Science.gov

Sample records for multiphoton spectral imaging

  1. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer.

    PubMed

    Thaler, Christopher; Koushik, Srinagesh V; Blank, Paul S; Vogel, Steven S

    2005-10-01

    Protein labeling with green fluorescent protein derivatives has become an invaluable tool in cell biology. Protein quantification, however, is difficult when cells express constructs with overlapping fluorescent emissions. Under these conditions, signal separation using emission filters is inherently inefficient. Spectral imaging solves this problem by recording emission spectra directly. Unfortunately, linear unmixing, the algorithm used for quantifying individual fluorophores from emission spectra, fails when resonance energy transfer (RET) is present. We therefore sought to develop an unmixing algorithm that incorporates RET. An equation for spectral emission incorporating RET was derived and an assay based on this formalism, spectral RET (sRET), was developed. Standards with defined RET efficiencies and with known Cerulean/Venus ratios were constructed and used to test sRET. We demonstrate that sRET analysis is a comprehensive, photon-efficient method for imaging RET efficiencies and accurately determines donor and acceptor concentrations in living cells. PMID:16040744

  2. Quantitative multiphoton imaging

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Uchugonova, Aisada

    2014-02-01

    Certified clinical multiphoton tomographs for label-free multidimensional high-resolution in vivo imaging have been introduced to the market several years ago. Novel tomographs include a flexible 360° scan head attached to a mechanooptical arm for autofluorescence and SHG imaging as well as a CARS module. Non-fluorescent lipids and water, mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen can be imaged in vivo with submicron resolution in human skin. Sensitive and rapid detectors allow single photon counting and the construction of 3D maps where the number of detected photons per voxel is depicted. Intratissue concentration profiles from endogenous as well exogenous substances can be generated when the number of detected photons can be correlated with the number of molecules with respect to binding and scattering behavior. Furthermore, the skin ageing index SAAID based on the ratio elastin/collagen as well as the epidermis depth based on the onset of SHG generation can be determined.

  3. Spectral-resolved multifocal multiphoton microscopy with multianode photomultiplier tubes

    PubMed Central

    Cha, Jae Won; Tzeranis, Dimitrios; Subramanian, Jaichandar; Yannas, Ioannis V.; Nedivi, Elly; So, Peter T. C.

    2014-01-01

    Multiphoton excitation fluorescence microscopy is the preferred method for in vivo deep tissue imaging. Many biological applications demand both high imaging speed and the ability to resolve multiple fluorophores. One of the successful methods to improve imaging speed in a highly turbid specimen is multifocal multiphoton microscopy (MMM) based on use of multi-anode photomultiplier tubes (MAPMT). This approach improves imaging speed by using multiple foci for parallelized excitation without sacrificing signal to noise ratio (SNR) due to the scattering of emission photons. In this work, we demonstrate that the MAPMT based MMM can be extended with spectral resolved imaging capability. Instead of generating multiple excitation foci in a 2D grid pattern, a linear array of foci is generated. This leaves one axis of the 2D MAPMT available for spectral dispersion and detection. The spectral-resolved MMM can detect several emission signals simultaneously with high imaging speed optimized for high-throughput, high-contents applications. The new procedure is illustrated using imaging data from the kidney, peripheral nerve regeneration and dendritic morphological data from the brain. PMID:25321515

  4. Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels

    PubMed Central

    Patalay, Rakesh; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Neil, Mark A. A.; König, Karsten; French, Paul M. W.; Chu, Anthony; Stamp, Gordon W.; Dunsby, Chris

    2011-01-01

    We explore the diagnostic potential of imaging endogenous fluorophores using two photon microscopy and fluorescence lifetime imaging (FLIM) in human skin with two spectral detection channels. Freshly excised benign dysplastic nevi (DN) and malignant nodular Basal Cell Carcinomas (nBCCs) were excited at 760 nm. The resulting fluorescence signal was binned manually on a cell by cell basis. This improved the reliability of fitting using a double exponential decay model and allowed the fluorescence signatures from different cell populations within the tissue to be identified and studied. We also performed a direct comparison between different diagnostic groups. A statistically significant difference between the median mean fluorescence lifetime of 2.79 ns versus 2.52 ns (blue channel, 300-500 nm) and 2.08 ns versus 1.33 ns (green channel, 500-640 nm) was found between nBCCs and DN respectively, using the Mann-Whitney U test (p < 0.01). Further differences in the distribution of fluorescence lifetime parameters and inter-patient variability are also discussed. PMID:22162820

  5. Multiphoton imaging with a nanosecond supercontinuum source

    NASA Astrophysics Data System (ADS)

    Lefort, Claire; O'Connor, Rodney P.; Blanquet, Véronique; Baraige, Fabienne; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-03-01

    Multiphoton microscopy is a well-established technique for biological imaging of several kinds of targets. It is classically based on multiphoton processes allowing two means of contrast simultaneously: two-photon fluorescence (TPF) and second harmonic generation (SHG). Today, the quasi exclusive laser technology used in that aim is femtosecond titanium sapphire (Ti: Sa) laser. We experimentally demonstrate that a nanosecond supercontinuum laser source (STM-250-VIS-IR-custom, Leukos, France; 1 ns, 600-2400 nm, 250 kHz, 1 W) allows to obtain the same kind of image quality in the case of both TPF and SHG, since it is properly filtered. The first set of images concerns the muscle of a mouse. It highlights the simultaneous detection of TPF and SHG. TPF is obtained thanks to the labelling of alpha-actinin with Alexa Fluor® 546 by immunochemistry. SHG is created from the non-centrosymmetric organization of myosin. As expected, discs of actin and myosin are superimposed alternatively. The resulting images are compared with those obtained from a standard femtosecond Ti: Sa source. The physical parameters of the supercontinuum are discussed. Finally, all the interest of using an ultra-broadband source is presented with images obtained in vivo on the brain of a mouse where tumor cells labeled with eGFP are grafted. Texas Red® conjugating Dextran is injected into the blood vessels network. Thus, two fluorophores having absorption wavelengths separated by 80 nm are imaged simultaneously with a single laser source.

  6. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    NASA Astrophysics Data System (ADS)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  7. Controllable infrared continuum source for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    de Mauro, C.; Alfieri, D.; Arrigoni, M.; Armstrong, D.; Pavone, F. S.

    2010-02-01

    We report on multiphoton imaging of biological samples performed with continuum infrared source generated in photonic crystal fibers (PCFs). We studied the spectra generated in PCFs with dispersion profiles designed to maximize the power density in the 700-1000 nm region, where the two-photon absorption cross sections of the most common dyes lie. Pumping in normal dispersion region, with <140 femtosecond pulses delivered by a tunable Ti:Sa laser (Chameleon Ultra II by Coherent Inc.), results in a limitation of nonlinear broadening up to a mean power density above 2 mW/nm. Axial and lateral resolution obtained with a scanning multiphoton system has been measureed to be near the theoretical limit. The possibility of simultaneous two-photon excitation of different dyes in the same sample and high image resolution are demonstrated at tens of microns in depth. Signal-to-noise ratio and general performances are found to be comparable with those of a single wavelength system, used for comparison.

  8. Multiphoton imaging with high peak power VECSELs

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.

    2016-03-01

    Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.

  9. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  10. Spectral behavior of second harmonic signals from organic and non-organic materials in multiphoton microscopy

    PubMed Central

    Ehmke, Tobias; Knebl, Andreas; Reiss, Stephan; Fischinger, Isaak R.; Seiler, Theo G.; Stachs, Oliver; Heisterkamp, Alexander

    2015-01-01

    Multimodal nonlinear microscopy allows imaging of highly ordered biological tissue due to spectral separation of nonlinear signals. This requires certain knowledge about the spectral distribution of the different nonlinear signals. In contrast to several publications we demonstrate a factor of 122 relating the full width at half maximum of a gaussian laser pulse spectrum to the corresponding second harmonic pulse spectrum in the spatial domain by using a simple theoretical model. Experiments on monopotassium phosphate crystals (KDP-crystals) and on porcine corneal tissue support our theoretical predictions. Furthermore, no differences in spectral width were found for epi- and trans-detection of the second harmonic signal. Overall, these results may help to build an optimized multiphoton setup for spectral separation of nonlinear signals. PMID:26339527

  11. Multiphoton imaging of biological samples during freezing and heating

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-02-01

    We applied multiphoton microscopic imaging to observe freezing and heating effects in plant- and animal cell samples. The experimental setups consisted of a multiphoton imaging system and a heating and cooling stage which allows for precise temperature control from liquid nitrogen temperature (-196°C 77 K) up to +600°C (873 K) with heating/freezing rates between 0.01 K/min and 150 K/min. Two multiphoton imaging systems were used: a system based on a modified optical microscope and a flexible mobile system. To illustrate the imaging capabilities, plant leafs as well as animal cells were microscopically imaged in vivo during freezing based on autofluorescence lifetime and intensity of intrinsic molecules. The measurements illustrate the usefulness of multiphoton imaging to investigate freezing effects on animal and plant cells.

  12. Optical clearing and multiphoton imaging of paraffin-embedded specimens

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Degan, Simone; Fischer, Martin C.; Warren, Warren S.

    2013-02-01

    New labeling, imaging, or analysis tools could provide new retrospective insights when applied to archived, paraffin-embedded samples. Deep-tissue multiphoton microscopy of paraffin-embedded specimens is achieved using optical clearing with mineral oil. We tested a variety of murine tissue specimens including skin, lung, spleen, kidney, and heart, acquiring multiphoton autofluorescence and second-harmonic generation, and pump-probe images This technique introduces the capability for non-destructive 3-dimensional microscopic imaging of existing archived pathology specimens, enabling retrospective studies.

  13. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging

    PubMed Central

    Cua, Michelle; Wahl, Daniel J.; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J.; Jian, Yifan; Sarunic, Marinko V.

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  14. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.

    PubMed

    Cua, Michelle; Wahl, Daniel J; Zhao, Yuan; Lee, Sujin; Bonora, Stefano; Zawadzki, Robert J; Jian, Yifan; Sarunic, Marinko V

    2016-01-01

    Multiphoton microscopy enables imaging deep into scattering tissues. The efficient generation of non-linear optical effects is related to both the pulse duration (typically on the order of femtoseconds) and the size of the focused spot. Aberrations introduced by refractive index inhomogeneity in the sample distort the wavefront and enlarge the focal spot, which reduces the multiphoton signal. Traditional approaches to adaptive optics wavefront correction are not effective in thick or multi-layered scattering media. In this report, we present sensorless adaptive optics (SAO) using low-coherence interferometric detection of the excitation light for depth-resolved aberration correction of two-photon excited fluorescence (TPEF) in biological tissue. We demonstrate coherence-gated SAO TPEF using a transmissive multi-actuator adaptive lens for in vivo imaging in a mouse retina. This configuration has significant potential for reducing the laser power required for adaptive optics multiphoton imaging, and for facilitating integration with existing systems. PMID:27599635

  15. Nonlinear optical imaging characteristics of colonic adenocarcinoma using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Nenrong; Chen, Rong; Li, Hongsheng; Chen, Jianxin

    2012-12-01

    Multiphoton microscopy (MPM), a noninvasive optical method with high resolution and high sensitivity, can obtain detailed microstructures of biotissues at submolecular level. In this study, MPM is used to image microstructure varieties of human colonic mucosa and submucosa with adenocarcinoma. Some parameters, such as gland configuration, SHG/TPEF intensity ratio, and collagen orientation and so on, should serve the indicators of early colorectal cancer. The exploratory results show that it's potential for the development of multiphoton mini-endoscopy in real-time early diagnosis of colorectal cancer.

  16. Photonic near-field imaging in multiphoton photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J. P. S.; Word, R. C.; Saliba, S. D.; Könenkamp, R.

    2013-05-01

    We report the observation of optical near fields in a photonic waveguide of conductive indium tin oxide (ITO) using multiphoton photoemission electron microscopy (PEEM). Nonlinear two-photon photoelectron emission is enhanced at field maxima created by interference between incident 410-nm and coherently excited guided photonic waves, providing strong phase contrast. Guided modes are observed under both transverse magnetic field (TM) and transverse electric field (TE) polarized illuminations and are consistent with classical electromagnetic theory. Implications on the role of multiphoton PEEM in optical near-field imaging are discussed.

  17. Multiphoton Imaging of Ultrasound Bioeffects in the Murine Brain

    NASA Astrophysics Data System (ADS)

    Raymond, Scott; Skoch, Jesse; Bacskai, Brian; Hynynen, Kullervo

    2006-05-01

    The purpose of this study was to demonstrate the feasibility of multiphoton imaging in the murine brain during exposure to ultrasound. Our experimental setup coupled ultrasound through the ventral surface of the mouse while allowing imaging through a cranial window from the dorsal surface. Field attenuation was estimated by scanning the field after insertion of a freshly sacrificed mouse; beam profile and peak position were preserved, suggesting adequate targeting for imaging experiments. C57 mice were imaged with a Biorad multiphoton microscope while being exposed to ultrasound (f = 1.029 MHz, peak pressure ˜ 200 kPa, average power ˜ 0.18 W) with IV injection of Optison. We observed strong vasoconstriction coincident with US and Optison, as well as permeabilization of the blood-brain barrier.

  18. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-06-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.

  19. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    PubMed Central

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence. PMID:27283889

  20. Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging.

    PubMed

    Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T C; Kim, Ki Hean

    2016-01-01

    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence. PMID:27283889

  1. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining. PMID:26830089

  2. Multiphoton imaging: a view to understanding sulfur mustard lesions

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J. S.; Madren-Whalley, Janna S.

    2003-07-01

    It is well known that topical exposure to sulfur mustard (SM) produces persistent, incapacitating blisters of the skin. However, the primary lesions effecting epidermal-dermal separation and disabling of mechanisms for cutaneous repair remain uncertain. Immunofluorescent staining plus multiphoton imaging of human epidermal tissues and keratinocytes exposed to SM (400 μM x 5 min)have revealed that SM disrupts adhesion-complex molecules which are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Images of keratin-14 showed early, progressive, postexposure collapse of the K5/K14 cytoskeleton that resulted in ventral displacement of the nuclei beneath its collapsing filaments. This effectively corrupted the dynamic filament assemblies that link basal-cell nuclei to the extracellular matrix via α6β4-integrin and laminin-5. At 1 h postexposure, there was disruption in the surface organization of α6β4 integrins, associated displacement of laminin-5 anchoring sites and a concomitant loss of functional asymmetry. Accordingly, our multiphoton images are providing compelling evidence that SM induces prevesicating lesions that disrupt the receptor-ligand organization and cytoskeletal systems required for maintaining dermal-epidermal attachment, signal transduction, and polarized mobility.

  3. Molecule-specific darkfield and multiphoton imaging using gold nanocages

    NASA Astrophysics Data System (ADS)

    Powless, Amy J.; Jenkins, Samir V.; McKay, Mary Lee; Chen, Jingyi; Muldoon, Timothy J.

    2015-03-01

    Due to their robust optical properties, biological inertness, and readily adjustable surface chemistry, gold nanostructures have been demonstrated as contrast agents in a variety of biomedical imaging applications. One application is dynamic imaging of live cells using bioconjugated gold nanoparticles to monitor molecule trafficking mechanisms within cells; for instance, the regulatory pathway of epidermal growth factor receptor (EGFR) undergoing endocytosis. In this paper, we have demonstrated a method to track endocytosis of EGFR in MDA-MB-468 breast adenocarcinoma cells using bioconjugated gold nanocages (AuNCs) and multiphoton microscopy. Dynamic imaging was performed using a time series capture of 4 images every minute for one hour. Specific binding and internalization of the bioconjugated AuNCs was observed while the two control groups showed non-specific binding at fewer surface sites, leading to fewer bound AuNCs and no internalization.

  4. Multibeam multifocal multiphoton photon counting imaging in scattering media

    NASA Astrophysics Data System (ADS)

    Hoover, Erich E.

    Multiphoton microscopy is an invaluable technique for the neurological community, allowing for deep explorations within highly scattering tissues such as the brain. However, prior to this research multiphoton microscopy was limited in its ability to rapidly construct volumetric images deep within scattering specimens. This work establishes a technique that permits such exploration through the application of multiple beams separated in both space and time, where signal photons corresponding to those beams are demultiplexed through the use of a field programmable gate array. With this system a number of improvements are provided to research in scattering media, including the coveted ability to perform photon-counting imaging with multiple beams. The ability to perform these measurements with multiple beams permits unique quantitative measurements of fluorophores within living specimens, allowing new research into dynamic three-dimensional behavior occurring within the brain. Additionally, the ability to perform multimodal measurements without filtering allows for unique avenues of research where the harmonic generation is indistinguishable from the two-photon excited fluorescence. These improvements provide neuroscience researchers with a large assortment of technological tools that will permit them to perform numerous novel experiments within the brain and other highly-scattering specimens, which should one day lead to significant advances in our understanding of complex neuronal activity.

  5. Live-Animal Imaging of Renal Function by Multiphoton Microscopy

    PubMed Central

    Dunn, Kenneth W.; Sutton, Timothy A.; Sandoval, Ruben M.

    2015-01-01

    Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. PMID:23042524

  6. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  7. Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy

    NASA Astrophysics Data System (ADS)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The development of technologies to characterize the ocular aqueous outflow system (AOS) is important for the understanding of the pathophysiology of glaucoma. Multiphoton microscopy (MPM) offers the advantage of high-resolution, label-free imaging with intrinsic image contrast because the emitted signals result from the specific biomolecular content of the tissue. Previous attempts to use MPM to image the murine irido-corneal region directly through the sclera have suffered from degradation in image resolution due to scattering of the focused laser light. As a result, transscleral MPM has limited ability to observe fine structures in the AOS. In this work, the porcine irido-corneal angle was successfully imaged through the transparent cornea using a gonioscopic lens to circumvent the highly scattering scleral tissue. The resulting high-resolution images allowed the detailed structures in the trabecular meshwork (TM) to be observed. Multimodal imaging by two-photon autofluorescence and second harmonic generation allowed visualization of different features in the TM without labels and without disruption of the TM or surrounding tissues. MPM gonioscopy is a promising noninvasive imaging tool for high-resolution studies of the AOS, and research continues to explore the potential for future clinical applications in humans.

  8. Multiphoton gonioscopy to image the trabecular meshwork of porcine eyes

    NASA Astrophysics Data System (ADS)

    Masihzadeh, Omid; Ammar, David A.; Kahook, Malik Y.; Gibson, Emily A.; Lei, Tim C.

    2013-03-01

    The aqueous outflow system (AOS), including the trabecular meshwork (TM), the collector channels (CC) and the Schlemm's canal (SC), regulates intraocular pressure (IOP) through the drainage of the aqueous humor (AH). Abnormal IOP elevation leads to increased pressure stress to retinal ganglion cells, resulting in cell loss that can ultimately lead to complete loss of eyesight. Therefore, development of imaging tools to detect abnormal structural and functional changes of the AOS is important in early diagnosis and prevention of glaucoma. Multiphoton microscopy (MPM), including twophoton autofluorescence (TPAF) and second harmonic generation (SHG), is a label-free microscopic technique that allows molecular specific imaging of biological tissues like the TM. Since the TM and other AOS structures are located behind the highly scattering scleral tissue, transscleral imaging of the TM does not provide enough optical resolution. In this work, a gonioscopic lens is used to allow direct optical access of the TM through the cornea for MPM imaging. Compared to transscleral imaging, the acquired MPM images show improved resolution as individual collagen fiber bundles of the TM can be observed. MPM gonioscopy may have the potential to be developed as a future clinical imaging tool for glaucoma diagnostics.

  9. High-Resolution Multiphoton Imaging of Tumors In Vivo

    PubMed Central

    Wyckoff, Jeffrey; Gligorijevic, Bojana; Entenberg, David; Segall, Jeffrey; Condeelis, John

    2014-01-01

    Analysis of the individual steps in metastasis is crucial if insights at the molecular level are to be linked to the cell biology of cancer. A technical hurdle to achieving the analysis of the individual steps of metastasis is the fact that, at the gross level, tumors are heterogeneous in both animal models and patients. Human primary tumors show extensive variation in all properties ranging from growth and morphology of the tumor through tumor-cell density in the blood and formation and growth of metastases. Methods capable of the direct visualization and analysis of tumor-cell behavior at single-cell resolution in vivo have become crucial in advancing the understanding of mechanisms of metastasis, the definition of microenvironment, and the markers related to both. This article discusses the use of high-resolution multiphoton imaging of tumors (specifically breast tumors in mice) in vivo. PMID:21969629

  10. Multiphoton and photothermal imaging of molecular events in cancer

    NASA Astrophysics Data System (ADS)

    Skala, Melissa

    2010-10-01

    Optical techniques are attractive for monitoring disease processes in living tissues because they are relatively cheap, non-invasive and provide a wealth of functional information. Multiphoton microscopy (MPM) and Optical Coherence Tomography (OCT) are two types of three-dimensional optical imaging modalities that have demonstrated great utility in pre-clinical models of disease. These techniques are particularly useful for identifying metabolic and molecular biomarkers in cancer. These biomarkers can be used to identify the mechanisms of tumor growth, and to predict the response of a particular tumor to treatment. Specifically, MPM of the co-enzymes NADH and FAD was used to quantify metabolic changes associated with developing cancers in vivo. This imaging technique exploits intrinsic sources of tissue contrast and thus does not require contrast agents. Ongoing work combines this metabolic imaging technique with vascular imaging to provide a comprehensive picture of oxygen supply and demand with tumor therapy. Molecular signaling represents a third critical component in tumor physiology. To this end we have recently developed photothermal OCT, which combines coherent detection with laser-heated gold nanoparticles to achieve high-resolution molecular contrast at deeper depths than MPM. This multi-functional imaging platform will provide unprecedented insight into oxygen supply and demand, and molecular signaling in response to tumor growth and targeted cancer therapies in pre-clinical models.

  11. Superresolved multiphoton microscopy with spatial frequency-modulated imaging.

    PubMed

    Field, Jeffrey J; Wernsing, Keith A; Domingue, Scott R; Allende Motz, Alyssa M; DeLuca, Keith F; Levi, Dean H; DeLuca, Jennifer G; Young, Michael D; Squier, Jeff A; Bartels, Randy A

    2016-06-14

    Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with contrast mechanisms that occur via virtual energy states, including harmonic generation (HG). We report a superresolution technique based on spatial frequency-modulated imaging (SPIFI) that permits superresolved nonlinear microscopy with any contrast mechanism and with single-pixel detection. We show multimodal superresolved images with two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) from biological and inorganic media. Multiphoton SPIFI (MP-SPIFI) provides spatial resolution up to 2η below the diffraction limit, where η is the highest power of the nonlinear intensity response. MP-SPIFI can be used to provide enhanced resolution in optically thin media and may provide a solution for superresolved imaging deep in scattering media. PMID:27231219

  12. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo

    NASA Astrophysics Data System (ADS)

    Larson, Daniel R.; Zipfel, Warren R.; Williams, Rebecca M.; Clark, Stephen W.; Bruchez, Marcel P.; Wise, Frank W.; Webb, Watt W.

    2003-05-01

    The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales.

  13. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo.

    PubMed

    Larson, Daniel R; Zipfel, Warren R; Williams, Rebecca M; Clark, Stephen W; Bruchez, Marcel P; Wise, Frank W; Webb, Watt W

    2003-05-30

    The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. These fluorescent probes have two-photon action cross sections as high as 47,000 Goeppert-Mayer units, by far the largest of any label used in multiphoton microscopy. We visualized quantum dots dynamically through the skin of living mice, in capillaries hundreds of micrometers deep. We found no evidence of blinking (fluorescence intermittency) in solution on nanosecond to millisecond time scales. PMID:12775841

  14. Multiphoton imaging with a novel compact diode-pumped Ti:sapphire oscillator.

    PubMed

    König, Karsten; Andersen, Peter; Le, Tuan; Breunig, Hans Georg

    2015-12-01

    Multiphoton laser scanning microscopy commonly relies on bulky and expensive femtosecond lasers. We integrated a novel minimal-footprint Ti:sapphire oscillator, pumped by a frequency-doubled distributed Bragg reflector tapered diode laser, into a clinical multiphoton tomograph and evaluated its imaging capability using different biological samples, i.e. cell monolayers, corneal tissue, and human skin. With the novel laser, the realization of very compact Ti:sapphire-based systems for high-quality multiphoton imaging at a significantly size and weight compared to current systems will become possible. PMID:26534831

  15. 2D simultaneous spatial and temporal focusing multiphoton microscopy for fast volume imaging with improved sectioning ability

    NASA Astrophysics Data System (ADS)

    Song, Qiyuan; Isobe, Keisuke; Hirosawa, Kenichi; Midorikawa, Katsumi; Kannari, Fumihiko

    2015-03-01

    Simultaneous spatial and temporal focusing (SSTF) multiphoton microscopy offers us widefield imaging with sectioning ability. As extending the idea to 2D SSTF, people can utilize a 2D spectral disperser. In this study, we use a 2D spectral disperser via a virtually-imaged phased-array (VIPA) and a diffraction grating to fulfill the back aperture of objective lens with a spectrum matrix. This offers us an axial resolution enhanced by a factor of ~1.7 compared with conventional SSTF microscopy. Furthermore, the small free spectral range (FSR) of VIPA will reduce the temporal self-imaging effect around out-of-focus region and thus will reduce the out-of-focus multiphoton excited fluorescence (MPEF) signal of 2D SSTF microscopy. We experimentally show that inside a sample with dense MPEF, the contrast of the sectioning image is increased in our 2D SSTF microscope compared with SSTF microscope. In our microscope, we use a 1 kHz chirped amplification laser, a piezo stage and a sCMOS camera integrated with 2D SSTF to realize high speed volume imaging at a speed of 50 volumes per second as well as improved sectioning ability. Volume imaging of Brownian motions of fluorescent beads as small as 1μm has been demonstrated. Not only the lateral motion but also the axial motion could be traced.

  16. Multi Spectral Imaging System

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor)

    1999-01-01

    An optical imaging system provides automatic co-registration of a plurality of multi spectral images of an object which are generated by a plurality of video cameras or other optical detectors. The imaging system includes a modular assembly of beam splitters, lens tubes, camera lenses and wavelength selective filters which facilitate easy reconfiguration and adjustment of the system for various applications. A primary lens assembly generates a real image of an object to be imaged on a reticle which is positioned at a fixed length from a beam splitter assembly. The beam splitter assembly separates a collimated image beam received from the reticle into multiple image beams, each of which is projected onto a corresponding one of a plurality of video cameras. The lens tubes which connect the beam splitter assembly to the cameras are adjustable in length to provide automatic co-registration of the images generated by each camera.

  17. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m). PMID:18345245

  18. Multiphoton imaging the disruptive nature of sulfur mustard lesions

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert J.; Braue, Catherine R.; Dillman, James F.

    2005-03-01

    Sulfur mustard [bis-2-chloroethyl sulfide] is a vesicating agent first used as a weapon of war in WWI. It causes debilitating blisters at the epidermal-dermal junction and involves molecules that are also disrupted by junctional epidermolysis bullosa (JEB) and other blistering skin diseases. Despite its recurring use in global conflicts, there is still no completely effective treatment. We have shown by imaging human keratinocytes in cell culture and in intact epidermal tissues that the basal cells of skin contain well-organized molecules (keratins K5/K14, α6β4 integrin, laminin 5 and α3β1 integrin) that are early targets of sulfur mustard. Disruption and collapse of these molecules is coincident with nuclear displacement, loss of functional asymmetry, and loss of polarized mobility. The progression of this pathology precedes basal cell detachment by 8-24 h, a time equivalent to the "clinical latent phase" that defines the extant period between agent exposure and vesication. Our images indicate that disruption of adhesion-complex molecules also impairs cytoskeletal proteins and the integration of structures required for signal transduction and tissue repair. We have recently developed an optical system to test this hypothesis, i.e., to determine whether and how the early disruption of target molecules alters signal transduction. This environmentally controlled on-line system provides a nexus for real-time correlation of imaged lesions with DNA microarray analysis, and for using multiphoton microscopy to facilitate development of more effective treatment strategies.

  19. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  20. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Qiu, Ping

    2015-05-01

    Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.

  1. Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy.

    PubMed

    Wang, Ke; Qiu, Ping

    2015-05-01

    Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration. PMID:25950644

  2. Spectral imaging microscopy web sites and data.

    PubMed

    McNamara, George; Gupta, Amit; Reynaert, James; Coates, Thomas D; Boswell, Carl

    2006-08-01

    The Internet is enabling greater access to spectral imaging publications, spectral graphs, and data than that was available a generation ago. The spectral imaging systems discussed in this issue of Cytometry work because reagent and hardware spectra are reproducible, reusable, and provide input to spectral unmixing and spectral components recognition algorithms. These spectra need to be readily available in order to determine what to purchase, how to use it, and what the output means. We refer to several commercially sponsored and academic spectral web sites and discuss our spectral graphing and data sites. Sites include fluorescent dye graph servers from Invitrogen/Molecular Probes, BD Biosciences, Zeiss/Bio-Rad Cell Sciences, and filter set servers from Chroma Technology and Omega Optical. Several of these sites include data download capabilities. Recently, two microscope manufacturers have published on their web sites transmission curves for select objective lenses-crucial data for anyone doing multiphoton excitation microscopy. Notable among the academic sites, PhotoChemCAD 2.0 has over 200 dyes and a downloadable database/graphing program, and the USC-A Chemistry UV-vis Database displays absorption spectra of many dyes and indicators used in clinical histology and pathology. Our Fluorescent Spectra graphing/calculator site presents dyes, filters, and illumination data from many of these and additional sources. PubSpectra is our free download site which uses Microsoft Excel files as standardized human/machine readable format with over 2,000 biomedical spectra. The principle that data is not subject to copyright provides a framework in which all scientific data should be made freely accessible. PMID:16969821

  3. Multiphoton spectral analysis of benzo[a]pyrene uptake and metabolism in a rat liver cell line

    SciTech Connect

    Barhoumi, Rola; Mouneimne, Youssef; Ramos, Ernesto; Morisseau, Christophe; Hammock, Bruce D.; Safe, Stephen; Parrish, Alan R.; Burghardt, Robert C.

    2011-05-15

    Dynamic analysis of the uptake and metabolism of polycyclic aromatic hydrocarbons (PAHs) and their metabolites within live cells in real time has the potential to provide novel insights into genotoxic and non-genotoxic mechanisms of cellular injury caused by PAHs. The present work, combining the use of metabolite spectra generated from metabolite standards using multiphoton spectral analysis and an 'advanced unmixing process', identifies and quantifies the uptake, partitioning, and metabolite formation of one of the most important PAHs (benzo[a]pyrene, BaP) in viable cultured rat liver cells over a period of 24 h. The application of the advanced unmixing process resulted in the simultaneous identification of 8 metabolites in live cells at any single time. The accuracy of this unmixing process was verified using specific microsomal epoxide hydrolase inhibitors, glucuronidation and sulfation inhibitors as well as several mixtures of metabolite standards. Our findings prove that the two-photon microscopy imaging surpasses the conventional fluorescence imaging techniques and the unmixing process is a mathematical technique that seems applicable to the analysis of BaP metabolites in living cells especially for analysis of changes of the ultimate carcinogen benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide. Therefore, the combination of the two-photon acquisition with the unmixing process should provide important insights into the cellular and molecular mechanisms by which BaP and other PAHs alter cellular homeostasis.

  4. Two-photon imaging of intact living plants during freezing with a flexible multiphoton tomograph

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; König, K.

    2015-02-01

    We describe the combination of a flexible multiphoton tomograph (MPTflex) with a heating and cooling stage. The stage allows temperature control in the range of (-196 °C) (77 K) to +600 °C (873 K) with selectable heating/freezing rates between 0.01 K min-1 and 150 K min-1. To illustrate the imaging capabilities of the combined system, fluorescence intensity and lifetime of intrinsic molecules from a plant leaf were imaged with submicron resolution during freezing in vivo without detaching the leaf from the plant. An increase of fluorescence intensity and decay times with decreasing temperature was observed. The measurements illustrate the usefulness of multiphoton imaging as a non-invasive online tool to investigate temperature-induced effects. The flexible multiphoton tomograph with its adjustable mechano-optical arm and scan head allows imaging at otherwise hardly accessible sample regions.

  5. Real-time optical diagnosis of gastric cancer with serosal invasion using multiphoton imaging

    PubMed Central

    Yan, Jun; Zheng, Yu; Zheng, Xiaoling; Liu, Zhangyuanzhu; Liu, Wenju; Chen, Dexin; Dong, Xiaoyu; Li, Kai; Liu, Xiumin; Chen, Gang; Lu, Jianping; Chen, Jianxin; Zhuo, Shuangmu; Li, Guoxin

    2016-01-01

    A real-time optical biopsy, which could determine tissue histopathology, would be of extraordinary benefit to staging laparoscopy for gastric cancer with serosal invasion (T4) that requires downstage treatment. We investigated the feasibility of using multiphoton imaging to perform a real-time optical diagnosis of gastric cancer with or without serosal invasion. First, a pilot study was performed to establish the optical diagnostic features of gastric cancer with or without serosal invasion using multiphoton imaging compared with hematoxylin-eosin staining and Masson’s trichrome staining. Second, a blinded study was performed to compare the diagnostic sensitivity, specificity, and accuracy of multiphoton imaging and endoscopic ultrasonography (EUS) for T4 gastric cancer. In the pilot study, multiphoton imaging revealed collagen loss and degradation and cellular and nuclear pleomorphism in gastric cancer with serosal invasion. The collagen content in gastric cancer with or without serosal invasion was 0.36 ± 0.18 and 0.79 ± 0.16 (p < 0.001), respectively. In the blinded study, the sensitivity, specificity, and accuracy of EUS and multiphoton imaging for T4 gastric cancer were 70% and 90% (p = 0.029), 66.67% and 96.67% (p = 0.003), and 68.33% and 93.33% (p = 0.001), respectively. It is feasible to use multiphoton imaging to make a real-time optical diagnosis of gastric cancer with or without serosal invasion. PMID:27499365

  6. Label-free multiphoton imaging and photoablation of preinvasive cancer cells

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Wu, Guizhu; Zhu, Xiaoqin; Jiang, Xingshan; Xie, Shusen

    2012-01-01

    Detection and treatment of early lesions in epithelial tissue offer several possibilities for curing cancer, but it is challenging. Here, we present an optical technique, the combination of multiphoton imaging and absorption, to label-freely detect and ablate preinvasive cancer cells in epithelial tissue. We find that multiphoton imaging can label-freely visualize the principal features of nuclear atypia associated with epithelial precancerous lesions, and the spatial localization of multiphoton absorption can perform targeted ablation of preinvasive cancer cells with micrometer-sized volume precision. These results indicate that this optical technique has the capability to label-freely visualize and remove preinvasive cancer cells in epithelial tissue. This study highlights the potential of this technique as a "seek-and-treat" tool for early lesions in epithelial tissue.

  7. Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging.

    PubMed

    Kumar, S; Dunsby, C; De Beule, P A A; Owen, D M; Anand, U; Lanigan, P M P; Benninger, R K P; Davis, D M; Neil, M A A; Anand, P; Benham, C; Naylor, A; French, P M W

    2007-10-01

    We report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleaching- and movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor. PMID:19550524

  8. Imaging the bone marrow stem cells morphogenesis in PGA scaffold by multiphoton autofluorescence and second harmonic (SHG) imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hsuan-Shu; Teng, Shu-Wen; Chen, Hsiao-Ching; Lo, Wen; Sun, Yen; Lin, Tze-Yu; Chiou, Ling-Ling; Jiang, Ching-Chuan; Dong, Chen-Yuan

    2006-02-01

    The ability to image tissue engineering products without damaging histological procedures is important for the understanding of the dynamics of tissue reorganization and formation. In this work, we test the ability of multiphoton autofluorescence and second harmonic generation microscopy to image engineered tissues following chrondrogenic induction. The system we used is human bone marrow stem cells seeded in the scaffold polyglycolic acid (PGA). Our results show that autofluorescence can be used to image cells while second harmonic generation signal can be used to visualize the synthesis of extracellular matrix. This approach demonstrates the ability of multiphoton imaging in the study of tissue engineering products.

  9. Biosensing and -imaging with enantiomeric luminescent conjugated polythiophenes using multiphoton excitation

    NASA Astrophysics Data System (ADS)

    Lindgren, Mikael; Stabo-Eeg, Frantz; Schnell, Edrun A.; Nilsson, K. Peter R.; Hammarstrom, Per; Inganaes, Olle

    2005-08-01

    We report on the initial time-resolved luminescense and nonlinear absorption properties of two polythiophenes 3-substituted with chiral charged amino acid-derivatized substituents, POWT and POMT. The photo-physical characterization yielded quantum efficiency typically in the range 0.01 - 0.1, however, with two-photon absorption cross-section better than or similar to a typical two-photon reference chromophore, such as fluorescein. They were tested as conformational sensitive optical probes for the recording of pH-induced conformational changes of synthetic peptides, proteins and samples of protein amyloid fibrils characteristic of amyloid related diseases. Particularly, the POMT polyelectrolyte with the L-enantiomeric side chains is shown to favor this induction of well defined structure as judged by the circular dichroic signal as well as a stronger enhancement of luminescense for the L-form over the D-form complex. Furthermore, time-resolved fluorescense and two-photon induced fluorescence both also showed a difference in the complexation with the D and L form. This shows that the multi-photon excitation path can be an efficient means for chiral recognition of biomolecular complexes. It is demonstrated how the conjugated polyelectrolyte L-POMT can be used to spectrally image the formation of amyloid fibrils of insulin using both one- and two-photon absorption based fluorescence imaging.

  10. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  11. Differentiation of normal and cancerous lung tissues by multiphoton imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Wu, Ruei-Jr; Hovhannisyan, Vladimir A.; Lin, Wei-Chou; Lin, Sung-Jan; So, Peter T. C.; Dong, Chen-Yuan

    2010-02-01

    In this work, we utilized multiphoton microscopy for the label-free diagnosis of non-cancerous, lung adenocarcinoma (LAC), and lung squamous cell carcinoma (SCC) tissues from human. Our results show that the combination of second harmonic generation (SHG) and multiphoton excited autofluorescence (MAF) signals may be used to acquire morphological and quantitative information in discriminating cancerous from non-cancerous lung tissues. Specifically, non-cancerous lung tissues are largely fibrotic in structure while cancerous specimens are composed primarily of tumor masses. Quantitative ratiometric analysis using MAF to SHG index (MAFSI or SAAID) shows that the average MAFSI for noncancerous and LAC lung tissue pairs are 0.55 +/-0.23 and 0.87+/-0.15 respectively. In comparison, the MAFSIs for the noncancerous and SCC tissue pairs are 0.50+/-0.12 and 0.72+/-0.13 respectively. Intrinsic fluorescence ratio (FAD/NADH) of SCC and non-cancerous tissues are 0.40+/-0.05 and 0.53+/-0.05 respectively, the redox ratio of SCC diminishes significantly, indicating that increased cellular metabolic activity. Our study shows that nonlinear optical microscopy can assist in differentiating and diagnosing pulmonary cancer from non-cancerous tissues. With additional development, multiphoton microscopy may be used for the clinical diagnosis of lung cancers.

  12. Stepwise multi-photon activation fluorescence reveals a new method of melanoma imaging for dermatologists

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Lian, Christine; Ma, Jie; Yu, Jingyi; Gu, Zetong; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2014-02-01

    Previous research has shown that the stepwise multi-photon activated fluorescence (SMPAF) of melanin, activated by a continuous-wave (CW) mode near infrared (NIR) laser, is a low cost and reliable method of detecting melanin. SMPAF images of melanin in a mouse hair and a formalin fixed mouse melanoma were compared with conventional multiphoton fluorescence microscopy (MPFM) images and confocal reflectance microscopy (CRM) images, all of which were acquired at an excitation wavelength of 920 nm, to further prove the effectiveness of SMPAF in detecting melanin. SMPAF images add specificity for melanin detection to MPFM images and CRM images. Melanin SMPAF can be a promising technology to enable melanoma imaging for dermatologists.

  13. Clinical multiphoton FLIM tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-03-01

    This paper gives an overview on current clinical high resolution multiphoton fluorescence lifetime imaging in volunteers and patients. Fluorescence lifetime imaging (FLIM) in Life Sciences was introduced in Jena/Germany in 1988/89 based on a ZEISS confocal picosecond dye laser scanning microscope equipped with a single photon counting unit. The porphyrin distribution in living cells and living tumor-bearing mice was studied with high spatial, temporal, and spectral resolution. Ten years later, time-gated cameras were employed to detect dental caries in volunteers based on one-photon excitation of autofluorescent bacteria with long fluorescence lifetimes. Nowadays, one-photon FLIM based on picosecond VIS laser diodes are used to study ocular diseases in humans. Already one decade ago, first clinical twophoton FLIM images in humans were taken with the certified clinical multiphoton femtosecond laser tomograph DermaInspectTM. Multiphoton tomographs with FLIM modules are now operating in hospitals at Brisbane, Tokyo, Berlin, Paris, London, Modena and other European cities. Multiple FLIM detectors allow spectral FLIM with a temporal resolution down to 20 ps (MCP) / 250 ps (PMT) and a spectral resolution of 10 nm. Major FLIM applications include the detection of intradermal sunscreen and tattoo nanoparticles, the detection of different melanin types, the early diagnosis of dermatitis and malignant melanoma, as well as the measurement of therapeutic effects in pateints suffering from dermatitis. So far, more than 1,000 patients and volunteers have been investigated with the clinical multiphoton FLIM tomographs DermaInspectTM and MPTflexTM.

  14. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging

    PubMed Central

    Poland, Simon P.; Krstajić, Nikola; Monypenny, James; Coelho, Simao; Tyndall, David; Walker, Richard J.; Devauges, Viviane; Richardson, Justin; Dutton, Neale; Barber, Paul; Li, David Day-Uei; Suhling, Klaus; Ng, Tony; Henderson, Robert K.; Ameer-Beg, Simon M.

    2015-01-01

    We demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein. The applicability of the technique to imaging protein-protein interactions in live cells is exemplified by observation of time-dependent FRET between the epidermal growth factor receptor (EGFR) and the adapter protein Grb2 following stimulation with the receptor ligand. Furthermore, ligand-dependent association of HER2-HER3 receptor tyrosine kinases was observed on a similar timescale and involved the internalisation and accumulation or receptor heterodimers within endosomes. These data demonstrate the broad applicability of this novel FLIM technique to the spatio-temporal dynamics of protein-protein interaction. PMID:25780724

  15. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  16. Nanoparticle-assisted-multiphoton microscopy for in vivo brain imaging of mice

    NASA Astrophysics Data System (ADS)

    Qian, Jun

    2015-03-01

    Neuro/brain study has attracted much attention during past few years, and many optical methods have been utilized in order to obtain accurate and complete neural information inside the brain. Relying on simultaneous absorption of two or more near-infrared photons by a fluorophore, multiphoton microscopy can achieve deep tissue penetration and efficient light detection noninvasively, which makes it very suitable for thick-tissue and in vivo bioimaging. Nanoparticles possess many unique optical and chemical properties, such as anti-photobleaching, large multiphoton absorption cross-section, and high stability in biological environment, which facilitates their applications in long-term multiphoton microscopy as contrast agents. In this paper, we will introduce several typical nanoparticles (e.g. organic dye doped polymer nanoparticles and gold nanorods) with high multiphoton fluorescence efficiency. We further applied them in two- and three-photon in vivo functional brain imaging of mice, such as brain-microglia imaging, 3D architecture reconstruction of brain blood vessel, and blood velocity measurement.

  17. Enabling Multiphoton and Second Harmonic Generation Imaging in Paraffin-Embedded and Histologically Stained Sections

    PubMed Central

    Monaghan, Michael G.; Kroll, Sebastian; Brucker, Sara Y.

    2016-01-01

    Nonlinear microscopy, namely multiphoton imaging and second harmonic generation (SHG), is an established noninvasive technique useful for the imaging of extracellular matrix (ECM). Typically, measurements are performed in vivo on freshly excised tissues or biopsies. In this article, we describe the effect of rehydrating paraffin-embedded sections on multiphoton and SHG emission signals and the acquisition of nonlinear images from hematoxylin and eosin (H&E)-stained sections before and after a destaining protocol. Our results reveal that bringing tissue sections to a physiological state yields a significant improvement in nonlinear signals, particularly in SHG. Additionally, the destaining of sections previously processed with H&E staining significantly improves their SHG emission signals during imaging, thereby allowing sufficient analysis of collagen in these sections. These results are important for researchers and pathologists to obtain additional information from paraffin-embedded tissues and archived samples to perform retrospective analysis of the ECM or gain additional information from rare samples. PMID:27018844

  18. Multiphoton imaging of upconverting lanthanide nanoparticles in three dimensional models of cancer

    NASA Astrophysics Data System (ADS)

    Gainer, Christian F.; Romanowski, Marek

    2013-02-01

    While upconverting lanthanide nanoparticles have numerous advantages over other exogenous contrast agents used in scanned multiphoton imaging, their long luminescence lifetimes cause images collected with non-descanned detection to be greatly blurred. We demonstrate herein the use of Richardson-Lucy deconvolution to deblur luminescence images obtained via multiphoton scanning microscopy. Images were taken of three dimensional models of colon and ovarian cancer following incubation with NaYF4:Yb,Er nanoparticles functionalized with an antibody for EGFR and folic acid respectively. Following deconvolution, images had a lateral resolution on par with the optimal performance of the imaging system used, ~1.2 μm, and an axial resolution of ~5 μm. Due to the relatively high multiphoton excitation efficiency of these nanoparticles, it is possible to follow binding of individual particles in tissue. In addition, their extreme photostability allows for prolonged imaging without significant loss in luminescence signal. With these advantageous properties in mind, we also discuss the potential application of upconverting lanthanide nanoparticles for tracking of specific, cancer relevant receptors in tissue.

  19. Multiphoton Imaging of Upconverting Lanthanide Nanoparticles in Three Dimensional Models of Cancer

    PubMed Central

    Gainer, Christian F.; Romanowski, Marek

    2013-01-01

    While upconverting lanthanide nanoparticles have numerous advantages over other exogenous contrast agents used in scanned multiphoton imaging, their long luminescence lifetimes cause images collected with non-descanned detection to be greatly blurred. We demonstrate herein the use of Richardson-Lucy deconvolution to deblur luminescence images obtained via multiphoton scanning microscopy. Images were taken of three dimensional models of colon and ovarian cancer following incubation with NaYF4:Yb,Er nanoparticles functionalized with an antibody for EGFR and folic acid respectively. Following deconvolution, images had a lateral resolution on par with the optimal performance of the imaging system used, ~1.2 μm, and an axial resolution of ~5 μm. Due to the relatively high multiphoton excitation efficiency of these nanoparticles, it is possible to follow binding of individual particles in tissue. In addition, their extreme photostability allows for prolonged imaging without significant loss in luminescence signal. With these advantageous properties in mind, we also discuss the potential application of upconverting lanthanide nanoparticles for tracking of specific, cancer relevant receptors in tissue. PMID:24353385

  20. High-Resolution Mosaic Imaging with Multifocal, Multiphoton Photon-Counting Microscopy

    SciTech Connect

    Chandler, E.; Hoover, E.; Field, J.; Sheetz, K.; Amir, W.; Carriles, R.; Ding, S. Y.; Squier, J.

    2009-04-10

    High-resolution mosaic imaging is performed for the first time to our knowledge with a multifocal, multiphoton, photon-counting imaging system. We present a novel design consisting of a home-built femtosecond Yb-doped KGdWO{sub 4} laser with an optical multiplexer, which is coupled with a commercial Olympus IX-71 microscope frame. Photon counting is performed using single-element detectors and an inexpensive electronic demultiplexer and counters.

  1. ENVIRONMENTAL APPLICATIONS OF SPECTRAL IMAGING

    EPA Science Inventory

    The utility of remote sensing using spectral imaging is just being realized through the investigation to a wide variety of environmental issues. Improved spectral and spatial resolution is very important to the detection of effects once regarded as unobservable. A current researc...

  2. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  3. Spectral imaging using forward-viewing spectrally encoded endoscopy.

    PubMed

    Zeidan, Adel; Yelin, Dvir

    2016-02-01

    Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times. PMID:26977348

  4. Spectral imaging using forward-viewing spectrally encoded endoscopy

    PubMed Central

    Zeidan, Adel; Yelin, Dvir

    2016-01-01

    Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times. PMID:26977348

  5. Rayleigh imaging in spectral mammography

    NASA Astrophysics Data System (ADS)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  6. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  7. In vitro imaging of embryonic stem cells using multiphoton luminescence of gold nanoparticles

    PubMed Central

    Nagesha, D; Laevsky, GS; Lampton, P; Banyal, R; Warner, C; DiMarzio, C; Sridhar, S

    2007-01-01

    Recent advances in nonlinear optical techniques and materials such as quantum wells, nanowires and noble-metal nanoparticles have led to advances in cellular imaging wherein various nanoparticles have been shown to improve both in vitro and in vivo visualization. In this paper, we demonstrate in vitro imaging using multi-photon photoluminescence of gold nanoparticles from two different cell types – Dictyostelium discoideum and mouse embryonic stem cells. By observing nanoparticles we show that embryonic stem cells maintained their ability to proliferate for several passages while grown in the presence of gold nanoparticles. The advantages of multi-photon luminescence using gold nanoparticles have important implications for use in stem cell proliferation experiments and in vitro experiments to monitor differentiation. PMID:18203448

  8. In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems.

    PubMed

    Huland, David M; Brown, Christopher M; Howard, Scott S; Ouzounov, Dimitre G; Pavlova, Ina; Wang, Ke; Rivera, David R; Webb, Watt W; Xu, Chris

    2012-05-01

    We characterize long (up to 285 mm) gradient index (GRIN) lens endoscope systems for multiphoton imaging. We fabricate a portable, rigid endoscope system suitable for imaging unstained tissues, potentially deep within the body, using a GRIN lens system of 1 mm diameter and 8 cm length. The portable device is capable of imaging a ~200 µm diameter field of view at 4 frames/s. The lateral and axial resolution in water is 0.85 µm and 7.4 µm respectively. In vivo images of unstained tissues in live, anesthetized rats using the portable device are presented. These results show great promise for GRIN endoscopy to be used clinically. PMID:22567597

  9. SPECTRAL IMAGING TECHNIQUES FOR GRAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three spectral imaging techniques were employed for the purpose of assessing the quality of cereal grains. Each of these techniques provided unique, yet complementary, information. Nuclear magnetic resonance (NMR), also called magnetic resonance imaging (MRI), was used to detect mobile components ...

  10. Compact fixed wavelength femtosecond oscillators for multi-photon imaging

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.; Zadoyan, R.; Baldacchini, T.; Franke, T.

    2015-03-01

    In recent years two-photon microscopy with fixed-wavelength has raised increasing interest in life-sciences: Two-photon (2P) absorption spectra of common dyes are broader than single-photon ones. Therefore, excitation of several dyes simultaneously with a single IR laser wavelength is feasible and could be seen as an advantage in 2P microscopy. We used pulsed fixed-wavelength infrared lasers with center wavelength at 1040 nm, for two-photon microscopy in a variety of biologically relevant samples, among these a mouse brain sample, a mouse artery (within the animal, acute preparation), and a preparation of mouse bladder. The 1040 nm laser proved to be efficient not only in exciting fluorescence from yellow fluorescent protein (YFP) and red fluorescent dyes, but also for second harmonic generation (SHG) signals from muscle tissue and collagen. With this work we demonstrate that economical, small-footprint fixedwavelength lasers can present an interesting alternative to tunable lasers that are commonly used in multiphoton microscopy.

  11. Multiphoton fluorescence imaging of NADH to quantify metabolic changes in epileptic tissue in vitro

    NASA Astrophysics Data System (ADS)

    Chia, Thomas H.; Zinter, Joseph; Spencer, Dennis D.; Williamson, Anne; Levene, Michael J.

    2007-02-01

    A powerful advantage of multiphoton microscopy is its ability to image endogenous fluorophores such as the ubiquitous coenzyme NADH in discrete cellular populations. NADH is integral in both oxidative and non-oxidative cellular metabolism. NADH loses fluorescence upon oxidation to NAD +; thus changes in NADH fluorescence can be used to monitor metabolism. Recent studies have suggested that hypo metabolic astrocytes play an important role in cases of temporal lobe epilepsy (TLE). Current theories suggest this may be due to defective and/or a reduced number of mitochondria or dysfunction of the neuronal-astrocytic metabolic coupling. Measuring NADH fluorescence changes following chemical stimulation enables the quantification of the cellular distribution of metabolic anomalies in epileptic brain tissue compared to healthy tissue. We present what we believe to be the first multiphoton microscopy images of NADH from the human brain. We also present images of NADH fluorescence from the hippocampus of the kainate-treated rat TLE model. In some experiments, human and rat astrocytes were selectively labeled with the fluorescent dye sulforhodamine 101 (SR101). Our results demonstrate that multiphoton microscopy is a powerful tool for assaying the metabolic pathologies associated with temporal lobe epilepsy in humans and in rodent models.

  12. Onboard spectral imager data processor

    NASA Astrophysics Data System (ADS)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  13. In vivo multiphoton imaging of collagen remodeling after microablative fractional rejuvenation

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Kapsokalyvas, Dimitrios; Troiano, Michela; Campolmi, Piero; Morini, Cristiano; Cosci, Alessandro; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.

    2011-03-01

    The potential of multiphoton microscopy in providing in-vivo early diagnosis of skin lesions has already been demonstrated, while its capability in therapy follow-up has not been deeply explored so far. Two-photon excited fluorescence and second-harmonic generation microscopy were used in combination to follow-up collagen remodeling after laser micro-ablative rejuvenation. Treated regions of volunteers were imaged with multiphoton microscopy before and after treatment, and we found a strong age-dependence of the treatment effectiveness. In particular, the photorejuvenating effect was negligible in young subjects (< 30 years), whereas a significant production of new collagen was observed in aged subjects (> 70 years). Quantification of the amount of newly produced collagen and its organization were performed by means of visual examination of two-photon images. The obtained results demonstrate the performance of laser fractional micro-ablative rejuvenation without the need of an invasive biopsy as well as the wide applicability range of applications for multiphoton microscopy in clinical dermatology.

  14. Eliminating the scattering ambiguity in multifocal, multimodal multiphoton imaging systems

    PubMed Central

    Hoover, Erich E.; Field, Jeffrey J.; Winters, David G.; Young, Michael D.; Chandler, Eric V.; Speirs, John C.; Kim, Susy M.; Ding, Shi-you; Bartels, Randy A.; Wang, Jing W.; Squier, Jeff A.

    2013-01-01

    Four images of Drosophila Melanogaster antennal lobe structure labeled with red fluorescent protein. The images are separated axially by 7 μm in depth, and were all acquired simultaneously from a single-element detector. PMID:22461190

  15. Snapshot colored compressive spectral imager.

    PubMed

    Correa, Claudia V; Arguello, Henry; Arce, Gonzalo R

    2015-10-01

    Traditional spectral imaging approaches require sensing all the voxels of a scene. Colored mosaic FPA detector-based architectures can acquire sets of the scene's spectral components, but the number of spectral planes depends directly on the number of available filters used on the FPA, which leads to reduced spatiospectral resolutions. Instead of sensing all the voxels of the scene, compressive spectral imaging (CSI) captures coded and dispersed projections of the spatiospectral source. This approach mitigates the resolution issues by exploiting optical phenomena in lenses and other elements, which, in turn, compromise the portability of the devices. This paper presents a compact snapshot colored compressive spectral imager (SCCSI) that exploits the benefits of the colored mosaic FPA detectors and the compression capabilities of CSI sensing techniques. The proposed optical architecture has no moving parts and can capture the spatiospectral information of a scene in a single snapshot by using a dispersive element and a color-patterned detector. The optical and the mathematical models of SCCSI are presented along with a testbed implementation of the system. Simulations and real experiments show the accuracy of SCCSI and compare the reconstructions with those of similar CSI optical architectures, such as the CASSI and SSCSI systems, resulting in improvements of up to 6 dB and 1 dB of PSNR, respectively. PMID:26479928

  16. Imaging NO elimination in the infrared multiphoton dissociation of nitroalkanes and alkyl nitrites

    NASA Astrophysics Data System (ADS)

    Fernando, Ravin; Ariyasingha, Nuwandi M.; Suits, Arthur G.

    2016-02-01

    We present a DC slice imaging study of the decomposition of C2, C3 and C4 nitroalkanes and alkyl nitrites, focusing on the NO elimination channel, possibly a minor pathway. Infrared multiphoton dissociation (IRMPD) is used to induce dissociation on the ground electronic state under collisionless conditions. The channels that produced NO as a product were studied and compared among the target molecules to gain a better understanding of the isomerization of the nitroalkanes prior to dissociation. Trends in the total translational energy and NO rotational temperatures obtained from the images are discussed.

  17. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  18. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy

    PubMed Central

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-01-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination. PMID:27231617

  19. Optimizing ultrafast illumination for multiphoton-excited fluorescence imaging.

    PubMed

    Stoltzfus, Caleb R; Rebane, Aleksander

    2016-05-01

    We study the optimal conditions for high throughput two-photon excited fluorescence (2PEF) and three-photon excited fluorescence (3PEF) imaging using femtosecond lasers. We derive relations that allow maximization of the rate of imaging depending on the average power, pulse repetition rate, and noise characteristics of the laser, as well as on the size and structure of the sample. We perform our analysis using ~100 MHz, ~1 MHz and 1 kHz pulse rates and using both a tightly-focused illumination beam with diffraction-limited image resolution, as well loosely focused illumination with a relatively low image resolution, where the latter utilizes separate illumination and fluorescence detection beam paths. Our theoretical estimates agree with the experiments, which makes our approach especially useful for optimizing high throughput imaging of large samples with a field-of-view up to 10x10 cm(2). PMID:27231620

  20. Optimizing ultrafast illumination for multiphoton-excited fluorescence imaging

    PubMed Central

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-01-01

    We study the optimal conditions for high throughput two-photon excited fluorescence (2PEF) and three-photon excited fluorescence (3PEF) imaging using femtosecond lasers. We derive relations that allow maximization of the rate of imaging depending on the average power, pulse repetition rate, and noise characteristics of the laser, as well as on the size and structure of the sample. We perform our analysis using ~100 MHz, ~1 MHz and 1 kHz pulse rates and using both a tightly-focused illumination beam with diffraction-limited image resolution, as well loosely focused illumination with a relatively low image resolution, where the latter utilizes separate illumination and fluorescence detection beam paths. Our theoretical estimates agree with the experiments, which makes our approach especially useful for optimizing high throughput imaging of large samples with a field-of-view up to 10x10 cm2. PMID:27231620

  1. Multiphoton imaging of excised normal skin and keloid scar: preliminary investigations

    NASA Astrophysics Data System (ADS)

    Brewer, Michael B.; Yeh, Alvin T.; Torkian, Behrooz; Sun, Chung-Ho; Tromberg, Bruce J.; Wong, Brian J.

    2004-07-01

    Wound healing is a physiologic process that acts to repair disruptions in the continuity of tissue caused by injury or surgical incision. Keloids and hypertrophic scars are forms of aberrant wound healing, which are characterized by the overproduction of collagen, resulting in an excessive amount of scar tissue. Keloid tumors, by definition, grow outside the boundary of the original tissue damage. Multiphoton microscopy (MPM) is an imaging technique which allows imaging of living specimens, without the use of fixation or stains. Images of collagen fibers are produced by the second harmonic signal intensity generated by endogenous fluorescence through excitation by infrared laser light. A postauricular keloid tumor was excised from a patient. The tissue was dissected, and a portion was imaged using MPM. Normal skin tissue was isolated from a patient undergoing a facelift. A portion of this tissue was also dissected and imaged using MPM. MPM images were taken using a 63X water immersion objective lens on a two-photon microscope and a titanium-sapphire laser. Images were taken beginning at the surface of the tissue and moving in at intervals of 200 nm to a final depth of 30 μm. The two-photon images were used to reconstruct three-dimensional representations of the collagen matrix within the tissues, which are readily contrasted. Density of the collagen within each tissue was also ascertained using depth dependant decay of the image intensity. Multiphoton imaging was successfully used to image the collagen matrix of normal skin and a keloid scar, demonstrating differences in their microstructures.

  2. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Ellingsen, Pa˚L. Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina De Lange; Kildemo, Morten

    2011-11-01

    The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.

  3. Characterization of multiphoton photoacoustic spectroscopy for subsurface brain tissue diagnosis and imaging

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir; Cullum, Brian M.

    2016-04-01

    The development and demonstration of a multiphoton photoacoustic imaging technique capable of providing high spatial resolution chemical images of subsurface tissue components as deep as 1.4 cm below the tissue surface is described. By combining multiphoton excitation in the diagnostic window (650 to 1100 nm), with ultrasonic detection of nonradiative relaxation events, it is possible to rapidly reconstruct three-dimensional, chemical specific, images of samples underneath overlying structures as well as chemical species of the same material. Demonstration of this technique for subsurface tissue differentiation is shown, with the ability to distinguish between grade III astrocytoma tissue and adjacent healthy tissue in blind studies. By employing photoacoustic signal detection, the high nonradiative relaxation rates of most biological tissue components (>90%) and the minimal signal attenuation of the resulting ultrasound compensate for excitation efficiency losses associated with two-photon absorption. Furthermore, the two-photon absorption process results in a highly localized excitation volume (ca., 60 μm). Characterization of the probing depth, spatial resolution, and ability to image through overlying structures is also demonstrated in this paper using tissue phantoms with well-characterized optical scattering properties, mimicking those of tissues.

  4. THREE-DIMENSIONAL RANDOM ACCESS MULTIPHOTON MICROSCOPY FOR FAST FUNCTIONAL IMAGING OF NEURONAL ACTIVITY

    PubMed Central

    Reddy, Gaddum Duemani; Kelleher, Keith; Fink, Rudy; Saggau, Peter

    2009-01-01

    The dynamic ability of neuronal dendrites to shape and integrate synaptic responses is the hallmark of information processing in the brain. Effectively studying this phenomenon requires concurrent measurements at multiple sites on live neurons. Significant progress has been made by optical imaging systems which combine confocal and multiphoton microscopy with inertia-free laser scanning. However, all systems developed to date restrict fast imaging to two dimensions. This severely limits the extent to which neurons can be studied, since they represent complex three-dimensional (3D) structures. Here we present a novel imaging system that utilizes a unique arrangement of acousto-optic deflectors to steer a focused ultra-fast laser beam to arbitrary locations in 3D space without moving the objective lens. As we demonstrate, this highly versatile random-access multiphoton microscope supports functional imaging of complex 3D cellular structures such as neuronal dendrites or neural populations at acquisition rates on the order of tens of kilohertz. PMID:18432198

  5. Long-term marker-free multiphoton imaging, targeted transfection, optical cleaning of stem cell clusters, and optical transport of microRNA with extreme ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Földes-Papp, Zeno; Kostner, Gerhard M.; König, Karsten

    2010-02-01

    The novel utrashort femtosecond laser scanning microscope FemtOgene (JenLab GmbH, Germany) with 12 femtoseconds at the focal plane have been employed in marker-free imaging and optical manipulation of stem cells as well as for the non-contact introduction of microRNA in cancer cells. Human adult pancreatic stem cells, salivary gland stem cells, and human dental pulp stem cells have been investigated by femtosecond laser multiphoton microscopy. Autofluorescence based on NAD(P)H and flavoproteins and second harmonic generation due to collagen have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. Major emission peaks at 460 nm and 530 nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured in a variety of stem cells using spectral imaging and time-correlated single photon counting. During differentiation, the ratios of bound to free NAD(P)H and NAD(P)H/flavoproteins changed. In addition, the biosynthesis of lipids and collagen was detected over a long period of time of up to 5 weeks. Nanoprocessing was performed with 12 femtosecond laser pulses and low picojoule pulse energies to realize targeted transfection and optical cleaning of human adult stem cell populations. Multiphoton sub-20fs microscopes may become novel non-invasive tools for marker-free optical stem cell characterization, for on-line monitoring of differentiation within a three-dimensional microenvironment, and for optical manipulation.

  6. Multiphoton imaging approaches for studying striatal dendritic excitability.

    PubMed

    Plotkin, Joshua L; Surmeier, D James

    2014-01-01

    As the main input nucleus to the basal ganglia, the striatum is responsible for receiving and integrating highly convergent afferents to ultimately guide action selection and movement initiation. Although the majority of this synaptic integration occurs in the dendrites of striatal projection neurons (SPNs), their thin diameter makes them inaccessible with traditional recording electrodes. Recent advances in optical imaging technologies have allowed us and others to start lifting the veil on the mechanisms governing synaptic integration in the striatum by enabling direct dendritic measurements and manipulations. Here we describe how our lab has approached combining 2-photon imaging and photolysis with electrophysiological recordings to study dendritic excitability and synaptic integration in the striatum. PMID:25023308

  7. Chronic imaging of amyloid plaques in the live mouse brain using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bacskai, Brian J.; Kajdasz, Stephen T.; Christie, R. H.; Zipfel, Warren R.; Williams, Rebecca M.; Kasischke, Karl A.; Webb, Watt W.; Hyman, B. T.

    2001-04-01

    Transgenic mice expressing the human Amyloid Precursor Protein (APP) develop amyloid plaques as they age. These plaques resemble those found in the human disease. Multiphoton laser scanning microscopy combined with a novel surgical approach was used to measure amyloid plaque dynamics chronically in the cortex of living transgenic mice. Thioflavine S (thioS) was used as a fluorescent marker of amyloid deposits. Multiphoton excitation allowed visualization of amyloid plaques up to 200 micrometers deep into the brain. The surgical site could be imaged repeatedly without overt damage to the tissue, and individual plaques within this volume could be reliably identified over periods of several days to several months. On average, plaque sizes remained constant over time, supporting a model of rapid deposition, followed by relative stability. Alternative reporters for in vivo histology include thiazine red, and FITC-labeled amyloid-(Beta) peptide. We also present examples of multi-color imaging using Hoechst dyes and FITC-labeled tomato lectin. These approaches allow us to observe cell nuclei or microglia simultaneously with amyloid-(Beta) deposits in vivo. Chronic imaging of a variety of reporters in these transgenic mice should provide insight into the dynamics of amyloid-(Beta) activity in the brain.

  8. Imaging sulfur mustard lesions in human epidermal tissues and keratinocytes by confocal and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Werrlein, Robert; Madren-Whalley, Janna S.

    2002-06-01

    Topical exposure to sulfur mustard (HD), a known theat agent, produces persistent and debilitating cutaneous blisters. The blisters occur at the dermal-epidermal junction following a dose-dependent latent period of 8-24 h, however, the primary lesions causing vesication remain uncertain. Immunofluorescent images reveal that a 5-min exposure to 400 (mu) M HD disrupts molecules that are also disrupted by epidermolysis bullosa-type blistering diseases of the skin. Using keratinocyte cultures and fluorochomes conjugated to two different keratin-14 (K14) antibodies (clones CKB1 and LL002), results have shown a statistically significant (p<0.1) 1-h decrease of 29.2% in expression of the CKB1 epitope, a nearly complete loss of CKB1 expression within 2 h, and progressive cytoskeletal (K14) collapse without loss in expression of the LL002 epitope. With human epidermal tissues, multi-photon images of (alpha) 6 integrin and laminin 5 showed disruptive changes in the cell-surface organization and integrity of these adhesion molecules. At 1 H postexposure, analyses showed a statistically significant (p<0.1) decrease of 27.3% in (alpha) 6 integrin emissions, and a 32% decrease in laminin 5 volume. Multi-photon imaging indicates that molecules essential for epidermal-dermal attachment are early targets in the alkylating events leading to HD-induced vesication.

  9. In vivo imaging of spinal cord in contusion injury model mice by multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Horiuchi, H.; Ogata, T.; Hikita, A.; Miura, H.; Imamura, T.

    2014-03-01

    Fluorescent imaging technique is a promising method and has been developed for in vivo applications in cellular biology. In particular, nonlinear optical imaging technique, multi-photon microscopy has make it possible to analyze deep portion of tissues in living animals such as axons of spinal code. Traumatic spinal cord injuries (SCIs) are usually caused by contusion damages. Therefore, observation of spinal cord tissue after the contusion injury is necessary for understanding cellular dynamics in response to traumatic SCI and development of the treatment for traumatic SCI. Our goal is elucidation of mechanism for degeneration of axons after contusion injuries by establishing SCI model and chronic observation of injured axons in the living animals. Firstly we generated and observed acute SCI model by contusion injury. By using a multi-photon microscope, axons in dorsal cord were visualized approximately 140 micron in depth from the surface. Immediately after injury, minimal morphological change of spinal cord was observed. At 3 days after injury, spinal cord was swelling and the axons seem to be fragmented. At 7 days after injury, increased degradation of axons could be observed, although the image was blurred due to accumulation of the connective tissue. In the present study, we successfully observed axon degeneration after the contusion SCI in a living animal in vivo. Our final goal is to understand molecular mechanisms and cellular dynamics in response to traumatic SCIs in acute and chronic stage.

  10. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging

    PubMed Central

    Entenberg, David; Wyckoff, Jeffrey; Gligorijevic, Bojana; Roussos, Evanthia T; Verkhusha, Vladislav V; Pollard, Jeffrey W; Condeelis, John

    2014-01-01

    Characterizing biological mechanisms dependent upon the interaction of many cell types in vivo requires both multiphoton microscope systems capable of expanding the number and types of fluorophores that can be imaged simultaneously while removing the wavelength and tunability restrictions of existing systems, and enhanced software for extracting critical cellular parameters from voluminous 4D data sets. We present a procedure for constructing a two-laser multiphoton microscope that extends the wavelength range of excitation light, expands the number of simultaneously usable fluorophores and markedly increases signal to noise via ‘over-clocking’ of detection. We also utilize a custom-written software plug-in that simplifies the quantitative tracking and analysis of 4D intravital image data. We begin by describing the optics, hardware, electronics and software required, and finally the use of the plug-in for analysis. We demonstrate the use of the setup and plug-in by presenting data collected via intravital imaging of a mouse model of breast cancer. The procedure may be completed in ~24 h. PMID:21959234

  11. Real-time histological imaging of kidneys stained with food dyes using multiphoton microscopy.

    PubMed

    Nagao, Yasuaki; Kimura, Kazushi; Wang, Shujie; Fujiwara, Takeshi; Mizoguchi, Akira

    2015-10-01

    We have developed a real-time imaging technique for diagnosis of kidney diseases which is composed of two steps, staining renal cells safely with food dyes and optical sectioning of living renal tissue to obtain histological images by multiphoton microscopy (MPM). Here, we demonstrated that the MPM imaging with food dyes, including erythrosine and indigo carmine, could be used as fluorescent agents to visualize renal functions and structures such as glomerular bloodstreams, glomerular filtration, and morphology of glomeruli and renal tubules. We also showed that the kidneys of IgA nephropathy model-mice stained with the food dyes presented histopathological characteristics different from those observed in normal kidneys. The use of the food dyes enhances the quality of tissue images obtained by MPM and offers the potential to contribute to a clinical real-time diagnosis of kidney diseases. PMID:26260138

  12. 5-HT spatial distribution imaging with multiphoton excitation of 5-HT correlative visible fluorescence in live cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Zeng, Shaoqun; Liu, Yafeng; Zhou, Wei; Chen, Tongsheng; Luo, Qingming

    2002-04-01

    The autofluorescence of 5-Hydroxytryptamine (5-HT) loaded rat mucosal mast cells (RBL-2H3 cells) is imaged with multiphoton excitation laser scanning microscope (MPELSM). 5-HT correlative visible fluorescence (Fco-vis) excited with 740-nm multiphoton excitation is observed in live cells for the first time, and the generating mechanism of 5-HT Fco-vis is studied. The spatial distribution of 5-HT in live cells is imaged at high spatial resolution in our experiment, which provides a new way to study the correlation between 5-HT spatial distribution and content, and the cellular functional state in live tissue or cells.

  13. Time-resolved multiphoton imaging of basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Sestini, S.; De Giorgi, V.; Stambouli, D.; Carli, P.; Massi, D.; Pavone, F. S.

    2007-02-01

    We investigated human cutaneous basal cell carcinoma ex-vivo samples by combined time resolved two photon intrinsic fluorescence and second harmonic generation microscopy. Morphological and spectroscopic differences were found between malignant skin and corresponding healthy skin tissues. In comparison with normal healthy skin, cancer tissue showed a different morphology and a mean fluorescence lifetime distribution slightly shifted towards higher values. Topical application of delta-aminolevulinic acid to the lesion four hours before excision resulted in an enhancement of the fluorescence signal arising from malignant tissue, due to the accumulation of protoporphyrines inside tumor cells. Contrast enhancement was prevalent at tumor borders by both two photon fluorescence microscopy and fluorescence lifetime imaging. Fluorescence-based images showed a good correlation with conventional histopathological analysis, thereby supporting the diagnostic accuracy of this novel method. Combined morphological and lifetime analysis in the study of ex-vivo skin samples discriminated benign from malignant tissues, thus offering a reliable, non-invasive tool for the in-vivo analysis of inflammatory and neoplastic skin lesions.

  14. Multi-photon imaging of amine-functionalized silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Natalio, Filipe; Kashyap, Anubha; Lorenz, Steffen; Kerschbaumer, Hannes; Dietzsch, Michael; Tahir, Muhammad Nawaz; Duschner, Heinz; Strand, Susanne; Strand, Dennis; Tremel, Wolfgang

    2012-07-01

    A convenient and simple strategy for preparing water soluble, photoluminescent functionalized silica nanoparticles (M-dots) in the absence of fluorophores or metal doping is demonstrated. These M-dots can be used for bioimaging using one and two-photon microscopy. Because of their high photostability, low toxicity and high biocompatibility compared with Lumidot™ CdSe/ZnS quantum dots, functionalized silica particles are superior alternatives for current bioimaging platforms. Moreover, the presence of a free amine group at the surface of the M-dots allows biomolecule conjugation (e.g. with antibodies, proteins) in a single step for converting these photoluminescent SiO2 nanoparticles into multifunctional efficient vehicles for theragnostics.A convenient and simple strategy for preparing water soluble, photoluminescent functionalized silica nanoparticles (M-dots) in the absence of fluorophores or metal doping is demonstrated. These M-dots can be used for bioimaging using one and two-photon microscopy. Because of their high photostability, low toxicity and high biocompatibility compared with Lumidot™ CdSe/ZnS quantum dots, functionalized silica particles are superior alternatives for current bioimaging platforms. Moreover, the presence of a free amine group at the surface of the M-dots allows biomolecule conjugation (e.g. with antibodies, proteins) in a single step for converting these photoluminescent SiO2 nanoparticles into multifunctional efficient vehicles for theragnostics. Electronic supplementary information (ESI) available: TEM images of unfunctionalized, XRD, UV-Vis spectra, XPS spectra and gallery of two-photon images. See DOI: 10.1039/c2nr30660c

  15. Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks

    NASA Astrophysics Data System (ADS)

    Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy

    2014-06-01

    Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.

  16. Deep-tissue multiphoton fluorescence lifetime microscopy for intravital imaging of protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Fruhwirth, G. O.; Matthews, D. R.; Brock, A.; Keppler, M.; Vojnovic, B.; Ng, T.; Ameer-Beg, S.

    2009-02-01

    Fluorescent lifetime imaging microscopy (FLIM) has proven to be a valuable tool in beating the Rayleigh criterion for light microscopy by measuring Förster resonance energy transfer (FRET) between two fluorophores. Applying multiphoton FLIM, we previously showed in a human breast cancer cell line that recycling of a membrane receptorgreen fluorescent protein fusion is enhanced concomitantly with the formation of a receptor:protein kinase C α complex in the endosomal compartment. We have extended this established technique to probe direct protein-protein interactions also in vivo. Therefore, we used various expressible fluorescent tags fused to membrane receptor molecules in order to generate stable two-colour breast carcinoma cell lines via controlled retroviral infection. We used these cell lines for establishing a xenograft tumour model in immune-compromised Nude mice. Using this animal model in conjunction with scanning Ti:Sapphire laser-based two-photon excitation, we established deep-tissue multiphoton FLIM in vivo. For the first time, this novel technique enables us to directly assess donor fluorescence lifetime changes in vivo and we show the application of this method for intravital imaging of direct protein-protein interactions.

  17. Multiphoton microscopic imaging of fibrotic focus in invasive ductal carcinoma of the breast

    NASA Astrophysics Data System (ADS)

    Chen, Sijia; Nie, Yuting; Lian, Yuane; Wu, Yan; Fu, Fangmeng; Wang, Chuan; Zhuo, Shuangmu; Chen, Jianxin

    2014-11-01

    During the proliferation of breast cancer, the desmoplastic can evoke a fibrosis response by invading healthy tissue. Fibrotic focus (FF) in invasive ductal carcinoma (IDC) of the breast had been reported to be associated with significantly poorer survival rate than IDC without FF. As an important prognosis indicator, it's difficult to obtain the exact fibrotic information from traditional detection method such as mammography. Multiphoton imaging based on two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) has been recently employed for microscopic examination of unstained tissue. In this study, multiphoton microscopy (MPM) was used to image the fibrotic focus in invasive ductal carcinoma tissue. The morphology and distribution of collagen in fibrotic focus can be demonstrated by the SHG signal. Variation of collagen between IDC with and without FF will be examined and further characterized, which may be greatly related to the metastasis of breast cancer. Our result suggested that the MPM can be efficient in identifying and locating the fibrotic focus in IDC. Combining with the pathology analysis and other detecting methods, MPM owns potential in becoming an advanced histological tool for detecting the fibrotic focus in IDC and collecting prognosis information, which may guide the subsequent surgery option and therapy procedure for patients.

  18. Role of multiphoton bunching in high-order ghost imaging with thermal light sources

    SciTech Connect

    Liu Qian; Chen Xihao; Luo Kaihong; Wu Lingan; Wu Wei

    2009-05-15

    The intrinsic higher-order correlation of intensities which gives a measure of 'pure' correlations among photons (corresponding to multiphoton bunching) is investigated with regard to ghost imaging with thermal light. The synchronous detection of the same light field by all reference detectors, which is a necessary condition for achieving an Nth-order ghost image based on N-photon bunching, is discussed. Furthermore, it is found that the enhanced high visibility of Nth-order ghost imaging is a consequence of the contribution of N-photon bunching, which is not a small value but is equal to the sum of all contributions from (N-1)-photon bunching. These results differ from those obtained by certain other groups.

  19. MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon

    PubMed Central

    Duan, Xiyu; Li, Haijun; Qiu, Zhen; Joshi, Bishnu P.; Pant, Asha; Smith, Arlene; Kurabayashi, Katsuo; Oldham, Kenn R.; Wang, Thomas D.

    2015-01-01

    We demonstrate a handheld multiphoton endomicroscope with 3.4 mm distal diameter that can repetitively image mouse colon in vivo. A 2D resonant MEMS mirror was developed to perform beam scanning in a Lissajous pattern. The instrument has an effective numerical aperture of 0.63, lateral and axial resolution of 2.03 and 9.02 μm, respectively, working distance of 60 μm, and image field-of-view of 300 × 300 μm2. Hoechst was injected intravenously in mice to stain cell nuclei. We were able to collect histology-like images in vivo at 5 frames/sec, and distinguish between normal and pre-malignant colonic epithelium. PMID:26309768

  20. Label-free in vivo imaging of Drosophila melanogaster by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Ying; Hovhannisyan, Vladimir; Wu, June-Tai; Lin, Sung-Jan; Lin, Chii-Wann; Chen, Jyh-Horng; Dong, Chen-Yuan

    2008-02-01

    The fruit fly Drosophila melanogaster is one of the most valuable organisms in genetic and developmental biology studies. Drosophila is a small organism with a short life cycle, and is inexpensive and easy to maintain. The entire genome of Drosophila has recently been sequenced (cite the reference). These advantages make fruit fly an attractive model organism for biomedical researches. Unlike humans, Drosophila can be subjected to genetic manipulation with relative ease. Originally, Drosophila was mostly used in classical genetics studies. In the model era of molecular biology, the fruit fly has become a model organ for developmental biology researches. In the past, numerous molecularly modified mutants with well defined genetic defects affecting different aspects of the developmental processes have been identified and studied. However, traditionally, the developmental defects of the mutant flies are mostly examined in isolated fixed tissues which preclude the observation of the dynamic interaction of the different cell types and the extracellular matrix. Therefore, the ability to image different organelles of the fruit fly without extrinsic labeling is invaluable for Drosophila biology. In this work, we successfully acquire in vivo images of both developing muscles and axons of motor neurons in the three larval stages by using the minimially invasive imaging modality of multiphoton (SHG) microscopy. We found that while SHG imaging is useful in revealing the muscular architecture of the developing larva, it is the autofluorescence signal that allows label-free imaging of various organelles to be achieved. Our results demonstrate that multiphoton imaging is a powerful technique for investigation the development of Drosophila.

  1. Spectral imaging of the retina

    PubMed Central

    Mordant, D J; Al-Abboud, I; Muyo, G; Gorman, A; Sallam, A; Ritchie, P; Harvey, A R; McNaught, A I

    2011-01-01

    Introduction The work described here involved the use of a modified fundus camera to obtain sequential hyperspectral images of the retina in 14 normal volunteers and in 1 illustrative patient with a retinal vascular occlusion. Methods The paper describes analysis techniques, which allow oximetry within retinal vessels; these results are presented as retinal oximetry maps. Results Using spectral images, with wavelengths between 556 and 650 nm, the mean oxygen saturation (OS) value in temporal retinal arterioles in normal volunteers was 104.3 (±16.7), and in normal temporal retinal venules was 34.8 (±17.8). These values are comparable to those quoted in the literature, although, the venular saturations are slightly lower than those values found by other authors; explanations are offered for these differences. Discussion The described imaging and analysis techniques produce a clinically useful map of retinal oximetric values. The results from normal volunteers and from one illustrative patient are presented. Further developments, including the recent development of a ‘snapshot' spectral camera, promises enhanced non-invasive retinal vessel oximetry mapping. PMID:21390065

  2. Spectral clustering for TRUS images

    PubMed Central

    Mohamed, Samar S; Salama, Magdy MA

    2007-01-01

    Background Identifying the location and the volume of the prostate is important for ultrasound-guided prostate brachytherapy. Prostate volume is also important for prostate cancer diagnosis. Manual outlining of the prostate border is able to determine the prostate volume accurately, however, it is time consuming and tedious. Therefore, a number of investigations have been devoted to designing algorithms that are suitable for segmenting the prostate boundary in ultrasound images. The most popular method is the deformable model (snakes), a method that involves designing an energy function and then optimizing this function. The snakes algorithm usually requires either an initial contour or some points on the prostate boundary to be estimated close enough to the original boundary which is considered a drawback to this powerful method. Methods The proposed spectral clustering segmentation algorithm is built on a totally different foundation that doesn't involve any function design or optimization. It also doesn't need any contour or any points on the boundary to be estimated. The proposed algorithm depends mainly on graph theory techniques. Results Spectral clustering is used in this paper for both prostate gland segmentation from the background and internal gland segmentation. The obtained segmented images were compared to the expert radiologist segmented images. The proposed algorithm obtained excellent gland segmentation results with 93% average overlap areas. It is also able to internally segment the gland where the segmentation showed consistency with the cancerous regions identified by the expert radiologist. Conclusion The proposed spectral clustering segmentation algorithm obtained fast excellent estimates that can give rough prostate volume and location as well as internal gland segmentation without any user interaction. PMID:17359549

  3. Heuristically optimal path scanning for high-speed multiphoton circuit imaging.

    PubMed

    Sadovsky, Alexander J; Kruskal, Peter B; Kimmel, Joseph M; Ostmeyer, Jared; Neubauer, Florian B; MacLean, Jason N

    2011-09-01

    Population dynamics of patterned neuronal firing are fundamental to information processing in the brain. Multiphoton microscopy in combination with calcium indicator dyes allows circuit dynamics to be imaged with single-neuron resolution. However, the temporal resolution of fluorescent measures is constrained by the imaging frequency imposed by standard raster scanning techniques. As a result, traditional raster scans limit the ability to detect the relative timing of action potentials in the imaged neuronal population. To maximize the speed of fluorescence measures from large populations of neurons using a standard multiphoton laser scanning microscope (MPLSM) setup, we have developed heuristically optimal path scanning (HOPS). HOPS optimizes the laser travel path length, and thus the temporal resolution of neuronal fluorescent measures, using standard galvanometer scan mirrors. Minimizing the scan path alone is insufficient for prolonged high-speed imaging of neuronal populations. Path stability and the signal-to-noise ratio become increasingly important factors as scan rates increase. HOPS addresses this by characterizing the scan mirror galvanometers to achieve prolonged path stability. In addition, the neuronal dwell time is optimized to sharpen the detection of action potentials while maximizing scan rate. The combination of shortest path calculation and minimization of mirror positioning time allows us to optically monitor a population of neurons in a field of view at high rates with single-spike resolution, ∼ 125 Hz for 50 neurons and ∼ 8.5 Hz for 1,000 neurons. Our approach introduces an accessible method for rapid imaging of large neuronal populations using traditional MPLSMs, facilitating new insights into neuronal circuit dynamics. PMID:21715667

  4. In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation

    NASA Astrophysics Data System (ADS)

    Ait El Madani, Hassan; Tancrède-Bohin, Emmanuelle; Bensussan, Armand; Colonna, Anne; Dupuy, Alain; Bagot, Martine; Pena, Ana-Maria

    2012-02-01

    Multiphoton microscopy has emerged in the past decade as a promising tool for noninvasive skin imaging. Our aim was to evaluate the potential of multiphoton microscopy to detect topical corticosteroids side effects within the epidermis and to provide new insights into their dynamics. Healthy volunteers were topically treated with clobetasol propionate on a small region of their forearms under overnight occlusion for three weeks. The treated region of each patient was investigated at D0, D7, D15, D22 (end of the treatment), and D60. Our study shows that multiphoton microscopy allows for the detection of corticoid-induced epidermis modifications: thinning of stratum corneum compactum and epidermis, decrease of keratinocytes size, and changes in their morphology from D7 to D22. We also show that multiphoton microscopy enables in vivo three-dimensional (3-D) quantitative assessment of melanin content. We observe that melanin density decreases during treatment and almost completely disappears at D22. Moreover, these alterations are reversible as they are no longer present at D60. Our study demonstrates that multiphoton microscopy is a convenient and powerful tool for noninvasive 3-D dynamical studies of skin integrity and pigmentation.

  5. From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin.

    PubMed

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R; Feger, Julia S; Fallah, Mohammad A; Metze, Dieter; Ständer, Sonja; Luger, Thomas A; Koenig, Karsten; Mess, Christian; Schneider, Stefan W

    2016-01-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients' bedsides. These 'optical biopsies' generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy. PMID:27004454

  6. Automatic centerline extraction of irregular tubular structures using probability volumes from multiphoton imaging.

    PubMed

    Santamaría-Pang, A; Colbert, C M; Saggau, P; Kakadiaris, I A

    2007-01-01

    In this paper, we present a general framework for extracting 3D centerlines from volumetric datasets. Unlike the majority of previous approaches, we do not require a prior segmentation of the volume nor we do assume any particular tubular shape. Centerline extraction is performed using a morphology-guided level set model. Our approach consists of: i) learning the structural patterns of a tubular-like object, and ii) estimating the centerline of a tubular object as the path with minimal cost with respect to outward flux in gray level images. Such shortest path is found by solving the Eikonal equation. We compare the performance of our method with existing approaches in synthetic, CT, and multiphoton 3D images, obtaining substantial improvements, especially in the case of irregular tubular objects. PMID:18044604

  7. Imaging normal and cancerous human gastric muscular layer in transverse and longitudinal sections by multiphoton microscopy.

    PubMed

    Zhou, Yi; Kang, Deyong; Yang, Zhenrong; Li, Lianhuang; Zhuo, Shuangmu; Zhu, Xiaoqin; Zhou, Yongjian; Chen, Jianxin

    2016-07-01

    Multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) has been widely used for imaging microstructure of biological tissues. In this article, we used MPM to investigate the microstructure changes of normal and cancerous human gastric muscular layer in transverse and longitudinal sections. The results displayed different patterns of microstructure changes of smooth muscular tissue, cell morphology and interstitial fibers in transverse and longitudinal sections, being similar to standard histopathological images but without the need for tissue processing. Our study demonstrated that MPM can bring more detailed complementary information on tissue architecture through observing transverse and longitudinal sections of tissues, which are the important pathological information when the pathologists diagnose the gastrointestinal lesions. These observations indicate that MPM could be an important potential tool to provide real-time pathological diagnosis for gastric cancer in the future. SCANNING 38:357-364, 2016. © 2015 Wiley Periodicals, Inc. PMID:26435529

  8. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.; Powis, Ivan

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  9. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    NASA Astrophysics Data System (ADS)

    Lehmann, C. Stefan; Ram, N. Bhargava; Powis, Ivan; Janssen, Maurice H. M.

    2013-12-01

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  10. Spectral image reconstruction through the PCA transform

    NASA Astrophysics Data System (ADS)

    Ma, Long; Qiu, Xuewei; Cong, Yangming

    2015-12-01

    Digital color image reproduction based on spectral information has become a field of much interest and practical importance in recent years. The representation of color in digital form with multi-band images is not very accurate, hence the use of spectral image is justified. Reconstructing high-dimensional spectral reflectance images from relatively low-dimensional camera signals is generally an ill-posed problem. The aim of this study is to use the Principal component analysis (PCA) transform in spectral reflectance images reconstruction. The performance is evaluated by the mean, median and standard deviation of color difference values. The values of mean, median and standard deviation of root mean square (GFC) errors between the reconstructed and the actual spectral image were also calculated. Simulation experiments conducted on a six-channel camera system and on spectral test images show the performance of the suggested method.

  11. New developments in multimodal clinical multiphoton tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    80 years ago, the PhD student Maria Goeppert predicted in her thesis in Goettingen, Germany, two-photon effects. It took 30 years to prove her theory, and another three decades to realize the first two-photon microscope. With the beginning of this millennium, first clinical multiphoton tomographs started operation in research institutions, hospitals, and in the cosmetic industry. The multiphoton tomograph MPTflexTM with its miniaturized flexible scan head became the Prism-Award 2010 winner in the category Life Sciences. Multiphoton tomographs with its superior submicron spatial resolution can be upgraded to 5D imaging tools by adding spectral time-correlated single photon counting units. Furthermore, multimodal hybrid tomographs provide chemical fingerprinting and fast wide-field imaging. The world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph in spring 2010. In particular, nonfluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen have been imaged in patients with dermatological disorders. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution imaging tools such as ultrasound, optoacoustic, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer (malignant melanoma), optimization of treatment strategies (wound healing, dermatitis), and cosmetic research including long-term biosafety tests of ZnO sunscreen nanoparticles and the measurement of the stimulated biosynthesis of collagen by anti-ageing products.

  12. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  13. Label-free multi-photon imaging of dysplasia in Barrett’s esophagus

    PubMed Central

    Mehravar, Soroush; Banerjee, Bhaskar; Chatrath, Hemant; Amirsolaimani, Babak; Patel, Krunal; Patel, Charmi; Norwood, Robert A; Peyghambarian, Nasser; Kieu, Khanh

    2015-01-01

    Barrett’s esophagus (BE) is a metaplastic disorder where dysplastic and early cancerous changes are invisible to the naked eye and where the practice of blind biopsy is hampered by large sampling errors. Multi-photon microscopy (MPM) has emerged as an alternative solution for fast and label-free diagnostic capability for identifying the histological features with sub-micron accuracy. We developed a compact, inexpensive MPM system by using a handheld mode-locked fiber laser operating at 1560nm to study mucosal biopsies of BE. The combination of back-scattered THG, back-reflected forward THG and SHG signals generate images of cell nuclei and collagen, leading to label-free diagnosis in Barrett’s. PMID:26819824

  14. The first decade of using multiphoton microscopy for high-power kidney imaging

    PubMed Central

    Burford, James L.; Hackl, Matthias J.

    2012-01-01

    In this review, we highlight the major scientific breakthroughs in kidney research achieved using multiphoton microscopy (MPM) and summarize the milestones in the technological development of kidney MPM during the past 10 years. Since more and more renal laboratories invest in MPM worldwide, we discuss future directions and provide practical, useful tips and examples for the application of this still-emerging optical sectioning technology. Advantages of using MPM in various kidney preparations that range from freshly dissected individual glomeruli or the whole kidney in vitro to MPM of the intact mouse and rat kidney in vivo are reviewed. Potential combinations of MPM with micromanipulation techniques including microperfusion and micropuncture are also included. However, we emphasize the most advanced and complex, quantitative in vivo imaging applications as the ultimate use of MPM since the true mandate of this technology is to look inside intact organs in live animals and humans. PMID:22031850

  15. Marginal characteristics of skin scarred dermis quantitatively extracted from multiphoton microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqin; Zhuo, Shuangmu; Zheng, Liqin; Jiang, Xingshan; Chen, Jianxin; Lin, Bifang

    2010-11-01

    Multiphoton microscopy based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) was applied to examine the marginal regions at dermis of normal, atrophic and keloid scars. High-contrast, high-resolution image showed an obvious boundary at scar margin and different morphological patterns of collagen or elastin on the two sides. Since the degree of the morphological alteration between the two sides of boundary at scar margin was varied among different types of scars, alteration degree of SHG-to-TPEF index was defined as a quantitative indicator for discrimination. It will help to determine the most appropriate clinical treatment strategy for different types of scars and potentially monitor therapy in vivo.

  16. A database for spectral image quality

    NASA Astrophysics Data System (ADS)

    Le Moan, Steven; George, Sony; Pedersen, Marius; Blahová, Jana; Hardeberg, Jon Yngve

    2015-01-01

    We introduce a new image database dedicated to multi-/hyperspectral image quality assessment. A total of nine scenes representing pseudo-at surfaces of different materials (textile, wood, skin. . . ) were captured by means of a 160 band hyperspectral system with a spectral range between 410 and 1000nm. Five spectral distortions were designed, applied to the spectral images and subsequently compared in a psychometric experiment, in order to provide a basis for applications such as the evaluation of spectral image difference measures. The database can be downloaded freely from http://www.colourlab.no/cid.

  17. Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity

    PubMed Central

    2011-01-01

    Background Multiphoton microscopy (MPM) offers many advantages over conventional wide-field and confocal laser scanning microscopy (CLSM) for imaging biological samples such as 3D resolution of excitation, reduced phototoxicity, and deeper tissue imaging. However, adapting MPM for critical multi-color measurements presents a challenge because of the largely overlapping two-photon absorption (TPA) peaks of common biological fluorophores. Currently, most multi-color MPM relies on the absorbance at one intermediate wavelength of multiple dyes, which introduces problems such as decreased and unequal excitation efficiency across the set of dyes. Results Here we describe an MPM system incorporating two, independently controlled sources of two-photon excitation whose wavelengths are adjusted to maximally excite one dye while minimally exciting the other. We report increased signal-to-noise ratios and decreased false positive emission bleed-through using this novel multiple-excitation MPM (ME-MPM) compared to conventional single-excitation MPM (SE-MPM) in a variety of multi-color imaging applications. Conclusions Similar to the tremendous gain in popularity of CLSM after the introduction of multi-color imaging, we anticipate that the ME-MPM system will further increase the popularity of MPM. In addition, ME-MPM provides an excellent tool to more rapidly design and optimize pairs of fluorescence probes for multi-color two-photon imaging, such as CFP/YFP or GFP/DsRed for CLSM. PMID:21366923

  18. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  19. Multiphoton microscopy as a diagnostic imaging modality for pancreatic neoplasms without hematoxylin and eosin stains

    NASA Astrophysics Data System (ADS)

    Chen, Youting; Chen, Jing; Chen, Hong; Hong, Zhipeng; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Yanling; Chen, Jianxin

    2014-09-01

    Hematoxylin and eosin (H&E) staining of tissue samples is the standard approach in histopathology for imaging and diagnosing cancer. Recent reports have shown that multiphoton microscopy (MPM) provides better sample interface with single-cell resolution, which enhances traditional H&E staining and offers a powerful diagnostic tool with potential applications in oncology. The purpose of this study was to further expand the versatility of MPM by establishing the optical parameters required for imaging unstained histological sections of pancreatic neoplasms, thereby providing an efficient and environmentally sustainable alternative to H&E staining while improving the accuracy of pancreatic cancer diagnoses. We found that the high-resolution MPM images clearly distinguish between the structure of normal pancreatic tissues compared with pancreatic neoplasms in unstained histological sections, and discernable differences in tissue architecture and cell morphology between normal versus tumorigenic cells led to enhanced optical diagnosis of cancerous tissue. Moreover, quantitative assessment of the cytomorphological features visualized from MPM images showed significant differences in the nuclear-cytoplasmic ratios of pancreatic neoplasms compared with normal pancreas, as well as further distinguished pancreatic malignant tumors from benign tumors. These results indicate that the MPM could potentially serve as an optical tool for the diagnosis of pancreatic neoplasms in unstained histological sections.

  20. Multiphoton microscopy as a diagnostic imaging modality for pancreatic neoplasms without hematoxylin and eosin stains.

    PubMed

    Chen, Youting; Chen, Jing; Chen, Hong; Hong, Zhipeng; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Yanling; Chen, Jianxin

    2014-09-01

    Hematoxylin and eosin (H&E) staining of tissue samples is the standard approach in histopathology for imaging and diagnosing cancer. Recent reports have shown that multiphoton microscopy (MPM) provides better sample interface with single-cell resolution, which enhances traditional H&E staining and offers a powerful diagnostic tool with potential applications in oncology. The purpose of this study was to further expand the versatility of MPM by establishing the optical parameters required for imaging unstained histological sections of pancreatic neoplasms, thereby providing an efficient and environmentally sustainable alternative to H&E staining while improving the accuracy of pancreatic cancer diagnoses. We found that the high-resolution MPM images clearly distinguish between the structure of normal pancreatic tissues compared with pancreatic neoplasms in unstained histological sections, and discernable differences in tissue architecture and cell morphology between normal versus tumorigenic cells led to enhanced optical diagnosis of cancerous tissue. Moreover, quantitative assessment of the cytomorphological features visualized from MPM images showed significant differences in the nuclear–cytoplasmic ratios of pancreatic neoplasms compared with normal pancreas, as well as further distinguished pancreatic malignant tumors from benign tumors. These results indicate that the MPM could potentially serve as an optical tool for the diagnosis of pancreatic neoplasms in unstained histological sections. PMID:25216027

  1. Signal enhancement in multiphoton imaging by the use of coated glass substrates.

    PubMed

    Lee, Sheng-Lin; Guo, Han-Wen; Chen, Yang-Fan; Dong, Chen-Yuan

    2015-09-01

    In nonlinear optical imaging of biological specimens, more than half of the generated luminescence signal is lost, when signal collection is performed in the epi-illuminated geometry. In this study, we enhanced the collected luminescence signal by the use of alternating multiply-coated layers of tantalum pentoxide (Ta2O5) and silicon dioxide (SiO2) on standard microscope cover glasses that has high transmission in the near-infrared wavelength region and high reflection of the visible, luminescence signal. Our coating is biocompatible, allows visual examination of the specimens and optimize collection of the luminescence signal. We demonstrated this approach on a number of specimens including sulforhodamine solution, fluorescence microspheres, and labeled 3T3 cells. In all cases, the use of coated cover glass enhanced signal, optimally by a factor of about 2. Image analysis of labeled 3T3 cells also shows signal enhancement did not contribute to additional photobleaching. Our results show that properly designed coated cover glass can enhance detected signal in multiphoton microscopy and result in improved image quality. PMID:26417521

  2. Application of multiphoton steady state and lifetime imaging to mapping of tumor vascular architecture in vivo

    NASA Astrophysics Data System (ADS)

    Ameer-Beg, Simon; Barber, Paul R.; Hodgkiss, R. J.; Locke, R. J.; Newman, Robert G.; Tozer, Gillian M.; Vojnovic, Borivoj; Wilson, J.

    2002-06-01

    Recent interest in vascular targeting and anti-angiogenic drug treatments for cancer has stimulated fundamental research regarding the modes of action of these drugs as well as studies of the development and re-modeling of the vascular network following treatment. Multiphoton fluorescence microscopy is employed for in vivo mapping of three-dimensional blood vessel distribution in tumors grown in rodent dorsal skin-flap window chamber preparations. Accurate visualization of the vasculature in three-dimensions allows us to perform dynamic experiments in thick biological specimens in vivo. Examples of in vivo imaging of tumor vasculature are given and compared to normal tissue vasculature. The dynamic responses of blood vessels to treatment with the vascular targeting drug combretastatin A4-P are presented and discussed. The implementation of time-domain imaging by reversed stop-start time-correlated single photon counting (RSS-TCSPC) is discussed as a method for feature extraction in the presence of exogenous and endogenous fluorophores. In particular, the segmentation of the vascular network is demonstrated. Additional contrast, indicative of probe environmental factors, may also be realized. We present examples of in vivo lifetime imaging as a method to elucidate the physiological processes of the tumor microenvironment.

  3. Signal enhancement in multiphoton imaging by the use of coated glass substrates

    PubMed Central

    Lee, Sheng-Lin; Guo, Han-Wen; Chen, Yang-Fan; Dong, Chen-Yuan

    2015-01-01

    In nonlinear optical imaging of biological specimens, more than half of the generated luminescence signal is lost, when signal collection is performed in the epi-illuminated geometry. In this study, we enhanced the collected luminescence signal by the use of alternating multiply-coated layers of tantalum pentoxide (Ta2O5) and silicon dioxide (SiO2) on standard microscope cover glasses that has high transmission in the near-infrared wavelength region and high reflection of the visible, luminescence signal. Our coating is biocompatible, allows visual examination of the specimens and optimize collection of the luminescence signal. We demonstrated this approach on a number of specimens including sulforhodamine solution, fluorescence microspheres, and labeled 3T3 cells. In all cases, the use of coated cover glass enhanced signal, optimally by a factor of about 2. Image analysis of labeled 3T3 cells also shows signal enhancement did not contribute to additional photobleaching. Our results show that properly designed coated cover glass can enhance detected signal in multiphoton microscopy and result in improved image quality. PMID:26417521

  4. Use of multiphoton tomography and fluorescence lifetime imaging to investigate skin pigmentation in vivo

    NASA Astrophysics Data System (ADS)

    Dancik, Yuri; Favre, Amandine; Loy, Chong Jin; Zvyagin, Andrei V.; Roberts, Michael S.

    2013-02-01

    There is a growing body of literature showing the usefulness of multiphoton tomography (MPT) and fluorescence lifetime imaging for in situ characterization of skin constituents and the ensuing development of noninvasive diagnostic tools against skin diseases. Melanin and pigmentation-associated skin cancers constitute some of the major applications. We show that MPT and fluorescence lifetime imaging can be used to measure changes in cutaneous melanin concentration and that these can be related to the visible skin color. Melanin in the skin of African, Indian, Caucasian, and Asian volunteers is detected on the basis of its emission wavelength and fluorescence lifetimes in solution and in a melanocyte-keratinocyte cell culture. Fluorescence intensity is used to characterize the melanin content and distribution as a function of skin type and depth into the skin (stratum granulosum and stratum basale). The measured fluorescence intensities in given skin types agree with melanin amounts reported by others using biopsies. Our results suggest that spatial distribution of melanin in skin can be studied using MPT and fluorescence lifetime imaging, but further studies are needed to ascertain that the method can resolve melanin amount in smaller depth intervals.

  5. Combined multiphoton imaging and automated functional enucleation of porcine oocytes using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Lucas-Hahn, Andrea; Petersen, Bjoern; Lemme, Erika; Hassel, Petra; Niemann, Heiner; Heisterkamp, Alexander

    2010-07-01

    Since the birth of ``Dolly'' as the first mammal cloned from a differentiated cell, somatic cell cloning has been successful in several mammalian species, albeit at low success rates. The highly invasive mechanical enucleation step of a cloning protocol requires sophisticated, expensive equipment and considerable micromanipulation skill. We present a novel noninvasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically identified the metaphase plate. Subsequent irradiation of the metaphase chromosomes with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation (functional enucleation). We show that fs laser-based functional enucleation of porcine oocytes completely inhibited the parthenogenetic development without affecting the oocyte morphology. In contrast, nonirradiated oocytes were able to develop parthenogenetically to the blastocyst stage without significant differences to controls. Our results indicate that fs laser systems have great potential for oocyte imaging and functional enucleation and may improve the efficiency of somatic cell cloning.

  6. Multiphoton Microscopy Applied for Real-Time Intravital Imaging of Bacterial Infections In Vivo

    PubMed Central

    Choong, Ferdinand X.; Sandoval, Ruben M.; Molitoris, Bruce A.; Richter-Dahlfors, Agneta

    2014-01-01

    To understand the underlying mechanisms of bacterial infections, researchers have for long addressed the molecular interactions occurring when the bacterium interacts with host target cells. In these studies, primarily based on in vitro systems, molecular details have been revealed along with increased knowledge regarding the general infection process. With the recent advancements in in vivo imaging techniques, we are now in a position to bridge a transition from classical minimalistic in vitro approaches to allow infections to be studied in its native complexity—the live organ. Techniques such as multiphoton microscopy (MPM) allow cellular-level visualization of the dynamic infection process in real time within the living host. Studies in which all interplaying factors, such as the influences of the immune, lymphatic, and vascular systems can be accounted for, are likely to provide new insights to our current understanding of the infection process. MPM imaging becomes extra powerful when combined with advanced surgical procedure, allowing studies of the illusive early hours of infection. In this chapter, our intention is to provide a general view on how to design and carry out intravital imaging of a bacterial infection. While exemplifying this using a spatiotemporally well-controlled uropathogenic Escherichia coli (UPEC) infection in rat kidneys, we hope to provide the reader with general considerations that can be adapted to other bacterial infections in organs other than the kidney. PMID:22341218

  7. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    PubMed

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  8. Design of a portable wide field of view GPU-accelerated multiphoton imaging system for real-time imaging of breast surgical specimens

    NASA Astrophysics Data System (ADS)

    Giacomelli, Michael G.; Yoshitake, Tadayuki; Husvogt, Lennart; Cahill, Lucas; Ahsen, Osman; Vardeh, Hilde; Sheykin, Yury; Faulkner-Jones, Beverly E.; Hornegger, Joachim; Brooker, Jeff; Cable, Alex; Connolly, James L.; Fujimoto, James G.

    2016-03-01

    We present a portable multiphoton system designed for evaluating centimeter-scale surgical margins on surgical breast specimens in a clinical setting. The system is designed to produce large field of view images at a high frame rate, while using GPU processing to render low latency, video-rate virtual H&E images for real-time assessment. The imaging system and virtual H&E rendering algorithm are demonstrated by imaging unfixed human breast tissue in a clinical setting.

  9. Imaging the morphological change of tissue structure during the early phase of esophageal tumor progression using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Kang, Deyong; Xu, Meifang; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2012-12-01

    Esophageal cancer is a common malignancy with a very poor prognosis. Successful strategies for primary prevention and early detection are critically needed to control this disease. Multiphoton microscopy (MPM) is becoming a novel optical tool of choice for imaging tissue architecture and cellular morphology by two-photon excited fluorescence. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ (CIS), and early invasive carcinoma in order to establish the morphological features to differentiate these tissues. The diagnostic features such as the appearance of cancerous cells, the significant loss of stroma, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. These results correlated well with the paired histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level.

  10. Optimal spectral windows for microwave diversity imaging

    NASA Technical Reports Server (NTRS)

    Farhat, Nabil H.; Bai, Baocheng

    1991-01-01

    Tomographic microwave diversity imaging is analyzed using linear system theory concepts, and optimal spectral windows for data acquisition are obtained either by considering window position in the spectral domain or by using simulated annealing to find an optimal phase weighting of the object frequency response samples collected over the specified spectral window. This study provides a means of microwave image formation that is applicable under general assumptions. Results of numerical simulations and representative images reconstructed from realistic experimental microwave scattering data are given, demonstrating that the proposed approach is superior to previous image reconstruction methods.

  11. Spectral image compression for data communications

    NASA Astrophysics Data System (ADS)

    Hauta-Kasari, Markku; Lehtonen, Juha; Parkkinen, Jussi P. S.; Jaeaeskelaeinen, Timo

    2000-12-01

    We report a technique for spectral image compression to be used in the field of data communications. The spectral domain of the images is represented by a low-dimensional component image set, which is used to obtain an efficient compression of the high-dimensional spectral data. The component images are compressed using a similar technique as the JPEG- and MPEG-type compressions use to subsample the chrominance channels. The spectral compression is based on Principal Component Analysis (PCA) combined with color image transmission coding technique of 'chromatic channel subsampling' of the component images. The component images are subsampled using 4:2:2, 4:2:0, and 4:1:1-based compressions. In addition, we extended the test for larger block sizes and larger number of component images than in the original JPEG- and MPEG-standards. Totally 50 natural spectral images were used as test material in our experiments. Several error measures of the compression are reported. The same compressions are done using Independent Component Analysis and the results are compared with PCA. These methods give a good compression ratio while keeping visual quality of color still good. Quantitative comparisons between the original and reconstructed spectral images are presented.

  12. Multiphoton microscopy for imaging infectious keratitis: demonstration of the pattern of microbial spread in an experimental model

    NASA Astrophysics Data System (ADS)

    Sun, Yen; Lo, Wen; Wu, Ruei-Jhih; Lin, Sung-Jan; Lin, Wei-Chou; Jee, Shiou-Hwa; Tan, Hsin-Yuan; Dong, Chen-Yuan

    2006-02-01

    The purpose of this study is to assess the application of multiphoton fluorescence and second harmonic generation (SHG) microscopy for imaging and monitoring the disease progress of infectious keratitis in an experimental model, and to investigate the possible correlation of tissue architecture with spreading patterns of pathogens in an experimental model. Porcine eyes are to be obtained from slaughter house and processed and placed in organ culture system. Fungal infections by common pathogens of infectious keratitis are to be induced in porcine cornea buttons. Multiphoton fluorescence and SHG microscopy will be used for imaging and for monitoring the progression and extension of tissue destruction and possibly the pattern of pathogen spreading. We found that SHG imaging is useful in identifying alterations to collagen architecture while autofluorescence microscopy can be used to visualize the fungi and cells within the stroma. In summary, multiphoton fluorescence and second harmonic generation microscopy can non-invasively demonstrate and monitor tissue destruction associated with infectious keratitis. The pattern of pathogen spreading and its correlation with the tissue architecture can also be shown, which can be useful for future studies of the tissue-microbial interactions for infectious keratitis.

  13. Structural and functional imaging of engineered tissue development using an integrated OCT and multiphoton microscope

    NASA Astrophysics Data System (ADS)

    Fahrner, Lester J., IV; Tan, Wei; Vinegoni, Claudio; Eurell, Thomas E.; Boppart, Stephen A.

    2004-07-01

    Recent advances in the field of tissue engineering have led to the development of complex three-dimensional tissue constructs. It has become clear, however, that the traditional tools used for studying standard cell cultures are not always adequate for diagnostically studying thick, highly-scattering cultured tissues. Furthermore, many techniques used for studying three-dimensional constructs are invasive or require exogenous fluorophores, which damage the tissue and prevent time-course studies of tissue development. An integrated optical coherence tomography (OCT) and multi-photon microscope (MPM) has been constructed for visualizing 3-D engineered tissues. OCT was used for imaging structure and cell organization, while MPM was used for assessing functional properties of cells. We demonstrate technical developments involved in the construction of this instrument and its use in the non-destructive investigation of cell movement and tissue organization in engineered tissues. Cells labeled with GFP and exogenous fluorescent probes have also been imaged with OCT and confocal microscopy. Studies indicate that an integrated microscope has the potential to be an enabling diagnostic tool for future studies in the growth and organization of engineering tissues and in cell-cell and cell-matrix interactions.

  14. Investigation of signal-to-noise ratio in frequency-domain multiphoton fluorescence lifetime imaging microscopy.

    PubMed

    Zhang, Yide; Khan, Aamir A; Vigil, Genevieve D; Howard, Scott S

    2016-07-01

    Multiphoton microscopy (MPM) combined with fluorescence lifetime imaging microscopy (FLIM) has enabled three-dimensional quantitative molecular microscopy in vivo. The signal-to-noise ratio (SNR), and thus the imaging rate of MPM-FLIM, which is fundamentally limited by the shot noise and fluorescence saturation, has not been quantitatively studied yet. In this paper, we investigate the SNR performance of the frequency-domain (FD) MPM-FLIM with two figures of merit: the photon economy in the limit of shot noise, and the normalized SNR in the limit of saturation. The theoretical results and Monte Carlo simulations find that two-photon FD-FLIM requires 50% fewer photons to achieve the same SNR as conventional one-photon FLIM. We also analytically show that the MPM-FD-FLIM can exploit the DC and higher harmonic components generated by nonlinear optical mixing of the excitation light to improve SNR, reducing the required number of photons by an additional 50%. Finally, the effect of fluorophore saturation on the experimental SNR performance is discussed. PMID:27409702

  15. Imaging Mitochondrial Organization in Living Primate Oocytes and Embryos using Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Squirrell, J. M.; Schramm, R. D.; Paprocki, A. M.; Wokosin, D. L.; Bavister, B. D.

    2003-06-01

    We employed multiphoton laser scanning microscopy (MPLSM) to image changes in mitochondrial distribution in living rhesus monkey embryos. This method of imaging does not impair development; thus, the same specimen can be visualized multiple times at various developmental stages. Not only does this increase the amount of information that can be gathered on a single specimen but it permits the correlation of early events with subsequent development in the same specimen. Here we demonstrate the utility of MPLSM for determining changes in mitochondrial organization at various developmental stages and show that rhesus zygotes possess a distinct accumulation of mitochondria between the pronuclei prior to syngamy. We present evidence that suggests that this pronuclear accumulation may be positively correlated with development to the blastocyst stage—in the same embryo—thereby illustrating how MPLSM can be used to correlate cellular dynamics of primate oocytes and early embryos with their developmental potential. Understanding the relationship between mitochondrial distribution and the subsequent development of mammalian embryos, particularly primates, will increase our ability to improve embryo culture technologies, including those used for human assisted reproduction.

  16. Spectral modulation interferometry for quantitative phase imaging

    PubMed Central

    Shang, Ruibo; Chen, Shichao; Li, Chengshuai; Zhu, Yizheng

    2015-01-01

    We propose a spectral-domain interferometric technique, termed spectral modulation interferometry (SMI), and present its application to high-sensitivity, high-speed, and speckle-free quantitative phase imaging. In SMI, one-dimensional complex field of an object is interferometrically modulated onto a broadband spectrum. Full-field phase and intensity images are obtained by scanning along the orthogonal direction. SMI integrates the high sensitivity of spectral-domain interferometry with the high speed of spectral modulation to quantify fast phase dynamics, and its dispersive and confocal nature eliminates laser speckles. The principle and implementation of SMI are discussed. Its performance is evaluated using static and dynamic objects. PMID:25780737

  17. Corneal imaging and refractive index measurement using a combined multiphoton microscopy and optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Lai, Tom; Chong, Shau Poh; Zhou, Yifeng; Moloney, Gregory; Tang, Shuo

    2013-02-01

    Refractive index (RI) is the optical property of a medium that describes its ability to bend incident light. The corneal refractive index is an especially important measurement in corneal and intraocular refractive surgery where its precise estimation is necessary to obtain accurate surgical outcomes. In this study, we calculated the corneal RI using a combined multiphoton microscopy (MPM) and optical coherence tomography (OCT) system. MPM excites and detects nonlinear signals including two photon excitation fluorescence (TPEF) and second harmonic generation (SHG). TPEF signals are observed from NADH in the cytoplasm, allowing MPM to image the cellular structures in the corneal epithelium and endothelium. SHG signals are observed from collagen, an abundant connective tissue found in the stroma. Optical coherence tomography (OCT) produces cross-sectional, structural images based on the interference fringes created by the reflected light from the sample and reference arms. Our system uses a single sub-10 fs Ti: sapphire laser source which is good for both MPM excitation and OCT resolution. The MPM and OCT images are coregistered when they are taken successively because their axial resolutions are similar and the system shares the laser source and the scanning unit. We can calculate the RI by measuring the optical thickness and the optical path length of the cornea from the MPM and OCT images respectively. We have imaged and calculated the RI of murine and piscine corneas. We were able to see the epithelial, stromal, and endothelial layers and compare their relative thicknesses and the organization of the stromal collagen lamellae. Our results showed that our system can provide both functional and structural information about the cornea and measure the RI of multi-layered tissues.

  18. Nonlinear spectral imaging of biological tissues

    NASA Astrophysics Data System (ADS)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  19. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  20. Spectral OCT techniques in eye imaging

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Andrzej; Wojtkowski, Maciej

    2002-02-01

    This contribution presents examples of images of eye in vitro obtained by spectral optical tomography (OCT). Particular interest was focused on obtaining clear images of the corneo-scleral angle and images of fundus which are both essential for diagnosing and planning of a treatment of glaucoma.

  1. Multiphoton imaging to identify grana, stroma thylakoid, and starch inside an intact leaf

    PubMed Central

    2014-01-01

    Background Grana and starch are major functional structures for photosynthesis and energy storage of plant, respectively. Both exhibit highly ordered molecular structures and appear as micrometer-sized granules inside chloroplasts. In order to distinguish grana and starch, we used multiphoton microscopy, with simultaneous acquisition of two-photon fluorescence (2PF) and second harmonic generation (SHG) signals. SHG is sensitive to crystallized structures while 2PF selectively reveals the distribution of chlorophyll. Result Three distinct microstructures with different contrasts were observed, i.e. “SHG dominates”, “2PF dominates”, and “SHG collocated with 2PF”. It is known that starch and grana both emit SHG due to their highly crystallized structures, and no autofluorescence is emitted from starch, so the “SHG dominates” contrast should correspond to starch. The contrast of “SHG collocated with 2PF” is assigned to be grana, which exhibit crystallized structure with autofluorescent chlorophyll. The “2PF dominates” contrast should correspond to stroma thylakoid, which is a non-packed membrane structure with chrolophyll. The contrast assignment is further supported by fluorescence lifetime measurement. Conclusion We have demonstrated a straightforward and noninvasive method to identify the distribution of grana and starch within an intact leaf. By merging the 2PF and SHG images, grana, starch and stroma thylakoid can be visually distinguished. This approach can be extended to the observation of 3D grana distribution and their dynamics in living plants. PMID:24969621

  2. Controlled Au-Polymer Nanostructures for Multiphoton Imaging, Prodrug Delivery, and Chemo-Photothermal Therapy Platforms.

    PubMed

    Huang, Chih-Chia; Liu, Tzu-Ming

    2015-11-18

    We have successfully introduced a proton-induced controlled reaction of HAuCl4 and poly(styrene-alt-maleic acid) (PSMA) sodium salt to prepare triangular and multicore Au@polymer nanoparticles (NPs). The interparticle interactions in the core gave rise to an absorption band at the near-infrared wavelength. The near-infrared optical properties of the resulting Au-polymer nanostructures are highly stable in a physiological environment, which offered strong photo-to-thermal conversion by a moderate continuous-wave 808 nm laser and exhibited multiphoton fluorescence for imaging using a 1230 nm light excitation (femtosecond laser). Exposure of the carboxylate groups at the polymer shell made the surface structure of the Au multicore @polymer NPs directly conjugate Pt(II)-/Pt(IV)-based drugs, which possessed the elimination of the immediate toxicity over the short time and resulted in an anticancer effect after 3 days. A synergistic effect of the chemo-photothermal therapy showed a moderate hyperthermia assistance (<1 W/cm(2)) and better anticancer performance over time compared with the individual treatments. We demonstrated that such PSMA-based methodology not only enables a broad range of chemical material synthesis in the kinetic control to form Au nano-octahedrons and nanotriangles using Br(-)/I(-) ions additives but also could be extended to form Au/Fe3O4@polymer nanocomposites via proton-assisted PSMA self-assembly. PMID:26501876

  3. Multi-spectral compressive snapshot imaging using RGB image sensors.

    PubMed

    Rueda, Hoover; Lau, Daniel; Arce, Gonzalo R

    2015-05-01

    Compressive sensing is a powerful sensing and reconstruction framework for recovering high dimensional signals with only a handful of observations and for spectral imaging, compressive sensing offers a novel method of multispectral imaging. Specifically, the coded aperture snapshot spectral imager (CASSI) system has been demonstrated to produce multi-spectral data cubes color images from a single snapshot taken by a monochrome image sensor. In this paper, we expand the theoretical framework of CASSI to include the spectral sensitivity of the image sensor pixels to account for color and then investigate the impact on image quality using either a traditional color image sensor that spatially multiplexes red, green, and blue light filters or a novel Foveon image sensor which stacks red, green, and blue pixels on top of one another. PMID:25969307

  4. Novel techniques with multiphoton microscopy: Deep-brain imaging with microprisms, neurometabolism of epilepsy, and counterfeit paper money detection

    NASA Astrophysics Data System (ADS)

    Chia, Thomas H.

    Multiphoton microscopy is a laser-scanning fluorescence imaging method with extraordinary potential. We describe three innovative multiphoton microscopy techniques across various disciplines. Traditional in vivo fluorescence microscopy of the mammalian brain has a limited penetration depth (<400 microm). We present a method of imaging 1 mm deep into mouse neocortex by using a glass microprism to relay the excitation and emission light. This technique enables simultaneous imaging of multiple cortical layers, including layer V, at an angle typical of slice preparations. At high-magnification imaging using an objective with 1-mm of coverglass correction, resolution was sufficient to resolve dendritic spines on layer V GFP neurons. Functional imaging of blood flow at various neocortical depths is also presented, allowing for quantification of red blood cell flux and velocity. Multiphoton fluorescence lifetime imaging (FLIM) of NADH reveals information on neurometabolism. NADH, an intrinsic fluorescent molecule and ubiquitous metabolic coenzyme, has a lifetime dependent on enzymatic binding. A novel NADH FLIM algorithm is presented that produces images showing spatially distinct NADH fluorescence lifetimes in mammalian brain slices. This program provides advantages over traditional FLIM processing of multi-component lifetime data. We applied this technique to a GFP-GFAP pilocarpine mouse model of temporal lobe epilepsy. Results indicated significant changes in the neurometabolism of astrocytes and neuropil in the cell and dendritic layers of the hippocampus when compared to control tissue. Data obtained with NADH FLIM were subsequently interpreted based on the abnormal activity reported in epileptic tissue. Genuine U.S. Federal Reserve Notes have a consistent, two-component intrinsic fluorescence lifetime. This allows for detection of counterfeit paper money because of its significant differences in fluorescence lifetime when compared to genuine paper money. We used

  5. Determining the Spectral Content of MOSES Images

    NASA Astrophysics Data System (ADS)

    Parker, Jacob; Kankelborg, Charles

    2016-05-01

    The MOSES (Multi-Order Solar EUV Spectrograph) sounding rocket was launched February 8th, 2006. The MOSES concave grating forms solar images in multiple spectral orders, in an effort to measure line profiles from a single exposure over a wide field of view. We present a preliminary identification of spectral content in MOSES images. The cross correlation of subtracted images provide evidence of spectral content besides the normal 304 Anstrom He II line. We place confidence on the peaks in correlation by cross correlating random data that is statistically representative of MOSES data. These significant peaks indicate a contribution to intensity from several coronal lines. These lines are individually weak, but if not taken into account, they would significantly increase the residuals when inverting MOSES images to obtain spectra.

  6. Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging

    NASA Astrophysics Data System (ADS)

    Mancuso, James J.; Larson, Adam M.; Wensel, Theodore G.; Saggau, Peter

    2009-05-01

    The Nikon C1 confocal laser scanning microscope is a relatively inexpensive and user-friendly instrument. We describe a straightforward method to convert the C1 for multiphoton microscopy utilizing direct coupling of a femtosecond near-infrared laser into the scan head and fiber optic transmission of emission light to the three-channel detector box. Our adapted system can be rapidly switched between confocal and multiphoton mode, requires no modification to the original system, and uses only a few custom-made parts. The entire system, including scan mirrors and detector box, remain under the control of the user-friendly Nikon EZ-C1 software without modification.

  7. Spectrally resolved multidepth fluorescence imaging

    PubMed Central

    Luo, Yuan; Zervantonakis, Ioannis K.; Oh, Se Baek; Kamm, Roger D.; Barbastathis, George

    2011-01-01

    We present a multicolor fluorescence imaging modality to visualize in real-time tissue structures emitting multispectral fluorescent light from different focal depths. Each designated spectrum of fluorescent emission from a specific depth within a volumetric tissue is probed by a depth-spectrum selective holographic grating. The grating for each fluorescent color are multiplexed within a volume hologram, which enables simultaneously obtaining multicolored fluorescent information at different depths within a biological tissue sample. We demonstrate the imaging modality's ability to obtain laser-induced multicolored fluorescence images of a biological sample from different depths without scanning. We also experimentally demonstrate that the imaging modality can be simultaneously operated at both fluorescent and bright field modes to provide complementary information of volumetric tissue structures at different depths in real-time. PMID:21950929

  8. Spectrally resolved multidepth fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Luo, Yuan; Zervantonakis, Ioannis K.; Oh, Se Baek; Kamm, Roger D.; Barbastathis, George

    2011-09-01

    We present a multicolor fluorescence imaging modality to visualize in real-time tissue structures emitting multispectral fluorescent light from different focal depths. Each designated spectrum of fluorescent emission from a specific depth within a volumetric tissue is probed by a depth-spectrum selective holographic grating. The grating for each fluorescent color are multiplexed within a volume hologram, which enables simultaneously obtaining multicolored fluorescent information at different depths within a biological tissue sample. We demonstrate the imaging modality's ability to obtain laser-induced multicolored fluorescence images of a biological sample from different depths without scanning. We also experimentally demonstrate that the imaging modality can be simultaneously operated at both fluorescent and bright field modes to provide complementary information of volumetric tissue structures at different depths in real-time.

  9. Label free multiphoton imaging of human pulmonary tissues through two-meter-long microstructured fiber and multicore image-guide

    NASA Astrophysics Data System (ADS)

    Ducourthial, G.; Lefort, C.; Peyrot, D. A.; Mansuryan, T.; Kruglik, S. G.; Vever-Bizet, C.; Thiberville, L.; Lacombe, F.; Bourg-Heckly, Geneviève; Louradour, Frédéric

    2013-03-01

    This work deals with label free multiphoton imaging of the human lung tissue extra-cellular matrix (ECM) through optical fibers. Two devices were developed, the first one using distal scanning associated to a double clad large mode area (LMA) air-silica microstructured fiber, the second one using proximal scanning of a miniature multicore image guide (30000 cores inside a 0.8 mm diameter). In both cases, the main issue has been efficient linear and nonlinear distortion pre-compensation of excitation pulses. By inserting before the delivery fiber a compact (10 cm × 10 cm footprint) grisms-based stretcher (a grating in close contact with a prism) made of readily available commercial components, we achieved as short as 35-femtosecond-duration pulses that were temporally compressed at the direct exit of a 2-meter-long fiber. Interestingly, this femtosecond pulse fiber delivery device is also wavelength tunable over more than 100 nm inside the Ti: Sapphire emission band. With the help of distal scan system, those unique features allowed us to record elastin (through two-photon fluorescence) and collagen (through second harmonic generation) fibered network images. These images were obtained ex-vivo with only 15 mW @ 80 MHz of IR radiation delivered to the alveoli or bronchus tissues. 3D imaging with 400-μm-penetration depth inside the tissue was possible working with a 2-meter-long LMA fiber. With the help of proximal scanning, the miniature image guide allowed us to perform endoscopic real time microimaging of the ECM ex vivo.

  10. Information-efficient spectral imaging sensor

    DOEpatents

    Sweatt, William C.; Gentry, Stephen M.; Boye, Clinton A.; Grotbeck, Carter L.; Stallard, Brian R.; Descour, Michael R.

    2003-01-01

    A programmable optical filter for use in multispectral and hyperspectral imaging. The filter splits the light collected by an optical telescope into two channels for each of the pixels in a row in a scanned image, one channel to handle the positive elements of a spectral basis filter and one for the negative elements of the spectral basis filter. Each channel for each pixel disperses its light into n spectral bins, with the light in each bin being attenuated in accordance with the value of the associated positive or negative element of the spectral basis vector. The spectral basis vector is constructed so that its positive elements emphasize the presence of a target and its negative elements emphasize the presence of the constituents of the background of the imaged scene. The attenuated light in the channels is re-imaged onto separate detectors for each pixel and then the signals from the detectors are combined to give an indication of the presence or not of the target in each pixel of the scanned scene. This system provides for a very efficient optical determination of the presence of the target, as opposed to the very data intensive data manipulations that are required in conventional hyperspectral imaging systems.

  11. Multi Spectral Fluorescence Imager (MSFI)

    NASA Technical Reports Server (NTRS)

    Caron, Allison

    2016-01-01

    Genetic transformation with in vivo reporter genes for fluorescent proteins can be performed on a variety of organisms to address fundamental biological questions. Model organisms that may utilize an ISS imager include unicellular organisms (Saccharomyces cerevisiae), plants (Arabidopsis thaliana), and invertebrates (Caenorhabditis elegans). The multispectral fluorescence imager (MSFI) will have the capability to accommodate 10 cm x 10 cm Petri plates, various sized multi-well culture plates, and other custom culture containers. Features will include programmable temperature and light cycles, ethylene scrubbing (less than 25 ppb), CO2 control (between 400 ppm and ISS-ambient levels in units of 100 ppm) and sufficient airflow to prevent condensation that would interfere with imaging.

  12. Multiphoton tomography of intratissue tattoo nanoparticles

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2012-02-01

    Most of today's intratissue tattoo pigments are unknown nanoparticles. So far, there was no real control of their use due to the absence of regulations. Some of the tattoo pigments contain carcinogenic amines e.g. azo pigment Red 22. Nowadays, the European Union starts to control the administration of tattoo pigments. There is an interest to obtain information on the intratissue distribution, their interaction with living cells and the extracellular matrix, and the mechanisms behind laser tattoo removal. Multiphoton tomographs are novel biosafety and imaging tools that can provide such information non-invasively and without further labeling. When using the spectral FLIM module, spatially-resolved emission spectra, excitation spectra, and fluorescence lifetimes can pr provided. Multiphoton tomographs are used by all major cosmetic comapanies to test the biosafety of sunscreen nanoparticles.

  13. 3D-spectral domain computational imaging

    NASA Astrophysics Data System (ADS)

    Anderson, Trevor; Segref, Armin; Frisken, Grant; Ferra, Herman; Lorenser, Dirk; Frisken, Steven

    2016-03-01

    We present a proof-of-concept experiment utilizing a novel "snap-shot" spectral domain OCT technique that captures a phase coherent volume in a single frame. The sample is illuminated with a collimated beam of 75 μm diameter and the back-reflected light is analyzed by a 2-D matrix of spectral interferograms. A key challenge that is addressed is simultaneously maintaining lateral and spectral phase coherence over the imaged volume in the presence of sample motion. Digital focusing is demonstrated for 5.0 μm lateral resolution over an 800 μm axial range.

  14. MULTIPHOTON PROCESSES

    SciTech Connect

    2002-07-05

    The Gordon Research Conference (GRC) on MULTIPHOTON PROCESSES was held at Tilton School, Tilton, NH. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  15. Label-free imaging of goblet cells as a marker for differentiating colonic polyps by multiphoton microscopy Label-free imaging of goblet cells

    NASA Astrophysics Data System (ADS)

    Zhuo, S. M.; Wu, G. Z.; Chen, J. X.; Zhu, X. Q.; Xie, S. S.

    2012-06-01

    Discrimination of adenomas from hyperplastic polyps can reduce the risk of unnecessary complications and healthcare cost. However, it is challenging during colonoscopy screening, and histological analysis remains the ``gold standard'' for the final diagnosis. Here, we describe a label-free imaging method, multiphoton microscopy (MPM), to the discrimination between adenomas and hyperplastic polyps. We find that multiphoton imaging provides cellular and subcellular details to the identification of adenomas from hyperplastic polyps. In particular, there is significant difference in the population density of goblet cells among normal colon, hyperplastic polyp, and adenoma, providing substantial potential to become a quantitative intrinsic marker for in vivo clinical diagnosis of early colonic lesions. To our knowledge, this is the first demonstration of the potential of MPM for differentiation of colonic polyps.

  16. Calibration and characterization of spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Polder, Gerrit; van der Heijden, Gerie W.

    2001-09-01

    Spectral image sensors provide images with a large umber of contiguous spectral channels per pixel. This paper describes the calibration of spectrograph based spectral imaging systems. The relation between pixel position and measured wavelength was determined using three different wavelength calibration sources. Results indicate that for spectral calibration a source with very small peaks,such as a HgAr source, is preferred to arrow band filters. A second order polynomial model gives a better fit than a linear model for the pixel to wavelength mapping. The signal to noise ratio (SNR)is determined per wavelength. In the blue part of the spectrum,the SNR was lower than in the green and red part.This is due to a decreased quantum efficiency of the CCD,a smaller transmission coefficient of the spectrograph,as well as poor performance of the illuminant. Increasing the amount of blue light,using additional Fluorescent tube with special coating increased the SNR considerably. Furthermore, the spatial and spectral resolution of the system are determined.These can be used to choose appropriate binning factors to decrease the image size without losing information.

  17. Dynamical Spectral Unmixing of Multitemporal Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Henrot, Simon; Chanussot, Jocelyn; Jutten, Christian

    2016-07-01

    In this paper, we consider the problem of unmixing a time series of hyperspectral images. We propose a dynamical model based on linear mixing processes at each time instant. The spectral signatures and fractional abundances of the pure materials in the scene are seen as latent variables, and assumed to follow a general dynamical structure. Based on a simplified version of this model, we derive an efficient spectral unmixing algorithm to estimate the latent variables by performing alternating minimizations. The performance of the proposed approach is demonstrated on synthetic and real multitemporal hyperspectral images.

  18. Remote Sensing of Landscapes with Spectral Images

    NASA Astrophysics Data System (ADS)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  19. Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber

    PubMed Central

    Kieu, K.; Mehravar, S.; Gowda, R.; Norwood, R. A.; Peyghambarian, N.

    2013-01-01

    We demonstrate label-free multi-photon imaging of biological samples using a compact Er3+-doped femtosecond fiber laser mode-locked by a single-walled carbon nanotube (CNT). These compact and low cost lasers have been developed by various groups but they have not been exploited for multiphoton microscopy. Here, it is shown that various multiphoton imaging modalities (e.g. second harmonic generation (SHG), third harmonic generation (THG), two-photon excitation fluorescence (TPEF), and three-photon excitation fluorescence (3PEF)) can be effectively performed on various biological samples using a compact handheld CNT mode-locked femtosecond fiber laser operating in the telecommunication window near 1560nm. We also show for the first time that chlorophyll fluorescence in plant leaves and diatoms can be observed using 1560nm laser excitation via three-photon absorption. PMID:24156074

  20. Miniaturized spectral imager for Aalto-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Näsilä, Antti; Praks, Jaan; Saari, Heikki; Antila, Jarkko

    2011-11-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. VTT Technical Research Centre of Finland will develop the main Earth observation payload, a miniaturized spectral imager, for the satellite. It is a novel highly miniaturized tunable filter type spectral imager. Mass of the spectral imager will be less than 400 grams, and dimensions will be approximately 80 mm x 80 mm x 45 mm. The spectral imager is based on a tunable Fabry-Pérot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based either on a microelectromechanical (MEMS) or piezo-actuated structure. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force. Benefits of the MEMS FPI are low mass and small size. However, large aperture (2-10 mm) MEMS FPIs are currently under development, thus it is not yet known if their performance is adequate. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The drawback of the piezo-actuated FPI is its higher mass. However, it has a large aperture which enables a shorter exposure times. Selection of the FPI type will be done after thorough evaluation. Depending on the selected FPI type, the spectral resolution of the imager will be 5 - 10 nm at full width at half maximum and it will operate in the visible and/or near infrared range.

  1. Multi-spectral imaging of oxygen saturation

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  2. Multi-photon Intracellular Sodium Imaging Combined with UV-mediated Focal Uncaging of Glutamate in CA1 Pyramidal Neurons

    PubMed Central

    Rose, Christine R.

    2014-01-01

    Multi-photon fluorescence microscopy has enabled the analysis of morphological and physiological parameters of brain cells in the intact tissue with high spatial and temporal resolution. Combined with electrophysiology, it is widely used to study activity-related calcium signals in small subcellular compartments such as dendrites and dendritic spines. In addition to calcium transients, synaptic activity also induces postsynaptic sodium signals, the properties of which are only marginally understood. Here, we describe a method for combined whole-cell patch-clamp and multi-photon sodium imaging in cellular micro domains of central neurons. Furthermore, we introduce a modified procedure for ultra-violet (UV)-light-induced uncaging of glutamate, which allows reliable and focal activation of glutamate receptors in the tissue. To this end, whole-cell recordings were performed on Cornu Ammonis subdivision 1 (CA1) pyramidal neurons in acute tissue slices of the mouse hippocampus. Neurons were filled with the sodium-sensitive fluorescent dye SBFI through the patch-pipette, and multi-photon excitation of SBFI enabled the visualization of dendrites and adjacent spines. To establish UV-induced focal uncaging, several parameters including light intensity, volume affected by the UV uncaging beam, positioning of the beam as well as concentration of the caged compound were tested and optimized. Our results show that local perfusion with caged glutamate (MNI-Glutamate) and its focal UV-uncaging result in inward currents and sodium transients in dendrites and spines. Time course and amplitude of both inward currents and sodium signals correlate with the duration of the uncaging pulse. Furthermore, our results show that intracellular sodium signals are blocked in the presence of blockers for ionotropic glutamate receptors, demonstrating that they are mediated by sodium influx though this pathway. In summary, our method provides a reliable tool for the investigation of intracellular

  3. Integrated spectrometer design with application to multiphoton microscopy.

    PubMed

    Chandler, Eric V; Durfee, Charles G; Squier, Jeffrey A

    2011-01-01

    We present a prism-based spectrometer integrated into a multifocal, multiphoton microscope. The multifocal configuration facilitates interrogation of samples under different excitation conditions. Notably, the image plane of the microscope and the image plane of the spectrometer are coincident eliminating the need for an intermediate image plane containing an entrance slit. An EM-CCD detector provides sufficient gain for spectral interrogation of single-emitters. We employ this spectrometer to observe spectral shifts in the two-photon excitation fluorescence emission of single CdSe nanodots as a function of excitation polarization. PMID:21263548

  4. High-fidelity spatially resolved multiphoton counting for quantum imaging applications.

    PubMed

    Chrapkiewicz, Radosław; Wasilewski, Wojciech; Banaszek, Konrad

    2014-09-01

    We present a method for spatially resolved multiphoton counting based on an intensified camera with the retrieval of multimode photon statistics fully accounting for nonlinearities in the detection process. The scheme relies on one-time quantum tomographic calibration of the detector. Faithful, high-fidelity reconstruction of single- and two-mode statistics of multiphoton states is demonstrated for coherent states and their statistical mixtures. The results consistently exhibit classical values of the Mandel parameter and the noise reduction factor in contrast to raw statistics of camera photo-events. Detector operation is reliable for illumination levels up to the average of one detected photon per an event area-substantially higher than in previous approaches to characterize quantum statistical properties of light with spatial resolution. PMID:25166081

  5. Spectral image fusion using band reduction and contourlets

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2014-06-01

    Spectral images have relatively low spatial resolution, compared to high-resolution single band panchromatic (PAN) images. Therefore, fusing a spectral image with a PAN image has been widely studied to produce a high-resolution spectral image. However, raw spectral images are too large to process and contain redundant information that is not utilized in the fusion process. In this study, we propose a novel fusion method that employs a spectral band reduction and contourlets. The band reduction begins with the best two band combination, and this two-band combination is subsequently augmented to three, four, and more until the desired number of bands is selected. The adopted band selection algorithm using the endmember extraction concept employs a sequential forward search strategy. Next, the image fusion is performed with two different spectral images based on the frequency components that are newly obtained by contourlet transform (CT). One spectral image that is used as a dataset is multispectral (MS) image and the other is hyperspectral (HS) image. Each original spectral image is pre-processed by spectrally integrating over the entire spectral range to obtain a PAN source image that is used in the fusion process. This way, we can eliminate the step of image co-registration since the obtained PAN image is already perfectly aligned to the spectral image. Next, we fuse the band-reduced spectral images with the PAN images using contourlet-based fusion framework. The resultant fusion image provides enhanced spatial resolution while preserving the spectral information. In order to analyze the band reduction performance, the original spectral images are fused with the same PAN images to serve as a reference image, which is then compared to the band-reduced spectral image fusion results using six different quality metrics.

  6. Pulse front adaptive optics in multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Sun, B.; Salter, P. S.; Booth, M. J.

    2016-03-01

    The accurate focusing of ultrashort laser pulses is extremely important in multiphoton microscopy. Using adaptive optics to manipulate the incident ultrafast beam in either the spectral or spatial domain can introduce significant benefits when imaging. Here we introduce pulse front adaptive optics: manipulating an ultrashort pulse in both the spatial and temporal domains. A deformable mirror and a spatial light modulator are operated in concert to modify contours of constant intensity in space and time within an ultrashort pulse. Through adaptive control of the pulse front, we demonstrate an enhancement in the measured fluorescence from a two photon microscope.

  7. From morphology to biochemical state – intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    PubMed Central

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-01-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy. PMID:27004454

  8. From morphology to biochemical state – intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    NASA Astrophysics Data System (ADS)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-03-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.

  9. CALIBRATION AND VALIDATION OF CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market can perform spectral characterization of biological specimens containing fluorescent proteins, labels or dyes. Some CSI have been found to present inconsistent spectral characterizations within a particular syst...

  10. WAVELENGTH AND ALIGNMENT TESTS FOR CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market delineate multiple fluorescent proteins, labels, or dyes within biological specimens by performing spectral characterizations. However, we find that some CSI present inconsistent spectral profiles of reference s...

  11. Multiphoton microscopic imaging of histological sections without hematoxylin and eosin staining differentiates carcinoma in situ lesion from normal oesophagus

    NASA Astrophysics Data System (ADS)

    Chen, Jianxin; Xu, Jian; Kang, Deyong; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Jiang, Xingshan

    2013-10-01

    Multiphoton microscopy (MPM) has become a powerful, important tool for tissues imaging at the molecular level. In this paper, this technique was extended to histological investigations, differentiating carcinoma in situ (CIS) lesion from normal oesophagus by imaging histological sections without hematoxylin and eosin (H&E) staining. The results show that the histology procedures of dehydration, paraffin embedding, and de-paraffinizing highlighted two photon excited fluorescence of cytoplasm and nucleolus of epithelial cell and collagen in stroma. MPM has the ability to identify the characteristics of CIS lesion including changes of squamous cells and full epithelium, identification of basement membrane, especially prominent nucleolus. The studies described here show that MPM has the potential for future retrospective studies of tumor staging by employing on histological section specimens without H&E staining.

  12. The spectral imaging facility: Setup characterization

    NASA Astrophysics Data System (ADS)

    De Angelis, Simone; Ammannito, Eleonora; Di Iorio, Tatiana; De Sanctis, Maria Cristina; Manzari, Paola Olga; Liberati, Fabrizio; Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo; Mugnuolo, Raffaele

    2015-09-01

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  13. The spectral imaging facility: Setup characterization

    SciTech Connect

    De Angelis, Simone De Sanctis, Maria Cristina; Manzari, Paola Olga; Ammannito, Eleonora; Di Iorio, Tatiana; Liberati, Fabrizio; Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo; Mugnuolo, Raffaele

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  14. The spectral imaging facility: Setup characterization.

    PubMed

    De Angelis, Simone; Ammannito, Eleonora; Di Iorio, Tatiana; De Sanctis, Maria Cristina; Manzari, Paola Olga; Liberati, Fabrizio; Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo; Mugnuolo, Raffaele

    2015-09-01

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated. PMID:26429423

  15. Automated eXpert Spectral Image Analysis

    Energy Science and Technology Software Center (ESTSC)

    2003-11-25

    AXSIA performs automated factor analysis of hyperspectral images. In such images, a complete spectrum is collected an each point in a 1-, 2- or 3- dimensional spatial array. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful information. Multivariate factor analysis techniques have proven effective for extracting the essential information from high dimensional data sets into a limtedmore » number of factors that describe the spectral characteristics and spatial distributions of the pure components comprising the sample. AXSIA provides tools to estimate different types of factor models including Singular Value Decomposition (SVD), Principal Component Analysis (PCA), PCA with factor rotation, and Alternating Least Squares-based Multivariate Curve Resolution (MCR-ALS). As part of the analysis process, AXSIA can automatically estimate the number of pure components that comprise the data and can scale the data to account for Poisson noise. The data analysis methods are fundamentally based on eigenanalysis of the data crossproduct matrix coupled with orthogonal eigenvector rotation and constrained alternating least squares refinement. A novel method for automatically determining the number of significant components, which is based on the eigenvalues of the crossproduct matrix, has also been devised and implemented. The data can be compressed spectrally via PCA and spatially through wavelet transforms, and algorithms have been developed that perform factor analysis in the transform domain while retaining full spatial and spectral resolution in the final result. These latter innovations enable the analysis of larger-than core-memory spectrum-images. AXSIA was designed to perform automated chemical phase analysis of spectrum-images acquired by a variety of chemical imaging techniques. Successful applications include Energy Dispersive X-ray Spectroscopy, X

  16. Detection of latent fingerprints by ultraviolet spectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2013-12-01

    Spectral imaging technology research is becoming more popular in the field of forensic science. Ultraviolet spectral imaging technology is an especial part of the full spectrum of imaging technology. This paper finished the experiment contents of the ultraviolet spectrum imaging method and image acquisition system based on ultraviolet spectral imaging technology. Ultraviolet spectral imaging experiments explores a wide variety of ultraviolet reflectance spectra of the object material curve and its ultraviolet spectrum of imaging modalities, can not only gives a reference for choosing ultraviolet wavelength to show the object surface potential traces of substances, but also gives important data for the ultraviolet spectrum of imaging technology development.

  17. Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source.

    PubMed

    Lefort, Claire; O'Connor, Rodney P; Blanquet, Véronique; Magnol, Laetitia; Kano, Hideaki; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-07-01

    Multicolor multiphoton microscopy is experimentally demonstrated for the first time on a spectral bandwidth of excitation of 300 nm (full width half maximum) thanks to the implementation a nanosecond supercontinuum (SC) source compact and simple with a low repetition rate. The interest of such a wide spectral bandwidth, never demonstrated until now, is highlighted in vivo: images of glioma tumor cells stably expressing eGFP grafted on the brain of a mouse and its blood vessels network labelled with Texas Red(®) are obtained. These two fluorophores have a spectral bandwidth covering the whole 300 nm available. In parallel, a similar image quality is obtained on a sample of mouse muscle in vitro when excited with this nanosecond SC source or with a classical high rate, femtosecond and quasi monochromatic laser. This opens the way for (i) a simple and very complete biological characterization never performed to date with multiphoton processes, (ii) multiple means of contrast in nonlinear imaging allowed by the use of numerous fluorophores and (iii) other multiphoton processes like three-photon ones. PMID:26872004

  18. [Microscopic infrared spectral imaging of oily core].

    PubMed

    Huang, Qiao-Song; Yu, Zhao-Xian; Li, Jing; Chen, Chen

    2009-02-01

    In the present paper, the authors examined some oily core by microscopic infrared spectral imaging methods. Those methods can be classified in three modes, referred to as "transmission mode", "reflection mode" and "attenuated total reflection (ATR) mode". The observed oily core samples belong to siltstone. The samples were made of quartz (-20%), feldspar(-50%) and other rock (igneous rock 25%, metamorphic rocks 1%, sedimentary rock 4%); a little recrystallized calcite (-1%) was in the pore, and the argillaceous matter was distributed along the edge of a pore. The experimental work has been accomplished using SHIMADZU Model IRPrestige-21 Fourier transform infrared spectrophotometer plus AIM8800 infrared microscope. For IRPrestige-21, the spectral range is 7 800-350 cm(-1) spectral resolution is 1 cm(-1), and AIM8800 microscope with motorized stages has a resolution of 1 micrometer. The experiment was preformed at room temperature. In "transmission mode" infrared spectral imaging method, the spectral range was limited in wavenumbers greater than 2 000 cm(-1) because the base glass piece has strong light absorption. In contrast with "transmission mode", in "attenuated total reflection (ATR) mode", the depth of penetration into sample is very small (1-2 micrometer), then the absorbance value has nothing to do with base glass piece light absorption. In microscopic infrared transmission spectra, the experimental result shows that there are some strong absorption peaks at 2 866, 2 928, 3 618 and 2 515 cm(-1) respectively. The former two peaks correspond to methyl(methylene) symmetrical and unsymmetrical stretch vibration mode, respectively. The latter two peaks correspond to hydroxyl-stretch vibration mode and S-H, P-H chemical bond stretch vibration mode, respectively. In microscopic longwave infrared ATR spectra, there are other stronger absorption peaks at 1 400, 1 038 and 783 cm(i1)respectively, corresponding to methyl(methylene) widing vibration mode and optical mode

  19. Combined multiphoton imaging-pixel analysis for semiquantitation of skin penetration of gold nanoparticles.

    PubMed

    Labouta, Hagar I; Kraus, Tobias; El-Khordagui, Labiba K; Schneider, Marc

    2011-07-15

    Interaction of nanoparticles with the skin barrier is a recent area of research that draws a lot of attention from the researchers. However, monitoring nanoparticles in or through the skin is mainly based on qualitative microscopical techniques. Yet, a quantitative approach is required for a better basic understanding. In response, a combined "multiphoton-pixel analysis" method was developed in this study for semiquantitation of gold nanoparticles penetration into different skin layers. The developed approach provides a useful tool for future studies focusing on skin penetration of nanoparticles for the aim of health risk assessment or for the design of topical and transdermal drug delivery systems. PMID:21515347

  20. Characterizing collagen-based materials modified by glycation: a multiphoton optical image guided spectroscopy method

    NASA Astrophysics Data System (ADS)

    Hwang, Yu-Jer; Granelli, Joseph; Flores, Christina; Lyubovitsky, Julia

    2011-02-01

    In spite of the adverse ageing effects of glycation in vivo, in vitro this process is widely employed to increase stiffness and strength of tissues' and artificial scaffolds'. In-situ optical characterization methods that report on the structures within these materials could clarify the effects of glycation. We employed one-photon fluorescence and multiphoton microscopy method that combined two-photon fluorescence and second harmonic generation signals to characterize collagen hydrogels modified with glyceraldehyde, ribose and glucose. We observed an increase in the in situ fluorescence as well as structural alterations within the materials during the course of glycation.

  1. Multiphoton imaging to distinguish grana and starch inside an intact leaf

    NASA Astrophysics Data System (ADS)

    Chen, Mei-Yu; Zhuo, Guan-Yu; Chen, Po-Fu; Wu, Pei-Chun; Liu, Tzu-Ming; Chu, Shi-Wei

    2013-02-01

    We have demonstrated a straightforward and noninvasive method to identify the distribution of grana and starch within an intact leaf. Grana and starch are the major functional structures for photosynthesis and energy storage of plant, respectively. Both exhibit highly ordered molecular structures and appear as micrometer-sized granules inside chloroplasts. In order to distinguish grana and starch, we used multiphoton microscopy, with simultaneous acquisition of two photon fluorescence (2PF) and second harmonic generation (SHG) signals. Consequently, SHG is found on both grana and starch while 2PF from chlorophyll indicates the identity of grana.

  2. Clinical multiphoton and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Weinigel, M.; Darvin, M. E.; Lademann, J.; König, K.

    2012-03-01

    We report on clinical CARS imaging of human skin in vivo with the certified hybrid multiphoton tomograph CARSDermaInspect. The CARS-DermaInspect provides simultaneous imaging of non-fluorescent intradermal lipid and water as well as imaging of two-photon excited fluorescence from intrinsic molecules. Two different excitation schemes for CARS imaging have been realized: In the first setup, a combination of fs oscillator and optical parametric oscillator provided fs-CARS pump and Stokes pulses, respectively. In the second setup a fs oscillator was combined with a photonic crystal fiber which provided a broadband spectrum. A spectral range out of the broadband-spectrum was selected and used for CARS excitation in combination with the residual fs-oscillator output. In both setups, in addition to CARS, single-beam excitation was used for imaging of two-photon excited fluorescence and second harmonic generation signals. Both CARS-excitation systems were successfully used for imaging of lipids inside the skin in vivo.

  3. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    NASA Astrophysics Data System (ADS)

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ˜1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 61 and 6111 vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm-1). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  4. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments

    SciTech Connect

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo E-mail: xfzheng@mail.ahnu.edu.cn; Zheng, Xianfeng E-mail: xfzheng@mail.ahnu.edu.cn; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-15

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6{sup 1} and 6{sup 1}1{sup 1} vibronic levels in the S{sub 1} state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1′) REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62 271 ± 3 cm{sup −1}). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique.

  5. The design of double electrostatic-lens optics for resonance enhanced multiphoton ionization and photoelectron imaging experiments.

    PubMed

    Qu, Zehua; Li, Chunsheng; Qin, Zhengbo; Zheng, Xianfeng; Yao, Guanxin; Zhang, Xianyi; Cui, Zhifeng

    2015-06-01

    Compared to single ion/electron-optics for velocity-map imaging, a double-focusing lens assembly designed not only allows for mapping velocity imaging of photoelectrons but also allows for investigating the vibrational structure of the intermediate states of neutral species in resonance enhanced multiphoton ionization (REMPI) spectra. In this presentation, in order to record REMPI and photoelectron spectra separately, we have constructed a compact photoelectron velocity-map imaging (VMI) apparatus combined with an opposite linear Wiley-Mclaren time-of-flight mass spectrometer (TOFMS). A mass resolution (m/Δm) of ∼1300 for TOFMS and electron energy resolution (ΔE/E) of 2.4% for VMI have been achieved upon three-photon ionization of Xe atom at 258.00 nm laser wavelength. As a benchmark, in combination of one-color (1 + 1) REMPI and photoelectron imaging of benzene via 6(1) and 6(1)1(1) vibronic levels in the S1 state, the vibrational structures of the cation and photoelectron angular anisotropy are unraveled. In addition, two-color (1 + 1') REMPI and photoelectron imaging of aniline was used to complete the accurate measurement of ionization potential (62,271 ± 3 cm(-1)). The results suggest that the apparatus is a powerful tool for studying photoionization dynamics in the photoelectron imaging using vibrational-state selected excitation to the intermediate states of neutrals based on REMPI technique. PMID:26133827

  6. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    SciTech Connect

    Zhuo, Shuangmu E-mail: hanry-yu@nuhs.edu.sg; Yan, Jie; Kang, Yuzhan; Peng, Qiwen; and others

    2014-07-14

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  7. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Yan, Jie; Kang, Yuzhan; Xu, Shuoyu; Peng, Qiwen; So, Peter T. C.; Yu, Hanry

    2014-07-01

    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  8. Distinguishing human normal or cancerous esophagus tissue ex vivo using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Chen, G. N.; Wu, S. S.; Chen, R.

    2014-02-01

    Application of multiphoton microscopy (MPM) to clinical cancer research has greatly developed over the last few years. In this paper, we mainly focus on two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) for investigating esophageal cancer. We chiefly discuss the SHG/TPEF image and spectral characteristics of normal and cancerous esophagus submucosa with the combined multi-channel imaging mode and Lambda mode of a multiphoton microscope (LSM 510 META). Great differences can be detected, such as collagen content and morphology, glandular-shaped cancer cells, TPEF/SHG intensity ratio, and so on, which demonstrate that the multiphoton imaging technique has the potential ability for minimally-invasive early cancer diagnosis.

  9. Ultrafast Imaging using Spectral Resonance Modulation

    PubMed Central

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2016-01-01

    CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera. PMID:27122101

  10. Ultrafast Imaging using Spectral Resonance Modulation

    NASA Astrophysics Data System (ADS)

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2016-04-01

    CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera.

  11. Ultrafast Imaging using Spectral Resonance Modulation.

    PubMed

    Huang, Eric; Ma, Qian; Liu, Zhaowei

    2016-01-01

    CCD cameras are ubiquitous in research labs, industry, and hospitals for a huge variety of applications, but there are many dynamic processes in nature that unfold too quickly to be captured. Although tradeoffs can be made between exposure time, sensitivity, and area of interest, ultimately the speed limit of a CCD camera is constrained by the electronic readout rate of the sensors. One potential way to improve the imaging speed is with compressive sensing (CS), a technique that allows for a reduction in the number of measurements needed to record an image. However, most CS imaging methods require spatial light modulators (SLMs), which are subject to mechanical speed limitations. Here, we demonstrate an etalon array based SLM without any moving elements that is unconstrained by either mechanical or electronic speed limitations. This novel spectral resonance modulator (SRM) shows great potential in an ultrafast compressive single pixel camera. PMID:27122101

  12. Measurement dimensions compressed spectral imaging with a single point detector

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Feng; Yu, Wen-Kai; Yao, Xu-Ri; Dai, Bin; Li, Long-Zhen; Wang, Chao; Zhai, Guang-Jie

    2016-04-01

    An experimental demonstration of spectral imaging with measurement dimensions compressed has been performed. With the method of dual compressed sensing (CS) we derive, the spectral image of a colored object can be obtained with only a single point detector, and sub-sampling is achieved in both spatial and spectral domains. The performances of dual CS spectral imaging are analyzed, including the effects of dual modulation numbers and measurement noise on the imaging quality. Our scheme provides a stable, high-flux measurement approach of spectral imaging.

  13. Influence of Vacuum Cooling on Escherichia coli O157:H7 Infiltration in Fresh Leafy Greens via a Multiphoton-Imaging Approach

    PubMed Central

    Vonasek, Erica

    2015-01-01

    Microbial pathogen infiltration in fresh leafy greens is a significant food safety risk factor. In various postharvest operations, vacuum cooling is a critical process for maintaining the quality of fresh produce. The overall goal of this study was to evaluate the risk of vacuum cooling-induced infiltration of Escherichia coli O157:H7 into lettuce using multiphoton microscopy. Multiphoton imaging was chosen as the method to locate E. coli O157:H7 within an intact lettuce leaf due to its high spatial resolution, low background fluorescence, and near-infrared (NIR) excitation source compared to those of conventional confocal microscopy. The variables vacuum cooling, surface moisture, and leaf side were evaluated in a three-way factorial study with E. coli O157:H7 on lettuce. A total of 188 image stacks were collected. The images were analyzed for E. coli O157:H7 association with stomata and E. coli O157:H7 infiltration. The quantitative imaging data were statistically analyzed using analysis of variance (ANOVA). The results indicate that the low-moisture condition led to an increased risk of microbial association with stomata (P < 0.05). Additionally, the interaction between vacuum cooling levels and moisture levels led to an increased risk of infiltration (P < 0.05). This study also demonstrates the potential of multiphoton imaging for improving sensitivity and resolution of imaging-based measurements of microbial interactions with intact leaf structures, including infiltration. PMID:26475109

  14. Chiral asymmetry in the multiphoton ionization of methyloxirane using femtosecond electron-ion coincidence imaging.

    PubMed

    Rafiee Fanood, Mohammad M; Powis, Ivan; Janssen, Maurice H M

    2014-12-11

    Multiphoton photoelectron circular dichroism (MP-PECD) has been observed as an asymmetry in the angular distribution of photoelectrons emitted in the ionization of pure enantiomers of the small chiral molecule methyloxirane using a femtosecond laser operated at 420 nm. Energetically, this requires the uptake of four photons. By switching the laser between left- and right-circular polarization, and observing the differences in the full three-dimensional electron momentum distribution recorded in an electron-ion coincidence technique, the chiral (odd) terms in the angular distribution expression can be isolated. Electron events can additionally be filtered by coincident ion mass, providing mass-tagged electron distributions and quantitative measures of the MP-PECD asymmetry that help characterize the different ionization channels. For the production of ground state parent cation, the magnitude of the mean chiral asymmetry is measured to be 4.7%, with a peak magnitude exceeding 10% PMID:25402546

  15. In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy

    PubMed Central

    Kapsokalyvas, Dimitrios; Cicchi, Riccardo; Bruscino, Nicola; Alfieri, Domenico; Prignano, Francesca; Massi, Daniela; Lotti, Torello; Pavone, Francesco S.

    2014-01-01

    Psoriasis is a skin autoimmune disease characterized by hyperkeratosis, hyperproliferation of the epidermis and dilatation of dermal papillary blood vessels. Healthy skin (5 volunteers) and psoriatic lesions (3 patients) were visualized in vivo, with high contrast and resolution, with a Polarization Multispectral Dermoscope and a Multiphoton Microscope. Psoriatic features were identified and quantified. The effective diameter of the superficial blood vessels was measured at 35.2 ± 7.2 μm and the elongated dermal papillae had an effective diameter of 64.2 ± 22.6 μm. The methodologies developed could be employed for quantitative diagnostic purposes and furthermore serve as a monitoring method of the effect of personalized treatments. PMID:25071974

  16. In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy.

    PubMed

    Kapsokalyvas, Dimitrios; Cicchi, Riccardo; Bruscino, Nicola; Alfieri, Domenico; Prignano, Francesca; Massi, Daniela; Lotti, Torello; Pavone, Francesco S

    2014-07-01

    Psoriasis is a skin autoimmune disease characterized by hyperkeratosis, hyperproliferation of the epidermis and dilatation of dermal papillary blood vessels. Healthy skin (5 volunteers) and psoriatic lesions (3 patients) were visualized in vivo, with high contrast and resolution, with a Polarization Multispectral Dermoscope and a Multiphoton Microscope. Psoriatic features were identified and quantified. The effective diameter of the superficial blood vessels was measured at 35.2 ± 7.2 μm and the elongated dermal papillae had an effective diameter of 64.2 ± 22.6 μm. The methodologies developed could be employed for quantitative diagnostic purposes and furthermore serve as a monitoring method of the effect of personalized treatments. PMID:25071974

  17. Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis

    PubMed Central

    Barber, P.R.; Ameer-Beg, S.M.; Gilbey, J.; Carlin, L.M.; Keppler, M.; Ng, T.C.; Vojnovic, B.

    2008-01-01

    Förster resonance energy transfer (FRET) detected via fluorescence lifetime imaging microscopy (FLIM) and global analysis provide a way in which protein–protein interactions may be spatially localized and quantified within biological cells. The FRET efficiency and proportion of interacting molecules have been determined using bi-exponential fitting to time-domain FLIM data from a multiphoton time-correlated single-photon counting microscope system. The analysis has been made more robust to noise and significantly faster using global fitting, allowing higher spatial resolutions and/or lower acquisition times. Data have been simulated, as well as acquired from cell experiments, and the accuracy of a modified Levenberg–Marquardt fitting technique has been explored. Multi-image global analysis has been used to follow the epidermal growth factor-induced activation of Cdc42 in a short-image-interval time-lapse FLIM/FRET experiment. Our implementation offers practical analysis and time-resolved-image manipulation, which have been targeted towards providing fast execution, robustness to low photon counts, quantitative results and amenability to automation and batch processing.

  18. HYMOSS signal processing for pushbroom spectral imaging

    NASA Astrophysics Data System (ADS)

    Ludwig, David E.

    1991-06-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  19. HYMOSS signal processing for pushbroom spectral imaging

    NASA Technical Reports Server (NTRS)

    Ludwig, David E.

    1991-01-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  20. Multiphoton microspectroscopy of biological specimens

    NASA Astrophysics Data System (ADS)

    Lin, Bai-Ling; Kao, Fu-Jen; Cheng, Ping C.; Sun, Chi-Kuang; Chen, RangWu; Wang, YiMin; Chen, JianCheng; Wang, Yung-Shun; Liu, Tzu-Ming; Huang, Mao-Kuo

    2000-07-01

    The non-linear nature of multi-photon fluorescence excitation restricts the fluorescing volume to the vicinity of the focal point. As a result, the technology has the capacity for micro- spectroscopy of biological specimen at high spatial resolution. Chloroplasts in mesophyll protoplast of Arabidopsis thaliana and maize stem sections were used to demonstrate the feasibility of multi-photon fluorescence micro-spectroscopy at subcellular compartments. Time-lapse spectral recording provides a means for studying the response of cell organelles to high intensity illumination.

  1. Assessment of liver steatosis and fibrosis in rats using integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Xu, Shuoyu; Tai, Dean; Yu, Hanry; Huang, Zhiwei

    2011-11-01

    We report the implementation of a unique integrated coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and two-photon excitation fluorescence (TPEF) microscopy imaging technique developed for label-free monitoring of the progression of liver steatosis and fibrosis generated in a bile duct ligation (BDL) rat model. Among the 21 adult rats used in this study, 18 rats were performed with BDL surgery and sacrificed each week from weeks 1 to 6 (n = 3 per week), respectively; whereas 3 rats as control were sacrificed at week 0. Colocalized imaging of the aggregated hepatic fats, collagen fibrils, and hepatocyte morphologies in liver tissue is realized by using the integrated CARS, SHG, and TPEF technique. The results show that there are significant accumulations of hepatic lipid droplets and collagen fibrils associated with severe hepatocyte necrosis in BDL rat liver as compared to a normal liver tissue. The volume of normal hepatocytes keeps decreasing and the fiber collagen content in BDL rat liver follows a growing trend until week 6; whereas the hepatic fat content reaches a maximum in week 4 and then appears to stop growing in week 6, indicating that liver steatosis and fibrosis induced in a BDL rat liver model may develop at different rates. This work demonstrates that the integrated CARS and multiphoton microscopy imaging technique has the potential to provide an effective means for early diagnosis and detection of liver steatosis and fibrosis without labeling.

  2. Multiphoton microscopy in neuroscience

    NASA Astrophysics Data System (ADS)

    Denk, Winfried

    2002-06-01

    The study of the nervous system requires to an exceptional extent observation of and experimentation on intact tissue. There, in particular, high-resolution optical microscopy benefits from the inherent advantages of multi-photon fluorescence excitation. Several cases will be presented from a number of different tissues and organisms, where multi-photon excited laser scanning fluorescence microscopy has been an essential experimental tool. Those examples include the discovery of biochemical coincidence detection in synaptic spines and the clarification of the underlying mechanism; the observation of sensory evoked dendritic signaling in intact animals and the observation of light induced calcium signals in the intact retina. Recently a fiber coupled two-photon microscopy has been developed that allows the imaging in moving animal.

  3. Detection limits with spectral differential imaging data

    NASA Astrophysics Data System (ADS)

    Rameau, J.; Chauvin, G.; Lagrange, A.-M.; Maire, A.-L.; Boccaletti, A.; Bonnefoy, M.

    2015-09-01

    Context. Direct imaging of exoplanets is polluted by speckle noise that severely limits the achievable contrast. Angular and spectral differential imaging have been proposed to make use of the temporal and chromatic properties of the speckles. Both modes, associated with extreme adaptive-optics and coronagraphy, are at the core of the new generation of planet imagers SPHERE and GPI. Aims: We aim to illustrate and characterize the impact of the SDI and SDI+ADI (ASDI) data reduction on the detection of giant planets. We also propose an unbiased method to derive the detection limits from SDI/ASDI data. Methods: Observations of AB Dor B and β Pictoris made with VLT/NaCo were used to simulate and quantify the effects of SDI and ASDI. The novel method is compared to the traditional injection of artificial point sources. Results: The SDI reduction process creates a typical radial positive-negative pattern of any point-source. Its characteristics and its self-subtraction depend on the separation, but also on the spectral properties of the object. This work demonstrates that the self-subtraction cannot be reduced to a simple geometric effect. As a consequence, the detection performances of SDI observations cannot be expressed as a contrast in magnitude with the central star without the knowledge of the spectral properties of detectable companions. In addition, the residual noise cannot be converted into contrast and physical characteristics (mass, temperature) by standard calibration of flux losses. The proposed method takes the SDI bias into account to derive detection limits without the cost of massively injecting artificial sources into the data. Finally, the sensitivity of ASDI observations can be measured only with a control parameter on the algorithms that controls the minimum rotation that is necessary to build the reference image. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile, ESO : 60.A

  4. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    NASA Astrophysics Data System (ADS)

    Skala, Melissa Caroline

    2007-12-01

    Cancer morbidity and mortality is greatly reduced when the disease is diagnosed and treated early in its development. Tissue biopsies are the gold standard for cancer diagnosis, and an accurate diagnosis requires a biopsy from the malignant portion of an organ. Light, guided through a fiber optic probe, could be used to inspect regions of interest and provide real-time feedback to determine the optimal tissue site for biopsy. This approach could increase the diagnostic accuracy of current biopsy procedures. The studies in this thesis have characterized changes in tissue optical signals with carcinogenesis, increasing our understanding of the sensitivity of optical techniques for cancer detection. All in vivo studies were conducted on the dimethylbenz[alpha]anthracene treated hamster cheek pouch model of epithelial carcinogenesis. Multiphoton microscopy studies in the near infrared wavelength region quantified changes in tissue morphology and fluorescence with carcinogenesis in vivo. Statistically significant morphological changes with precancer included increased epithelial thickness, loss of stratification in the epithelium, and increased nuclear diameter. Fluorescence changes included a statistically significant decrease in the epithelial fluorescence intensity per voxel at 780 nm excitation, a decrease in the fluorescence lifetime of protein-bound nicotinamide adenine dinucleotide (NADH, an electron donor in oxidative phosphorylation), and an increase in the fluorescence lifetime of protein-bound flavin adenine dinucleotide (FAD, an electron acceptor in oxidative phosphorylation) with precancer. The redox ratio (fluorescence intensity of FAD/NADH, a measure of the cellular oxidation-reduction state) did not significantly change with precancer. Cell culture experiments (MCF10A cells) indicated that the decrease in protein-bound NADH with precancer could be due to increased levels of glycolysis. Point measurements of diffuse reflectance and fluorescence spectra in

  5. Quantifying local heterogeneity of in vivo transport dynamics using stochastic scanning multiphoton multifocal microscopy and segmented spatiotemporal image correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hee Y.; Jureller, Justin E.; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2008-02-01

    Elucidating the mechanisms of insulin granule trafficking in pancreatic β-cells is a critical step in understanding Type II Diabetes and abnormal insulin secretion. In this paper, rapid-sampling stochastic scanning multiphoton multifocal microscopy (SS-MMM) was developed to capture fast insulin granule dynamics in vivo. Stochastic scanning of (a diffractive optic generated) 10×10 hexagonal array of foci with a galvanometer yields a uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. In addition, segmented spatio-temporal image correlation spectroscopy (Segmented STICS) was developed to extract dynamics of insulin granules from the image sequences. Measurements we conducted on MIN6 cells, which exhibit an order of magnitude lower granule number density, allow comparison of particle tracking with Segmented-STICS. Segmentation of the images into 8×8 pixel segments (similar to a size of one granule) allows some amount of spatial averaging, which can reduce the computation time required to calculate the correlation function, yet retains information about the local spatial heterogeneity of transport. This allows the correlation analysis to quantify the dynamics within each of the segments producing a "map" of the localized properties of the cell. The results obtained from Segmented STICS are compared with dynamics determined from particle tracking analysis of the same images. The resulting range of diffusion coefficients of insulin granules are comparable to previously published values indicating that SS-MMM and segmented- STICS will be useful to address the imaging challenges presented by β-cells, particularly the extremely large number density of granules.

  6. Spectral imaging of neurosurgical target tissues through operation microscope

    NASA Astrophysics Data System (ADS)

    Antikainen, Jukka; von Und Zu Fraunberg, Mikael; Orava, Joni; Jaaskelainen, Juha E.; Hauta-Kasari, Markku

    2011-11-01

    It has been noticed that spectral information can be used for analyzing and separating different biological tissues. However, most of the studies for spectral image acquisitions are mainly done in vitro. Usually the main restrictions for in vivo measurements are the size or the weight of the spectral camera. If the camera weights too much, the surgery microscope cannot be stabilized. If the size of the camera is too big, it will disturb the surgeon or even risk the safety of the patient. The main goal of this study was to develop an independent spectral imaging device which can be used for collecting spectral information from the neurosurgeries without any previously described restrictions. Size of the imaging system is small enough not to disturb the surgeon during the surgery. The developed spectral imaging system is used for collecting a spectral database which can be used for the future imaging systems.

  7. Intravital multiphoton imaging of the selective uptake of water-dispersible quantum dots into sinusoidal liver cells.

    PubMed

    Liang, Xiaowen; Grice, Jeffrey E; Zhu, Yian; Liu, David; Sanchez, Washington Y; Li, Zhen; Crawford, Darrell H G; Le Couteur, David G; Cogger, Victoria C; Liu, Xin; Xu, Zhi Ping; Roberts, Michael S

    2015-04-01

    Although many studies reporting the organ-level biodistribution of nanoparticles (NPs) in animals, very few have addressed the fate of NPs in organs at the cellular level. The liver appears to be the main organ for accumulation of NPs after intravenous injection. In this study, for the first time, the in vivo spatiotemporal disposition of recently developed mercaptosuccinic acid (MSA)-capped cadmium telluride/cadmium sulfide (CdTe/CdS) quantum dots (QDs) is explored in rat liver using multiphoton microscopy (MPM) coupled with fluorescence lifetime imaging (FLIM), with subcellular resolution (∼1 μm). With high fluorescence efficiency and largely improved stability in the biological environment, these QDs show a distinct distribution pattern in the liver compared to organic dyes, rhodamine 123 and fluorescein. After intravenous injection, fluorescent molecules are taken up by hepatocytes and excreted into the bile, while negatively charged QDs are retained in the sinusoids and selectively taken up by sinusoidal cells (Kupffer cells and liver sinusoidal endothelial cells), but not by hepatocytes within 3 h. The results could help design NPs targeting the specific types of liver cells and choose the fluorescent markers for appropriate cellular imaging. PMID:25504510

  8. Examination of diagnostic features in multiphoton microscopy and optical coherence tomography images of ovarian tumorigenesis in a mouse model

    NASA Astrophysics Data System (ADS)

    Watson, Jennifer M.

    Ovarian cancer is a deadly disease owing to the non-specific symptoms and suspected rapid progression, leading to frequent late stage detection and poor prognosis. Medical imaging methods such as CT, MRI and ultrasound as well as serum testing for cancer markers have had extremely poor performance for early disease detection. Due to the poor performance of available screening methods, and the impracticality and ineffectiveness of taking tissue biopsies from the ovary, women at high risk for developing ovarian cancer are often advised to undergo prophylactic salpingo-oophorectomy. This surgery results in many side effects and is most often unnecessary since only a fraction of high risk women go on to develop ovarian cancer. Better understanding of the early development of ovarian cancer and characterization of morphological changes associated with early disease could lead to the development of an effective screening test for women at high risk. Optical imaging methods including optical coherence tomography (OCT) and multiphoton microscopy (MPM) are excellent tools for studying disease progression owing to the high resolution and depth sectioning capabilities. Further, these techniques are excellent for optical biopsy because they can image in situ non-destructively. In the studies described in this dissertation OCT and MPM are used to identify cellular and tissue morphological changes associated with early tumor development in a mouse model of ovarian cancer. This work is organized into three specific aims. The first aim is to use the images from the MPM phenomenon of second harmonic generation to quantitatively examine the morphological differences in collagen structure in normal mouse ovarian tissue and mouse ovarian tumors. The second aim is to examine the differences in endogenous two-photon excited fluorescence in normal mouse ovarian tissue and mouse ovarian tumors. The third and final aim is to identify changes in ovarian microstructure resulting from early

  9. Spectral Camera based on Ghost Imaging via Sparsity Constraints

    NASA Astrophysics Data System (ADS)

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-05-01

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.

  10. Spectral Camera based on Ghost Imaging via Sparsity Constraints

    PubMed Central

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-01-01

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments. PMID:27180619

  11. Spectral Camera based on Ghost Imaging via Sparsity Constraints.

    PubMed

    Liu, Zhentao; Tan, Shiyu; Wu, Jianrong; Li, Enrong; Shen, Xia; Han, Shensheng

    2016-01-01

    The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments. PMID:27180619

  12. Advances in multiphoton microscopy technology

    PubMed Central

    Hoover, Erich E.; Squier, Jeff A.

    2013-01-01

    Multiphoton microscopy has enabled unprecedented dynamic exploration in living organisms. A significant challenge in biological research is the dynamic imaging of features deep within living organisms, which permits the real-time analysis of cellular structure and function. To make progress in our understanding of biological machinery, optical microscopes must be capable of rapid, targeted access deep within samples at high resolution. In this Review, we discuss the basic architecture of a multiphoton microscope capable of such analysis and summarize the state-of-the-art technologies for the quantitative imaging of biological phenomena. PMID:24307915

  13. Mosaic-Detector-Based Fluorescence Spectral Imager

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong

    2007-01-01

    A battery-powered, pen-sized, portable instrument for measuring molecular fluorescence spectra of chemical and biological samples in the field has been proposed. Molecular fluorescence spectroscopy is among the techniques used most frequently in laboratories to analyze compositions of chemical and biological samples. Heretofore, it has been possible to measure fluorescence spectra of molecular species at relative concentrations as low as parts per billion (ppb), with a few nm spectral resolution. The proposed instrument would include a planar array (mosaic) of detectors, onto which a fluorescence spectrum would be spatially mapped. Unlike in the larger laboratory-type molecular fluorescence spectrometers, mapping of wavelengths to spatial positions would be accomplished without use of relatively bulky optical parts. The proposed instrument is expected to be sensitive enough to enable measurement of spectra of chemical species at relative concentrations <1 ppb, with spectral resolution that could be tailored by design to be comparable to a laboratory molecular fluorescence spectrometer. The proposed instrument (see figure) would include a button-cell battery and a laser diode, which would generate the monochromatic ultraviolet light needed to excite fluorescence in a sample. The sample would be held in a cell bounded by far-ultraviolet-transparent quartz or optical glass. The detector array would be, more specifically, a complementary metal oxide/ semiconductor or charge-coupled- device imaging photodetector array, the photodetectors of which would be tailored to respond to light in the wavelength range of the fluorescence spectrum to be measured. The light-input face of the photodetector array would be covered with a matching checkerboard array of multilayer thin film interference filters, such that each pixel in the array would be sensitive only to light in a spectral band narrow enough so as not to overlap significantly with the band of an adjacent pixel. The

  14. Detection of latent fingerprints by near-infrared spectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Dai, Yong

    2014-05-01

    Spectral imaging technology research is becoming more extensive in the field of examination of material evidence. Near-Infrared spectral imaging technology is an important part of the full spectrum of imaging technology. This paper finished the experiment contents of the Near-Infrared spectrum imaging method and image acquisition system Near-Infrared spectral imaging technology. The experiment of Near-Infrared spectral imaging method obtains the image set of the Near-Infrared spectrum, and formats a pseudo-color images to show the potential traces successfully by processing the set of spectral images; Near-Infrared spectral imaging technology explores the technology method of obtaining the image set of Near-Infrared spectrometer and image acquisition system, and extensive access to the Near-Infrared spectrum information of latent blood, stamp and smear fingerprints on common objects, and study the characteristics of the Near-Infrared spectrum. Near-Infrared spectroscopic imaging experiments explores a wide variety of Near-Infrared reflectance spectra of the object material curve and its Near-Infrared spectrum of imaging modalities, can not only gives a reference for choosing Near-Infrared wavelength to show the object surface potential traces of substances, but also gives important data for the Near-Infrared spectrum of imaging technology development.

  15. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    NASA Astrophysics Data System (ADS)

    Qian, Lu-Lu; Lü, Qun-Bo; Huang, Min; Xiang, Li-Bin

    2015-08-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61225024) and the National High Technology Research and Development Program of China (Grant No. 2011AA7012022).

  16. Multiphoton cryo microscope with sample temperature control

    NASA Astrophysics Data System (ADS)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2013-02-01

    We present a multiphoton microscope system which combines the advantages of multiphoton imaging with precise control of the sample temperature. The microscope provides online insight in temperature-induced changes and effects in plant tissue and animal cells with subcellular resolution during cooling and thawing processes. Image contrast is based on multiphoton fluorescence intensity or fluorescence lifetime in the range from liquid nitrogen temperature up to +600°C. In addition, micro spectra from the imaged regions can be recorded. We present measurement results from plant leaf samples as well as Chinese hamster ovary cells.

  17. A new method using multiphoton imaging and morphometric analysis for differentiating chromophobe renal cell carcinoma and oncocytoma kidney tumors

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Mukherjee, Sushmita; Jain, Manu

    2016-03-01

    Distinguishing chromophobe renal cell carcinoma (chRCC) from oncocytoma on hematoxylin and eosin images may be difficult and require time-consuming ancillary procedures. Multiphoton microscopy (MPM), an optical imaging modality, was used to rapidly generate sub-cellular histological resolution images from formalin-fixed unstained tissue sections from chRCC and oncocytoma.Tissues were excited using 780nm wavelength and emission signals (including second harmonic generation and autofluorescence) were collected in different channels between 390 nm and 650 nm. Granular structure in the cell cytoplasm was observed in both chRCC and oncocytoma. Quantitative morphometric analysis was conducted to distinguish chRCC and oncocytoma. To perform the analysis, cytoplasm and granules in tumor cells were segmented from the images. Their area and fluorescence intensity were found in different channels. Multiple features were measured to quantify the morphological and fluorescence properties. Linear support vector machine (SVM) was used for classification. Re-substitution validation, cross validation and receiver operating characteristic (ROC) curve were implemented to evaluate the efficacy of the SVM classifier. A wrapper feature algorithm was used to select the optimal features which provided the best predictive performance in separating the two tissue types (classes). Statistical measures such as sensitivity, specificity, accuracy and area under curve (AUC) of ROC were calculated to evaluate the efficacy of the classification. Over 80% accuracy was achieved as the predictive performance. This method, if validated on a larger and more diverse sample set, may serve as an automated rapid diagnostic tool to differentiate between chRCC and oncocytoma. An advantage of such automated methods are that they are free from investigator bias and variability.

  18. High spectral resolution image of Barnacle Bill

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The rover Sojourner's first target for measurement by the Alpha-Proton-Xray Spectrometer (APXS) was the rock named Barnacle Bill, located close to the ramp down which the rover made its egress from the lander. The full spectral capability of the Imager for Mars Pathfinder (IMP), consisting of 13 wavelength filters, was used to characterize the rock's surface. The measured area is relatively dark, and is shown in blue. Nearby on the rock surface, soil material is trapped in pits (shown in red).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  19. Non-rigid registration of multiphoton microscopy images using B-splines

    NASA Astrophysics Data System (ADS)

    Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2011-03-01

    Optical microscopy poses many challenges for digital image analysis. One particular challenge includes correction of image artifacts due to respiratory motion from specimens imaged in vivo. We describe a non-rigid registration method using B-splines to correct these motion artifacts. Current attempts at non-rigid medical image registration have typically involved only a single pair of images. Extending these techniques to an entire series of images, possibly comprising hundreds of images, is presented in this paper. Our method involves creating a uniform grid of control points across each image in a stack. Each control point is manipulated by optimizing a cost function consisting of two parts: a term to determine image similarity, and a term to evaluate deformation grid smoothness. This process is repeated for all images in the stack. Analysis is evaluated using block motion estimation and other visualization techniques.

  20. High spectral resolution airborne short wave infrared hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Wei, Liqing; Yuan, Liyin; Wang, Yueming; Zhuang, Xiaoqiong

    2016-05-01

    Short Wave InfraRed(SWIR) spectral imager is good at detecting difference between materials and penetrating fog and mist. High spectral resolution SWIR hyperspectral imager plays a key role in developing earth observing technology. Hyperspectral data cube can help band selections that is very important for multispectral imager design. Up to now, the spectral resolution of many SWIR hyperspectral imagers is about 10nm. A high sensitivity airborne SWIR hyperspectral imager with narrower spectral band will be presented. The system consists of TMA telescope, slit, spectrometer with planar blazed grating and high sensitivity MCT FPA. The spectral sampling interval is about 3nm. The IFOV is 0.5mrad. To eliminate the influence of the thermal background, a cold shield is designed in the dewar. The pixel number of spatial dimension is 640. Performance measurement in laboratory and image analysis for flight test will also be presented.

  1. Spatio-spectral image analysis using classical and neural algorithms

    SciTech Connect

    Roberts, S.; Gisler, G.R.; Theiler, J.

    1996-12-31

    Remote imaging at high spatial resolution has a number of environmental, industrial, and military applications. Analysis of high-resolution multi-spectral images usually involves either spectral analysis of single pixels in a multi- or hyper-spectral image or spatial analysis of multi-pixels in a panchromatic or monochromatic image. Although insufficient for some pattern recognition applications individually, the combination of spatial and spectral analytical techniques may allow the identification of more complex signatures that might not otherwise be manifested in the individual spatial or spectral domains. We report on some preliminary investigation of unsupervised classification methodologies (using both ``classical`` and ``neural`` algorithms) to identify potentially revealing features in these images. We apply dimension-reduction preprocessing to the images, duster, and compare the clusterings obtained by different algorithms. Our classification results are analyzed both visually and with a suite of objective, quantitative measures.

  2. Compressive spectral integral imaging using a microlens array

    NASA Astrophysics Data System (ADS)

    Feng, Weiyi; Rueda, Hoover; Fu, Chen; Qian, Chen; Arce, Gonzalo R.

    2016-05-01

    In this paper, a compressive spectral integral imaging system using a microlens array (MLA) is proposed. This system can sense the 4D spectro-volumetric information into a compressive 2D measurement image on the detector plane. In the reconstruction process, the 3D spatial information at different depths and the spectral responses of each spatial volume pixel can be obtained simultaneously. In the simulation, sensing of the 3D objects is carried out by optically recording elemental images (EIs) using a scanned pinhole camera. With the elemental images, a spectral data cube with different perspectives and depth information can be reconstructed using the TwIST algorithm in the multi-shot compressive spectral imaging framework. Then, the 3D spatial images with one dimensional spectral information at arbitrary depths are computed using the computational integral imaging method by inversely mapping the elemental images according to geometrical optics. The simulation results verify the feasibility of the proposed system. The 3D volume images and the spectral information of the volume pixels can be successfully reconstructed at the location of the 3D objects. The proposed system can capture both 3D volumetric images and spectral information in a video rate, which is valuable in biomedical imaging and chemical analysis.

  3. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging. PMID:26831392

  4. Hyperspectral retinal imaging with a spectrally tunable light source

    NASA Astrophysics Data System (ADS)

    Francis, Robert P.; Zuzak, Karel J.; Ufret-Vincenty, Rafael

    2011-03-01

    Hyperspectral retinal imaging can measure oxygenation and identify areas of ischemia in human patients, but the devices used by current researchers are inflexible in spatial and spectral resolution. We have developed a flexible research prototype consisting of a DLP®-based spectrally tunable light source coupled to a fundus camera to quickly explore the effects of spatial resolution, spectral resolution, and spectral range on hyperspectral imaging of the retina. The goal of this prototype is to (1) identify spectral and spatial regions of interest for early diagnosis of diseases such as glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR); and (2) define required specifications for commercial products. In this paper, we describe the challenges and advantages of using a spectrally tunable light source for hyperspectral retinal imaging, present clinical results of initial imaging sessions, and describe how this research can be leveraged into specifying a commercial product.

  5. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    PubMed Central

    Zhang, Yunhai; Hu, Bian; Dai, Yakang; Yang, Haomin; Huang, Wei; Xue, Xiaojun; Li, Fazhi; Zhang, Xin; Jiang, Chenyu; Gao, Fei; Chang, Jian

    2013-01-01

    We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments. PMID:23585775

  6. Spectral imaging of breast fibroadenoma using second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Zheng, Liqin; Wang, Yuhua

    2014-09-01

    Fibroadenoma (FA), typically composed of stroma and epithelial cells, is a very common benign breast disease. Women with FA are associated with an increased risk of future breast cancer. The objective of this study was to demonstrate the potential of multiphoton laser scanning microscopy (MPLSM) for characterizing the morphology of collagen in the human breast fibroadenomas. In the study, high-contrast SHG images of human normal breast tissues and fibroadenoma tissues were obtained for comparison. The morphology of collagen was different between normal breast tissue and fibroadenoma. This study shows that MPLSM has the ability to distinguish fibroadenoma tissues from the normal breast tissues based on the noninvasive SHG imaging. With the advent of the clinical portability of miniature MPLSM, we believe that the technique has great potential to be used in vivo studies and for monitoring the treatment responses of fibroadenomas in clinical.

  7. Passive Microwave Spectral Imaging of Amospheric Structure

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Rosenkranz, Philip W.

    1998-01-01

    The primary objective of this research was to improve the scientific foundation necessary to full realization of the meteorological potential of the NOAA Advanced Microwave Sounding Unit (AMSU) recently first launched on the NOAA-15 satellite in May, 1998. These advances were made in four main areas: (1) improvements, based on aircraft observations, in the atmospheric transmittance expressions used for interpreting AMSU and similar data; (2) development of neural network retrieval methods for cloud top altitude estimates of approximately 1-km accuracy under cirrus shields--the altitude is that of the larger ice particles aloft, which is related to precipitation rate; (3) analysis of early AMSU flight data with respect to its precipitation sensitivity and fine-scale thermal structure; and (4) improvements to the 54-GHz and 118-GHz MTS aircraft imaging spectrometer now operating on the NASA ER-2 aircraft. More specifically, the oxygen transmittance expressions near 118 GHz were in better agreement with aircraft data when the temperature dependence exponent of the 118.75-GHz linewidth was increased from the MPM92 value (Liebe et al., 1992) of 0.8 to 0.97+/-0.03. In contrast, the observations 52.5-55.8 GHz were consistent with the MPM92 model. Neural networks trained on comparisons of 118-GHz spectral data and coincident stereoscopic video images of convective cells observed from 20-km altitude yielded agreement in their peak altitudes within as little as 1.36 km rms, much of which is stereoscopic error. Imagery using these methods produced useful characterizations for Cyclone Oliver in 1993 and other storms (Schwartz et al., 1996; Spina et al., 1998). Similar neural network techniques yielded simulated rms errors in relative humidity retrievals of 6-14 percent over ocean and 6-15 percent over land at pressure levels from 1013 to 131 mbar (Cabrera-Mercader and Staelin, 1995).

  8. Spectral Imaging of Galaxy Clusters with Planck

    NASA Astrophysics Data System (ADS)

    Bourdin, H.; Mazzotta, P.; Rasia, E.

    2015-12-01

    The Sunyaev-Zeldovich (SZ) effect is a promising tool for detecting the presence of hot gas out to the galaxy cluster peripheries. We developed a spectral imaging algorithm dedicated to the SZ observations of nearby galaxy clusters with Planck, with the aim of revealing gas density anisotropies related to the filamentary accretion of materials, or pressure discontinuities induced by the propagation of shock fronts. To optimize an unavoidable trade-off between angular resolution and precision of the SZ flux measurements, the algorithm performs a multi-scale analysis of the SZ maps as well as of other extended components, such as the cosmic microwave background (CMB) anisotropies and the Galactic thermal dust. The demixing of the SZ signal is tackled through kernel-weighted likelihood maximizations. The CMB anisotropies are further analyzed through a wavelet analysis, while the Galactic foregrounds and SZ maps are analyzed via a curvelet analysis that best preserves their anisotropic details. The algorithm performance has been tested against mock observations of galaxy clusters obtained by simulating the Planck High Frequency Instrument and by pointing at a few characteristic positions in the sky. These tests suggest that Planck should easily allow us to detect filaments in the cluster peripheries and detect large-scale shocks in colliding galaxy clusters that feature favorable geometry.

  9. In vivo Delivery of Fluoresceinated Dextrans to the Murine Growth Plate: Imaging of Three Vascular Routes by Multiphoton Microscopy

    PubMed Central

    Farnum, Cornelia; Lenox, Michelle; Zipfel, Warren; Horton, William; Williams, Rebecca

    2008-01-01

    Bone elongation by endochondral ossification occurs through the differentiation cascade of chondrocytes of cartilaginous growth plates. Molecules from the systemic vasculature reach the growth plate from three different directions: epiphyseal, metaphyseal, and via a ring vessel and plexus associated with the perichondrium. This study is an analysis of the real-time dynamics of entrance of fluoresceinated tracers of different molecular weights into the growth plate from the systemic vasculature, and tests the hypothesis that molecular weight is a key variable in the determination of both the directionality and the extent of tracer movement into the growth plate. Multiphoton microscopy was used for direct in vivo imaging of the murine proximal tibial growth plate in anesthetized 4-5-week-old transgenic mice with green fluorescent protein linked to the collagen II promoter. Mice were given an intracardiac injection of either fluorescein (332.3 Da), or fluoresceinated dextrans of 3, 10, 40, 70 kDa, singly or sequentially. For each tracer, directionality and rate of arrival, together with extent of movement within the growth plate, were imaged in real time. For small molecules (up to 10 kDa) vascular access from all three directions was observed and entrance was equally permissive from the metaphyseal and the epiphyseal sides. Within our detection limit (a few per cent of vascular concentration) 40 kDa and larger dextrans did not enter. These results have implications both for understanding systemic and paracrine regulation of growth plate chondrocytic differentiation, as well as variables associated with effective drug delivery to growth plate chondrocytes. PMID:16342207

  10. Results of ACTIM: an EDA study on spectral laser imaging

    NASA Astrophysics Data System (ADS)

    Hamoir, Dominique; Hespel, Laurent; Déliot, Philippe; Boucher, Yannick; Steinvall, Ove; Ahlberg, Jörgen; Larsson, Hakan; Letalick, Dietmar; Lutzmann, Peter; Repasi, Endre; Ritt, Gunnar

    2011-11-01

    The European Defence Agency (EDA) launched the Active Imaging (ACTIM) study to investigate the potential of active imaging, especially that of spectral laser imaging. The work included a literature survey, the identification of promising military applications, system analyses, a roadmap and recommendations. Passive multi- and hyper-spectral imaging allows discriminating between materials. But the measured radiance in the sensor is difficult to relate to spectral reflectance due to the dependence on e.g. solar angle, clouds, shadows... In turn, active spectral imaging offers a complete control of the illumination, thus eliminating these effects. In addition it allows observing details at long ranges, seeing through degraded atmospheric conditions, penetrating obscurants (foliage, camouflage...) or retrieving polarization information. When 3D, it is suited to producing numerical terrain models and to performing geometry-based identification. Hence fusing the knowledge of ladar and passive spectral imaging will result in new capabilities. We have identified three main application areas for active imaging, and for spectral active imaging in particular: (1) long range observation for identification, (2) mid-range mapping for reconnaissance, (3) shorter range perception for threat detection. We present the system analyses that have been performed for confirming the interests, limitations and requirements of spectral active imaging in these three prioritized applications.

  11. Evaluating collagen morphology and pathological lipid deposition using multiphoton image statistics

    NASA Astrophysics Data System (ADS)

    Mostaço-Guidolin, Leila B.; Ko, Alex C.-T.; Wang, Fei; Tian, Hong; Hewko, Mark; Shiomi, Masashi; Major, Arkady; Sowa, Michael G.

    2014-02-01

    In this study we present a novel image analysis methodology to quantify and to classify morphological details in tissue collagen fibril organization and lipid deposition. Co-localized collagen (second harmonic, SHG) and lipid (coherent Raman, CARS) images of atherosclerotic artery walls were acquired by a supercontinuum-powered multi-modal nonlinear microscope. Textural features based on the first-order statistics (FOS) and gray level co-occurrence matrix (GLCM) parameters were extracted from the SHG and CARS images. Multi-group classifications based on support vector machine of SHG and CARS images were subsequently performed to investigate the potential of texture analysis in providing quantitative descriptors of structural and compositional changes during disease progression. Using a rabbit model, different collagen remodeling and lipid accumulation patterns in disease tissues can be successfully tracked using these image statistics, thus providing a robust foundation for classification. When the variation of the CARS image features were tracked against the age of the rabbit, it was noticed that older animals (advanced plaques) present a more complex necrotic core containing high-lipid extracellular structures with various shapes and distribution. With combined FOS and GLCM texture statistics, we achieved reliable classification of SHG and CARS images acquired from atherosclerotic arteries with >90% accuracy, sensitivity and specificity. The proposed image analysis methodology can also be applied in a wide range of applications to evaluate conditions involving collagen re-modeling and prominent lipid accumulation.

  12. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells

    NASA Astrophysics Data System (ADS)

    Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana

    2014-09-01

    Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.

  13. ACTIM: an EDA initiated study on spectral active imaging

    NASA Astrophysics Data System (ADS)

    Steinvall, O.; Renhorn, I.; Ahlberg, J.; Larsson, H.; Letalick, D.; Repasi, E.; Lutzmann, P.; Anstett, G.; Hamoir, D.; Hespel, L.; Boucher, Y.

    2010-10-01

    This paper will describe ongoing work from an EDA initiated study on Active Imaging with emphasis of using multi or broadband spectral lasers and receivers. Present laser based imaging and mapping systems are mostly based on a fixed frequency lasers. On the other hand great progress has recently occurred in passive multi- and hyperspectral imaging with applications ranging from environmental monitoring and geology to mapping, military surveillance, and reconnaissance. Data bases on spectral signatures allow the possibility to discriminate between different materials in the scene. Present multi- and hyperspectral sensors mainly operate in the visible and short wavelength region (0.4-2.5 μm) and rely on the solar radiation giving shortcoming due to shadows, clouds, illumination angles and lack of night operation. Active spectral imaging however will largely overcome these difficulties by a complete control of the illumination. Active illumination enables spectral night and low-light operation beside a robust way of obtaining polarization and high resolution 2D/3D information. Recent development of broadband lasers and advanced imaging 3D focal plane arrays has led to new opportunities for advanced spectral and polarization imaging with high range resolution. Fusing the knowledge of ladar and passive spectral imaging will result in new capabilities in the field of EO-sensing to be shown in the study. We will present an overview of technology, systems and applications for active spectral imaging and propose future activities in connection with some prioritized applications.

  14. Spectral homogenization techniques for the hyperspectral image projector

    NASA Astrophysics Data System (ADS)

    Hillberry, Logan E.; Rice, Joseph P.

    2015-05-01

    In an effort to improve technology for performance testing and calibration of multispectral and hyperspectral imagers, the National Institute of Standards and Technology (NIST) has been developing a Hyperspectral Image Projector (HIP) capable of projecting dynamic scenes than include distinct, programmable spectra in each of its 1024x768 spatial pixels. The HIP is comprised of a spectral engine, which is a light source capable generating the spectra in the scene, coupled to a spatial engine, capable of projecting the spectra into the correct locations of the scene. In the prototype HIP, the light exiting the Visible-Near-Infrared (VNIR) / Short-Wavelength Infrared (SWIR) spectral engine is spectrally dispersed and needs to be spectrally homogenized before it enters the spatial engine. In this paper we describe the results from a study of several different techniques for performing this spectral homogenization. These techniques include an integrating sphere, a liquid light guide, a randomized fiber bundle, and an engineered diffuser, in various combinations. The spectral uniformity of projected HIP scenes is measured and analyzed using the spectral angle mapper (SAM) algorithm over the VNIR spectral range. The SAM provides a way to analyze the spectral uniformity independently from the radiometric uniformity. The goal of the homogenizer is a spectrally uniform and bright projected image. An integrating sphere provides the most spectrally uniform image, but at a great loss of light compared with the other methods. The randomized fiber bundle generally outperforms the liquid light guide in both spectral homogenization and brightness. Using an engineered diffuser with the randomized fiber bundle increases the spectral uniformity by a factor of five, with a decrease in brightness by a factor of five, compared with the randomized fiber bundle alone. The combination of an engineered diffuser with a randomized fiber bundle provides comparable spectral uniformity to the

  15. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  16. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  17. Adaptive spectral imager for space-based sensing

    NASA Astrophysics Data System (ADS)

    Vujkovic-Cvijin, Pajo; Goldstein, Neil; Fox, Marsha J.; Higbee, Shawn D.; Becker, Latika S.; Ooi, Teng K.

    2006-05-01

    Optical sensors aboard space vehicles designated to perform seeker functions need to generate multispectral images in the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions in order to investigate and classify man-made space objects, and to distinguish them relative to the interfering scene clutter. The spectral imager part of the sensor collects spectral signatures of the observed objects in order to extract information on surface emissivity and target temperature, both important parameters for object-discrimination algorithms. The Adaptive Spectral Imager described in this paper fulfills two functions simultaneously: one output produces instantaneous two-dimensional polychromatic imagery for object acquisition and tracking, while the other output produces multispectral images for object discrimination and classification. The spectral and temporal resolution of the data produced by the spectral imager are adjustable in real time, making it possible to achieve optimum tradeoff between different sensing functions to match dynamic monitoring requirements during a mission. The system has high optical collection efficiency, with output data rates limited only by the readout speed of the detector array. The instrument has no macro-scale moving parts, and can be built in a robust, small-volume and lightweight package, suitable for integration with space vehicles. The technology is also applicable to multispectral imaging applications in diverse areas such as surveillance, agriculture, process control, and biomedical imaging, and can be adapted for use in any spectral domain from the ultraviolet (UV) to the LWIR region.

  18. Spectral ladar: towards active 3D multispectral imaging

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  19. Semiconductor Laser Multi-Spectral Sensing and Imaging

    PubMed Central

    Le, Han Q.; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555

  20. Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging

    PubMed Central

    Wang, Haolu; Liang, Xiaowen; Mohammed, Yousuf H.; Thomas, James A.; Bridle, Kim R.; Thorling, Camilla A.; Grice, Jeffrey E.; Xu, Zhi Ping; Liu, Xin; Crawford, Darrell H. G.; Roberts, Michael S.

    2015-01-01

    Conventional histology with light microscopy is essential in the diagnosis of most liver diseases. Recently, a concept of real-time histology with optical biopsy has been advocated. In this study, live mice livers (normal, with fibrosis, steatosis, hepatocellular carcinoma and ischemia-reperfusion injury) were imaged by MPM-FLIM for stain-free real-time histology. The acquired MPM-FLIM images were compared with conventional histological images. MPM-FLIM imaged subsurface cellular and subcellular histopathological hallmarks of live liver in mice models at high resolution. Additional information such as distribution of stellate cell associated autofluorescence and fluorescence lifetime changes was also gathered by MPM-FLIM simultaneously, which cannot be obtained from conventional histology. MPM-FLIM could simultaneously image and quantify the cellular morphology and microenvironment of live livers without conventional biopsy or fluorescent dyes. We anticipate that in the near future MPM-FLIM will be evaluated from bench to bedside, leading to real-time histology and dynamic monitoring of human liver diseases. PMID:25798303

  1. Multiplexed Spectral Imaging of 120 Different Fluorescent Labels

    PubMed Central

    Valm, Alex M.; Oldenbourg, Rudolf; Borisy, Gary G.

    2016-01-01

    The number of fluorescent labels that can unambiguously be distinguished in a single image when acquired through band pass filters is severely limited by the spectral overlap of available fluorophores. The recent development of spectral microscopy and the application of linear unmixing algorithms to spectrally recorded image data have allowed simultaneous imaging of fluorophores with highly overlapping spectra. However, the number of distinguishable fluorophores is still limited by the unavoidable decrease in signal to noise ratio when fluorescence signals are fractionated over multiple wavelength bins. Here we present a spectral image analysis algorithm to greatly expand the number of distinguishable objects labeled with binary combinations of fluorophores. Our algorithm utilizes a priori knowledge about labeled specimens and imposes a binary label constraint on the unmixing solution. We have applied our labeling and analysis strategy to identify microbes labeled by fluorescence in situ hybridization and here demonstrate the ability to distinguish 120 differently labeled microbes in a single image. PMID:27391327

  2. [Research on Spectral Polarization Imaging System Based on Static Modulation].

    PubMed

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng

    2015-04-01

    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection. PMID:26197616

  3. USE OF MULTIPHOTON LASER SCANNING MICROSCOPY TO IMAGE BENZO[A]PYRENE AND METABOLITES IN FISH EGGS

    EPA Science Inventory

    Multiphoton laser scanning microscopy (MPLSM) is a promising tool to study the tissue distribution of environmental chemical contaminants during fish early life stages. One such chemical for which this is possible is benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon that a...

  4. USE OF MULTIPHOTON LASER SCANNING MICROSCOPY TO IMAGE BENZO[A]PYRENE AND METABOLITES IN FISH EARLY LIFE STAGES

    EPA Science Inventory

    Multiphoton laser scanning micrsocopy holds promise as a tool to study the tissue distribution of environmental chemical contaminants during fish early life stage development. One such chemical for which this is possible is benzo[a]pyrene (BaP), a polyaromatic hydrocarbon that a...

  5. Infrared adaptive spectral imagers for direct detection of spectral signatures and hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; Fox, Marsha; Adler-Golden, Steven; Gregor, Brian

    2013-03-01

    Field test results are presented for a prototype long-wave adaptive imager that provides both hyperspectral imagery and contrast imagery based on the direct application of hyperspectral detection algorithms in hardware. Programmable spatial light modulators are used to provide both spectral and spatial resolution using a single element detector. Programmable spectral and spatial detection filters can be used to superimpose any possible analog spectral detection filter on the image. In this work, we demonstrate three modes of operation, including hyperspectral imagery, and one and two-dimensional imagery using a generalized matched filter for detection of a specific target gas within the scene.

  6. An integrated coherent anti-Stokes Raman scattering and multiphoton imaging technique for liver disease diagnosis

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Yu, Hanry; Sheppard, Colin; Huang, Zhiwei

    2012-03-01

    Liver steatosis and fibrosis are two prevalence liver diseases and may eventually develop into hepatocellular carcinoma (HCC) Due to their prevalence and severity, much work has been done to develop efficient diagnostic methods and therapies. Nonlinear optical microscopy has high sensitivity and chemical specificity for major biochemical compounds, making it a powerful tool for tissue imaging without staining. In this study, three nonlinear microscopy imaging modalities are applied to the study of liver diseases in a bile duct ligation rat modal. CARS shows the distributions of fats or lipids quantitatively across the tissue; SHG visualizes the collagens; and TPEF reveals the morphology of hepatic cells. The results clearly show the development of liver steatosis and fibrosis with time, and the hepatic fat and collagen fibrils are quantified. This study demonstrates the ability of multimodal nonlinear optical microscopy for liver disease diagnosis, and may provide new insights into the understanding of the mechanisms of steatosis/fibrosis transformations at the cellular and molecular levels.

  7. Multiphoton fluorescence lifetime imaging of metabolic status in mesenchymal stem cell during adipogenic differentiation

    NASA Astrophysics Data System (ADS)

    Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.

    2016-03-01

    Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.

  8. Photodissociation dynamics of nitromethane and methyl nitrite by infrared multiphoton dissociation imaging with quasiclassical trajectory calculations: Signatures of the roaming pathway

    NASA Astrophysics Data System (ADS)

    Dey, Arghya; Fernando, Ravin; Abeysekera, Chamara; Homayoon, Zahra; Bowman, Joel M.; Suits, Arthur G.

    2014-02-01

    We combine the techniques of infrared multiphoton dissociation (IRMPD) with state selective ion imaging to probe roaming dynamics in the unimolecular dissociation of nitromethane and methyl nitrite. Recent theoretical calculations suggest a "roaming-mediated isomerization" pathway of nitromethane to methyl nitrite prior to decomposition. State-resolved imaging of the NO product coupled with infrared multiphoton dissociation was carried out to examine this unimolecular decomposition near threshold. The IRMPD images for the NO product from nitromethane are consistent with the earlier IRMPD studies that first suggested the importance of an isomerization pathway. A significant Λ-doublet propensity is seen in nitromethane IRMPD but not methyl nitrite. The experimental observations are augmented by quasiclassical trajectory calculations for nitromethane and methyl nitrite near threshold for each dissociation pathway. The observation of distinct methoxy vibrational excitation for trajectories from nitromethane and methyl nitrite dissociation at the same total energy show that the nitromethane dissociation bears a nonstatistical signature of the roaming isomerization pathway, and this is possibly responsible for the nitromethane Λ-doublet propensity as well.

  9. Colored coded-apertures for spectral image unmixing

    NASA Astrophysics Data System (ADS)

    Vargas, Hector M.; Arguello Fuentes, Henry

    2015-10-01

    Hyperspectral remote sensing technology provides detailed spectral information from every pixel in an image. Due to the low spatial resolution of hyperspectral image sensors, and the presence of multiple materials in a scene, each pixel can contain more than one spectral signature. Therefore, endmember extraction is used to determine the pure spectral signature of the mixed materials and its corresponding abundance map in a remotely sensed hyperspectral scene. Advanced endmember extraction algorithms have been proposed to solve this linear problem called spectral unmixing. However, such techniques require the acquisition of the complete hyperspectral data cube to perform the unmixing procedure. Researchers show that using colored coded-apertures improve the quality of reconstruction in compressive spectral imaging (CSI) systems under compressive sensing theory (CS). This work aims at developing a compressive supervised spectral unmixing scheme to estimate the endmembers and the abundance map from compressive measurements. The compressive measurements are acquired by using colored coded-apertures in a compressive spectral imaging system. Then a numerical procedure estimates the sparse vector representation in a 3D dictionary by solving a constrained sparse optimization problem. The 3D dictionary is formed by a 2-D wavelet basis and a known endmembers spectral library, where the Wavelet basis is used to exploit the spatial information. The colored coded-apertures are designed such that the sensing matrix satisfies the restricted isometry property with high probability. Simulations show that the proposed scheme attains comparable results to the full data cube unmixing technique, but using fewer measurements.

  10. Spectral reflectance and digital image relations among five aquatic weeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports on the use of an artificial quartz halogen lighting source to facilitate the acquisition of spectral light reflectance measurements and digital imaging of invasive aquatic weeds. Spectral leaf or leaf/stem reflectance measurements were made on five aquatic weeds: Eurasian watermil...