties of confined EM waves in a two-mode slab waveguide made of indium tin oxide on glass, which are consistent with waveguide theory. This research was funded by the US Department of Energy Basic Science Office under contract DE-FG02-10ER46406.

  9. Does Infrared Multiphoton Dissociation of Vinyl Chloride Yield Cold Vinylidene?

    PubMed

    Fernando, Ravin; Qu, Chen; Bowman, Joel M; Field, Robert W; Suits, Arthur G

    2015-07-01

    Velocity map imaging of the infrared multiphoton dissociation of vinyl chloride shows the formation of HCl in rotational levels below J = 10 that are associated with the three-center elimination pathway. The total translational energy release is observed to peak at 3-5 kcal/mol, which is consistent with the low reverse barrier predicted for the formation of HCl with vinylidene coproducts. Direct dynamics trajectory studies from the three-center transition state reproduce the observed distributions and show that the associated vinylidene is formed with only modest rotational excitation, precluding Coriolis-induced mixing among the excited vibrational levels of acetylene that would lead to distribution of vinylidene character into many vibrationally mixed acetylene vibrational levels. The results suggest that infrared multiphoton dissociation of vinyl chloride is an efficient route to synthesis of stable, cold vinylidene. PMID:26266719

  10. Hybrid label-free multiphoton and optoacoustic microscopy (MPOM)

    NASA Astrophysics Data System (ADS)

    Soliman, Dominik; Tserevelakis, George J.; Omar, Murad; Ntziachristos, Vasilis

    2015-07-01

    Many biological applications require a simultaneous observation of different anatomical features. However, unless potentially harmful staining of the specimens is employed, individual microscopy techniques do generally not provide multi-contrast capabilities. We present a hybrid microscope integrating optoacoustic microscopy and multiphoton microscopy, including second-harmonic generation, into a single device. This combined multiphoton and optoacoustic microscope (MPOM) offers visualization of a broad range of structures by employing different contrast mechanisms and at the same time enables pure label-free imaging of biological systems. We investigate the relative performance of the two microscopy modalities and demonstrate their multi-contrast abilities through the label-free imaging of a zebrafish larva ex vivo, simultaneously visualizing muscles and pigments. This hybrid microscopy application bears great potential for developmental biology studies, enabling more comprehensive information to be obtained from biological specimens without the necessity of staining.

  11. Relaxation channels of multi-photon excited xenon clusters

    SciTech Connect

    Serdobintsev, P. Yu.; Melnikov, A. S.; Rakcheeva, L. P. Murashov, S. V.; Khodorkovskii, M. A.; Lyubchik, S.; Timofeev, N. A.; Pastor, A. A.

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  12. Relaxation channels of multi-photon excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Rakcheeva, L. P.; Murashov, S. V.; Melnikov, A. S.; Lyubchik, S.; Timofeev, N. A.; Pastor, A. A.; Khodorkovskii, M. A.

    2015-09-01

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  13. Femtosecond Light Source for Phase-Controlled Multiphoton Ionization

    SciTech Connect

    Sokolov, A. V.; Walker, D. R.; Yavuz, D. D.; Yin, G. Y.; Harris, S. E.

    2001-07-16

    We describe a femtosecond Raman light source with more than an octave of optical bandwidth. We use this source to demonstrate phase control of multiphoton ionization under conditions where ionization requires eleven photons of the lowest frequency of the spectrum or five photons of the highest frequency. The nonlinearity of the photoionization process allows us to characterize the light source. Experiment-to-theory comparison implies generation of a near single-cycle waveform.

  14. Single- and multiphoton infrared laser spectroscopy of atomic negative ions

    NASA Astrophysics Data System (ADS)

    Scheer, Michael

    A pulsed, tunable infrared laser source (0.6-5.2 μm) has been developed on the basis of a commercial dye laser and non-linear optical conversion techniques. This laser source was combined with a keV negative ion beam apparatus in a crossed-beam geometry, with the aim to systematically study several atomic negative ions through a variety of single- and multiphoton detachment experiments. Photodetachment threshold spectra of 21 ionic species (B- , C-, O-, Al- , Si-, Cr-, Co- , Ni-, Cu-, Ge- , Mo-, Rh-, Pd- , Ag-, Sn-, Sb- , Te-, Cs-, Ir- , Pt-, and Bi-) have been recorded, in most cases resulting in very accurate determinations of ionic binding energies, marking substantial improvements over previous experimental values. In fact, several ionic states investigated here had not been observed previously. Different schemes for resonant multiphoton detachment of atomic negative ions were demonstrated for the first time. These studies were conducted with several anions (Si-, Sri- , Sb-, Te-, Ir- , and Pt-) providing highly accurate ionic energy level splittings and clearly demonstrating that multiphoton probes are generally applicable to negative ion structure.

  15. Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation.

    PubMed

    Simpson, Peter V; Watson, Laurance A; Barlow, Adam; Wang, Genmiao; Cifuentes, Marie P; Humphrey, Mark G

    2016-02-12

    Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value. PMID:26797727

  16. Differentiation of normal and cancerous lung tissues by multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Wu, Ruei-Jr; Hovhannisyan, Vladimir A.; Lin, Wei-Chou; Lin, Sung-Jan; So, Peter T. C.; Dong, Chen-Yuan

    2010-02-01

    In this work, we utilized multiphoton microscopy for the label-free diagnosis of non-cancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from human. Our results show that the combination of second harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative information in discriminating cancerous from non-cancerous lung tissues. Specifically, non-cancerous lung tissues are largely fibrotic in structure while cancerous specimens are composed primarily of tumor masses. Quantitative ratiometric analysis using MAF to SHG index (MAFSI or SAAID) shows that the average MAFSI for noncancerous and LAC lung tissue pairs are 0.55 +/-0.23 and 0.87+/-0.15 respectively. In comparison, the MAFSIs for the noncancerous and SCC tissue pairs are 0.50+/-0.12 and 0.72+/-0.13 respectively. Intrinsic fluorescence ratio (FAD/NADH) of SCC and non-cancerous tissues are 0.40+/-0.05 and 0.53+/-0.05 respectively, the redox ratio of SCC diminishes significantly, indicating that increased cellular metabolic activity. Our study shows that nonlinear optical microscopy can assist in differentiating and diagnosing pulmonary cancer from non-cancerous tissues. With additional development, multiphoton microscopy may be used for the clinical diagnosis of lung cancers.

  17. Multiphoton ionization mass spectrometry of nitrated polycyclic aromatic hydrocarbons.

    PubMed

    Tang, Yuanyuan; Imasaka, Tomoko; Yamamoto, Shigekazu; Imasaka, Totaro

    2015-08-01

    In order to suppress the fragmentation and improve the sensitivity for determination of nitrated polycyclic aromatic hydrocarbons (NPAHs), the mechanism of multiphoton ionization was studied for the following representative NPAHs, 9-nitroanthracene, 3-nitrofluoranthene, and 1-nitropyrene. The analytes were extracted from the PM2.5 on the sampling filter ultrasonically, and were measured using gas chromatography/multiphoton ionization/time-of-flight mass spectrometry with a femtosecond tunable laser in the range from 267 to 405 nm. As a result, a molecular ion was observed as the major ion and fragmentation was suppressed at wavelengths longer than 345 nm. Furthermore, the detection limit measured at 345 nm was measured to be the subpicogram level. The organic compounds were extracted from a 2.19 mg sample of particulate matter 2.5 (PM2.5), and the extract was subjected to multiphoton ionization mass spectrometry after gas chromatograph separation. The background signals were drastically suppressed at 345 nm, and the target NPAHs, including 9-nitroanthracene and 1-nitropyrene, were detected, and their concentrations were determined to be 5 and 3 pg/m(3), respectively. PMID:26048831

  18. Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source.

    PubMed

    Lefort, Claire; O'Connor, Rodney P; Blanquet, Véronique; Magnol, Laetitia; Kano, Hideaki; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-07-01

    Multicolor multiphoton microscopy is experimentally demonstrated for the first time on a spectral bandwidth of excitation of 300 nm (full width half maximum) thanks to the implementation a nanosecond supercontinuum (SC) source compact and simple with a low repetition rate. The interest of such a wide spectral bandwidth, never demonstrated until now, is highlighted in vivo: images of glioma tumor cells stably expressing eGFP grafted on the brain of a mouse and its blood vessels network labelled with Texas Red(®) are obtained. These two fluorophores have a spectral bandwidth covering the whole 300 nm available. In parallel, a similar image quality is obtained on a sample of mouse muscle in vitro when excited with this nanosecond SC source or with a classical high rate, femtosecond and quasi monochromatic laser. This opens the way for (i) a simple and very complete biological characterization never performed to date with multiphoton processes, (ii) multiple means of contrast in nonlinear imaging allowed by the use of numerous fluorophores and (iii) other multiphoton processes like three-photon ones. PMID:26872004

  19. Buffer-gas influence on multiphoton absorption and dissociation in different gas mixtures

    NASA Astrophysics Data System (ADS)

    Nikolić, J. D.; Rabasović, M. D.; Markushev, D. D.; Jovanović-Kurepa, J.

    2008-03-01

    Buffer-gas influence on the multiphoton absorption and dissociation in different mixtures was investigated using the simple method based on the empirical and theoretical vibrational energy distribution, generalized coupled two-level model and photoacoustic cell especially designed for low pressures studies. Energy transfer efficiency was analyzed by means of pulsed photoacoustic spectroscopy technique. Collisional effects of buffer-gas (Ar) pressure are introduced to enhance the absorption and relaxation characteristics of irradiated absorbing molecules (SF 6). Functional behavior of mean number of absorbed photons per molecule < n> total and a dependence on buffer-gas pressure ( pbuff) which enables us to confirm or predict some physical and chemical processes are presented. Limitation of proposed model was analyzed depending on both gas pressure and laser fluence. Results are compared with other previously obtained by the same experimental technique but for different absorber and different molecular buffer-gas.

  20. Von Neumann entropy and phase distribution of two mode parametric amplifier interacting with a single atom

    SciTech Connect

    Sebawe Abdalla, M. . E-mail: m.sebawe@physics.org; Obada, A.-S.F.; Abdel-Aty, M.

    2005-08-01

    In the present article, we introduce a Hamiltonian model that consists of two modes of the field in a perfect cavity to interact with a single two-level atom. The interaction between the fields has been taken into account and considered to be in the parametric amplifier form. The model in one hand can be regarded as a generalization of the Jaynes-Cummings model (JCM), however, in the other hand it can be considered as a generalization of the parametric amplifier model. Under a certain condition the exact solution to the Schroedinger equation is obtained. Employing this solution and for chosen values of different parameters we discuss numerically the atomic occupation probabilities as well as the degree of entanglement through the entropy of the field. The system shows superstructure phenomenon similar to that appeared from the effect of the Kerr-like medium on the Jaynes-Cummings model. The von Neumann entropy and phase distribution for both two-mode correlated and uncorrelated coherent states cases are also considered.

  1. Von Neumann entropy and phase distribution of two mode parametric amplifier interacting with a single atom

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Obada, A.-S. F.; Abdel-Aty, M.

    2005-08-01

    In the present article, we introduce a Hamiltonian model that consists of two modes of the field in a perfect cavity to interact with a single two-level atom. The interaction between the fields has been taken into account and considered to be in the parametric amplifier form. The model in one hand can be regarded as a generalization of the Jaynes-Cummings model (JCM), however, in the other hand it can be considered as a generalization of the parametric amplifier model. Under a certain condition the exact solution to the Schrödinger equation is obtained. Employing this solution and for chosen values of different parameters we discuss numerically the atomic occupation probabilities as well as the degree of entanglement through the entropy of the field. The system shows superstructure phenomenon similar to that appeared from the effect of the Kerr-like medium on the Jaynes-Cummings model. The von Neumann entropy and phase distribution for both two-mode correlated and uncorrelated coherent states cases are also considered.

  2. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a

  3. Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan

    2008-02-01

    The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.

  4. Real-time histological imaging of kidneys stained with food dyes using multiphoton microscopy.

    PubMed

    Nagao, Yasuaki; Kimura, Kazushi; Wang, Shujie; Fujiwara, Takeshi; Mizoguchi, Akira

    2015-10-01

    We have developed a real-time imaging technique for diagnosis of kidney diseases which is composed of two steps, staining renal cells safely with food dyes and optical sectioning of living renal tissue to obtain histological images by multiphoton microscopy (MPM). Here, we demonstrated that the MPM imaging with food dyes, including erythrosine and indigo carmine, could be used as fluorescent agents to visualize renal functions and structures such as glomerular bloodstreams, glomerular filtration, and morphology of glomeruli and renal tubules. We also showed that the kidneys of IgA nephropathy model-mice stained with the food dyes presented histopathological characteristics different from those observed in normal kidneys. The use of the food dyes enhances the quality of tissue images obtained by MPM and offers the potential to contribute to a clinical real-time diagnosis of kidney diseases. PMID:26260138

  5. Dataset on coherent control of fields and induced currents in nonlinear multiphoton processes in a nanosphere.

    PubMed

    McArthur, Duncan; Hourahine, Ben; Papoff, Francesco

    2015-01-01

    We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26601699

  6. Aromatic C-H bond activation revealed by infrared multiphoton dissociation spectroscopy.

    PubMed

    Jašíková, Lucie; Hanikýřová, Eva; Schröder, Detlef; Roithová, Jana

    2012-04-01

    Metal-oxide cations are models of catalyst mediating the C-H bond activation of organic substrates. One of the most powerful reagents suggested in the gas phase is based on CuO(+) . Here, we describe the activation of the aromatic C-H bonds of phenanthroline in its complex with CuO(+) . The reaction sequence starts with a hydrogen atom abstraction by the oxygen atom from the 2-position of the phenanthroline ring, followed by OH migration to the ring. Using infrared multiphoton spectroscopy, it is shown that the reaction can be energetically facilitated by additional coordination of a water ligand to the copper ion. As the reaction is intramolecular, a spectroscopic characterization of the product is mandatory in order to unambiguously address the reaction mechanism. PMID:22689621

  7. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Ellingsen, Pa˚L. Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina De Lange; Kildemo, Morten

    2011-11-01

    The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.

  8. Multiphoton fluorescence microscopy: behavior of biological specimens under high-intensity illumination

    NASA Astrophysics Data System (ADS)

    Cheng, Ping C.; Lin, Bai-Ling; Kao, Fu-Jen; Sun, Chi-Kuang

    2000-07-01

    Recent development in multi-photon fluorescence microscopy, second and third harmonic generation microscopy (SHG and THG) and CARS open new dimensions in biological studies. Not only the technologies allow probing the biological specimen both functionally and structurally with increasing spatial and temporal resolution, but also raise the interest in how biological specimens respond to high intensity illumination commonly used in these types of microscopy. We have used maize leaf protoplast as a model system to evaluate the photo-induced response of living sample under high intensity illumination. It was found that cells can be seriously damaged by high intensity NIR irradiation even the linear absorption coefficient in low in these wavelengths. Micro-spectroscopy of single chloroplast also allows us to gain insight on the possible photo-damage mechanism. In addition to fluorescence emission, second harmonic generation was observed in the maize protoplasts.

  9. Dataset on coherent control of fields and induced currents in nonlinear multiphoton processes in a nanosphere

    PubMed Central

    McArthur, Duncan; Hourahine, Ben; Papoff, Francesco

    2015-01-01

    We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26601699

  10. Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy

    PubMed Central

    Ehmke, Tobias; Knebl, Andreas; Reiss, Stephan; Fischinger, Isaak R.; Seiler, Theo G.; Stachs, Oliver; Heisterkamp, Alexander

    2015-01-01

    Multimodal nonlinear microscopy allows imaging of highly ordered biological tissue due to spectral separation of nonlinear signals. This requires certain knowledge about the spectral distribution of the different nonlinear signals. In contrast to several publications we demonstrate a factor of 122 relating the full width at half maximum of a gaussian laser pulse spectrum to the corresponding second harmonic pulse spectrum in the spatial domain by using a simple theoretical model. Experiments on monopotassium phosphate crystals (KDP-crystals) and on porcine corneal tissue support our theoretical predictions. Furthermore, no differences in spectral width were found for epi- and trans-detection of the second harmonic signal. Overall, these results may help to build an optimized multiphoton setup for spectral separation of nonlinear signals. PMID:26339527

  11. Automatic centerline extraction of irregular tubular structures using probability volumes from multiphoton imaging.

    PubMed

    Santamaría-Pang, A; Colbert, C M; Saggau, P; Kakadiaris, I A

    2007-01-01

    In this paper, we present a general framework for extracting 3D centerlines from volumetric datasets. Unlike the majority of previous approaches, we do not require a prior segmentation of the volume nor we do assume any particular tubular shape. Centerline extraction is performed using a morphology-guided level set model. Our approach consists of: i) learning the structural patterns of a tubular-like object, and ii) estimating the centerline of a tubular object as the path with minimal cost with respect to outward flux in gray level images. Such shortest path is found by solving the Eikonal equation. We compare the performance of our method with existing approaches in synthetic, CT, and multiphoton 3D images, obtaining substantial improvements, especially in the case of irregular tubular objects. PMID:18044604

  12. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.; Powis, Ivan

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  13. Multi-photon UV photolysis of gaseous polycyclic aromatic hydrocarbons: Extinction spectra and dynamics

    SciTech Connect

    Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D.; Ruth, A. A.

    2013-08-07

    The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a sink

  14. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    NASA Astrophysics Data System (ADS)

    Lehmann, C. Stefan; Ram, N. Bhargava; Powis, Ivan; Janssen, Maurice H. M.

    2013-12-01

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  15. Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a transmon qubit

    NASA Astrophysics Data System (ADS)

    Suri, B.; Keane, Z. K.; Bishop, Lev S.; Novikov, S.; Wellstood, F. C.; Palmer, B. S.

    2015-12-01

    We measure photon occupancy in a thin-film superconducting lumped element resonator coupled to a transmon qubit at 20 mK and find a nonlinear dependence on the applied microwave power. The transmon-resonator system was operated in the strong dispersive regime, where the ac Stark shift (2 χ ) due to a single microwave photon present in the resonator was larger than the linewidth (Γ ) of the qubit transition. When the resonator was coherently driven at 5.474 325 GHz, the transition spectrum of the transmon at 4.982 GHz revealed well-resolved peaks, each corresponding to an individual photon number-state of the resonator. From the relative peak heights we obtain the occupancy of the photon states and the average photon occupancy n ¯ of the resonator. We observe a nonlinear variation of n ¯ with the applied drive power Prf for n ¯<5 and compare our results to numerical simulations of the system-bath master equation in the steady state, as well as to a semiclassical model for the resonator that includes the Jaynes-Cummings interaction between the transmon and the resonator. We find good quantitative agreement using both models and analysis reveals that the nonlinear behavior is principally due to shifts in the resonant frequency caused by a qubit-induced Jaynes-Cummings nonlinearity.

  16. High-precision force sensing using a single trapped ion

    PubMed Central

    Ivanov, Peter A.; Vitanov, Nikolay V.; Singer, Kilian

    2016-01-01

    We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the range, i.e. in the (xennonewton, 10−27). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages. PMID:27306426

  17. High-precision force sensing using a single trapped ion.

    PubMed

    Ivanov, Peter A; Vitanov, Nikolay V; Singer, Kilian

    2016-01-01

    We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the range, i.e. in the (xennonewton, 10(-27)). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages. PMID:27306426

  18. High-precision force sensing using a single trapped ion

    NASA Astrophysics Data System (ADS)

    Ivanov, Peter A.; Vitanov, Nikolay V.; Singer, Kilian

    2016-06-01

    We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the range, i.e. in the (xennonewton, 10‑27). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages.

  19. Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers. [REAMPA code

    SciTech Connect

    Dai, H.L.

    1981-04-01

    Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 ..mu..m laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 ..mu..m excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 ..mu..m excitation than for 10 ..mu..m excitation, reflecting bottlenecking in the discrete region of 10 ..mu..m excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF/sub 6/ caused by vibrational self-quenching. Between 1000-3000 cm/sup -1/ of energy is removed from SF/sub 6/ excited to approx. > 60 kcal/mole by collision with a cold SF/sub 6/ molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF/sub 4/ as absorbing gas for the CO/sub 2/ laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail. (WHK)

  20. Dynamic Multiphoton Microscopy: Focusing Light on Acute Kidney Injury

    PubMed Central

    Molitoris, Bruce A.

    2014-01-01

    Acute kidney injury (AKI) is a major global health problem; much research has been conducted on AKI, and numerous agents have shown benefit in animal studies, but none have translated into treatments. There is, therefore, a pressing unmet need to increase knowledge of the pathophysiology of AKI. Multiphoton microscopy (MPM) provides a tool to non-invasively visualize dynamic events in real time and at high resolution in rodent kidneys, and in this article we review its application to study novel mechanisms and treatments in different forms of AKI. PMID:25180263

  1. The nature of multiphoton fluorescence from red blood cells

    NASA Astrophysics Data System (ADS)

    Saytashev, Ilyas; Murphy, Michael; Osseiran, Sam; Spence, Dana M.; Evans, Conor L.; Dantus, Marcos

    2016-03-01

    We report on the nature of multiphoton excited fluorescence observed from human erythrocytes (red blood cells RBC's) and their "ghosts" following 800nm sub-15 fs excitation. The detected optical signal is assigned as two-photon excited fluorescence from hemoglobin. Our findings are supported by wavelength-resolved fluorescence lifetime decay measurements using time-correlated single photon counting system from RBC's, their ghosts as well as in vitro samples of various fluorophores including riboflavin, NADH, NAD(P)H, hemoglobin. We find that low-energy and short-duration pulses allow two-photon imaging of RBC's, but longer more intense pulses lead to their destruction.

  2. Multiphoton excitation of organic chromophores in microbubble resonators

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory A.; Kieu, Khanh; Norwood, Robert A.

    2014-03-01

    We report the observation of multiphoton excitation of organic chromophores in microbubble whispering gallery mode resonators. High-Q microbubble resonators are a formed by heating a pressurized fused silica capillary to form a hollow bubble which can be filled with liquid. In this case, the microbubble is filled with a solution of Rhodamine 6G dye. The resonator and dye are excited by evanescently coupling CW light from a 980nm laser diode using a tapered optical fiber. The two-photon fluorescence of the dye can be seen with pump powers as low as 1 mW.

  3. Multiphoton ionization of ions, neutrals, and clusters. Final report

    SciTech Connect

    Wessel, J.

    1995-12-28

    A multiyear research program investigating molecular detection methods based on multiphoton spectroscopy has been completed under DOE sponsorship. A number of new laser-based spectroscopic methods were developed and applied to a variety of aromatic hydrocarbons, including monomer and cluster species. The objectives of sensitivities approaching single molecule detection combined with high selectivity were achieved. This report references the status of the field at the beginning of this work and summarizes the significant progress during the period from 1987 onward. Detailed scientific findings from the studies are presented in the published literature referenced throughout this report.

  4. Integrated spectrometer design with application to multiphoton microscopy.

    PubMed

    Chandler, Eric V; Durfee, Charles G; Squier, Jeffrey A

    2011-01-01

    We present a prism-based spectrometer integrated into a multifocal, multiphoton microscope. The multifocal configuration facilitates interrogation of samples under different excitation conditions. Notably, the image plane of the microscope and the image plane of the spectrometer are coincident eliminating the need for an intermediate image plane containing an entrance slit. An EM-CCD detector provides sufficient gain for spectral interrogation of single-emitters. We employ this spectrometer to observe spectral shifts in the two-photon excitation fluorescence emission of single CdSe nanodots as a function of excitation polarization. PMID:21263548

  5. Multi-photon microscope driven by novel green laser pump

    NASA Astrophysics Data System (ADS)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin; Andersen, Peter E.

    2016-03-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal system. However, translation is hindered due to the high cost, high training demand and large footprint of a standard setup. We show in this article that minification of the setup, while also reducing cost and complexity, is indeed possible without compromising on image quality, by using a novel diode laser replacing the commonly used conventional solid state laser as the pump for the femtosecond system driving the imaging.

  6. Multifocal multiphoton microscopy based on a spatial light modulator

    PubMed Central

    Shao, Y.; Qin, W.; Liu, H.; Peng, X.; Niu, H.

    2013-01-01

    We present a new multifocal multiphoton microscope that employs a programmable spatial light modulator to generate dynamic multifocus arrays which can be rapidly scanned by changing the incident angle of the laser beam using a pair of galvo scanners. Using this microscope, we can rapidly select the number and the spatial density of focal points in a multifocus array, as well as the locations and shapes of arrays according to the features of the areas of interest in the field of view without any change to the hardware. PMID:23894222

  7. Multiphoton ionization of ions, neutrals, and clusters. Progress report

    SciTech Connect

    Wessel, J.

    1991-06-28

    Scientific results are summarized from a three year research program on multiphoton ionization in aromatic molecules, clusters, and their ions. As originally proposed, the studies elucidated a new cluster ionization mechanism, characterized properties of long range intermolecular interactions, and investigated electronic transitions of aromatic cations cooled in a supersonic beam. The studies indicate that the new cluster ionization mechanism is highly efficient and dominates conventional 1 + 1 resonant ionization. In the case of the dimer of the large aromatic molecule fluorene, the results suggest that excimer formation competes with a direct ionization process. Highly selective excitonic spectra have been identified for several cluster species.

  8. Exploration of multiphoton entangled states by using weak nonlinearities

    NASA Astrophysics Data System (ADS)

    He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting

    2016-01-01

    We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and weak nonlinearities. Compared with the previous schemes the present method is more feasible because there are only small phase shifts instead of a series of related functions of photon numbers in the process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error probabilities induced by homodyne measurement and show that the maximal error probability can be made small enough even when the number of photons is large. This implies that the present scheme is quite tractable and it is possible to produce entangled states involving a large number of photons.

  9. Exploration of multiphoton entangled states by using weak nonlinearities

    PubMed Central

    He, Ying-Qiu; Ding, Dong; Yan, Feng-Li; Gao, Ting

    2016-01-01

    We propose a fruitful scheme for exploring multiphoton entangled states based on linear optics and weak nonlinearities. Compared with the previous schemes the present method is more feasible because there are only small phase shifts instead of a series of related functions of photon numbers in the process of interaction with Kerr nonlinearities. In the absence of decoherence we analyze the error probabilities induced by homodyne measurement and show that the maximal error probability can be made small enough even when the number of photons is large. This implies that the present scheme is quite tractable and it is possible to produce entangled states involving a large number of photons. PMID:26751044

  10. Quantum Radiation Reaction Effects in Multiphoton Compton Scattering

    SciTech Connect

    Di Piazza, A.; Hatsagortsyan, K. Z.; Keitel, C. H.

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  11. Characterization of dermal structural assembly in normal and pathological connective tissues by intrinsic signal multiphoton optical microscopy

    NASA Astrophysics Data System (ADS)

    Lyubovitsky, Julia G.; Xu, Xiaoman; Sun, Chung-ho; Andersen, Bogi; Krasieva, Tatiana B.; Tromberg, Bruce J.

    2008-02-01

    Employing a reflectance multi-photon microscopy (MPM) technique, we developed novel method to quantitatively study the three-dimensional assembly of structural proteins within bulk of dermal ECMs. Using a structurally simplified model of skin with enzymatically dissected epidermis, we find that low resolution MPM clearly discriminates between normal and pathological dermis. High-resolution images revealed that the backscattered MPM signals are affected by the assembly of collagen fibrils and fibers within this system. Exposure of tissues to high concentrations of potentially denaturing chemicals also resulted in the reduction of SHG signals from structural proteins which coincided with the appearance of aggregated fluorescent structures.

  12. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials

    SciTech Connect

    Artemyev, Anton N.; Müller, Anne D.; Demekhin, Philipp V.; Hochstuhl, David

    2015-06-28

    A theoretical method to study the angle-resolved multiphoton ionization of polyatomic molecules is developed. It is based on the time-dependent formulation of the Single Center (TDSC) method and consists in the propagation of single-active-electron wave packets in the effective molecular potentials in the presence of intense laser pulses. For this purpose, the time-dependent Schrödinger equation for one electron, moving in a molecular field and interacting with an arbitrary laser pulse, is solved in spherical coordinates by an efficient numerical approach. As a test, the method is applied to the one- and two-photon ionizations of a model methane-like chiral system by circularly polarized short intense high-frequency laser pulses. Thereby, we analyze the photoelectron circular dichroism (PECD) in the momentum distribution. The considered model application illustrates the capability of the TDSC method to study multiphoton PECD in fixed-in-space and randomly oriented chiral molecules.

  13. Multibeam multifocal multiphoton photon counting imaging in scattering media

    NASA Astrophysics Data System (ADS)

    Hoover, Erich E.

    Multiphoton microscopy is an invaluable technique for the neurological community, allowing for deep explorations within highly scattering tissues such as the brain. However, prior to this research multiphoton microscopy was limited in its ability to rapidly construct volumetric images deep within scattering specimens. This work establishes a technique that permits such exploration through the application of multiple beams separated in both space and time, where signal photons corresponding to those beams are demultiplexed through the use of a field programmable gate array. With this system a number of improvements are provided to research in scattering media, including the coveted ability to perform photon-counting imaging with multiple beams. The ability to perform these measurements with multiple beams permits unique quantitative measurements of fluorophores within living specimens, allowing new research into dynamic three-dimensional behavior occurring within the brain. Additionally, the ability to perform multimodal measurements without filtering allows for unique avenues of research where the harmonic generation is indistinguishable from the two-photon excited fluorescence. These improvements provide neuroscience researchers with a large assortment of technological tools that will permit them to perform numerous novel experiments within the brain and other highly-scattering specimens, which should one day lead to significant advances in our understanding of complex neuronal activity.

  14. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  15. Rigid and high NA multiphoton fluorescence GRIN-endoscopes

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Ehlers, Alexander; Le Harzic, Ronan; Stark, Martin; Riemann, Iris; Messerschmidt, Bernhard; Kaatz, Martin; König, Karsten

    2007-07-01

    Multiphoton autofluorescence imaging offers minimal-invasive examination of cells without the need of staining and complicated confocal detection systems. Therefore, it is especially interesting for non-invasive clinical diagnostics. To extend this sophisticated technique from superficial regions to deep lying cell layers, internal body parts and specimens difficult of access, the bulky optics need to be reduced in diameter. This is done by tiny GRIN-optics, based on a radial gradient in the reflective index. Of especial interest for multi-photon applications is the newly developed GRIN-lens assembly with increased numerical aperture. High resolution images of plant tissue, hair and cells show the improved image quality,compared to classical GRIN-lenses. The rigid GRIN-endoscopes are already applied in wound healing studies. Here, the GRIN-lenses with diameters smaller than 3 mm enter small skin depressions. They reproduce the focus of a conventional laser scanning tomograph tens of mm apart in the specimen under study. We present first clinical measurements of elastin and SHG of collagen of in-vivo human skin of venous ulcers (ulcer curis).

  16. Spectral-resolved multifocal multiphoton microscopy with multianode photomultiplier tubes

    PubMed Central

    Cha, Jae Won; Tzeranis, Dimitrios; Subramanian, Jaichandar; Yannas, Ioannis V.; Nedivi, Elly; So, Peter T. C.

    2014-01-01

    Multiphoton excitation fluorescence microscopy is the preferred method for in vivo deep tissue imaging. Many biological applications demand both high imaging speed and the ability to resolve multiple fluorophores. One of the successful methods to improve imaging speed in a highly turbid specimen is multifocal multiphoton microscopy (MMM) based on use of multi-anode photomultiplier tubes (MAPMT). This approach improves imaging speed by using multiple foci for parallelized excitation without sacrificing signal to noise ratio (SNR) due to the scattering of emission photons. In this work, we demonstrate that the MAPMT based MMM can be extended with spectral resolved imaging capability. Instead of generating multiple excitation foci in a 2D grid pattern, a linear array of foci is generated. This leaves one axis of the 2D MAPMT available for spectral dispersion and detection. The spectral-resolved MMM can detect several emission signals simultaneously with high imaging speed optimized for high-throughput, high-contents applications. The new procedure is illustrated using imaging data from the kidney, peripheral nerve regeneration and dendritic morphological data from the brain. PMID:25321515

  17. Multiphoton imaging: a view to understanding sulfur mustard lesions

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J. S.; Madren-Whalley, Janna S.

    2003-07-01

    It is well known that topical exposure to sulfur mustard (SM) produces persistent, incapacitating blisters of the skin. However, the primary lesions effecting epidermal-dermal separation and disabling of mechanisms for cutaneous repair remain uncertain. Immunofluorescent staining plus multiphoton imaging of human epidermal tissues and keratinocytes exposed to SM (400 μM x 5 min)have revealed that SM disrupts adhesion-complex molecules which are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Images of keratin-14 showed early, progressive, postexposure collapse of the K5/K14 cytoskeleton that resulted in ventral displacement of the nuclei beneath its collapsing filaments. This effectively corrupted the dynamic filament assemblies that link basal-cell nuclei to the extracellular matrix via α6β4-integrin and laminin-5. At 1 h postexposure, there was disruption in the surface organization of α6β4 integrins, associated displacement of laminin-5 anchoring sites and a concomitant loss of functional asymmetry. Accordingly, our multiphoton images are providing compelling evidence that SM induces prevesicating lesions that disrupt the receptor-ligand organization and cytoskeletal systems required for maintaining dermal-epidermal attachment, signal transduction, and polarized mobility.

  18. Feasible quantum engineering of quantum multiphoton superpositions

    NASA Astrophysics Data System (ADS)

    Stobińska, Magdalena

    2015-02-01

    We examine an experimental setup implementing a family of quantum non-Gaussian filters. The filters can be applied to an arbitrary two-mode input state. We assume realistic photodetection in the filtering process and explore two different models of inefficient detections: a beam splitter of a small reflectivity located in front of a perfect detector and a Weierstrass transform applied to the unperturbed measurement outcomes. We explicitly give an operator which describes the coherent action of the filters in the realistic experimental conditions. The filtered states may find applications in quantum metrology, quantum communication and other quantum tasks.

  19. Novel techniques with multiphoton microscopy: Deep-brain imaging with microprisms, neurometabolism of epilepsy, and counterfeit paper money detection

    NASA Astrophysics Data System (ADS)

    Chia, Thomas H.

    Multiphoton microscopy is a laser-scanning fluorescence imaging method with extraordinary potential. We describe three innovative multiphoton microscopy techniques across various disciplines. Traditional in vivo fluorescence microscopy of the mammalian brain has a limited penetration depth (<400 microm). We present a method of imaging 1 mm deep into mouse neocortex by using a glass microprism to relay the excitation and emission light. This technique enables simultaneous imaging of multiple cortical layers, including layer V, at an angle typical of slice preparations. At high-magnification imaging using an objective with 1-mm of coverglass correction, resolution was sufficient to resolve dendritic spines on layer V GFP neurons. Functional imaging of blood flow at various neocortical depths is also presented, allowing for quantification of red blood cell flux and velocity. Multiphoton fluorescence lifetime imaging (FLIM) of NADH reveals information on neurometabolism. NADH, an intrinsic fluorescent molecule and ubiquitous metabolic coenzyme, has a lifetime dependent on enzymatic binding. A novel NADH FLIM algorithm is presented that produces images showing spatially distinct NADH fluorescence lifetimes in mammalian brain slices. This program provides advantages over traditional FLIM processing of multi-component lifetime data. We applied this technique to a GFP-GFAP pilocarpine mouse model of temporal lobe epilepsy. Results indicated significant changes in the neurometabolism of astrocytes and neuropil in the cell and dendritic layers of the hippocampus when compared to control tissue. Data obtained with NADH FLIM were subsequently interpreted based on the abnormal activity reported in epileptic tissue. Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used

  20. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  1. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo

    NASA Astrophysics Data System (ADS)

    Larson, Daniel R.; Zipfel, Warren R.; Williams, Rebecca M.; Clark, Stephen W.; Bruchez, Marcel P.; Wise, Frank W.; Webb, Watt W.

    2003-05-01

    The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.

  2. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo.

    PubMed

    Larson, Daniel R; Zipfel, Warren R; Williams, Rebecca M; Clark, Stephen W; Bruchez, Marcel P; Wise, Frank W; Webb, Watt W

    2003-05-30

    The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales. PMID:12775841

  3. Multi-photon absorption in the channeling of electrons in an external field

    NASA Astrophysics Data System (ADS)

    Yaralov, V.

    2016-07-01

    Following the methods developed for atom ionization by alternating electric field the probability of multi-photon absorption of photons of the strong external laser field by channeled electron (extraction of electron from the channel) have been calculated for different strengths of the monochromatic external field. The emission spectra of 54 MeV electron channeled in diamond crystal planes (110) are shown for different values of the resonant laser field of a frequency close to the transition frequency in the channel taking into account multi-photon absorption. It is shown that the multi-photon phenomena give some contribution to the total level width.

  4. Generating Nanostructures with Multiphoton Absorption Polymerization using Optical Trap Assisted Nanopatterning

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Cheng; Leitz, Karl-Heinz; Fardel, Romain; Schmidt, Michael; Arnold, Craig B.

    The need to generate sub 100 nm features is of interest for a variety of applications including optics, optoelectronics, and plasmonics. To address this requirement, several advanced optical lithography techniques have been developed based on either multiphoton absorption polymerization or near-field effects. In this paper, we combine strengths from multiphoton absorption and near field using optical trap assisted nanopatterning (OTAN). A Gaussian beam is used to position a microsphere in a polymer precursor fluid near a substrate. An ultrafast laser is focused by that microsphere to induce multiphoton polymerization in the near field, leading additive direct-write nanoscale processing.

  5. Fringe-free, Background-free, Collinear Third Harmonic Generation FROG Measurements for Multiphoton Microscopy

    SciTech Connect

    Chadwick, R; Spahr, E; Squier, J A; Durfee, C G; Walker, B C; Fittinghoff, D N

    2006-07-21

    Collinear pulse measurement tools useful at the full numerical aperture (NA) of multiphoton microscope objectives are a necessity for a quantitative characterization of the femtosecond pulses focused by these systems. In this letter, we demonstrate a simple new technique, for characterizing the pulse at the focus in a multiphoton microscope. This technique, a background-free, fringe-free, form of frequency-resolved optical gating, uses the third harmonic signal generated from a glass coverslip. Here it is used to characterize 100 fs pulses (typical values for a multiphoton microscope) at the focus of a 0.65 NA objective.

  6. Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator.

    PubMed

    König, Karsten; Andersen, Peter; Le, Tuan; Breunig, Hans Georg

    2015-12-01

    Multiphoton laser scanning microscopy commonly relies on bulky and expensive femtosecond lasers. We integrated a novel minimal-footprint Ti:sapphire oscillator, pumped by a frequency-doubled distributed Bragg reflector tapered diode laser, into a clinical multiphoton tomograph and evaluated its imaging capability using different biological samples, i.e. cell monolayers, corneal tissue, and human skin. With the novel laser, the realization of very compact Ti:sapphire-based systems for high-quality multiphoton imaging at a significantly size and weight compared to current systems will become possible. PMID:26534831

  7. Infrared multiphoton resummation in quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Mati, P.

    2016-02-01

    Infrared singularities in massless gauge theories are known since the foundation of quantum field theories. The root of this problem can be tracked back to the very definition of these long-range interacting theories such as QED. It can be shown that singularities are caused by the massless degrees of freedom (i.e. the photons in the case of QED). In the Bloch-Nordsieck model the absence of the infrared catastrophe can be shown exactly by the complete summation of the radiative corrections. In this paper we will give the idea of the derivation of the Bloch-Nordsieck propagators, that describes the infrared structure of the electron propagation, at zero and finite temperatures. Some ideas of the possible applications are also mentioned.

  8. Molecular photoelectron angular distribution rotations in multi-photon resonant ionization of H{sub 2}{sup +} by circularly polarized ultraviolet laser pulses

    SciTech Connect

    Yuan, Kai-Jun Chelkowski, Szczepan; Bandrauk, André D.

    2015-04-14

    We study effects of pulse durations on molecular photoelectron angular distributions (MPADs) in ultrafast circular polarization ultraviolet resonant ionization processes. Simulations performed on aligned H{sub 2}{sup +} by numerically solving time dependent Schrödinger equations show rotations of MPADs with respect to the molecular symmetry axes. It is found that in multi-photon resonant ionization processes, rotation angles are sensitive to pulse durations, which we attribute to the coherent resonant excitation between the ground state and the intermediate excited electronic state induced by Rabi oscillations. Multi-photon nonresonant and single photon ionization processes are simulated and compared which exhibit a constant rotation angle. An asymmetry parameter is introduced to describe the pulse duration sensitivity by perturbation theory models. Influence of pulse frequency detunings on MPADs is also investigated where oscillations of rotations are absent at long pulse durations due to nonresonance excitation.

  9. Resonance Enhanced Multi-photon Spectroscopy of DNA

    NASA Astrophysics Data System (ADS)

    Ligare, Marshall Robert

    For over 50 years DNA has been studied to better understand its connection to life and evolution. These past experiments have led to our understanding of its structure and function in the biological environment but the interaction of DNA with UV radiation at the molecular level is still not very well understood. Unique mechanisms in nucleobase chromaphores protect us from adverse chemical reactions after UV absorption. Studying these processes can help develop theories for prebiotic chemistry and the possibility of alternative forms of DNA. Using resonance enhanced multi-photon spectroscopic techniques in the gas phase allow for the structure and dynamics of individual nucleobases to be studied in detail. Experiments studying different levels of structure/complexity with relation to their biological function are presented. Resonant IR multiphoton dissociation spectroscopy in conjunction with molecular mechanics and DFT calculations are used to determine gas phase structures of anionic nucleotide clusters. A comparison of the identified structures with known biological function shows how the hydrogen bonding of the nucleotides and their clusters free of solvent create favorable structures for quick incorporation into enzymes such as DNA polymerase. Resonance enhanced multi-photon ionization (REMPI) spectroscopy techniques such as resonant two photon ionization (R2PI) and IR-UV double resonance are used to further elucidate the structure and excited state dynamics of the bare nucleobases thymine and uracil. Both exhibit long lived excited electronic states that have been implicated in DNA photolesions which can ultimately lead to melanoma and carcinoma. Our experimental data in comparison with many quantum chemical calculations suggest a new picture for the dynamics of thymine and uracil in the gas phase. A high probability of UV absorption from a vibrationally hot ground state to the excited electronic state shows that the stability of thymine and uracil comes from

  10. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  11. Multiphoton FLIM: a reliable FRET detection tool in cell biological applications

    NASA Astrophysics Data System (ADS)

    Krishnan, Ramanujan V.; Biener, Eva; Centonze, Victoria E.; Gertler, Arieh; Herman, Brian A.

    2004-06-01

    Fluorescence lifetime imaging microscopy (FLIM) using multiphoton excitation is emerging as a reliable quantitative tool for measuring fluorescence resonance energy transfer (FRET) in living cells. By virtue of being free from spectroscopic artifacts encountered in conventional FRET detection methods, multiphoton FLIM methods offer the advantages of high spatial and temporal resolution, faster data acquisition and data analysis. We compare the FRET results obtained by two different methods namely (i) multiphoton excitation lifetime-based FRET and (ii) single photon excitation intensity-based acceptor photobleaching FRET. Using the same biological samples, we apply these two different methods in understanding the growth hormone receptor dimerization kinetics at the cell surface of human embryonic kidney cells. We conclude that the multiphoton FLIM using the streak-camera approach provides the best ability to monitor FRET in dynamic situations where high temporal and spatial resolution are required with minimal photodamage/phototoxicity.

  12. Multiphoton Processes: ICOMP VIII: 8th International Conference, AIP Conference Proceedings, No. 525 [APCPCS

    SciTech Connect

    DiMauro, L.F.; Freeman, R.R.; Kulander, K.C.

    2000-12-31

    Topics include: atoms in strong fields; stabilization; double ionization and multi-electron calculations; high-order harmonics; molecules in strong fields; multiphoton processes in clusters; coherent control; light sources; and relativistic effects.

  13. Clinical multiphoton tomography and clinical two-photon microendoscopy

    NASA Astrophysics Data System (ADS)

    König, Karsten; Bückle, Rainer; Weinigel, Martin; Elsner, Peter; Kaatz, Martin

    2009-02-01

    We report on applications of high-resolution clinical multiphoton tomography based on the femtosecond laser system DermaInspectTM with its flexible mirror arm in Australia, Asia, and Europe. Applications include early detection of melanoma, in situ tracing of pharmacological and cosmetical compounds including ZnO nanoparticles in the epidermis and upper dermis, the determination of the skin aging index SAAID as well as the study of the effects of anti-aging products. In addition, first clinical studies with novel rigid high-NA two-photon 1.6 mm GRIN microendoscopes have been conducted to study the effect of wound healing in chronic wounds (ulcus ulcera) as well as to perform intrabody imaging with subcellular resolution in small animals.

  14. Watching stem cells at work with a flexible multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Hoffmann, Robert; Weinigel, Martin; König, Karsten

    2012-03-01

    There is a high demand for non-invasive imaging techniques that allow observation of stem cells in their native environment without significant input on cell metabolism, reproduction, and behavior. Easy accessible hair follicle pluripotent stem cells in the bulge area and dermal papilla are potential sources for stem cell based therapy. It has been shown that these cells are able to generate hair, non-follicle skin cells, nerves, vessels, smooth muscles etc. and may participate in wound healing processes. We report on the finding of nestin-GFP expressing stem cells in their native niche in the bulge of the hair follicle of living mice by using high-resolution in-vivo multiphoton tomography. The 3D imaging with submicron resolution was based on two-photon induced fluorescence and second harmonic generation (SHG) of collagen. Migrating stem cells from the bulge to their microenvironment have been detected inside the skin during optical deep tissue sectioning.

  15. Multiphoton-state-assisted entanglement purification of material qubits

    NASA Astrophysics Data System (ADS)

    Bernád, József Zsolt; Torres, Juan Mauricio; Kunz, Ludwig; Alber, Gernot

    2016-03-01

    We propose an entanglement purification scheme based on material qubits and ancillary coherent multiphoton states. We consider a typical QED scenario where material qubits implemented by two-level atoms fly sequentially through a cavity and interact resonantly with a single mode of the radiation field. We explore the theoretical possibilities of realizing a high-fidelity two-qubit quantum operation necessary for the purification protocol with the help of a postselective balanced homodyne photodetection. We demonstrate that the obtained probabilistic quantum operation can be used as a bilateral operation in the proposed purification scheme. It is shown that the probabilistic nature of this quantum operation is counterbalanced in the last step of the scheme where qubits are not discarded after inadequate qubit measurements. As this protocol requires present-day experimental setups and generates high-fidelity entangled pairs with high repetition rates, it may offer interesting perspectives for applications in quantum information theory.

  16. Molecule-specific darkfield and multiphoton imaging using gold nanocages

    NASA Astrophysics Data System (ADS)

    Powless, Amy J.; Jenkins, Samir V.; McKay, Mary Lee; Chen, Jingyi; Muldoon, Timothy J.

    2015-03-01

    Due to their robust optical properties, biological inertness, and readily adjustable surface chemistry, gold nanostructures have been demonstrated as contrast agents in a variety of biomedical imaging applications. One application is dynamic imaging of live cells using bioconjugated gold nanoparticles to monitor molecule trafficking mechanisms within cells; for instance, the regulatory pathway of epidermal growth factor receptor (EGFR) undergoing endocytosis. In this paper, we have demonstrated a method to track endocytosis of EGFR in MDA-MB-468 breast adenocarcinoma cells using bioconjugated gold nanocages (AuNCs) and multiphoton microscopy. Dynamic imaging was performed using a time series capture of 4 images every minute for one hour. Specific binding and internalization of the bioconjugated AuNCs was observed while the two control groups showed non-specific binding at fewer surface sites, leading to fewer bound AuNCs and no internalization.

  17. Wavefront sensorless adaptive optics temporal focusing-based multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Cheng, Li-Chung; Su, Hung-Wei; Hu, Yvonne Yuling; Cho, Keng-Chi; Yen, Wei-Chung; Xu, Chris; Dong, Chen Yuan; Chen, Shean-Jen

    2014-01-01

    Temporal profile distortions reduce excitation efficiency and image quality in temporal focusing-based multiphoton microscopy. In order to compensate the distortions, a wavefront sensorless adaptive optics system (AOS) was integrated into the microscope. The feedback control signal of the AOS was acquired from local image intensity maximization via a hill-climbing algorithm. The control signal was then utilized to drive a deformable mirror in such a way as to eliminate the distortions. With the AOS correction, not only is the axial excitation symmetrically refocused, but the axial resolution with full two-photon excited fluorescence (TPEF) intensity is also maintained. Hence, the contrast of the TPEF image of a R6G-doped PMMA thin film is enhanced along with a 3.7-fold increase in intensity. Furthermore, the TPEF image quality of 1μm fluorescent beads sealed in agarose gel at different depths is improved. PMID:24940539

  18. Multiphoton Microscopy and Interaction of Intense Light Pulses with Polymers

    NASA Astrophysics Data System (ADS)

    Guay, Jean-Michel

    2011-07-01

    The nanoscale manipulation of soft-matter, such as biological tissues, in its native environment has promising applications in medicine to correct for defects (eg. eye cataracts) or to destroy malignant regions (eg. cancerous tumours). To achieve this we need the ability to first image and then do precise ablation with sub-micron resolution with the same setup. For this purpose, we designed and built a multiphoton microscope and tested it on goldfish gills and bovine cells. We then studied light-matter interaction on a hard polymer (PMMA) because the nature of ablation of soft-matter in its native environment is complex and not well understood. Ablation and modification thresholds for successive laser shots were obtained. The ablation craters revealed 3D nanostructures and polarization dependent orientation. The interaction also induced localized porosity in PMMA that can be controlled.

  19. Guided Homing of Cells in Multi-Photon Microfabricated Bioscaffolds.

    PubMed

    Skylar-Scott, Mark A; Liu, Man-Chi; Wu, Yuelong; Dixit, Atray; Yanik, Mehmet Fatih

    2016-05-01

    Tissues contain exquisite vascular microstructures, and patterns of chemical cues for directing cell migration, homing, and differentiation for organ development and function. 3D microfabrication by multi-photon photolithography is a flexible, high-resolution tool for generating 3D bioscaffolds. However, the combined fabrication of scaffold microstructure simultaneously with patterning of cues to create both geometrically and chemically defined microenvironments remains to be demonstrated. This study presents a high-speed method for micron-resolution fabrication of scaffold microstructure and patterning of protein cues simultaneously using native scaffold materials. By the simultaneous microfabrication of arbitrary microvasculature geometries, and patterning selected regions of the microvasculature with the homing ligand P-selectin, this study demonstrates adhesion, rolling, and selective homing of cells in defined 3D regions. This novel ability to generate high-resolution geometries replete with patterned cues at high speed enables the construction of biomimetic microenvironments for complex 3D assays of cellular behavior. PMID:27059425

  20. Reassignment of scattered emission photons in multifocal multiphoton microscopy.

    PubMed

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T C

    2014-01-01

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image. PMID:24898470

  1. Theory of multiphoton and tunnel ionization in a bichromatic field

    SciTech Connect

    Bagulov, D. S.; Kotelnikov, I. A.

    2013-01-15

    The imaginary-time method [6, 7] is used to calculate the multiphoton and tunnel ionization probabilities for atoms in a laser radiation field part of which is converted into the second harmonic. We assume that the first harmonic has a linear or elliptical polarization and the second harmonic is polarized linearly, with its polarization vector making an arbitrary angle with that of the first harmonic. The mean momentum of the photoelectrons knocked out from atoms is shown to depend on the phase shift between the first and second harmonics and their mutual polarization and to be identically equal to zero for a monochromatic field. An important difference between the case of elliptical polarization and the case of linear polarization of both harmonics is the absence of conditions under which the conditions for dominance of one of the two generation mechanisms considered here can be identified during the generation of terahertz radiation from the region of optical breakdown in a gas.

  2. Live-Animal Imaging of Renal Function by Multiphoton Microscopy

    PubMed Central

    Dunn, Kenneth W.; Sutton, Timothy A.; Sandoval, Ruben M.

    2015-01-01

    Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. PMID:23042524

  3. Monitoring wound healing by multiphoton tomography/endoscopy

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Bückle, Rainer; Kaatz, Martin; Hipler, Christina; Zens, Katharina; Schneider, Stefan W.; Huck, Volker

    2015-02-01

    Certified clinical multiphoton tomographs are employed to perform rapid label-free high-resolution in vivo histology. Novel tomographs include a flexible 360° scan head attached to a mechano-optical arm for autofluorescence and SHG imaging as well as rigid two-photon GRIN microendoscope. Mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged with submicron resolution in human skin. The system was employed to study the healing of chronic wounds (venous leg ulcer) and acute wounds (curettage of actinic or seborrheic keratosis) on a subcellular level. Furthermore, a flexible sterile foil as interface between wound and focusing optic was tested.

  4. Reassignment of Scattered Emission Photons in Multifocal Multiphoton Microscopy

    PubMed Central

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T. C.

    2014-01-01

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image. PMID:24898470

  5. Multiphoton quantum Rabi oscillations in ultrastrong cavity QED

    NASA Astrophysics Data System (ADS)

    Garziano, Luigi; Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Savasta, Salvatore; Nori, Franco

    2015-12-01

    When an atom is strongly coupled to a cavity, the two systems can exchange a single photon through a coherent Rabi oscillation. This process enables precise quantum-state engineering and manipulation of atoms and photons in a cavity, which play a central role in quantum information and measurement. Recently, a new regime of cavity QED was reached experimentally where the strength of the interaction between light and artificial atoms (qubits) becomes comparable to the atomic transition frequency or the resonance frequency of the cavity mode. Here we show that this regime can strongly modify the concept of vacuum Rabi oscillations, enabling multiphoton exchanges between the qubit and the resonator. We find that experimental state-of-the-art circuit-QED systems can undergo two- and three-photon vacuum Rabi oscillations. These anomalous Rabi oscillations can be exploited for the realization of efficient Fock-state sources of light and complex entangled states of qubits.

  6. Reassignment of Scattered Emission Photons in Multifocal Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T. C.

    2014-06-01

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image.

  7. Multiphoton ionization and third-harmonic generation in atoms and molecules

    SciTech Connect

    Compton, R.N.

    1982-01-01

    Resonantly enhanced multiphoton ionization (REMPI) provides a powerful new method for investigating atomic and molecular energy levels. The method is particularly useful in discovering and characterizing certain optically forbidden transitions. The method is particularly well suited for studying Rydberg transitions in molecules and is experimentally easier than the traditional use of far ultraviolet radiation in conventional spectroscopy. Research on multiphoton ionization and third-harmonic generation is reviewed. (WHK)

  8. Multiphoton gradient index endoscopy for evaluation of diseased human prostatic tissue ex vivo

    NASA Astrophysics Data System (ADS)

    Huland, David M.; Jain, Manu; Ouzounov, Dimitre G.; Robinson, Brian D.; Harya, Diana S.; Shevchuk, Maria M.; Singhal, Paras; Xu, Chris; Tewari, Ashutosh K.

    2014-11-01

    Multiphoton microscopy can instantly visualize cellular details in unstained tissues. Multiphoton probes with clinical potential have been developed. This study evaluates the suitability of multiphoton gradient index (GRIN) endoscopy as a diagnostic tool for prostatic tissue. A portable and compact multiphoton endoscope based on a 1-mm diameter, 8-cm length GRIN lens system probe was used. Fresh ex vivo samples were obtained from 14 radical prostatectomy patients and benign and malignant areas were imaged and correlated with subsequent H&E sections. Multiphoton GRIN endoscopy images of unfixed and unprocessed prostate tissue at a subcellular resolution are presented. We note several differences and identifying features of benign versus low-grade versus high-grade tumors and are able to identify periprostatic tissues such as adipocytes, periprostatic nerves, and blood vessels. Multiphoton GRIN endoscopy can be used to identify both benign and malignant lesions in ex vivo human prostate tissue and may be a valuable diagnostic tool for real-time visualization of suspicious areas of the prostate.

  9. Combining large area fluorescence with multiphoton microscopy for improved detection of oral epithelial neoplasia (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; McCammon, Susan; Resto, Vicente; Vargas, Gracie

    2016-03-01

    Volumetric Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia representing the complex microstructural organization of mucosa, potentially providing high specificity for detection of neoplasia, but is limited by small imaging area. Large area fluorescence methods on the other hand show high sensitivity appropriate for screening but are hampered by low specificity. In this study, we apply MPAM-SHGM following guidance from large area fluorescence, by either autofluorescence or a targeted metabolic fluorophore, as a potentially clinically viable approach for detection of oral neoplasia. Sites of high neoplastic potentially were identified by large area red/green autofluorescence or by a fluorescently labelled deoxy-glucose analog, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) to highlight areas of high glucose uptake across the buccal pouch of a hamster model for OSCC. Follow-up MPAM-SHGM was conducted on regions of interests (ROIs) to assess whether microscopy would reveal microscopic features associated with neoplasia to confirm or exclude large area fluorescence findings. Parameters for analysis included cytologic metrics, 3D epithelial connective tissue interface metrics (MPAM-SHGM) and intensity of fluorescence (widefield). Imaged sites were biopsied and processed for histology and graded by a pathologist. A small sample of human ex vivo tissues were also imaged. A generalized linear model combining image metrics from large area fluorescence and volumetric MPAM-SHGM indicated the ability to delineate normal and inflammation from neoplasia.

  10. In vivo non-invasive multiphoton tomography of human skin

    NASA Astrophysics Data System (ADS)

    König, Karsten; Riemann, Iris; Ehlers, Alexander; Le Harzic, Ronan

    2005-10-01

    High resolution non-invasive 3D imaging devices are required to detect pathogenic microorganisms such as Anthrax spores, bacteria, viruses, fungi and chemical agents entering biological tissues such as the epidermis. Due to the low light penetration depth and the biodamage potential, ultraviolet light sources can not be employed to realize intratissue imaging of bio- and chemohazards. We report on the novel near infrared laser technology multiphoton tomography and the high resolution 4D imaging tool DermaInspect for non-invasive detection of intratissue agents and their influence on cellular metabolism based on multiphoton autofluorescence imaging (MAI) and second harmonic generation (SHG). Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence of both, skin tissues and microorganisms, originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Bacteria emit in the blue/green spectral range due to NAD(P)H and flavoproteins and, in certain cases, in the red spectral range due to the biosynthesis of Zn-porphyrins, coproporphyrin and protoporphyrin. Collagen and exogenous non-centrosymmetric molecules can be detected by SHG signals. The system DermaInspect consists of a wavelength-tunable compact 80/90 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezo-driven objective, fast photon detector and time-resolved single photon counting unit. It can be used to perform optical sectioning and 3D autofluorescence lifetime imaging (τ-mapping) with 1 μm spatial resolution and 270 ps temporal resolution. The parameter fluorescence lifetime depends on the type of fluorophore and its microenvironment and can be used to distinguish bio- and chemohazards from cellular background and to gain information for pathogen

  11. Femtosecond laser pulse optimization for multiphoton cytometry and control of fluorescence

    NASA Astrophysics Data System (ADS)

    Tkaczyk, Eric Robert

    This body of work encompasses optimization of near infrared femtosecond laser pulses both for enhancement of flow cytometry as well as adaptive pulse shaping to control fluorescence. A two-photon system for in vivo flow cytometry is demonstrated, which allows noninvasive quantification of circulating cell populations in a single live mouse. We monitor fluorescently-labeled red blood cells for more than two weeks, and are also able to noninvasively measure circulation times of two distinct populations of breast cancer cells simultaneously in a single mouse. We build a custom laser excitation source in the form of an extended cavity mode-locked oscillator, which enables superior detection in whole blood or saline of cell lines expressing fluorescent proteins including the green fluorescent protein (GFP), tdTomato and mPlum. A mathematical model explains unique features of the signals. The ability to distinguish different fluorescent species is central to simultaneous measurement of multiple molecular targets in high throughput applications including the multiphoton flow cytometer. We demonstrate that two dyes which are not distinguishable to one-photon measurements can be differentiated and in fact quantified in mixture via phase-shaped two-photon excitation pulses found by a genetic algorithm. We also selectively enhance or suppress two-photon fluorescence of numerous common dyes with tailored pulse shapes. Using a multiplicative (rather than ratiometric) fitness parameter, we are able to control the fluorescence while maintaining a strong signal. With this method, we control the two-photon fluorescence of the blue fluorescent protein (BFP), which is of particular interest in investigations of protein-protein interactions, and has frustrated previous attempts of control. Implementing an acousto-optic interferometer, we use the same experimental setup to measure two-photon excitation cross-sections of dyes and prove that photon-photon interferences are the

  12. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    NASA Astrophysics Data System (ADS)

    Skala, Melissa Caroline

    2007-12-01

    Cancer morbidity and mortality is greatly reduced when the disease is diagnosed and treated early in its development. Tissue biopsies are the gold standard for cancer diagnosis, and an accurate diagnosis requires a biopsy from the malignant portion of an organ. Light, guided through a fiber optic probe, could be used to inspect regions of interest and provide real-time feedback to determine the optimal tissue site for biopsy. This approach could increase the diagnostic accuracy of current biopsy procedures. The studies in this thesis have characterized changes in tissue optical signals with carcinogenesis, increasing our understanding of the sensitivity of optical techniques for cancer detection. All in vivo studies were conducted on the dimethylbenz[alpha]anthracene treated hamster cheek pouch model of epithelial carcinogenesis. Multiphoton microscopy studies in the near infrared wavelength region quantified changes in tissue morphology and fluorescence with carcinogenesis in vivo. Statistically significant morphological changes with precancer included increased epithelial thickness, loss of stratification in the epithelium, and increased nuclear diameter. Fluorescence changes included a statistically significant decrease in the epithelial fluorescence intensity per voxel at 780 nm excitation, a decrease in the fluorescence lifetime of protein-bound nicotinamide adenine dinucleotide (NADH, an electron donor in oxidative phosphorylation), and an increase in the fluorescence lifetime of protein-bound flavin adenine dinucleotide (FAD, an electron acceptor in oxidative phosphorylation) with precancer. The redox ratio (fluorescence intensity of FAD/NADH, a measure of the cellular oxidation-reduction state) did not significantly change with precancer. Cell culture experiments (MCF10A cells) indicated that the decrease in protein-bound NADH with precancer could be due to increased levels of glycolysis. Point measurements of diffuse reflectance and fluorescence spectra in

  13. Application of Multiphoton Microscopy in Dermatological Studies: a Mini-Review

    PubMed Central

    Yew, Elijah; Rowlands, Christopher

    2014-01-01

    This review summarizes the historical and more recent developments of multiphoton microscopy, as applied to dermatology. Multiphoton microscopy offers several advantages over competing microscopy techniques: there is an inherent axial sectioning, penetration depths that compete well with confocal microscopy on account of the use of near-infrared light, and many two-photon contrast mechanisms, such as second-harmonic generation, have no analogue in one-photon microscopy. While the penetration depths of photons into tissue are typically limited on the order of hundreds of microns, this is of less concern in dermatology, as the skin is thin and readily accessible. As a result, multiphoton microscopy in dermatology has generated a great deal of interest, much of which is summarized here. The review covers the interaction of light and tissue, as well as the various considerations that must be made when designing an instrument. The state of multiphoton microscopy in imaging skin cancer and various other diseases is also discussed, along with the investigation of aging and regeneration phenomena, and finally, the use of multiphoton microscopy to analyze the transdermal transport of drugs, cosmetics and other agents is summarized. The review concludes with a look at potential future research directions, especially those that are necessary to push these techniques into widespread clinical acceptance. PMID:25075226

  14. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy

    NASA Astrophysics Data System (ADS)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.

  15. Multiphoton gonioscopy to image the trabecular meshwork of porcine eyes

    NASA Astrophysics Data System (ADS)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The aqueous outflow system (AOS), including the trabecular meshwork (TM), the collector channels (CC) and the Schlemm's canal (SC), regulates intraocular pressure (IOP) through the drainage of the aqueous humor (AH). Abnormal IOP elevation leads to increased pressure stress to retinal ganglion cells, resulting in cell loss that can ultimately lead to complete loss of eyesight. Therefore, development of imaging tools to detect abnormal structural and functional changes of the AOS is important in early diagnosis and prevention of glaucoma. Multiphoton microscopy (MPM), including twophoton autofluorescence (TPAF) and second harmonic generation (SHG), is a label-free microscopic technique that allows molecular specific imaging of biological tissues like the TM. Since the TM and other AOS structures are located behind the highly scattering scleral tissue, transscleral imaging of the TM does not provide enough optical resolution. In this work, a gonioscopic lens is used to allow direct optical access of the TM through the cornea for MPM imaging. Compared to transscleral imaging, the acquired MPM images show improved resolution as individual collagen fiber bundles of the TM can be observed. MPM gonioscopy may have the potential to be developed as a future clinical imaging tool for glaucoma diagnostics.

  16. The multiphoton ionization of uranium hexafluoride. Revision 1

    SciTech Connect

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  17. Superresolved multiphoton microscopy with spatial frequency-modulated imaging.

    PubMed

    Field, Jeffrey J; Wernsing, Keith A; Domingue, Scott R; Allende Motz, Alyssa M; DeLuca, Keith F; Levi, Dean H; DeLuca, Jennifer G; Young, Michael D; Squier, Jeff A; Bartels, Randy A

    2016-06-14

    Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media. PMID:27231219

  18. Single and Multiphoton Infrared Laser Sectroscopy of Atomic Negative Ions

    NASA Astrophysics Data System (ADS)

    Bilodeau, René C.; Scheer, Michael; Brodie, Cicely A.; Haugen, Harold K.

    1998-05-01

    We have investigated several atomic negative ion species with the aid of a pulsed, tunable infrared laser source (M. Scheer, H.K. Haugen, and D.R. Beck, Phys. Rev. Lett. 79), 4104 (1997); M. Scheer et al, Phys. Rev. Lett. 80, 684 (1998).. In a comprehensive study of the carbon group negative ions (C^-, Si^-, Ge^-, Sn^-, Pb^-) a combination of single and multiphoton techniques was utilized to determine the bound terms and fine structure levels of the p^3 (ground state) configuration. The results comprise accurate electron affinities and the first experimental data on the fine structure of the ^2DJ terms in Si^-, Ge^-, and Sn^-. In addition, photodetachment threshold spectroscopy provided significantly impoved electron affinities for B, Cr, Mo, Ru, Rh, W, and Bi. The detachment cross section of B^-(^3P_J) appeared as a sequence of closely spaced thresholds which enabled the first experimental determination of the ionic fine structure. The detachment cross section of W^- indicates the presence of unexpected and previously unobserved resonances just below the W(5d^56s ^7S_3) threshold.

  19. Multiphoton imaging the disruptive nature of sulfur mustard lesions

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J.; Braue, Catherine R.; Dillman, James F.

    2005-03-01

    Sulfur mustard [bis-2-chloroethyl sulfide] is a vesicating agent first used as a weapon of war in WWI. It causes debilitating blisters at the epidermal-dermal junction and involves molecules that are also disrupted by junctional epidermolysis bullosa (JEB) and other blistering skin diseases. Despite its recurring use in global conflicts, there is still no completely effective treatment. We have shown by imaging human keratinocytes in cell culture and in intact epidermal tissues that the basal cells of skin contain well-organized molecules (keratins K5/K14, α6β4 integrin, laminin 5 and α3β1 integrin) that are early targets of sulfur mustard. Disruption and collapse of these molecules is coincident with nuclear displacement, loss of functional asymmetry, and loss of polarized mobility. The progression of this pathology precedes basal cell detachment by 8-24 h, a time equivalent to the "clinical latent phase" that defines the extant period between agent exposure and vesication. Our images indicate that disruption of adhesion-complex molecules also impairs cytoskeletal proteins and the integration of structures required for signal transduction and tissue repair. We have recently developed an optical system to test this hypothesis, i.e., to determine whether and how the early disruption of target molecules alters signal transduction. This environmentally controlled on-line system provides a nexus for real-time correlation of imaged lesions with DNA microarray analysis, and for using multiphoton microscopy to facilitate development of more effective treatment strategies.

  20. The polarization effect of a laser in multiphoton Compton scattering

    NASA Astrophysics Data System (ADS)

    Liang, Guo-Hua; Lü, Qing-Zheng; Teng, Ai-Ping; Li, Ying-Jun

    2014-05-01

    The multiphoton Compton scattering in a high-intensity laser beam is studied by using the laser-dressed quantum electrodynamics (QED) method, which is a non-perturbative theory for the interaction between a plane electromagnetic field and a charged particle. In order to analyze in the real experimental condition, a Lorentz transformation for the cross section of this process is derived between the laboratory frame and the initial rest frame of electrons. The energy of the scattered photon is analyzed, as well as the cross sections for different laser intensities and polarizations and different electron velocities. The angular distribution of the emitted photon is investigated in a special velocity of the electron, in which for a fixed number of absorbed photons, the electron energy will not change after the scattering in the lab frame. We obtain the conclusion that higher laser intensities suppress few-laser-photon absorption and enhance more-laser-photon absorption. A comparison between different polarizations is also made, and we find that the linearly polarized laser is more suitable to generate nonlinear Compton scattering.

  1. In vivo multiphoton microscopy of deep brain tissue.

    PubMed

    Levene, Michael J; Dombeck, Daniel A; Kasischke, Karl A; Molloy, Raymond P; Webb, Watt W

    2004-04-01

    Although fluorescence microscopy has proven to be one of the most powerful tools in biology, its application to the intact animal has been limited to imaging several hundred micrometers below the surface. The rest of the animal has eluded investigation at the microscopic level without excising tissue or performing extensive surgery. However, the ability to image with subcellular resolution in the intact animal enables a contextual setting that may be critical for understanding proper function. Clinical applications such as disease diagnosis and optical biopsy may benefit from minimally invasive in vivo approaches. Gradient index (GRIN) lenses with needle-like dimensions can transfer high-quality images many centimeters from the object plane. Here, we show that multiphoton microscopy through GRIN lenses enables minimally invasive, subcellular resolution several millimeters in the anesthetized, intact animal, and we present in vivo images of cortical layer V and hippocampus in the anesthetized Thy1-YFP line H mouse. Microangiographies from deep capillaries and blood vessels containing fluorescein-dextran and quantum dot-labeled serum in wild-type mouse brain are also demonstrated. PMID:14668300

  2. Compact fixed wavelength femtosecond oscillators for multi-photon imaging

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.; Zadoyan, R.; Baldacchini, T.; Franke, T.

    2015-03-01

    In recent years two-photon microscopy with fixed-wavelength has raised increasing interest in life-sciences: Two-photon (2P) absorption spectra of common dyes are broader than single-photon ones. Therefore, excitation of several dyes simultaneously with a single IR laser wavelength is feasible and could be seen as an advantage in 2P microscopy. We used pulsed fixed-wavelength infrared lasers with center wavelength at 1040 nm, for two-photon microscopy in a variety of biologically relevant samples, among these a mouse brain sample, a mouse artery (within the animal, acute preparation), and a preparation of mouse bladder. The 1040 nm laser proved to be efficient not only in exciting fluorescence from yellow fluorescent protein (YFP) and red fluorescent dyes, but also for second harmonic generation (SHG) signals from muscle tissue and collagen. With this work we demonstrate that economical, small-footprint fixedwavelength lasers can present an interesting alternative to tunable lasers that are commonly used in multiphoton microscopy.

  3. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  4. Spectroscopic analysis of skin intrinsic signals for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Pena, Ana-Maria; Strupler, Mathias; Boulesteix, Thierry; Senni, Karim; Godeau, Gaston; Beaurepaire, Emmanuel; Schanne-Klein, Marie-Claire

    2006-02-01

    We recorded multiphoton images of human skin biopsies using endogenous sources of nonlinear optical signals. We detected simultaneously two-photon excited fluorescence (2PEF) from intrinsic fluorophores and second harmonic generation (SHG) from collagen. We observed SHG from fibrillar collagens in the dermis, whereas no SHG was detectable from the non fibrillar type IV collagen in the basal laminae. We compared these distinct behaviours of collagens I and IV in SHG microscopy to polarization-resolved surface SHG experiments on thin films of collagens I and IV molecules. We observed similar signals for both types of molecular films, except for the chiroptical contributions which are present only for collagen I and enhance the signal typically by a factor of 2. We concluded that SHG microscopy is a sensitive probe of the micrometer-scale structural organization of collagen in biological tissues. In order to elucidate the origin of the endogenous fluorescence signals, we recorded 2PEF spectra at various positions in the skin biopsies, and compared these data to in vitro spectroscopic analysis. In particular, we studied the keratin fluorescence and determined its 2PEF action cross section. We observed a good agreement between 2PEF spectra recorded in the keratinized upper layers of the epidermis and in a solution of purified keratin. Finally, to illustrate the capabilities of this technique, we recorded 2PEF/SHG images of skin biopsies obtained from patients of various ages.

  5. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  6. Multi-photon processes in alkali metal vapors

    NASA Astrophysics Data System (ADS)

    Gai, Baodong; Hu, Shu; Li, Hui; Shi, Zhe; Cai, Xianglong; Guo, Jingwei; Tan, Yannan; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Achieving population inversion through multi-photon cascade pumping is almost always difficult, and most laser medium work under 1-photon excitation mechanism. But for alkali atoms such as cesium, relatively large absorption cross sections of several low, cascading energy levels enable them properties such as up conversion. Here we carried out research on two-photon excitation alkali fluorescence. Two photons of near infrared region are used to excite alkali atoms to n 2 D5/2, n 2 D3/2 or higher energy levels, then the blue fluorescence of (n+1) 2 P3/2,(n+1) 2 P1/2-->n 2 S1/2 are observed. Different pumping paths are tried and by the recorded spectra, transition routes of cesium are deducted and concluded. Finally the possibility of two-photon style DPALs (diode pumped alkali laser) are discussed, such alkali lasers can give output wavelengths in the shorter end of visual spectroscopy (400-460 nm) and are expected to get application in underwater communication and material laser processing.

  7. Performance evaluation of a sensorless adaptive optics multiphoton microscope.

    PubMed

    Skorsetz, Martin; Artal, Pablo; Bueno, Juan M

    2016-03-01

    A wavefront sensorless adaptive optics technique was combined with a custom-made multiphoton microscope to correct for specimen-induced aberrations. A liquid-crystal-on-silicon (LCoS) modulator was used to systematically generate Zernike modes during image recording. The performance of the instrument was evaluated in samples providing different nonlinear signals and the benefit of correcting higher order aberrations was always noticeable (in both contrast and resolution). The optimum aberration pattern was stable in time for the samples here involved. For a particular depth location within the sample, the wavefront to be precompensated was independent on the size of the imaged area (up to ∼ 360 × 360 μm(2)). The mode combination optimizing the recorded image depended on the Zernike correction control sequence; however, the final images hardly differed. At deeper locations, a noticeable dominance of spherical aberration was found. The influence of other aberration terms was also compared to the effect of the spherical aberration. PMID:26469361

  8. Security of quantum key distribution with multiphoton components

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-07-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states.

  9. Security of quantum key distribution with multiphoton components.

    PubMed

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  10. The analysis of aging skin based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Hui; Zhang, Xiaoman; Li, Zhifang; Xu, Shufei

    2010-11-01

    Aging is a very important issue not only in dermatology, but also in cosmetic science. Cutaneous aging involves both chronological and photoaging aging process. The chronological aging is induced with the passage of time. And the photoaging skin is the extrinsic aging caused by sun exposure. The aim of this study is to use multiphoton microscopy (MPM) in vivo to assess intrinsic-age-related and photo-age-related difference. The changes of dermal collagen are measured in quantitively. The algorithm that we used automatically produced the transversal dermal map from MPM. Others, the texture of dermis are analyzed by Fourier transform and Gray Level Co-occurrence Matrix. And the object extraction in textured images is proposed based on the method in object edge extraction, and the aim of it is to detect the object hidden in the skin texture in difference aging skin. The result demonstrates that the approach is effective in detecting the object in epidermis and dermis textured image in different aging skin. It could help to further understand the aging mechanism.

  11. Application of multiphoton steady state and lifetime imaging to mapping of tumor vascular architecture in vivo

    NASA Astrophysics Data System (ADS)

    Ameer-Beg, Simon; Barber, Paul R.; Hodgkiss, R. J.; Locke, R. J.; Newman, Robert G.; Tozer, Gillian M.; Vojnovic, Borivoj; Wilson, J.

    2002-06-01

    Recent interest in vascular targeting and anti-angiogenic drug treatments for cancer has stimulated fundamental research regarding the modes of action of these drugs as well as studies of the development and re-modeling of the vascular network following treatment. Multiphoton fluorescence microscopy is employed for in vivo mapping of three-dimensional blood vessel distribution in tumors grown in rodent dorsal skin-flap window chamber preparations. Accurate visualization of the vasculature in three-dimensions allows us to perform dynamic experiments in thick biological specimens in vivo. Examples of in vivo imaging of tumor vasculature are given and compared to normal tissue vasculature. The dynamic responses of blood vessels to treatment with the vascular targeting drug combretastatin A4-P are presented and discussed. The implementation of time-domain imaging by reversed stop-start time-correlated single photon counting (RSS-TCSPC) is discussed as a method for feature extraction in the presence of exogenous and endogenous fluorophores. In particular, the segmentation of the vascular network is demonstrated. Additional contrast, indicative of probe environmental factors, may also be realized. We present examples of in vivo lifetime imaging as a method to elucidate the physiological processes of the tumor microenvironment.

  12. Evaluation of endogenous species involved in brain tumors using multiphoton photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir; Cullum, Brian M.

    2013-05-01

    It has been shown that using non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), excised brain tumor (grade III astrocytoma) and healthy tissue can be differentiated from each other, even in neighboring biopsy samples[1, 2]. Because of this, this powerful technique offers a great deal of potential for use as a surgical guidance technique for tumor margining with up to cellular level spatial resolution[3]. NMPPAS spectra are obtained by monitoring the non-radiative relaxation pathways via ultrasonic detection, following two-photon excitation with light in the optical diagnostic window (740nm-1100nm). Based upon significant differences in the ratiometric absorption of the tissues following 970nm and 1100nm excitation, a clear classification of the tissue can be made. These differences are the result of variations in composition and oxidation state of certain endogenous biochemical species between healthy and malignant tissues. In this work, NADH, NAD+ and ATP were measured using NMPPAS in model gelatin tissue phantoms to begin to understand which species might be responsible for the observed spectral differences in the tissue. Each species was placed in specific pH environments to provide control over the ratio of oxidized to reduced forms of the species. Ratiometric analyses were then conducted to account for variability caused due to instrumental parameters. This paper will discuss the potential roles of each of the species for tumor determination and their contribution to the spectral signature.

  13. Detection and quantification of metals in organic materials by laser-SNMS with nonresonant multiphoton ionization.

    PubMed

    Schnieders, A; Benninghoven, A

    2000-09-15

    We have shown that the sensitive detection and in favorable cases the quantification of metals in organic materials by laser-SNMS with nonresonant multiphoton ionization (NRMPI) is possible. As a model system, sputter-deposited submonolayer coverages of metals on polymer surfaces (polycarbonate, poly(vinylidene chloride), polyimide) were investigated. By use of these samples, relative sensitivity factors and detection limits of several metals (Be, Cr, Mn, Fe, Co, Ni, Mo, W) were determined using laser-SNMS with NRMPI. The relative sensitivity factors for this kind of sample show a high level of agreement with those for metals sputtered from alloys. The detection limits ( 1 ppm of a monolayer) are almost the same as for inorganic matrixes such as Si or GaAs. Laser-SNMS with NRMPI was also used for the determination of the elemental composition of the active centers of metalloproteins (namely, the purple acid phosphatases extracted from sweet potatoes and from red kidney beans). These results have shown the ability of laser-SNMS to detect metal atoms bound to organic macromolecules with an atom concentration as low as 1 ppm. In comparison to TOF-SIMS, laser-SNMS is more sensitive for metal detection in organic matrixes, since the secondary ion yields observed for these matrixes are reduced compared to matrixes optimized for high secondary ion emission, such as, for example, highly oxidized surfaces. PMID:11008762

  14. Resonant IR multi-photon dissociation spectroscopy of a trapped and sympathetically cooled biomolecular ion species.

    PubMed

    Wellers, Ch; Borodin, A; Vasilyev, S; Offenberg, D; Schiller, S

    2011-11-14

    In this work we demonstrate vibrational spectroscopy of polyatomic ions that are trapped and sympathetically cooled by laser-cooled atomic ions. We use the protonated dipeptide tryptophan-alanine (HTyrAla(+)) as a model system, cooled by barium ions to less than 800 mK secular temperature. The spectroscopy is performed on the fundamental vibrational transition of a local vibrational mode at 2.74 μm using a continuous-wave optical parametric oscillator (OPO). Resonant IR multi-photon dissociation spectroscopy (R-IRMPD) (without the use of a UV laser) generates charged molecular fragments, which are sympathetically cooled and trapped, and subsequently released from the trap and counted. We measured the cross section for R-IRMPD under conditions of low intensity, and found it to be approximately two orders smaller than the vibrational excitation cross section. The observed rotational bandwidth of the vibrational transition is larger than the one expected from the combined effects of 300 K black-body temperature, conformer-dependent line shifts, and intermolecular vibrational relaxation broadening (J. Stearns et al., J. Chem. Phys., 2007, 127, 154322-154327). This indicates that as the internal energy of the molecule grows, an increase of the rotational temperature of the molecular ions well above room temperature (up to on the order of 1000 K), and/or an appreciable shift of the vibrational transition frequency (approx. 6-8 cm(-1)) occurs. PMID:21971203

  15. Label-free multiphoton imaging and photoablation of preinvasive cancer cells

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Wu, Guizhu; Zhu, Xiaoqin; Jiang, Xingshan; Xie, Shusen

    2012-01-01

    Detection and treatment of early lesions in epithelial tissue offer several possibilities for curing cancer, but it is challenging. Here, we present an optical technique, the combination of multiphoton imaging and absorption, to label-freely detect and ablate preinvasive cancer cells in epithelial tissue. We find that multiphoton imaging can label-freely visualize the principal features of nuclear atypia associated with epithelial precancerous lesions, and the spatial localization of multiphoton absorption can perform targeted ablation of preinvasive cancer cells with micrometer-sized volume precision. These results indicate that this optical technique has the capability to label-freely visualize and remove preinvasive cancer cells in epithelial tissue. This study highlights the potential of this technique as a "seek-and-treat" tool for early lesions in epithelial tissue.

  16. Two-photon imaging of intact living plants during freezing with a flexible multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; König, K.

    2015-02-01

    We describe the combination of a flexible multiphoton tomograph (MPTflex) with a heating and cooling stage. The stage allows temperature control in the range of (-196 °C) (77 K) to +600 °C (873 K) with selectable heating/freezing rates between 0.01 K min-1 and 150 K min-1. To illustrate the imaging capabilities of the combined system, fluorescence intensity and lifetime of intrinsic molecules from a plant leaf were imaged with submicron resolution during freezing in vivo without detaching the leaf from the plant. An increase of fluorescence intensity and decay times with decreasing temperature was observed. The measurements illustrate the usefulness of multiphoton imaging as a non-invasive online tool to investigate temperature-induced effects. The flexible multiphoton tomograph with its adjustable mechano-optical arm and scan head allows imaging at otherwise hardly accessible sample regions.

  17. Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Chen, G. N.; Wu, S. S.; Chen, R.

    2014-02-01

    Application of multiphoton microscopy (MPM) to clinical cancer research has greatly developed over the last few years. In this paper, we mainly focus on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) for investigating esophageal cancer. We chiefly discuss the SHG/TPEF image and spectral characteristics of normal and cancerous esophagus submucosa with the combined multi-channel imaging mode and Lambda mode of a multiphoton microscope (LSM 510 META). Great differences can be detected, such as collagen content and morphology, glandular-shaped cancer cells, TPEF/SHG intensity ratio, and so on, which demonstrate that the multiphoton imaging technique has the potential ability for minimally-invasive early cancer diagnosis.

  18. Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging.

    PubMed

    Kumar, S; Dunsby, C; De Beule, P A A; Owen, D M; Anand, U; Lanigan, P M P; Benninger, R K P; Davis, D M; Neil, M A A; Anand, P; Benham, C; Naylor, A; French, P M W

    2007-10-01

    We report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleaching- and movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor. PMID:19550524

  19. Comparison of HORACE and PHOTOS Algorithms for Multi-Photon Emission in the Context of the W Boson Mass Measurement

    DOE PAGESBeta

    Kotwal, Ashutosh V.; Jayatilaka, Bodhitha

    2016-01-01

    W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fitsmore » are performed using a simulation of the CDF II detector.« less

  20. Comparison of HORACE and PHOTOS Algorithms for Multi-Photon Emission in the Context of the W Boson Mass Measurement

    SciTech Connect

    Kotwal, Ashutosh V.; Jayatilaka, Bodhitha

    2016-01-01

    W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fits are performed using a simulation of the CDF II detector.

  1. Spectroscopy of acetylene Rydberg states studied by VUV absorption and (3+1)-Resonantly Enhanced Multiphoton Ionisation

    NASA Astrophysics Data System (ADS)

    Boyé, Séverine; Campos, Andrea; Fillion, Jean-Hugues; Douin, Stéphane; Shafizadeh, Niloufar; Gauyacq, Dolores

    2004-03-01

    The ungerade ns+ nd Rydberg states of C 2H 2 converging to the ground state of the C 2H 2+ cation have been investigated in the energy range 74 000- 88 000 cm-1 by (3+1)-multiphoton ionisation (REMPI) and by VUV absorption spectroscopy at the Super-ACO synchrotron radiation facility. Both methods have allowed the selective analysis of the Rydberg transitions with rotational resolution. Mulliken's semi-united atom model, in which predissociation has been taken into account, was used to understand the relative three-photon intensities among the different electronic transitions within the same Rydberg supercomplex. Lifetimes have been evaluated and illustrate very different behaviours towards predissociation for the observed Rydberg states. To cite this article: S. Boyé et al., C. R. Physique 5 (2004).

  2. Real-time optical diagnosis of gastric cancer with serosal invasion using multiphoton imaging

    PubMed Central

    Yan, Jun; Zheng, Yu; Zheng, Xiaoling; Liu, Zhangyuanzhu; Liu, Wenju; Chen, Dexin; Dong, Xiaoyu; Li, Kai; Liu, Xiumin; Chen, Gang; Lu, Jianping; Chen, Jianxin; Zhuo, Shuangmu; Li, Guoxin

    2016-01-01

    A real-time optical biopsy, which could determine tissue histopathology, would be of extraordinary benefit to staging laparoscopy for gastric cancer with serosal invasion (T4) that requires downstage treatment. We investigated the feasibility of using multiphoton imaging to perform a real-time optical diagnosis of gastric cancer with or without serosal invasion. First, a pilot study was performed to establish the optical diagnostic features of gastric cancer with or without serosal invasion using multiphoton imaging compared with hematoxylin-eosin staining and Masson’s trichrome staining. Second, a blinded study was performed to compare the diagnostic sensitivity, specificity, and accuracy of multiphoton imaging and endoscopic ultrasonography (EUS) for T4 gastric cancer. In the pilot study, multiphoton imaging revealed collagen loss and degradation and cellular and nuclear pleomorphism in gastric cancer with serosal invasion. The collagen content in gastric cancer with or without serosal invasion was 0.36 ± 0.18 and 0.79 ± 0.16 (p < 0.001), respectively. In the blinded study, the sensitivity, specificity, and accuracy of EUS and multiphoton imaging for T4 gastric cancer were 70% and 90% (p = 0.029), 66.67% and 96.67% (p = 0.003), and 68.33% and 93.33% (p = 0.001), respectively. It is feasible to use multiphoton imaging to make a real-time optical diagnosis of gastric cancer with or without serosal invasion. PMID:27499365

  3. The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy.

    PubMed

    Young, P A; Clendenon, S G; Byars, J M; Dunn, K W

    2011-05-01

    Although multiphoton fluorescence excitation microscopy has improved the depth at which useful fluorescence images can be collected in biological tissues, the reach of multiphoton fluorescence excitation microscopy is nonetheless limited by tissue scattering and spherical aberration. Scattering can be reduced in fixed samples by mounting in a medium whose refractive index closely matches that of the fixed material. Using optical 'clearing', the effects of refractive index heterogeneity on signal attenuation with depth are investigated. Quantitative measurements show that by mounting kidney tissue in a high refractive index medium, less than 50% of signal attenuates in 100 μm of depth. PMID:21118239

  4. Mixed-Color Multiphoton Transitions as Additional Quantum Channels for Electron Photoemission

    NASA Astrophysics Data System (ADS)

    Huang, Wayne; Becker, Maria; Beck, Joshua; Batelaan, Herman

    2016-05-01

    We demonstrate mixed-color electron photoemission from tungsten nanotips. In the experiment, second-harmonic photons were introduced to modify the multiphoton emission process. A twofold increase in quantum efficiency results from the opening up of an additional three-photon quantum channel. The super-additive photoelectron signal can be controlled by input power, field polarization, and pulse overlap. The results of our study provide new prospects for quantum photonics, multiphoton microscopy, and spin-polarized electron sources. We acknowledge supports from NSF, Grant Number 1306565, 1430519. NSF Grant Number 1306565, 1430519.

  5. Diagrammatic analysis of multiphoton processes in a ladder-type three-level atomic system

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Han Seb

    2011-11-15

    We present a diagrammatic method for complete characterization of multiphoton processes in three-level atomic systems. By considering the interaction routes of the coupling and probe photons for a ladder-type, three-level, noncycling (or cycling) atomic system, we are able to completely discriminate between the pure one-photon and the pure two-photon resonance effects, and the effect of their combination in electromagnetically induced transparency (EIT) using our diagrammatic method. We show that the proposed diagrammatic method is very useful for the analysis of multiphoton processes in ladder-type EIT.

  6. Fermi-coupled spherically adapted effective states in the collisionless multiphoton excitation of SF 6

    NASA Astrophysics Data System (ADS)

    Di Lauro, C.; Lattanzi, F.

    1982-10-01

    A calculation method for the collisionless multiphoton excitation of SF 6 by intense CO 2 laser light up to a chain of parallel nv3, ( n - 1) v3 + v2 + v6 … vibrational-rotational ladders linked by Fermi interaction is described. Spherically adapted effective states suitable to the purpose are defined, and matrix elements for multiphoton excitation in the rotatingwave approximation effective hamiltonian formalism are given in this basis. The method is aimed at the investigation of population transfer between the cited parallel vibrational ladders, and is suitable for computer-calculation programmation.

  7. Effect of Multiphoton Processes on Geometric Quantum Computation in Superconducting Circuit QED

    NASA Astrophysics Data System (ADS)

    Chen, Chang-Yong

    2012-11-01

    We study the influence of multi-photon processes on the geometric quantum computation in the systems of superconducting qubits based on the displacement-like and the general squeezed operator methods. As an example, we focus on the question about how to implement a two-qubit geometric phase gate using superconducting circuit quantum electrodynamics with both single- and two-photon interaction between the qubits and the cavity modes. We find that the multiphoton processes are not only controllable but also improve the gating speed. The comparison with other physical systems and experimental feasibility are discussed in detail.

  8. Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging

    NASA Astrophysics Data System (ADS)

    Mancuso, James J.; Larson, Adam M.; Wensel, Theodore G.; Saggau, Peter

    2009-05-01

    The Nikon C1 confocal laser scanning microscope is a relatively inexpensive and user-friendly instrument. We describe a straightforward method to convert the C1 for multiphoton microscopy utilizing direct coupling of a femtosecond near-infrared laser into the scan head and fiber optic transmission of emission light to the three-channel detector box. Our adapted system can be rapidly switched between confocal and multiphoton mode, requires no modification to the original system, and uses only a few custom-made parts. The entire system, including scan mirrors and detector box, remain under the control of the user-friendly Nikon EZ-C1 software without modification.

  9. Multiphoton ionization-fragmentation patterns of tertiary amines

    NASA Astrophysics Data System (ADS)

    Parker, D. H.; Bernstein, R. B.; Lichtin, D. A.

    1981-09-01

    Multiphoton ionization (MPI)-fragmentation patterns are reported for a series of normal and caged tertiary amines. Ionization is enhanced by two-photon resonance with the 3s and 3p Rydberg states of trimethylamine, triethylamine, and the caged amines quinuclidine and triethylenediamine. Over the wavelength region λ = 400-530 nm, N(CH3)3 ionizes to the parent ion (P) and fragments only by the loss of a H atom to yield the P-H daughter ion; N(C2H5)3 ionizes to its parent ion and fragments by the loss of a methyl to form the P-CH3 ion. The branching ratio of daughter to parent ions is found to be essentially independent of laser intensity but strongly dependent on laser wavelength. The caged amines quinuclidine [N(C2H4)3CH, or ABCO] and triethylenediamine [N(C2H4)3N, or DABCO] fragment extensively over this λ range in a manner dependent on both laser wavelength and intensity. The extent of daughter ion formation in N(CH3)3 and N(C2H5)3 can be understood by consideration of the wavelength regions in which the total available energy from the initial three- or four-photon ionization event exceeds the appearance potential of the given daughter ion. For the caged amines direct observation of this mechanism is masked by fragmentation due to sequential absorption of photons (during the ˜5 ns pulse duration) by the parent and/or daughter ions. The present results show that even for molecules with broad, unstructured UV absorption and MPI spectra such as N(CH3)3 and N(C2H5)3, considerable information on photon-molecule and photon-ion interactions can still be gained by the MPI mass spectrometry technique.

  10. Large field of view multiphoton microscopy of human skin

    NASA Astrophysics Data System (ADS)

    Balu, Mihaela; Mikami, Hideharu; Hou, Jue; Potma, Eric O.; Tromberg, Bruce J.

    2016-03-01

    Clinical examination crucially relies on the ability to quickly examine large tissue areas and rapidly zoom in to regions of interest. Skin lesions often show irregularity in color and appearance in general, especially when they start to progress towards malignancy. Large field of view (FOV) and automatic translation of the imaging area are critical in the assessment of the entire lesion. Imaging of limited FOVs of the lesion can easily result in false negative diagnosis. We present a multiphoton microscope based on two-photon excited fluorescence and second-harmonic generation that images FOVs of about 0.8 mm2 (without stitching adjacent FOVs) at speeds of 10 frames/second (800 x 800 pixels) with lateral and axial resolutions of 0.5 μm and 2.5 μm, respectively. The main novelty of this instrument is the design of the scan head, which includes a fast galvanometric scanner, relay optics, a beam expander and a high NA objective lens. We optimized the system based on the Olympus 25x, 1.05NA water immersion lens, that features a long working distance of 1 mm. Proper tailoring of the beam expander, which consists of the scan and tube lens elements, enables scaling of the FOV. The design criteria include a flat wavefront of the beam, minimum field curvature, and suppressed spherical aberrations. All aberrations in focus are below the Marechal criterion of 0.07λ rms for diffraction-limited performance. We demonstrate the practical utility of this microscope by ex-vivo imaging of wide FOVs in normal human skin.

  11. Electron-nuclear energy sharing in above-threshold multiphoton dissociative ionization of H2.

    PubMed

    Wu, J; Kunitski, M; Pitzer, M; Trinter, F; Schmidt, L Ph H; Jahnke, T; Magrakvelidze, M; Madsen, C B; Madsen, L B; Thumm, U; Dörner, R

    2013-07-12

    We report experimental observation of the energy sharing between electron and nuclei in above-threshold multiphoton dissociative ionization of H2 by strong laser fields. The absorbed photon energy is shared between the ejected electron and nuclei in a correlated fashion, resulting in multiple diagonal lines in their joint energy spectrum governed by the energy conservation of all fragment particles. PMID:23889391

  12. Semiclassical analysis of long-wavelength multiphoton processes: The Rydberg atom

    NASA Astrophysics Data System (ADS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2004-06-01

    We study the problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons. An exact, nonperturbative approach is applied to the standard vector potential coupling Hamiltonian for a three-dimensional hydrogenlike atom in a microwave field treated semiclassically. Multiphoton probability exchange is calculated in both the velocity and the length gauges, by applying the Goeppert-Mayer gauge transformation. The expansion of the time-dependent solution in terms of Floquet states delineates the mechanism of multiphoton transitions. A detailed analysis of the Floquet states and quasienergies as functions of the field parameters allows us to describe the relation between avoided quasienergy crossings and multiphoton probability exchange. We formulate analytical expressions for the variation of quasienergies and Floquet states with respect to the field parameters, and demonstrate that avoided quasienergy crossings are accompanied by dramatic changes in the Floquet states. Analysis of the Floquet states, for small values of the field strength, yields selection rules for the avoided quasienergy crossings. In the case of strong fields, the simultaneous choice of frequency and strength of the field producing an avoided crossing results in improved ionization probability.

  13. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  14. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  15. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  16. Nanoparticle-assisted-multiphoton microscopy for in vivo brain imaging of mice

    NASA Astrophysics Data System (ADS)

    Qian, Jun

    2015-03-01

    Neuro/brain study has attracted much attention during past few years, and many optical methods have been utilized in order to obtain accurate and complete neural information inside the brain. Relying on simultaneous absorption of two or more near-infrared photons by a fluorophore, multiphoton microscopy can achieve deep tissue penetration and efficient light detection noninvasively, which makes it very suitable for thick-tissue and in vivo bioimaging. Nanoparticles possess many unique optical and chemical properties, such as anti-photobleaching, large multiphoton absorption cross-section, and high stability in biological environment, which facilitates their applications in long-term multiphoton microscopy as contrast agents. In this paper, we will introduce several typical nanoparticles (e.g. organic dye doped polymer nanoparticles and gold nanorods) with high multiphoton fluorescence efficiency. We further applied them in two- and three-photon in vivo functional brain imaging of mice, such as brain-microglia imaging, 3D architecture reconstruction of brain blood vessel, and blood velocity measurement.

  17. Multi-photon transitions and Rabi resonance in continuous wave EPR.

    PubMed

    Saiko, Alexander P; Fedaruk, Ryhor; Markevich, Siarhei A

    2015-10-01

    The study of microwave-radiofrequency multi-photon transitions in continuous wave (CW) EPR spectroscopy is extended to a Rabi resonance condition, when the radio frequency of the magnetic-field modulation matches the Rabi frequency of a spin system in the microwave field. Using the non-secular perturbation theory based on the Bogoliubov averaging method, the analytical description of the response of the spin system is derived for all modulation frequency harmonics. When the modulation frequency exceeds the EPR linewidth, multi-photon transitions result in sidebands in absorption EPR spectra measured with phase-sensitive detection at any harmonic. The saturation of different-order multi-photon transitions is shown to be significantly different and to be sensitive to the Rabi resonance. The noticeable frequency shifts of sidebands are found to be the signatures of this resonance. The inversion of two-photon lines in some spectral intervals of the out-of-phase first-harmonic signal is predicted under passage through the Rabi resonance. The inversion indicates the transition from absorption to stimulated emission or vice versa, depending on the sideband. The manifestation of the primary and secondary Rabi resonance is also demonstrated in the time evolution of steady-state EPR signals formed by all harmonics of the modulation frequency. Our results provide a theoretical framework for future developments in multi-photon CW EPR spectroscopy, which can be useful for samples with long spin relaxation times and extremely narrow EPR lines. PMID:26295168

  18. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  19. Photoelectron momentum spectra for multiphoton ionization of Hydrogen atoms by intense laser pulses

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Serge; Macek, Joseph

    2007-06-01

    Full three-dimensional electron momentum distribution for multiphoton ionization of Hydrogen atoms by intense laser pulses are calculated by solving the time-dependent solutions of Schr"odinger equation on a three-dimensional lattice in a scaled coordinate representation (CSLTDSE). This approach allows one to circumvent many difficulties related to the propagation of wave function to macroscopic distances.

  20. Supersonic jet/multiphoton ionization spectrometry of chemical species resulting from thermal decomposition and laser ablation of polymers

    NASA Astrophysics Data System (ADS)

    Hozumi, Masami; Murata, Yoshiaki; Cheng-Huang Lin, Imasaka, Totaro

    1995-04-01

    The chemical species resulting from thermal decomposition and laser ablation of polymers are measured by excitation/fluorescence and multiphoton ionization/mass spectrometries after supersonic jet expansion for rotational cooling to simply the optical spectrum. The signal of minor chemical species occurred is strongly enhanced by resonant excitation and multiphoton ionization, and even the isomer can be clearly differentiated. For example, p-cresol occurred by thermal decomposition of polycarbonate is detected selectively by mass-selected resonant multiphoton ionization spectrometry. Various chemical species occurred by laser ablation of even a polystyrene foam are also measured by this technique.

  1. Ex vivo applications of multiphoton microscopy in urology

    NASA Astrophysics Data System (ADS)

    Jain, Manu; Mukherjee, Sushmita

    2016-03-01

    Background: Routine urological surgery frequently requires rapid on-site histopathological tissue evaluation either during biopsy or intra-operative procedure. However, resected tissue needs to undergo processing, which is not only time consuming but may also create artifacts hindering real-time tissue assessment. Likewise, pathologist often relies on several ancillary methods, in addition to H&E to arrive at a definitive diagnosis. Although, helpful these techniques are tedious and time consuming and often show overlapping results. Therefore, there is a need for an imaging tool that can rapidly assess tissue in real-time at cellular level. Multiphoton microscopy (MPM) is one such technique that can generate histology-quality images from fresh and fixed tissue solely based on their intrinsic autofluorescence emission, without the need for tissue processing or staining. Design: Fresh tissue sections (neoplastic and non-neoplastic) from biopsy and surgical specimens of bladder and kidney were obtained. Unstained deparaffinized slides from biopsy of medical kidney disease and oncocytic renal neoplasms were also obtained. MPM images were acquired using with an Olympus FluoView FV1000MPE system. After imaging, fresh tissues were submitted for routine histopathology. Results: Based on the architectural and cellular details of the tissue, MPM could characterize normal components of bladder and kidney. Neoplastic tissue could be differentiated from non-neoplastic tissue and could be further classified as per histopathological convention. Some of the tumors had unique MPM signatures not otherwise seen on H&E sections. Various subtypes of glomerular lesions were identified as well as renal oncocytic neoplasms were differentiated on unstained deparaffinized slides. Conclusions: We envision MPM to become an integral part of regular diagnostic workflow for rapid assessment of tissue. MPM can be used to evaluate the adequacy of biopsies and triage tissues for ancillary studies

  2. Quantum simulations with a trilinear Hamiltonian in trapped-ion system

    NASA Astrophysics Data System (ADS)

    Ding, Shiqian; Maslennikov, Gleb; Hablutzel, Roland; Matsukevich, Dzmitry

    2016-05-01

    A non-degenerate parametric oscillator, described by a trilinear Hamiltonian, is one of the most fundamental models in quantum optics. We experimentally realize this kind of interaction in fully quantum regime with three motional modes of three trapped ytterbium ions. This interaction is induced by the intrinsic anharmonicity of Coulomb potential and manifests itself by more than 100 cycles of coherent energy exchange at single quantum level between different motional modes. By exploiting this interaction, we simulate the process of non-degenerate parametric down conversion in a regime of depleted pump, demonstrate deviation from the thermal statistic for the `signal' and `idler' modes and discuss its relation with a simple model of Hawking radiation. We also present experimental results on simulation of Jaynes-Cummings model using this trilinear Hamiltonian.

  3. Nonperturbative analysis of the two-level atom: Applications to multiphoton excitation

    SciTech Connect

    Duvall, R.E.; Valeo, E.J.; Oberman, C.R.

    1987-08-01

    Selective excitation in an atomic system subjected to a slowly varying external electromagnetic field is studied using a two-level model. Time evolution of the system is found using an approach which is nonperturbative in the field strength. There is no constraint to small values of the applied field, that is, the field (in appropriate energy units) need not be small compared to the difference in energies of the two levels. Rather, we prey upon the fact that the situation of interest to us is where the frequency of the exciting field is small compared to the frequency associated with the level difference. Transition probabilities and resonance conditions are found which circumscribe both the large and small field limits. In the weak field limit the previous results of high-order perturbation theory are readily recovered. For a monochromatic field the characteristic features of resonance excitation at high harmonic number of the applied field are (a) extremely narrow resonance widths and (b) shifts in resonance positions which are strong functions of field intensity. Because of this sensitivity, we are able to demonstrate that when slow temporal evolution of the field amplitude is taken into account (e.g., due to finite pulse duration) the appropriate mean excitation rate is that due to the uncorrelated contribution of many resonances. The results of this analysis are used to estimate excitation rates in a specific atomic system, Cd/sup 12 +/, which are then compared to multiphoton ionization rates. Our calculations suggest that the ionization rate exceeds the excitation rate by several orders of magnitude. 15 refs., 3 figs.

  4. Some statistical properties of the interaction between a two-level atom and three field modes

    NASA Astrophysics Data System (ADS)

    Sebawe Abdalla, M.; Ahmed, M. M. A.; S-F Obada, A.

    2015-06-01

    We consider the interaction between a two-level atom and a quantum system that consists of three electromagnetic fields. An analytic solution is provided for the wave function of a pairwise mutual interaction between a two-level atom and three modes using a frequency converter. SU(2) group generators are used to describe these field mode interactions. In addition, a canonical transformation is employed in order to convert the Hamiltonian model into a Jaynes-Cumming-like model, which is used to solve the Schrödinger equation. Statistical properties related to the atomic inversion, entanglement, and squeezing phenomena are discussed. Superstructure patterns and partial disentanglement, as well as squeezing swapping between quadratures, are displayed for selected parameters.

  5. Entropy and variance squeezing of two coupled modes interacting with a two-level atom: Frequency converter type

    SciTech Connect

    Khalil, E.M.; Abdalla, M. Sebawe . E-mail: m.sebawe@physics.org; Obada, A.S.-F.

    2006-02-15

    A modified Jaynes-Cummings model which consists of a two-level atom interacting with two modes of the electromagnetic field is introduced. More precisely we have considered a Hamiltonian model that includes two types of interaction: One is the field-field (frequency converter type) and the other is the atom-field interaction. By invoking a canonical transformation an exact solution of the wave function in the Schroedinger picture is obtained. The result presented in this context is used to discuss the atomic inversion as well as the entropy squeezing and variance squeezing phenomena. We have shown that the existence of the second field coupling parameter reduces the amount of squeezing in all quadratures, while the effect of the detuning parameter would lead to the superstructure phenomenon which becomes more pronounced upon increasing the mean photon numbers, in the states which are taken to be converter states.

  6. Class of exact memory-kernel master equations

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2016-05-01

    A well-known situation in which a non-Markovian dynamics of an open quantum system S arises is when this is coherently coupled to an auxiliary system M in contact with a Markovian bath. In such cases, while the joint dynamics of S -M is Markovian and obeys a standard (bipartite) Lindblad-type master equation (ME), this is in general not true for the reduced dynamics of S . Furthermore, there are several instances (e.g., the dissipative Jaynes-Cummings model) in which a closed ME for the S 's state cannot even be worked out. Here, we find a class of bipartite Lindblad-type MEs such that the reduced ME of S can be derived exactly and in a closed form for any initial product state of S -M . We provide a detailed microscopic derivation of our result in terms of a mapping between two collision models.

  7. Evolution of the three-dimensional collagen structure in vascular walls during deformation: an in situ mechanical testing under multiphoton microscopy observation.

    PubMed

    Nierenberger, Mathieu; Fargier, Guillaume; Ahzi, Saïd; Rémond, Yves

    2015-08-01

    The collagen fibers' three-dimensional architecture has a strong influence on the mechanical behavior of biological tissues. To accurately model this behavior, it is necessary to get some knowledge about the structure of the collagen network. In the present paper, we focus on the in situ characterization of the collagenous structure, which is present in porcine jugular vein walls. An observation of the vessel wall is first proposed in an unloaded configuration. The vein is then put into a mechanical tensile testing device. As the vein is stretched, three-dimensional images of its collagenous structure are acquired using multiphoton microscopy. Orientation analyses are provided for the multiple images recorded during the mechanical test. From these analyses, the reorientation of the two families of collagen fibers existing in the vein wall is quantified. We noticed that the reorientation of the fibers stops as the tissue stiffness starts decreasing, corresponding to the onset of damage. Besides, no relevant evolutions of the out of plane collagen orientations were observed. Due to the applied loading, our analysis also allowed for linking the stress relaxation within the tissue to its internal collagenous structure. Finally, this analysis constitutes the first mechanical test performed under a multiphoton microscope with a continuous three-dimensional observation of the tissue structure all along the test. It allows for a quantitative evaluation of microstructural parameters combined with a measure of the global mechanical behavior. Such data are useful for the development of structural mechanical models for living tissues. PMID:25358413

  8. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. I. Propagation of single-active-electron wave packets in chiral pseudo-potentials.

    PubMed

    Artemyev, Anton N; Müller, Anne D; Hochstuhl, David; Demekhin, Philipp V

    2015-06-28

    A theoretical method to study the angle-resolved multiphoton ionization of polyatomic molecules is developed. It is based on the time-dependent formulation of the Single Center (TDSC) method and consists in the propagation of single-active-electron wave packets in the effective molecular potentials in the presence of intense laser pulses. For this purpose, the time-dependent Schrödinger equation for one electron, moving in a molecular field and interacting with an arbitrary laser pulse, is solved in spherical coordinates by an efficient numerical approach. As a test, the method is applied to the one- and two-photon ionizations of a model methane-like chiral system by circularly polarized short intense high-frequency laser pulses. Thereby, we analyze the photoelectron circular dichroism (PECD) in the momentum distribution. The considered model application illustrates the capability of the TDSC method to study multiphoton PECD in fixed-in-space and randomly oriented chiral molecules. PMID:26133408

  9. Perturbative approach to open circuit QED systems

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Petruccione, Francesco; Koch, Jens

    2014-03-01

    Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitable for open quantum systems. The proposed method is useful in the analytical understanding of open systems as well as in the numerical calculation of system observables, which would otherwise be impractical. This enables us to investigate a variety of open circuit QED systems, including the open Jaynes-Cummings lattice model.

  10. Cavity QED Based on Collective Magnetic Dipole Coupling: Spin Ensembles as Hybrid Two-Level Systems

    NASA Astrophysics Data System (ADS)

    Imamoǧlu, Atac

    2009-02-01

    We analyze the magnetic dipole coupling of an ensemble of spins to a superconducting microwave stripline structure, incorporating a Josephson junction based transmon qubit. We show that this system is described by an embedded Jaynes-Cummings model: in the strong coupling regime, collective spin-wave excitations of the ensemble of spins pick up the nonlinearity of the cavity mode, such that the two lowest eigenstates of the coupled spin wave-microwave cavity-Josephson junction system define a hybrid two-level system. The proposal described here enables new avenues for nonlinear optics using optical photons coupled to spin ensembles via Raman transitions. The possibility of strong coupling cavity QED with magnetic dipole transitions also opens up the possibility of extending quantum information processing protocols to spins in silicon or graphene, without the need for single-spin confinement.

  11. A simple and general strategy for generating frequency-anticorrelated photon pairs

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xu, Chang; Ren, Zhongzhou

    2016-04-01

    Currently, two-photon excitation microscopy is the method of choice for imaging living cells within thick specimen. A remaining problem for this technique is the damage caused by the high photon flux in the excitation region. To reduce the required flux, a promising solution is to use highly frequency-anticorrelated photon pairs, which are known to induce two-photon transitions much more efficiently. It is still an open question what the best scheme is for generating such photon pairs. Here we propose one simple general strategy for this task. As an example, we show explicitly that this general strategy can be realized faithfully within the widely applicable coherently pumped Jaynes-Cummings model. It is shown quantitatively that this strategy can generate highly frequency-anticorrelated photon pairs which can dramatically enhance two-photon excitation efficiency. We believe the proposed strategy can guide new designs for generating frequency-anticorrelated photon pairs.

  12. Cavity-induced temperature control of a two-level system

    SciTech Connect

    Weimer, Hendrik; Mahler, Guenter

    2007-11-15

    We consider a two-level atom interacting with a single mode of the electromagnetic field in a cavity within the Jaynes-Cummings model. Initially, the atom is thermal while the cavity is in a coherent state. The atom interacts with the cavity field for a fixed time. After removing the atom from the cavity and applying a laser pulse the atom will be in a thermal state again. Depending on the interaction time with the cavity field the final temperature can be varied over a large range. We discuss how this method can be used to cool the internal degrees of freedom of atoms and create heat baths suitable for studying thermodynamics at the nanoscale.

  13. Incompressible Polaritons in a Flat Band

    NASA Astrophysics Data System (ADS)

    Biondi, Matteo; van Nieuwenburg, Evert P. L.; Blatter, Gianni; Huber, Sebastian D.; Schmidt, Sebastian

    2015-10-01

    We study the interplay of geometric frustration and interactions in a nonequilibrium photonic lattice system exhibiting a polariton flat band as described by a variant of the Jaynes-Cummings-Hubbard model. We show how to engineer strong photonic correlations in such a driven, dissipative system by quenching the kinetic energy through frustration. This produces an incompressible state of photons characterized by short-ranged crystalline order with period doubling. The latter manifests itself in strong spatial correlations, i.e., on-site and nearest-neighbor antibunching combined with extended density-wave oscillations at larger distances. We propose a state-of-the-art circuit QED realization of our system, which is tunable in situ.

  14. Incompressible Polaritons in a Flat Band.

    PubMed

    Biondi, Matteo; van Nieuwenburg, Evert P L; Blatter, Gianni; Huber, Sebastian D; Schmidt, Sebastian

    2015-10-01

    We study the interplay of geometric frustration and interactions in a nonequilibrium photonic lattice system exhibiting a polariton flat band as described by a variant of the Jaynes-Cummings-Hubbard model. We show how to engineer strong photonic correlations in such a driven, dissipative system by quenching the kinetic energy through frustration. This produces an incompressible state of photons characterized by short-ranged crystalline order with period doubling. The latter manifests itself in strong spatial correlations, i.e., on-site and nearest-neighbor antibunching combined with extended density-wave oscillations at larger distances. We propose a state-of-the-art circuit QED realization of our system, which is tunable in situ. PMID:26551811

  15. Lasing process in a closed bipartite quantum system: A thermodynamical analysis

    NASA Astrophysics Data System (ADS)

    Waldherr, G.; Mahler, G.

    2010-06-01

    Closed weakly bound bipartite quantum systems typically exhibit relaxation behavior with respect to the smaller subsystem. Here, we investigate a model composed of a finite spin network with one interfacing spin being coupled to a single electromagnetic field mode via the Jaynes-Cummings interaction. The initial pure state of the system can be chosen such that the resulting thermodynamical relaxation process is lasing/nonlasing relaxation or energy back flow from the field mode. We examine the properties of the field mode with quantum optical methods. During the lasing process, the field mode is in a phase-diffused Glauber state with no optical coherence. The thermodynamical analysis of our system is consistent with this finding: The total energy exchanged between both subsystems is found to be heat only. Yet the mapping of this function onto a thermodynamic heat engine appears to be of limited value.

  16. Anyons and transmutation of statistics via a vacuum-induced Berry phase

    SciTech Connect

    Serra, Roberto M.; Vedral, Vlatko; Carollo, Angelo; Santos, Marcelo Franca

    2004-10-01

    We show that bosonic fields may present anyonic behavior when interacting with a fermion in a Jaynes-Cummings-like model. The proposal is accomplished via the interaction of a two-level system with two quantized modes of a harmonic oscillator; under suitable conditions, the system acquires a fractional geometric phase. A crucial role is played by the entanglement of the system eigenstates, which provides a two-dimensional confinement in the effective evolution of the system, leading to the anyonic behavior. For a particular choice of parameters, we show that it is possible to transmute the statistics of the system continually from fermions to bosons. We also present an experimental proposal, in an ion-trap setup, in which fractional statistical features can be generated, controlled, and measured.

  17. Deterministic amplification of Schrödinger cat states in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Joo, Jaewoo; Elliott, Matthew; Oi, Daniel K. L.; Ginossar, Eran; Spiller, Timothy P.

    2016-02-01

    Perfect deterministic amplification of arbitrary quantum states is prohibited by quantum mechanics, but determinism can be achieved by compromising between fidelity and amplification power. We propose a dynamical scheme for deterministically amplifying photonic Schrödinger cat states, which show great promise as a tool for quantum information processing. Our protocol is designed for strongly coupled circuit quantum electrodynamics and utilizes artificial atomic states and external microwave controls to engineer a set of optimal state transfers and achieve high fidelity amplification. We compare analytical results with full simulations of the open, driven Jaynes-Cummings model, using realistic device parameters for state of the art superconducting circuits. Amplification with a fidelity of 0.9 can be achieved for sizable cat states in the presence of cavity and atomic-level decoherence. This tool could be applied to practical continuous-variable information processing for the purification and stabilization of cat states in the presence of photon losses.

  18. Coherent squeezed states of motion in an ion trap generated with Raman-driven sideband transitions

    NASA Astrophysics Data System (ADS)

    Zeng, Heping; Lin, Fucheng

    1995-07-01

    Raman interaction between two internal levels and its sideband cooling of a trapped ion or atom are investigated in copropagating traveling-wave light fields for localization beyond the Lamb-Dicke limit. Under certain conditions, only the first-order sideband excitations (||n>-->||n+/-1> with ||n> being a Fock state) may play a significant role. This provides an experimental realization of the Jaynes-Cummings model with quantized center-of-mass motion beyond the Lamb-Dicke regime, which can be used to measure the statistics of the quantized motion, and thus to detect nonclassical states of motion. Moreover, the multichromatic two-photon Raman excitations of the trapped particle can be used for the preparation of coherent squeezed states of motion.

  19. Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization

    SciTech Connect

    Martin, M. J.; Meiser, D.; Ye Jun; Holland, M. J.; Thomsen, J. W.

    2011-12-15

    We explore the potential of direct spectroscopy of ultranarrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy of ultranarrow optical transitions in a cavity operates in a very highly saturated regime in which nonlinear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of ultranarrow atomic lines. We find that, with current lattice clock experiments, laser linewidths of about 1 mHz can be achieved in principle, and the ultimate limitations of this technique are at the 1 {mu}Hz level.

  20. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-11-01

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iswap gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter.

  1. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength gr in a Jaynes Cummings Hamiltonian, and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP-gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter. Funded by ARO through Grant No. W911NF-15-1-0149.

  2. Dynamical properties of spin and subbands populations in 1D quantum wire

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Khordad, R.; Golshan, M. M.

    2006-10-01

    In this paper we study the spin and subbands populations, as functions of time, for electrons in a quasi-1D quantum wire, with spin-orbit coupling (SOC), to which a perpendicular magnetic field is applied. The system is governed by the Hamiltonian which, in the strong magnetic field limit, resembles the Jaynes-Cummings model (JCM) in quantum optics (QO). Using a procedure similar to that in QO, we explicitly present the time-evolution operator, thereby calculating the spin states and subbands populations as functions of time. We show that the populations exhibit oscillations, depending on the interaction parameters, scale lengths and, particularly, the initial states of the system. Specifically, if the electrons are initially prepared in a maximal coherent superposition of spin states, the expectation values periodically collapse and revive. The collapse-revivals are most profound for the spin along the magnetic field and subbands populations.

  3. Entropy and Entanglement of the Superpositions of Displaced Fock States with a Two-Level Atom

    NASA Astrophysics Data System (ADS)

    Abd Al-Kader, Gamal M.

    The properties of the displaced Fock states (DFS's) superpositions are reviewed. The interaction of these states with a two-level atom in cavity with the presence of additional Kerr medium is studied. Exact general matrix elements of the time-dependent operators of a Jaynes-Cummings model (JCM), in the presence of a Kerr medium, with these states are derived. The atomic inversion and photon number distribution are discussed. The quantum entropy and the entanglement of the atom-field are investigated. The exact results are employed to perform a careful investigation of the temporal evolution of the entropy. The connection between the field entropy and the collapses and revivals of the atomic inversion has been established. The general conclusions reached are illustrated by numerical results.

  4. A simple and general strategy for generating frequency-anticorrelated photon pairs.

    PubMed

    Zhang, Xin; Xu, Chang; Ren, Zhongzhou

    2016-01-01

    Currently, two-photon excitation microscopy is the method of choice for imaging living cells within thick specimen. A remaining problem for this technique is the damage caused by the high photon flux in the excitation region. To reduce the required flux, a promising solution is to use highly frequency-anticorrelated photon pairs, which are known to induce two-photon transitions much more efficiently. It is still an open question what the best scheme is for generating such photon pairs. Here we propose one simple general strategy for this task. As an example, we show explicitly that this general strategy can be realized faithfully within the widely applicable coherently pumped Jaynes-Cummings model. It is shown quantitatively that this strategy can generate highly frequency-anticorrelated photon pairs which can dramatically enhance two-photon excitation efficiency. We believe the proposed strategy can guide new designs for generating frequency-anticorrelated photon pairs. PMID:27087255

  5. Quantum-state transmission in a cavity array via two-photon exchange

    NASA Astrophysics Data System (ADS)

    Dong, Yu-Li; Zhu, Shi-Qun; You, Wen-Long

    2012-02-01

    The dynamical behavior of a coupled cavity array is investigated when each cavity contains a three-level atom. For the uniform and staggered intercavity hopping, the whole system Hamiltonian can be analytically diagonalized in the subspace of single-atom excitation. The quantum-state transfer along the cavities is analyzed in detail for distinct regimes of parameters, and some interesting phenomena including binary transmission and selective localization of the excitation population are revealed. We demonstrate that the uniform coupling is more suitable for the quantum-state transfer. It is shown that the initial state of polariton located in the first cavity is crucial to the transmission fidelity, and the local entanglement depresses the state transfer probability. Exploiting the metastable state, the distance of the quantum-state transfer can be much longer than that of Jaynes-Cummings-Hubbard model. A higher transmission probability and longer distance can be achieved by employing a class of initial encodings and final decodings.

  6. Pfaffian states in coupled atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Hayward, Andrew L. C.; Martin, Andrew M.

    2016-05-01

    Coupled atom-cavity arrays, such as those described by the Jaynes-Cummings-Hubbard model, have the potential to emulate a wide range of condensed-matter phenomena. In particular, the strongly correlated states of the fractional quantum Hall effect can be realized. At some filling fractions, the fraction quantum Hall effect has been shown to possess ground states with non-Abelian excitations. The most well studied of these states is the Pfaffian state of Moore and Read G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991), 10.1016/0550-3213(91)90407-O, which is the ground state of a Hall liquid with a three-body interaction. We show how an effective three-body interaction can be generated within the cavity QED framework, and that a Pfaffian-like ground state of these systems exists.

  7. Photon transfer in ultrastrongly coupled three-cavity arrays

    NASA Astrophysics Data System (ADS)

    Felicetti, S.; Romero, G.; Rossini, D.; Fazio, R.; Solano, E.

    2014-01-01

    We study the photon transfer along a linear array of three coupled cavities where the central one contains an interacting two-level system in the strong- and ultrastrong-coupling regimes. We find that an inhomogeneously coupled array forbids a complete single-photon transfer between the external cavities when the central one performs a Jaynes-Cummings dynamics. This is not the case in the ultrastrong-coupling regime, where the system exhibits singularities in the photon transfer time as a function of the cavity-qubit coupling strength. Our model can be implemented within the state-of-the-art circuit quantum electrodynamics technology and it represents a building block for studying photon state transfer through scalable cavity arrays.

  8. Adiabatic entanglement in two-atom cavity QED

    SciTech Connect

    Lazarou, C.; Garraway, B. M.

    2008-02-15

    We analyze the problem of a single mode field interacting with a pair of two level atoms. The atoms enter and exit the cavity at different times. Instead of using constant coupling, we use time-dependent couplings which represent the spatial dependence of the mode. Although the system evolution is adiabatic for most of the time, a previously unstudied energy crossing plays a key role in the system dynamics when the atoms have a time delay. We show that conditional atom-cavity entanglement can be generated, while for large photon numbers the entangled system has a behavior which can be mapped onto the single atom Jaynes-Cummings model. Exploring the main features of this system we propose simple and fairly robust methods for entangling atoms independently of the cavity, for quantum state mapping, and for implementing SWAP and controlled-NOT (CNOT) gates with atomic qubits.

  9. A simple and general strategy for generating frequency-anticorrelated photon pairs

    PubMed Central

    Zhang, Xin; Xu, Chang; Ren, Zhongzhou

    2016-01-01

    Currently, two-photon excitation microscopy is the method of choice for imaging living cells within thick specimen. A remaining problem for this technique is the damage caused by the high photon flux in the excitation region. To reduce the required flux, a promising solution is to use highly frequency-anticorrelated photon pairs, which are known to induce two-photon transitions much more efficiently. It is still an open question what the best scheme is for generating such photon pairs. Here we propose one simple general strategy for this task. As an example, we show explicitly that this general strategy can be realized faithfully within the widely applicable coherently pumped Jaynes-Cummings model. It is shown quantitatively that this strategy can generate highly frequency-anticorrelated photon pairs which can dramatically enhance two-photon excitation efficiency. We believe the proposed strategy can guide new designs for generating frequency-anticorrelated photon pairs. PMID:27087255

  10. The effects of damping on the approximate teleportation and nonclassical properties in the atom-field interaction

    NASA Astrophysics Data System (ADS)

    Daneshmand, R.; Tavassoly, M. K.

    2016-04-01

    Based on the Jaynes-Cummings interaction model of a Ξ-type three-level atom with a single-mode quantized field, the effect of damping on teleportation is studied. To achieve this purpose, we have taken into account the decay rates of the two upper atomic levels. The influences of such atomic damping on the teleportation of atomic as well as field states are evaluated. It is shown that, by increasing the damping parameter the fidelity and success probability is decreased. Finally, beside our main motivation of the paper, we end it with some marginal, however, of interest purposes like the analyzing the dynamics of a few interesting physical properties such as entanglement, Mandel parameter and quadrature squeezing in the presence of damping.

  11. Quantitative structural markers of colorectal dysplasia in a cross sectional study of ex vivo murine tissue using label-free multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Prieto, Sandra P.; Greening, Gage J.; Lai, Keith K.; Muldoon, Timothy J.

    2016-03-01

    Two-photon excitation of label-free tissue is of increasing interest, as advances have been made in endoscopic clinical application of multiphoton microscopy, such as second harmonic generation (SHG) scanning endoscopy used to monitor cervical collagen in mice1. We used C57BL mice as a model to investigate the progression of gastrointestinal structures, specifically glandular area and circularity. We used multiphoton microscopy to image ex-vivo label-free murine colon, focusing on the collagen structure changes over time, in mice ranging from 10 to 20 weeks of age. Series of images were acquired within the colonic and intestinal tissue at depth intervals of 20 microns from muscularis to the epithelium, up to a maximum depth of 180 microns. The imaging system comprised a two-photon laser tuned to 800nm wavelength excitation, and the SHG emission was filtered with a 400/40 bandpass filter before reaching the photomultiplier tube. Images were acquired at 15 frames per second, for 200 to 300 cumulative frames, with a field of view of 261um by 261um, and 40mW at sample. Image series were compared to histopathology H&E slides taken from adjacent locations. Quantitative metrics for determining differences between murine glandular structures were applied, specifically glandular area and circularity.

  12. Quantitative structural markers of colorectal dysplasia in a cross sectional study of ex vivo murine tissue using label-free multiphoton microscopy

    PubMed Central

    Prieto, Sandra P.; Greening, Gage J.; Lai, Keith K.; Muldoon, Timothy J.

    2016-01-01

    Two-photon excitation of label-free tissue is of increasing interest, as advances have been made in endoscopic clinical application of multiphoton microscopy, such as second harmonic generation (SHG) scanning endoscopy used to monitor cervical collagen in mice1. We used C57BL mice as a model to investigate the progression of gastrointestinal structures, specifically glandular area and circularity. We used multiphoton microscopy to image ex-vivo label-free murine colon, focusing on the collagen structure changes over time, in mice ranging from 10 to 20 weeks of age. Series of images were acquired within the colonic and intestinal tissue at depth intervals of 20 microns from muscularis to the epithelium, up to a maximum depth of 180 microns. The imaging system comprised a two-photon laser tuned to 800nm wavelength excitation, and the SHG emission was filtered with a 400/40 bandpass filter before reaching the photomultiplier tube. Images were acquired at 15 frames per second, for 200 to 300 cumulative frames, with a field of view of 261um by 261um, and 40mW at sample. Image series were compared to histopathology H&E slides taken from adjacent locations. Quantitative metrics for determining differences between murine glandular structures were applied, specifically glandular area and circularity. PMID:27134336

  13. Enabling Multiphoton and Second Harmonic Generation Imaging in Paraffin-Embedded and Histologically Stained Sections

    PubMed Central

    Monaghan, Michael G.; Kroll, Sebastian; Brucker, Sara Y.

    2016-01-01

    Nonlinear microscopy, namely multiphoton imaging and second harmonic generation (SHG), is an established noninvasive technique useful for the imaging of extracellular matrix (ECM). Typically, measurements are performed in vivo on freshly excised tissues or biopsies. In this article, we describe the effect of rehydrating paraffin-embedded sections on multiphoton and SHG emission signals and the acquisition of nonlinear images from hematoxylin and eosin (H&E)-stained sections before and after a destaining protocol. Our results reveal that bringing tissue sections to a physiological state yields a significant improvement in nonlinear signals, particularly in SHG. Additionally, the destaining of sections previously processed with H&E staining significantly improves their SHG emission signals during imaging, thereby allowing sufficient analysis of collagen in these sections. These results are important for researchers and pathologists to obtain additional information from paraffin-embedded tissues and archived samples to perform retrospective analysis of the ECM or gain additional information from rare samples. PMID:27018844

  14. High-fidelity spatially resolved multiphoton counting for quantum imaging applications.

    PubMed

    Chrapkiewicz, Radosław; Wasilewski, Wojciech; Banaszek, Konrad

    2014-09-01

    We present a method for spatially resolved multiphoton counting based on an intensified camera with the retrieval of multimode photon statistics fully accounting for nonlinearities in the detection process. The scheme relies on one-time quantum tomographic calibration of the detector. Faithful, high-fidelity reconstruction of single- and two-mode statistics of multiphoton states is demonstrated for coherent states and their statistical mixtures. The results consistently exhibit classical values of the Mandel parameter and the noise reduction factor in contrast to raw statistics of camera photo-events. Detector operation is reliable for illumination levels up to the average of one detected photon per an event area-substantially higher than in previous approaches to characterize quantum statistical properties of light with spatial resolution. PMID:25166081

  15. Stepwise multi-photon activation fluorescence reveals a new method of melanoma imaging for dermatologists

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Lian, Christine; Ma, Jie; Yu, Jingyi; Gu, Zetong; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2014-02-01

    Previous research has shown that the stepwise multi-photon activated fluorescence (SMPAF) of melanin, activated by a continuous-wave (CW) mode near infrared (NIR) laser, is a low cost and reliable method of detecting melanin. SMPAF images of melanin in a mouse hair and a formalin fixed mouse melanoma were compared with conventional multiphoton fluorescence microscopy (MPFM) images and confocal reflectance microscopy (CRM) images, all of which were acquired at an excitation wavelength of 920 nm, to further prove the effectiveness of SMPAF in detecting melanin. SMPAF images add specificity for melanin detection to MPFM images and CRM images. Melanin SMPAF can be a promising technology to enable melanoma imaging for dermatologists.

  16. Semiclassical analysis of long-wavelength multiphoton processes: The periodically driven harmonic oscillator

    SciTech Connect

    Fox, Ronald F.; Vela-Arevalo, Luz V.

    2002-11-01

    The problem of multiphoton processes for intense, long-wavelength irradiation of atomic and molecular electrons is presented. The recently developed method of quasiadiabatic time evolution is used to obtain a nonperturbative analysis. When applied to the standard vector potential coupling, an exact auxiliary equation is obtained that is in the electric dipole coupling form. This is achieved through application of the Goeppert-Mayer gauge. While the analysis to this point is general and aimed at microwave irradiation of Rydberg atoms, a Floquet analysis of the auxiliary equation is presented for the special case of the periodically driven harmonic oscillator. Closed form expressions for a complete set of Floquet states are obtained. These are used to demonstrate that for the oscillator case there are no multiphoton resonances.

  17. In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles

    PubMed Central

    Nagesha, D; Laevsky, GS; Lampton, P; Banyal, R; Warner, C; DiMarzio, C; Sridhar, S

    2007-01-01

    Recent advances in nonlinear optical techniques and materials such as quantum wells, nanowires and noble-metal nanoparticles have led to advances in cellular imaging wherein various nanoparticles have been shown to improve both in vitro and in vivo visualization. In this paper, we demonstrate in vitro imaging using multi-photon photoluminescence of gold nanoparticles from two different cell types – Dictyostelium discoideum and mouse embryonic stem cells. By observing nanoparticles we show that embryonic stem cells maintained their ability to proliferate for several passages while grown in the presence of gold nanoparticles. The advantages of multi-photon luminescence using gold nanoparticles have important implications for use in stem cell proliferation experiments and in vitro experiments to monitor differentiation. PMID:18203448

  18. Multiphoton ac Stark effect in a bichromatically driven two-level atom

    NASA Astrophysics Data System (ADS)

    Rudolph, T. G.; Freedhoff, H. S.; Ficek, Z.

    1998-08-01

    We study the interaction of a two-level atom with two lasers of different frequencies and amplitudes: a strong laser of Rabi frequency 2Ω1 on resonance with the atomic transition, and a weaker laser detuned by subharmonics (2Ω1/n) of the Rabi frequency of the first. We find that under these conditions the second laser couples the dressed states created by the first in an n-photon process, resulting in ``doubly dressed'' states and in a ``multiphoton ac Stark'' effect. We calculate the eigenstates of the doubly dressed atom and their energies, and illustrate the role of this multiphoton ac Stark effect in its fluorescence, absorption, and Autler-Townes spectra.

  19. Identification of normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Chen, Zhifen; Kang, Deyong; li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Guan, Guoxian; Chen, Jianxin

    2016-01-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) as a potential diagnostic tool is attractive. MPM can effectively provide information about morphological and biochemical changes in biological tissues at the molecular level. In this paper, we attempt to identify normal and cancerous human colorectal muscularis propria by multiphoton microscopy in different sections (both in transverse and longitudinal sections). The results show that MPM can display different microstructure changes in the transverse and longitudinal sections of colorectal muscularis propria. MPM also can quantitatively describe the alteration of collagen content between normal and cancerous muscle layers. These are important pathological findings that MPM images can bring more detailed complementary information about tissue architecture and cell morphology through observing the transverse and longitudinal sections of colorectal muscularis propria. This work demonstrates that MPM can be better for identifying the microstructural characteristics of normal and cancerous human colorectal muscularis propria in different sections.

  20. Label-free identification of intestinal metaplasia in the stomach using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wu, G.; Wei, J.; Zheng, Z.; Ye, J.; Zeng, S.

    2014-06-01

    The early diagnosis of intestinal metaplasia (IM) in the stomach together with effective therapeutic interventions is crucial to reducing the mortality-rates of the patients associated with gastric cancer. However, it is challenging during conventional white-light endoscopy, and histological analysis remains the ‘gold standard’ for the final diagnosis. Here, we describe a label-free imaging method, multiphoton microscopy (MPM), for the identification of IM in the stomach. It was found that multiphoton imaging provides cellular and subcellular details to the identification of IM from normal gastric tissues. In particular, there is significant difference in the population density of goblet cells between normal and IM gastric tissues, providing substantial potential to become a quantitative intrinsic marker for in vivo clinical diagnosis of early gastric lesions. To our knowledge, this is the first demonstration of the potential of MPM for the identification of IM.

  1. Multiphoton microscopy with clearing for three dimensional histology of kidney biopsies

    PubMed Central

    Olson, Eben; Levene, Michael J.; Torres, Richard

    2016-01-01

    We present a multiphoton microscopy approach with clearing optimized for pathology evaluation producing image quality comparable to traditional histology. Use of benzyl alcohol/benzyl benzoate with 4',6-diamidino-2-phenylindole and eosin in an optimized imaging setup results in optical sections nearly indistinguishable from traditionally-cut sections. Application to human renal tissue demonstrates diagnostic-level image quality can be maintained through 1 millimeter of tissue. Three dimensional perspectives reveal changes of glomerular capsule cells not evident on single sections. Collagen-derived second harmonic generation can be visualized through entire biopsies. Multiphoton microscopy with clearing has potential for increasing the yield of histologic evaluation of biopsy specimens. PMID:27570700

  2. Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption

    NASA Astrophysics Data System (ADS)

    König, K.; Liang, H.; Berns, M. W.; Tromberg, B. J.

    1996-07-01

    We report on cell damage of single cells confined in continuous-wave (cw), near-infrared (NIR) multimode optical traps as a result of multiphoton absorption phenomena. Trapping beams at NIR wavelengths less than 800 nm are capable of damaging cells through a two-photon absorption process. Cell damage is more pronounced in multimode cw traps compared with single-frequency true cw NIR traps because of transient power enhancement by longitudinal mode beating. Partial mode locking in tunable cw Ti:sapphire lasers used as trapping beam sources can produce unstable subnanosecond pulses at certain wavelengths that amplify multiphoton absorption effects significantly. We recommend the use of single-frequency long-wavelength NIR trapping beams for optical micromanipulation of vital cells.

  3. Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas

    PubMed Central

    Gualda, Emilio J.; Vázquez de Aldana, Javier R.; Martínez-García, M. Carmen; Moreno, Pablo; Hernández-Toro, Juan; Roso, Luis; Artal, Pablo; Bueno, Juan M.

    2011-01-01

    The performance of femtosecond (fs) laser intrastromal ablation was evaluated with backscattering-mode adaptive-optics multiphoton microscopy in ex vivo chicken corneas. The pulse energy of the fs source used for ablation was set to generate two different ablation patterns within the corneal stroma at a certain depth. Intrastromal patterns were imaged with a custom adaptive-optics multiphoton microscope to determine the accuracy of the procedure and verify the outcomes. This study demonstrates the potential of using fs pulses as surgical and monitoring techniques to systematically investigate intratissue ablation. Further refinement of the experimental system by combining both functions into a single fs laser system would be the basis to establish new techniques capable of monitoring corneal surgery without labeling in real-time. Since the backscattering configuration has also been optimized, future in vivo implementations would also be of interest in clinical environments involving corneal ablation procedures. PMID:22076258

  4. Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses.

    PubMed

    Lux, Christian; Wollenhaupt, Matthias; Sarpe, Cristian; Baumert, Thomas

    2015-01-12

    Photoelectron circular dichroism (PECD) is a CD effect up to the ten-percent regime and shows contributions from higher-order Legendre polynomials when multiphoton ionization is compared to single-photon ionization. We give a full account of our experimental methodology for measuring the multiphoton PECD and derive quantitative measures that we apply on camphor, fenchone and norcamphor. Different modulations and amplitudes of the contributing Legendre polynomials are observed despite the similarity in chemical structure. In addition, we study PECD for elliptically polarized light employing tomographic reconstruction methods. Intensity studies reveal dissociative ionization as the origin of the observed PECD effect, whereas ionization of the intermediate resonance is dominating the signal. As a perspective, we suggest to make use of our tomographic data as an experimental basis for a complete photoionization experiment and give a prospect of PECD as an analytic tool. PMID:25492564

  5. High-Resolution Mosaic Imaging with Multifocal, Multiphoton Photon-Counting Microscopy

    SciTech Connect

    Chandler, E.; Hoover, E.; Field, J.; Sheetz, K.; Amir, W.; Carriles, R.; Ding, S. Y.; Squier, J.

    2009-04-10

    High-resolution mosaic imaging is performed for the first time to our knowledge with a multifocal, multiphoton, photon-counting imaging system. We present a novel design consisting of a home-built femtosecond Yb-doped KGdWO{sub 4} laser with an optical multiplexer, which is coupled with a commercial Olympus IX-71 microscope frame. Photon counting is performed using single-element detectors and an inexpensive electronic demultiplexer and counters.

  6. Two-color multiphoton ionization of diazabicyclooctane in a supersonic free jet

    NASA Astrophysics Data System (ADS)

    Fujii, Masaaki; Ebata, Takayuki; Mikami, Naohiko; Ito, Mitsuo

    1983-11-01

    Two-color multiphoton ionization (MPI) spectroscopy has been applied for diazabicyclooctane (DABCO) in a supersonic free jet. The MPI spectra due to transitions from the various vibronic levels of the S 1 (3s Rydberg) state which were excited by the first laser revealed the high Rydberg states above the adiabatic ionization potential. The ionization process and the vibrational potential of the ion are discussed.

  7. Multiphoton Process and Anomalous Potential of Cell Membrane by Laser Radiation

    NASA Technical Reports Server (NTRS)

    Zhang, Kaixi; Zhao, Qingxun; Cui, Zhiyun; Zhar, Ping; Dong, Lifang

    1996-01-01

    In this paper, by the use of quantum biology and quantum optics, the laser induced potential variation of cell membrane has been studied. Theoretically, we have found a method of calculating the monophoton and multiphoton processes in the formation of the anomalous potential of cell membrane. In contrast with the experimental results, our numerical result is in the same order. Therefore, we have found the possibility of cancer caused by the laser induced anomalous cell potential.

  8. Sample-matrix effects in infrared laser neutral desorption, multiphoton-ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Beavis, R. C.; Lindner, J.; Grotemeyer, J.; Schlag, E. W.

    1988-05-01

    Sample-matrix effects in laser evaporation of intact neutral molecules (LEIM) prior to multiphoton ionization mass spectrometry (MUPI MS) are studied. The results show that a strong influence exists in adding matrix materials to the sample upon the desorption step. Using sugars as matrix leads to a suppression of pyrolysis products in small peptides by the laser desorption. As a result mass spectrometric signals due to the pyrolysis products are avoided.

  9. Continuum generation in ultra high numerical aperture fiber with application to multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sayler, Nicholas

    Nonlinear microscopy benefits from broadband laser sources, enabling efficient excitation of an array of fluorophores, for example. This work demonstrates broadening of a narrow band input pulse (6 nm to 40 nm) centered at 1040 nm with excellent shot-to-shot stability. In a preliminary demonstration, multiphoton imaging with pulses from the fiber is performed. In particular second harmonic imaging of corn starch is performed.

  10. Live-cell multiphoton fluorescence correlation spectroscopy with an improved large Stokes shift fluorescent protein

    PubMed Central

    Guan, Yinghua; Meurer, Matthias; Raghavan, Sarada; Rebane, Aleksander; Lindquist, Jake R.; Santos, Sofia; Kats, Ilia; Davidson, Michael W.; Mazitschek, Ralph; Hughes, Thomas E.; Drobizhev, Mikhail; Knop, Michael; Shah, Jagesh V.

    2015-01-01

    We report an improved variant of mKeima, a monomeric long Stokes shift red fluorescent protein, hmKeima8.5. The increased intracellular brightness and large Stokes shift (∼180 nm) make it an excellent partner with teal fluorescent protein (mTFP1) for multiphoton, multicolor applications. Excitation of this pair by a single multiphoton excitation wavelength (MPE, 850 nm) yields well-separable emission peaks (∼120-nm separation). Using this pair, we measure homo- and hetero-oligomerization interactions in living cells via multiphoton excitation fluorescence correlation spectroscopy (MPE-FCS). Using tandem dimer proteins and small-molecule inducible dimerization domains, we demonstrate robust and quantitative detection of intracellular protein–protein interactions. We also use MPE-FCCS to detect drug–protein interactions in the intracellular environment using a Coumarin 343 (C343)-conjugated drug and hmKeima8.5 as a fluorescence pair. The mTFP1/hmKeima8.5 and C343/hmKeima8.5 combinations, together with our calibration constructs, provide a practical and broadly applicable toolbox for the investigation of molecular interactions in the cytoplasm of living cells. PMID:25877871

  11. Multiphoton fragmentation and ionization of CF{sub 2}HCl molecules and clusters by UV radiation

    SciTech Connect

    Lokhman, V. N.; Ogurok, D. D.; Ryabov, E. A.

    2006-07-15

    The results of experimental studies of multiphoton ionization of CF{sub 2}HCl molecules and clusters by UV laser radiation in the wavelength range 217-236 nm are reported. In the case of molecules, the main reaction products are CF{sub 2}H{sup +} and CF{sup +} ions as well as atomic chlorine. It is found that the spectra of the products of ionization of free molecules and molecules condensed into clusters differ qualitatively: multiphoton ionization of clusters does not yield CF{sub 2}H{sup +} ions. The dependences of the ion yield on the intensity of laser radiation and its wavelength are measured. The effect of a constant electric field and the radiation spectral width on the multiphoton ionization process is demonstrated. The shape of the velocity distributions is determined for a number of products. A strong anisotropy is detected in the reaction of formation of CF{sub 2}H{sup +} ions. Possible mechanisms for these processes are discussed.

  12. Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Reddy, J. N. Babu; Naik, V. B.; Elizabeth, Suja; Bhat, H. L.; Venkatram, N.; Rao, D. Narayana

    2008-09-01

    Nonlinear absorption and refraction characteristics of cesium lithium borate (CsLiB6O10) crystal have been studied using Z-scan technique. Ti:sapphire laser with 110 fs pulse width operating at 800 nm wavelength and pulse repetition rate of 1 kHz is used as the source of photons. Intensity of the laser pulse is varied from 0.541 to 1.283 T W/cm2 to estimate the intensity dependence of multiphoton absorption coefficients. Using the theory of multiphoton absorption proposed by Sutherland [Handbook of Nonlinear Optics, in 2nd ed., edited by D. G. McLean and S. Kirkpatrick, Dekker, New York (2003)], found that open aperture Z-scan data fit well for the five-photon absorption (5PA) process. 5PA coefficients are obtained by fitting the expressions into the open aperture experimental data for various peak intensities (I00). The nonlinear refractive index n2 estimated from closed aperture Z-scan experiment is 1.075×10-4 cm2/T W at an input peak intensity of 0.723 T W/cm2. The above experiment when repeated with a 532 nm, 6 ns pulsed laser led to an irreversible damage of the sample resulting in an asymmetric open aperture Z-scan profile. This indicates that it is not possible to observe multiphoton absorption in this regime of pulse width using 532 nm laser.

  13. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  14. Real-time digital signal processing in multiphoton and time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Warren, Warren S.; Fischer, Martin C.

    2016-03-01

    The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost (50-200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.

  15. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles

    PubMed Central

    Seemann, K.M.; Kuhn, B.

    2014-01-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5. PMID:25071977

  16. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution.

    PubMed

    Li, Mingjie; Zhi, Min; Zhu, Hai; Wu, Wen-Ya; Xu, Qing-Hua; Jhon, Mark Hyunpong; Chan, Yinthai

    2015-01-01

    Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry-Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold. These nanoplatelets possess very large gain cross-sections of 7.3 × 10(-14) cm(2) and ultralow lasing thresholds of 1.2 and 4.3 mJ cm(-2) under two-photon (λexc=800 nm) and three-photon (λexc=1.3 μm) excitation, respectively. The highly polarized emission from the nanoplatelet laser shows no significant photodegradation over 10(7) laser shots. These findings constitute a more comprehensive understanding of the utility of colloidal semiconductor nanoparticles as the gain medium in high-performance frequency-upconversion liquid lasers. PMID:26419950

  17. Infrared multiphoton dissociation of unsubstituted metal carbonyls at 5 μm

    NASA Astrophysics Data System (ADS)

    Au, Mei-Kuen; Hackett, P. A.; Humphries, M.; John, P.

    1984-01-01

    A frequency-doubled carbon dioxide laser of modest output energy (1 mJ) has been used to study, for the first time, the infrared multiphoton absorption by, and dissociation of, the unsubstituted carbonyls of vanadium, chromium, iron, nickel, molybdenum, and tungsten. The multiphoton absorption cross-sections measured for Ni(CO)4, Fe(CO)5, Cr(CO)6, Mo(CO)6, and V(CO)6 are high (σ˜2×10-17) and ensure facile multiphoton dissociation. In focussed beams a pressure independent reaction yield proportional to the 1.5 power of the beam energy is observed for Fe(CO)5, Cr(CO)6, and Mo(CO)6 implying threshold fluences of only 32, 25, and 26 mJ cm-2, respectively. The stoichiometry of the reaction, observed by a pressure measurement technique, is consistent with production of metal atoms and carbon monoxide as final products for Ni(CO)4, Fe(CO)5, Cr(CO)6, and Mo(CO)6. This extensive decarbonylation along the ground state surface is consistent with recent studies of the photochemistry of these molecules from excited electronic states.

  18. Role of quantum trajectory in high-order harmonic generation in the Keldysh multiphoton regime

    NASA Astrophysics Data System (ADS)

    Li, Peng-Cheng; Chu, Shih-I.

    2016-05-01

    We present a systematic study of quantum-trajectory analysis of high-order harmonic generation (HHG) by solving accurately the time-dependent Schrödinger equation for a hydrogen atom in the multiphoton regime where the Keldysh parameter is greater unity. We perform the time-frequency transform to explore the spectral characteristics of the HHG. We find that the time-frequency spectra exhibit a broken distribution at above-threshold HHG due to the competition associated with the short- and long-trajectories when the ionization process is pushed from the multiphoton regime into the tunneling regime, it implies that the harmonic emission in the broken regions of time-frequency spectra are suppressed. In addition, we present a time-dependent density-functional theory approach for an ab initio study of the effect of correlated multielectron responses on the harmonic emission of Ar atom associated with the quantum trajectories in the multiphoton regime. This work is partially supported by DOE.

  19. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution

    PubMed Central

    Li, Mingjie; Zhi, Min; Zhu, Hai; Wu, Wen-Ya; Xu, Qing-Hua; Jhon, Mark Hyunpong; Chan, Yinthai

    2015-01-01

    Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry–Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold. These nanoplatelets possess very large gain cross-sections of 7.3 × 10−14 cm2 and ultralow lasing thresholds of 1.2 and 4.3 mJ cm−2 under two-photon (λexc=800 nm) and three-photon (λexc=1.3 μm) excitation, respectively. The highly polarized emission from the nanoplatelet laser shows no significant photodegradation over 107 laser shots. These findings constitute a more comprehensive understanding of the utility of colloidal semiconductor nanoparticles as the gain medium in high-performance frequency-upconversion liquid lasers. PMID:26419950

  20. In vivo multiphoton imaging of collagen remodeling after microablative fractional rejuvenation

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Kapsokalyvas, Dimitrios; Troiano, Michela; Campolmi, Piero; Morini, Cristiano; Cosci, Alessandro; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.

    2011-03-01

    The potential of multiphoton microscopy in providing in-vivo early diagnosis of skin lesions has already been demonstrated, while its capability in therapy follow-up has not been deeply explored so far. Two-photon excited fluorescence and second-harmonic generation microscopy were used in combination to follow-up collagen remodeling after laser micro-ablative rejuvenation. Treated regions of volunteers were imaged with multiphoton microscopy before and after treatment, and we found a strong age-dependence of the treatment effectiveness. In particular, the photorejuvenating effect was negligible in young subjects (< 30 years), whereas a significant production of new collagen was observed in aged subjects (> 70 years). Quantification of the amount of newly produced collagen and its organization were performed by means of visual examination of two-photon images. The obtained results demonstrate the performance of laser fractional micro-ablative rejuvenation without the need of an invasive biopsy as well as the wide applicability range of applications for multiphoton microscopy in clinical dermatology.

  1. Arbitrary two-dimensional multiphoton excitation patterns with temporally focused digital holograms

    NASA Astrophysics Data System (ADS)

    Oron, Dan; Papagiakoumou, Eirini; de-Sars, Vincent; Emiliani, Valentina

    2009-02-01

    Multiphoton excitation has recently found application in the fields of bioimaging, uncaging and lithography. In order to fully exploit the advantages of nonlinear excitation, in particular the axial resolution due to nonlinearity, most systems to date operate with point or multipoint excitation, while scanning either the laser beam or the sample to generate the illumination pattern. Here we combine the recently introduced technique of scanningless multiphoton excitation by temporal focusing with recent advances in digital holography to generate arbitrarily shaped, depth resolved, two-dimensional excitation patterns completely without scanning. This is of particular importance in applications requiring uniform excitation of large areas over short time scales, such as neuronal activation by multiphoton uncaging of neurotransmitters. We present an experimental and theoretical analysis of the effect of spatial patterning on the depth resolution achieved in temporal focusing microscopy. It is shown that the depth resolution for holographic excitation is somewhat worse than that achieved for uniform illumination. This is also accompanied by the appearance of a speckle pattern at the temporal focal plane. The origin of the two effects, as well as means to overcome them, are discussed.

  2. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    NASA Astrophysics Data System (ADS)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  3. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  4. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei

    2011-11-01

    We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.

  5. Design, synthesis, characterization and applications of multi-photon absorbing chromophores

    NASA Astrophysics Data System (ADS)

    Zheng, Qingdong

    Recent development in multi-photon based applications including optical power limiting, frequency up-conversion lasing, three-dimensional data storage, two-photon fluorescence microscopy and two-photon photodynamic therapy has benefited a lot from a number of chromophores with large multi-photon absorption. This thesis was focused on the development of novel two- and three-photon active chromophores and their applications. Chapter 1 describes a theoretical background of multi-photon absorption, and recent development of multi-photon based applications. Some molecular design strategies were proposed after a literature review of chromophores with large two-photon absorption. In Chapter 2, a series of stilbazolium salts with varying electron donors and anions were synthesized and characterized. The two-photon absorption and two-photon pumped cavity lasing properties for these dyes were studied by using 1064 nm nano-second laser beam. By using tunable femto-second laser, three-photon pumped cavity-less lasing properties of these dyes have also been comprehensively studied. Four-photon pumped stimulated emission was achieved in some of these stilbazolium dyes. Unsymmetrical emission behaviors under 3- and 4-photon pump conditions for all these stilbazolium dyes were observed, explained and verified. In Chapter 3, DNA was successfully used as a matrix for one-, two-, and three-photon pumped stimulated emission or lasing by intercalating a multi-photon active chromophore. In Chapter 4, it is experimentally shown that both two- and three-photon absorption in a highly concentrated chromophore system can be more efficiently utilized to accomplish optical power limiting and stabilization at laser wavelengths of 1.064 mum and ˜1.3 mum, respectively. In Chapter 5, three novel 1,10-phenanthroline containing pi-conjugated chromophores with varied electron donors were synthesized and characterized together with their corresponding nickel(II) chelated complexes. Large two

  6. Generation and purification of maximally entangled atomic states in optical cavities

    SciTech Connect

    Lougovski, P.; Walther, H.; Solano, E.

    2005-01-01

    We present a probabilistic scheme for generating and purifying maximally entangled states of two atoms inside an optical cavity via no-photon detection at the cavity output, where ideal detectors are not required. The intermediate mixed states can be continuously purified so as to violate Bell inequalities in a parametrized manner. The scheme relies on an additional strong-driving field that realizes, atypically, simultaneous Jaynes-Cummings and anti-Jaynes-Cummings interactions.

  7. In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation

    NASA Astrophysics Data System (ADS)

    Ait El Madani, Hassan; Tancrède-Bohin, Emmanuelle; Bensussan, Armand; Colonna, Anne; Dupuy, Alain; Bagot, Martine; Pena, Ana-Maria

    2012-02-01

    Multiphoton microscopy has emerged in the past decade as a promising tool for noninvasive skin imaging. Our aim was to evaluate the potential of multiphoton microscopy to detect topical corticosteroids side effects within the epidermis and to provide new insights into their dynamics. Healthy volunteers were topically treated with clobetasol propionate on a small region of their forearms under overnight occlusion for three weeks. The treated region of each patient was investigated at D0, D7, D15, D22 (end of the treatment), and D60. Our study shows that multiphoton microscopy allows for the detection of corticoid-induced epidermis modifications: thinning of stratum corneum compactum and epidermis, decrease of keratinocytes size, and changes in their morphology from D7 to D22. We also show that multiphoton microscopy enables in vivo three-dimensional (3-D) quantitative assessment of melanin content. We observe that melanin density decreases during treatment and almost completely disappears at D22. Moreover, these alterations are reversible as they are no longer present at D60. Our study demonstrates that multiphoton microscopy is a convenient and powerful tool for noninvasive 3-D dynamical studies of skin integrity and pigmentation.

  8. In vivo Clonal Tracking of Hematopoietic Stem and Progenitor Cells Marked by Five Fluorescent Proteins using Confocal and Multiphoton Microscopy

    PubMed Central

    Malide, Daniela; Métais, Jean-Yves; Dunbar, Cynthia E.

    2014-01-01

    We developed and validated a fluorescent marking methodology for clonal tracking of hematopoietic stem and progenitor cells (HSPCs) with high spatial and temporal resolution to study in vivo hematopoiesis using the murine bone marrow transplant experimental model. Genetic combinatorial marking using lentiviral vectors encoding fluorescent proteins (FPs) enabled cell fate mapping through advanced microscopy imaging. Vectors encoding five different FPs: Cerulean, EGFP, Venus, tdTomato, and mCherry were used to concurrently transduce HSPCs, creating a diverse palette of color marked cells. Imaging using confocal/two-photon hybrid microscopy enables simultaneous high resolution assessment of uniquely marked cells and their progeny in conjunction with structural components of the tissues. Volumetric analyses over large areas reveal that spectrally coded HSPC-derived cells can be detected non-invasively in various intact tissues, including the bone marrow (BM), for extensive periods of time following transplantation. Live studies combining video-rate multiphoton and confocal time-lapse imaging in 4D demonstrate the possibility of dynamic cellular and clonal tracking in a quantitative manner. PMID:25145579

  9. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    PubMed Central

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-01-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues. PMID:26631592

  10. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  11. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-01-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  12. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  13. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy

    PubMed Central

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-01-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  14. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy.

    PubMed

    Rupprecht, Peter; Prendergast, Andrew; Wyart, Claire; Friedrich, Rainer W

    2016-05-01

    There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio. PMID:27231612

  15. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures.

    PubMed

    Walsh, A J; Tielens, A G G M; Ruth, A A

    2016-07-14

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp(3)/sp(2) hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ. PMID:27421401

  16. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures

    NASA Astrophysics Data System (ADS)

    Walsh, A. J.; Tielens, A. G. G. M.; Ruth, A. A.

    2016-07-01

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp3/sp2 hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  17. Label-free and depth resolved optical sectioning of iron-complex deposits in sickle cell disease splenic tissue by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Vigil, Genevieve D.; Adami, Alexander J.; Ahmed, Tahsin; Khan, Aamir; Chapman, Sarah; Andemariam, Biree; Thrall, Roger S.; Howard, Scott S.

    2015-06-01

    Multiphoton microscopy (MPM) imaging of intrinsic two-photon excited fluorescence (TPEF) is performed on humanized sickle cell disease (SCD) mouse model splenic tissue. Distinct morphological and spectral features associated with SCD are identified and discussed in terms of diagnostic relevance. Specifically, spectrally unique splenic iron-complex deposits are identified by MPM; this finding is supported by TPEF spectroscopy and object size to standard histopathological methods. Further, iron deposits are found at higher concentrations in diseased tissue than in healthy tissue by all imaging methods employed here including MPM, and therefore, may provide a useful biomarker related to the disease state. These newly characterized biomarkers allow for further investigations of SCD in live animals as a means to gain insight into the mechanisms impacting immune dysregulation and organ malfunction, which are currently not well understood.

  18. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways

    PubMed Central

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-01-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  19. Calculations of hydrogen atom multiphoton energy level shifts, transition amplitudes and ionization probabilities

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Chang, C. S.

    2008-07-01

    Analyses of the resonant multiphoton ionization of atoms require knowledge of ac Stark energy shifts and of multiphoton, bound-to-bound state, transition amplitudes. In this paper, we consider the three-photon photoionization of hydrogen atoms at frequencies that are at and surrounding the two-photon 1s to 2s resonance. AC energy shift sums of both the 1s and 2s states are calculated as a function of the laser frequency along with two-photon 1s → 2s resonant transition amplitude sums. These quantities are calculated using an extended version of a method, which has often been employed in a variety of ways, of calculating these sums by expressing them in terms of solutions to a variety of differential equations that are derived from the different sums being evaluated. We demonstrate how exact solutions are obtained to these differential equations, which lead to exact evaluations of the corresponding sums. A variety of different cases are analysed, some involving analytic continuation, some involving real number analysis and some involving complex number analysis. A dc Stark sum calculation of the 2s state is carried out to illustrate the case where analytic continuation, pole isolation and pole subtraction are required and where the calculation can be carried out analytically; the 2s state, ac Stark shift sum calculations involve a case where no analytic continuation is required, but where the solution to the differential equation produces complex numbers owing to the finite photoionization lifetime of the 2s state. Results from these calculations are then used to calculate three-photon ionization probabilities of relevance to an analysis of the multiphoton ionization data published by Kyrala and Nichols (1991 Phys. Rev. A 44, R1450).

  20. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways.

    PubMed

    Kretschmer, Sarah; Pieper, Mario; Hüttmann, Gereon; Bölke, Torsten; Wollenberg, Barbara; Marsh, Leigh M; Garn, Holger; König, Peter

    2016-08-01

    The basic understanding of inflammatory airway diseases greatly benefits from imaging the cellular dynamics of immune cells. Current imaging approaches focus on labeling specific cells to follow their dynamics but fail to visualize the surrounding tissue. To overcome this problem, we evaluated autofluorescence multiphoton microscopy for following the motion and interaction of cells in the airways in the context of tissue morphology. Freshly isolated murine tracheae from healthy mice and mice with experimental allergic airway inflammation were examined by autofluorescence multiphoton microscopy. In addition, fluorescently labeled ovalbumin and fluorophore-labeled antibodies were applied to visualize antigen uptake and to identify specific cell populations, respectively. The trachea in living mice was imaged to verify that the ex vivo preparation reflects the in vivo situation. Autofluorescence multiphoton microscopy was also tested to examine human tissue from patients in short-term tissue culture. Using autofluorescence, the epithelium, underlying cells, and fibers of the connective tissue, as well as blood vessels, were identified in isolated tracheae. Similar structures were visualized in living mice and in the human airway tissue. In explanted murine airways, mobile cells were localized within the tissue and we could follow their migration, interactions between individual cells, and their phagocytic activity. During allergic airway inflammation, increased number of eosinophil and neutrophil granulocytes were detected that moved within the connective tissue and immediately below the epithelium without damaging the epithelial cells or connective tissues. Contacts between granulocytes were transient lasting 3 min on average. Unexpectedly, prolonged interactions between granulocytes and antigen-uptaking cells were observed lasting for an average of 13 min. Our results indicate that autofluorescence-based imaging can detect previously unknown immune cell

  1. Characterizing germania concentration and structure in fiber soot using multiphoton microscopy and spectroscopy technology

    NASA Astrophysics Data System (ADS)

    Chen, Minghan; Li, Ming-Jun; Liu, Anping

    2015-02-01

    Germania doping is commonly used in the core of optical fiber due to its advantages compared to other materials such as superior transparency in near-infrared telecommunication wavelength region. During fiber preform manufacturing using the outside vapor deposition (OVD) process, Ge is doped into a silica soot preform by chemical vapor deposition. Since the Ge doping concentration profile is directly correlated with the fiber refractive index profile, its characterization is critical for the fiber industry. Electron probe micro-analyzer (EPMA) is a conventional analysis method for characterizing the Ge concentration profile. However, it requires extensive sample preparation and lengthy measurement. In this paper, a multiphoton microscopy technique is utilized to measure the Ge doping profile based on the multiphoton fluorescence intensity of the soot layers. Two samples, one with ramped and another with stepped Ge doping profiles were prepared for measurements. Measured results show that the technique is capable of distinguishing ramped and stepped Ge doping profiles with good accuracy. In the ramped soot sample, a sharp increment of doping level was observed in about 2 mm range from soot edge followed by a relative slow gradient doping accretion. As for the stepped doping sample, step sizes ranging from around 1 mm (at soot edge) to 3 mm (at soot center) were observed. All the measured profiles are in close agreement with that of the EPMA measurements. In addition, both multiphoton fluorescence (around 420 nm) and sharp second harmonic generations (at 532 nm) were observed, which indicates the co-existence of crystal and amorphous GeO2.

  2. In situ multiphoton microscopy for monitoring femtosecond laser eye surgery in the human cornea and sclera

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Albert, Olivier; Giulieri, Damien; Donate, David; May, Frank; Giraud, Jean-Marie; Legeais, Jean-Marc

    2005-08-01

    We present a multiphoton imaging system mounted on a microsurgery experimental set-up using a Nd:glass femtosecond laser. The system permits to induce laser incisions in human cornea and sclera and to perform nonlinear imaging during the intervention. The laser is a chirped pulse amplification (CPA) system with a regenerative amplifier delivering pulses at a wavelength of 1.06 μm, pulse durations of 400 fs and a maximum energy of 60 μJ at repetition rates up to 10 kHz. The delivery system provides spot sizes down to the micron range. The samples are human corneas retracted from the transplant circuit mounted on a moveable anterior chamber system. Photons generated by non-linear processes in the cornea travel backwards through the beam delivery optics and are captured by a photomultiplier tube behind a dichroic mirror. The signal is filtered by a lock-in amplifier tuned to the laser repetition rate. Scanning the sample permits the acquisition of three-dimensional microscopic images. Above the incision threshold the set-up permits to induce laser cuts in human cornea following complex geometries. Below the threshold the laser pulses create secondary photons by the stimulation of non-linear optical processes in the samples which could be identified as being predominantly second harmonic generation (SHG). The in situ images obtained from the multi-photon module permit to control and optimise the surgical intervention. The combination of multiphoton imaging and corneal surgery necessitates only minimal modifications of the optical system of a femtosecond surgical laser system. A combined system significantly improves parameter control and permits the monitoring of the surgical procedure.

  3. 5-HT spatial distribution imaging with multiphoton excitation of 5-HT correlative visible fluorescence in live cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Zeng, Shaoqun; Liu, Yafeng; Zhou, Wei; Chen, Tongsheng; Luo, Qingming

    2002-04-01

    The autofluorescence of 5-Hydroxytryptamine (5-HT) loaded rat mucosal mast cells (RBL-2H3 cells) is imaged with multiphoton excitation laser scanning microscope (MPELSM). 5-HT correlative visible fluorescence (Fco-vis) excited with 740-nm multiphoton excitation is observed in live cells for the first time, and the generating mechanism of 5-HT Fco-vis is studied. The spatial distribution of 5-HT in live cells is imaged at high spatial resolution in our experiment, which provides a new way to study the correlation between 5-HT spatial distribution and content, and the cellular functional state in live tissue or cells.

  4. Enhanced high-order-harmonic generation and wave mixing via two-color multiphoton excitation of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Avetissian, H. K.; Avchyan, B. R.; Mkrtchian, G. F.

    2016-07-01

    We consider harmonics generation and wave mixing by two-color multiphoton resonant excitation of three-level atoms and molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor harmonics generation is investigated. The obtained analytical results on the basis of a generalized rotating wave approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atoms and homonuclear diatomic molecular ions show that one can achieve efficient generation of moderately high multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.

  5. Imaging the bone marrow stem cells morphogenesis in PGA scaffold by multiphoton autofluorescence and second harmonic (SHG) imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hsuan-Shu; Teng, Shu-Wen; Chen, Hsiao-Ching; Lo, Wen; Sun, Yen; Lin, Tze-Yu; Chiou, Ling-Ling; Jiang, Ching-Chuan; Dong, Chen-Yuan

    2006-02-01

    The ability to image tissue engineering products without damaging histological procedures is important for the understanding of the dynamics of tissue reorganization and formation. In this work, we test the ability of multiphoton autofluorescence and second harmonic generation microscopy to image engineered tissues following chrondrogenic induction. The system we used is human bone marrow stem cells seeded in the scaffold polyglycolic acid (PGA). Our results show that autofluorescence can be used to image cells while second harmonic generation signal can be used to visualize the synthesis of extracellular matrix. This approach demonstrates the ability of multiphoton imaging in the study of tissue engineering products.

  6. Spin-statistic selection rules for multiphoton transitions: Application to helium atoms

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, T.; Solovyev, D.; Labzowsky, L.; Plunien, G.

    2016-01-01

    A theoretical investigation of the three-photon transition rates 2 1P1→2 1S0,1 1S0 and 2 3P2→2 1S0,1 1S0 for the helium atom is presented. Photon energy distributions and precise values of the nonrelativistic transition rates are obtained with employment of correlated wave functions of the Hylleraas type. The possible experiments for the tests of the Bose-Einstein statistics for multiphoton systems are discussed.

  7. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  8. Characterization of corneal damage from Pseudomonas aeruginosa infection by the use of multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Lin; Chen, Wei-Liang; Lo, Wen; Chen, Shean-Jen; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2010-11-01

    Using multiphoton autofluorescence (MAF) and second harmonic generation (SHG) microscopy, we investigate the morphology and the structure of the corneal epithelium and stroma collagen of bovine cornea following injection of Pseudomonas aeruginosa. We found that corneal epithelial cells are damaged and stromal collagen becoming increasingly autofluorescent with time. We also characterized infected cornea cultured for 0, 6, 12, and 24 h by quantitative ratiometric MAF to SHG index (MAFSI) analysis. MAFSI results show that the destruction of the stromal collagen corresponds to a decrease in SHG intensity and increase of MAF signal with time.

  9. Characterizing collagen-based materials modified by glycation: a multiphoton optical image guided spectroscopy method

    NASA Astrophysics Data System (ADS)

    Hwang, Yu-Jer; Granelli, Joseph; Flores, Christina; Lyubovitsky, Julia

    2011-02-01

    In spite of the adverse ageing effects of glycation in vivo, in vitro this process is widely employed to increase stiffness and strength of tissues' and artificial scaffolds'. In-situ optical characterization methods that report on the structures within these materials could clarify the effects of glycation. We employed one-photon fluorescence and multiphoton microscopy method that combined two-photon fluorescence and second harmonic generation signals to characterize collagen hydrogels modified with glyceraldehyde, ribose and glucose. We observed an increase in the in situ fluorescence as well as structural alterations within the materials during the course of glycation.

  10. Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources

    SciTech Connect

    Yang Jian; Zhang Han; Peng Chengzhi; Chen Zengbing; Bao Xiaohui; Chen Shuai; Pan Jianwei

    2009-10-15

    In this paper, we report a realization of synchronization-free quantum teleportation and narrowband three-photon entanglement through interfering narrowband photon sources. Since both the single-photon and the entangled photon pair utilized are completely autonomous, it removes the requirement of high-demanding synchronization techniques in long-distance quantum communication with pulsed spontaneous parametric down-conversion sources. The frequency linewidth of the three-photon entanglement realized is on the order of several MHz, which matches the requirement of atomic ensemble based quantum memories. Such a narrowband multiphoton source will have applications in some advanced quantum communication protocols and linear optical quantum computation.

  11. Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles

    PubMed Central

    Gittard, Shaun D; Miller, Philip R; Boehm, Ryan D; Ovsianikov, Aleksandr; Chichkov, Boris N; Heiser, Jeremy; Gordon, John; Monteiro-Riviere, Nancy A; Narayan, Roger J

    2010-01-01

    Due to their ability to serve as fluorophores and drug delivery vehicles, quantum dots are a powerful tool for theranostics-based clinical applications. In this study, microneedle devices for transdermal drug delivery were fabricated by means of two-photon polymerization of an acrylate-based polymer. We examined proliferation of cells on this polymer using neonatal human epidermal keratinocytes and human dermal fibroblasts. The microneedle device was used to inject quantum dots into porcine skin; imaging of the quantum dots was performed using multiphoton microscopy. PMID:21413181

  12. Imaging NO elimination in the infrared multiphoton dissociation of nitroalkanes and alkyl nitrites

    NASA Astrophysics Data System (ADS)

    Fernando, Ravin; Ariyasingha, Nuwandi M.; Suits, Arthur G.

    2016-02-01

    We present a DC slice imaging study of the decomposition of C2, C3 and C4 nitroalkanes and alkyl nitrites, focusing on the NO elimination channel, possibly a minor pathway. Infrared multiphoton dissociation (IRMPD) is used to induce dissociation on the ground electronic state under collisionless conditions. The channels that produced NO as a product were studied and compared among the target molecules to gain a better understanding of the isomerization of the nitroalkanes prior to dissociation. Trends in the total translational energy and NO rotational temperatures obtained from the images are discussed.

  13. Coherent Scattering of a Multiphoton Quantum Superposition by a Mirror BEC

    SciTech Connect

    De Martini, Francesco; Sciarrino, Fabio; Vitelli, Chiara; Cataliotti, Francesco S.

    2010-02-05

    We present the proposition of an experiment in which the multiphoton quantum superposition consisting of Napprox =10{sup 5} particles generated by a quantum-injected optical parametric amplifier, seeded by a single-photon belonging to an Einstein-Podolsky-Rosen entangled pair, is made to interact with a mirror-Bose-Einstein condensate (BEC) shaped as a Bragg interference structure. The overall process will realize a macroscopic quantum superposition involving a microscopic single-photon state of polarization entangled with the coherent macroscopic transfer of momentum to the BEC structure, acting in spacelike separated distant places.

  14. Ultrasensitive detection of atmospheric constituents by supersonic molecular beam, multiphoton ionization, mass spectroscopy.

    PubMed

    Syage, J A; Pollard, J E; Cohen, R B

    1987-09-01

    An ultrasensitive detection method for atmospheric monitoring has been developed based on the technique of supersonic molecular beam, resonance enhanced multiphoton ionization, and time-of-flight mass spectroscopy (MB/REMPI/TOFMS). Several organophosphonate and organosulfide compounds, representing simulants to a class of toxic compounds, were studied. Detection levels as low as 300 ppt (dimethyl sulfide) were obtained. Single-vibronic-level REMPI of the cooled molecules in conjunction with TOFMS provided selectivity of ~10(4) against chemically similar compounds in humid air expansions. The fragment ions formed by REMPI excitation are shown for diisopropyl methylphosphonate to depend strongly on the resonant intermediate state of the neutral molecule. PMID:20490096

  15. Identification of dirty necrosis in colorectal carcinoma based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Li, Lianhuang; Jiang, Weizhong; Yang, Yinghong; Chen, Zhifen; Feng, Changyin; Li, Hongsheng; Guan, Guoxian; Chen, Jianxin

    2014-06-01

    Dirty necrosis within glandular lumina is often considered as a characteristic of colorectal carcinomas (CRCs) that is a diagnostically useful feature of CRCs with DNA microsatellite instability (MSI). Multiphoton microscopy (MPM), which is based on the second-harmonic generation and two-photon excited fluorescence signals, was used to identify dirty necrosis. Our results demonstrated that MPM has the ability to exhibit the microstructure of dirty necrosis and the signal intensity as well as an emission spectrum that can help to differentiate dirty necrosis from cancer cells. These findings indicate that MPM may be helpful in distinguishing MSI colorectal carcinoma via the identification of dirty necrosis.

  16. In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems.

    PubMed

    Huland, David M; Brown, Christopher M; Howard, Scott S; Ouzounov, Dimitre G; Pavlova, Ina; Wang, Ke; Rivera, David R; Webb, Watt W; Xu, Chris

    2012-05-01

    We characterize long (up to 285 mm) gradient index (GRIN) lens endoscope systems for multiphoton imaging. We fabricate a portable, rigid endoscope system suitable for imaging unstained tissues, potentially deep within the body, using a GRIN lens system of 1 mm diameter and 8 cm length. The portable device is capable of imaging a ~200 µm diameter field of view at 4 frames/s. The lateral and axial resolution in water is 0.85 µm and 7.4 µm respectively. In vivo images of unstained tissues in live, anesthetized rats using the portable device are presented. These results show great promise for GRIN endoscopy to be used clinically. PMID:22567597

  17. Blind frequency-resolved optical-gating pulse characterization for quantitative differential multiphoton microscopy.

    PubMed

    Field, Jeffrey J; Durfee, Charles G; Squier, Jeff A

    2010-10-15

    We use a unique multifocal multiphoton microscope to directly characterize the pulse in the focal plane of a high-NA objective using second-harmonic generation frequency-resolved optical gating (FROG). Because of the nature of the optical setup, femtosecond laser pulses of orthogonal polarization states are generated in the focal plane, each acquiring a different spectral dispersion. By applying an additional constraint on the phase extraction algorithm, we simultaneously extract both the gate and probe pulses from a single spectrogram with a FROG error of 0.016. PMID:20967069

  18. Combined multiphoton imaging-pixel analysis for semiquantitation of skin penetration of gold nanoparticles.

    PubMed

    Labouta, Hagar I; Kraus, Tobias; El-Khordagui, Labiba K; Schneider, Marc

    2011-07-15

    Interaction of nanoparticles with the skin barrier is a recent area of research that draws a lot of attention from the researchers. However, monitoring nanoparticles in or through the skin is mainly based on qualitative microscopical techniques. Yet, a quantitative approach is required for a better basic understanding. In response, a combined "multiphoton-pixel analysis" method was developed in this study for semiquantitation of gold nanoparticles penetration into different skin layers. The developed approach provides a useful tool for future studies focusing on skin penetration of nanoparticles for the aim of health risk assessment or for the design of topical and transdermal drug delivery systems. PMID:21515347

  19. Multiphoton ionization/dissociation of cyclopentanone at the lower Rydberg states

    NASA Astrophysics Data System (ADS)

    Philis, John G.; Kosmidis, Constantine; Tzallas, Paraskevas

    1998-12-01

    The 2-photon excitation of the 3p and 3d Rydberg states in jet-cooled cyclopentanone has been investigated by resonance enhanced multiphoton ionization (REMPI) in a time of flight mass spectrometer. The three 3px,y,z components are clearly resolved while the case for the 3di excitations is obscure due to the S1 one-photon resonance. The ns laser induced mass spectra are characteristic of hard ionization while the fs laser induced mass spectrum is very similar to the Electron Impact one.

  20. Multiphoton imaging to distinguish grana and starch inside an intact leaf

    NASA Astrophysics Data System (ADS)

    Chen, Mei-Yu; Zhuo, Guan-Yu; Chen, Po-Fu; Wu, Pei-Chun; Liu, Tzu-Ming; Chu, Shi-Wei

    2013-02-01

    We have demonstrated a straightforward and noninvasive method to identify the distribution of grana and starch within an intact leaf. Grana and starch are the major functional structures for photosynthesis and energy storage of plant, respectively. Both exhibit highly ordered molecular structures and appear as micrometer-sized granules inside chloroplasts. In order to distinguish grana and starch, we used multiphoton microscopy, with simultaneous acquisition of two photon fluorescence (2PF) and second harmonic generation (SHG) signals. Consequently, SHG is found on both grana and starch while 2PF from chlorophyll indicates the identity of grana.

  1. New electronic states of NH and ND observed by resonance enhanced multiphoton ionization spectroscopy

    NASA Technical Reports Server (NTRS)

    Johnson, Russell D., III; Hudgens, Jeffrey W.

    1990-01-01

    Resonance Enhanced MultiPhoton Ionization (REMPI) spectra of NH and ND, which reveal four new electronic states are presented. Transitions from NH a 1 delta to 3s and 3p Rydberg states in both NH and ND have been observed and rotationally analyzed. The transitions were observed in the wavelength range of 258 to 288 nm. The state assignments are: e 1 pi (3s sigma) at 82857/cm, f 1 pi (3p sigma) at 86378/cm, g 1 delta (3p pi) at 88141/cm and h 1 sigma (3p pi) at 89151/cm.

  2. Multiphoton dissociation of electrosprayed megadalton-sized DNA ions in a charge-detection mass spectrometer.

    PubMed

    Doussineau, Tristan; Paletto, Pierre; Dugourd, Philippe; Antoine, Rodolphe

    2015-01-01

    Charge detection mass spectrometry in combination with a linear electrostatic ion trap coupled to a continuous wavelength infrared CO2 laser has been used to study the multiphoton dissociation of DNA macromolecular ions. Samples, with masses ranging from 2.23 to 31.5 MDa, include single strand circular M13mp18, double strand circular M13mp18, and double strand linear LambdaPhage DNA fragments. Their activation energies for unimolecular dissociation were determined. Activation energy values slightly increase as a function of the molecular weight. The most important result is the difference between the fragmentations observed for hybridized double-strands and dimers of single strands. PMID:25348472

  3. Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Susoma, Jannatul; Karvonen, Lasse; Säynätjoki, Antti; Mehravar, Soroush; Norwood, Robert A.; Peyghambarian, Nasser; Kieu, Khanh; Lipsanen, Harri; Riikonen, Juha

    2016-02-01

    We report on the nonlinear optical properties of few-layer GaTe studied by multiphoton microscopy. Second and third harmonic generation from few-layer GaTe flakes were observed in this study with the laser pump wavelength of 1560 nm. These processes were found to be sensitive to the number of GaTe layers. The second- and third-order nonlinear susceptibilities of 2.7 × 10-9 esu (1.15 pm/V) and 1.4 × 10-8 esu (2 × 10-16 m2/V2) were estimated, respectively.

  4. Multi-photon microscopy based on resonant four-wave mixing of colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Masia, F.; Langbein, W.; Borri, P.

    2009-02-01

    We demonstrate a novel multi-photon imaging modality based on the detection of four-wave mixing (FWM) from colloidal nanoparticles. Four-wave mixing is a third-order signal which can be excited and detected in resonance with the ground-state excitonic transition of CdSe/ZnS quantum dots. The coherent FWM signal is detected interferometrically to reject incoherent backgrounds for improved image contrast compared to fluorescence methods. We measure transversal and axial resolutions of 140nm and 590nm respectively, significantly beating the one-photon diffraction limit. We also demonstrate optical imaging of quantum-dot-labeled Golgi structures of HepG2 cells.

  5. Histology in vivo: chemical contrast combined with clinical multimodal multiphoton tomography

    NASA Astrophysics Data System (ADS)

    Weinigel, Martin; Breunig, Hans Georg; Koenig, Karsten

    2015-03-01

    Label-free multiphoton tomography based on two-photon autofluorescence, fluorescence lifetime, and second harmonic generation imaging can be supplemented by coherent anti-Stokes Raman scattering. We present a compact, mobile and flexible clinical tomograph equipped with a novel detector design with multiple miniaturized detectors for individual acquisition of all four contrast mechanisms. Imaging of endogenous fluorophores, SHG-active collagen as well as nonfluorescent lipids in human skin in vivo is possible with this clinical tomograph paving the way towards in vivo histology.

  6. Complete QED theory of multiphoton Trident pair production in strong laser fields.

    PubMed

    Hu, Huayu; Müller, Carsten; Keitel, Christoph H

    2010-08-20

    Electron-positron pair creation by multiphoton absorption in the collision of a relativistic electron with a strong laser beam is calculated within laser-dressed quantum electrodynamics. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. We study the process in a manifestly nonperturbative domain which is shown accessible to future experiments utilizing the electron beam lines at novel x-ray laser facilities or all-optical setups based on laser acceleration. Our theory moreover allows us to add further insights into the experimental data from SLAC [D. Burke, Phys. Rev. Lett. 79, 1626 (1997).]. PMID:20868080

  7. Compressor optimization with compressor-based multiphoton intrapulse interference phase scan (MIIPS).

    PubMed

    Hou, B; Easter, J H; Nees, J A; He, Z; Thomas, A G R; Krushelnick, K

    2012-04-15

    The multiphoton intrapulse interference phase scan (MIIPS) technique is modified to optimize the compressor settings of a chirped pulse amplification (CPA) laser system. Here, we use the compressor itself to perform the phase scan inherent in MIIPS measurement . A frequency-resolved optical gating measurement shows that the pulse duration of the compressor optimized using the modified MIIPS technique is 33.8 fs with a 2.24 rad temporal phase variation above 2% intensity. The measured time-bandwidth product is 0.60, which is close to that of transform-limited Gaussian pulse (0.44). PMID:22513694

  8. Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles

    PubMed Central

    Papoff, Francesco; McArthur, Duncan; Hourahine, Ben

    2015-01-01

    We propose a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. We derive conditions on the external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. The control introduces narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26155833

  9. Multiphoton resonances for all-optical quantum logic with multiple cavities

    NASA Astrophysics Data System (ADS)

    Everitt, Mark S.; Garraway, Barry M.

    2014-07-01

    We develop a theory for the interaction of multilevel atoms with multimode cavities yielding cavity-enhanced multiphoton resonances. The locations of the resonances are predicted from the use of effective two- and three-level Hamiltonians. As an application we show that quantum gates can be realized when photonic qubits are encoded on the cavity modes in arrangements where ancilla atoms transit the cavity. The fidelity of operations is increased by conditional measurements on the atom and by the use of a selected, dual-rail, Hilbert space. A universal set of gates is proposed, including the Fredkin gate and iswap operation; the system seems promising for scalability.

  10. Nonponderomotive effects in multiphoton ionization of molecular hydrogen

    SciTech Connect

    Wilbois, Timo; Helm, Hanspeter

    2011-05-15

    Anomalous photoelectron angular distributions are observed at certain wavelengths in strong-field ionization of H{sub 2}. We relate this feature to ac Stark shifts from bound-bound transitions in the Rydberg manifold of principal quantum number n=3 and 4. A model of the multistate interaction supports this interpretation.

  11. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    SciTech Connect

    Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Ericson, Marica B.; Grönbeck, Henrik

    2015-12-07

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  12. Ab initio molecular dynamics of protonated dialanine and comparison to infrared multiphoton dissociation experiments.

    PubMed

    Marinica, D C; Grégoire, G; Desfrançois, C; Schermann, J P; Borgis, D; Gaigeot, M P

    2006-07-20

    Finite temperature Car-Parrinello molecular dynamics simulations are performed for the protonated dialanine peptide in vacuo, in relation to infrared multiphoton dissociation experiments. The simulations emphasize the flexibility of the different torsional angles at room temperature and the dynamical exchange between different conformers which were previously identified as stable at 0 K. A proton transfer occurring spontaneously at the N-terminal side is also observed and characterized. The theoretical infrared absorption spectrum is computed from the dipole time correlation function, and, in contrast to traditional static electronic structure calculations, it accounts directly for anharmonic and finite temperature effects. The comparison to the experimental infrared multiphoton dissociation spectrum turns out very good in terms of both band positions and band shapes. It does help the identification of a predominant conformer and the attribution of the different bands. The synergy shown between the experimental and theoretical approaches opens the door to the study of the vibrational properties of complex and floppy biomolecules in the gas phase at finite temperature. PMID:16836443

  13. Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning

    PubMed Central

    Tang, Shuo; Jung, Woonggyu; McCormick, Daniel; Xie, Tuqiang; Su, Jiangping; Ahn, Yeh-Chan; Tromberg, Bruce J.; Chen, Zhongping

    2010-01-01

    A multiphoton endoscopy system has been developed using a two-axis microelectromechanical systems (MEMS) mirror and double-cladding photonic crystal fiber (DCPCF). The MEMS mirror has a 2-mm-diam, 20-deg optical scanning angle, and 1.26-kHz and 780-Hz resonance frequencies on the x and y axes. The maximum number of resolvable focal spots of the MEMS scanner is 720×720 on the x and y axes, which indicates that the MEMS scanner can potentially support high-resolution multiphoton imaging. The DCPCF is compared with standard single-mode fiber and hollow-core photonic bandgap fiber on the basis of dispersion, attenuation, and coupling efficiency properties. The DCPCF has high collection efficiency, and its dispersion can be compensated by grating pairs. Three configurations of probe design are investigated, and their imaging quality and field of view are compared. A two-lens configuration with a collimation and a focusing lens provides the optimum imaging performance and packaging flexibility. The endoscope is applied to image fluorescent microspheres and bovine knee joint cartilage. PMID:19566298

  14. THREE-DIMENSIONAL RANDOM ACCESS MULTIPHOTON MICROSCOPY FOR FAST FUNCTIONAL IMAGING OF NEURONAL ACTIVITY

    PubMed Central

    Reddy, Gaddum Duemani; Kelleher, Keith; Fink, Rudy; Saggau, Peter

    2009-01-01

    The dynamic ability of neuronal dendrites to shape and integrate synaptic responses is the hallmark of information processing in the brain. Effectively studying this phenomenon requires concurrent measurements at multiple sites on live neurons. Significant progress has been made by optical imaging systems which combine confocal and multiphoton microscopy with inertia-free laser scanning. However, all systems developed to date restrict fast imaging to two dimensions. This severely limits the extent to which neurons can be studied, since they represent complex three-dimensional (3D) structures. Here we present a novel imaging system that utilizes a unique arrangement of acousto-optic deflectors to steer a focused ultra-fast laser beam to arbitrary locations in 3D space without moving the objective lens. As we demonstrate, this highly versatile random-access multiphoton microscope supports functional imaging of complex 3D cellular structures such as neuronal dendrites or neural populations at acquisition rates on the order of tens of kilohertz. PMID:18432198

  15. Development of a portable multiphoton photo-acoustic spectroscopy system for tumor diagnostics

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Nirmala; Kiser, John B.; Cullum, Brian M.

    2004-12-01

    In this paper we describe the development of a novel fiber optic probe for subsurface tumor diagnostics, based on non-resonant multiphoton photoacoustic spectroscopy (NMPPAS). In this technique, endogenous biomarkers present in tissues are irradiated in the near infrared, using a tunable high-power laser. The resulting multiphoton excitation events are detected as an acoustic (i.e. ultrasonic) signal, using an ultrasonic piezoelectric transducer. The signal from the piezoelectric transducer is then corrected for laser power fluctuations by normalizing the NMPPAS signal at each wavelength with the laser intensity recorded, from an optical diode. By scanning the laser excitation over the appropriate wavelength range for the tissue of interest, absorption differences between normal and tumor tissues can be measured and analyzed. The fiber optic probe was characterized and optimized for transmission efficiency as well as its time dependent response to high power laser pulses. The focusing optics were optimized and a piezoelectric transducer film detector chosen based on its sensitivity in the ultrasonic frequency range of interest. Using this probe system NMPPAS measurements were performed on several common fluorescent dyes including rhodamine 6G as well as well-characterized biomarkers like tryptophan. Furthermore, the technique was further successfully applied to the differentiation of tumorous and healthy human brain tissues.

  16. Minimum Copies of Schrödinger’s Cat State in the Multi-Photon System

    PubMed Central

    Lu, Yiping; Zhao, Qing

    2016-01-01

    Multi-photon entanglement has been successfully studied by many theoretical and experimental groups. However, as the number of entangled photons increases, some problems are encountered, such as the exponential increase of time necessary to prepare the same number of copies of entangled states in experiment. In this paper, a new scheme is proposed based on the Lagrange multiplier and Feedback, which cuts down the required number of copies of Schrödinger’s Cat state in multi-photon experiment, which is realized with some noise in actual measurements, and still keeps the standard deviation in the error of fidelity unchanged. It reduces about five percent of the measuring time of eight-photon Schrödinger’s Cat state compared with the scheme used in the usual planning of actual measurements, and moreover it guarantees the same low error in fidelity. In addition, we also applied the same approach to the simulation of ten-photon entanglement, and we found that it reduces in priciple about twenty two percent of the required copies of Schrödinger’s Cat state compared with the conventionally used scheme of the uniform distribution; yet the distribution of optimized copies of the ten-photon Schrödinger’s Cat state gives better fidelity estimation than the uniform distribution for the same number of copies of the ten-photon Schrödinger’s Cat state. PMID:27576585

  17. Signal improvement in multiphoton microscopy by reflection with simple mirrors near the sample

    NASA Astrophysics Data System (ADS)

    Rehberg, Markus; Krombach, Fritz; Pohl, Ulrich; Dietzel, Steffen

    2010-03-01

    In conventional fluorescence or confocal microscopy, emitted light is generated not only in the focal plane but also above and below. The situation is different in multiphoton-induced fluorescence and multiphoton-induced higher harmonic generation. Here, restriction of signal generation to a single focal point permits that all emitted photons can contribute to image formation if collected, regardless of their path through the specimen. Often, the intensity of the emitted light is rather low in biological specimens. We present a method to significantly increase the fraction of photons collected by an epi (backward) detector by placing a simple mirror, an aluminum-coated coverslip, directly under the sample. Samples investigated include fluorescent test slides, collagen gels, and thin-layered, intact mouse skeletal muscles. Quantitative analysis revealed an intensity increase of second- and third-harmonic generated signal in skeletal muscle of nine- and sevenfold respectively, and of fluorescent signal in test slides of up to twofold. Our approach thus allows significant signal improvement also for situations were a forward detection is impossible, e.g., due to the anatomy of animals in intravital microscopy.

  18. Secure satellite communication using multi-photon tolerant quantum communication protocol

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Punekar, Nikhil; Verma, Pramode K.

    2015-09-01

    This paper proposes and analyzes the potential of a multi-photon tolerant quantum communication protocol to secure satellite communication. For securing satellite communication, quantum cryptography is the only known unconditionally secure method. A number of recent experiments have shown feasibility of satellite-aided global quantum key distribution (QKD) using different methods such as: Use of entangled photon pairs, decoy state methods, and entanglement swapping. The use of single photon in these methods restricts the distance and speed over which quantum cryptography can be applied. Contemporary quantum cryptography protocols like the BB84 and its variants suffer from the limitation of reaching the distances of only Low Earth Orbit (LEO) at the data rates of few kilobits per second. This makes it impossible to develop a general satellite-based secure global communication network using the existing protocols. The method proposed in this paper allows secure communication at the heights of the Medium Earth Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites. The benefits of the proposed method are two-fold: First it enables the realization of a secure global communication network based on satellites and second it provides unconditional security for satellite networks at GEO heights. The multi-photon approach discussed in this paper ameliorates the distance and speed issues associated with quantum cryptography through the use of contemporary laser communication (lasercom) devices. This approach can be seen as a step ahead towards global quantum communication.

  19. Evidence for excitation of fluorescence in RPE melanin by multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Rockwell, Benjamin A.; Noojin, Gary D.; Stolarski, David J.; Denton, Michael L.

    2002-06-01

    Previously, we reported that ultrashort, near infrared (NIR) laser pulses caused more DNA breakage in cultured retinal pigment epithelial (RPE) cells than did CW, NIR laser radiation delivering a similar radiant exposure. We hypothesized that this difference was due to multiphoton absorption in an intracellular chromophore such as the RPE melanin. We investigated two-photon excitation of fluorescence in a suspension of isolated bovine RPE melanosomes exposed to a 1-KHz train of approximately 50- fsec laser pulses at 810 nm from a Ti:Sapphire laser, and compared this to the fluorescence excited by CW exposures at 406 nm from a Krypton ion laser. Fluorescence was measured with a PC-based spectrometer. The CW sources excited fluorescence with a peak at 525 nm. The fluorescence intensity depended on the irradiance of the sample, as well as the melanosome concentration. Peak fluorescence was obtained with a suspension of ~2 x 107 melanin granules/ml. The 810-nm, ultrashort pulses also excited fluorescence, but with a broader, lower-amplitude peak. The weaker fluorescence signal excited by the 810-nm ultrashort pulse laser for a given melanosome concentration, compared to 406-nm CW excitation, is possibly due to the smaller two- photon absorption cross-section. These results indicate the involvement of multiphoton absorption in DNA damage.

  20. Compact non-contact total emission detection for in vivo multiphoton excitation microscopy.

    PubMed

    Combs, C A; Smirnov, A; Glancy, B; Karamzadeh, N S; Gandjbakhche, A H; Redford, G; Kilborn, K; Knutson, J R; Balaban, R S

    2014-02-01

    We describe a compact, non-contact design for a total emission detection (c-TED) system for intra-vital multiphoton imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), whereas murine skeletal muscle and rat kidney showed gains of over two and just under twofold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a twofold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers, enabled by greater light collection efficiency, yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multiphoton imaging methods is discussed. PMID:24251437