Science.gov

Sample records for multiple band wireless

  1. Sensor Network in the Wireless UHF Band

    NASA Astrophysics Data System (ADS)

    Mariño, P.; Fontán, F. P.; Domínguez, M. A.; Otero, S.

    Biological research in agriculture needs a lot of specialized electronic sensors in order to fulfill different goals, like as: climate monitoring, soil and fruit assessment, control of insects and diseases, chemical pollutants, identification and control of weeds, crop tracking, and so on. That research must be supported by consistent biological models able to simulate diverse environmental conditions, in order to predict the right human actions before risky biological damage could be irreversible. In this paper an experimental distributed network based on climatic and biological wireless sensors is described, for providing real measurements in order to validate different biological models used for viticulture applications. Firstly the experimental network for field automatic data acquisition is presented, as a system based in a distributed process. Then, the design of the wireless network is explained in detail, with a previous discussion about the state-of-the-art, and some measurements for viticulture research are pointed out. Finally future developments and conclusions are stated.

  2. Transparent data service with multiple wireless access

    NASA Technical Reports Server (NTRS)

    Dean, Richard A.; Levesque, Allen H.

    1993-01-01

    The rapid introduction of digital wireless networks is an important part of the emerging digital communications scene. The introduction of Digital Cellular, LEO and GEO Satellites, and Personal Communications Services poses both a challenge and an opportunity for the data user. On the one hand wireless access will introduce significant new portable data services such as personal notebooks, paging, E-mail, and fax that will put the information age in the user's pocket. On the other hand the challenge of creating a seamless and transparent environment for the user in multiple access environments and across multiple network connections is formidable. A summary of the issues associated with developing techniques and standards that can support transparent and seamless data services is presented. The introduction of data services into the radio world represents a unique mix of RF channel problems, data protocol issues, and network issues. These problems require that experts from each of these disciplines fuse the individual technologies to support these services.

  3. Dual band triangular slotted stacked microstrip antenna for wireless applications

    NASA Astrophysics Data System (ADS)

    Singh, Vinod; Ali, Zakir; Singh, Ashutosh; Ayub, Shahanaz

    2013-06-01

    In this paper stacked configuration of microstrip antenna is used to produce dual wide band which is suitable for various wireless applications. Using triangular slot and stacking of foam substrate of dielectric constant 1, two bands of bandwidth 18.70% and 12.10% is obtained. The antenna is fed by coaxial probe feeding technique. The proposed patch antenna is designed on the foam substrate and simulated on the Zeland IE3D software.

  4. Tri-band microstrip antenna design for wireless communication applications

    NASA Astrophysics Data System (ADS)

    Sami, Gehan; Mohanna, Mahmoud; Rabeh, Mohamed L.

    2013-06-01

    This paper introduces a novel rectangular tri-band patch antenna that is fabricated and measured for wireless communication systems. The introduced antenna is designed for WLAN and WiMAX applications. The desired tri-band operation was obtained by proper loading for a rectangular patch antenna using slots and shorting pins. The optimal location and dimension for the loaded elements were obtained with the aid of interfacing a Genetic Algorithm (GA) model with an Ansoft High Frequency Structural Simulator (HFSS). The results obtained from our simulated antenna show 5.8% impedance matching band width at 2.4 GHz, 3.7% at 3.5 GHz and 1.57% at 5.7 GHz. In addition, an equivalent circuit of the proposed antenna is introduced using the least square curve fitting optimization technique.

  5. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  6. Wireless electrocardiogram transmission in ISM band: an approach towards telecardiology.

    PubMed

    Gupta, R; Mitra, M

    2014-10-01

    Remote monitoring of biomedical signals provides an opportunity to extend health care service to a distant patient. In this paper, a short range wireless telecardiology system is described with the objective to transmit electrocardiogram signal for remote end acquisition. The acquired signal was compressed using a combination of modified delta encoding and run length encoding technique and transmitted using a wireless transceiver operating in 2.4 GHz industrial, scientific and medical band to a distance of 400 ft. In the receiving end, error check principle was used to find any data loss before the data is reconstructed for feature extraction. With Physionet data using 8-bit quantization an average compression ratio (CR) of 12.23, percentage root mean squared difference (PRD) of 4.342 and PRD normalized (PRDN) of 9.271 were obtained. With ECG data collected from healthy volunteers, these figures came out to be 14.64, 12.92 and 13.46 respectively. An improvement of performance was observed with 10 bit quantization of ECG data. Computational simplicity of the proposed algorithm provides an opportunity to use a low end microcontroller to implement the compression in standalone hardware. PMID:25085695

  7. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  8. Performance of Multiple Pulse Multiple Delay Modulated UWB Signals in a Multiple Access Indoor Wireless Channel

    SciTech Connect

    Nekoogar, F

    2003-06-12

    In this paper, the performance of a two user UWB multiple access (UWB-MA) system based on multiple-pulse multiple-delay (MPMD) modulation scheme in an indoor wireless channel is evaluated by computer simulations. The indoor multipath propagation channel model used in this study is based on the modified statistical Saleh-Valenzuela model proposed by Foerester and Li from Intel. The simulation results indicate that the multipath performance of MPMD modulated signals in a multiple access system outperforms the nonmultipath case as the number of autocorrelation function (ACF) sampling points increases for each user. This is an unusual but important result, since MPMD receiver exploits multipath phenomenon in indoor wireless channels to increase the BER performance, hence the transmission rate in a UWB-MA system.

  9. Multiple band circularly polarized microstrip antenna

    NASA Technical Reports Server (NTRS)

    Yu, I. P. (Inventor)

    1980-01-01

    A multiple antenna assembly for communicating electromagnetic radiation is disclosed. An antenna element stack is constructed of a plurality of elliptical lamina antenna elements mutally separated by layers of dielectric material, and separated from a ground plane by dielectric material. The antenna assembly is coupled through a feed line in contact with the top antenna element. A conductor joins the remaining antenna elements to the ground plane. Each individual antenna element is operable for communication reception and transmission within a frequency band determined by the size of the particular antenna element. The sizes of the antenna elements may be selected to provide electromagnetic radiation communication over several distinct frequency bands, or to connect the individual bands into a broad band.

  10. 75 FR 17349 - Operations of Wireless Communications Services in the 2.3 GHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... December 2007, the Commission released a Notice of Proposed Rulemaking, 73 FR 2437 (January 15, 2008) (NPRM... COMMISSION 47 CFR Part 27 Operations of Wireless Communications Services in the 2.3 GHz Band AGENCY: Federal...) seeks comment on revising the performance requirements for the 2.3 GHz Wireless Communications...

  11. Chiral geometry in multiple chiral doublet bands

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  12. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    NASA Astrophysics Data System (ADS)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  13. Multiple walker recognition using wireless distributed pyro-electric sensors

    NASA Astrophysics Data System (ADS)

    Li, Nanxiang; Hao, Qi

    2008-04-01

    This paper presents a wireless distributed pyroelectric sensor system, whose sensing visibilities are modulated by Frensnel lens arrays and coded masks, for multiple human walker recognition. One goal of our research is to make wireless distributed pyroelectric sensor nodes an alternative to the centralized infrared video sensors, with lower cost, lower detectability, lower power consumption and computation, and less privacy infringement. In our previous study, we succeeded in identifying individuals walking along the same path, or just randomly inside a room, with an identification rate higher than 80% for around 10 subjects, only using one wireless sensor node. To improve the identification rate and the number of subjects that can be recognized, one-by-one or simultaneously, we employ multiple sensor nodes to leverage the performance of the distributed sensor system. The fusion of pyroelectric biometrics from multiple nodes is performed at four different levels: sample, feature, score, and decision. The experimental results show that the proposed pyroelectric sensor system has potential to be a reliable biometric system for the verification/identification of a small group of human objects. Its applications include security monitoring, human-machine interfaces, and virtual environments.

  14. Ku-band multiple beam antenna

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Franklin, C. F.

    1980-01-01

    The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation.

  15. Multiple human tracking with wireless distributed pyro-electric sensors

    NASA Astrophysics Data System (ADS)

    Li, Nanxiang; Hao, Qi

    2008-04-01

    This paper presents a wireless distributed pyroelectric sensor system, whose sensing visibilities are modulated by Fresnel lens arrays, for tracking multiple humans. The aim of this study is to design and develop a wireless infrared sensor system which can track multiple humans with better data-to-object association, lower power consumption/cost/detectability, and less privacy infringement than its infrared video-based counterpart. The concept of a geometric sensor is discussed and utilized in local/global visibility modulation for the node-centric sensor system, to implement the process of data-object-association, performed by a Bayesian joint probabilistic data association scheme with validation gates. An Expectation-Maximization-Bayesian tracking scheme, consisting of detection, localization, filtering, and prediction, is proposed and implemented among slave, master, and host modules of a prototype sensor system. Experimentally the prototype system was able to simultaneously track two individuals in both follow-up and crossover scenarios with average tracking errors less than 0.5 m. The proposed wireless distributed infrared sensor system can not only run as a stand alone inmate/patient monitoring system under all illumination conditions, but also serve as a complement for conventional video and audio human tracking systems.

  16. Multiple triaxial bands in 138Nd

    NASA Astrophysics Data System (ADS)

    Petrache, C. M.; Ragnarsson, I.; Ma, Hai-Liang; Leguillon, R.; Zerrouki, T.; Bazzacco, D.; Lunardi, S.

    2015-02-01

    High-spin states in 138Nd were investigated by using the 48Ca+94Zr reaction and γ -ray coincidences were acquired with the GASP spectrometer. A rich level scheme was developed including 14 new bands of quadrupole transitions at very high spins. Linking transitions connecting 11 high-spin bands to low-energy states have been observed. Calculations based on the cranked Nilsson-Strutinsky formalism have been used to assign configurations to the observed bands. The main result of these calculations is that all 14 bands exhibit a stable triaxial deformation up to the highest observed spins, giving strong support to the existence of a triaxial minimum with normal deformation and positive asymmetry parameter in nuclei with a few holes in the N =82 shell closure.

  17. Pulsed thermography in multiple infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Netzelmann, U.; Abuhamad, M.

    2010-03-01

    Spectrally resolved active thermography by flash pulse excitation was performed in four sub-bands of a mid-wave infrared camera using spectral filtering and in the full long-wave band of a second infrared camera. On zirconia thermal barrier coatings on steel and PVC blocks, spectrally dependent decay rates of the thermal contrast were found. The observed behaviour can be explained by the infrared spectra of the specimens.

  18. Evidence for Octupole Correlations in Multiple Chiral Doublet Bands.

    PubMed

    Liu, C; Wang, S Y; Bark, R A; Zhang, S Q; Meng, J; Qi, B; Jones, P; Wyngaardt, S M; Zhao, J; Xu, C; Zhou, S-G; Wang, S; Sun, D P; Liu, L; Li, Z Q; Zhang, N B; Jia, H; Li, X Q; Hua, H; Chen, Q B; Xiao, Z G; Li, H J; Zhu, L H; Bucher, T D; Dinoko, T; Easton, J; Juhász, K; Kamblawe, A; Khaleel, E; Khumalo, N; Lawrie, E A; Lawrie, J J; Majola, S N T; Mullins, S M; Murray, S; Ndayishimye, J; Negi, D; Noncolela, S P; Ntshangase, S S; Nyakó, B M; Orce, J N; Papka, P; Sharpey-Schafer, J F; Shirinda, O; Sithole, P; Stankiewicz, M A; Wiedeking, M

    2016-03-18

    Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive- and negative-parity bands have been identified in ^{78}Br. They are interpreted as multiple chiral doublet bands with octupole correlations, which is supported by the microscopic multidimensionally-constrained covariant density functional theory and triaxial particle rotor model calculations. This observation reports the first example of chiral geometry in octupole soft nuclei. PMID:27035296

  19. Evidence for Octupole Correlations in Multiple Chiral Doublet Bands

    NASA Astrophysics Data System (ADS)

    Liu, C.; Wang, S. Y.; Bark, R. A.; Zhang, S. Q.; Meng, J.; Qi, B.; Jones, P.; Wyngaardt, S. M.; Zhao, J.; Xu, C.; Zhou, S.-G.; Wang, S.; Sun, D. P.; Liu, L.; Li, Z. Q.; Zhang, N. B.; Jia, H.; Li, X. Q.; Hua, H.; Chen, Q. B.; Xiao, Z. G.; Li, H. J.; Zhu, L. H.; Bucher, T. D.; Dinoko, T.; Easton, J.; Juhász, K.; Kamblawe, A.; Khaleel, E.; Khumalo, N.; Lawrie, E. A.; Lawrie, J. J.; Majola, S. N. T.; Mullins, S. M.; Murray, S.; Ndayishimye, J.; Negi, D.; Noncolela, S. P.; Ntshangase, S. S.; Nyakó, B. M.; Orce, J. N.; Papka, P.; Sharpey-Schafer, J. F.; Shirinda, O.; Sithole, P.; Stankiewicz, M. A.; Wiedeking, M.

    2016-03-01

    Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive- and negative-parity bands have been identified in 78Br. They are interpreted as multiple chiral doublet bands with octupole correlations, which is supported by the microscopic multidimensionally-constrained covariant density functional theory and triaxial particle rotor model calculations. This observation reports the first example of chiral geometry in octupole soft nuclei.

  20. Monitoring of physiological parameters from multiple patients using wireless sensor network.

    PubMed

    Yuce, Mehmet R; Ng, Peng Choong; Khan, Jamil Y

    2008-10-01

    This paper presents a wireless sensor network system that has the capability to monitor physiological parameters from multiple patient bodies. The system uses the Medical Implant Communication Service band between the sensor nodes and a remote central control unit (CCU) that behaves as a base station. The CCU communicates with another network standard (the internet or a mobile network) for a long distance data transfer. The proposed system offers mobility to patients and flexibility to medical staff to obtain patient's physiological data on demand basis via Internet. A prototype sensor network including hardware, firmware and software designs has been implemented and tested. The developed system has been optimized for power consumption by having the nodes sleep when there is no communication via a bidirectional communication. PMID:18814500

  1. Error-resilient multiple description video coding for wireless transmission over multiple iridium channels

    NASA Astrophysics Data System (ADS)

    Tyldesley, Katherine S.; Abousleman, Glen P.; Karam, Lina J.

    2003-08-01

    This paper presents an error-resilient wavelet-based multiple description video coding scheme for the transmission of video over wireless channels. The proposed video coding scheme has been implemented and successfully tested over the wireless Iridium satellite communication network. As a test bed for the develope dcodec, we also present an inverse multiplexing unit that simultaneously combines several Iridium channels to form an effective higher-rate channel, where the total bandwidth is directly proportional to the number of channels combined. The developed unit can be integrated into a variety of systems such as ISR sensors, aircraft, vehicles, ships, and end user terminals (EUTs), or can operate as a standalone device. The recombination of the multi-channel unit with our proposed multi-channel video codec facilitates global and on-the-move video communications without reliance on any terrestrial or airborne infrastructure whatsoever.

  2. Printed Notched Antenna with Long Meandered Line for Eight-Band LTE/GSM/UMTS Wireless USB Dongle Operation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Sun, S. C.; Ban, Y. L.; Tang, X. H.

    2016-03-01

    This paper presents a planar notched antenna with a long meandered line for wireless USB dongle applications. The printed notched structure is used as additional resonators to generate multiple bands operation for covering GSM1800/1900/UMTS2100/LTE2300/2500 bands. In addition, with the help of the long meandered line via hole to ground, a lower resonant mode is sufficiently generated at around 770 MHz and forms a wider lower operating bandwidth (LTE700/GSM850/900). Briefly printed on a 0.8 mm thick FR4 dielectric substrate of size 20×70 mm² and electrically connected (via hole) to the ground plane of the USB dongle, the proposed antenna can provide a wide operating bandwidth (3:1 VSWR) of larger than 120 % centered at 2,000 MHz, allowing it to cover 698-960 and 1,710-2,690 MHz bands. The proposed antenna also can be attached to laptop computer by the USB interface. Detailed design considerations of the proposed antenna are described, and obtained experimental and simulation results are also presented and discussed in this paper.

  3. Simulation and Performance evaluation of ZigBee for wireless sensor networks having multiple events occurring simultaneously at a time

    NASA Astrophysics Data System (ADS)

    Dhama, Nitin; Minal, Kaur, Prabhjot; Kumar, Neelu

    2010-11-01

    ZigBee is an emerging standard for Wireless Sensor Networks (WSNs). It targets low distance, low data rate, low power consumption and low cost applications. According to standard nomenclature, it implements a Low Rate-Wireless Personal Area Network (LR-WPAN). ZigBee defines upper layers (network and application) of the ISO protocol reference model. On the contrary, in regards to the physical and data link ones, it relies over another standard, the well accepted IEEE802.15.4, which offers a gross transfer rate of 250 kbps in the 2.4 GHz ISM unlicensed band. Although ZigBee is designed for event-based applications, ZigBee is designed as a low-cost, low-power, low-data rate wireless mesh technology. There are many wireless sensor networks in which it is required to send information to the pan coordinator continuously and simultaneously. Our purpose here in this paper is to test zigbee for such kind of networks where multiple events take place simultaneously. Also we want to see the effect of increasing the number of events in a scenario, so that we can find out its effect.

  4. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS... Service to the Advanced Wireless Service. The 2150-2160/62 MHz band has been allocated for use by...

  5. Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band

    PubMed Central

    Lloret, Jaime; Sendra, Sandra; Ardid, Miguel; Rodrigues, Joel J. P. C.

    2012-01-01

    One of the main problems in underwater communications is the low data rate available due to the use of low frequencies. Moreover, there are many problems inherent to the medium such as reflections, refraction, energy dispersion, etc., that greatly degrade communication between devices. In some cases, wireless sensors must be placed quite close to each other in order to take more accurate measurements from the water while having high communication bandwidth. In these cases, while most researchers focus their efforts on increasing the data rate for low frequencies, we propose the use of the 2.4 GHz ISM frequency band in these special cases. In this paper, we show our wireless sensor node deployment and its performance obtained from a real scenario and measures taken for different frequencies, modulations and data transfer rates. The performed tests show the maximum distance between sensors, the number of lost packets and the average round trip time. Based on our measurements, we provide some experimental models of underwater communication in fresh water using EM waves in the 2.4 GHz ISM frequency band. Finally, we compare our communication system proposal with the existing systems. Although our proposal provides short communication distances, it provides high data transfer rates. It can be used for precision monitoring in applications such as contaminated ecosystems or for device communicate at high depth. PMID:22666029

  6. Underwater wireless sensor communications in the 2.4 GHz ISM frequency band.

    PubMed

    Lloret, Jaime; Sendra, Sandra; Ardid, Miguel; Rodrigues, Joel J P C

    2012-01-01

    One of the main problems in underwater communications is the low data rate available due to the use of low frequencies. Moreover, there are many problems inherent to the medium such as reflections, refraction, energy dispersion, etc., that greatly degrade communication between devices. In some cases, wireless sensors must be placed quite close to each other in order to take more accurate measurements from the water while having high communication bandwidth. In these cases, while most researchers focus their efforts on increasing the data rate for low frequencies, we propose the use of the 2.4 GHz ISM frequency band in these special cases. In this paper, we show our wireless sensor node deployment and its performance obtained from a real scenario and measures taken for different frequencies, modulations and data transfer rates. The performed tests show the maximum distance between sensors, the number of lost packets and the average round trip time. Based on our measurements, we provide some experimental models of underwater communication in fresh water using EM waves in the 2.4 GHz ISM frequency band. Finally, we compare our communication system proposal with the existing systems. Although our proposal provides short communication distances, it provides high data transfer rates. It can be used for precision monitoring in applications such as contaminated ecosystems or for device communicate at high depth. PMID:22666029

  7. Diluted II-VI oxide semiconductors with multiple band gaps.

    PubMed

    Yu, K M; Walukiewicz, W; Wu, J; Shan, W; Beeman, J W; Scarpulla, M A; Dubon, O D; Becla, P

    2003-12-12

    We report the realization of a new mult-band-gap semiconductor. Zn(1-y)Mn(y)OxTe1-x alloys have been synthesized using the combination of oxygen ion implantation and pulsed laser melting. Incorporation of small quantities of isovalent oxygen leads to the formation of a narrow, oxygen-derived band of extended states located within the band gap of the Zn(1-y)Mn(y)Te host. When only 1.3% of Te atoms are replaced with oxygen in a Zn0.88Mn0.12Te crystal the resulting band structure consists of two direct band gaps with interband transitions at approximately 1.77 and 2.7 eV. This remarkable modification of the band structure is well described by the band anticrossing model. With multiple band gaps that fall within the solar energy spectrum, Zn(1-y)Mn(y)OxTe1-x is a material perfectly satisfying the conditions for single-junction photovoltaics with the potential for power conversion efficiencies surpassing 50%. PMID:14683137

  8. Wireless sensor networks for monitoring physiological signals of multiple patients.

    PubMed

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time. PMID:23851949

  9. Multiple chiral doublet bands of identical configuration in 103Rh.

    PubMed

    Kuti, I; Chen, Q B; Timár, J; Sohler, D; Zhang, S Q; Zhang, Z H; Zhao, P W; Meng, J; Starosta, K; Koike, T; Paul, E S; Fossan, D B; Vaman, C

    2014-07-18

    Three sets of chiral doublet band structures have been identified in the ^{103}Rh nucleus. The properties of the observed chiral doublet bands are in good agreement with theoretical results obtained using constrained covariant density functional theory and particle rotor model calculations. Two of them belong to an identical configuration and provide the first experimental evidence for a novel type of multiple chiral doublets, where an "excited" chiral doublet of a configuration is seen together with the "yrast" one. This observation shows that the chiral geometry in nuclei can be robust against the increase of the intrinsic excitation energy. PMID:25083635

  10. 78 FR 9605 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ...In this document, the Commission affirms, modifies, and clarifies its actions in response to various petitions for reconsideration and/or clarification. The revised rules are intended to enable Wireless Communications Service (WCS) licensees to deploy broadband services in the 2305-2320 MHz and 2345-2360 MHz (2.3 GHz) WCS bands while continuing to protect Satellite Digital Audio Radio Service......

  11. Distributed power allocation for sink-centric clusters in multiple sink wireless sensor networks.

    PubMed

    Cao, Lei; Xu, Chen; Shao, Wei; Zhang, Guoan; Zhou, Hui; Sun, Qiang; Guo, Yuehua

    2010-01-01

    Due to the battery resource constraints, saving energy is a critical issue in wireless sensor networks, particularly in large sensor networks. One possible solution is to deploy multiple sink nodes simultaneously. Another possible solution is to employ an adaptive clustering hierarchy routing scheme. In this paper, we propose a multiple sink cluster wireless sensor networks scheme which combines the two solutions, and propose an efficient transmission power control scheme for a sink-centric cluster routing protocol in multiple sink wireless sensor networks, denoted as MSCWSNs-PC. It is a distributed, scalable, self-organizing, adaptive system, and the sensor nodes do not require knowledge of the global network and their location. All sinks effectively work out a representative view of a monitored region, after which power control is employed to optimize network topology. The simulations demonstrate the advantages of our new protocol. PMID:22294911

  12. Design of a Ku band miniature multiple beam klystron

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Ayan Kumar; Pal, Debasish; Saini, Anil; Kant, Deepender; Saha, Sukalyan; Joshi, Lalit Mohan

    2016-03-01

    The design of a miniature multiple beam klystron (MBK) working in the Ku-band frequency range is presented in this article. Starting from the main design parameters, design of the electron gun, the input and output couplers and radio frequency section (RF-section) are presented. The design methodology using state of the art commercial electromagnetic design tools, analytical formulae as well as noncommercial design tools are briefly presented in this article.

  13. On Multiple-Input Multiple-Output OFDM with Index Modulation for Next Generation Wireless Networks

    NASA Astrophysics Data System (ADS)

    Basar, Ertugrul

    2016-08-01

    Multiple-input multiple-output orthogonal frequency division multiplexing with index modulation (MIMO-OFDM-IM) is a novel multicarrier transmission technique which has been proposed recently as an alternative to classical MIMO-OFDM. In this scheme, OFDM with index modulation (OFDM-IM) concept is combined with MIMO transmission to take advantage of the benefits of these two techniques. In this paper, we shed light on the implementation and error performance analysis of the MIMO-OFDM-IM scheme for next generation 5G wireless networks. Maximum likelihood (ML), near-ML, simple minimum mean square error (MMSE) and ordered successive interference cancellation (OSIC) based MMSE detectors of MIMO-OFDM-IM are proposed and their theoretical performance is investigated. It has been shown via extensive computer simulations that MIMO-OFDM-IM scheme provides an interesting trade-off between error performance and spectral efficiency as well as it achieves considerably better error performance than classical MIMO-OFDM using different type detectors and under realistic conditions.

  14. Entrained neural oscillations in multiple frequency bands comodulate behavior

    PubMed Central

    Henry, Molly J.; Herrmann, Björn

    2014-01-01

    Our sensory environment is teeming with complex rhythmic structure, to which neural oscillations can become synchronized. Neural synchronization to environmental rhythms (entrainment) is hypothesized to shape human perception, as rhythmic structure acts to temporally organize cortical excitability. In the current human electroencephalography study, we investigated how behavior is influenced by neural oscillatory dynamics when the rhythmic fluctuations in the sensory environment take on a naturalistic degree of complexity. Listeners detected near-threshold gaps in auditory stimuli that were simultaneously modulated in frequency (frequency modulation, 3.1 Hz) and amplitude (amplitude modulation, 5.075 Hz); modulation rates and types were chosen to mimic the complex rhythmic structure of natural speech. Neural oscillations were entrained by both the frequency modulation and amplitude modulation in the stimulation. Critically, listeners’ target-detection accuracy depended on the specific phase–phase relationship between entrained neural oscillations in both the 3.1-Hz and 5.075-Hz frequency bands, with the best performance occurring when the respective troughs in both neural oscillations coincided. Neural-phase effects were specific to the frequency bands entrained by the rhythmic stimulation. Moreover, the degree of behavioral comodulation by neural phase in both frequency bands exceeded the degree of behavioral modulation by either frequency band alone. Our results elucidate how fluctuating excitability, within and across multiple entrained frequency bands, shapes the effective neural processing of environmental stimuli. More generally, the frequency-specific nature of behavioral comodulation effects suggests that environmental rhythms act to reduce the complexity of high-dimensional neural states. PMID:25267634

  15. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service...

  16. Low power wireless ultra-wide band transmission of bio-signals

    NASA Astrophysics Data System (ADS)

    Gabrielli, A.; Bastianini, S.; Crepaldi, M.; D'Amen, G.; Demarchi, D.; Lax, I.; Motto Ros, P.; Zoccoli, G.

    2014-12-01

    The paper shows the design of microelectronic circuits composed of an oscillator, a modulator, a transmitter and an antenna. Prototype chips were recently fabricated and tested exploiting commercial 130 nm [1] and 180 nm [2,3] CMOS technologies. Detected signals have been measured using a commercial Ultra-Wide-Band amplifier connected to custom designed filters and a digital demodulator. Preliminary results are summarized along with some waveforms of the transmitted and received signals. A digital Synchronized On-Off Keying (S-OOK) was implemented to exploit the Ultra-Wide-Band transmission. In this way, each transmitted bit is coded with a S-OOK protocol. Wireless transmission capabilities of the system have been also evaluated within a one-meter distance. The chips fit a large variety of applications like spot radiation monitoring, punctual measurements of radiation in High-Energy Physics experiments or, since they have been characterized as low-power components, readout of the system for medical applications. These latter fields are those that we are investigating for in-vivo measurements on small animals. In more detail, if we refer to electromyographic, electrocardiographic or electroencephalographic signals [4], we need to handle very small signal amplitudes, of the order of tens of μV, overwhelmed with a much higher (white) noise. In these cases the front-end of the readout circuit requires a so-called amplifier for instrumentation, here not described, to interface with metal-plate sensor's outputs such those used for electrocardiograms, to normal range of amplitude signals of the order of 1 V. We are also studying these circuits, to be also designed on a microelectronic device, without adding further details since these components are technically well known in the literature [5,6]. The main aim of this research is hence integrating all the described electronic components into a very small, low-powered, microelectronic circuit fully compatible with in

  17. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands.

    PubMed

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-21

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs. PMID:27224201

  18. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands

    NASA Astrophysics Data System (ADS)

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-01

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz–460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  19. Adaptive Multi-Node Multiple Input and Multiple Output (MIMO) Transmission for Mobile Wireless Multimedia Sensor Networks

    PubMed Central

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-01-01

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase. PMID:24152920

  20. Adaptive multi-node multiple input and multiple output (MIMO) transmission for mobile wireless multimedia sensor networks.

    PubMed

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-01-01

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase. PMID:24152920

  1. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper. PMID:25785305

  2. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  3. Towards Mitigating Heterogeneous Wireless Interference in Spectrum Bands with Unlicensed Access

    ERIC Educational Resources Information Center

    Nychis, George P.

    2013-01-01

    In the past two decades, we have seen an unprecedented rise in unlicensed wireless devices and applications of wireless technology. To meet various application constraints, we continually customize the radios and their protocols to the application domain which has led to significant diversity in spectrum use. Unfortunately, this diversity (coupled…

  4. A Multiple-Channel Sub-Band Transient Detection System

    SciTech Connect

    David A. Smith

    1998-11-01

    We have developed a unique multiple-channel sub-band transient detection system to record transient electromagnetic signals in carrier-dominated radio environments; the system has been used to make unique observations of weak, transient HF signals. The detection system has made these observations possible through improved sensitivity compared to conventional broadband transient detection systems; the sensitivity improvement is estimated to be at least 20 dB. The increase in sensitivity has been achieved through subdivision of the band of interest (an 18 MHz tunable bandwidth) into eight sub-band independent detection channels, each with a 400 kHz bandwidth and its own criteria. The system generates a system trigger signal when a predetermined number of channels (typically five) trigger within a predetermined window of time (typically 100 ~s). Events are recorded with a broadband data acquisition system sampling at 50 or 100 Msample/s, so despite the fact that the detection system operates on portions of the signal confined to narrow bands, data acquisition is broadband. Between May and September of 1994, the system was used to detect and record over six thousand transient events in the frequency band from 3 to 30 MHz. Approximately 500 of the events have been characterized as paired bursts of radio noise with individual durations of 2 to 10 ps and separations between the bursts of 5 to 160 ps. The paired transients are typically 5 to 40 dB brighter than the background electromagnetic spectrum between carrier signals. We have termed these events SubIonospheric Pulse Pairs (SIPPS) and presently have no explanation as to their source. Our observations of SIPPS resemble observations of TransIonospheric Pulse Pairs (TIPPs) recorded by the Blackboard instrument on the ALEXIS satellite; the source of TIPP events is also unknown. Most of the recorded SIPP events do not exhibit frequency dispersion, implying propagation along a line-of-sight (groundwave) path; but seven of

  5. Hybrid digital-analog video transmission in wireless multicast and multiple-input multiple-output system

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Lin, Xiaocheng; Fan, Nianfei; Zhang, Lin

    2016-01-01

    Wireless video multicast has become one of the key technologies in wireless applications. But the main challenge of conventional wireless video multicast, i.e., the cliff effect, remains unsolved. To overcome the cliff effect, a hybrid digital-analog (HDA) video transmission framework based on SoftCast, which transmits the digital bitstream with the quantization residuals, is proposed. With an effective power allocation algorithm and appropriate parameter settings, the residual gains can be maximized; meanwhile, the digital bitstream can assure transmission of a basic video to the multicast receiver group. In the multiple-input multiple-output (MIMO) system, since nonuniform noise interference on different antennas can be regarded as the cliff effect problem, ParCast, which is a variation of SoftCast, is also applied to video transmission to solve it. The HDA scheme with corresponding power allocation algorithms is also applied to improve video performance. Simulations show that the proposed HDA scheme can overcome the cliff effect completely with the transmission of residuals. What is more, it outperforms the compared WSVC scheme by more than 2 dB when transmitting under the same bandwidth, and it can further improve performance by nearly 8 dB in MIMO when compared with the ParCast scheme.

  6. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    SciTech Connect

    Petrioli, Chiara; Carosi, Alessio; Basagni, Stefano; Phillips, Cynthia Ann

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of the network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them

  7. Hybrid wireless-over-fiber transmission system based on multiple injection-locked FP LDs.

    PubMed

    Li, Chung-Yi; Lu, Hai-Han; Chu, Chien-An; Ying, Cheng-Ling; Lu, Ting-Chien; Peng, Peng-Chun

    2015-07-27

    A hybrid wireless-over-fiber (WoF) transmission system based on multiple injection-locked Fabry-Perot laser diodes (FP LDs) is proposed and experimentally demonstrated. Unlike the traditional hybrid WoF transmission systems that require multiple distributed feedback (DFB) LDs to support different kinds of services, the proposed system employs multiple injection-locked FP LDs to provide different kinds of applications. Such a hybrid WoF transmission system delivers downstream intensity-modulated 20-GHz microwave (MW)/60-GHz millimeter-wave (MMW)/550-MHz cable television (CATV) signals and upstream phase-remodulated 20-GHz MW signal. Excellent bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed over a 40-km single-mode fiber (SMF) and a 4-m radio frequency (RF) wireless transport. Such a hybrid WoF transmission system has practical applications for fiber-wireless convergence to provide broadband integrated services, including telecommunication, data communication, and CATV services. PMID:26367647

  8. Real-time dual-band wireless videos in millimeter-wave radio-over-fiber system

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Liu, Cheng; Dong, Ze; Wang, Jing; Zhu, Ming; Chang, Gee-Kung

    2013-12-01

    A dual-band converged radio-over-fiber (RoF) access system at 60-GHz and 100-GHz millimeter-wave (mm-wave) is proposed. Real-time end-to-end delivery of two channels of independent high-definition (HD) video services simultaneously carried on 60-GHz and 100-GHz radios is demonstrated for the first time. PRBS data transmission with equivalent data rate and format is also tested to characterize the system performance. The analysis of the spectrum from the beating signal indicates the entire 60-GHz band and the W-band can be retrieved without interference. The real-time HD video display and error-free (BER < 10-9) data transmission demonstrate the feasibility of the proposed wireless access system using converged fiber-optic and mm-wave RoF techniques.

  9. Joint Power and Multiple Access Control for Wireless Mesh Network with Rose Projection Method

    PubMed Central

    Tang, Meiqin; Shang, Lili; Xin, Yalin; Liu, Xiaohua; Wei, Xinjiang

    2014-01-01

    This paper investigates the utility maximization problem for the downlink of the multi-interface multichannel wireless mesh network with orthogonal frequency division multiple access. A cross-layer joint power and multiple access control algorithm are proposed. Rosen projection matrix is combined with Solodov projection techniques to build a three-memory gradient Rosen projection method, which is applied to solve this optimization problem. The convergence analysis is given and simulations show that the proposed solution achieves significant throughput compared with existing approaches. PMID:24883384

  10. Detection of Biological Pathogens Using Multiple Wireless Magnetoelastic Biosensors

    NASA Astrophysics Data System (ADS)

    Shen, Wen

    A number of recent, high-profile incidences of food-borne illness spreading through the food supply and the use of anthrax by terrorists after the September 11, 2001 attacks have demonstrated the need for new technologies that can rapidly detect the presence of biological pathogens. A bevy of biosensors show excellent detection sensitivity and specificity. However, false positive and false negative signals remain one of the primary reasons that many of these newly developed biosensors have not found application in the marketplace. The research described in this dissertation focuses on developing a free-standing magnetoelastic based bio-sensing system using a pulse method. This method allows fast detection, eliminates the bias magnetic field that is necessary in current methods, makes the system more simply and suitable for in-field detection. This system has two pairs of transformer coils, where a measurement sensor and a control sensor can be put in each pair of coils. The control sensor is used to compensate for environmental variables. The effect of pulse power on the performance of the magnetoelastic sensors in the pulse system is studied. The system is found to have excellent stability, good detection repeatability when used with multiple sensors. This research has investigated and demonstrated a multiple sensors approach. Because it will involve the simultaneous measurement of many sensors, it will significantly reduce problems encountered with false positive indications. The positioning and interference of sensors are investigated. By adding a multi-channel structure to the pulse detection system, the effect of sensor interference is minimized. The result of the repeatability test shows that the standard deviation when measuring three 1 mm magnetoelastic sensors is around 500 Hz, which is smaller than the minimum requirement for actual spores/bacteria detection. Magnetoelastic sensors immobilized with JRB7 phages and E2 phages have been used to specifically

  11. Traffic Measurement on Multiple Drive Lanes with Wireless Ultrasonic Sensors

    PubMed Central

    Jeon, Soobin; Kwon, Eil; Jung, Inbum

    2014-01-01

    An automated traffic measuring system for use on multiple drive lanes is proposed in this paper. This system, which uses ultrasonic sensors and a lateral scanning method, is suitable for use on real traffic roads. The proposed system can be easily established and maintained in various roadway environments. In addition, the system can be adjusted to measure traffic volumes according to the size and number of drive lanes. This paper describes the results of an experiment that the lateral scanning method can be easily applied to real traffic roads and provide a low error rate and real-time responses. This system can play an important role in accurately measuring traffic volumes as part of an intelligent transportation system. PMID:25474380

  12. A Multiple Mobility Support Approach (MMSA) Based on PEAS for NCW in Wireless Sensor Networks

    PubMed Central

    Koo, Bong-Joo; Kim, Seog-Bong; Park, Jong-Yil; Park, Kang-Min

    2011-01-01

    Wireless Sensor Networks (WSNs) can be implemented as one of sensor systems in Network Centric Warfare (NCW). Mobility support and energy efficiency are key concerns for this application, due to multiple mobile users and stimuli in real combat field. However, mobility support approaches that can be adopted in this circumstance are rare. This paper proposes Multiple Mobility Support Approach (MMSA) based on Probing Environment and Adaptive Sleeping (PEAS) to support the simultaneous mobility of both multiple users and stimuli by sharing the information of stimuli in WSNs. Simulations using Qualnet are conducted, showing that MMSA can support multiple mobile users and stimuli with good energy efficiency. It is expected that the proposed MMSA can be applied to real combat field. PMID:22346606

  13. Fractal nature of multiple shear bands in severely deformed metallic glass

    SciTech Connect

    Sun, B. A.; Wang, W. H.

    2011-05-16

    We present an analysis of fractal geometry of extensive and complex shear band patterns in a severely deformed metallic glass. We show that the shear band patterns have fractal characteristics, and the fractal dimensions are determined by the stress noise induced by the interaction between shear bands. A theoretical model of the spatial evolution of multiple shear bands is proposed in which the collective shear bands slide is considered as a stochastic process far from thermodynamic equilibrium.

  14. High spectral efficient W-band optical/wireless system employing single-sideband single-carrier modulation.

    PubMed

    Ho, Chun-Hung; Lin, Chun-Ting; Cheng, Yu-Hsuan; Huang, Hou-Tzu; Wei, Chia-Chien; Chi, Sien

    2014-02-24

    With broader available bandwidth, W-band wireless transmission has attracted a lot of interests for future Giga-bit communication. In this article, we experimentally demonstrate W-band radio-over-fiber (RoF) system employing single-sideband single-carrier (SSB-SC) modulation with lower peak-to-average-power ratio (PAPR) than orthogonal frequency division multiplex (OFDM). To overcome the inter-symbol interference (ISI) of the penalty from uneven frequency response and SSB-SC modulation, frequency domain equalizer (FDE) and decision feedback equalizer (DFE) are implemented. We discuss the maximum available bandwidth of different modulation formats between SSB-SC and OFDM signals at the BER below forward error correction (FEC) threshold (3.8 × 10(-3)). Up to 50-Gbps 32-QAM SSB-SC signals with spectral efficiency of 5 bit/s/Hz can be achieved. PMID:24663711

  15. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Tsuchida, Shogo; Hirata, Akimasa; Kamimura, Yoshitsugu

    2012-08-01

    This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg-1 was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.

  16. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  17. Wireless Channel Characterization: Modeling the 5 GHz Microwave Landing System Extension Band for Future Airport Surface Communications

    NASA Technical Reports Server (NTRS)

    Matolak, D. W.; Apaza, Rafael; Foore, Lawrence R.

    2006-01-01

    We describe a recently completed wideband wireless channel characterization project for the 5 GHz Microwave Landing System (MLS) extension band, for airport surface areas. This work included mobile measurements at large and small airports, and fixed point-to-point measurements. Mobile measurements were made via transmission from the air traffic control tower (ATCT), or from an airport field site (AFS), to a receiving ground vehicle on the airport surface. The point-to-point measurements were between ATCT and AFSs. Detailed statistical channel models were developed from all these measurements. Measured quantities include propagation path loss and power delay profiles, from which we obtain delay spreads, frequency domain correlation (coherence bandwidths), fading amplitude statistics, and channel parameter correlations. In this paper we review the project motivation, measurement coordination, and illustrate measurement results. Example channel modeling results for several propagation conditions are also provided, highlighting new findings.

  18. Multi-band asymmetric acoustic transmission in a bended waveguide with multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, Yu-lei; Sun, Hong-xiang; Xia, Jian-ping; Yuan, Shou-qi; Ding, Xin-lei

    2016-07-01

    We report the realization of a multi-band device of the asymmetric acoustic transmission by placing a phononic crystal inside a bended waveguide immersed in water, as determined both experimentally and numerically. The asymmetric acoustic transmission exists in three frequency bands below 500 kHz induced by multiple mechanisms. Besides the band gap of the phononic crystal, we also introduce the deaf mode and interaction between the phononic crystal and waveguide. More importantly, this asymmetric transmission can be systematically controlled by mechanically rotating the square rods of the phononic crystal. The device has the advantages of multiple band, broader bandwidth, and adjustable property, showing promising applications in ultrasonic devices.

  19. Multimodal wireless sensor network-based ambient assisted living in real homes with multiple residents.

    PubMed

    Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem

    2014-01-01

    Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting. PMID:24887044

  20. Multimodal Wireless Sensor Network-Based Ambient Assisted Living in Real Homes with Multiple Residents

    PubMed Central

    Tunca, Can; Alemdar, Hande; Ertan, Halil; Incel, Ozlem Durmaz; Ersoy, Cem

    2014-01-01

    Human activity recognition and behavior monitoring in a home setting using wireless sensor networks (WSNs) provide a great potential for ambient assisted living (AAL) applications, ranging from health and wellbeing monitoring to resource consumption monitoring. However, due to the limitations of the sensor devices, challenges in wireless communication and the challenges in processing large amounts of sensor data in order to recognize complex human activities, WSN-based AAL systems are not effectively integrated in the home environment. Additionally, given the variety of sensor types and activities, selecting the most suitable set of sensors in the deployment is an important task. In order to investigate and propose solutions to such challenges, we introduce a WSN-based multimodal AAL system compatible for homes with multiple residents. Particularly, we focus on the details of the system architecture, including the challenges of sensor selection, deployment, networking and data collection and provide guidelines for the design and deployment of an effective AAL system. We also present the details of the field study we conducted, using the systems deployed in two different real home environments with multiple residents. With these systems, we are able to collect ambient sensor data from multiple homes. This data can be used to assess the wellbeing of the residents and identify deviations from everyday routines, which may be indicators of health problems. Finally, in order to elaborate on the possible applications of the proposed AAL system and to exemplify directions for processing the collected data, we provide the results of several human activity inference experiments, along with examples on how such results could be interpreted. We believe that the experiences shared in this work will contribute towards accelerating the acceptance of WSN-based AAL systems in the home setting. PMID:24887044

  1. Wireless medical sensor measurements of fatigue in patients with multiple sclerosis.

    PubMed

    Yu, Fei; Bilberg, Arne; Stenager, Egon

    2010-01-01

    This paper presents our experience with developing a portable wireless medical sensor device. We use National Instruments (NI) devices and LabView for measurements studying fatigue of patients suffering multiple sclerosis (MS). Fatigue is a very frequent symptom perceived by MS patients, but the disease mechanism is poorly understood. Many efforts have been made to increase the understanding of this complex phenomenon. It has been found that fatigue might be associated with abnormalities in various anatomical brain areas. Also some secondary factors, not directly related to the disease, such as depression, sleep disorder, severe pain, use of medication and psychological factors might be of importance. However, the relationship with physiological parameters and motion activities in MS patients with fatigue across time are still unknown. Therefore, we hypothesize that we could provide a new assessment of fatigue in MS besides the questionnaires that are currently employed. Furthermore we can discover more secondary factors contributing to fatigue by measuring and monitoring a battery of physiological parameters over an extended time span (e.g. 48 hours) in MS patients without disturbing their normal life behavior. We have developed wireless medical sensor devices and conducted the following, namely Electrocardiograph, body skin temperature, eye movement detection, Electromyograph, motion detection, and muscle strength. In this paper, we describe the technology and design procedures of each measurement and present data from the first two test patients. PMID:21096872

  2. Global model of lower band and upper band chorus from multiple satellite observations

    NASA Astrophysics Data System (ADS)

    Meredith, Nigel P.; Horne, Richard B.; Sicard-Piet, Angélica; Boscher, Daniel; Yearby, Keith H.; Li, Wen; Thorne, Richard M.

    2012-10-01

    Gyroresonant wave particle interactions with whistler mode chorus play a fundamental role in the dynamics of the Earth's radiation belts and inner magnetosphere, affecting both the acceleration and loss of radiation belt electrons. Knowledge of the variability of chorus wave power as a function of both spatial location and geomagnetic activity, required for the computation of pitch angle and energy diffusion rates, is thus a critical input for global radiation belt models. Here we present a global model of lower band (0.1fce < f < 0.5fce) and upper band (0.5fce < f < fce) chorus, where fce is the local electron gyrofrequency, using data from five satellites, extending the coverage and improving the statistics of existing models. From the plasmapause out to L* = 10 the chorus emissions are found to be largely substorm dependent with the largest intensities being seen during active conditions. Equatorial lower band chorus is strongest during active conditions with peak intensities of the order 2000 pT2 in the region 4 < L* < 9 between 2300 and 1200 MLT. Equatorial upper band chorus is both weaker and less extensive with peak intensities of the order a few hundred pT2 during active conditions between 2300 and 1100 MLT from L* = 3 to L* = 7. Moving away from the equator midlatitude chorus is strongest in the lower band during active conditions with peak intensities of the order 2000 pT2 in the region 4 < L* < 9 but is restricted to the dayside between 0700 and 1400 MLT.

  3. Multiple-receptor wireless power transfer for magnetic sensors charging on Mars via magnetic resonant coupling

    NASA Astrophysics Data System (ADS)

    Liu, Chunhua; Chau, K. T.; Zhang, Zhen; Qiu, Chun; Lin, Fei; Ching, T. W.

    2015-05-01

    This paper proposes a new idea for magnetic sensors charging on Mars, which aims to effectively transmit energy from Mars Rover to distributed magnetic sensors. The key is to utilize wireless power transfer (WPT) to enable multiple receptors extracting energy from the source via magnetic resonant coupling. Namely, the energy transmitter is located on the Mars Rover, whereas the energy receptor is installed in the magnetic sensor. In order to effectively transfer the power, a resonator is installed between the transmitter and the receptors. Based on the proposed idea, the system topology, operation principle, and simulation results are developed. By performing finite element magnetic field analysis, the output power and efficiency of the proposed WPT system are evaluated. It confirms that the Mars Rover carrying with the energy transmitter is capable of loitering around the resonator, while the magnetic sensors on the receptors can be simultaneously charged according to energy-on-demand.

  4. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    PubMed Central

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-01-01

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%. PMID:24759117

  5. Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks.

    PubMed

    Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen

    2016-01-01

    In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for

  6. A novel unbalanced multiple description coder for robust video transmission over ad hoc wireless networks

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Sun, Lifeng; Zhong, Yuzhuo

    2006-01-01

    Robust transmission of live video over ad hoc wireless networks presents new challenges: high bandwidth requirements are coupled with delay constraints; even a single packet loss causes error propagation until a complete video frame is coded in the intra-mode; ad hoc wireless networks suffer from bursty packet losses that drastically degrade the viewing experience. Accordingly, we propose a novel UMD coder capable of quickly recovering from losses and ensuring continuous playout. It uses 'peg' frames to prevent error propagation in the High-Resolution (HR) description and improve the robustness of key frames. The Low-Resolution (LR) coder works independent of the HR one, but they can also help each other recover from losses. Like many UMD coders, our UMD coder is drift-free, disruption-tolerant and able to make good use of the asymmetric available bandwidths of multiple paths. The simulation results under different conditions show that the proposed UMD coder has the highest decoded quality and lowest probability of pause when compared with concurrent UMDC techniques. The coder also has a comparable decoded quality, lower startup delay and lower probability of pause than a state-of-the-art FEC-based scheme. To provide robustness for video multicast applications, we propose non-end-to-end UMDC-based video distribution over a multi-tree multicast network. The multiplicity of parents decorrelates losses and the non-end-to-end feature increases the throughput of UMDC video data. We deploy an application-level service of LR description reconstruction in some intermediate nodes of the LR multicast tree. The principle behind this is to reconstruct the disrupted LR frames by the correctly received HR frames. As a result, the viewing experience at the downstream nodes benefits from the protection reconstruction at the upstream nodes.

  7. Full-duplex fiber-wireless link for alternative wired and 40-GHz band wireless access based on differential quaternary phase-shift optical single sideband millimeter-wave signal

    NASA Astrophysics Data System (ADS)

    Zhang, Ruijiao; Ma, Jianxin; Xin, Xiangjun

    2015-02-01

    A full-duplex fiber-wireless link with a uniform single sideband differential quaternary phase-shift keying optical millimeter-wave signal is proposed to provide wired or 40-GHz band wireless access alternatively. The uniform optical millimeter-wave signal that supports services for wired or wireless users is produced via an LiNbO3 Mach-Zehnder modulator. After being transmitted to the hybrid optical network unit (HONU), it can be demodulated in different patterns on the demand of the user terminals for wired or wireless access. Simultaneously, part of the blank optical carrier abstracted from it is reused as the uplink optical carrier, so the HONU is free from the laser source, and thus, the complexity and cost of the system are reduced. Moreover, since the two tones of the dual-tone optical millimeter wave come from the same source, they maintain high coherency even after being transmitted over fiber. Additionally, the downlink data are carried by one tone of the dual-tone optical millimeter wave, so the downlink optical millimeter-wave signal suffers little from the fiber chromatic dispersion and laser phase noise. The theoretical analysis and simulation results show that our proposed full-duplex link for alternative wired and wireless access maintains good performance even when the transmission link with standard single mode fiber is extended to 30 km.

  8. Dual spectral band reconnaissance systems for multiple platforms

    NASA Astrophysics Data System (ADS)

    Wyatt, Steve H.

    2002-11-01

    Recon/Optical, Inc. (ROI) has a family of digital, dual spectral band (visible/IR) cameras that is readily applicable for reconnaissance missions on virtually any airborne platform available today. Each camera is based on a modular design that allows reconfiguration for a multitude of volumetric and mission constraints. The open architecture facilitates integration as either a reconnaissance system components or as the system master controller. Output data can be formatted to satisfy either NITF or STANAG requirements making the camera adaptable to applications throughout the world. These cameras offer several key features, including a stabilization system, that can be tuned to each platform, optional data compression to optimize data storage and data link performance, and a camera-mounted inertial measurement unit for improved pointing accuracy. These and other core capabilities are especially beneficial to users with unique platform integration requirements. Camera flexibility translates into low-risk integration to a variety of reconnaissance platforms.

  9. Dual band multi frequency rectangular patch microstrip antenna with flyswatter shaped slot for wireless systems

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Dheeraj; Saraswat, Shriti; Gulati, Gitansh; Shekhar, Snehanshu; Joshi, Kanika; Sharma, Komal

    2016-03-01

    In this paper a dual band planar antenna has been proposed for IEEE 802.16 Wi-MAX /IEEE 802.11 WLAN/4.9 GHz public safety applications. The antenna comprises a frequency bandwidth of 560MHz (3.37GHz-3.93GHz) for WLAN and WiMAX and 372MHz (4.82GHz-5.192GHz) for 4.9 GHz public safety applications and Radio astronomy services (4.8-4.94 GHz). The proposed antenna constitutes of a single microstrip patch reactively loaded with three identical steps positioned in a zig-zag manner towards the radiating edges of the patch. The coaxially fed patch antenna characteristics (radiation pattern, antenna gain, antenna directivity, current distribution, S11) have been investigated. The antenna design is primarily focused on achieving a dual band operation.

  10. Circularly polarized triple band glass shaped monopole patch antenna with metallic reflector for bluetooth & wireless applications

    NASA Astrophysics Data System (ADS)

    Jangid, K. G.; Choudhary, N.; Jain, P.; Sharma, B. R.; Saini, J. S.; Kulhar, V. S.; Bhatnagar, D.

    2016-03-01

    This paper presents the design and performance of strip line fed glass shaped monopole patch antenna having with overall size 30mm × 30 mm × 1.59 mm. In the patch; an eight shaped slot and in the ground plane an eight shaped ring are introduced. A metallic ground plane is also introduced at appropriate location beneath the ground plane. The proposed antenna is simulated by applying CST Microwave Studio simulator. Antenna provides circularly polarized radiations, triple broad impedance bandwidth of 203MHz (2.306GHz to 2.510GHz), 42MHz (2.685GHz to 2.757GHz) & GHz (3.63 GHz to 6.05 GHz), high flat gain (close to 5dBi) and good radiation properties in the desired frequency range. This antenna may be a very useful tool for 2.45GHz Bluetooth communication band as well as for 2.4GHz/5.2 GHz /5.8 GHz WLAN bands & 3.7GHz/5.5 GHz Wi-Max bands.

  11. Multiple Mobile Sinks Deployment for Energy Efficiency in Large Scale Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Slama, Ines; Jouaber, Badii; Zeghlache, Djamal

    In this paper, we consider the multiple sinks placement problem in energy constrained large-scale Wireless Sensor Networks (WSN). First, some fundamental design parameters in WSNs are investigated such as nodes deployment, the network architecture, sink velocity and transmission range. Each of these parameters is analysed and discussed according to its influence on the energy consumption in a WSN. Second, a simple and efficient approach for the placement of multiple sinks within large-scale WSNs is proposed. The objective is to determine optimal sinks’ positions that maximize the network lifetime by reducing energy consumption related to data transmissions from sensor nodes to different sinks. Balanced graph partitioning techniques are used to split the entire WSN into connected sub-networks. Smaller sub-networks are created, having similar characteristics and where energy consumption can be optimized independently but in the same way. Therefore, different approaches and mechanisms that enhance the network lifetime in small-size WSN can be deployed inside each sub-network. Performance results show that the proposed technique significantly enhances the network lifetime.

  12. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    PubMed Central

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-01-01

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015

  13. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    PubMed

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-01-01

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015

  14. Impact of high power interference sources in planning and deployment of wireless sensor networks and devices in the 2.4 GHz frequency band in heterogeneous environments.

    PubMed

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven’s power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  15. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    PubMed Central

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-01-01

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228

  16. Numerical investigation of multiple shear bands in collapsing Thick-Walled Cylinders

    NASA Astrophysics Data System (ADS)

    Lovinger, Zev; Rittel, Daniel; Rosenberg, Zvi

    2011-06-01

    The ability to simulate evolution of shear bands in TWC experiments is a powerful tool for studying the complex problem of multiple adiabatic shear bands' formation and propagation. We carry out 2D numerical simulations to reproduce experimental results of multiple shear bands in cylindrical specimens collapsed by electro-magnetic driving forces. In order to simulate the shear bands we use a shear failure model which incorporates a positive feedback mechanism. Alternatively, we use for the Johnson-Cook strength model an enhanced thermal softening term, reaching similar behavior. We present a detailed study of the numerical model, exploring its ability to properly reproduce the evolution of the multiple shear-bands. The influence of initial perturbations, mesh size and pressure history on the initiation and final stages is investigated. Analyzing the shear band distribution, we use an empirical distribution function (ECDF) to reach a quantitative measure to compare simulation and experimental results. Finally, we compare the experimental shear band distribution to our simulations' results, showing good agreement.

  17. Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-01-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  18. Design and demonstration of ultra-fast W-band photonic transmitter-mixer and detectors for 25 Gbits/sec error-free wireless linking.

    PubMed

    Chen, Nan-Wei; Shi, Jin-Wei; Tsai, Hsuan-Ju; Wun, Jhih-Min; Kuo, Fong-Ming; Hesler, Jeffery; Crowe, Thomas W; Bowers, John E

    2012-09-10

    A 25 Gbits/s error-free on-off-keying (OOK) wireless link between an ultra high-speed W-band photonic transmitter-mixer (PTM) and a fast W-band envelope detector is demonstrated. At the transmission end, the high-speed PTM is developed with an active near-ballistic uni-traveling carrier photodiode (NBUTC-PD) integrated with broadband front-end circuitry via the flip-chip bonding technique. Compared to our previous work, the wireless data rate is significantly increased through the improvement on the bandwidth of the front-end circuitry together with the reduction of the intermediate-frequency (IF) driving voltage of the active NBUTC-PD. The demonstrated PTM has a record-wide IF modulation (DC-25 GHz) and optical-to-electrical fractional bandwidths (68-128 GHz, ~67%). At the receiver end, the demodulation is realized with an ultra-fast W-band envelope detector built with a zero-bias Schottky barrier diode with a record wide video bandwidth (37 GHz) and excellent sensitivity. The demonstrated PTM is expected to find applications in multi-gigabit short-range wireless communication. PMID:23037246

  19. Wireless communications for a multiple robot system. Master`s thesis

    SciTech Connect

    Bekas, A.J.

    1997-03-01

    A multi-disciplinary research project is being undertaken at NPS to develop a semi-autonomous robotic system to detect and clear land mines and Unexploded Ordnance (UXO). The robotic system under development consists of a land vehicle, an aerial vehicle, and a ground-based control station. Reliable communication between these three stations is needed. A traditional wire-based network requires that the vehicles be tethered and severely limits the mobility of the vehicles. A wireless Local Area Network (LAN) is proposed to provide communications between the control station and the vehicles. The objective of this thesis is to develop the physical (hardware) and logical (software) architecture of a wireless LAN that accommodates the needs of the mine/UXO project. Through an analysis of wireless modulation techniques, a market survey of wireless devices, and a field testing of wireless devices, a wireless LAN is designed to meet the technological, performance, regulation, interference, and mobility requirements of the mine/UXO project. Finally, the wireless communication protocols and the development of an error-free application protocol (specified by a FSM model and implemented in ANSI C code using Windows socket network programming) completes the wireless LAN implementation.

  20. Multiple side-band generation for two-frequency components injected into a tapered amplifier

    NASA Astrophysics Data System (ADS)

    Luo, Hua; Li, Kai; Zhang, Dongfang; Gao, Tianyou; Jiang, Kaijun

    2013-04-01

    We have experimentally studied the multiple side-band generation for two-frequency components injected into a tapered amplifier and demonstrated its effects on atomic laser cooling. A heterodyne frequency-beat measurement and a Fabry Perot interferometer have been applied to analyze the side-band generation with different experimental parameters, such as frequency difference, injection laser power and tapered amplifier current. In laser cooling potassium40 and potassium41 with hyperfine splitting of 1.3GHz and 254MHz, respectively, the side-band generation with a small frequency difference has a significant effect on the number of trapped atoms.

  1. Multiple side-band generation for two-frequency components injected into a tapered amplifier.

    PubMed

    Luo, Hua; Li, Kai; Zhang, Dongfang; Gao, Tianyou; Jiang, Kaijun

    2013-04-01

    We have experimentally studied multiple side-band generation for two-frequency components injected into a tapered amplifier (TA) and demonstrated its effects on atomic laser cooling. A heterodyne frequency-beat measurement and a Fabry-Perot interferometer have been applied to analyze the side-band generation with different experimental parameters, such as frequency difference, injection laser power, and TA current. In laser-cooling potassium40 and potassium41 with hyperfine splitting of 1.3 GHz and 254 MHz, respectively, the side-band generation with a small frequency difference has a significant effect on the number of trapped atoms. PMID:23546277

  2. Multiple power-saving MSSs scheduling methods for IEEE802.16e broadband wireless networks.

    PubMed

    Huang, Shih-Chang

    2014-01-01

    This work proposes two enhanced multiple mobile subscriber stations (MSSs) power-saving scheduling methods for IEEE802.16e broadband wireless networks. The proposed methods are designed for the Unsolicited Grant Service (UGS) of IEEE802.16e. To reduce the active periods of all power-saving MSSs, the base station (BS) allocates each MSS fewest possible transmission frames to retrieve its data from the BS. The BS interlaces the active periods of each MSS to increase the amount of scheduled MSSs and splits the overflowing transmission frames to maximize the bandwidth utilization. Simulation results reveal that interlacing the active periods of MSSs can increase the number of scheduled MSSs to more than four times of that in the Direct scheduling method. The bandwidth utilization can thus be improved by 60%-70%. Splitting the overflowing transmission frames can improve bandwidth utilization by more than 10% over that achieved using the method of interlacing active periods, with a sacrifice of only 1% of the sleep periods in the interlacing active period method. PMID:24523656

  3. Multiple Power-Saving MSSs Scheduling Methods for IEEE802.16e Broadband Wireless Networks

    PubMed Central

    2014-01-01

    This work proposes two enhanced multiple mobile subscriber stations (MSSs) power-saving scheduling methods for IEEE802.16e broadband wireless networks. The proposed methods are designed for the Unsolicited Grant Service (UGS) of IEEE802.16e. To reduce the active periods of all power-saving MSSs, the base station (BS) allocates each MSS fewest possible transmission frames to retrieve its data from the BS. The BS interlaces the active periods of each MSS to increase the amount of scheduled MSSs and splits the overflowing transmission frames to maximize the bandwidth utilization. Simulation results reveal that interlacing the active periods of MSSs can increase the number of scheduled MSSs to more than four times of that in the Direct scheduling method. The bandwidth utilization can thus be improved by 60%–70%. Splitting the overflowing transmission frames can improve bandwidth utilization by more than 10% over that achieved using the method of interlacing active periods, with a sacrifice of only 1% of the sleep periods in the interlacing active period method. PMID:24523656

  4. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    PubMed

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-01-01

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971

  5. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks

    PubMed Central

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-01-01

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971

  6. Tunable optical bandpass filter with multiple flat-top bands in nanostructured resonators

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Chen, Yuping; Lu, Wenjie; Chen, Xianfeng

    2011-03-01

    Based on second-order nonlinearity, we present a tunable optical bandpass filter at c-band by introducing a back quasiphase-matching technique with a nanostructured named multiple resonator waveguide. Two injecting forward lights and one backward propagating light interact with difference frequency generation. At that juncture, the transmission of the forward signal can be modulated via changing the forward control power. As a result, a tunable optical bandpass filter with multiple flat-top transmit bands of the forward signal can be formed in the waveguide.

  7. A Robust Indoor Autonomous Positioning System Using Particle Filter Based on ISM Band Wireless Communications

    NASA Astrophysics Data System (ADS)

    Ikeda, Takeshi; Kawamoto, Mitsuru; Sashima, Akio; Suzuki, Keiji; Kurumatani, Koichi

    In the field of the ubiquitous computing, positioning systems which can provide users' location information have paid attention as an important technical element which can be applied to various services, for example, indoor navigation services, evacuation services, market research services, guidance services, and so on. A lot of researchers have proposed various outdoor and indoor positioning systems. In this paper, we deal with indoor positioning systems. Many conventional indoor positioning systems use expensive infrastructures, because the propagated times of radio waves are used to measure users' positions with high accuracy. In this paper, we propose an indoor autonomous positioning system using radio signal strengths (RSSs) based on ISM band communications. In order to estimate users' positions, the proposed system utilizes a particle filter that is one of the Monte Carlo methods. Because the RSS information is used in the proposed system, the equipments configuring the system are not expensive compared with the conventional indoor positioning systems and it can be installed easily. Moreover, because the particle filter is used to estimate user's position, even if the RSS fluctuates due to, for example, multi-paths, the system can carry out position estimation robustly. We install the proposed system in one floor of a building and carry out some experiments in order to verify the validity of the proposed system. As a result, we confirmed that the average of the estimation errors of the proposed system was about 1.8 m, where the result is enough accuracy for achieving the services mentioned above.

  8. Multiple access capacity trade-offs for a Ka-band personal access satellite system

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled; Motamedi, Masoud

    1990-01-01

    System capability is critical to the economic viability of a personal satellite communication system. Ka band has significant potential to support a high capacity multiple access system because of the availability of bandwidth. System design tradeoffs are performed and multiple access schemes are compared with the design goal of achieving the highest capacity and efficiency. Conclusions regarding the efficiency of the different schemes and the achievable capacities are given.

  9. A low complexity wireless microbial fuel cell monitor using piezoresistive sensors and impulse-radio ultra-wide-band

    NASA Astrophysics Data System (ADS)

    Crepaldi, M.; Chiolerio, A.; Tommasi, T.; Hidalgo, D.; Canavese, G.; Stassi, S.; Demarchi, D.; Pirri, F. C.

    2013-05-01

    Microbial Fuel Cells (MFCs) are energy sources which generate electrical charge thanks to bacteria metabolism. Although functionally similar to chemical fuel cells (both including reactants and two electrodes, and anode and cathode), they have substantial advantages, e.g. 1) operation at ambient temperature and pressure; 2) use of neutral electrolytes and avoidance of expensive catalysts (e.g. platinum); 3) operation using organic wastes. An MFC can be effectively used in environments where ubiquitous networking requires the wireless monitoring of energy sources. We then report on a simple monitoring system for MFC comprising an ultra-low-power Impulse-Radio Ultra-Wide-Band Transmitter (TX) operating in the low 0-960MHz band and a nanostructured piezoresistive pressure sensor connected to a discrete component digital read-out circuit. The sensor comprises an insulating matrix of polydimethylsiloxane and nanostructured multi-branched copper microparticles as conductive filler. Applied mechanical stress induces a sample deformation that modulates the mean distance between particles, i.e. the current flow. The read-out circuit encodes pressure as a pulse rate variation, with an absolute sensitivity to the generated MFC voltage. Pulses with variable repetition frequency can encode battery health: the pressure sensor can be directly connected to the cells membrane to read excessive pressure. A prototype system comprises two MFCs connected in series to power both the UWB transmitter which consumes 40μW and the read-out circuit. The two MFC generate an open circuit voltage of 1.0+/-0.1V. Each MFC prototype has a total volume of 0.34L and is formed by two circular Poly(methyl methacrylate) (PMMA) chambers (anode and cathode) separated by a cation exchange membrane. The paper reports on the prototype and measurements towards a final solution which embeds all functionalities within a MFC cell. Our solution is conceived to provide energy sources integrating energy management

  10. Automated co-registration of images from multiple bands of Liss-4 camera

    NASA Astrophysics Data System (ADS)

    Radhadevi, P. V.; Solanki, S. S.; Jyothi, M. V.; Nagasubramanian, V.; Varadan, Geeta

    Three multi-spectral bands of the Liss-4 camera of IRS-P6 satellite are physically separated in the focal plane in the along-track direction. The time separation of 2.1 s between the acquisition of first and last bands causes scan lines acquired by different bands to lie along different lines on the ground which are not parallel. Therefore, the raw images of multi-spectral bands need to be registered prior to any simple application like data visualization. This paper describes a method for co-registration of multiple bands of Liss-4 camera through photogrammetric means using the collinearity equations. A trajectory fit using the given ephemeris and attitude data, followed by direct georeferencing is being employed in this model. It is also augmented with a public domain DEM for the terrain dependent input to the model. Finer offsets after the application of this parametric technique are addressed by matching a small subsection of the bands (100×100 pixels) using an image-based method. Resampling is done by going back to original raw data when creating the product after refining image coordinates with the offsets. Two types of aligned products are defined in this paper and their operational flow is described. Datasets covering different types of terrain and also viewed with different geometries are studied with extensive number of points. The band-to-band registration (BBR) accuracies are reported. The algorithm described in this paper for co-registration of Liss-4 bands is an integral part of the software package Value Added Products generation System (VAPS) for operational generation of IRS-P6 data products.

  11. Multiple dielectric layer effects on the space shuttle orbiter S-band quad antennas

    NASA Technical Reports Server (NTRS)

    Lindsey, J. F.

    1976-01-01

    A mathematical tool is developed for evaluation of antenna radiation pattern effects on the shuttle orbiter S band quad antennas. A ray optics approach is used which includes multiple internal reflections with special consideration to reflection from the metallic orbiter skin. Significant depolarization may occur as the angle from the normal increases. The effect of changing tile thickness on the beamwidth of the upper quads versus the lower quads results in a small increase in the lower quad beamwidth compared with the beamwidth in the upper quads. The optimization and evaluation of the S band quads and the computer tool developed may be used to evaluate other shuttle orbiter antennas.

  12. Performance evaluation of modulation and multiple access schemes in ultraviolet optical wireless connections for two atmosphere thickness cases.

    PubMed

    Raptis, Nikos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-08-01

    The exploitation of optical wireless communication channels in a non-line-of-sight regime is studied for point-to-point and networking configurations considering the use of light-emitting diodes. Two environments with different scattering center densities are considered, assuming operation at 265 nm. The bit error rate performance of both pulsed and multicarrier modulation schemes is examined, using numerical approaches. In the networking scenario, a central node only receives data, one node transmits useful data, and the rest of them act as interferers. The performance of the desirable node's transmissions is evaluated. The access to the medium is controlled by a code division multiple access scheme. PMID:27505663

  13. Automated Registration of Images from Multiple Bands of Resourcesat-2 Liss-4 camera

    NASA Astrophysics Data System (ADS)

    Radhadevi, P. V.; Solanki, S. S.; Jyothi, M. V.; Varadan, G.

    2014-11-01

    Continuous and automated co-registration and geo-tagging of images from multiple bands of Liss-4 camera is one of the interesting challenges of Resourcesat-2 data processing. Three arrays of the Liss-4 camera are physically separated in the focal plane in alongtrack direction. Thus, same line on the ground will be imaged by extreme bands with a time interval of as much as 2.1 seconds. During this time, the satellite would have covered a distance of about 14 km on the ground and the earth would have rotated through an angle of 30". A yaw steering is done to compensate the earth rotation effects, thus ensuring a first level registration between the bands. But this will not do a perfect co-registration because of the attitude fluctuations, satellite movement, terrain topography, PSM steering and small variations in the angular placement of the CCD lines (from the pre-launch values) in the focal plane. This paper describes an algorithm based on the viewing geometry of the satellite to do an automatic band to band registration of Liss-4 MX image of Resourcesat-2 in Level 1A. The algorithm is using the principles of photogrammetric collinearity equations. The model employs an orbit trajectory and attitude fitting with polynomials. Then, a direct geo-referencing with a global DEM with which every pixel in the middle band is mapped to a particular position on the surface of the earth with the given attitude. Attitude is estimated by interpolating measurement data obtained from star sensors and gyros, which are sampled at low frequency. When the sampling rate of attitude information is low compared to the frequency of jitter or micro-vibration, images processed by geometric correction suffer from distortion. Therefore, a set of conjugate points are identified between the bands to perform a relative attitude error estimation and correction which will ensure the internal accuracy and co-registration of bands. Accurate calculation of the exterior orientation parameters with

  14. Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells

    SciTech Connect

    Chen, G.; Rong, X.; Xu, F. J.; Tang, N.; Wang, X. Q. Shen, B.; Fu, K.; Zhang, B. S.; Hashimoto, H.; Yoshikawa, A.; Ge, W. K.

    2014-04-28

    Based on the optical transitions among the quantum-confined electronic states in the conduction band, we have fabricated multi-bands AlGaN/GaN quantum well infrared photodetectors. Crack-free AlGaN/GaN multiple quantum wells (MQWs) with atomically sharp interfaces have been achieved by inserting an AlN interlayer, which releases most of the tensile strain in the MQWs grown on the GaN underlayer. With significant reduction of dark current by using thick AlGaN barriers, photoconductive responses are demonstrated due to intersubband transition in multiple regions with center wavelengths of 1.3, 2.3, and 4 μm, which shows potential applications on near infrared detection.

  15. Analysis and Testing of Mobile Wireless Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  16. Self-Organized Link State Aware Routing for Multiple Mobile Agents in Wireless Network

    NASA Astrophysics Data System (ADS)

    Oda, Akihiro; Nishi, Hiroaki

    Recently, the importance of data sharing structures in autonomous distributed networks has been increasing. A wireless sensor network is used for managing distributed data. This type of distributed network requires effective information exchanging methods for data sharing. To reduce the traffic of broadcasted messages, reduction of the amount of redundant information is indispensable. In order to reduce packet loss in mobile ad-hoc networks, QoS-sensitive routing algorithm have been frequently discussed. The topology of a wireless network is likely to change frequently according to the movement of mobile nodes, radio disturbance, or fading due to the continuous changes in the environment. Therefore, a packet routing algorithm should guarantee QoS by using some quality indicators of the wireless network. In this paper, a novel information exchanging algorithm developed using a hash function and a Boolean operation is proposed. This algorithm achieves efficient information exchanges by reducing the overhead of broadcasting messages, and it can guarantee QoS in a wireless network environment. It can be applied to a routing algorithm in a mobile ad-hoc network. In the proposed routing algorithm, a routing table is constructed by using the received signal strength indicator (RSSI), and the neighborhood information is periodically broadcasted depending on this table. The proposed hash-based routing entry management by using an extended MAC address can eliminate the overhead of message flooding. An analysis of the collision of hash values contributes to the determination of the length of the hash values, which is minimally required. Based on the verification of a mathematical theory, an optimum hash function for determining the length of hash values can be given. Simulations are carried out to evaluate the effectiveness of the proposed algorithm and to validate the theory in a general wireless network routing algorithm.

  17. Tunable Symmetries of Integer and Fractional Quantum Hall Phases in Heterostructures with Multiple Dirac Bands

    NASA Astrophysics Data System (ADS)

    Stepanov, Petr; Barlas, Yafis; Espiritu, Tim; Che, Shi; Watanabe, Kenji; Taniguchi, Takashi; Smirnov, Dmitry; Lau, Chun Ning

    2016-08-01

    The copresence of multiple Dirac bands in few-layer graphene leads to a rich phase diagram in the quantum Hall regime. Using transport measurements, we map the phase diagram of BN-encapsulated A B A -stacked trilayer graphene as a function charge density n , magnetic field B , and interlayer displacement field D , and observe transitions among states with different spin, valley, orbital, and parity polarizations. Such a rich pattern arises from crossings between Landau levels from different subbands, which reflect the evolving symmetries that are tunable in situ. At D =0 , we observe fractional quantum Hall (FQH) states at filling factors 2 /3 and -11 /3 . Unlike those in bilayer graphene, these FQH states are destabilized by a small interlayer potential that hybridizes the different Dirac bands.

  18. Tunable Symmetries of Integer and Fractional Quantum Hall Phases in Heterostructures with Multiple Dirac Bands.

    PubMed

    Stepanov, Petr; Barlas, Yafis; Espiritu, Tim; Che, Shi; Watanabe, Kenji; Taniguchi, Takashi; Smirnov, Dmitry; Lau, Chun Ning

    2016-08-12

    The copresence of multiple Dirac bands in few-layer graphene leads to a rich phase diagram in the quantum Hall regime. Using transport measurements, we map the phase diagram of BN-encapsulated ABA-stacked trilayer graphene as a function charge density n, magnetic field B, and interlayer displacement field D, and observe transitions among states with different spin, valley, orbital, and parity polarizations. Such a rich pattern arises from crossings between Landau levels from different subbands, which reflect the evolving symmetries that are tunable in situ. At D=0, we observe fractional quantum Hall (FQH) states at filling factors 2/3 and -11/3. Unlike those in bilayer graphene, these FQH states are destabilized by a small interlayer potential that hybridizes the different Dirac bands. PMID:27563989

  19. Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks.

    PubMed

    Van Vinh, Phan; Oh, Hoon

    2016-01-01

    The demand for event-driven real-time applications for timely and reliable data acquisition is growing in industrial sectors. However, it is challenging to satisfy the requirements since constraints such as limited available energy and bandwidth are inherent in a wireless sensor network. To deal with timely delivery, one desirable approach is to improve network throughput so that more real-time applications with tighter time constraints can be satisfied in any given network. To deal with reliable delivery, the use of a carrier sense multiple access mechanism for data transmission is preferred, along with the use of a sharable slot within which multiple nodes compete to send data. Thus, we present a method of using multiple channels and a way to optimize the size of the sharable slot. The proposed channel-slot-scheduling algorithm tries to optimize the size of a sharable slot when multiple channels are used. The algorithm also deals with situations where nodes generate multiple data packets in each round of a data-gathering period. It is shown through simulation that our approach greatly outperforms others on some selected metrics. PMID:27070619

  20. Optimized Sharable-Slot Allocation Using Multiple Channels to Reduce Data-Gathering Delay in Wireless Sensor Networks

    PubMed Central

    Van Vinh, Phan; Oh, Hoon

    2016-01-01

    The demand for event-driven real-time applications for timely and reliable data acquisition is growing in industrial sectors. However, it is challenging to satisfy the requirements since constraints such as limited available energy and bandwidth are inherent in a wireless sensor network. To deal with timely delivery, one desirable approach is to improve network throughput so that more real-time applications with tighter time constraints can be satisfied in any given network. To deal with reliable delivery, the use of a carrier sense multiple access mechanism for data transmission is preferred, along with the use of a sharable slot within which multiple nodes compete to send data. Thus, we present a method of using multiple channels and a way to optimize the size of the sharable slot. The proposed channel-slot–scheduling algorithm tries to optimize the size of a sharable slot when multiple channels are used. The algorithm also deals with situations where nodes generate multiple data packets in each round of a data-gathering period. It is shown through simulation that our approach greatly outperforms others on some selected metrics. PMID:27070619

  1. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    SciTech Connect

    Ramakanth, S.; James Raju, K. C.

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nm particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.

  2. Band gap narrowing in BaTiO3 nanoparticles facilitated by multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Ramakanth, S.; James Raju, K. C.

    2014-05-01

    In the present work, BaTiO3 nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nm particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm-1. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm-1) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm-1 with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.

  3. 2  ×  2 multiple-input multiple-output optical-wireless integration system based on optical independent-sideband modulation enabled by an in-phase/quadrature modulator.

    PubMed

    Li, Xinying; Yu, Jianjun

    2016-07-01

    We propose a novel and simple 2×2 multiple-input multiple-output (MIMO) optical-wireless integration system, in which optical independent-sideband modulation enabled by an in-phase/quadrature (I/Q) modulator, instead of optical polarization multiplexing, is used to assist the simultaneous generation of two wireless millimeter-wave (mm-wave) signals. Software-based digital signal processing is used to generate the driving signal for the I/Q modulator, the output of which is two independent single-sideband optical vector signals located at two sides of a large central optical carrier. Based on our proposed 2×2 MIMO optical-wireless integration system, we experimentally demonstrate the simultaneous generation and 2×2 MIMO wireless delivery of two independent 40-GHz quadrature-phase-shift-keying (QPSK) wireless mm-wave signals. Each 40-GHz QPSK wireless mm-wave signal can carry up to 4-Gbaud transmitter data with a bit-error ratio less than the hard-decision forward-error-correction threshold of 3.8×10-3. PMID:27367121

  4. Contextually sensitive power changes across multiple frequency bands underpin cognitive control.

    PubMed

    Cooper, Patrick S; Darriba, Álvaro; Karayanidis, Frini; Barceló, Francisco

    2016-05-15

    Flexible control of cognition bestows a remarkable adaptability to a broad range of contexts. While cognitive control is known to rely on frontoparietal neural architecture to achieve this flexibility, the neural mechanisms that allow such adaptability to context are poorly understood. In the current study, we quantified contextual demands on the cognitive control system via a priori estimation of information across three tasks varying in difficulty (oddball, go/nogo, and switch tasks) and compared neural responses across these different contexts. We report evidence of the involvement of multiple frequency bands during preparation and implementation of cognitive control. Specifically, a common frontoparietal delta and a central alpha process corresponded to rule implementation and motor response respectively. Interestingly, we found evidence of a frontal theta signature that was sensitive to increasing amounts of information and a posterior parietal alpha process only seen during anticipatory rule updating. Importantly, these neural signatures of context processing match proposed frontal hierarchies of control and together provide novel evidence of a complex interplay of multiple frequency bands underpinning flexible, contextually sensitive cognition. PMID:26975557

  5. L-band and SHF multiple access schemes for the MSAT system

    NASA Technical Reports Server (NTRS)

    Razi, Michael; Shoamanesh, Alireza; Azarbar, Bahman

    1988-01-01

    The first generation of the Canadian Mobile Satellite (MSAT) system, planned to be operational in the early 1990s, will provide voice and data services to land, aeronautical, and maritime mobile terminals within the Canadian land mass and its territorial waters. The system will be managed by a centralized Demand Assignment Multiple Access (DAMA) control system. Users will request a communication channel by communicating with the DAMA Control System (DCS) via the appropriate signalling channels. Several access techniques for both L-band and SHF signalling channels have been investigated. For the L-band, Slotted Aloha (SA) and Reservation Aloha (RA), combined with a token scheme, are discussed here. The results of Telesat studies to date indicate that SA, when combined with token scheme, provides the most efficient access and resource management tool in a mobile propagation environment. For SHF signalling channels, slim time division multiple access (TDMA) and SA have been considered as the most suitable candidate schemes. In view of the operational environment of the SHF links, provision of a very short channel access delay and a relatively high packet success rate are highly desirable. Studies carried out generally favor slim-TDMA as the most suitable approach for SHF signalling channels.

  6. Traffic Regulation on Wireless 802.11 Networks Using Multiple Queue Technique

    NASA Astrophysics Data System (ADS)

    Dhanal, Radhika J.; Patil, G. A.

    2010-11-01

    WLAN technologies are becoming increasingly popular and are platform for many future applications. IEEE 802.11 Wireless LAN (WLAN) is an excellent solution for the broadband wireless networking. This paper presents a simple approach to enhance the performance of real time (RT) and non-real time (NRT) services over the 802.11 WLAN by using some special queues. This requires the system to first identify the type of service and then use the appropriate scheduling algorithm. The admission control algorithm is used first to determine the admission of particular station. Deficit round robin algorithm is used to set the priorities to RT and NRT packets in order to increase the QoS of WLAN. So we can combine both these algorithms by implementing them one after another. The proposed scheme can improve Voice/Data/Video services through simple software upgrades by reducing the delay, jitter and increasing the throughput. Through simulation, we show that the proposed scheme can give better QoS than existing schemes.

  7. Experiments on multiple-receiver magnetic resonance-based wireless power transfer in low megahertz with metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Le; Hu, Yuli; Zheng, Wei

    2016-04-01

    In this paper, an efficient magnetic resonance-based wireless power transfer (MRWPT) system with metamaterials is proposed. The negative permeability (MNG) metamaterials for this system with low-megahertz frequency is designed, which can be adjusted to work well at a variable receiving angle ranging from 0° to 45° along z-direction. The S-parameters, resonant frequency and permeability of metamaterials are computed for analysis. The transmission efficiency of the multiple-receiver MRWPT system in free space is compared to that in the presence of metamaterials placed in front of transmission and receive coils. The measured results show that the performance of the proposed metamaterials is perfect in improving the efficiency with incident electromagnetic waves from various directions.

  8. 78 FR 77029 - Wireless Telecommunications Bureau Seeks Comment on a Proposal To License the 600 MHz Band Using...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... Electronic Comment Filing System (ECFS). See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR... 77 FR 69934 November 21, 2012 (NPRM), the Commission sought public comment on creating a 600 MHz band... MHz Bands 78 FR 51559 August 20, 2013 (AWS-3 NPRM), WTB seeks comment on applying this approach. 4....

  9. 76 FR 67070 - Operation of Wireless Communications Services in the 2.3 GHz Band; Establishment of Rules and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...), 27.73(a), and 27.73(b) of the Commission's rules published at 75 FR 45058, August 2, 2010, are... and Policies for the Digital Audio Radio Satellite Service in the 2310-2360 MHz Frequency Band AGENCY... Audio Radio Satellite Service in the 2310-2360 MHz Frequency Band (WCS and SDARS) proceeding, to...

  10. Learning Multiple Band-Pass Filters for Sleep Stage Estimation: Towards Care Support for Aged Persons

    NASA Astrophysics Data System (ADS)

    Takadama, Keiki; Hirose, Kazuyuki; Matsushima, Hiroyasu; Hattori, Kiyohiko; Nakajima, Nobuo

    This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.

  11. Oligoclonal Bands in Cerebrospinal Fluid of Black Patients with Multiple Sclerosis

    PubMed Central

    da Gama, Paulo Diniz; Machado, Luís dos Ramos; Livramento, José Antonio; Gomes, Hélio Rodrigues; Adoni, Tarso; Morales, Rogério de Rizo; da Gama, Rodrigo Assad Diniz; da Gama, Daniel Assad Diniz; Lana-Peixoto, Marco Aurélio; Fragoso, Yara Dadalti; Callegaro, Dagoberto

    2015-01-01

    Genetic susceptibility is a well-recognized factor in the onset of multiple sclerosis (MS). The objective of this study was to determine the frequency of oligoclonal bands (OCB) restricted to the cerebrospinal fluid, in an ethnically mixed group of MS patients in the city of São Paulo, Brazil. Techniques used to detect OCB consisted of isoelectric focusing followed by immunoblotting. OCB were found in 49 (54.4%) out of 90 patients with clinically definite MS; out of the 23 brown/black patients, 17 (73.9%) were OCB+; out of the 66 white patients, 32 (48.5%) were OCB+; and the only patient yellow was OCB+ (p = 0.05). Analysis of the IgG index was also consistent with the findings, but with lower statistical significance. The data presented in our study show that the ethnic differences in MS extend to the immune response. PMID:26295036

  12. S-band multiple-access interference study for advanced tracking and data relay satellite systems

    NASA Technical Reports Server (NTRS)

    Peng, Wei-Chung; Yang, Chau-Chin

    1990-01-01

    The results of a study on the effect of mutual interference among S-band multiple access (SMA) system users of advanced tracking and data relay satellite system (ATDRSS) are presented. In the ATDRSS era, the SMA system is required to support data rates ranging from 10 kb/s to 3 Mb/s. The system will consist of four advanced tracking and data relay satellites (ATDRS) each supporting up to five telemetry links. All users have 10 MHz bandwidth with their carrier frequency equal to 2.2875 GHz. A hybrid SDMA/CDMA scheme is used to mitigate the effect of the interference among system users. SMA system interference probability is evaluated with CLASS software. User link margin degradation due to mutual interference between two users is evaluated. System interference probability is evaluated for the projected 1996 mission model, a reference mission model, and a modified reference mission model.

  13. Multiple-band reflective polarization converter using U-shaped metamaterial

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Dong; Yang, Helin

    2014-03-01

    A multiple-band metamaterial reflective polarization converter (RPC) is proposed, which is composed of the dielectric substrate sandwiched with U-shaped metallic patterns and continuous metal film. The proposed U-shaped metamaterial RPC (UMM-RPC) can convert a linearly polarized wave to its cross polarized wave at the three resonant frequencies, which also can convert the linearly polarized wave to circularly polarized wave at other three resonant frequencies. Furthermore, the proposed UMM-RPC can maintain the same conversional direction at the three resonant frequencies when incident on a circularly polarized wave. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is over 90% for both linear and circular polarizations. The surface current distributions of the UMM-RPC are discussed to look into the physical mechanism. The proposed UMM-RPC has simple geometry but more operating frequency bands compared to the previous designs and can be used in applications such as antenna radome, remote sensors, and radiometer.

  14. Multiple-band reflective polarization converter using U-shaped metamaterial

    SciTech Connect

    Huang, Xiaojun; Yang, Dong; Yang, Helin

    2014-03-14

    A multiple-band metamaterial reflective polarization converter (RPC) is proposed, which is composed of the dielectric substrate sandwiched with U-shaped metallic patterns and continuous metal film. The proposed U-shaped metamaterial RPC (UMM-RPC) can convert a linearly polarized wave to its cross polarized wave at the three resonant frequencies, which also can convert the linearly polarized wave to circularly polarized wave at other three resonant frequencies. Furthermore, the proposed UMM-RPC can maintain the same conversional direction at the three resonant frequencies when incident on a circularly polarized wave. The simulated and measured results are in agreement in the entire frequency range, and the polarization conversion ratio is over 90% for both linear and circular polarizations. The surface current distributions of the UMM-RPC are discussed to look into the physical mechanism. The proposed UMM-RPC has simple geometry but more operating frequency bands compared to the previous designs and can be used in applications such as antenna radome, remote sensors, and radiometer.

  15. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  16. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  17. Systematic topology optimization of solid-solid phononic crystals for multiple separate band-gaps with different polarizations.

    PubMed

    Liu, Zong-Fa; Wu, Bin; He, Cun-Fu

    2016-02-01

    Phononic crystals (PnCs) have attracted considerable interest due to their unique and outstanding band-gap characteristics. In many applications, it is desirable to have a unit cell with specific band-gaps. The distribution of elastic materials within a unit cell has significant effect on the band-gaps, which is extremely difficult to be determined without systematic synthesis method. In this paper, topology optimization techniques are utilized to obtain two-dimensional (2D) square lattice PnCs with maximized relative band-gaps between multiple consecutive bands. The optimization follows two-stage design process using Genetic algorithms (GAs) in combination with finite element method (FEM). Three numerical examples are given to optimize 2D steel/epoxy PnCs in one-eighth symmetry for coupled mode, shear mode and mixed mode respectively. The results show that the optimized PnCs with different band-gaps, which can easily be found by the developed method, have different materials layout, and the PnCs with the lowest order band-gap are simple lattice and have the highest value of application in noise reduction and vibration isolation. Some optimized PnCs with higher order band-gaps have the same lattice as those with the lowest order band-gap, and whose absolute band-gaps are inversely proportional to the minimum feature size of primitive cells. PMID:26456279

  18. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for...

  19. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for...

  20. 47 CFR 27.1250 - Transition of the 2150-2160/62 MHz band from the Broadband Radio Service to the Advanced Wireless...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Broadband Radio Service to the Advanced Wireless Service. 27.1250 Section 27.1250 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Relocation Procedures for...

  1. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    PubMed

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed. PMID:25835873

  2. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks.

    PubMed

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols. PMID:26495426

  3. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks

    PubMed Central

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a “splitting tree” technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the “Biased Random Walk” model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols. PMID:26495426

  4. Embedding multiple watermarks in the DFT domain using low- and high-frequency bands

    NASA Astrophysics Data System (ADS)

    Ganic, Emir; Dexter, Scott D.; Eskicioglu, Ahmet M.

    2005-03-01

    Although semi-blind and blind watermarking schemes based on Discrete Cosine Transform (DCT) or Discrete Wavelet Transform (DWT) are robust to a number of attacks, they fail in the presence of geometric attacks such as rotation, scaling, and translation. The Discrete Fourier Transform (DFT) of a real image is conjugate symmetric, resulting in a symmetric DFT spectrum. Because of this property, the popularity of DFT-based watermarking has increased in the last few years. In a recent paper, we generalized a circular watermarking idea to embed multiple watermarks in lower and higher frequencies. Nevertheless, a circular watermark is visible in the DFT domain, providing a potential hacker with valuable information about the location of the watermark. In this paper, our focus is on embedding multiple watermarks that are not visible in the DFT domain. Using several frequency bands increases the overall robustness of the proposed watermarking scheme. Specifically, our experiments show that the watermark embedded in lower frequencies is robust to one set of attacks, and the watermark embedded in higher frequencies is robust to a different set of attacks.

  5. Wireless Low-Power Integrated Basal-Body-Temperature Detection Systems Using Teeth Antennas in the MedRadio Band

    PubMed Central

    Yang, Chin-Lung; Zheng, Gou-Tsun

    2015-01-01

    This study proposes using wireless low power thermal sensors for basal-body-temperature detection using frequency modulated telemetry devices. A long-term monitoring sensor requires low-power circuits including a sampling circuit and oscillator. Moreover, temperature compensated technologies are necessary because the modulated frequency might have additional frequency deviations caused by the varying temperature. The temperature compensated oscillator is composed of a ring oscillator and a controlled-steering current source with temperature compensation, so the output frequency of the oscillator does not drift with temperature variations. The chip is fabricated in a standard Taiwan Semiconductor Manufacturing Company (TSMC) 0.18-μm complementary metal oxide semiconductor (CMOS) process, and the chip area is 0.9 mm2. The power consumption of the sampling amplifier is 128 µW. The power consumption of the voltage controlled oscillator (VCO) core is less than 40 µW, and the output is −3.04 dBm with a buffer stage. The output voltage of the bandgap reference circuit is 1 V. For temperature measurements, the maximum error is 0.18 °C with a standard deviation of ±0.061 °C, which is superior to the required specification of 0.1 °C. PMID:26610508

  6. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method.

    PubMed

    Rolfe, S M; Patel, M R; Gilmour, I; Olsson-Francis, K; Ringrose, T J

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined L-alanine, L-aspartic acid, L-cysteine, L-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for L-alanine (strongest intensity band: 832 cm(-1)), L-aspartic acid (938 cm(-1)), L-cysteine (679 cm(-1)), L-glutamine (1090 cm(-1)) and glycine (875 cm(-1)), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made. PMID:26744263

  7. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    NASA Astrophysics Data System (ADS)

    Rolfe, S. M.; Patel, M. R.; Gilmour, I.; Olsson-Francis, K.; Ringrose, T. J.

    2016-06-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identification. To date, there has been no definition of multiple characteristic bands for amino acids of interest to astrobiology. This study examined l-alanine, l-aspartic acid, l-cysteine, l-glutamine and glycine and defined several Raman bands per molecule for reference as characteristic identifiers. Per amino acid, 240 spectra were recorded and compared using established statistical tests including ANOVA. The number of characteristic bands defined were 10, 12, 12, 14 and 19 for l-alanine (strongest intensity band: 832 cm-1), l-aspartic acid (938 cm-1), l-cysteine (679 cm-1), l-glutamine (1090 cm-1) and glycine (875 cm-1), respectively. The intensity of bands differed by up to six times when several points on the crystal sample were rotated through 360 °; to reduce this effect when defining characteristic bands for other molecules, we find that spectra should be recorded at a statistically significant number of points per sample to remove the effect of sample rotation. It is crucial that sets of characteristic Raman bands are defined for biomarkers that are targets for future planetary missions to ensure a positive identification can be made.

  8. Apparatus and method supporting wireless access to multiple security layers in an industrial control and automation system or other system

    DOEpatents

    Chen, Yu-Gene T.

    2013-04-16

    A method includes receiving a message at a first wireless node. The first wireless node is associated with a first wired network, and the first wired network is associated with a first security layer. The method also includes transmitting the message over the first wired network when at least one destination of the message is located in the first security layer. The method further includes wirelessly transmitting the message for delivery to a second wireless node when at least one destination of the message is located in a second security layer. The second wireless node is associated with a second wired network, and the second wired network is associated with the second security layer. The first and second security layers may be associated with different security paradigms and/or different security domains. Also, the message could be associated with destinations in the first and second security layers.

  9. Burst Packet Loss Concealment Using Multiple Codebooks and Comfort Noise for CELP-Type Speech Coders in Wireless Sensor Networks

    PubMed Central

    Park, Nam In; Kim, Hong Kook; Jung, Min A; Lee, Seong Ro; Choi, Seung Ho

    2011-01-01

    In this paper, a packet loss concealment (PLC) algorithm for CELP-type speech coders is proposed in order to improve the quality of decoded speech under burst packet loss conditions in a wireless sensor network. Conventional receiver-based PLC algorithms in the G.729 speech codec are usually based on speech correlation to reconstruct the decoded speech of lost frames by using parameter information obtained from the previous correctly received frames. However, this approach has difficulty in reconstructing voice onset signals since the parameters such as pitch, linear predictive coding coefficient, and adaptive/fixed codebooks of the previous frames are mostly related to silence frames. Thus, in order to reconstruct speech signals in the voice onset intervals, we propose a multiple codebook-based approach that includes a traditional adaptive codebook and a new random codebook composed of comfort noise. The proposed PLC algorithm is designed as a PLC algorithm for G.729 and its performance is then compared with that of the PLC algorithm currently employed in G.729 via a perceptual evaluation of speech quality, a waveform comparison, and a preference test under different random and burst packet loss conditions. It is shown from the experiments that the proposed PLC algorithm provides significantly better speech quality than the PLC algorithm employed in G.729 under all the test conditions. PMID:22163902

  10. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins.

    PubMed

    Brändle, Simone M; Obermeier, Birgit; Senel, Makbule; Bruder, Jessica; Mentele, Reinhard; Khademi, Mohsen; Olsson, Tomas; Tumani, Hayrettin; Kristoferitsch, Wolfgang; Lottspeich, Friedrich; Wekerle, Hartmut; Hohlfeld, Reinhard; Dornmair, Klaus

    2016-07-12

    Oligoclonal Ig bands (OCBs) of the cerebrospinal fluid are a hallmark of multiple sclerosis (MS), a disabling inflammatory disease of the central nervous system (CNS). OCBs are locally produced by clonally expanded antigen-experienced B cells and therefore are believed to hold an important clue to the pathogenesis. However, their target antigens have remained unknown, mainly because it was thus far not possible to isolate distinct OCBs against a background of polyclonal antibodies. To overcome this obstacle, we copurified disulfide-linked Ig heavy and light chains from distinct OCBs for concurrent analysis by mass spectrometry and aligned patient-specific peptides to corresponding transcriptome databases. This method revealed the full-length sequences of matching chains from distinct OCBs, allowing for antigen searches using recombinant OCB antibodies. As validation, we demonstrate that an OCB antibody from a patient with an infectious CNS disorder, neuroborreliosis, recognized a Borrelia protein. Next, we produced six recombinant antibodies from four MS patients and identified three different autoantigens. All of them are conformational epitopes of ubiquitous intracellular proteins not specific to brain tissue. Our findings indicate that the B-cell response in MS is heterogeneous and partly directed against intracellular autoantigens released during tissue destruction. In addition to helping elucidate the role of B cells in MS, our approach allows the identification of target antigens of OCB antibodies in other neuroinflammatory diseases and the production of therapeutic antibodies in infectious CNS diseases. PMID:27325759

  11. A comparative audit of anticardiolipin antibodies in oligoclonal band negative and positive multiple sclerosis.

    PubMed

    Vilisaar, Janek; Wilson, Martin; Niepel, Graham; Blumhardt, Lance D; Constantinescu, Cris S

    2005-08-01

    It has been suggested that multiple sclerosis (MS) patients with positive anticardiolipin antibodies (ACLA) have some atypical features, including absent oligoclonal bands (OCB) in the cerebrospinal fluid (CSF). Our aim was to compare the frequencies of ACLA and related laboratory and clinical features in OCB negative (OCB-) and positive (OCB+) MS patients. We compared 41 OCB- patients attending a MS Clinic in a tertiary referral center, with 206 OCB+ patients. ACLA, anti-beta2-glycoprotein and other autoantibodies, lupus anticoagulant and coagulation markers were measured. We found a higher frequency of ACLA in OCB- patients, 18/41 versus 33/206 in OCB+ patients (P<0.0001). OCB- patients had more progressive MS than OCB+ subjects. There were no differences in age, sex, Expanded Disability Status Scale (EDSS) score, antiphospholipid syndrome symptoms between the groups. ACLA+ MS patients were more frequently in the OCB- group. Although this may suggest that they represent a special subgroup of MS, no other clinical or laboratory findings distinguish the groups. Although OCB- MS patients may be thought to be less active immunologically, this study shows they have more frequently ACLA than OCB+ patients. OCB- MS patients in our cohort do not appear to have a more benign form of MS, as has previously been suggested. PMID:16042217

  12. Single-Aperture Multiple-Carrier Uplink Using a 20 Kilowatt X-Band Transmitter

    NASA Astrophysics Data System (ADS)

    Cornish, T.

    2000-10-01

    This article describes empirical testing that has been performed on a Deep Space Network 20 kW X-band (7.17 GHz) klystron amplifier. The purpose of these tests is to characterize the intermodulation performance to a level of detail and accuracy not presently provided by theoretical models [1,2]. The data set is sufficiently complete to allow for amplitude and frequency prediction of third-, fifth-, and seventh-order intermodulation products for two or three drive carriers of equal or unequal amplitude. The data can be used for frequency planning and frequency management in a situation where multiple command signals are radiated simultaneously from a single uplink aperture. Although the data have been gathered on a specific make and model of klystron tube (CPI VA876P), it should be extensible to any five-cavity klystron tube since the intermodulation performance is a function of the general tube topology and not subject to unit-to-unit manufacturing variation. An Excel spreadsheet has been assembled to test carrier-frequency combinations for interference. The spreadsheet takes into account uplink signal bandwidth, spacecraft receiver bandwidth, Doppler shift, and acquisition frequency sweeps.

  13. Intrathecal, Polyspecific Antiviral Immune Response in Oligoclonal Band Negative Multiple Sclerosis

    PubMed Central

    Brecht, Isabel; Weissbrich, Benedikt; Braun, Julia; Toyka, Klaus Viktor; Weishaupt, Andreas; Buttmann, Mathias

    2012-01-01

    Background Oligoclonal bands (OCB) are detected in the cerebrospinal fluid (CSF) in more than 95% of patients with multiple sclerosis (MS) in the Western hemisphere. Here we evaluated the intrathecal, polyspecific antiviral immune response as a potential diagnostic CSF marker for OCB-negative MS patients. Methodology/Principal Findings We tested 46 OCB-negative German patients with paraclinically well defined, definite MS. Sixteen OCB-negative patients with a clear diagnosis of other autoimmune CNS disorders and 37 neurological patients without evidence for autoimmune CNS inflammation served as control groups. Antibodies against measles, rubella, varicella zoster and herpes simplex virus in paired serum and CSF samples were determined by ELISA, and virus-specific immunoglobulin G antibody indices were calculated. An intrathecal antibody synthesis against at least one neurotropic virus was detected in 8 of 26 (31%) patients with relapsing-remitting MS, 8 of 12 (67%) with secondary progressive MS and 5 of 8 (63%) with primary progressive MS, in 3 of 16 (19%) CNS autoimmune and 3 of 37 (8%) non-autoimmune control patients. Antibody synthesis against two or more viruses was found in 11 of 46 (24%) MS patients but in neither of the two control groups. On average, MS patients with a positive antiviral immune response were older and had a longer disease duration than those without. Conclusion Determination of the intrathecal, polyspecific antiviral immune response may allow to establish a CSF-supported diagnosis of MS in OCB-negative patients when two or more of the four virus antibody indices are elevated. PMID:22792316

  14. A reconfigurable multi-mode multi-band transmitter with integrated frequency synthesizer for short-range wireless communication

    NASA Astrophysics Data System (ADS)

    Nan, Qi; Fan, Chen; Lingwei, Zhang; Xiaoman, Wang; Baoyong, Chi

    2013-09-01

    A reconfigurable multi-mode direct-conversion transmitter (TX) with integrated frequency synthesizer (FS) is presented. The TX as well as the FS is designed with a flexible architecture and frequency plan, which helps to support all the 433/868/915 MHz ISM band signals, with the reconfigurable bandwidth from 250 kHz to 2 MHz. In order to save power and chip area, only one 1.8 GHz VCO is adopted to cover the whole frequency range. All the operation modes can be regulated in real time by configuring the integrated register-bank through an SPI interface. Implemented in 180 nm CMOS, the FS achieves a frequency coverage of 320-460 MHz and 620-920 MHz. The lowest phase noise can be -107 dBc/Hz at a 100 kHz offset and -126 dBc/Hz at a 1 MHz offset. The transmitter features a + 10.2 dBm peak output power with a +9.5 dBm 1-dB-compression point and 250 kHz/500 kHz/1 MHz/2 MHz reconfigurable signal bandwidth.

  15. On Deployment of Multiple Base Stations for Energy-Efficient Communication in Wireless Sensor Networks

    DOE PAGESBeta

    Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; Du, Xiaojiang; Kwon, Ki-Hyeon

    2010-01-01

    Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less

  16. On using multiple routing metrics with destination sequenced distance vector protocol for MultiHop wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Mehic, M.; Fazio, P.; Voznak, M.; Partila, P.; Komosny, D.; Tovarek, J.; Chmelikova, Z.

    2016-05-01

    A mobile ad hoc network is a collection of mobile nodes which communicate without a fixed backbone or centralized infrastructure. Due to the frequent mobility of nodes, routes connecting two distant nodes may change. Therefore, it is not possible to establish a priori fixed paths for message delivery through the network. Because of its importance, routing is the most studied problem in mobile ad hoc networks. In addition, if the Quality of Service (QoS) is demanded, one must guarantee the QoS not only over a single hop but over an entire wireless multi-hop path which may not be a trivial task. In turns, this requires the propagation of QoS information within the network. The key to the support of QoS reporting is QoS routing, which provides path QoS information at each source. To support QoS for real-time traffic one needs to know not only minimum delay on the path to the destination but also the bandwidth available on it. Therefore, throughput, end-to-end delay, and routing overhead are traditional performance metrics used to evaluate the performance of routing protocol. To obtain additional information about the link, most of quality-link metrics are based on calculation of the lost probabilities of links by broadcasting probe packets. In this paper, we address the problem of including multiple routing metrics in existing routing packets that are broadcasted through the network. We evaluate the efficiency of such approach with modified version of DSDV routing protocols in ns-3 simulator.

  17. Band width and multiple-angle valence-state mapping of diamond

    SciTech Connect

    Jimenez, I.; Terminello, L.J.; Sutherland, D.G.J.

    1997-04-01

    The band width may be considered the single most important parameter characterizing the electronic structure of a solid. The ratio of band width and Coulomb repulsion determines how correlated or delocalized an electron system is. Some of the most interesting solids straddle the boundary between localized and delocalized, e.g. the high-temperature superconductors. The bulk of the band calculations available today is based on local density functional (DF) theory. Even though the Kohn-Sham eigenvalues from that theory do not represent the outcome of a band-mapping experiment, they are remarkably similar to the bands mapped via photoemission. Strictly speaking, one should use an excited state calculation that takes the solid`s many-body screening response to the hole created in photoemission into account. Diamond is a useful prototype semiconductor because of its low atomic number and large band width, which has made it a long-time favorite for testing band theory. Yet, the two experimental values of the band width of diamond have error bars of {+-}1 eV and differ by 3.2 eV. To obtain an accurate valence band width for diamond, the authors use a band-mapping method that collects momentum distributions instead of the usual energy distributions. This method has undergone extensive experimental and theoretical tests in determining the band width of lithium fluoride. An efficient, imaging photoelectron spectrometer is coupled with a state-of-the-art undulator beam line at the Advanced Light Source to allow collection of a large number of data sets. Since it takes only a few seconds to take a picture of the photoelectrons emitted into a 84{degrees} cone, the authors can use photon energies as high as 350 eV where the cross section for photoemission from the valence band is already quite low, but the emitted photoelectrons behave free-electron-like. This make its much easier to locate the origin of the inter-band transitions in momentum space.

  18. Construction of a wireless communication contact closure system for liquid chromatography with multiple parallel mass spectrometers and other detectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A contact closure system has been constructed and implemented that utilizes two contact closure sender boards that communicate wirelessly to four contact closure receiver boards to distribute start signals from two or three liquid chromatographs to fourteen instruments, pumps, detectors, or other co...

  19. Theory of Raman Scattering from Leggett's Collective Mode in a Multiple Band Superconductor: Application to MgB2

    NASA Astrophysics Data System (ADS)

    Klein, Miles

    2008-03-01

    Using an extension of BCS theory to a two-band superconductor, Leggett showed that if the relevant parameters obeyed certain conditions a collective mode would exist corresponding to the counter flow of the two condensates.^1 I have extended earlier work on electronic Raman in superconductors^2 to the multiple band case in order to incorporate Leggett's theory. The following effects have been included: (a) Vertex correction in the particle/hole channel where the Raman vertex acts. (b) Realistic parameters that apply to MgB2 yielding a counter flow mode that decays into the pair-breaking continuum associated with the lower gap π band. (c) Large finite wave-vector effects due to the relatively large Fermi velocity of the π band. (d) Integration over the wave-vector in part (c) necessitated by the exponential decay of the photon fields traveling into and out of the metallic sample. A comparison to the results of Blumberg^3 will be given. ^1A.J. Leggett, Progr. Theor. Phys. 36, 901 (1966). ^2M.V. Klein and S.B. Dierker, Phys. Rev. B29, 4976 (1984). ^3G. Blumberg et al., Phys. Rev. Lett. 99, (2007); arXiv:0710.2803.

  20. Using multiple-polarization L-band radar to monitor marsh burn recovery

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Nelson, G.A.; Sapkota, S.K.; Laine, S.C.; Verdi, J.; Rrasznay, S.

    1999-01-01

    Aircraft L-band VV-, HH-, and VH-polarizations were examined as tools for monitoring burn recovery in a coastal marsh. Significant relationships were observed between time-since-burn (difference between burn and image collection dates; 550-900 days after burn) and returns related to all polarizations. As marsh burn recovery progressed, VV returns decreased while HH and VH returns increased. Radar returns extracted from control sites adjacent to each burn-simulated nonburn marsh and were not individually or in combination significantly related to the timesince-burn. Normalized by the control data, VH-polarization explained up to 83% of the total variations. Overall, the L-band multipolarization radars estimated time-since-burn within ??59 to ??92 days. ?? 1999 IEEE.

  1. Skin hydration by spectroscopic imaging using multiple near-infrared bands

    NASA Astrophysics Data System (ADS)

    Attas, E. Michael; Sowa, Michael G.; Posthumus, Trevor B.; Schattka, Bernhard J.; Mantsch, Henry H.; Zhang, Shuliang L.

    2002-03-01

    Near-infrared spectroscopic methods have been developed to determine the degree of hydration of human skin in vivo. Reflectance spectroscopic imaging was used to investigate the distribution of skin moisture as a function of location. A human study in a clinical setting has generated quantitative data showing the effects of a drying agent and a moisturizer on delineated regions of the forearms of eight volunteers. Two digital imaging systems equipped with liquid-crystal tunable filters were used to collect stacks of monochromatic images at 10-nm intervals over the wavelength bands 650-1050 nm and 960-1700 nm. Images generated from measurements of water absorption-band areas at three different near-IR wavelengths (970, 1200, and 1450 nm) showed obvious differences in the apparent distribution of water in skin. Changes resulting from the skin treatments were much more evident in the 1200-nm and 1450-nm images than in the 970-nm ones. The variable sensitivity of the method at different wavelengths has been interpreted as being the result of different penetration depths of the infrared light used in the reflectance studies. Ex-vivo experiments with pigskin have provided evidence supporting the relationship between wavelength and penetration depth. Combining the hydration results from several near-IR water bands allows additional information on hydration depth to be obtained.

  2. Wireless hippocampal neural recording via a multiple input RF receiver to construct place-specific firing fields.

    PubMed

    Lee, Seung Bae; Manns, Joseph R; Ghovanloo, Maysam

    2012-01-01

    This paper reports scientifically meaningful in vivo experiments using a 32-channel wireless neural recording system (WINeR). The WINeR system is divided into transmitter (Tx) and receiver (Rx) parts. On the Tx side, we had WINeR-6, a system-on-a-chip (SoC) that operated based on time division multiplexing (TDM) of pulse width modulated (PWM) samples. The chip was fabricated in a 0.5-µm CMOS process, occupying 4.9 × 3.3 mm(2) and consuming 15 mW from ±1.5V supplies. The Rx used two antennas with separate pathways to down-convert the RF signal from a large area. A time-to-digital converter (TDC) in an FPGA converted the PWM pulses into digitized samples. In order to further increase the wireless coverage area and eliminate blind spots within a large experimental arena, two receivers were synchronized. The WINeR system was used to record epileptic activities from a rat that was injected with tetanus toxin (TT) in the dorsal hippocampus. In a different in vivo experiment, place-specific firing fields of place cells, which are parts of the hippocampal-dependent memory, were mapped from a series of behavioral experiments from a rat running in a circular track. Results from the same animal were compared against a commercial hard-wired recording system to evaluate the quality of the wireless recordings. PMID:23366004

  3. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    NASA Technical Reports Server (NTRS)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  4. Neural Dynamics Associated with Semantic and Episodic Memory for Faces: Evidence from Multiple Frequency Bands

    PubMed Central

    Zion-Golumbic, Elana; Kutas, Marta; Bentin, Shlomo

    2009-01-01

    Prior semantic knowledge facilitates episodic recognition memory for faces. To examine the neural manifestation of the interplay between semantic and episodic memory, we investigated neuroelectric dynamics during the creation (study) and the retrieval (test) of episodic memories for famous and nonfamous faces. Episodic memory effects were evident in several EEG frequency bands: theta (4–8 Hz), alpha (9–13 Hz), and gamma (40–100 Hz). Activity in these bands was differentially modulated by preexisting semantic knowledge and by episodic memory, implicating their different functional roles in memory. More specifically, theta activity and alpha suppression were larger for old compared to new faces at test regardless of fame, but were both larger for famous faces during study. This pattern of selective semantic effects suggests that the theta and alpha responses, which are primarily associated with episodic memory, reflect utilization of semantic information only when it is beneficial for task performance. In contrast, gamma activity decreased between the first (study) and second (test) presentation of a face, but overall was larger for famous than nonfamous faces. Hence, the gamma rhythm seems to be primarily related to activation of preexisting neural representations that may contribute to the formation of new episodic traces. Although the latter process is affected by the episodic status of a stimulus, gamma activity might not be a direct index of episodic memory. Taken together, these data provide new insights into the complex interaction between semantic and episodic memory for faces and the neural dynamics associated with mnemonic processes. PMID:19400676

  5. Wireless Technologies in Support of ISS Experimentation and Operations

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond; Fink, Patrick

    2012-01-01

    Presentation reviews: (1) Wireless Communications (a) Internal (b) External (2) RFID (Radio Frequency Identification) (a) Existing and R&D (3) Wireless Sensor Networks (a) Existing and R&D (4) Ultra-Wide Band (UWB) (a) R&D

  6. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  7. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  8. Multiple sclerosis patients lacking oligoclonal bands in the cerebrospinal fluid have less global and regional brain atrophy.

    PubMed

    Ferreira, Daniel; Voevodskaya, Olga; Imrell, Kerstin; Stawiarz, Leszek; Spulber, Gabriela; Wahlund, Lars-Olof; Hillert, Jan; Westman, Eric; Karrenbauer, Virginija Danylaité

    2014-09-15

    To investigate whether multiple sclerosis (MS) patients with and without cerebrospinal fluid (CSF) oligoclonal immunoglobulin G bands (OCB) differ in brain atrophy. Twenty-eight OCB-negative and thirty-five OCB-positive patients were included. Larger volumes of total CSF and white matter (WM) lesions; smaller gray matter (GM) volume in the basal ganglia, diencephalon, cerebellum, and hippocampus; and smaller WM volume in corpus callosum, periventricular-deep WM, brainstem, and cerebellum, were observed in OCB-positives. OCB-negative patients, known to differ genetically from OCB-positives, are characterized by less global and regional brain atrophy. This finding supports the notion that OCB-negative MS patients may represent a clinically relevant MS subgroup. PMID:24999245

  9. Superfluid Density and Flux-Flow Resistivity Measurements of Multiple-Band Superconductor β-PdBi2

    NASA Astrophysics Data System (ADS)

    Okada, Tatsunori; Imai, Yoshinori; Maeda, Atsutaka

    β -PdBi2 (Tcmax = 5 . 4 K) is a newcomer of the multiple-band superconductors, revealed by the specific heat and the upper critical field measurements, and the angle-resolved photoemission spectroscopy. In addition, authors of ref. observed the spin-polarized band dispersion and proposed that β-PdBi2 is a candidate of topological superconductor. However, there is less information on superconducting properties so far. In order to clarify the superconducting gap function, we measured the temperature (T) and magnetic field (B) dependence of microwave complex conductivity of β-PdBi2 single crystals. We found that the superfluid density exhibits the thermally activated T dependence, manifesting the absence of nodes in the superconducting gaps. We also found that the flux-flow resistivity increased with B with downward-convex shape. Based on some theories, we considered that such a behavior originated from the backflow of supercurrents around vortices reflecting rather small Ginzburg-Landau parameter (κ ~= 5). This work was supported by the JSPS KAKENHI (Grant Numbers 15K17697 and 26-9315), and the JSPS Research Fellowship for Young Scientists.

  10. Design and analysis of a multiple-output transmitter based on DDS architecture for modern wireless communications

    NASA Astrophysics Data System (ADS)

    Votis, Constantinos; Christofilakis, Vasilis; Raptis, Vasilis; Tatsis, Giorgos; Chronopoulos, Spyridon K.; Kostarakis, Panos

    2010-01-01

    Multiple—output transmitter implementation based on Direct Digital Synthesis (DDS) architecture is presented and investigated. A particular number of identical and independent units compose the proposed device. DDS technology is applied on the first stage of these units and provides amplitude, phase and frequency adjustments on the corresponding output signals. Quadrature mixers are driven by DDS's outputs and corresponding amplification and filtering circuits are also used to prepare the radiofrequency signals in the outputs of the proposed device. Design issues of analog circuitry and digital control logic are also described. Phase, amplitude and frequency accuracy that DDS technology provides are further discussed. Experimental results indicate that the proposed transmitter architecture can provide independent RF signals for wireless applications.

  11. Terabit Wireless Communication Challenges

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  12. Wireless and simultaneous detections of multiple bio-molecules in a single sensor using Love wave biosensor.

    PubMed

    Oh, Haekwan; Fu, Chen; Kim, Kunnyun; Lee, Keekeun

    2014-01-01

    A Love wave-based biosensor with a 440 MHz center frequency was developed for the simultaneous detection of two different analytes of Cartilage Oligomeric Matrix Protein (COMP) and rabbit immunoglobulin G (IgG) in a single sensor. The developed biosensor consists of one-port surface acoustic wave (SAW) reflective delay lines on a 41° YX LiNbO3 piezoelectric substrate, a poly(methyl methacrylate) (PMMA) waveguide layer, and two different sensitive films. The Love wave biosensor was wirelessly characterized using two antennas and a network analyzer. The binding of the analytes to the sensitive layers induced a large change in the time positions of the original reflection peaks mainly due to the mass loading effect. The assessed time shifts in the reflection peaks were matched well with the predicted values from coupling of mode (COM) modeling. The sensitivities evaluated from the sensitive films were ~15 deg/µg/mL for the rabbit IgG and ~1.8 deg/ng/mL for COMP. PMID:25407905

  13. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    NASA Technical Reports Server (NTRS)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  14. 78 FR 8229 - Service Rules for Advanced Wireless Services in the 2000-2020 MHz and 2180-2200 MHz Bands, etc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...In this document, the Federal Communications Commission (``Commission'') increases the Nation's supply of spectrum for mobile broadband by adopting flexible use rules for up to 40 megahertz of spectrum in the 2 GHz band (2000-2020 MHz and 2180-2200 MHz), which we term the AWS-4 band. In so doing, we carry out a recommendation in the National Broadband Plan that the Commission enable the......

  15. Views of wireless network systems.

    SciTech Connect

    Young, William Frederick; Duggan, David Patrick

    2003-10-01

    Wireless networking is becoming a common element of industrial, corporate, and home networks. Commercial wireless network systems have become reliable, while the cost of these solutions has become more affordable than equivalent wired network solutions. The security risks of wireless systems are higher than wired and have not been studied in depth. This report starts to bring together information on wireless architectures and their connection to wired networks. We detail information contained on the many different views of a wireless network system. The method of using multiple views of a system to assist in the determination of vulnerabilities comes from the Information Design Assurance Red Team (IDART{trademark}) Methodology of system analysis developed at Sandia National Laboratories.

  16. Channel models for wireless body area networks.

    PubMed

    Takizawa, Kenichi; Aoyagi, Akahiro; Takada, Jun-Ichi; Katayama, Norihiko; Yekeh, Kamya; Takehiko, Yazdandoost; Kohno, Kobayashi Ryuji

    2008-01-01

    Wireless patient monitoring using wearable sensors is a promising application. This paper provides stochastic channel models for wireless body area network (WBAN) on the human body. Parameters of the channel models are extracted from measured channel transfer functions (CTFs) in a hospital room. Measured frequency bands are selected so as to include permissible bands for WBAN; ultra wideband (UWB), the industry, science and medical (ISM) bands, and wireless medical telemetry system (WMTS) bands. As channel models, both a path loss model and a power delay profile (PDP) model are considered. But, even though path loss models are derived for the all frequency bands, PDP model is only for the UWB band due to the highly frequency selectiveness of UWB channels. The parameters extracted from the measurement results are summarized for each channel model. PMID:19162968

  17. 77 FR 22720 - Service Rules for Advanced Wireless Services in the 2000-2020 MHz and 2180-2200 MHz Bands, etc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ...In this document, the Commission proposes and/or seeks comments on service, technical, assignment, and licensing rules for flexible terrestrial use of spectrum currently assigned to the Mobile Satellite Service (MSS) in the 2 GHz band. These proposed rules are designed to increase the Nation's supply of spectrum for mobile broadband, provide for flexible use of this spectrum, encourage......

  18. Behavioral modeling and digital compensation of nonlinearity in DFB lasers for multi-band directly modulated radio-over-fiber systems

    NASA Astrophysics Data System (ADS)

    Li, Jianqiang; Yin, Chunjing; Chen, Hao; Yin, Feifei; Dai, Yitang; Xu, Kun

    2014-11-01

    The envisioned C-RAN concept in wireless communication sector replies on distributed antenna systems (DAS) which consist of a central unit (CU), multiple remote antenna units (RAUs) and the fronthaul links between them. As the legacy and emerging wireless communication standards will coexist for a long time, the fronthaul links are preferred to carry multi-band multi-standard wireless signals. Directly-modulated radio-over-fiber (ROF) links can serve as a lowcost option to make fronthaul connections conveying multi-band wireless signals. However, directly-modulated radioover- fiber (ROF) systems often suffer from inherent nonlinearities from directly-modulated lasers. Unlike ROF systems working at the single-band mode, the modulation nonlinearities in multi-band ROF systems can result in both in-band and cross-band nonlinear distortions. In order to address this issue, we have recently investigated the multi-band nonlinear behavior of directly-modulated DFB lasers based on multi-dimensional memory polynomial model. Based on this model, an efficient multi-dimensional baseband digital predistortion technique was developed and experimentally demonstrated for linearization of multi-band directly-modulated ROF systems.

  19. A first generation cytogenetic ideogram for the Florida manatee (Trichechus manatus latirostris) based on multiple chromosome banding techniques

    USGS Publications Warehouse

    Gray, B.A.; Zori, Roberto T.; McGuire, P.M.; Bonde, R.K.

    2002-01-01

    Detailed chromosome studies were conducted for the Florida manatee (Trichechus manatus latirostris) utilizing primary chromosome banding techniques (G- and Q-banding). Digital microscopic imaging methods were employed and a standard G-banded karyotype was constructed for both sexes. Based on chromosome banding patterns and measurements obtained in these studies, a standard karyotype and ideogram are proposed. Characterization of additional cytogenetic features of this species by supplemental chromosome banding techniques, C-banding (constitutive heterochromatin), Ag-NOR staining (nucleolar organizer regions), and DA/DAPI staining, was also performed. These studies provide detailed cytogenetic data for T. manatus latirostris, which could enhance future genetic mapping projects and interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.

  20. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  1. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  2. Differential recognition of the multiple banded antigen isoforms across Ureaplasma parvum and Ureaplasma urealyticum species by monoclonal antibodies.

    PubMed

    Aboklaish, Ali F; Ahmed, Shatha; McAllister, Douglas; Cassell, Gail; Zheng, Xiaotian T; Spiller, Owen B

    2016-08-01

    Two separate species of Ureaplasma have been identified that infect humans: Ureaplasma parvum and Ureaplasma urealyticum. Most notably, these bacteria lack a cell wall and are the leading infectious organism associated with infection-related induction of preterm birth. Fourteen separate representative prototype bacterial strains, called serovars, are largely differentiated by the sequence of repeating units in the C-terminus of the major surface protein: multiple-banded antigen (MBA). Monoclonal antibodies that recognise single or small groups of serovars have been previously reported, but these reagents remain sequestered in individual research laboratories. Here we characterise a panel of commercially available monoclonal antibodies raised against the MBA and describe the first monoclonal antibody that cross-reacts by immunoblot with all serovars of U. parvum and U. urealyticum species. We also describe a recombinant MBA expressed by Escherichia coli which facilitated further characterisation by immunoblot and demonstrate immunohistochemistry of paraffin-embedded antigens. Immunoblot reactivity was validated against well characterised previously published monoclonal antibodies and individual commercial antibodies were found to recognise all U. parvum strains, only serovars 3 and 14 or only serovars 1 and 6, or all strains belonging to U. parvum and U. urealyticum. MBA mass was highly variable between strains, consistent with variation in the number of C-terminal repeats between strains. Antibody characterisation will enable future investigations to correlate severity of pathogenicity to MBA isoform number or mass, in addition to development of antibody-based diagnostics that will detect infection by all Ureaplasma species or alternately be able to differentiate between U. parvum, U. urealyticum or mixed infections. PMID:27208664

  3. Proposal of dynamic subcarrier selection technique using CSMA/CA for cognitive wireless mesh networks

    NASA Astrophysics Data System (ADS)

    Miyamoto, Shinichi; Goda, Yuichi; Sampei, Seiichi

    2009-01-01

    In wireless mesh networks using unlicensed radio frequency band, how to adaptively and efficiently allocate spectrum among multiple wireless nodes according to the surrounding environment is an important issue. Cognitive radio that includes functionalities of radio environmental awareness and intelligent radio resource management in an opportunistic way is regarded as the great candidate to enable the efficient utilization of radio resource. In order to fully exploit radio resources and enhance spectrum efficiency based on cognitive radio to wireless mesh networks, this paper proposes dynamic subcarrier selection technique and CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) based MAC layer protocol for wireless mesh networks. In the proposed technique, based on the detection of available spot-wise subcarriers using the subcarrier-level carrier sense and the estimation of channel conditions, data packet is transmitted using unused discrete subcarriers having good channel conditions. Numerical results confirm that the proposed dynamic subcarrier selection technique is effective in utilizing radio resources and enhance spectrum efficiency. Moreover, because multiple nodes can get the transmission opportunity at the same time, the degradation in transmission performance due to the contention between multiple nodes can be solved.

  4. Wireless Andrew.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Describes the use of the Internet and laptops help Carnegie Mellon University students carry out sophisticated research anywhere on campus. How the university became a wireless community is discussed. (GR)

  5. Amplitude of Low-Frequency Fluctuations in Multiple-Frequency Bands in Acute Mild Traumatic Brain Injury

    PubMed Central

    Zhan, Jie; Gao, Lei; Zhou, Fuqing; Bai, Lijun; Kuang, Hongmei; He, Laichang; Zeng, Xianjun; Gong, Honghan

    2016-01-01

    Functional disconnectivity during the resting state has been observed in mild traumatic brain injury (mTBI) patients during the acute stage. However, it remains largely unknown whether the abnormalities are related to specific frequency bands of the low-frequency oscillations (LFO). Here, we used the amplitude of low-frequency fluctuations (ALFF) to examine the amplitudes of LFO in different frequency bands (slow-5: 0.01–0.027 Hz; slow-4: 0.027–0.073 Hz; and typical: 0.01–0.08 Hz) in patients with acute mTBI. A total of 24 acute mTBI patients and 24 age-, sex-, and education-matched healthy controls participated in this study. In the typical band, acute mTBI patients showed lower standardized ALFF in the right middle frontal gyrus and higher standardized ALFF in the right lingual/fusiform gyrus and left middle occipital gyrus. Further analyses showed that the difference between groups was concentrated in a narrower (slow-4) frequency band. In the slow-5 band, mTBI patients only exhibited higher standardized ALFF in the occipital areas. No significant correlation between the mini-mental state examination score and the standardized ALFF value was found in any brain region in the three frequency bands. Finally, no significant interaction between frequency bands and groups was found in any brain region. We concluded that the abnormality of spontaneous brain activity in acute mTBI patients existed in the frontal lobe as well as in distributed brain regions associated with integrative, sensory, and emotional roles, and the abnormal spontaneous neuronal activity in different brain regions could be better detected by the slow-4 band. These findings might contribute to a better understanding of local neural psychopathology of acute mTBI. Future studies should take the frequency bands into account when measuring intrinsic brain activity of mTBI patients. PMID:26869907

  6. System and method for time synchronization in a wireless network

    DOEpatents

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  7. Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses

    SciTech Connect

    Emmert, Luke A.; Mero, Mark; Rudolph, Wolfgang

    2010-08-15

    A model for the multiple-pulse laser-induced breakdown behavior of dielectrics is presented. It is based on a critical conduction band (CB) electron density leading to dielectric breakdown. The evolution of the CB electron density during the pulse train is calculated using rate equations involving transitions between band and mid-gap states (native and laser-induced). Using realistic estimations for the trap density and ionization cross-section, the model is able to reproduce the experimentally observed drop in the multiple-pulse damage threshold relative to the single-pulse value, as long as the CB electron density is controlled primarily by avalanche ionization seeded by multiphoton ionization of the traps and the valence band. The model shows that at long pulse duration, the breakdown threshold becomes more sensitive to presence of traps close (within one photon energy) to the CB. The effect of native and laser-induced defects can be distinguished by their saturation behavior. Finally, measurements of the multiple-pulse damage threshold of hafnium oxide films are used to illustrate the application of the model.

  8. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    PubMed Central

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  9. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays

    NASA Astrophysics Data System (ADS)

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-10-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies.

  10. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.

    PubMed

    Yin, Xiang; Long, Chang; Li, Junhao; Zhu, Hua; Chen, Lin; Guan, Jianguo; Li, Xun

    2015-01-01

    Microwave absorbers have important applications in various areas including stealth, camouflage, and antenna. Here, we have designed an ultra-broadband light absorber by integrating two different-sized tapered hyperbolic metamaterial (HMM) waveguides, each of which has wide but different absorption bands due to broadband slow-light response, into a unit cell. Both the numerical and experimental results demonstrate that in such a design strategy, the low absorption bands between high absorption bands with a single-sized tapered HMM waveguide array can be effectively eliminated, resulting in a largely expanded absorption bandwidth ranging from 2.3 to 40 GHz. The presented ultra-broadband light absorber is also insensitive to polarization and robust against incident angle. Our results offer a further step in developing practical artificial electromagnetic absorbers, which will impact a broad range of applications at microwave frequencies. PMID:26477740

  11. New Methods and Models in Wireless Networks: Multigraphs--Games--Mechanism Design

    ERIC Educational Resources Information Center

    Tran, Dung Trung

    2010-01-01

    The recent evolution of wireless technology makes wireless devices ever more powerful and intelligent. One trend is that wireless devices are becoming more inexpensive and more diverse. As a result, new technologies make it possible to equip wireless nodes with several radio transmitters/receivers. Each radio may support multiple channels which…

  12. Wireless Communications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  13. CSF oligoclonal banding

    MedlinePlus

    ... the cerebrospinal fluid (CSF). CFS is the clear fluid that flows in the space around the spinal cord and brain. Oligoclonal bands are proteins called immunoglobulins. The ... system. Oligoclonal bands may be a sign of multiple sclerosis.

  14. Wireless Seismometer for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  15. Wireless Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  16. Wireless Protection.

    ERIC Educational Resources Information Center

    Conforti, Fred

    2003-01-01

    Discusses wireless access-control equipment in the school and university setting, particularly the integrated reader lock at the door with a panel interface module at the control panel. Describes its benefits, how it works, and its reliability and security. (EV)

  17. Stenting of the ductus arteriosus and banding of the pulmonary arteries: basis for various surgical strategies in newborns with multiple left heart obstructive lesions

    PubMed Central

    Michel-Behnke, I; Akintuerk, H; Marquardt, I; Mueller, M; Thul, J; Bauer, J; Hagel, K J; Kreuder, J; Vogt, P; Schranz, D

    2003-01-01

    Objective: To present an institutional experience with stent placement in the arterial duct combined with bilateral banding of the pulmonary artery branches as a basis for various surgical strategies in newborns with hypoplastic left heart obstructive lesions. Design: Observational study. Setting: Paediatric heart centre in a university hospital. Patients: 20 newborns with various forms of left heart obstructive lesions and duct dependent systemic blood flow. Interventions: Patients underwent percutaneous ductal stenting and surgical bilateral pulmonary artery banding. Atrial septotomy by balloon dilatation was performed as required, in one premature baby by the transhepatic approach. Main outcome measures: Survival; numbers of and reasons for palliative and corrective cardiac surgery. Results: One patient died immediately after percutaneous ductal stenting. One patient died in connection with the surgical approach of bilateral pulmonary banding. Stent and ductal patency were achieved for up to 331 days. Two patients underwent heart transplantation and two patients died on the waiting list. Ten patients had a palliative one stage procedure with reconstruction of the aortic arch and bidirectional cavopulmonary connection at the age of 3.5–6 months. There was one death. One patient is still awaiting this approach. Two patients received biventricular repair. In one, biventricular repair will soon be provided. Conclusions: Stenting the arterial duct combined with bilateral pulmonary artery banding in newborns with hypoplastic left heart or multiple left heart obstructive lesions allows a broad variation of surgical strategies depending on morphological findings, postnatal clinical conditions, and potential ventricular growth. PMID:12748222

  18. Evolutionary games in wireless networks.

    PubMed

    Tembine, Hamidou; Altman, Eitan; El-Azouzi, Rachid; Hayel, Yezekael

    2010-06-01

    We consider a noncooperative interaction among a large population of mobiles that interfere with each other through many local interactions. The first objective of this paper is to extend the evolutionary game framework to allow an arbitrary number of mobiles that are involved in a local interaction. We allow for interactions between mobiles that are not necessarily reciprocal. We study 1) multiple-access control in a slotted Aloha-based wireless network and 2) power control in wideband code-division multiple-access wireless networks. We define and characterize the equilibrium (called evolutionarily stable strategy) for these games and study the influence of wireless channels and pricing on the evolution of dynamics and the equilibrium. PMID:19963703

  19. Constructing a two bands optical code-division multiple-access network of bipolar optical access codecs using Walsh-coded liquid crystal modulators

    NASA Astrophysics Data System (ADS)

    Yen, Chih-Ta; Huang, Jen-Fa; Chih, Ping-En

    2014-08-01

    We propose and experimentally demonstrated the two bands optical code-division multiple-access (OCDMA) network over bipolar Walsh-coded liquid-crystal modulators (LCMs) and driven by green light and red light lasers. Achieving system performance depends on the construction of a decoder that implements a true bipolar correlation using only unipolar signals and intensity detection for each band. We took advantage of the phase delay characteristics of LCMs to construct a prototype optical coder/decoder (codec). Matched and unmatched Walsh signature codes were evaluated to detect correlations among multiuser data in the access network. By using LCMs, a red and green laser light source was spectrally encoded and the summed light dots were complementary decoded. Favorable contrast on auto- and cross-correlations indicates that binary information symbols can be properly recovered using a balanced photodetector.

  20. Generation of multiple spectral bands in a diode-pumped self-mode-locked Nd:YAP laser

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Tzeng, Y. S.; Cho, H. H.; Chen, Y. F.; Chen, W. D.; Zhang, G.; Chen, T. C.

    2016-02-01

    A single- and multispectral-band diode end-pumped self-mode-locked Nd:YAP laser is originally demonstrated with an intracavity etalon to properly control the gain-to-loss ratios among the intermanifold lines on the 4F3/2  →  4I11/2 transition level. With a pulse repetition rate of 5.07 GHz, the shortest pulse durations under the single-spectral-band operation are achieved to be 11.1 ps at 1073 nm, 10.9 ps at 1080 nm, and 15.1 ps at 1084 nm, respectively. Moreover, the temporal overlapping of the multispectral-band pulses is experimentally found to lead to the generation of an intensity fringe pattern in the autocorrelation trace with the optical-beat frequency reaching several terahertz. A simple mathematical model is developed to elucidate the formation of a train of optical-beat pulses.

  1. Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band.

    PubMed

    Bourlier, Christophe

    2006-08-20

    The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method. PMID:16892130

  2. A reprogrammable receiver architecture for wireless signal interception

    NASA Astrophysics Data System (ADS)

    Yao, Timothy S.

    2003-09-01

    In this paper, a re-programmable receiver architecture, based on software-defined-radio concept, for wireless signal interception is presented. The radio-frequency (RF) signal that the receiver would like to intercept may come from a terrestrial cellular network or communication satellites, which their carrier frequency are in the range from 800 MHz (civilian mobile) to 15 GHz (Ku band). To intercept signals from such a wide range of frequency in these variant communication systems, the traditional way is to deploy multiple receivers to scan and detect the desired signal. This traditional approach is obviously unattractive due to the cost, efficiency, and accuracy. Instead, we propose a universal receiver, which is software-driven and re-configurable, to intercept signals of interest. The software-defined-radio based receiver first intercepts RF energy of wide spectrum (25MHz) through antenna, performs zero-IF down conversion (homodyne architecture) to baseband, and digital channelizes the baseband signal. The channelization module is a bank of high performance digital filters. The bandwidth of the filter bank is programmable according to the wireless communication protocol under watch. In the baseband processing, high-performance digital signal processors carry out the detection process and microprocessors handle the communication protocols. The baseband processing is also re-configurable for different wireless standards and protocol. The advantages of the software-defined-radio architecture over traditional RF receiver make it a favorable technology for the communication signal interception and surveillance.

  3. Compact ultra wide band microstrip bandpass filter based on multiple-mode resonator and modified complementary split ring resonator.

    PubMed

    Marcotegui, J Antonio; Illescas, Jesús Miguel; Estevez, Aritz; Falcone, Francisco

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)-a concept proposed here for the first time-are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366

  4. Compact Ultra Wide Band Microstrip Bandpass Filter Based on Multiple-Mode Resonator and Modified Complementary Split Ring Resonator

    PubMed Central

    Marcotegui, J. Antonio; Illescas, Jesús Miguel; Estevez, Aritz

    2013-01-01

    A new class of broadband microstrip filters for Ultra Wide Band (UWB) applications is proposed. In the design, different stages of parallel-coupled microstrip line and other stages with a Modified Complementary Split Ring Resonator (MCSRR)—a concept proposed here for the first time—are adjusted to obtain the desired response with broadband, sharp rejection, low insertion loss, and low return loss. Full wave simulation results as well as measurement results from fabricated prototypes are presented, showing good agreement. The proposed technique offers a new alternative to implement low-cost high-performance filter devices, applicable to a wide range of communication systems. PMID:24319366

  5. CSF oligoclonal banding

    MedlinePlus

    ... system. Oligoclonal bands may be a sign of multiple sclerosis. How the Test is Performed A sample of ... Performed This test helps support the diagnosis of multiple sclerosis (MS). However, it does not confirm the diagnosis. ...

  6. A rapid method of accurate detection and differentiation of Newcastle disease virus pathotypes by demonstrating multiple bands in degenerate primer based nested RT-PCR.

    PubMed

    Desingu, P A; Singh, S D; Dhama, K; Kumar, O R Vinodh; Singh, R; Singh, R K

    2015-02-01

    A rapid and accurate method of detection and differentiation of virulent and avirulent Newcastle disease virus (NDV) pathotypes was developed. The NDV detection was carried out for different domestic avian field isolates and pigeon paramyxo virus-1 (25 field isolates and 9 vaccine strains) by using APMV-I "fusion" (F) gene Class II specific external primer A and B (535bp), internal primer C and D (238bp) based reverses transcriptase PCR (RT-PCR). The internal degenerative reverse primer D is specific for F gene cleavage position of virulent strain of NDV. The nested RT-PCR products of avirulent strains showed two bands (535bp and 424bp) while virulent strains showed four bands (535bp, 424bp, 349bp and 238bp) on agar gel electrophoresis. This is the first report regarding development and use of degenerate primer based nested RT-PCR for accurate detection and differentiation of NDV pathotypes by demonstrating multiple PCR band patterns. Being a rapid, simple, and economical test, the developed method could serve as a valuable alternate diagnostic tool for characterizing NDV isolates and carrying out molecular epidemiological surveillance studies for this important pathogen of poultry. PMID:25449112

  7. Measurement of Along-track Displacements due to the M6.0 August 24, 2014 South Napa Earthquake Using X-band Multiple-Aperture SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Jung, H. S.; Jo, M. J.; Yun, S. H.; Jung, H. I.; Koh, Y. C.; Webb, F.

    2014-12-01

    Multiple-aperture SAR interferometry (MAI) has been developed for measuring surface displacements in along-track direction as an alternative method of amplitude offset tracking method. Various studies on geological phenomena have been carried out using MAI technique with C-band and L-band SAR data, but application of MAI to X-band SAR is challenging due to its more severe temporal decorrelation compared to longer wavelength radar. The Italian Space Agency's (ASI) COSMO-SkyMed (CSK) mission consisting of four identical radar satellites has a powerful capability to minimize temporal baselines maintaining high coherence. This offers a good chance for MAI application for precise measurement of along-track displacements. In this study, we demonstrate the MAI performance of X-band SAR for the M6.0, South Napa Earthquake occurred on August 24, 2014. A coseismic CSK pair data (July 26 and August 27, 2014) acquired from descending orbit was used to show the along-track displacements in the fault zone. In order to evaluate the precision for measuring MAI deformation on the Napa Earthquake using CSK data, we produced a coherence map of the interferogram because the MAI precision is a function of interferometric coherence. However, we found that standard deviation of MAI phase does not coincide with the theoretical variation. The measurement uncertainty of along-track displacements was estimated by using the predefined empirical equation which was established through the performance test using multi-path CSK dataset at Kilauea Volcano region. The uncertainty map of the along-track displacements in the South Napa Earthquake region provides a reliable metric to estimate the variance/covariance of the data, useful for 3-D displacement field construction and geophysical modeling.

  8. Determination of the valence band offset of MOVPE-grown In0.48Ga0.52P/GaAs multiple quantum wells by admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghezzi, Carlo; Magnanini, Renato; Parisini, Antonella; Tarricone, Luciano; Gombia, Enos; Longo, Massimo

    2008-03-01

    The valence band discontinuity of the lattice matched In0.48Ga0.52P/GaAs heterostructure was determined through a careful analysis of the temperature and frequency dependence of the admittance of p+/MQW/n+ structures, formed by a nominally undoped InGaP/GaAs multiple quantum well region, interposed between p+ and n+ GaAs layers. The heterostructures were grown through metal organic vapor phase epitaxy by using tertiary butyl arsine and tertiary butyl phosphine as alternative precursors for the V-group elements. The growth conditions were optimized for obtaining sharp interfaces and negligible ordering effects in the cation sublattice. Accounting for the temperature dependence of the Fermi energy and the calculated confining energy (10meV) of the heavy holes in the wells, a valence band offset ΔEV=(356±5)meV was derived from the temperature variation of the resonance frequency at which the isothermal conductance over frequency G(ω)/ω curves show a maximum. The experimental uncertainty of this result is significantly low if compared with the wide range (240-400meV) of the previously reported ΔEV values. By considering the band gap difference between InGaP and GaAs, a conduction band offset ΔEC=119meV was estimated. The accuracy of the experimental procedure and the reliability of the main assumptions of the admittance spectroscopy measurements were accurately checked. The obtained results were discussed in light of the large and growing amount of literature data by taking into account the influence of the growth conditions on the physical properties of the InGaP/GaAs quantum wells.

  9. Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Dong, L.; Mantese, J. V.; Avrutin, V.; Özgür, Ü.; Morkoç, H.; Alpay, S. P.

    2013-07-01

    The band structure, quantum confinement of charge carriers, and their localization affect the optoelectronic properties of compound semiconductor heterostructures and multiple quantum wells (MQWs). We present here the results of a systematic first-principles based density functional theory (DFT) investigation of the dependence of the valence band offsets and band bending in polar and non-polar strain-free and in-plane strained heteroepitaxial InxGa1-xN(InGaN)/GaN multilayers on the In composition and misfit strain. The results indicate that for non-polar m-plane configurations with [12¯10]InGaN//[12¯10]GaN and [0001]InGaN//[0001]GaN epitaxial alignments, the valence band offset changes linearly from 0 to 0.57 eV as the In composition is varied from 0 (GaN) to 1 (InN). These offsets are relatively insensitive to the misfit strain between InGaN and GaN. On the other hand, for polar c-plane strain-free heterostructures with [101¯0]InGaN//[101¯0]GaN and [12¯10]InGaN//[12¯10]GaN epitaxial alignments, the valence band offset increases nonlinearly from 0 eV (GaN) to 0.90 eV (InN). This is significantly reduced beyond x ≥ 0.5 by the effect of the equi-biaxial misfit strain. Thus, our results affirm that a combination of mechanical boundary conditions, epitaxial orientation, and variation in In concentration can be used as design parameters to rapidly tailor the band offsets in InGaN/GaN MQWs. Typically, calculations of the built-in electric field in complex semiconductor structures often must rely upon sequential optimization via repeated ab initio simulations. Here, we develop a formalism that augments such first-principles computations by including an electrostatic analysis (ESA) using Maxwell and Poisson's relations, thereby converting laborious DFT calculations into finite difference equations that can be rapidly solved. We use these tools to determine the bound sheet charges and built-in electric fields in polar epitaxial InGaN/GaN MQWs on c-plane Ga

  10. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  11. Terahertz wireless communications based on photonics technologies.

    PubMed

    Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki

    2013-10-01

    There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s. PMID:24104286

  12. Wireless Josephson amplifier

    SciTech Connect

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  13. Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations

    NASA Astrophysics Data System (ADS)

    Francesco Pecora, Emanuele; Zhang, Wei; Yu. Nikiforov, A.; Zhou, Lin; Smith, David J.; Yin, Jian; Paiella, Roberto; Dal Negro, Luca; Moustakas, T. D.

    2012-02-01

    Deep-UV optical gain has been demonstrated in Al0.7Ga0.3N/AlN multiple quantum wells under femtosecond optical pumping. Samples were grown by molecular beam epitaxy under a growth mode that introduces band structure potential fluctuations and high-density nanocluster-like features within the AlGaN wells. A maximum net modal gain value of 118 ± 9 cm-1 has been measured and the transparency threshold of 5 ± 1 µJ/cm2 was experimentally determined, corresponding to 1.4 × 1017 cm-3 excited carriers. These findings pave the way for the demonstration of solid-state lasers with sub-250 nm emission at room temperature.

  14. Impact of cerebrospinal-fluid oligoclonal immunoglobulin bands and HLA-DRB1 risk alleles on brain magnetic-resonance-imaging lesion load in Swedish multiple sclerosis patients.

    PubMed

    Karrenbauer, Virginija Danylaitė; Prejs, Robert; Masterman, Thomas; Hillert, Jan; Glaser, Anna; Imrell, Kerstin

    2013-01-15

    Approximately 95% of Nordic multiple sclerosis (MS) patients display oligoclonal immunoglobulin G bands (OCB) in the cerebrospinal fluid. From a cohort of 2094 MS patients we retrieved well-characterized data from 40 OCB-negative and 60 OCB-positive patients, in an effort to determine whether lesion load on brain magnetic resonance imaging is affected by OCB status and carriage of HLA-DRB1*15 or HLA-DRB1*04. Positivity for OCB did not increase the risk of belonging to higher-lesion-load groups; nor did carrying HLA-DRB1*15 or HLA-DRB1*04. A trend was seen, however, whereby OCB positivity conferred a two-fold risk of displaying higher lesion loads infratentorially. PMID:22967351

  15. Upper Bounding Service Capacity in Multihop Wireless SSMA-Based Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Du, Shirong; Daigle, John N.; Alidaee, Bahram

    Upper bounds on the service carrying capacity of a multihop, wireless, SSMA-based ad hoc network are considered herein. The network has a single radio band for transmission and reception. Each node can transmit to, or receive from, multiple nodes simultaneously. We formulate the scheduling of transmissions and control of transmit powers as a joint, mixed-integer, nonlinear optimization problem that yields maximum return at minimum power subject to SINR constraints. We present an efficient tabu search-based heuristic algorithm to solve the optimization problem and rigorously assess the quality of the results. Through analysis and simulation, we establish upper bounds on the VoIP call carrying capacity of the network as function of various parameters. We discuss the pros and cons of using SSMA as a spectrum sharing technique in wireless ad hoc networks

  16. Third Generation Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Smith, Laura J.; Williams, Reuben A.; Salud, Maria Theresa P.

    2005-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from third generation (3G) wireless mobile phones. The two wireless technologies considered are the latest available to general consumers in the US. The measurements are conducted using reverberation chambers. The results are compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft. Using existing interference path loss data and receivers interference threshold, a risk assessment is performed for several aircraft communication and navigation radio systems. In addition, cumulative interference effects of multiple similar devices are conservatively estimated or bounded. The effects are computed by summing the interference power from individual devices that is scaled according to the interference path loss at its location.

  17. Spectral band difference effects on radiometric cross-calibration between multiple satellite sensors in the Landsat solar-reflective spectral domain

    NASA Astrophysics Data System (ADS)

    Teillet, Philippe M.; Fedosejevs, Gunar; Thome, Kurtis J.

    2004-11-01

    This paper reports on an investigation of radiometric calibration errors due to differences in spectral response functions between satellite sensors when attempting cross-calibration based on near-simultaneous imaging of common ground targets in analogous spectral bands. Five Earth observation sensors on three satellite platforms were included on the basis of their overpass times being within 45 minutes of each other on the same day (Landsat-7 ETM+; EO-1 ALI; Terra MODIS; Terra ASTER; Terra MISR). The simulation study encompassed spectral band difference effects (SBDE) on cross-calibration between all combinations of the sensors considered, using the Landsat solar reflective spectral domain as a framework. Scene content was simulated using ground target spectra for the calibration test sites at Railroad Valley Playa, Nevada and Niobrara Grassland, Nebraska. Results were obtained as a function of calibration test site, satellite sensor, and spectral region. Overall, in the absence of corrections for SBDE, the Railroad Valley Playa site is a "good" to "very good" ground target for cross-calibration between most but not all satellite sensors considered in most but not all spectral regions investigated. "Good" and "very good" are defined as SBDEs within +/- 3 % and +/- 1 %, respectively. Without SBDE corrections, the Niobrara test site is only "good" for cross-calibration between certain sensor combinations in some spectral regions. The paper includes recommendations for spectral data and tools that would facilitate cross-calibration between multiple satellite sensors.

  18. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  19. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks

    PubMed Central

    Bhandari, Sabin; Moh, Sangman

    2016-01-01

    In wireless body area networks (WBANs), various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC) protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS) for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM) bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC) protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio. PMID:26999162

  20. A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks.

    PubMed

    Bhandari, Sabin; Moh, Sangman

    2016-01-01

    In wireless body area networks (WBANs), various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC) protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS) for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM) bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC) protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio. PMID:26999162

  1. Investigation of in-band transmission of both spectral amplitude coding/optical code division multiple-access and wavelength division multiplexing signals

    NASA Astrophysics Data System (ADS)

    Ashour, Isaac A. M.; Shaari, Sahbudin; Shalaby, Hossam M. H.; Menon, P. Susthitha

    2011-06-01

    The transmission of both optical code division multiple-access (OCDMA) and wavelength division multiplexing (WDM) users on the same band is investigated. Code pulses of spectral amplitude coding (SAC)/optical code division multiple-access (CDMA) are overlaid onto a multichannel WDM system. Notch filters are utilized in order to suppress the WDM interference signals for detection of optical broadband CDMA signals. Modified quadratic congruence (MQC) codes are used as the signature codes for the SAC/OCDMA system. The proposed system is simulated and its performance in terms of both the bit-error rate and Q-factor are determined. In addition, eavesdropper probability of error-free code detection is evaluated. Our results are compared to traditional nonhybrid systems. It is concluded that the proposed hybrid scheme still achieves acceptable performance. In addition, it provides enhanced data confidentiality as compared to the scheme with SAC/OCDMA only. It is also shown that the performance of the proposed system is limited by the interference of the WDM signals. Furthermore, the simulation illustrates the tradeoff between the performance and confidentiality for authorized users.

  2. Design and development of a wireless sensor network to monitor snow depth in multiple catchments in the American River basin, California: hardware selection and sensor placement techniques

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Rice, R.; Glaser, S. D.; Bales, R. C.; Saksa, P. C.

    2010-12-01

    A 100-node wireless sensor network (WSN) was designed for the purpose of monitoring snow depth in two watersheds, spanning 3 km2 in the American River basin, in the central Sierra Nevada of California. The network will be deployed as a prototype project that will become a core element of a larger water information system for the Sierra Nevada. The site conditions range from mid-elevation forested areas to sub-alpine terrain with light forest cover. Extreme temperature and humidity fluctuations, along with heavy rain and snowfall events, create particularly challenging conditions for wireless communications. We show how statistics gathered from a previously deployed 60-node WSN, located in the Southern Sierra Critical Zone Observatory, were used to inform design. We adapted robust network hardware, manufactured by Dust Networks for highly demanding industrial monitoring, and added linear amplifiers to the radios to improve transmission distances. We also designed a custom data-logging board to interface the WSN hardware with snow-depth sensors. Due to the large distance between sensing locations, and complexity of terrain, we analyzed network statistics to select the location of repeater nodes, to create a redundant and reliable mesh. This optimized network topology will maximize transmission distances, while ensuring power-efficient network operations throughout harsh winter conditions. At least 30 of the 100 nodes will actively sense snow depth, while the remainder will act as sensor-ready repeaters in the mesh. Data from a previously conducted snow survey was used to create a Gaussian Process model of snow depth; variance estimates produced by this model were used to suggest near-optimal locations for snow-depth sensors to measure the variability across a 1 km2 grid. We compare the locations selected by the sensor placement algorithm to those made through expert opinion, and offer explanations for differences resulting from each approach.

  3. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Specific requirements for wireless medical... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1121 Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the...

  4. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Specific requirements for wireless medical... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1121 Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the...

  5. Visible Light Wireless Communication for Audio Signals

    NASA Astrophysics Data System (ADS)

    Vibin, A. M.; Prince, Shanthi

    2011-10-01

    In the current century there is an increased demand for broad band wireless access for satisfying different customer needs. These applications requires large amount of frequency resources for its efficient implementation. Radio Frequency techniques, which dominate the current wireless technology, have the limitation of available frequency spectrum that can be used. Researchers identified Optical Wireless Communication as a potential candidate for solving this problem. Studies shows that white light can also be used as a carrier for wireless communication and this area is generally known as Visible Light Communication. The provision of voice data and visual communications to users by using optical wireless has become a key area of research and product development. This paper discusses a novel method for transmission of voice in real time so that the system can be used for both communication and illumination simultaneously. A prototype of the system is implemented successfully and performance analyses are carried out based on the experimental results. SNR and BER calculations for the designed system is done theoretically and simulated. The developed system is having the advantages of very high band width, no interference with adjacent rooms as walls are opaque, no license is required as it doesn't cause electromagnetic interference and communication simultaneously with illumination.

  6. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  7. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  8. A Reliable Wireless Control System for Tomato Hydroponics.

    PubMed

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  9. A Reliable Wireless Control System for Tomato Hydroponics

    PubMed Central

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  10. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  11. Dense wavelength division multiplexing photonic transport for radio frequency and microwave wireless services

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Jemison, William D.; Borlando, Javier; Wang, Jun

    2004-10-01

    The expected increase in space and terrestrial services that include two-way fixed, SATCOM, CATV and mobile wireless services require expanding the system capacity. This expansion has created an opportunity for the utilization of the demonstrated photonic transport systems in wireless networks. System demonstrations and architectural developments have been proposed for distribution of communication services over fiber. Termed Fiber Radio and Hybrid Fiber Wireless, these systems offer the potential to improve services and reduce base station costs through increased bandwidth and ease of installation. We have developed and demonstrated DWDM broadband photonic transport systems able to meet the requirements for IS-95 Personal Communications Services operating at 1.9 GHz and Broadband Wireless Internet operating over the band of 2.5 to 2.7 GHz. Each DWDM channel operates from 1 to 3 GHz transporting services up to 80 Km. Solutions are being sought for low cost transmitters to meet DWDM SATCOM system requirements include extending the transmission distance to over 100 Km with a bandwidth that exceeds multiple octaves. These new requirements put high performance demands on the optical components. We have developed high performance transmitters based on electro-absorption modulated lasers (EML) that can meet SATCOM requirements. We have shown that the EML is capable of providing the required CNR of 32 dB for satellite transmission in the band of 950 to 2150 MHz over a 100 Km distance. In addition, we are investigating a new modulation technique, Microwave Photonic Vector Modulation (MPVM), which has the potential for wideband transmission in DWDM systems.

  12. Realization of band gap shrinkage to the spectral characteristics of high-luminous-efficiency 658 nm AlGaInP/GaInP multiple quantum well lasers at room temperatures

    NASA Astrophysics Data System (ADS)

    Chackrabarti, Santosh; Zargar, Rayees A.; Bansal, Jyoti; Zaker, Tho-alfiqar A.; Hafiz, A. K.

    2016-08-01

    The temperature dependent spectral shifts in 658 nm AlGaInP multiple quantum well (MQW) red laser diodes due to band gap narrowing at room temperatures (5 °Csbnd 45 °C) is reported. The density of states effective mass approximation and the conduction band effective mass approximation are employed to formulate the carrier concentrations. The spectral shift mechanism is explored with a threshold current density of 42.28 kA/cm2 and a good characteristic temperature of 149 K. The photoluminescence (PL) peak intensity shifts towards the higher wavelength(red shift) and the full width at half maximum (FWHM) increases with the increase in temperature. The band gap narrowing value determined by a simple formula amounts to 67.4 meV and displays N1/3 dependence at higher densities. The carrier density dependence conveys that the red shift of the spectral emission is due to band gap narrowing.

  13. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. 95.1121 Section 95.1121... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1121 Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the...

  14. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. 95.1121 Section 95.1121... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1121 Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the...

  15. 47 CFR 95.1121 - Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. 95.1121 Section 95.1121... SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1121 Specific requirements for wireless medical telemetry devices operating in the 1395-1400 and 1427-1432 MHz bands. Due to the...

  16. A method to accurately quantitate intensities of (32)P-DNA bands when multiple bands appear in a single lane of a gel is used to study dNTP insertion opposite a benzo[a]pyrene-dG adduct by Sulfolobus DNA polymerases Dpo4 and Dbh.

    PubMed

    Sholder, Gabriel; Loechler, Edward L

    2015-01-01

    Quantitating relative (32)P-band intensity in gels is desired, e.g., to study primer-extension kinetics of DNA polymerases (DNAPs). Following imaging, multiple (32)P-bands are often present in lanes. Though individual bands appear by eye to be simple and well-resolved, scanning reveals they are actually skewed-Gaussian in shape and neighboring bands are overlapping, which complicates quantitation, because slower migrating bands often have considerable contributions from the trailing edges of faster migrating bands. A method is described to accurately quantitate adjacent (32)P-bands, which relies on having a standard: a simple skewed-Gaussian curve from an analogous pure, single-component band (e.g., primer alone). This single-component scan/curve is superimposed on its corresponding band in an experimentally determined scan/curve containing multiple bands (e.g., generated in a primer-extension reaction); intensity exceeding the single-component scan/curve is attributed to other components (e.g., insertion products). Relative areas/intensities are determined via pixel analysis, from which relative molarity of components is computed. Common software is used. Commonly used alternative methods (e.g., drawing boxes around bands) are shown to be less accurate. Our method was used to study kinetics of dNTP primer-extension opposite a benzo[a]pyrene-N(2)-dG-adduct with four DNAPs, including Sulfolobus solfataricus Dpo4 and Sulfolobus acidocaldarius Dbh. Vmax/Km is similar for correct dCTP insertion with Dpo4 and Dbh. Compared to Dpo4, Dbh misinsertion is slower for dATP (∼20-fold), dGTP (∼110-fold) and dTTP (∼6-fold), due to decreases in Vmax. These findings provide support that Dbh is in the same Y-Family DNAP class as eukaryotic DNAP κ and bacterial DNAP IV, which accurately bypass N(2)-dG adducts, as well as establish the scan-method described herein as an accurate method to quantitate relative intensity of overlapping bands in a single lane, whether generated

  17. DRB1*03:01 Haplotypes: Differential Contribution to Multiple Sclerosis Risk and Specific Association with the Presence of Intrathecal IgM Bands

    PubMed Central

    Cénit, M. Carmen; Urcelay, Elena; Arroyo, Rafael; Fernández, Óscar; Álvarez-Cermeño, José C.; Leyva, Laura

    2012-01-01

    Background Multiple sclerosis (MS) is a multifactorial disease with a genetic basis. The strongest associations with the disease lie in the Human Leukocyte Antigen (HLA) region. However, except for the DRB1*15:01 allele, the main risk factor associated to MS so far, no consistent effect has been described for any other variant. One example is HLA-DRB1*03:01, with a heterogeneous effect across populations and studies. We postulate that those discrepancies could be due to differences in the diverse haplotypes bearing that allele. Thus, we aimed at studying the association of DRB1*03:01 with MS susceptibility considering this allele globally and stratified by haplotypes. We also evaluated the association with the presence of oligoclonal IgM bands against myelin lipids (OCMB) in cerebrospinal fluid. Methods Genotyping of HLA-B, -DRB1 and -DQA1 was performed in 1068 MS patients and 624 ethnically matched healthy controls. One hundred and thirty-nine MS patients were classified according to the presence (M+, 58 patients)/absence (M−, 81 patients) of OCMB. Comparisons between groups (MS patients vs. controls and M+ vs. M−) were performed with the chi-square test or the Fisher exact test. Results Association of DRB1*03:01 with MS susceptibility was observed but with different haplotypic contribution, being the ancestral haplotype (AH) 18.2 the one causing the highest risk. Comparisons between M+, M− and controls showed that the AH 18.2 was affecting only M+ individuals, conferring a risk similar to that caused by DRB1*15:01. Conclusions The diverse DRB1*03:01-containing haplotypes contribute with different risk to MS susceptibility. The AH 18.2 causes the highest risk and affects only to individuals showing OCMB. PMID:22363536

  18. ASTRONOMY: Researchers Get Spectrum Bands.

    PubMed

    Taubes, G

    2000-06-23

    Radio astronomers have been in danger of losing a precious band of the electromagnetic spectrum--the millimeter wavelengths, which promise insight into subjects as diverse as the origins of life and the birth of stars--to the burgeoning telecommunications industry, as millimeter wavelengths also look promising for transmitting high-bandwidth wireless information over relatively short distances. Earlier this month, however, astronomers won an international agreement that guarantees critical wavelengths safe for research. PMID:17758893

  19. Evaluation of a 433 MHz Band Body Sensor Network for Biomedical Applications

    PubMed Central

    Kim, Saim; Brendle, Christian; Lee, Hyun-Young; Walter, Marian; Gloeggler, Sigrid; Krueger, Stefan; Leonhardt, Steffen

    2013-01-01

    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433 MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433 MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%). PMID:23344383

  20. Evaluation of a 433 MHz band body sensor network for biomedical applications.

    PubMed

    Kim, Saim; Brendle, Christian; Lee, Hyun-Young; Walter, Marian; Gloeggler, Sigrid; Krueger, Stefan; Leonhardt, Steffen

    2013-01-01

    Body sensor networks (BSN) are an important research topic due to various advantages over conventional measurement equipment. One main advantage is the feasibility to deploy a BSN system for 24/7 health monitoring applications. The requirements for such an application are miniaturization of the network nodes and the use of wireless data transmission technologies to ensure wearability and ease of use. Therefore, the reliability of such a system depends on the quality of the wireless data transmission. At present, most BSNs use ZigBee or other IEEE 802.15.4 based transmission technologies. Here, we evaluated the performance of a wireless transmission system of a novel BSN for biomedical applications in the 433MHz ISM band, called Integrated Posture and Activity NEtwork by Medit Aachen (IPANEMA) BSN. The 433MHz ISM band is used mostly by implanted sensors and thus allows easy integration of such into the BSN. Multiple measurement scenarios have been assessed, including varying antenna orientations, transmission distances and the number of network participants. The mean packet loss rate (PLR) was 0.63% for a single slave, which is comparable to IEEE 802.15.4 BSNs in the proximity of Bluetooth or WiFi networks. Secondly, an enhanced version is evaluated during on-body measurements with five slaves. The mean PLR results show a comparable good performance for measurements on a treadmill (2.5%), an outdoor track (3.4%) and in a climate chamber (1.5%). PMID:23344383

  1. Wireless microphone communication system telephonics P/N 484D000-1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The wireless microphone is a lightweight, portable, wireless voice communications device for use by the crew of the space shuttle orbiter. The wireless microphone allows the crew to have normal hands-free voice communication while they are performing various mission activities. The unit is designed to transmit at 455 or 500 kilohertz and employs narrow band FM modulation. Two orthogonally placed antennas are used to insure good reception at the receiver.

  2. OIT Wireless Telemetry for Industrial Applications

    SciTech Connect

    Manges, WW

    2002-09-03

    networks to operate cooperatively in an environment that includes wireless LANs, wireless headsets, RF heating, wireless crane controls and many other users of the electromagnetic spectrum will probably be the most important issue we can address. A network of units (Figure 1) has been developed that demonstrates the feasibility of direct-sequence spread spectrum wireless sensor networking for industrial environments. The hardware consists of a group of reprogrammable transceivers that can act as sensor nodes or network nodes or both. These units and the team that built them are the heart of a test bed development system that has been used successfully in demonstrations at various industrial sites. As previously reported, these units have been successfully tested at a paper mill. More recently, these units were utilized in a permanent installation at a steel mill. Both of these applications demonstrated the ease with which a new network could be installed, and the reality that DSSS units can operate successfully in plants where narrow band transmitters had previously caused interference with plant operations.

  3. Feasibility studies for a wireless 60 GHz tracking detector readout

    NASA Astrophysics Data System (ADS)

    Dittmeier, S.; Schöning, A.; Soltveit, H. K.; Wiedner, D.

    2016-09-01

    The amount of data produced by highly granular silicon tracking detectors in high energy physics experiments poses a major challenge to readout systems. At high collision rates, e.g. at LHC experiments, only a small fraction of data can be read out with currently used technologies. To cope with the requirements of future or upgraded experiments new data transfer techniques are required which offer high data rates at low power and low material budget. Wireless technologies operating in the 60 GHz band or at higher frequencies offer high data rates and are thus a promising upcoming alternative to conventional data transmission via electrical cables or optical fibers. Using wireless technology, the amount of cables and connectors in detectors can be significantly reduced. Tracking detectors profit most from a reduced material budget as fewer secondary particle interactions (multiple Coulomb scattering, energy loss, etc.) improve the tracking performance in general. We present feasibility studies regarding the integration of the wireless technology at 60 GHz into a silicon tracking detector. We use spare silicon strip modules of the ATLAS experiment as test samples which are measured to be opaque in the 60 GHz range. The reduction of cross talk between links and the attenuation of reflections is studied. An estimate of the maximum achievable link density is given. It is shown that wireless links can be placed as close as 2 cm next to each other for a layer distance of 10 cm by exploiting one or several of the following measures: highly directive antennas, absorbers like graphite foam, linear polarization and frequency channeling. Combining these measures, a data rate area density of up to 11 Tb/(s·m2) seems feasible. In addition, two types of silicon sensors are tested under mm-wave irradiation in order to determine the influence of 60 GHz data transmission on the detector performance: an ATLAS silicon strip sensor module and an HV-MAPS prototype for the Mu3e

  4. Warming Up to Wireless

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    In districts big and small across the U.S., students, teachers, and administrators alike have come to appreciate the benefits of wireless technology. Because the technology delivers Internet signals on airborne radio frequencies, wireless networking allows users of all portable devices to move freely on a school's campus and stay connected to the…

  5. Communications interface for wireless communications headset

    NASA Technical Reports Server (NTRS)

    Seibert, Marc A. (Inventor); Culotta, Jr., Anthony Joseph (Inventor)

    2004-01-01

    A universal interface adapter circuit interfaces, for example, a wireless communications headset with any type of communications system, including those that require push-to-talk (PTT) signaling. The interface adapter is comprised of several main components, including an RF signaling receiver, a microcontroller and associated circuitry for decoding and processing the received signals, and programmable impedance matching and line interfacing circuitry for interfacing a wireless communications headset system base to a communications system. A signaling transmitter, which is preferably portable (e.g., handheld), is employed by the wireless headset user to send signals to the signaling receiver. In an embodiment of the invention directed specifically to push-to-talk (PTT) signaling, the wireless headset user presses a button on the signaling transmitter when they wish to speak. This sends a signal to the microcontroller which decodes the signal and recognizes the signal as being a PTT request. In response, the microcontroller generates a control signal that closes a switch to complete a voice connection between the headset system base and the communications system so that the user can communicate with the communications system. With this arrangement, the wireless headset can be interfaced to any communications system that requires PTT signaling, without modification of the headset device. In addition, the interface adapter can also be configured to respond to or deliver any other types of signals, such as dual-tone-multiple-frequency (DTMF) tones, and on/off hook signals. The present invention is also scalable, and permits multiple wireless users to operate independently in the same environment through use of a plurality of the interface adapters.

  6. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements. PMID:24084114

  7. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    PubMed Central

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements. PMID:24084114

  8. Wireless nanosensor network system

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kwon, Hyukjun; Kegley, Lauren; Yoon, Hargsoon; Varadan, Vijay K.

    2009-03-01

    Many types of wireless modules are being developed to enhance wireless performance with low power consumption, compact size, high data rates, and wide range coverage. However trade-offs must be taken into consideration in order to satisfy all aspects of wireless performance. For example, in order to increase the data rate and wide range coverage, power consumption should be sacrificed. To overcome these drawbacks, the paper presents a wireless client module which offers low power consumption along with a wireless receiver module that has the strength to provide high data rates and wide range coverage. Adopting Zigbee protocol in the wireless client module, the power consumption performance is enhanced so that it plays a part of the mobile device. On the other hand, the wireless receiver module, as adopting Zigbee and Wi-Fi protocol, provides high data rate, wide range coverage, and easy connection to the existing Internet network so that it plays a part of the portable device. This module demonstrates monitoring of gait analysis. The results show that the sensing data being measured can be monitored in any remote place with access to the Internet network.

  9. Development of fast wireless detection system for fixed offshore platform

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping

    2011-04-01

    -performance computation unit, wireless transceiver unit, mobile power unit and embedded data analysis software, can totally control multi-wireless collection nodes, receive and analyze data, parameter identification. Data is transmitted at the 2.4GHz wireless communication channel, every sensing data channel in charge of data transmission is in a stable frequency band, control channel responsible for the control of power parameters is in a public frequency band. The test is initially conducted for the designed system, experimental results show that the system has good application prospects and practical value with fast arrangement, high sampling rate, high resolution, capacity of low frequency detection.

  10. Digital wireless control system

    NASA Astrophysics Data System (ADS)

    Smith, R.

    1993-08-01

    The Digital Wireless Control System (DWCS) is designed to initiate high explosives safely while using a wireless remote control system. Numerous safety features have been designed into the fire control system to mitigate the hazards associated with remote initiation of high explosives. These safety features range from a telemetry (TM) fire control status system to mechanical timers and keyed power lockout switches. The environment, safety, and health (ES&H) Standard Operating Procedure (SOP) SP471970 is intended as a guide when working with the DWCS. This report describes the Digital Wireless Control System and outlines each component's theory of operation and its relationship to the system.

  11. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    PubMed Central

    Shaddad, R. Q.; Mohammad, A. B.; Al-Gailani, S. A.; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength. PMID:24772009

  12. Development and experimental validation of downlink multiuser MIMO-OFDM in gigabit wireless LAN systems

    NASA Astrophysics Data System (ADS)

    Ishihara, Koichi; Asai, Yusuke; Kudo, Riichi; Ichikawa, Takeo; Takatori, Yasushi; Mizoguchi, Masato

    2013-12-01

    Multiuser multiple-input multiple-output (MU-MIMO) has been proposed as a means to improve spectrum efficiency for various future wireless communication systems. This paper reports indoor experimental results obtained for a newly developed and implemented downlink (DL) MU-MIMO orthogonal frequency division multiplexing (OFDM) transceiver for gigabit wireless local area network systems in the microwave band. In the transceiver, the channel state information (CSI) is estimated at each user and fed back to an access point (AP) on a real-time basis. At the AP, the estimated CSI is used to calculate the transmit beamforming weight for DL MU-MIMO transmission. This paper also proposes a recursive inverse matrix computation scheme for computing the transmit weight in real time. Experiments with the developed transceiver demonstrate its feasibility in a number of indoor scenarios. The experimental results clarify that DL MU-MIMO-OFDM transmission can achieve a 972-Mbit/s transmission data rate with simple digital signal processing of single-antenna users in an indoor environment.

  13. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  14. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  15. A wireless multichannel EEG recording platform.

    PubMed

    Filipe, S; Charvet, G; Foerster, M; Porcherot, J; Bêche, J F; Bonnet, S; Audebert, P; Régis, G; Zongo, B; Robinet, S; Condemine, C; Mestais, C; Guillemaud, R

    2011-01-01

    A wireless multichannel data acquisition system is being designed for ElectroEncephaloGraphy (EEG) recording. The system is based on a custom integrated circuit (ASIC) for signal conditioning, amplification and digitization and also on commercial components for RF transmission. It supports the RF transmission of a 32-channel EEG recording sampled at 1 kHz with a 12-bit resolution. The RF communication uses the MICS band (Medical Implant Communication Service) at 402-405 Mhz. This integration is a first step towards a lightweight EEG cap for Brain Computer Interface (BCI) studies. Here, we present the platform architecture and its submodules. In vivo validations are presented with noise characterization and wireless data transfer measurements. PMID:22255783

  16. Massive Access Control Aided by Knowledge-Extraction for Co-Existing Periodic and Random Services over Wireless Clinical Networks.

    PubMed

    Du, Qinghe; Zhao, Weidong; Li, Weimin; Zhang, Xuelin; Sun, Bo; Song, Houbing; Ren, Pinyi; Sun, Li; Wang, Yichen

    2016-07-01

    The prosperity of e-health is boosted by fast development of medical devices with wireless communications capability such as wearable devices, tiny sensors, monitoring equipments, etc., which are randomly distributed in clinic environments. The drastically-increasing population of such devices imposes new challenges on the limited wireless resources. To relieve this problem, key knowledge needs to be extracted from massive connection attempts dispersed in the air towards efficient access control. In this paper, a hybrid periodic-random massive access (HPRMA) scheme for wireless clinical networks employing ultra-narrow band (UNB) techniques is proposed. In particular, the proposed scheme towards accommodating a large population of devices include the following new features. On one hand, it can dynamically adjust the resource allocated for coexisting periodic and random services based on the traffic load learned from signal collision status. On the other hand, the resource allocation within periodic services is thoroughly designed to simultaneously align with the timing requests of differentiated services. Abundant simulation results are also presented to demonstrate the superiority of the proposed HPRMA scheme over baseline schemes including time-division multiple access (TDMA) and random access approach, in terms of channel utilization efficiency, packet drop ratio, etc., for the support of massive devices' services. PMID:27240842

  17. Gastric Banding

    MedlinePlus

    ... gastric banding before deciding to have the procedure. Advertisements for a device or procedure may not include ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  18. A Wireless World: Charles County Public Schools Makes Wireless Universal

    ERIC Educational Resources Information Center

    Hoffman, Richard

    2007-01-01

    Wireless connectivity in schools is all the rage, and many school systems have at least gotten their feet wet with a wireless lab or a few portable laptop carts. But Bijaya Devkota, the chief information officer of Charles County Public Schools, has done what many school systems only dream of--implemented universal wireless access throughout his…

  19. Terahertz (THz) Wireless Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.

    2013-01-01

    NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.

  20. Wireless sensor network for streetlight monitoring and control

    NASA Astrophysics Data System (ADS)

    Huang, Xin-Ming; Ma, Jing; Leblanc, Lawrence E.

    2004-08-01

    Wireless sensor network has attracted considerable research attention as the world becomes more information oriented. This technology provides an opportunity of innovations in traditional industries. Management and control of streetlight system is a labor-intensive high-cost task for public facility operations. This paper applies wireless sensor network technology in streetlight monitoring and control. Wireless sensor networks are employed to replace traditional physical patrol maintenance and manual switching on every lamp in the street or along the highway at the aim of reducing the maintenance and management expense. Active control is used to preserve energy cost while ensuring public safety. A proof-of-concept network architecture operated at 900 MHz industrial, scientific, and medical (ISM) band is designed for a two-way wireless telemetry system in streetlight remote control and monitoring. The radio architecture, multi-hop protocol and system interface are discussed in detail. MOTES sensor nodes are used in simulation and experimental tests. Simulation results show that the sensor network approach provides an efficient solution to monitor and control lighting infrastructures through wireless links. The unique application in this paper addresses an immediate need in streetlight control and monitoring, the architecture developed in this research could also serve as a platform for many other applications and researches in wireless sensor network.

  1. Wireless Data-Acquisition System for Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, Chujen; Lonske, Ben; Hou, Yalin; Xu, Yingjiu; Gang, Mei

    2007-01-01

    A prototype wireless data-acquisition system has been developed as a potential replacement for a wired data-acquisition system heretofore used in testing rocket engines. The traditional use of wires to connect sensors, signal-conditioning circuits, and data acquisition circuitry is time-consuming and prone to error, especially when, as is often the case, many sensors are used in a test. The system includes one master and multiple slave nodes. The master node communicates with a computer via an Ethernet connection. The slave nodes are powered by rechargeable batteries and are packaged in weatherproof enclosures. The master unit and each of the slave units are equipped with a time-modulated ultra-wide-band (TMUWB) radio transceiver, which spreads its RF energy over several gigahertz by transmitting extremely low-power and super-narrow pulses. In this prototype system, each slave node can be connected to as many as six sensors: two sensors can be connected directly to analog-to-digital converters (ADCs) in the slave node and four sensors can be connected indirectly to the ADCs via signal conditioners. The maximum sampling rate for streaming data from any given sensor is about 5 kHz. The bandwidth of one channel of the TM-UWB radio communication system is sufficient to accommodate streaming of data from five slave nodes when they are fully loaded with data collected through all possible sensor connections. TM-UWB radios have a much higher spatial capacity than traditional sinusoidal wave-based radios. Hence, this TM-UWB wireless data-acquisition can be scaled to cover denser sensor setups for rocket engine test stands. Another advantage of TM-UWB radios is that it will not interfere with existing wireless transmission. The maximum radio-communication range between the master node and a slave node for this prototype system is about 50 ft (15 m) when the master and slave transceivers are equipped with small dipole antennas. The range can be increased by changing to

  2. Millimeter-Wave Wireless LAN and Its Extension toward 5G Heterogeneous Networks

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Kei; Mohamed, Ehab Mahmoud; Kusano, Hideyuki; Mizukami, Makoto; Miyamoto, Shinichi; Rezagah, Roya E.; Takinami, Koji; Takahashi, Kazuaki; Shirakata, Naganori; Peng, Hailan; Yamamoto, Toshiaki; Nanba, Shinobu

    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.

  3. Per-point and per-field contextual classification of multipolarization and multiple incidence angle aircraft L-band radar data

    NASA Technical Reports Server (NTRS)

    Hoffer, Roger M.; Hussin, Yousif Ali

    1989-01-01

    Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.

  4. A 350-nm-band GaN/AlGaN multiple-quantum-well laser diode on bulk GaN

    SciTech Connect

    Aoki, Yuta Kuwabara, Masakazu; Yamashita, Yoji; Takagi, Yasufumi; Sugiyama, Atsushi; Yoshida, Harumasa

    2015-10-12

    We have demonstrated the pulsed operation of a 350-nm-band ultraviolet laser diode with a vertical current path. The laser structure was grown on a (0001)-face bulk GaN substrate. The lasing wavelength was 356.6 nm and the peak output power reached to 10 mW from the one side of uncoated facets under pulsed current operation with a pulse duration of 10 ns and a repetition frequency of 5 kHz at room temperature. The GaN substrate is expected to provide a cleaved facet configuration leading to an excellent far-field pattern as well as an advantageous thermal management solution of the devices relative to sapphire substrates. The far-field pattern of actual device on GaN substrate has been improved dramatically compared with distorted one on that of sapphire substrates.

  5. Design of an HF-Band RFID System with Multiple Readers and Passive Tags for Indoor Mobile Robot Self-Localization.

    PubMed

    Mi, Jian; Takahashi, Yasutake

    2016-01-01

    Radio frequency identification (RFID) technology has already been explored for efficient self-localization of indoor mobile robots. A mobile robot equipped with RFID readers detects passive RFID tags installed on the floor in order to locate itself. The Monte-Carlo localization (MCL) method enables the localization of a mobile robot equipped with an RFID system with reasonable accuracy, sufficient robustness and low computational cost. The arrangements of RFID readers and tags and the size of antennas are important design parameters for realizing accurate and robust self-localization using a low-cost RFID system. The design of a likelihood model of RFID tag detection is also crucial for the accurate self-localization. This paper presents a novel design and arrangement of RFID readers and tags for indoor mobile robot self-localization. First, by considering small-sized and large-sized antennas of an RFID reader, we show how the design of the likelihood model affects the accuracy of self-localization. We also design a novel likelihood model by taking into consideration the characteristics of the communication range of an RFID system with a large antenna. Second, we propose a novel arrangement of RFID tags with eight RFID readers, which results in the RFID system configuration requiring much fewer readers and tags while retaining reasonable accuracy of self-localization. We verify the performances of MCL-based self-localization realized using the high-frequency (HF)-band RFID system with eight RFID readers and a lower density of RFID tags installed on the floor based on MCL in simulated and real environments. The results of simulations and real environment experiments demonstrate that our proposed low-cost HF-band RFID system realizes accurate and robust self-localization of an indoor mobile robot. PMID:27483279

  6. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to...

  7. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to...

  8. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to...

  9. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to...

  10. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... capable of operating in the core TV bands (channels 2-51, excluding channel 37) is subject to...

  11. 47 CFR 27.1222 - Operations in the 2568-2572 and 2614-2618 bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Technical Standards § 27.1222 Operations in the 2568-2572 and 2614-2618 bands....

  12. 47 CFR 27.1222 - Operations in the 2568-2572 and 2614-2618 bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Technical Standards § 27.1222 Operations in the 2568-2572 and 2614-2618 bands....

  13. 47 CFR 27.1222 - Operations in the 2568-2572 and 2614-2618 bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Technical Standards § 27.1222 Operations in the 2568-2572 and 2614-2618 bands....

  14. 47 CFR 27.1222 - Operations in the 2568-2572 and 2614-2618 bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Technical Standards § 27.1222 Operations in the 2568-2572 and 2614-2618 bands....

  15. 47 CFR 27.1222 - Operations in the 2568-2572 and 2614-2618 bands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service Technical Standards § 27.1222 Operations in the 2568-2572 and 2614-2618 bands....

  16. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  17. Enhanced performances of vertical-structured green-band InGaN/GaN multiple-quantum-well solar cells with aluminum reflectors

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Hua; Zheng, Zhi-Wei; Yu, Jian; Ying, Lei-Ying; Zhang, Bao-Ping

    2016-06-01

    We demonstrated vertical-structured InGaN/GaN multiple-quantum-well (MQW) solar cells with enhanced performances at a wavelength of 510 nm. The enhancement was achieved by using a ptype ohmic mirror with a combined indium-tin-oxide film and an aluminum (Al) reflector inserted beneath the MQW absorption region. In addition, both good ohmic contact and high reflection were observed. The vertical-structured MQW solar cell with an Al reflector exhibited significant improvements in device performances as compared to that without the Al reflector, including a 49% increase in the short-circuit current density and a 56% increase in the power conversion efficiency.

  18. Solving Autonomy Technology Gaps through Wireless Technology and Orion Avionics Architectural Principles

    NASA Astrophysics Data System (ADS)

    Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark

    2008-01-01

    Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of

  19. Frequency-agile wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Arms, Steven W.; Townsend, Christopher P.; Churchill, David L.; Hamel, Michael J.; Galbreath, Jacob H.; Mundell, Steven W.

    2004-07-01

    Our goal was to demonstrate a wireless communications system capable of simultaneous, high speed data communications from a variety of sensors. We have previously reported on the design and application of 2 KHz data logging transceiver nodes, however, only one node may stream data at a time, since all nodes on the network use the same communications frequency. To overcome these limitations, second generation data logging transceivers were developed with software programmable radio frequency (RF) communications. Each node contains on-board memory (2 Mbytes), sensor excitation, instrumentation amplifiers with programmable gains & offsets, multiplexer, 16 bit A/D converter, microcontroller, and frequency agile, bi-directional, frequency shift keyed (FSK) RF serial data link. These systems are capable of continuous data transmission from 26 distinct nodes (902-928 MHz band, 75 kbaud). The system was demonstrated in a compelling structural monitoring application. The National Parks Service requested a means for continual monitoring and recording of sensor data from the Liberty Bell during a move to a new location (Philadelphia, October 2003). Three distinct, frequency agile, wireless sensing nodes were used to detect visible crack shear/opening micromotions, triaxial accelerations, and hairline crack tip strains. The wireless sensors proved to be useful in protecting the Liberty Bell.

  20. Band Together!

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    After nearly a decade as band director at St. James High School in St. James, Missouri, Derek Limback knows that the key to building a successful program is putting the program itself above everything else. Limback strives to augment not only his students' musical prowess, but also their leadership skills. Key to his philosophy is instilling a…

  1. Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies

    SciTech Connect

    Keebler, P. F.; Phipps, K. O.

    2006-07-01

    The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an

  2. Generalized rainbows and unfolded glories of oblate drops: organization for multiple internal reflections and extension of cusps into Alexander's dark band.

    PubMed

    Marston, P L; Kaduchak, G

    1994-07-20

    Oblate drops of water can produce caustics where, unlike a simple Airy caustic, more than two rays merge. We extend previous treatments of generalized primary rainbows based on catastrophe optics [Opt. Lett. 10, 588 (1985); Proc. R. Soc. (London) A 438, 397 (1992)] to rays having (p - 1) = 2 to 5 internal reflections. The analysis is for a horizontally illuminated ellipsoid with a vertical symmetry axis. Aspect ratios causing a vanishing of the vertical curvature at the equator for the outgoing wave front are found from generalized ray tracing. In response to infinitesimal deformation, the axial caustic of real glory rays unfolds producing cusps. Laboratory observations with laser illumination demonstrate that cusps resulting from rays with five internal reflections extend into Alexander's dark band when the drop's aspect ratio is near 1.08. The evolution of this p = 6 scattering pattern as cusps meet the quinary rainbow is suggestive of an E(6) catastrophe. For ellipsoids of varying aspect ratio and refractive index N, there is an organizing singularity associated with an exceptionally flat outgoing wave front from spheres with N = p. PMID:20935841

  3. Engineering chiral density waves and topological band structures by multiple-Q superpositions of collinear up-up-down-down orders

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Ozawa, Ryo; Motome, Yukitoshi

    2016-07-01

    Magnetic orders characterized by multiple ordering vectors harbor noncollinear and noncoplanar spin textures and can be a source of unusual electronic properties through the spin Berry phase mechanism. We theoretically show that such multiple-Q states are stabilized in itinerant magnets in the form of superpositions of collinear up-up-down-down (UUDD) spin states, which accompany the density waves of vector and scalar chirality. The result is drawn by examining the ground state of the Kondo lattice model with classical localized moments, especially when the Fermi surface is tuned to be partially nested by the symmetry-related commensurate vectors. We unveil the instability toward a double-Q UUDD state with vector chirality density waves on the square lattice and a triple-Q UUDD state with scalar chirality density waves on the triangular lattice, using the perturbative theory and variational calculations. The former double-Q state is also confirmed by large-scale Langevin dynamics simulations. We also show that, for a sufficiently large exchange coupling, the chirality density waves can induce rich nontrivial topology of electronic structures, such as the massless Dirac semimetal, Chern insulator with quantized topological Hall response, and peculiar edge states which depend on the phase of chirality density waves at the edges.

  4. MEMS sensors and wireless telemetry for distributed systems

    NASA Astrophysics Data System (ADS)

    Britton, Charles L.; Warmack, R. J.; Smith, S. F.; Oden, Patrick I.; Brown, G. M.; Bryan, W. L.; Clonts, Lloyd G.; Duncan, Michael G.; Emery, Mike S.; Ericson, M. N.; Hu, Z.; Jones, Robert L.; Moore, Michael R.; Moore, J. A.; Rochelle, Jim M.; Threatt, Timothy D.; Thundat, Thomas G.; Turner, G. W.; Wintenberg, Alan L.

    1998-07-01

    Selectively coated cantilevers are being developed at ORNL for chemical and biological sensing. The sensitivity can exceed that of other electro-mechanical devices as parts- per-trillion detection can be demonstrated for certain species. We are now proceeding to develop systems that employ electrically readable microcantilevers in a standard MEMS process and standard CMOS processes. One of our primary areas of interest is chemical sensing for environmental applications. Towards this end, we are presently developing electronic readout of a mercury-sensitive coated cantilever. In order to field arrays of distributed sensors, a wireless network for data reporting is needed. For this, we are developing on-chip spread-spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. We have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Most of the RF circuity we have designed and fabricated in 0.5 micrometers CMOS has been tested and verified operational to above 1 GHz. Our initial intended operation is for use in the 915 MHz Industrial, Scientific, and Medical band. This paper presents measured data on the microcantilever-based mercury detector. We will also present design data and measurements of the RF telemetry chip.

  5. MEMS sensors and wireless telemetry for distributed systems

    SciTech Connect

    Britton, C.L. Jr.; Warmack, R.J.; Smith, S.F.

    1998-02-01

    Selectively coated cantilevers are being developed at ORNL for chemical and biological sensing. The sensitivity can exceed that of other electro-mechanical devices as parts-per-trillion detection can be demonstrated for certain species. The authors are now proceeding to develop systems that employ electrically readable microcantilevers in a standard MEMS process and standard CMOS processes. One of their primary areas of interest is chemical sensing for environmental applications. Towards this end, they are presently developing electronic readout of a mercury-sensitive coated cantilever. In order to field arrays of distributed sensors, a wireless network for data reporting is needed. For this, the authors are developing on-chip spread-spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. They have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Most of the RF circuitry they have designed and fabricated in 0.5 {micro}m CMOS has been tested and verified operational to above 1 GHz. The initial intended operation is for use in the 915 MHz Industrial, Scientific, and Medical (ISM) band. This paper presents measured data on the microcantilever-based mercury detector. They also present design data and measurements of the RF telemetry chip.

  6. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  7. A Data Gathering Scheme in Wireless Sensor Networks Based on Synchronization of Chaotic Spiking Oscillator Networks

    SciTech Connect

    Nakano, Hidehiro; Utani, Akihide; Miyauchi, Arata; Yamamoto, Hisao

    2011-04-19

    This paper studies chaos-based data gathering scheme in multiple sink wireless sensor networks. In the proposed scheme, each wireless sensor node has a simple chaotic oscillator. The oscillators generate spike signals with chaotic interspike intervals, and are impulsively coupled by the signals via wireless communication. Each wireless sensor node transmits and receives sensor information only in the timing of the couplings. The proposed scheme can exhibit various chaos synchronous phenomena and their breakdown phenomena, and can effectively gather sensor information with the significantly small number of transmissions and receptions compared with the conventional scheme. Also, the proposed scheme can flexibly adapt various wireless sensor networks not only with a single sink node but also with multiple sink nodes. This paper introduces our previous works. Through simulation experiments, we show effectiveness of the proposed scheme and discuss its development potential.

  8. Insecurity of Wireless Networks

    SciTech Connect

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  9. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  10. Building the Wireless Campus

    ERIC Educational Resources Information Center

    Gerraughty, James F.; Shanafelt, Michael E.

    2005-01-01

    This prototype is a continuation of a series of wireless prototypes which began in August 2001 and was reported on again in August 2002. This is the final year of this prototype. This continuation allowed Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA) to refine the existing WLAN for the Saint…

  11. Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network

    NASA Astrophysics Data System (ADS)

    Ong, Jia Jan; Ang, L.-M.; Seng, K. P.

    This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.

  12. Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Yu, Jianjun; Zhang, Ziran; Xiao, Jiangnan; Chang, Gee-Kung

    2015-08-01

    We propose photonic vector signal generation at millimeter-wave (mm-wave) bands enabled by a single Mach-Zehnder modulator (MZM) and phase-precoding technique, which can realize photonic frequency multiplication of the precoded microwave vector signal used for the drive of the single MZM. We also experimentally demonstrate the generation of quadrature-phase-shift-keying (QPSK) modulated vector signal at W-band adopting photonic frequency octupling (×8) based on our proposed scheme. The MZM is driven by a 12-GHz QPSK modulated precoded vector signal. Up to 4-Gbaud QPSK-modulated electrical vector signal at 96 GHz is generated and then delivered over 3-m wireless transmission distance.

  13. Free-space optical wireless links with topology control

    NASA Astrophysics Data System (ADS)

    Milner, Stuart D.; Ho, Tzung-Hsien; Smolyaninov, Igor I.; Trisno, Sugianto; Davis, Christopher C.

    2002-12-01

    The worldwide demand for broadband communications is being met in many places through the use of installed single-mode fiber networks. However, there is still a significant 'first-mile' problem, which seriously limits the availability of broadband Internet access. Free-space optical wireless communication has emerged as a technique of choice for bridging gaps in the existing high data rate communication networks, and as a backbone for rapidly deployable mobile wireless communication infrastructure. Because free space laser communication links can be easily and rapidly redirected, optical wireless networks can be autonomously reconfigured in a multiple-connected topology to provide improved network performance. In this paper we describe research designed to improve the performance of such networks. Using topology control algorithms, we have demonstrated that multiply-connected, rapidly reconfigurable optical wireless networks can provide robust performance, and a high quality of service at high data rates (up to and beyond 1 Gbps). These systems are also very cost-effective. We have designed and tested on the University of Maryland campus a prototype four-node optical wireless network, where each node could be connected to the others via steerable optical wireless links. The design and performance of this network and the topology control is discussed.

  14. NASA Bluetooth Wireless Communications

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  15. Possibility of breakdown of overdamped and narrowing limits in low-frequency Raman spectra: Phenomenological band-shape analysis using the multiple-random-telegraph model

    NASA Astrophysics Data System (ADS)

    Amo, Yuko; Tominaga, Yasunori

    1999-08-01

    Depolarized low-frequency Raman spectra of liquid water and heavy water are investigated from 266 K to 356 K. The reduced Raman spectra below 250 cm-1 are reproduced by a superposition of one relaxation mode and two damped harmonic oscillator modes. The multiple-random-telegraph (MRT) model, which takes into account inertia and memory effects, is applied to analyze the relaxation component. Two damped harmonic oscillators around 50 cm-1 and 180 cm-1 are known as a bendinglike mode and a stretchinglike mode, respectively. It is found that the intensity of the bendinglike mode in water (heavy water) gradually decreases with increasing temperature, and finally vanishes above about 296 K (306 K). The relaxation time of the MRT model is interpreted as representing the averaged lifetime of the vibrating unit. At high temperature, the relaxation time becomes short, that is to say, the vibrating unit is quickly destroyed before the 50 cm-1 mode is oscillating sufficiently. In the present analysis, the strongly disrupted oscillation cannot be distinguished from the relaxation mode which includes the inertia and memory effects. It is found that the low-frequency Raman spectrum of liquid water at high temperature is a good example demonstrating an application of the MRT model.

  16. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  17. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    PubMed Central

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  18. Neural signal sampling via the low power wireless pico system.

    PubMed

    Cieslewski, Grzegorz; Cheney, David; Gugel, Karl; Sanchez, Justin C; Principe, Jose C

    2006-01-01

    This paper presents a powerful new low power wireless system for sampling multiple channels of neural activity based on Texas Instruments MSP430 microprocessors and Nordic Semiconductor's ultra low power high bandwidth RF transmitters and receivers. The system's development process, component selection, features and test methodology are presented. PMID:17946727

  19. Multi-Band-SWIFT

    PubMed Central

    Corum, Curtis A.; Garwood, Michael

    2015-01-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials. PMID:25557859

  20. Multi-Band-SWIFT

    NASA Astrophysics Data System (ADS)

    Idiyatullin, Djaudat; Corum, Curtis A.; Garwood, Michael

    2015-02-01

    A useful extension to SWIFT (SWeep Imaging with Fourier Transformation) utilizing sidebands of the excitation pulse is introduced. This MRI method, called Multi-Band-SWIFT, achieves much higher bandwidth than standard SWIFT by using multiple segmented excitations (bands) of the field of view. A description of the general idea and variants of the pulse sequence are presented. From simulations and semi-phenomenological theory, estimations of power deposition and signal-to-noise ratio are made. MB-SWIFT and ZTE (zero-TE) sequences are compared based on images of a phantom and human mandible. Multi-Band-SWIFT provides a bridge between SWIFT and ZTE sequences and allows greatly increased excitation and acquisition bandwidths relative to standard SWIFT for the same hardware switching parameters and requires less peak amplitude of the radiofrequency field (or greater flip angle at same peak amplitude) as compared to ZTE. Multi-Band-SWIFT appears to be an attractive extension of SWIFT for certain musculoskeletal and other medical imaging applications, as well as for imaging materials.

  1. Dual band dielectric resonator antenna for wireless application

    NASA Astrophysics Data System (ADS)

    Batra, Deepak; Sharma, Sanjay

    2012-09-01

    The proposed technique is an integration of a slot antenna and a dielectric resonator antenna (DRA). This is designed without compromising miniaturisation and efficiency. It is observed that the integration of slot and dielectric structure itself may be merged to achieve extremely wide bandwidth over which the antenna polarisation and radiation pattern are preserved. Here the effect of slot size on the radiation performance of the DRA is studied. The antenna structure is simulated using the CST software. The simulated results are presented and compared with the measured result. This DRA has a gain of 7.1 and 6.3 dBi at 5.7 and 8.1 GHz, respectively, its 10 dB return impedance bandwidth of nearly 4.5% and 5.5% at two resonating frequencies. A total of 98% efficiency has been achieved from the configuration. It is shown that the size of the slot can significantly affect the radiation properties of the DRA and there are good agreements between simulation and measured results.

  2. 76 FR 6789 - Unlicensed Operation in the TV Broadcast Bands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... (3) by filing paper copies. See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR 24121... ET Docket No. 04-186, 75 FR 75814, December 6, 2010, that updated the rules for unlicensed wireless... database administrators. The TV bands databases will be used by fixed and personal portable...

  3. NASA Fuel Tank Wireless Power and Signal Study

    NASA Technical Reports Server (NTRS)

    Merrill, Garrick

    2015-01-01

    Hydro Technologies has developed a custom electronics and mechanical framework for interfacing with off-the-shelf sensors to achieve through barrier sensing solutions. The core project technology relies on Hydro Technologies Wireless Power and Signal Interface (Wi psi) System for transmitting data and power wirelessly using magnetic fields. To accomplish this, Wi psi uses a multi-frequency local magnetic field to produce magnetic fields capable of carrying data and power through almost any material such as metals, seawater, concrete, and air. It will also work through layers of multiple materials.

  4. Energy storage management system with distributed wireless sensors

    SciTech Connect

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  5. FPGA based Smart Wireless MIMO Control System

    NASA Astrophysics Data System (ADS)

    Usman Ali, Syed M.; Hussain, Sajid; Akber Siddiqui, Ali; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-12-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input & Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively.

  6. System and method for merging clusters of wireless nodes in a wireless network

    SciTech Connect

    Budampati, Ramakrishna S.; Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.

    2012-05-29

    A system includes a first cluster having multiple first wireless nodes. One first node is configured to act as a first cluster master, and other first nodes are configured to receive time synchronization information provided by the first cluster master. The system also includes a second cluster having one or more second wireless nodes. One second node is configured to act as a second cluster master, and any other second nodes configured to receive time synchronization information provided by the second cluster master. The system further includes a manager configured to merge the clusters into a combined cluster. One of the nodes is configured to act as a single cluster master for the combined cluster, and the other nodes are configured to receive time synchronization information provided by the single cluster master.

  7. Launching a Wireless Laptop Program

    ERIC Educational Resources Information Center

    Grignano, Domenic

    2007-01-01

    In this article, the author, as a technology director for East Rock Magnet School in New Haven, Connecticut, a federal government test site for laptop learning, shares his secrets to a successful implementation of a wireless laptop program: (1) Build a wireless foundation; (2) Do not choose the cheapest model just because of budget; (3) A sturdy…

  8. Unpowered wireless ultrasound tomography system

    NASA Astrophysics Data System (ADS)

    Zahedi, Farshad; Huang, Haiying

    2016-04-01

    In this paper, an unpowered wireless ultrasound tomography system is presented. The system consists of two subsystems; the wireless interrogation unit (WIU) and three wireless nodes installed on the structure. Each node is designed to work in generation and sensing modes, but operates at a specific microwave frequency. Wireless transmission of the ultrasound signals between the WIU and the wireless nodes is achieved by converting ultrasound signals to microwave signals and vice versa, using a microwave carrier signal. In the generation mode, both a carrier signal and an ultrasound modulated microwave signal are transmitted to the sensor nodes. Only the node whose operating frequency matches the carrier signal will receive these signals and demodulate them to recover the original ultrasound signal. In the sensing mode, a microwave carrier signal with two different frequency components matching the operating frequencies of the sensor nodes is broadcasted by the WIU. The sensor nodes, in turn, receive the corresponding carrier signals, modulate it with the ultrasound sensing signal, and wirelessly transmit the modulated signal back to the WIU. The demodulation of the sensing signals is performed in the WIU using a digital signal processing. Implementing a software receiver significantly reduces the complexity and the cost of the WIU. A wireless ultrasound tomography system is realized by interchanging the carrier frequencies so that the wireless transducers can take turn to serve as the actuator and sensors.

  9. Application of Wireless Sensor Networks for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Liang, X.; Kuo, C.; Liang, Y.

    2009-05-01

    The application of wireless sensor networks (WSNs) for environmental monitoring enhances measurements over multiple locations and reduces the manpower for data collection. This study examines the applicability of WSNs for sap flow monitoring, which can benefit land-surface modeling with a better understanding and representation of plant water use phenomena. Two sap flow sensor designs are presented and their performance is tested against their expensive commercial sensor counterparts. These sensors are then integrated into a WSN. The data quality of the sap flow measurements is dependent upon the data sampling frequency. When sap flow monitoring is integrated into a WSN, a tradeoff is created between the measured data quality and the battery life of the wireless network. This study examines the tradeoff to determine an optimal sampling frequency for wireless sap flow monitoring.

  10. A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring

    PubMed Central

    Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access—CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system. PMID:24287533

  11. A wireless MEMS-based inclinometer sensor node for structural health monitoring.

    PubMed

    Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access-CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system. PMID:24287533

  12. 47 CFR 27.1301 - Designated entities in the 600 MHz band.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Designated entities in the 600 MHz band. 27.1301 Section 27.1301 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 600 MHz Band § 27.1301 Designated entities in...

  13. 78 FR 20628 - Wireless Metering Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... of Energy Efficiency and Renewable Energy Wireless Metering Challenge AGENCY: Office of Energy... (EERE) requests comments on the draft version of the Wireless Power Meter Challenge Specification. This... development of new technologies in the wireless electric metering space. DATES: Comments on the Wireless...

  14. Wireless Technology in K-12 Education

    ERIC Educational Resources Information Center

    Walery, Darrell

    2004-01-01

    Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an instant…

  15. 78 FR 1166 - Service Rules for the Advanced Wireless Services in the H Block-Implementing Section 6401 of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Comment Filing System (ECFS). See Electronic Filing of Documents in Rulemaking Proceedings, 63 FR 24121... Services in the 1915-1920 MHz, 1995-2000 MHz, 2020-2025 MHz and 2175- 2180 MHz Bands, 69 FR 63489 (Nov. 2... MHz and 2175-2180 MHz Bands, 73 FR 35995 (June 25, 2008) (2008 FNPRM), wireless broadband...

  16. A wireless ballistocardiographic chair.

    PubMed

    Junnila, Sakari; Akhbardeh, Alireza; Barna, Laurentiu C; Defee, Irek; Varri, Alpo

    2006-01-01

    This paper presents a wireless ballistocardiographic chair developed for the Proactive Health Monitoring project in the Institute of Signal Processing. EMFi sensors are used for BCG measurement and IEEE 802.15.4 RF link for radio communication between the chair and a PC. The chair measures two BCG signals from the seat and the backrest and a rough ECG signal from the armrests of the chair. The R-spike of the ECG signal can be used as a synchronisation point to extract individual BCG cardiac cycles. Also, two developed methods for extracting BCG cycles without using a reference ECG signal are presented and compared. PMID:17946348

  17. Deployable wireless Fresnel lens

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor)

    2013-01-01

    Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.

  18. Wireless Headset Communication System

    NASA Technical Reports Server (NTRS)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  19. Wireless passive radiation sensor

    SciTech Connect

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  20. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  1. Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.

    PubMed

    Yuce, Mehmet R; Ho, Chee Keong

    2008-01-01

    A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network. PMID:19163443

  2. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter

    PubMed Central

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V.

    2015-01-01

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time. PMID:25942641

  3. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter.

    PubMed

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V

    2015-01-01

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time. PMID:25942641

  4. A Practical Monitoring System for the Structural Safety of Mega-Trusses Using Wireless Vibrating Wire Strain Gauges

    PubMed Central

    Park, Hyo Seon; Lee, Hwan Young; Choi, Se Woon; Kim, Yousok

    2013-01-01

    Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access—CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed. PMID:24351640

  5. A practical monitoring system for the structural safety of mega-trusses using wireless vibrating wire strain gauges.

    PubMed

    Park, Hyo Seon; Lee, Hwan Young; Choi, Se Woon; Kim, Yousok

    2013-01-01

    Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access-CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed. PMID:24351640

  6. Household wireless electroencephalogram hat

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  7. Biomonitoring with Wireless Communications

    SciTech Connect

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  8. Smart programmable wireless microaccelerometers

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Subramanian, Hareesh; Varadan, Vasundara V.

    1998-07-01

    The integration of MEMS, SAW devices and required microelectronics and conformal antenna to realize a programmable wireless accelerometer is presented in this paper. This unique combination of technologies results in a novel accelerometer that can be remotely sensed by a microwave system with the advantage of no power requirements at the sensor site. The microaccelerometer presented is simple in construction and easy to manufacture with existing silicon micromachining techniques. Programmable accelerometers can be achieved with splitfinger interdigital transducers (IDTs) as reflecting structures. If IDTs are short circuited or capacitively loaded, the wave propagates without any reflection whereas in an open circuit configuration, the IDTs reflect the incoming SAW signal. The programmable accelerometers can thus be achieved by using an external circuitry on a semiconductor chip using hybrid technology. The relatively small size of the sensor makes it an ideal conformal sensor. The accelerometer finds application as air bag deployment sensors, vibration sensors for noise control, deflection and strain sensors, inertial and dimensional positioning systems, ABS/traction control, smart suspension, active roll stabilization and four wheel steering. The wireless accelerometer is very attractive to study the response of a `dummy' in automobile crash test.

  9. System and method for progressive band selection for hyperspectral images

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for progressive band selection for hyperspectral images. A system having module configured to control a processor to practice the method calculates a virtual dimensionality of a hyperspectral image having multiple bands to determine a quantity Q of how many bands are needed for a threshold level of information, ranks each band based on a statistical measure, selects Q bands from the multiple bands to generate a subset of bands based on the virtual dimensionality, and generates a reduced image based on the subset of bands. This approach can create reduced datasets of full hyperspectral images tailored for individual applications. The system uses a metric specific to a target application to rank the image bands, and then selects the most useful bands. The number of bands selected can be specified manually or calculated from the hyperspectral image's virtual dimensionality.

  10. Low Power Transmitter for Wireless Capsule Endoscope

    NASA Astrophysics Data System (ADS)

    Lioe, D. X.; Shafie, S.; Ramiah, H.; Sulaiman, N.; Halin, I. A.

    2013-04-01

    This paper presents the transmitter circuit designed for the application of wireless capsule endoscope to overcome the limitation of conventional endoscope. The design is performed using CMOS 0.13 μm technology. The transmitter is designed to operate at centre frequency of 433.92 MHz, which is one of the ISM band. Active mixer and ring oscillator made up the transmitter and it consumes 1.57 mA of current using a supply voltage of 1.2 V, brings the dc power consumption of the transmitter to be 1.88 mW. Data rate of 3.5 Mbps ensure it can transmit high quality medical imaging.

  11. Performance Analysis for LTE Wireless Communication

    NASA Astrophysics Data System (ADS)

    Tholhath, S.; Tiong, T. C.

    2015-04-01

    Long Term Evolution (LTE) is the new upgrade path for carrier with both GSM/UMTS networks and CDMA2000 networks. The LTE is targeting to become the first global mobile phone standard regardless of the different LTE frequencies and bands use in other countries barrier. Adaptive Modulation and Coding (AMC) is used to increase the network capacity or downlink data rates. Various modulation types are discussed such as Quadrature Phase Shift Keying (QPSK) and Quadrature Amplitude Modulation (QAM). Spatial multiplexing techniques for 4×4 MIMO antenna configurations are considered. This paper has outlined various estimation techniques to increase the throughput of the LTE network by simulating the estimation techniques with various parameters in the LTE downlink mode 4 (spatial multiplexing). Three techniques i.e. channel estimation technique, estimation of channel models and MIMO receiver algorithm are simulated to provide the ideal LTE wireless communication system.

  12. Dual-band bandpass filter using composite metamaterial resonator

    NASA Astrophysics Data System (ADS)

    Jin, Yu-Ting; Si, Li-Ming; Zhang, Qing-Le; Wu, Yu-Ming; Lv, Xin

    2016-03-01

    A dual-band bandpass filter at X-band is proposed using composite metamaterial resonator consisting of an outer square closed-ring resonator (SCRR) and two inner electric inductance-capacitance (ELC) resonators. Numerical simulation and microwave measurement reveal that the filter exhibits two passbands centered at 8.76 GHz and 11.04 GHz, with 3 dB bandwidths of 130 MHz and 290 MHz, respectively. The complex dispersion relation of the filter is further derived based on the effective medium theory, where two balanced composite right-/left-handed bands are found, i.e. lines exhibiting two left-handed and two right-handed bands alternating. The proposed filter may find useful in dual-band or multi-band wireless communication systems.

  13. Radio Relays Improve Wireless Products

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  14. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  15. Coexistence issues for a 2.4 GHz wireless audio streaming in presence of bluetooth paging and WLAN

    NASA Astrophysics Data System (ADS)

    Pfeiffer, F.; Rashwan, M.; Biebl, E.; Napholz, B.

    2015-11-01

    Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.

  16. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOEpatents

    McCown, Steven H.; Derr, Kurt W.; Rohde, Kenneth W.

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  17. Ultrasonic wireless health monitoring

    NASA Astrophysics Data System (ADS)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data

  18. Wireless Damage Location Sensing System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  19. Wireless Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  20. Wireless power transfer system

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  1. WIRELESS MINE WIDE TELECOMMUNICATIONS TECHNOLOGY

    SciTech Connect

    Zvi H. Meiksin

    2002-04-01

    Two industrial prototype units for through-the-earth wireless communication were constructed and tested. Preparation for a temporary installation in NIOSH's Lake Lynn mine for the through-the-earth and the in-mine system were completed. Progress was made in the programming of the in-mine system to provide data communication. Work has begun to implement a wireless interface between equipment controllers and our in-mine system.

  2. Wireless Power Transfer

    SciTech Connect

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  3. Wireless Power Transfer

    ScienceCinema

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the

  4. A Simple Band for Gastric Banding.

    PubMed

    Broadbent

    1993-08-01

    The author has noted that flexible gastric bands have occasionally stenosed the gastric stoma or allowed it to dilate. A band was developed using a soft outer silicone rubber tube over a holding mechanism made out of a nylon cable tie passed within the silicone tube. This simple, easily applied band is rigid, resisting scar contracture and dilatation. PMID:10757939

  5. Wireless Instrumentation Use on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Sherman, Aaron

    2010-01-01

    This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.

  6. Hybrid model for wireless mobility management using IPv6

    NASA Astrophysics Data System (ADS)

    Howie, Douglas P.; Sun, Junzhao; Koivisto, Antti T.

    2001-07-01

    Within the coming decade, there will be a dramatic increase in the availability of inexpensive, computationally powerful mobile devices running applications which use the Internet Protocol (IP) to access multimedia services over broad-band wireless connections. To this end, there has been extensive research and standardization in the areas of Mobile IP and IPv6. The purpose of this paper is to apply this work to the issues involved in designing a mobility model able to adapt to different wireless mobile IP scenarios. We describe the usefulness of this model in the 4th generation mobile multimedia systems to come. This new model has been synthesized through a comparative analysis of current mobile IP models where particular attention has been given to the problems of mobile IP handoff and mobility management and their impact on QoS. By applying a unique perspective to these problems, our model is used to set a roadmap for future mobile IPv6 testbed construction.

  7. Improving the reliability of wireless body area networks.

    PubMed

    Arrobo, Gabriel E; Gitlin, Richard D

    2011-01-01

    In this paper we propose a highly reliable wireless body area network (WBAN) that provides increased throughput and avoids single points of failure. Such networks improve upon current WBANs by taking advantage of a new technology, Cooperative Network Coding (CNC). Using CNC in wireless body area network to support real-time applications is an attractive solution to combat packet loss, reduce latency due to retransmissions, avoid single points of failure, and improve the probability of successful recovery of the information at the destination. In this paper, we have extended Cooperative Network Coding, from its original configuration (one-to-one) to many-to-many as in multiple-input-multiple-output (MIMO) systems. Cooperative Network Coding results in increased throughput and network reliability because of the cooperation of the nodes in transmitting coded combination packets across spatially distinct paths to the information sinks. PMID:22254774

  8. Shear Banding of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Divoux, Thibaut; Fardin, Marc A.; Manneville, Sebastien; Lerouge, Sandra

    2016-01-01

    Even in simple geometries, many complex fluids display nontrivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known for several decades, but in recent years, we have seen an upsurge in studies offering an ever-more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and soft glassy materials and highlight their similarities and disparities.

  9. 60-GHz optical/wireless MIMO system integrated with optical subcarrier multiplexing and 2x2 wireless communication.

    PubMed

    Lin, Chi-Hsiang; Lin, Chun-Ting; Huang, Hou-Tzu; Zeng, Wei-Siang; Chiang, Shou-Chih; Chang, Hsi-Yu

    2015-05-01

    This paper proposes a 2x2 MIMO OFDM Radio-over-Fiber scheme based on optical subcarrier multiplexing and 60-GHz MIMO wireless transmission. We also schematically investigated the principle of optical subcarrier multiplexing, which is based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In our simulation result, combining two MIMO OFDM signals to drive DP-MZM gives rise to the PAPR augmentation of less than 0.4 dB, which mitigates nonlinear distortion. Moreover, we applied a Levin-Campello bit-loading algorithm to compensate for the uneven frequency responses in the V-band. The resulting system achieves OFDM signal rates of 61.5-Gbits/s with BER of 10(-3) over 25-km SMF transmission followed by 3-m wireless transmission. PMID:25969299

  10. Bridge monitoring using heterogeneous wireless sensor network

    NASA Astrophysics Data System (ADS)

    Haran, Shivan; Kher, Shubhalaxmi; Mehndiratta, Vandana

    2010-03-01

    Wireless sensor networks (WSN) are proving to be a good fit where real time monitoring of multiple physical parameters is required. In many applications such as structural health monitoring, patient data monitoring, traffic accident monitoring and analysis, sensor networks may involve interface with conventional P2P systems and it is challenging to handle heterogeneous network systems. Heterogeneous deployments will become increasingly prevalent as it allows for systems to seamlessly integrate and interoperate especially when it comes to applications involving monitoring of large infrastructures. Such networks may have wireless sensor network overlaid on a conventional computer network to pick up data from one distant location and carry out the analysis after relaying it over to another distant location. This paper discusses monitoring of bridges using WSN. As a test bed, a heterogeneous network of WSN and conventional P2P together with a combination of sensing devices (including vibration and strain) is to be used on a bridge model. Issues related to condition assessment of the bridge for situations including faults, overloads, etc., as well as analysis of network and system performance will be discussed. When conducted under controlled conditions, this is an important step towards fine tuning the monitoring system for recommendation of permanent mounting of sensors and collecting data that can help in the development of new methods for inspection and evaluation of bridges. The proposed model, design, and issues therein will be discussed, along with its implementation and results.

  11. Cooperation and information replication in wireless networks.

    PubMed

    Poularakis, Konstantinos; Tassiulas, Leandros

    2016-03-01

    A significant portion of today's network traffic is due to recurring downloads of a few popular contents. It has been observed that replicating the latter in caches installed at network edges-close to users-can drastically reduce network bandwidth usage and improve content access delay. Such caching architectures are gaining increasing interest in recent years as a way of dealing with the explosive traffic growth, fuelled further by the downward slope in storage space price. In this work, we provide an overview of caching with a particular emphasis on emerging network architectures that enable caching at the radio access network. In this context, novel challenges arise due to the broadcast nature of the wireless medium, which allows simultaneously serving multiple users tuned into a multicast stream, and the mobility of the users who may be frequently handed off from one cell tower to another. Existing results indicate that caching at the wireless edge has a great potential in removing bottlenecks on the wired backbone networks. Taking into consideration the schedule of multicast service and mobility profiles is crucial to extract maximum benefit in network performance. PMID:26809574

  12. Routing and Scheduling Algorithms for WirelessHART Networks: A Survey

    PubMed Central

    Nobre, Marcelo; Silva, Ivanovitch; Guedes, Luiz Affonso

    2015-01-01

    Wireless communication is a trend nowadays for the industrial environment. A number of different technologies have emerged as solutions satisfying strict industrial requirements (e.g., WirelessHART, ISA100.11a, WIA-PA). As the industrial environment presents a vast range of applications, adopting an adequate solution for each case is vital to obtain good performance of the system. In this context, the routing and scheduling schemes associated with these technologies have a direct impact on important features, like latency and energy consumption. This situation has led to the development of a vast number of routing and scheduling schemes. In the present paper, we focus on the WirelessHART technology, emphasizing its most important routing and scheduling aspects in order to guide both end users and the developers of new algorithms. Furthermore, we provide a detailed literature review of the newest routing and scheduling techniques for WirelessHART, discussing each of their features. These routing algorithms have been evaluated in terms of their objectives, metrics, the usage of the WirelessHART structures and validation method. In addition, the scheduling algorithms were also evaluated by metrics, validation, objectives and, in addition, by multiple superframe support, as well as by the redundancy method used. Moreover, this paper briefly presents some insights into the main WirelessHART simulation modules available, in order to provide viable test platforms for the routing and scheduling algorithms. Finally, some open issues in WirelessHART routing and scheduling algorithms are discussed. PMID:25919371

  13. Design of multilevel heterogeneous ad-hoc wireless networks with UAVs

    NASA Astrophysics Data System (ADS)

    Gu, Daniel L.; Gerla, Mario; Ly, Henry; Xu, Kaixin; Kong, Jiejun; Hong, Xiaoyan

    2001-10-01

    Multi-Layer Ad Hoc Wireless Networks with UAVs is an ideal infrastructure to establish a rapidly deployable wireless communication system any time any where in the world for military applications. In this paper, we review the research we have done so far for our heterogeneous solution. First of all, we proposed the infrastructure of Multi-level Heterogeneous Ad-Hoc Wireless Network with UAVs. Second, we developed a new MAC layer protocol, Centralized Intelligent Channel Assigned Multiple Access (C-ICAMA), for ground mobile backbone nodes to access UAV. Third, we extended HSR (Hierarchical State Routing) to this Multi-Level Heterogeneous Ad-Hoc Wireless Network. Due to the intrinsic limitations of Extended HSR, we extended the Landmark Ad Hoc Routing (LANMAR) as our forth step. Security is a critical issue for mobile ad-hoc wireless networks, especially for military applications. We developed an embedded distributed security protocol and integrated with this heterogeneous hierarchical ad hoc wireless networks in our fifth step. Therefore, the hierarchical multi-layer approach is the most desirable approach to achieve routing scalability in multi-hop wireless networks.

  14. Efficient data communication protocols for wireless networks

    NASA Astrophysics Data System (ADS)

    Zeydan, Engin

    In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to

  15. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOEpatents

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  16. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-01-01

    An important criterion of wireless sensor network is the energy efficiency in specified applications. In this wireless multimedia sensor network, the observations are derived from acoustic sensors. Focused on the energy problem of target tracking, this paper proposes a robust forecasting method to enhance the energy efficiency of wireless multimedia sensor networks. Target motion information is acquired by acoustic sensor nodes while a distributed network with honeycomb configuration is constructed. Thereby, target localization is performed by multiple sensor nodes collaboratively through acoustic signal processing. A novel method, combining autoregressive moving average (ARMA) model and radial basis function networks (RBFNs), is exploited to perform robust target position forecasting during target tracking. Then sensor nodes around the target are awakened according to the forecasted target position. With committee decision of sensor nodes, target localization is performed in a distributed manner and the uncertainty of detection is reduced. Moreover, a sensor-to-observer routing approach of the honeycomb mesh network is investigated to solve the data reporting considering the residual energy of sensor nodes. Target localization and forecasting are implemented in experiments. Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimental results verify that energy efficiency of wireless multimedia sensor network is enhanced by the proposed target tracking method.

  17. Information transmission using UEP turbo codes in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhou, Zude; Xu, Chao

    2005-11-01

    Wireless sensing is prevalent quickly in these years, and it has many advantages, such as fewer catastrophic failures, conservation of natural resources, improved emergency response, etc. Wireless sensors can be deployed in extremely hostile environment. Since the wireless sensors are energy constrained, many researches have been in progress to solve these problems. In this paper, we proposed a joint source-channel coding scheme to solve energy efficiency of wireless sensors. Firstly, we decomposition information in wavelet domain, then compress it by using multi-scale embedded zerotree wavelet algorithm, and generate a bit stream that can be decompressed in a scalable bit rate. Then, we transmit the bit stream after encoding them with unequal error protection turbo codes to achieve error robust transmission. We transmit multiple bit streams according to some energy strategy, and redundancies to base stations are reduced by only transmitting coarse scale information. Due to the scalability of multi-scale EZW, we can adopt diversified bit rate strategy to save energy of battery powered sensors.

  18. Wireless data transfer with mm-waves for future tracking detectors

    NASA Astrophysics Data System (ADS)

    Pelikan, D.; Bingefors, N.; Brenner, R.; Dancila, D.; Gustafsson, L.

    2014-11-01

    Wireless data transfer has revolutionized the consumer market for the last decade generating many products equipped with transmitters and receivers for wireless data transfer. Wireless technology opens attractive possibilities for data transfer in future tracking detectors. The reduction of wires and connectors for data links is certainly beneficial both for the material budget and the reliability of the system. An advantage of wireless data transfer is the freedom of routing signals which today is particularly complicated when bringing the data the first 50 cm out of the tracker. With wireless links intelligence can be built into a tracker by introducing communication between tracking layers within a region of interest which would allow the construction of track primitives in real time. The wireless technology used in consumer products is however not suitable for tracker readouts. The low data transfer capacity of current 5 GHz transceivers and the relatively large feature sizes of the components is a disadvantage.Due to the requirement of high data rates in tracking detectors high bandwidth is required. The frequency band around 60 GHz turns out to be a very promising candidate for data transfer in a detector system. The high baseband frequency allows for data transfer in the order of several Gbit/s. Due to the small wavelength in the mm range only small structures are needed for the transmitting and receiving electronics. The 60 GHz frequency band is a strong candidate for future WLAN applications hence components are already starting to be available on the market.Patch antennas produced on flexible Printed Circuit Board substrate that can be used for wireless communication in future trackers are presented in this article. The antennas can be connected to transceivers for data transmission/reception or be connected by wave-guides to structures capable of bringing the 60 GHz signal behind boundaries. Results on simulation and fabrication of these antennas are

  19. VCSEL arrays for optical wireless systems

    NASA Astrophysics Data System (ADS)

    Tada, Katsuhisa; Nitatori, Koichi; Iwamoto, Takashi; Miura, Takamitsu; Sakai, Masahisa

    2001-05-01

    Now we have studied the development of the optical devices used in optical wireless communication systems. For optical wireless systems, the emitted light should have an intensity distribution in the shape of a pill-box. Use of VCSEL array was believed to allow the emitted light to have pill-box distribution and we performed the study concerning the optimum VCSEL array for optical wireless systems. This article describes the development of the VCSEL array for optical wireless systems.

  20. A Wireless Control System with Mutual Use of Control Signals for Cooperative Machines

    NASA Astrophysics Data System (ADS)

    Kondo, Tsugunori; Kobayashi, Kentaro; Katayama, Masaaki

    This paper discusses a wireless control system for cooperative motion of multiple machines, and clarifies the influence of packet losses on the system behavior. We focus on the synchronization of the motion of the machines, and using the nature of wireless, we propose a new wireless control scheme for maintaining the synchronization performance under packet loss conditions. In the proposed scheme, each controlled object (plant) utilizes control information destined for all plants, and the main controller also utilizes state information of all plants. The additional information of the other controller-plant pairs is used to compensate lost information. As an example of the controlled plants, rotary inverted pendulums, which move synchronously with wireless connections in their control-feedback loops, are considered. Numerical examples confirm the superiority of the proposed scheme from the view-point of the synchronization of the motion of the plants.

  1. [Design of a long-distance consultation system using wireless sensor networks].

    PubMed

    Wang, Ji; Shen, Yuli; Xa, Guobao; Xie, Shiyi

    2010-02-01

    A remote interactive consultation system based on wireless sensor networks is proposed for family health care works and non-hospital special case patient monitoring. The sensor nodes are integrated into a local area network to collect a variety of human physiological information, which is uploaded to Internet through the Code-Division Multiple Access (CDMA) wireless network technology and sent to the database based on GIS spatial location query technology for achieving electronic diagnosis. Users or administrators can visit remote monitor region through Internet. The results show that the system, using a star passive topology of static gateway and mobile detection node, combines intelligent-distributed wireless sensing, computing and wireless communication technologies. Hence the proposed system has a great practical value. PMID:20337049

  2. Proposal of Wireless Traffic Control Schemes for Wireless LANs

    NASA Astrophysics Data System (ADS)

    Hiraguri, Takefumi; Ichikawa, Takeo; Iizuka, Masataka; Kubota, Shuji

    This paper proposes two traffic control schemes to support the communication quality of multimedia streaming services such as VoIP and audio/video over IEEE 802.11 wireless LAN systems. The main features of the proposed scheme are bandwidth control for each flow of the multimedia streaming service and load balancing between access points (APs) of the wireless LAN by using information of data link, network and transport layers. The proposed schemes are implemented on a Linux machine which is called the wireless traffic controller (WTC). The WTC connects a high capacity backbone network and an access network to which the APs are attached. We evaluated the performance of the proposed WTC and confirmed that the communication quality of the multimedia streaming would be greatly improved by using this technique.

  3. Wireless Andrew: Everywhere You Want To Be.

    ERIC Educational Resources Information Center

    Futhey, Tracy

    2000-01-01

    Describes the wireless local area network at Carnegie Mellon University. Highlights include classroom applications, particularly in the Business School; the use of laptop computers configured with wireless technology; handheld computers, including use for testing; and assuring appropriate uses of wireless technology. (LRW)

  4. 77 FR 64446 - Wireless Microphones Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Docket No. 02-380, Second Memorandum Opinion and Order, 75 FR 75814, 25 FCC Rcd 18661 (2010) (TV White... Rulemaking, 75 FR 3622, 75 FR 3682, 25 FCC Rcd 643 (2010) (Wireless Microphones Order and Wireless... Memorandum Opinion and Order, 77 FR 29236, 27 FCC Rcd 3692 (2012). Background In the Wireless...

  5. A Wireless Communications Systems Laboratory Course

    ERIC Educational Resources Information Center

    Guzelgoz, Sabih; Arslan, Huseyin

    2010-01-01

    A novel wireless communications systems laboratory course is introduced. The course teaches students how to design, test, and simulate wireless systems using modern instrumentation and computer-aided design (CAD) software. One of the objectives of the course is to help students understand the theoretical concepts behind wireless communication…

  6. 47 CFR 27.1176 - Cost-sharing requirements for AWS in the 2150-2160/62 MHz band.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1710-1755 MHz, 2110-2155 MHz, 2160-2180 MHz Bands Cost-Sharing Policies Governing Broadband Radio Service Relocation from the...) Frequencies in the 2150-2160/62 MHz band have been reallocated from the Broadband Radio Service (BRS) to...

  7. 47 CFR 27.1176 - Cost-sharing requirements for AWS in the 2150-2160/62 MHz band.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1710-1755 MHz, 2110-2155 MHz, 2160-2180 MHz Bands Cost-Sharing Policies Governing Broadband Radio Service Relocation from the...) Frequencies in the 2150-2160/62 MHz band have been reallocated from the Broadband Radio Service (BRS) to...

  8. 47 CFR 27.1176 - Cost-sharing requirements for AWS in the 2150-2160/62 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1710-1755 MHz, 2110-2155 MHz, 2160-2180 MHz Bands Cost-Sharing Policies Governing Broadband Radio Service Relocation from the...) Frequencies in the 2150-2160/62 MHz band have been reallocated from the Broadband Radio Service (BRS) to...

  9. Detecting Vital Signs with Wearable Wireless Sensors

    PubMed Central

    Yilmaz, Tuba; Foster, Robert; Hao, Yang

    2010-01-01

    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented. PMID:22163501

  10. Come Join the Band

    ERIC Educational Resources Information Center

    Olson, Cathy Applefeld

    2011-01-01

    A growing number of students in Blue Springs, Missouri, are joining the band, drawn by a band director who emphasizes caring and inclusiveness. In the four years since Melissia Goff arrived at Blue Springs High School, the school's extensive band program has swelled. The marching band alone has gone from 100 to 185 participants. Also under Goff's…

  11. Wireless communication of real-time ultrasound data and control

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2015-03-01

    The Internet of Things (IoT) is expected to grow to 26 billion connected devices by 2020, plus the PC, smart phone, and tablet segment that includes mobile Health (mHealth) connected devices is projected to account for another 7.3 billion units by 2020. This paper explores some of the real-time constraints on the data-flow and control of a wireless connected ultrasound machine. The paper will define an ultrasound server and the capabilities necessary for real-time use of the device. The concept of an ultrasound server wirelessly (or over any network) connected to multiple lightweight clients on devices like an iPad, iPhone, or Android-based tablet, smartphone and other network-attached displays (i.e., Google Glass) is explored. Latency in the ultrasound data stream is one of the key areas to measure and to focus on keeping as small as possible (<30ms) so that the ultrasound operator can see what is at the probe at that moment, instead of where the probe was a short period earlier. By keeping the latency less than 30ms, the operator will feel like the data he sees on the wireless connected devices is running in real-time with the operator. The second parameter is the management of bandwidth. At minimum we need to be able to see 20 frames-per- second. It is possible to achieve ultrasound in triplex mode at >20 frames-per-second on a properly configured wireless network. The ultrasound server needs to be designed to accept multiple ultrasound data clients and multiple control clients. A description of the server and some of its key features will be described.

  12. Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2003-01-01

    Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.

  13. 2.4 GHz wireless sensor network for smart electronic shirts

    NASA Astrophysics Data System (ADS)

    Carmo, J. P.; Mendes, P. M.; Couto, C.; Correia, J. H.

    2005-07-01

    This paper presents a wireless sensor network for smart electronic shirts. This allows the monitoring of individual biomedical data, such the cardio-respiratory function. The solution chosen to transmit the body's measured signals for further processing was the use of a wireless link, working at the 2.4 GHz ISM band. A radio-frequency transceiver chip was designed in a UMC RF 0.18 μm CMOS process. The power supply of the transceiver is 1.8 V. Simulations show a power consumption of 12.9 mW. Innovative topics concerning efficient power management was taken into account during the design of the transceiver.

  14. Wireless device monitoring systems and monitoring devices, and associated methods

    DOEpatents

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  15. Automated Negotiation for Resource Assignment in Wireless Surveillance Sensor Networks.

    PubMed

    de la Hoz, Enrique; Gimenez-Guzman, Jose Manuel; Marsa-Maestre, Ivan; Orden, David

    2015-01-01

    Due to the low cost of CMOS IP-based cameras, wireless surveillance sensor networks have emerged as a new application of sensor networks able to monitor public or private areas or even country borders. Since these networks are bandwidth intensive and the radioelectric spectrum is limited, especially in unlicensed bands, it is mandatory to assign frequency channels in a smart manner. In this work, we propose the application of automated negotiation techniques for frequency assignment. Results show that these techniques are very suitable for the problem, being able to obtain the best solutions among the techniques with which we have compared them. PMID:26610512

  16. Automated Negotiation for Resource Assignment in Wireless Surveillance Sensor Networks

    PubMed Central

    de la Hoz, Enrique; Gimenez-Guzman, Jose Manuel; Marsa-Maestre, Ivan; Orden, David

    2015-01-01

    Due to the low cost of CMOS IP-based cameras, wireless surveillance sensor networks have emerged as a new application of sensor networks able to monitor public or private areas or even country borders. Since these networks are bandwidth intensive and the radioelectric spectrum is limited, especially in unlicensed bands, it is mandatory to assign frequency channels in a smart manner. In this work, we propose the application of automated negotiation techniques for frequency assignment. Results show that these techniques are very suitable for the problem, being able to obtain the best solutions among the techniques with which we have compared them. PMID:26610512

  17. Lessons Learned from Deployment of Wireless LAN Technology

    PubMed Central

    SooHoo, Spencer L.; Duncan, Ray

    2001-01-01

    The adoption of IEEE standard 802.11b for wireless LAN technology fostered the rapid development of devices that utilize the 2.45Ghz ISM (Industrial, Scientific and Medical) frequency band. In the healthcare setting, this provides some unique opportunities to provide better, low cost mobile access to data for clinical use as well as providing some economic solutions for wide deployment of bandwidth-intensive applications over a large geographical area This poster details some the lessons we have learned as we deploy this technology.

  18. Wireless Communications in Reverberant Environments

    NASA Astrophysics Data System (ADS)

    Measel, Ryan Thomas

    Implementation of WLANs in reverberant environments, such as industrial facilities, naval vessels, aircraft, and spacecraft, has proven challenging, because rich electromagnetic scattering can degrade link quality through multipath interference. As a result, the adoption of Wireless LANs in these environments has been slow. Previous studies concerning reverberant environments have focused on characterizing electromagnetic properties for the purpose of electromagnetic compatibility testing. Little attention has been given to the performance of wireless communications. In this effort, the effect of electromagnetic reverberance on wireless communications is investigated in order to assess the feasibility of WLAN deployment. Work centered around two experimental measurement campaigns. The first campaign was performed in coupled reverberation chambers. The reverberation chambers provided a controllable environment which was configured to emulate the reverberance of below-deck spaces on a naval vessel. The process for quantifying and configuring the electromagnetic properties of a reverberation chamber is presented. The second campaign was performed on a naval vessel. Experimentation was conducted in a variety of locations on the ship. Locations were selected to represent a wide range of practical environments. Across both campaigns, several environment and node parameters were evaluated: level of reverberance, cavity coupling (effective aperture size), and LOS versus NLOS links. Additionally, advanced physical layer schemes and reconfigurable antennas are presented as methods to improve performance and mitigate multipath interference. To perform this work, a measurement platform and testing protocol were developed for systematic characterization of wireless communications in reverberant environments. The primary contributions of this work are empirical characterization of wireless communications in reverberant environments, approaches to improving the performance of

  19. Wireless Technologies Implications for Power Systems

    SciTech Connect

    Fuhr, Peter L; Manges, Wayne W; Schweitzer, Patrick; Kagan, Hesh

    2010-01-01

    Wireless technologies have advanced well beyond simple SCADA radio systems and point-to-point links. The current applications supported by industrial-grade wireless sensors and systems range from field measurements (classic I/O) to voice, video, asset tracking, mobile operators, etc. Which such a wide array of supported applications, the belief that wireless technology will only impact power systems in terms of wireless sensors is shortsighted. This paper, coauthored by a group of individuals intimately involved in the general realm of industrial wireless , presents a simple snapshot of current radio technologies that are used (or seriously contemplated for use) in power systems.

  20. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2015-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  1. WIRELESS FOR A NUCLEAR FACILITY

    SciTech Connect

    Shull, D; Joe Cordaro, J

    2007-03-28

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  2. Wireless technology for integrated manufacturing

    SciTech Connect

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  3. X-Band/Ka-Band Dichroic Plate

    NASA Technical Reports Server (NTRS)

    Chen, Jacqueline C.

    1993-01-01

    Dichroic plate designed nearly transparent to circularly polarized microwaves at frequencies between 31.8 and 34.7 GHz (in and near Ka band) and reflective at frequencies between 8.4 and 8.5 GHz (in the X band). Made of electrically conductive material and contains rectangular holes in staggered pattern.

  4. Wireless Ways: Business and Personal Applications of Wireless Technology.

    ERIC Educational Resources Information Center

    Chung, Joe

    2001-01-01

    Describes the Art Technology Group (ATG), an electronic business and customer management company, and the work they have done with wireless technology. Highlights include designing virtual offices and supporting the resulting virtual community; the mobility it allows; problems with bandwidth; and display issues. (LRW)

  5. Wireless medical sensor networks: design requirements and enabling technologies.

    PubMed

    Vallejos de Schatz, Cecilia H; Medeiros, Henry Ponti; Schneider, Fabio K; Abatti, Paulo J

    2012-06-01

    This article analyzes wireless communication protocols that could be used in healthcare environments (e.g., hospitals and small clinics) to transfer real-time medical information obtained from noninvasive sensors. For this purpose the features of the three currently most widely used protocols-namely, Bluetooth(®) (IEEE 802.15.1), ZigBee (IEEE 802.15.4), and Wi-Fi (IEEE 802.11)-are evaluated and compared. The important features under consideration include data bandwidth, frequency band, maximum transmission distance, encryption and authentication methods, power consumption, and current applications. In addition, an overview of network requirements with respect to medical sensor features, patient safety and patient data privacy, quality of service, and interoperability between other sensors is briefly presented. Sensor power consumption is also discussed because it is considered one of the main obstacles for wider adoption of wireless networks in medical applications. The outcome of this assessment will be a useful tool in the hands of biomedical engineering researchers. It will provide parameters to select the most effective combination of protocols to implement a specific wireless network of noninvasive medical sensors to monitor patients remotely in the hospital or at home. PMID:22500740

  6. A vibration powered wireless mote on the Forth Road Bridge

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Yan, Jize; Feng, Tao; Du, Sijun; Fidler, Paul; Soga, Kenichi; Middleton, Campbell; Seshia, Ashwin A.

    2015-12-01

    The conventional resonant-approaches to scavenge kinetic energy are typically confined to narrow and single-band frequencies. The vibration energy harvester device reported here combines both direct resonance and parametric resonance in order to enhance the power responsiveness towards more efficient harnessing of real-world ambient vibration. A packaged electromagnetic harvester designed to operate in both of these resonant regimes was tested in situ on the Forth Road Bridge. In the field-site, the harvester, with an operational volume of ∼126 cm3, was capable of recovering in excess of 1 mW average raw AC power from the traffic-induced vibrations in the lateral bracing structures underneath the bridge deck. The harvester was integrated off-board with a power conditioning circuit and a wireless mote. Duty- cycled wireless transmissions from the vibration-powered mote was successfully sustained by the recovered ambient energy. This limited duration field test provides the initial validation for realising vibration-powered wireless structural health monitoring systems in real world infrastructure, where the vibration profile is both broadband and intermittent.

  7. A multipath video delivery scheme over diffserv wireless LANs

    NASA Astrophysics Data System (ADS)

    Man, Hong; Li, Yang

    2004-01-01

    This paper presents a joint source coding and networking scheme for video delivery over ad hoc wireless local area networks. The objective is to improve the end-to-end video quality with the constraint of the physical network. The proposed video transport scheme effectively integrates several networking components including load-aware multipath routing, class based queuing (CBQ), and scalable (or layered) video source coding techniques. A typical progressive video coder, 3D-SPIHT, is used to generate multi-layer source data streams. The coded bitstreams are then segmented into multiple sub-streams, each with a different level of importance towards the final video reconstruction. The underlay wireless ad hoc network is designed to support service differentiation. A contention sensitive load aware routing (CSLAR) protocol is proposed. The approach is to discover multiple routes between the source and the destination, and label each route with a load value which indicates its quality of service (QoS) characteristics. The video sub-streams will be distributed among these paths according to their QoS priority. CBQ is also applied to all intermediate nodes, which gives preference to important sub-streams. Through this approach, the scalable source coding techniques are incorporated with differentiated service (DiffServ) networking techniques so that the overall system performance is effectively improved. Simulations have been conducted on the network simulator (ns-2). Both network layer performance and application layer performance are evaluated. Significant improvements over traditional ad hoc wireless network transport schemes have been observed.

  8. Strategies for Optimal MAC Parameters Tuning in IEEE 802.15.6 Wearable Wireless Sensor Networks.

    PubMed

    Alam, Muhammad Mahtab; Ben Hamida, Elyes

    2015-09-01

    Wireless body area networks (WBAN) has penetrated immensely in revolutionizing the classical heath-care system. Recently, number of WBAN applications has emerged which introduce potential limits to existing solutions. In particular, IEEE 802.15.6 standard has provided great flexibility, provisions and capabilities to deal emerging applications. In this paper, we investigate the application-specific throughput analysis by fine-tuning the physical (PHY) and medium access control (MAC) parameters of the IEEE 802.15.6 standard. Based on PHY characterizations in narrow band, at the MAC layer, carrier sense multiple access collision avoidance (CSMA/CA) and scheduled access protocols are extensively analyzed. It is concluded that, IEEE 802.15.6 standard can satisfy most of the WBANs applications throughput requirements by maximum achieving 680 Kbps. However, those emerging applications which require high quality audio or video transmissions, standard is not able to meet their constraints. Moreover, delay, energy efficiency and successful packet reception are considered as key performance metrics for comparing the MAC protocols. CSMA/CA protocol provides the best results to meet the delay constraints of medical and non-medical WBAN applications. Whereas, the scheduled access approach, performs very well both in energy efficiency and packet reception ratio. PMID:26266628

  9. (abstract) Experimental Results From Internetworking Data Applications Over Various Wireless Networks Using a Single Flexible Error Control Protocol

    NASA Technical Reports Server (NTRS)

    Kanai, T.; Kramer, M.; McAuley, A. J.; Nowack, S.; Pinck, D. S.; Ramirez, G.; Stewart, I.; Tohme, H.; Tong, L.

    1995-01-01

    This paper describes results from several wireless field trials in New Jersey, California, and Colorado, conducted jointly by researchers at Bellcore, JPL, and US West over the course of 1993 and 1994. During these trials, applications communicated over multiple wireless networks including satellite, low power PCS, high power cellular, packet data, and the wireline Public Switched Telecommunications Network (PSTN). Key goals included 1) designing data applications and an API suited to mobile users, 2) investigating internetworking issues, 3) characterizing wireless networks under various field conditions, and 4) comparing the performance of different protocol mechanisms over the diverse networks and applications. We describe experimental results for different protocol mechanisms and parameters, such as acknowledgment schemes and packet sizes. We show the need for powerful error control mechanisms such as selective acknowledgements and combining data from multiple transmissions. We highlight the possibility of a common protocol for all wireless networks, from micro-cellular PCS to satellite networks.

  10. Energy harvesting and wireless energy transmission for embedded sensor nodes

    NASA Astrophysics Data System (ADS)

    Farinholt, Kevin; Taylor, Stuart; Miller, Nathan; Sifuentes, Wilfredo; Moro, Erik; Park, Gyuhae; Farrar, Charles; Flynn, Eric; Mascarenas, David; Todd, Michael

    2009-03-01

    In this paper, we present experimental investigations using energy harvesting and wireless energy transmission to operate embedded structural health monitoring sensor nodes. The goal of this study is to develop sensing systems that can be permanently embedded within a host structure without the need for an on-board power source. With this approach the required energy will be harvested from the ambient environment, or periodically delivered by a RF energy source to supplement conventional harvesting approaches. This approach combines several transducer types to harvest energy from multiple sources, providing a more robust solution that does not rely on a single energy source. Both piezoelectric and thermoelectric transducers are considered as energy harvesters to extract the ambient energy commonly available on civil structures such as bridges. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  11. Fault Tolerance in ZigBee Wireless Sensor Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.

  12. Wireless communication and their mathematics

    NASA Astrophysics Data System (ADS)

    Komaki, Shozo

    2015-05-01

    Mobile phone and smart phone are penetrating into social use. To develop these system, various type of theoretical works based on mathematics are done, such as radio propagation theory, traffic theory, security coding and wireless device etc. In this speech, I will mention about the related mathematics and problems in it.

  13. Socially Aware Heterogeneous Wireless Networks.

    PubMed

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  14. Wireless transmission by plasmonic antennas

    NASA Astrophysics Data System (ADS)

    Merlo, Juan M.; Calm, Yitzi M.; Rose, Aaron H.; Burns, Michael J.; Naughton, Michael J.

    Radio frequency (RF) communication is fundamental to many modern technologies. The idea of a simple rescaling of RF theory to the visible frequency range is not a direct issue, due in part to the finite conductivity in the optical range of commonly-used metals (e.g. Ag, Au). In this context, wireless communication using plasmonic antennas is a very recent concept with potential importance in an on-chip technology application. Here, we propose a plasmonic antenna system capable of wireless transmission-at-a-distance equivalent to at least four free-space wavelengths from the emitter. We demonstrate that it is possible to transmit information with maximum signal strength of -6.9 dB at three free-space wavelengths with a signal-to-noise ratio of -13 dB, good enough to be considered as an efficient wireless system. Theoretical calculations agree with our experimental results and open the possibility to future optimizations of the proposed plasmonic wireless system.

  15. Breaking Free with Wireless Networks.

    ERIC Educational Resources Information Center

    Fleischman, John

    2002-01-01

    Discusses wireless local area networks (LANs) which typically consist of laptop computers that connect to fixed access points via infrared or radio signals. Topics include wide area networks; personal area networks; problems, including limitations of available bandwidth, interference, and security concerns; use in education; interoperability;…

  16. Gigabit Wireless for Network Connectivity

    ERIC Educational Resources Information Center

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  17. Underwater optical wireless communication network

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2010-01-01

    The growing need for underwater observation and subsea monitoring systems has stimulated considerable interest in advancing the enabling technologies of underwater wireless communication and underwater sensor networks. This communication technology is expected to play an important role in investigating climate change, in monitoring biological, biogeochemical, evolutionary, and ecological changes in the sea, ocean, and lake environments, and in helping to control and maintain oil production facilities and harbors using unmanned underwater vehicles (UUVs), submarines, ships, buoys, and divers. However, the present technology of underwater acoustic communication cannot provide the high data rate required to investigate and monitor these environments and facilities. Optical wireless communication has been proposed as the best alternative to meet this challenge. Models are presented for three kinds of optical wireless communication links: (a) a line-of-sight link, (b) a modulating retroreflector link, and (c) a reflective link, all of which can provide the required data rate. We analyze the link performance based on these models. From the analysis, it is clear that as the water absorption increases, the communication performance decreases dramatically for the three link types. However, by using the scattered light it was possible to mitigate this decrease in some cases. It is concluded from the analysis that a high-data-rate underwater optical wireless network is a feasible solution for emerging applications such as UUV-to-UUV links and networks of sensors, and extended ranges in these applications could be achieved by applying a multi-hop concept.

  18. Socially Aware Heterogeneous Wireless Networks

    PubMed Central

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-01-01

    The development of smart cities has been the epicentre of many researchers’ efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users’ locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation. PMID:26110402

  19. The Wireless Student & the Library.

    ERIC Educational Resources Information Center

    Drew, Bill

    2002-01-01

    Describes a program at the State University of New York College of Agriculture and Technology at Morrisville (SUNY-Morrisville) developed with IBM called ThinkPad University that integrates computers into the teaching and learning environment. Explains a partnership with Raytheon that provides wireless connectivity; and discusses changes in…

  20. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an

  1. Wireless Data Acquisition of Transient Signals for Mobile Spectrometry Applications.

    PubMed

    Trzcinski, Peter; Weagant, Scott; Karanassios, Vassili

    2016-05-01

    Wireless data acquisition using smartphones or handhelds offers increased mobility, it provides reduced size and weight, it has low electrical power requirements, and (in some cases) it has an ability to access the internet. Thus, it is well suited for mobile spectrometry applications using miniaturized, field-portable spectrometers, or detectors for chemical analysis in the field (i.e., on-site). There are four main wireless communications standards that can be used for wireless data acquisition, namely ZigBee, Bluetooth, Wi-Fi, and UWB (ultra-wide band). These are briefly reviewed and are evaluated for applicability to data acquisition of transient signals (i.e., time-domain) in the field (i.e., on-site) from a miniaturized, field-portable photomultiplier tube detector and from a photodiode array detector installed in a miniaturized, field-portable fiber optic spectrometer. These are two of the most widely used detectors for optical measurements in the ultraviolet-visible range of the spectrum. A miniaturized, 3D-printed, battery-operated microplasma-on-a-chip was used for generation of transient optical emission signals. Elemental analysis from liquid microsamples, a microplasma, and a handheld or a smartphone will be used as examples. Development and potential applicability of wireless data acquisition of transient optical emission signals for taking part of the lab to the sample types of mobile, field-portable spectrometry applications will be discussed. The examples presented are drawn from past and ongoing work in the authors' laboratory. A handheld or a smartphone were used as the mobile computing devices of choice. PMID:27006023

  2. Wireless address event representation system for biological sensor networks

    NASA Astrophysics Data System (ADS)

    Folowosele, Fopefolu; Tapson, Jonathan; Etienne-Cummings, Ralph

    2007-05-01

    We describe wireless networking systems for close proximity biological sensors, as would be encountered in artificial skin. The sensors communicate to a "base station" that interprets the data and decodes its origin. Using a large bundle of ultra thin metal wires from the sensors to the "base station" introduces significant technological hurdles for both the construction and maintenance of the system. Fortunately, the Address Event Representation (AER) protocol provides an elegant and biomorphic method for transmitting many impulses (i.e. neural spikes) down a single wire/channel. However, AER does not communicate any sensory information within each spike, other that the address of the origination of the spike. Therefore, each sensor must provide a number of spikes to communicate its data, typically in the form of the inter-spike intervals or spike rate. Furthermore, complex circuitry is required to arbitrate access to the channel when multiple sensors communicate simultaneously, which results in spike delay. This error is exacerbated as the number of sensors per channel increases, mandating more channels and more wires. We contend that despite the effectiveness of the wire-based AER protocol, its natural evolution will be the wireless AER protocol. A wireless AER system: (1) does not require arbitration to handle multiple simultaneous access of the channel, (2) uses cross-correlation delay to encode sensor data in every spike (eliminating the error due to arbitration delay), and (3) can be reorganized and expanded with little consequence to the network. The system uses spread spectrum communications principles, implemented with a low-power integrate-and-fire neurons. This paper discusses the design, operation and capabilities of such a system. We show that integrate-and-fire neurons can be used to both decode the origination of each spike and extract the data contained within in. We also show that there are many technical obstacles to overcome before this version

  3. Wireless Video System for Extra Vehicular Activity in the International Space Station and Space Shuttle Orbiter Environment

    NASA Technical Reports Server (NTRS)

    Loh, Yin C.; Boster, John; Hwu, Shian; Watson, John C.; deSilva, Kanishka; Piatek, Irene (Technical Monitor)

    1999-01-01

    The Wireless Video System (WVS) provides real-time video coverage of astronaut extra vehicular activities during International Space Station (ISS) assembly. The ISS wireless environment is unique due to the nature of the ISS structure and multiple RF interference sources. This paper describes how the system was developed to combat multipath, blockage, and interference using an automatic antenna switching system. Critical to system performance is the selection of receiver antenna installation locations determined using Uniform Geometrical Theory of Diffraction (GTD) techniques.

  4. Photonic band gap materials

    SciTech Connect

    Soukoulis, C.M. |

    1993-12-31

    An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.

  5. Enhancing the versatility of wireless biopotential acquisition for myoelectric prosthetic control

    NASA Astrophysics Data System (ADS)

    Bercich, Rebecca A.; Wang, Zhi; Mei, Henry; Hammer, Lauren H.; Seburn, Kevin L.; Hargrove, Levi J.; Irazoqui, Pedro P.

    2016-08-01

    Objective. A significant challenge in rehabilitating upper-limb amputees with sophisticated, electric-powered prostheses is sourcing reliable and independent channels of motor control information sufficient to precisely direct multiple degrees of freedom simultaneously. Approach. In response to the expressed needs of clinicians, we have developed a miniature, batteryless recording device that utilizes emerging integrated circuit technology and optimal impedance matching for magnetic resonantly coupled (MRC) wireless power transfer to improve the performance and versatility of wireless electrode interfaces with muscle. Main results. In this work we describe the fabrication and performance of a fully wireless and batteryless EMG recording system and use of this system to direct virtual and electric-powered limbs in real-time. The advantage of using MRC to optimize power transfer to a network of wireless devices is exhibited by EMG collected from an array of eight devices placed circumferentially around a human subject’s forearm. Significance. This is a comprehensive, low-cost, and non-proprietary solution that provides unprecedented versatility of configuration to direct myoelectric prostheses without wired connections to the body. The amenability of MRC to varied coil geometries and arrangements has the potential to improve the efficiency and robustness of wireless power transfer links at all levels of upper-limb amputation. Additionally, the wireless recording device’s programmable flash memory and selectable features will grant clinicians the unique ability to adapt and personalize the recording system’s functional protocol for patient- or algorithm-specific needs.

  6. Hazmat Cam Wireless Video System

    SciTech Connect

    Kevin L. Young

    2006-02-01

    This paper describes the Hazmat Cam Wireless Video System and its application to emergency response involving chemical, biological or radiological contamination. The Idaho National Laboratory designed the Hazmat Cam Wireless Video System to assist the National Guard Weapons of Mass Destruction - Civil Support Teams during their mission of emergency response to incidents involving weapons of mass destruction. The lightweight, handheld camera transmits encrypted, real-time video from inside a contaminated area, or hot-zone, to a command post located a safe distance away. The system includes a small wireless video camera, a true-diversity receiver, viewing console, and an optional extension link that allows the command post to be placed up to five miles from danger. It can be fully deployed by one person in a standalone configuration in less than 10 minutes. The complete system is battery powered. Each rechargeable camera battery powers the camera for 3 hours with the receiver and video monitor battery lasting 22 hours on a single charge. The camera transmits encrypted, low frequency analog video signals to a true-diversity receiver with three antennas. This unique combination of encryption and transmission technologies delivers encrypted, interference-free images to the command post under conditions where other wireless systems fail. The lightweight camera is completely waterproof for quick and easy decontamination after use. The Hazmat Cam Wireless Video System is currently being used by several National Guard Teams, the US Army, and by fire fighters. The system has been proven to greatly enhance situational awareness during the crucial, initial phase of a hazardous response allowing commanders to make better, faster, safer decisions.

  7. Portable Wireless Device Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2004-01-01

    This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.

  8. Synthesis of the A-band polysaccharide sugar D-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa.

    PubMed

    Rocchetta, H L; Pacan, J C; Lam, J S

    1998-09-01

    Pseudomonas aeruginosa is capable of producing various cell-surface polysaccharides including alginate, A-band and B-band lipopolysaccharides (LPS). The D-mannuronic acid residues of alginate and the D-rhamnose (D-Rha) residues of A-band polysaccharide are both derived from the common sugar nucleotide precursor GDP-D-mannose (D-Man). Three genes, rmd, gmd and wbpW, which encode proteins involved in the synthesis of GDP-D-Rha, have been localized to the 5' end of the A-band gene cluster. In this study, WbpW was found to be homologous to phosphomannose isomerases (PMIs) and GDP-mannose pyrophosphorylases (GMPs) involved in GDP-D-Man biosynthesis. To confirm the enzymatic activity of WbpW, Escherichia coli PMI and GMP mutants deficient in the K30 capsule were complemented with wbpW, and restoration of K30 capsule production was observed. This indicates that WbpW, like AlgA, is a bifunctional enzyme that possesses both PMI and GMP activities for the synthesis of GDP-D-Man. No gene encoding a phosphomannose mutase (PMM) enzyme could be identified within the A-band gene cluster. This suggests that the PMM activity of AlgC may be essential for synthesis of the precursor pool of GDP-D-Man, which is converted to GDP-D-Rha for A-band synthesis. Gmd, a previously reported A-band enzyme, and Rmd are predicted to perform the two-step conversion of GDP-D-Man to GDP-D-Rha. Chromosomal mutants were generated in both rmd and wbpW. The Rmd mutants do not produce A-band LPS, while the WbpW mutants synthesize very low amounts of A band after 18 h of growth. The latter observation was thought to result from the presence of the functional homologue AlgA, which may compensate for the WbpW deficiency in these mutants. Thus, WbpW AlgA double mutants were constructed. These mutants also produced low levels of A-band LPS. A search of the PAO1 genome sequence identified a second AlgA homologue, designated ORF488, which may be responsible for the synthesis of GDP-D-Man in the absence of Wbp

  9. Flat Band Quastiperiodic Lattices

    NASA Astrophysics Data System (ADS)

    Bodyfelt, Joshua; Flach, Sergej; Danieli, Carlo

    2014-03-01

    Translationally invariant lattices with flat bands (FB) in their band structure possess irreducible compact localized flat band states, which can be understood through local rotation to a Fano structure. We present extension of these quasi-1D FB structures under incommensurate lattices, reporting on the FB effects to the Metal-Insulator Transition.

  10. Tunable Dielectric Materials and Devices for Broadband Wireless Communications

    NASA Technical Reports Server (NTRS)

    Mueller, Carl H.; Miranda, Felix A.; Dayton, James A. (Technical Monitor)

    1998-01-01

    Wireless and satellite communications are a rapidly growing industries which are slated for explosive growth into emerging countries as well as countries with advanced economies. The dominant trend in wireless communication systems is towards broadband applications such as multimedia file transfer, video transmission and Internet access. These applications require much higher data transmission rates than those currently used for voice transmission applications. To achieve these higher data rates, substantially larger bandwidths and higher carrier frequencies are required. A key roadblock to implementing these systems at K-band (18-26.5 GHz) and Ka-band (26.5-40 GHz) is the need to develop hardware which meets the requirements for high data rate transmission in a cost effective manner. In this chapter, we report on the status of tunable dielectric thin films for devices, such as resonators, filters, phased array antennas, and tunable oscillators, which utilize nonlinear tuning in the control elements. Paraelectric materials such as Barium Strontium Titanate ((Ba, Sr)TiO3) have dielectric constants which can be tuned by varying the magnitude of the electric field across the material. Therefore, these materials can be used to control the frequency and/or phase response of various devices such as electronically steerable phased array antennas, oscillators, and filters. Currently, tunable dielectric devices are being developed for applications which require high tunability, low loss, and good RF power-handling capabilities at microwave and millimeter-wave frequencies. These properties are strongly impacted by film microstructure and device design, and considerable developmental work is still required. However, in the last several years enormous progress has occurred in this field, validating the potential of tunable dielectric technology for broadband wireless communication applications. In this chapter we summarize how film processing techniques, microwave test

  11. Novel metamaterial based antennas for flexible wireless systems

    NASA Astrophysics Data System (ADS)

    Khaleel, Haider Raad

    Recent years have witnessed a great deal of interest from both academia and industry in the field of flexible electronic systems. This research topic tops the pyramid of research priorities requested by many national research agencies. Consistently, flexible electronic systems require the integration of flexible antennas operating in specific frequency bands to provide wireless connectivity which is highly demanded by today's information oriented society. On the other hand, metamaterials have become very popular in the design of contemporary antenna and microwave devices due to their wide range of applications derived from their unique properties which significantly enhances the performance of antennas and RF systems. Accordingly, the integration of metamaterial structures within flexible wireless systems is very beneficial in this growing field of research. A systematic approach to the analysis and design of flexible and conformal antennas and metamaterials is ultimately needed. The research reported in this thesis focuses on developing flexible low profile antennas and metamaterial structures in addition to characterizing their performance when integrated within flexible wireless systems. Three flexible, compact, and extremely low profile (50.8 microm) antennas intended for WLAN, Bluetooth and Ultra Wide Band (UWB) applications are presented. Next, a novel miniaturized Artificial Magnetic Conductor (AMC) and a new technique to enhance the bandwidth of micro-Negative (MNG) metamaterial are reported. Furthermore, the effect of bending on the AMC and MNG metamaterial is investigated in this thesis for the first time. Finally, the findings of this research are utilized in practical applications with specific design constraints including mutual coupling reduction between radiating elements in antenna arrays and MIMO systems and Specific Absorption Rate (SAR) reduction in telemedicine systems.

  12. 47 CFR 27.1230 - Conversion of the 2500-2690 MHz band.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Conversion of the 2500-2690 MHz band. 27.1230 Section 27.1230 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband...

  13. 47 CFR 27.1230 - Conversion of the 2500-2690 MHz band.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Conversion of the 2500-2690 MHz band. 27.1230 Section 27.1230 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband...

  14. 47 CFR 27.1230 - Conversion of the 2500-2690 MHz band.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Conversion of the 2500-2690 MHz band. 27.1230 Section 27.1230 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband...

  15. 47 CFR 27.1230 - Conversion of the 2500-2690 MHz band.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Conversion of the 2500-2690 MHz band. 27.1230 Section 27.1230 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband...

  16. 47 CFR 27.1230 - Conversion of the 2500-2690 MHz band.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Conversion of the 2500-2690 MHz band. 27.1230 Section 27.1230 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband...

  17. Optimization of piezoelectric energy harvester for wireless smart sensors in railway health monitoring

    NASA Astrophysics Data System (ADS)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2013-04-01

    Wireless sensor network is one of the prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. Nowadays, most of vibration based energy harvesters are designed at resonance. However, as railway vibration frequency is a wide band range, how to design an energy harvester working at that range is critical. In this paper, the energy consumption of the wireless smart sensor platform, Imote2, at different working states were investigated. Based on the energy consumption, a design of a bimorph cantilever piezoelectric energy harvester has been optimized to generate maximum average power between a wide-band frequency range. Significant power and current outputs have been increased after optimal design. Finally, the rechargeable battery life for supplying the Imote2 for railway monitoring is predicted by using the optimized piezoelectric energy harvesting system.

  18. Wireless optical links for avionics applications

    NASA Astrophysics Data System (ADS)

    Chan, Eric; Koshinz, Dennis; Krug, William; Hager, Harold

    2011-06-01

    Recently there has been strong interest in wireless optical (WO) communication link applications in airplanes and avionics platforms for size, weight, power, cost, and electromagnetic interference (EMI) reduction. Wireless optical link has additional advantage of providing network security because the optical signal from wireless optical link is well confined within an airplane or avionics vehicle. In this paper we discuss some potential wireless optical link applications in commercial airplanes and the challenges in the implementation of wireless optical links for these applications. We will present our experimental results on using white LED (WLED), visible laser source and free-space small-form-factor (SFF) optical transceivers to demonstrate the viability of applying wireless optical links in avionics platforms.

  19. Performance Analysis of IIUM Wireless Campus Network

    NASA Astrophysics Data System (ADS)

    Abd Latif, Suhaimi; Masud, Mosharrof H.; Anwar, Farhat

    2013-12-01

    International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement.

  20. Design and optimization of an RF energy harvesting system from multiple sources

    NASA Astrophysics Data System (ADS)

    Ali, Mai; Albasha, Lutfi; Qaddoumi, Nasser

    2013-05-01

    This paper presents the design and optimization of an RF energy harvesting system from multiple sources. The RF power is harvested from four frequency bands representing five wireless systems, namely GSM, UMTS, DTV, Wi-Fi, and road tolling system. A Schottky diode model was developed based on which an RF-DC rectifier joined with a voltage multiplier circuits were designed. The simulation results of the complete RF harvesting system showed superior performance to similar state of the art systems. To further optimize the design, and to eliminate use of a non-standard CMOS process associated with Schottky diodes, the Schottky diode based rectifier was replaced by diode connected transistor configuration based on self-threshold cancellation (SVC) technique.

  1. Two-band superconductor magnesium diboride

    NASA Astrophysics Data System (ADS)

    Xi, X. X.

    2008-11-01

    This review focuses on the most important features of the 40 K superconductor MgB2—the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher Tc superconductors.

  2. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... and Battery Packs; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION... server software, wireless handheld devices and battery packs by reason of infringement of certain claims... importation of certain wireless communications system server software, wireless handheld devices or...

  3. Photovoltaic multiplicities

    NASA Astrophysics Data System (ADS)

    Queisser, Hans J.

    1997-04-01

    A multicell solar energy converter, produced in 1959/60 at the Shockley Transistor Corporation, is reviewed. The feasibility of this device, one of the first involving principles of Si integrated circuits, was demonstrated in anticipation of large-area Si sheets, to be pulled from Si/Pb binary melts. Secondly, the generation of multiple carrier pairs by absorption of merely one photon is discussed. Experiments on high-quality Si solar cells demonstrated this effect, which relies on inverse Auger generation. In principle, much higher maximal conversion efficiencies would be possible; novel criteria for materials optimization result. The new challenge of the inverse band structure problem arises. Finally, multistage optical transitions via deep centers in solar cells are briefly appraised.

  4. Wireless Sensor Needs Defined by SBIR Topics

    NASA Technical Reports Server (NTRS)

    Studor, George F.

    2010-01-01

    This slide presentation reviews the needs for wireless sensor technology from various U.S. government agencies as exhibited by an analysis of Small Business Innovation Research (SBIR) solicitations. It would appear that a multi-agency group looking at overlapping wireless sensor needs and technology projects is desired. Included in this presentation is a review of the NASA SBIR process, and an examination of some of the SBIR projects from NASA, and other agencies that involve wireless sensor development

  5. A Scalable, Out-of-Band Diagnostics Architecture for International Space Station Systems Support

    NASA Technical Reports Server (NTRS)

    Fletcher, Daryl P.; Alena, Rick; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The computational infrastructure of the International Space Station (ISS) is a dynamic system that supports multiple vehicle subsystems such as Caution and Warning, Electrical Power Systems and Command and Data Handling (C&DH), as well as scientific payloads of varying size and complexity. The dynamic nature of the ISS configuration coupled with the increased demand for payload support places a significant burden on the inherently resource constrained computational infrastructure of the ISS. Onboard system diagnostics applications are hosted on computers that are elements of the avionics network while ground-based diagnostic applications receive only a subset of available telemetry, down-linked via S-band communications. In this paper we propose a scalable, out-of-band diagnostics architecture for ISS systems support that uses a read-only connection for C&DH data acquisition, which provides a lower cost of deployment and maintenance (versus a higher criticality readwrite connection). The diagnostics processing burden is off-loaded from the avionics network to elements of the on-board LAN that have a lower overall cost of operation and increased computational capacity. A superset of diagnostic data, richer in content than the configured telemetry, is made available to Advanced Diagnostic System (ADS) clients running on wireless handheld devices, affording the crew greater mobility for troubleshooting and providing improved insight into vehicle state. The superset of diagnostic data is made available to the ground in near real-time via an out-of band downlink, providing a high level of fidelity between vehicle state and test, training and operational facilities on the ground.

  6. Wireless magnetothermal deep brain stimulation.

    PubMed

    Chen, Ritchie; Romero, Gabriela; Christiansen, Michael G; Mohr, Alan; Anikeeva, Polina

    2015-03-27

    Wireless deep brain stimulation of well-defined neuronal populations could facilitate the study of intact brain circuits and the treatment of neurological disorders. Here, we demonstrate minimally invasive and remote neural excitation through the activation of the heat-sensitive capsaicin receptor TRPV1 by magnetic nanoparticles. When exposed to alternating magnetic fields, the nanoparticles dissipate heat generated by hysteresis, triggering widespread and reversible firing of TRPV1(+) neurons. Wireless magnetothermal stimulation in the ventral tegmental area of mice evoked excitation in subpopulations of neurons in the targeted brain region and in structures receiving excitatory projections. The nanoparticles persisted in the brain for over a month, allowing for chronic stimulation without the need for implants and connectors. PMID:25765068

  7. [Wireless human body communication technology].

    PubMed

    Sun, Lei; Zhang, Xiaojuan

    2014-12-01

    The Wireless Body Area Network (WBAN) is a key part of the wearable monitoring technologies, which has many communication technologies to choose from, like Bluetooth, ZigBee, Ultra Wideband, and Wireless Human Body Communication (WHBC). As for the WHBC developed in recent years, it is worthy to be further studied. The WHBC has a strong momentum of growth and a natural advantage in the formation of WBAN. In this paper, we first briefly describe the technical background of WHBC, then introduce theoretical model of human-channel communication and digital transmission machine based on human channel. And finally we analyze various of the interference of the WHBC and show the AFH (Adaptive Frequency Hopping) technology which can effectively deal with the interference. PMID:25868265

  8. Biomedical Wireless Ambulatory Crew Monitor

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  9. Wireless Augmented Reality Communication System

    NASA Technical Reports Server (NTRS)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2014-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  10. Wireless augmented reality communication system

    NASA Technical Reports Server (NTRS)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2006-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  11. Wireless autonomous device data transmission

    NASA Technical Reports Server (NTRS)

    Sammel, Jr., David W. (Inventor); Cain, James T. (Inventor); Mickle, Marlin H. (Inventor); Mi, Minhong (Inventor)

    2013-01-01

    A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.

  12. Self-Powered Wireless Sensors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali

    2008-01-01

    NASA's integrated vehicle health management (IVHM) program offers the potential to improve aeronautical safety, reduce cost and improve performance by utilizing networks of wireless sensors. Development of sensor systems for engine hot sections will provide real-time data for prognostics and health management of turbo-engines. Sustainable power to embedded wireless sensors is a key challenge for prolong operation. Harvesting energy from the environment has emerged as a viable technique for power generation. Thermoelectric generators provide a direct conversion of heat energy to electrical energy. Micro-power sources derived from thermoelectric films are desired for applications in harsh thermal environments. Silicon based alloys are being explored for applications in high temperature environments containing oxygen. Chromium based p-type Si/Ge alloys exhibit Seebeck coefficients on the order of 160 micro V/K and low thermal conductance of 2.5 to 5 W/mK. Thermoelectric properties of bulk and thin film silicides will be discussed

  13. Wireless communication devices and movement monitoring methods

    DOEpatents

    Skorpik, James R.

    2006-10-31

    Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.

  14. Development of a wireless displacement measurement system using acceleration responses.

    PubMed

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  15. Wireless design of a multisensor system for physical activity monitoring.

    PubMed

    Mo, Lingfei; Liu, Shaopeng; Gao, Robert X; John, Dinesh; Staudenmayer, John W; Freedson, Patty S

    2012-11-01

    Real-time monitoring of human physical activity (PA) is important for assessing the intensity of activity and exposure to environmental pollutions. A wireless wearable multisenor integrated measurement system (WIMS) has been designed for real-time measurement of the energy expenditure and breathing volume of human subjects under free-living conditions. To address challenges posted by the limited battery life and data synchronization requirement among multiple sensors in the system, the ZigBee communication platform has been explored for energy-efficient design. Two algorithms have been developed (multiData packaging and slot-data-synchronization) and coded into a microcontroller (MCU)-based sensor circuitry for real-time control of wireless data communication. Experiments have shown that the design enables continued operation of the wearable system for up to 68 h, with the maximum error for data synchronization among the various sensor nodes (SNs) being less than 24 ms. Experiment under free-living conditions have shown that the WIMS is able to correctly recognize the activity intensity level 86% of the time. The results demonstrate the effectiveness of the energy-efficient wireless design for human PA monitoring. PMID:23086196

  16. Common MD-IS infrastructure for wireless data technologies

    NASA Astrophysics Data System (ADS)

    White, Malcolm E.

    1995-12-01

    The expansion of global networks, caused by growth and acquisition within the commercial sector, is forcing users to move away from proprietary systems in favor of standards-based, open systems architectures. The same is true in the wireless data communications arena, where operators of proprietary wireless data networks have endeavored to convince users that their particular implementation provides the best service. However, most of the vendors touting these solutions have failed to gain the critical mass that might have lead to their technologies' adoption as a defacto standard, and have been held back by a lack of applications and the high cost of mobile devices. The advent of the cellular digital packet data (CDPD) specification and its support by much of the public cellular service industry has set the stage for the ubiquitous coverage of wireless packet data services across the Unites States. Although CDPD was developed for operation over the advanced mobile phone system (AMPS) cellular network, many of the defined protocols are industry standards that can be applied to the construction of a common infrastructure supporting multiple airlink standards. This approach offers overall cost savings and operation efficiency for service providers, hardware, and software developers and end-users alike, and could be equally advantageous for those service operators using proprietary end system protocols, should they wish to migrate towards an open standard.

  17. Wireless Micro-Ball endoscopic image enhancement using histogram information.

    PubMed

    Attar, Abdolrahman; Xie, Xiang; Zhang, Chun; Wang, Zhihua; Yue, Shigang

    2014-01-01

    Wireless endoscopy systems is a new innovative method widely used for gastrointestinal tract examination in recent decade. Wireless Micro-Ball endoscopy system with multiple image sensors is the newest proposed method which can make a full view image of the gastrointestinal tract. But still the quality of images from this new wireless endoscopy system is not satisfactory. It's hard for doctors and specialist to easily examine and interpret the captured images. The image features also are not distinct enough to be used for further processing. So as to enhance these low-contrast endoscopic images a new image enhancement method based on the endoscopic images features and color distribution is proposed in this work. The enhancement method is performed on three main steps namely color space transformation, edge preserving mask formation, and histogram information correction. The luminance component of CIE Lab, YCbCr, and HSV color space is enhanced in this method and then two other components added finally to form an enhanced color image. The experimental result clearly show the robustness of the method. PMID:25570705

  18. Semantic wireless body area networks.

    PubMed

    Nimmala, Venkatarama S R; Penders, Julien; van Hyfte, Dirk; Brands, Michael; Gyselinckx, Bert

    2008-01-01

    In this paper we introduce the concept of semantic Wireless Body Area Network (sWBAN). First the method for semantic interpretation of body sensor data is developed. This method is then illustrated for the case of ECG monitoring, providing the user with real-time monitoring and interpretation of heart activity. Finally, possible extensions of the method to data fusion and context-aware monitoring are discussed. PMID:19163441

  19. Space Shuttle Wireless Crew Communications

    NASA Technical Reports Server (NTRS)

    Armstrong, R. W.; Doe, R. A.

    1982-01-01

    The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

  20. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    PubMed Central

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  1. Identification of the UIR bands

    NASA Astrophysics Data System (ADS)

    Johnson, Fred M.

    2016-06-01

    Starlight undergoing multiple scattering processes within fluffy grains results in extinction, UV 2175A bump, DIBs and the UIR bands. Spectroscopic lab and DIB data has identified the highly fluorescent molecule Dipyridyl Magnesium Tetrabenzoporphyrin (MgTBP). Reflection and Raman scattering experimental data will be presented which designates this molecule as the primary source for UIR signals. MgTBP sublimes at about 500OC. It is produced via high temperature plasma synthesis within and subsequently ejected from comets which in turn are by-products of solar system-planetary development. Interstellar dust is the left-over refuse which implies prodigious solar system evolution in each galaxy.

  2. Nucleation of shear bands in amorphous alloys

    PubMed Central

    Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio

    2014-01-01

    The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599

  3. TCPL: A Defense against wormhole attacks in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-10-01

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  4. TCPL: A Defense against wormhole attacks in wireless sensor networks

    SciTech Connect

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-10-26

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  5. On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    The paper demonstrates a de-embedding technique and a direct on-substrate measurement technique for fast and inexpensive characterization of miniature antennas for wireless applications at millimeter-wave frequencies. The technique is demonstrated by measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies include input impedance, mutual coupling between two TSAs and absolute gain of TSA.

  6. Banded ion morphology

    SciTech Connect

    Frahm, R.A.

    1987-01-01

    Bands of ions have been observed at constant pitch angle by the Dynamics Explorer High- and Low-Altitude Plasma Instruments at auroral latitudes. The observed ion-dispersion pattern shows lower-energy ions toward the equatorward side of the band and higher-energy ions toward the poleward side of the band. Ion bands have their highest-energy flux at small pitch angles. The observed bands have been correlated with storm phase (by Dst) and substorm phase (by AE). Bands are more likely to occur during main-storm phase than during recovery storm phase. Substorm correlations are statistically significant, but there is a hint that most bands occur during substorm recovery phase. Two models have the potential of producing ion signatures that are similar to the band feature. They are the time-of-flight mechanism and the convective dispersion mechanism. Under a time-of-flight mechanism, ions are dispersed along a magnetic filed line with higher-energy particles outrunning lower energy particles. Ions are dispersed perpendicular to the magnetic field under convective dispersion. A time-of-flight effect does not explain the band energy-latitude dependence observed in the southern night or northern day very well, whereas the convective dispersion mechanism easily accomplishes this.

  7. Wide Band to ''Double Band'' upgrade

    SciTech Connect

    Kasper, P.; Currier, R.; Garbincius, P.; Butler, J.

    1988-06-01

    The Wide Band beam currently uses electrons obtained from secondary photon conversions to produce the photon beam incident on the experimental targets. By transporting the positrons produced in these conversions as well as the electrons it is possible to almost double the number of photons delivered to the experiments per primary beam proton. 11 figs.

  8. A rare combination of amniotic constriction band with osteogenesis imperfecta.

    PubMed

    Shah, Krupa Hitesh; Shah, Hitesh

    2015-01-01

    Amniotic constriction bands and osteogenesis imperfecta are disorders arising from a collagen defect. We report a rare association of amniotic bands with osteogenesis imperfecta in a child. The child was born with multiple amniotic bands involving the right leg, both hands and both feet. Multiple fractures of long bones of lower limbs occurred in childhood due to trivial trauma. Deformities of the femur and tibia due to malunion with osteopenia and blue sclerae were present. The patient was treated with z plasty of constriction band of the right tibia and bisphosphonate for osteogenesis imperfecta. This rare association of both collagen diseases may provide further insight for the pathogenesis of these diseases. PMID:26561227

  9. Wireless Laptops and Local Area Networks.

    ERIC Educational Resources Information Center

    Tolson, Stephanie Diane

    2001-01-01

    Describes experiences at St. Louis Community College at Florissant Valley (Missouri) with the use of wireless technology and a local area network for library bibliographic instruction. Discusses faculty input and attitudes; technical challenges; and experiences at other community colleges that have found wireless connections more economical than…

  10. Home and School Technology: Wired versus Wireless.

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2001-01-01

    Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)

  11. Wireless power transfer to a cardiac implant

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoek; Ho, John S.; Chen, Lisa Y.; Poon, Ada S. Y.

    2012-08-01

    We analyze wireless power transfer between a source and a weakly coupled implant on the heart. Numerical studies show that mid-field wireless powering achieves much higher power transfer efficiency than traditional inductively coupled systems. With proper system design, power sufficient to operate typical cardiac implants can be received by millimeter-sized coils.

  12. Tips for Implementing a Wireless Network

    ERIC Educational Resources Information Center

    Walery, Darrell

    2005-01-01

    This article provides a quick start guide to provide educators with the basic points to consider before installing a wireless network in the school. Since many school districts have already implemented wireless networks, there is a lot of information available online to assist in the process.

  13. Stretch Band Exercise Program

    ERIC Educational Resources Information Center

    Skirka, Nicholas; Hume, Donald

    2007-01-01

    This article discusses how to use stretch bands for improving total body fitness and quality of life. A stretch band exercise program offers a versatile and inexpensive option to motivate participants to exercise. The authors suggest practical exercises that can be used in physical education to improve or maintain muscular strength and endurance,…

  14. Singing with the Band

    ERIC Educational Resources Information Center

    Altman, Timothy Meyer; Wright, Gary K.

    2012-01-01

    Usually band, orchestra, and choir directors work independently. However, the authors--one a choral director, the other a band director--have learned that making music together makes friends. Not only can ensemble directors get along, but joint concerts may be just the way to help students see how music can reach the heart. Combined instrumental…

  15. Rubber Band Science

    ERIC Educational Resources Information Center

    Cowens, John

    2005-01-01

    Not only are rubber bands great for binding objects together, but they can be used in a simple science experiment that involves predicting, problem solving, measuring, graphing, and experimenting. In this article, the author describes how rubber bands can be used to teach the force of mass.

  16. Deep optical access on multi-core and multi-mode fiber for integrated wireless applications

    NASA Astrophysics Data System (ADS)

    Llorente, Roberto; Morant, Maria; Beltrán, Marta; Macho, Andrés.

    2015-01-01

    Deep integrated optical access networks target to provide great capillarity and multiple ONTs for cost- and energy-efficient pervasive connectivity seamless supporting integrated wireless. Several key optical technologies are herein reported supporting integrated deep optical access: Bundled radio-over-fiber transmission is proposed and demonstrated for the provision of quintuple-play services achieving 125 km SSMF optical reach. Bend-insensitive fiber in-building distribution is also proposed and demonstrated supporting joint legacy coaxial transmission. Multimode POF is also proposed and demonstrated suitable for joint in-building distribution of MATV and SMATV broadcasting signals. Optical comb technology us is also demonstrated suitable for mm-wave radio generation of multiband OFDM wireless signals. Finally, multicore fiber transmission is also proposed and demonstrated suitable for the transmission of LTE and WIMAX in wireless fronthaul applications in a minimized inter-core crosstalk penalty configuration.

  17. A power and data link for a wireless-implanted neural recording system.

    PubMed

    Rush, Alexander D; Troyk, Philip R

    2012-11-01

    A wireless cortical neural recording system with a miniature-implanted package is needed in a variety of neuroscience and biomedical applications. Toward that end, we have developed a transcutaneous two-way communication and power system for wireless neural recording. Wireless powering and forward data transmission (into the body) at 1.25 Mbps is achieved using a frequency-shift keying modulated class E converter. The reverse telemetry (out of the body) carrier frequency is generated using an integer-N phase-locked loop, providing the necessary wideband data link to support simultaneous reverse telemetry from multiple implanted devices on separate channels. Each channel is designed to support reverse telemetry with a data rate in excess of 3 Mbps, which is sufficient for our goal of streaming 16 channels of raw neural data. We plan to incorporate this implantable power and telemetry system in a 1-cm diameter single-site cortical neural recording implant. PMID:22922687

  18. Mermaid syndrome with amniotic band disruption.

    PubMed

    Managoli, Sanjeev; Chaturvedi, Pushpa; Vilhekar, Krishna Y; Iyenger, Janaki

    2003-01-01

    An association of Amniotic Band Disruption Sequence and Mermaid Syndrome in a newborn having multiple congenital anomalies is being reported. The newborn had aberrant string like tissues attached to the amputed fingers and toes. Adhesions of amniotic bands had disrupted the fetal parts especially anteriorly in the midline, causing multiple anomalies. Apart from these features of Amniotic Band Disruption Sequence, the newborn had complete fusion of the lower limbs by cutaneous tissue, a characteristic of Mermaid Syndrome (Sirenomelia). Associated malformations were anal stenosis, rectal atresia, small horseshoe kidney, hypoplastic urinary bladder and a bicomuate uterus. The single umbilical artery had a high origin, arising directly from the aorta just distal to the celiac axis, which is unique to sirenomelia. Theories put forward regarding the etiopathogenesis of both the conditions are discussed. PMID:12619964

  19. Progressive Band Selection

    NASA Technical Reports Server (NTRS)

    Fisher, Kevin; Chang, Chein-I

    2009-01-01

    Progressive band selection (PBS) reduces spectral redundancy without significant loss of information, thereby reducing hyperspectral image data volume and processing time. Used onboard a spacecraft, it can also reduce image downlink time. PBS prioritizes an image's spectral bands according to priority scores that measure their significance to a specific application. Then it uses one of three methods to select an appropriate number of the most useful bands. Key challenges for PBS include selecting an appropriate criterion to generate band priority scores, and determining how many bands should be retained in the reduced image. The image's Virtual Dimensionality (VD), once computed, is a reasonable estimate of the latter. We describe the major design details of PBS and test PBS in a land classification experiment.

  20. Completely Flat Band in a Crystal of Finite Thickness

    NASA Astrophysics Data System (ADS)

    Hirashima, Dai S.

    2016-04-01

    Conditions for the existence of a completely flat band in a crystal of finite thickness are clarified. Furthermore, the condition for the localization of the flat band states near the surfaces is also discussed. It is also found that a completely flat band can appear in a crystal where a lattice point has multiple orbital states. In addition to the known results for honeycomb and diamond lattices, a localized completely flat band is found in a crystal of the wurtzite structure of finite thickness. A completely flat band is also found in many other crystals, but it is extended in the direction perpendicular to the surface.

  1. Evaluation of wireless data communications at KSC

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra R.

    1995-01-01

    This project is motivated by the need for temporary or emergency provisioning of LAN service at KSC. The main goal of the project was to evaluate existing wireless bridge equipment in the KSC environment. Wireless bridge equipment can be used to make a wireless connection between two remotely located LAN segments. This report describes the experimental setup used to evaluate the equipment, including antenna connections, workstation connections, bridge software and workstation software The rangefinder program on the bridge was used to gather data about how the RF propagation environment at KSC affects the performance of the wireless bridge. Data was gathered for indoor as well as outdoor propagation. The report concludes with recommendations on how to take into account the particular terrain and building structures at KSC to design future applications of wireless bridges.

  2. Passive intrusion detection in wireless networks by exploiting clustering-based learning

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Chen, Yingying; Desai, Sachi; Quoraishee, Shafik

    2010-04-01

    The large-scale wireless sensing data collected from wireless networks can be used for detecting intruders (e.g., enemies in tactical fields), and further facilitating real-time situation awareness in Army's networkcentric warfare applications such as intrusion detection, battlefield protection and emergency evacuation. In this work, we focus on exploiting Received Signal Strength (RSS) obtained from the existing wireless infrastructures for performing intrusion detection when the intruders or objects do not carry any radio devices. This is also known as passive intrusion detection. Passive intrusion detection based on the RSS data is an attractive approach as it reuses the existing wireless environmental data without requiring a specialized infrastructure. We propose a clustering-based learning mechanism for passive intrusion detection in wireless networks. Specifically, our detection scheme utilizes the clustering method to analyze the changes of RSS, caused by intrusions, at multiple devices to diagnose the presence of intrusions collaboratively. Our experimental results using an IEEE 802.15.4 (Zigbee) network in a real office environment show that our clustering-based learning can effectively detect the presence of intrusions.

  3. Development of a Novel Wireless Electric Power Transfer System for Space Applications

    NASA Technical Reports Server (NTRS)

    VazquezRamos, Gabriel; Yuan, Jiann-Shiun

    2011-01-01

    This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.

  4. Deployment-ready multimode micropower wireless sensor networks for intrusion detection, classification, and tracking

    NASA Astrophysics Data System (ADS)

    Horton, Mike A.; Broad, Alan; Grimmer, Mike; Pister, Kristofer S. J.; Sastry, S. Shankar; Rosenbury, Tom; Whitaker, Norman A.

    2002-08-01

    Accurate personnel and vehicle tracking has been achieved using networks of small, unobtrusive, low-cost wireless sensors. The wireless MSTAR sensors developed in this work are based on previous pioneering MEMS sensing and TinyOS communications software work completed at UC Berkeley. The works has been funded under the DARPA SensIT, SensorWebs, and on-going DARPA NEST programs. These MSTAR sensors deliver around the clock all-weather surveillance and perimeter protection for field environments, including buildings, camp and tent locations, streets, mountainous regions, and other geographies. These capabilities satisfy many on-going intelligence and warfighter safety requirements. The MSTAR sensors are quickly deployed by hand emplacement or air-drop from a UAV or other airborne platform. The combination of multimode sensing on each wireless MSTAR sensor and multiple MSTAR sensors in the environment yields low false detections within the network perimeter. A low-power spread spectrum wireless link is used for communication across the MSTAR sensor network. Satellite exfiltration of data provides real-time access to the data on a worldwide basis. Future work includes additional field trials and the incorporation of acoustic capture, video capture, and biosensors into the MSTAR wireless sensor platform.

  5. 47 CFR 27.1305 - Shared wireless broadband network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Shared wireless broadband network. 27.1305... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 700 MHz Public/Private Partnership § 27.1305 Shared wireless broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private...

  6. World Without Wires: Is Your District Ready to Go Wireless?

    ERIC Educational Resources Information Center

    Villano, Matt

    2005-01-01

    In this article, the author presents the latest wireless equipments available in market. For starters, wireless networks offer mobility and flexibility: users of laptops, PDAs, tablet PCs, and wireless Voice over IP telephones can move freely about campus while staying connected to the Internet. There are two kinds of wireless networks: ad-hoc, or…

  7. Capacity Limit, Link Scheduling and Power Control in Wireless Networks

    ERIC Educational Resources Information Center

    Zhou, Shan

    2013-01-01

    The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…

  8. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial

    PubMed Central

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-01-01

    Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286

  9. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.

    PubMed

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-01-01

    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286

  10. Wireless Energy Transfer Through Magnetic Reluctance Coupling

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.

    2014-11-01

    Energy harvesting from human motion for body worn or implanted devices faces the problem of the wearer being still, e.g. while asleep. Especially for medical devices this can become an issue if a patient is bed-bound for prolonged periods of time and the internal battery of a harvesting system is not recharged. This article introduces a mechanism for wireless energy transfer based on a previously presented energy harvesting device. The internal rotor of the energy harvester is made of mild steel and can be actuated through a magnetic reluctance coupling to an external motor. The internal piezoelectric transducer is consequently actuated and generates electricity. This paper successfully demonstrates energy transfer over a distance of 16 mm in air and an achieved power output of 85 μW at 25 Hz. The device functional volume is 1.85 cm3. Furthermore, it was demonstrated that increasing the driving frequency beyond 25 Hz did not yield a further increase in power output. Future research will focus on improving the reluctance coupling, e.g. by investigating the use of multiple or stronger magnets, in order to increase transmission distance.

  11. Wireless Luminescence Integrated Sensors (WLIS)

    SciTech Connect

    Simpson, M.L.; Sayler, G.S.

    2003-11-10

    The goal of this project was the development of a family of wireless, single-chip, luminescence-sensing devices to solve a number of difficult distributed measurement problems in areas ranging from environmental monitoring and assessment to high-throughput screening of combinatorial chemistry libraries. These wireless luminescence integrated sensors (WLIS) consist of a microluminometer, wireless data transmitter, and RF power input circuit all realized in a standard integrated circuit (IC) process with genetically engineered, whole-cell, bioluminescent bioreporters encapsulated and deposited on the IC. The end product is a family of compact, low-power, rugged, low-cost sensors. As part of this program they developed an integrated photodiode/signal-processing scheme with an rms noise level of 175 electrons/second for a 13-minute integration time, and a quantum efficiency of 66% at the 490-nm bioluminescent wavelength. this performance provided a detection limit of < 1000 photons/second. Although sol-gel has previously been used to encapsulate yeast cells, the reaction conditions necessary for polymerization (primarily low pH) have beforehand proven too harsh for bacterial cell immobilizations. Utilizing sonication methods, they have were able to initiate polymerization under pH conditions conductive to cell survival. both a toluene bioreporter (Pseudomonas putida TVA8) and a naphthalene bioreporter (Pseudomonas fluorescens HK44) were successfully encapsulated in sol-gel and shown to produce a fairly significant bioluminescent response. In addition to the previously developed naphthalene- and toluene-sensitive bioreporters, they developed a yeast-based xenoestrogen reporter. This technology has been licensed by Micro Systems Technologies, a startup company in Dayton, Ohio for applications in environmental containments monitoring, and for detecting weapons of mass destruction (i.e. homeland security).

  12. Providing Source-Location Privacy in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ren, Jian

    Wireless sensor networks (WSN) have been widely used in many areas for unattended event monitoring. Mainly due to lack of a protected physical boundary, wireless communications are vulnerable to unauthorized detection, interception and and even node capture. Privacy is becoming one of the major issues that jeopardize the successful deployment and survivability of wireless sensor networks. While confidentiality of the message can be ensured through content encryption, it is much more difficult to adequately address the source-location privacy. For WSN, source-location privacy service is further complicated by the fact that the sensor nodes consist of low-cost and low-power radio devices, computationally intensive cryptographic algorithms (such as public-key cryptosystems) and large scale broadcasting-based protocols are not suitable for WSN. In this paper, we propose a two-step routing strategy for the messages to be routed from the actual source node to the SINK node through either a single, or multiple, randomly selected intermediate node(s) away from the source node so that it is to make it infeasible for the adversaries to trace back to the source node through hop-by-hop routing analysis. In the first protocol, the messages will be routed to a single intermediate node. This scheme can provide very good local source-location privacy. We also propose routing through multiple randomly selected intermediate nodes based on angle and quadrant to further improve the performance and security. While providing source-location privacy for WSN, our simulation results demonstrate that the proposed schemes are very efficient in energy consumption, and transmission latency. The proposed schemes can also assurance high message delivery ratio. Therefore, they can be used for many practical applications.

  13. Passive wireless ultrasonic transducer systems

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2014-02-01

    Inductive coupling and capacitive coupling both offer simple solutions to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such system in the context of non-destructive evaluation (NDE) applications. Firstly, the physical principles and construction of an inductively coupled transducer system (ICTS) and a capacitively coupled transducer system (CCTS) are introduced. Then the development of a transmission line model with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate for both systems is described. The models are validated experimentally. Several applications of CCTS are presented, such CCTS for the underwater and through-composite testing.

  14. Cooperative Synchronization in Wireless Networks

    NASA Astrophysics Data System (ADS)

    Etzlinger, Bernhard; Wymeersch, Henk; Springer, Andreas

    2014-06-01

    Synchronization is a key functionality in wireless network, enabling a wide variety of services. We consider a Bayesian inference framework whereby network nodes can achieve phase and skew synchronization in a fully distributed way. In particular, under the assumption of Gaussian measurement noise, we derive two message passing methods (belief propagation and mean field), analyze their convergence behavior, and perform a qualitative and quantitative comparison with a number of competing algorithms. We also show that both methods can be applied in networks with and without master nodes. Our performance results are complemented by, and compared with, the relevant Bayesian Cram\\'er-Rao bounds.

  15. Packet Controller For Wireless Headset

    NASA Technical Reports Server (NTRS)

    Christensen, Kurt K.; Swanson, Richard J.

    1993-01-01

    Packet-message controller implements communications protocol of network of wireless headsets. Designed for headset application, readily adapted to other uses; slight modification enables controller to implement Integrated Services Digital Network (ISDN) X.25 protocol, giving far-reaching applications in telecommunications. Circuit converts continuous voice signals into digital packets of data and vice versa. Operates in master or slave mode. Controller reduced to single complementary metal oxide/semiconductor integrated-circuit chip. Occupies minimal space in headset and consumes little power, extending life of headset battery.

  16. WMSA for wireless communication applications

    NASA Astrophysics Data System (ADS)

    Vats, Monika; Agarwal, Alok; Kumar, Ravindra

    2016-03-01

    Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f0 = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.

  17. Wireless power transfer magnetic couplers

    DOEpatents

    Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee

    2016-01-19

    A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.

  18. Fly-by-Wireless Update

    NASA Technical Reports Server (NTRS)

    Studor, George

    2010-01-01

    The presentation reviews what is meant by the term 'fly-by-wireless', common problems and motivation, provides recent examples, and examines NASA's future and basis for collaboration. The vision is to minimize cables and connectors and increase functionality across the aerospace industry by providing reliable, lower cost, modular, and higher performance alternatives to wired data connectivity to benefit the entire vehicle/program life-cycle. Focus areas are system engineering and integration methods to reduce cables and connectors, vehicle provisions for modularity and accessibility, and a 'tool box' of alternatives to wired connectivity.

  19. Chiral Bands and Triaxiality

    SciTech Connect

    Petrache, C.M.

    2004-02-27

    The results obtained with the GASP array in the A=130 mass region are reviewed, emphasizing the discovery excited highly-deformed bands and their decay out, the study of the odd-odd Pr nuclei up to high spins, the discovery of stable triaxial bands in Nd nuclei close to the N=82 shell closure. The very recent studies of nuclei near the proton drip line are described. A discussion of the origin of the various doublet bands observed in odd-odd nuclei of the A=130 mass region is presented.

  20. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  1. Energy efficiency and reliability in wireless biomedical implant systems.

    PubMed

    Abouei, Jamshid; Brown, J David; Plataniotis, Konstantinos N Kostas; Pasupathy, Subbarayan

    2011-05-01

    The use of wireless implant technology requires correct delivery of the vital physiological signs of the patient along with the energy management in power-constrained devices. Toward these goals, we present an augmentation protocol for the physical layer of the medical implant communications service (MICS) with focus on the energy efficiency of deployed devices over the MICS frequency band. The present protocol uses the rateless code with the frequency-shift keying (FSK) modulation scheme to overcome the reliability and power cost concerns in tiny implantable sensors due to the considerable attenuation of propagated signals across the human body. In addition, the protocol allows a fast start-up time for the transceiver circuitry. The main advantage of using rateless codes is to provide an inherent adaptive duty cycling for power management, due to the flexibility of the rateless code rate. Analytical results demonstrate that an 80% energy saving is achievable with the proposed protocol when compared to the IEEE 802.15.4 physical layer standard with the same structure used for wireless sensor networks. Numerical results show that the optimized rateless coded FSK is more energy efficient than that of the uncoded FSK scheme for deep tissue (e.g., digestive endoscopy) applications, where the optimization is performed over modulation and coding parameters. PMID:21233054

  2. Wireless intelligent sensor network for autonomous structural health monitoring

    NASA Astrophysics Data System (ADS)

    Sazonov, Edward; Janoyan, Kerop; Jha, Ratan

    2004-07-01

    Life cycle monitoring of civil infrastructure such as bridges and buildings is critical to the long-term operational cost and safety of aging structures. The widespread use of Structural Health Monitoring (SHM) systems is limited due to unavailability of specialized data acquisition equipment, high cost of generic equipment, and absence of fully automatic decision support systems. The goals of the presented project include: first, design of a Wireless Intelligent Sensor and Actuator Network (WISAN) and creation of an inexpensive set of instrumentation for the tasks of structural health monitoring; second, development of a SHM method, which is suitable for autonomous structural health monitoring. The design of the wireless sensor network is aimed at applications of structural health monitoring, addressing the issues of achieving a low cost per sensor, higher reliability, sources of energy for the network nodes, energy-efficient distribution of the computational load, security and coexistence in the ISM radio bands. The practical applicability of the sensor network is increased through utilization of computational intelligence and support of signal generation capabilities. The automated SHM method is based on the method of modal strain energy, though other SHM methods will be supported as well. The automation tasks include automation of the modal identification through ambient vibrations, classification of the acquired mode shapes, and automatic evaluation of the structural health.

  3. A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring

    NASA Astrophysics Data System (ADS)

    Bin, Zheng; Qingfeng, Meng; Nan, Wang; Zhi, Li

    2011-07-01

    The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.

  4. GPS-Free Localization Algorithm for Wireless Sensor Networks

    PubMed Central

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  5. GPS-free localization algorithm for wireless sensor networks.

    PubMed

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  6. Optical wireless applications: a solution to ease the wireless airwaves spectrum crunch

    NASA Astrophysics Data System (ADS)

    Kavehrad, M.

    2013-01-01

    Demands by the communications industry for greater and greater bandwidth push the capability of conventional wireless technology. Part of the Radio Spectrum that is suitable for mobility is very limited. Higher frequency waves above 30 GHz tend to travel only a few miles or less and generally do not penetrate solid materials very well. This offers a sustainable solution for the current Spectrum Crunch in the lower microwave bands. One mission of this paper is to demonstrate practical and usable networks that can select a self-limiting link distance, allowing spectrum reuse. The motivation for operators of such bands to actually choose to self-limit is that by doing so, they improve the signal-tonoise against competing users at a lower cost than trying to overcome interference. These characteristics of wave propagation are not necessarily disadvantageous as they enable more densely packed communications links. Thus, high frequencies can provide very efficient spectrum utilization through "selective spectrum reuse", and naturally increase the security of transmissions. Optical systems and networks offer a far greater bandwidth. This means new devices and systems have to be developed. Semiconductor Light Emitting Diode (LED) is considered to be the future primary lighting source for buildings, automobiles and aircrafts. LED provides higher energy efficiency compared to incandescent and fluorescent light sources and it will play a major role in the global reduction of carbon dioxide emissions, as a consequence of the significant energy savings. Lasers are also under investigation for similar applications. These core devices have the potential to revolutionize how we use light, including not only for illumination, but as well; for communications, sensing, navigation, positioning, surveillance, and imaging.

  7. Unpowered wireless analog resistance sensor

    NASA Astrophysics Data System (ADS)

    Andringa, Matthew M.; Neikirk, Dean P.; Wood, Sharon L.

    2004-07-01

    Our society depends heavily on a network of buildings, bridges and roadways. In order to properly maintain this civil infrastructure and avoid damage and costly repairs due to structural failure, it is necessary to monitor the health of these structures. Sensors must frequently be placed in inaccessible locations under harsh conditions and should ideally last the lifetime of the structure the sensors are monitoring. This paper presents the development of a low cost, passive, un-powered wireless analog resistance sensor. The sensor was originally designed for monitoring corrosion in concrete, but there are many other potential applications including remote temperature monitoring, embedded accelerometers, and embedded strain gauges. The passive wireless nature makes the sensor ideally suited for embedding in inaccessible locations under harsh conditions. The sensor consists of a resonant inductor-capacitor circuit containing a resistive transducer. The sensor is interrogated by measuring the impedance through a remote, magnetically coupled reader loop. The width of the resonance is directly related to the resistance of the transducer. The sensor has been simulated under a variety of conditions using a circuit model and compared to actual test sensors built and evaluated in the laboratory.

  8. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  9. Wireless Microstimulators for Neural Prosthetics

    PubMed Central

    Sahin, Mesut; Pikov, Victor

    2016-01-01

    One of the roadblocks in the field of neural prosthetics is the lack of microelectronic devices for neural stimulation that can last a lifetime in the central nervous system. Wireless multi-electrode arrays are being developed to improve the longevity of implants by eliminating the wire interconnects as well as the chronic tissue reactions due to the tethering forces generated by these wires. An area of research that has not been sufficiently investigated is a simple single-channel passive microstimulator that can collect the stimulus energy that is transmitted wirelessly through the tissue and immediately convert it into the stimulus pulse. For example, many neural prosthetic approaches to intraspinal microstimulation require only a few channels of stimulation. Wired spinal cord implants are not practical for human subjects because of the extensive flexions and rotations that the spinal cord experiences. Thus, intraspinal microstimulation may be a pioneering application that can benefit from submillimetersize floating stimulators. Possible means of energizing such a floating microstimulator, such as optical, acoustic, and electromagnetic waves, are discussed. PMID:21488815

  10. Evaluation of wireless Local Area Networks

    NASA Astrophysics Data System (ADS)

    McBee, Charles L.

    1993-09-01

    This thesis is an in-depth evaluation of the current wireless Local Area Network (LAN) technologies. Wireless LAN's consist of three technologies: they are infrared light, microwave, and spread spectrum. When the first wireless LAN's were introduced, they were unfavorably labeled slow, expensive, and unreliable. The wireless LAN's of today are competitively priced, more secure, easier to install, and provide equal to or greater than the data throughput of unshielded twisted pair cable. Wireless LAN's are best suited for organizations that move office staff frequently, buildings that have historical significance, or buildings that have asbestos. Additionally, an organization may realize a cost savings of between $300 to $1,200 each time a node is moved. Current wireless LAN technologies have a positive effect on LAN standards being developed by the Defense Information System Agency (DISA). DoD as a whole is beginning to focus on wireless LAN's and mobile communications. If system managers want to remain successful, they need to stay abreast of this technology.

  11. Laparoscopic gastric banding

    MedlinePlus

    ... gastric banding is not a "quick fix" for obesity. It will greatly change your lifestyle. You must ... panel on weight loss surgery: executive report update. Obesity . 2009;17:842-62. PMID: 19396063 www.ncbi. ...

  12. Laparoscopic gastric banding

    MedlinePlus

    ... lining), heartburn , or stomach ulcers Infection in the port, which may need antibiotics or surgery Injury to ... may not be able to reach the access port to tighten or loosen the band (you would ...

  13. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  14. CSF oligoclonal banding - slideshow

    MedlinePlus

    ... presentations/100145.htm CSF oligoclonal banding - series—Normal anatomy ... Overview The cerebrospinal fluid (CSF) serves to supply nutrients to the central nervous system (CNS) and collect waste products, as well as ...

  15. RFID Tag Helix Antenna Sensors for Wireless Drug Dosage Monitoring.

    PubMed

    Huang, Haiyu; Zhao, Peisen; Chen, Pai-Yen; Ren, Yong; Liu, Xuewu; Ferrari, Mauro; Hu, Ye; Akinwande, Deji

    2014-01-01

    Miniaturized helix antennas are integrated with drug reservoirs to function as RFID wireless tag sensors for real-time drug dosage monitoring. The general design procedure of this type of biomedical antenna sensors is proposed based on electromagnetic theory and finite element simulation. A cost effective fabrication process is utilized to encapsulate the antenna sensor within a biocompatible package layer using PDMS material, and at the same time form a drug storage or drug delivery unit inside the sensor. The in vitro experiment on two prototypes of antenna sensor-drug reservoir assembly have shown the ability to monitor the drug dosage by tracking antenna resonant frequency shift from 2.4-2.5-GHz ISM band with realized sensitivity of 1.27 [Formula: see text] for transdermal drug delivery monitoring and 2.76-[Formula: see text] sensitivity for implanted drug delivery monitoring. PMID:27170865

  16. Adaptive Modulation and Coding for LTE Wireless Communication

    NASA Astrophysics Data System (ADS)

    Hadi, S. S.; Tiong, T. C.

    2015-04-01

    Long Term Evolution (LTE) is the new upgrade path for carrier with both GSM/UMTS networks and CDMA2000 networks. The LTE is targeting to become the first global mobile phone standard regardless of the different LTE frequencies and bands use in other countries barrier. Adaptive Modulation and Coding (AMC) is used to increase the network capacity or downlink data rates. Various modulation types are discussed such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM). Spatial multiplexing techniques for 4×4 MIMO antenna configuration is studied. With channel station information feedback from the mobile receiver to the base station transmitter, adaptive modulation and coding can be applied to adapt to the mobile wireless channels condition to increase spectral efficiencies without increasing bit error rate in noisy channels. In High-Speed Downlink Packet Access (HSDPA) in Universal Mobile Telecommunications System (UMTS), AMC can be used to choose modulation types and forward error correction (FEC) coding rate.

  17. Resonant ultrasonic wireless power transmission for bio-implants

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Youm, Woosub; Hwang, Gunn; Moon, Kee S.; Ozturk, Yusuf

    2014-03-01

    In this paper, we present the ultrasonic wireless power transmission system as part of a brain-machine interface (BMI) system in development to supply the required electric power. Making a small-size implantable BMI, it is essential to design a low power unit with a rechargeable battery. The ultrasonic power transmission system has two piezoelectric transducers, facing each other between skin tissues converting electrical energy to mechanical vibrational energy or vice versa. Ultrasound is free from the electromagnetic coupling effect and medical frequency band limitations which making it a promising candidate for implantable purposes. In this paper, we present the design of piezoelectric composite transducer, the rectifier circuit, and rechargeable battery that all packaged in biocompatible titanium can. An initial prototype device was built for demonstration purpose. The early experimental results demonstrate the prototype device can reach 50% of energy transmission efficiency in a water medium at 20mm distance and 18% in animal skin tissue at 18mm distance, respectively.

  18. Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings.

    PubMed

    Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo

    2011-01-01

    This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices. PMID:22043254

  19. Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings

    PubMed Central

    Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo

    2011-01-01

    This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices. PMID:22043254

  20. Wireless Temperature-Monitoring System

    NASA Technical Reports Server (NTRS)

    Solano, Wanda; Thurman, Chuck

    2002-01-01

    A relatively inexpensive instrumentation system that includes units that are connected to thermocouples and that are parts of a radio-communication network has been developed to enable monitoring of temperatures at multiple locations. Because there is no need to string wires or cables for communication, the system is well suited for monitoring temperatures at remote locations and for applications in which frequent changes of monitored or monitoring locations are needed. The system can also be adapted to monitoring of slowly varying physical quantities, other than temperature, that can be transduced by solid-state electronic sensors. electronic sensors. The system comprises any number of transmitting units and a single receiving unit. Each transmitting unit includes connections for as many as four external thermocouples, a signal-conditioning module, a control module, and a radio-communication module. The signal-conditioning module acts as an interface between the thermocouples and the rest of the transmitting unit and includes a built-in solid ambient temperature sensor that is in addition to the external thermocouples. The control module is a system-on-chip embedded processor that includes analog-to-digital converters, serial and parallel data ports, and an interface for local connection to an analog meter that is used during installation to verify correct operation. The radio-communication module contains a commercial spread-spectrum transceiver that operates in the 900-MHz industrial, scientific, and medical (ISM) frequency band. This transceiver transmits data to the receiving unit at a rate of 19,200 baud. The receiving unit includes a transceiver like that of a transmitting unit, plus a control module that contains a system-on-chip processor that includes serial data port for output to a computer that runs monitoring and/or control software, a parallel data port for output to a printer, and a seven-segment light-emitting-diode display. Each transmitting unit

  1. Polygonal deformation bands

    NASA Astrophysics Data System (ADS)

    Antonellini, Marco; Mollema, Pauline Nella

    2015-12-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1-5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  2. Health Risks Faced by Public School Band Directors

    ERIC Educational Resources Information Center

    Woolery, Danielle N.; Woolery, Jesse A.

    2013-01-01

    Public school band directors face many work-related hazards in their grueling, yet rewarding job. As a school year progresses, directors are expected to work long hours, while trying to balance professional and personal responsibilities. A band director whose career spans multiple decades can potentially face a number of serious medical problems.…

  3. EM threat analysis for wireless systems.

    SciTech Connect

    Burkholder, R. J. (Ohio State University Electroscience Laboratory); Mariano, Robert J.; Schniter, P. (Ohio State University Electroscience Laboratory); Gupta, I. J. (Ohio State University Electroscience Laboratory)

    2006-06-01

    Modern digital radio systems are complex and must be carefully designed, especially when expected to operate in harsh propagation environments. The ability to accurately predict the effects of propagation on wireless radio performance could lead to more efficient radio designs as well as the ability to perform vulnerability analyses before and after system deployment. In this report, the authors--experts in electromagnetic (EM) modeling and wireless communication theory--describe the construction of a simulation environment that is capable of quantifying the effects of wireless propagation on the performance of digital communication.

  4. Data acquisition system using six degree-of-freedom inertia sensor and ZigBee wireless link for fall detection and prevention.

    PubMed

    Dinh, A; Teng, D; Chen, L; Ko, S B; Shi, Y; Basran, J; Del Bello-Hass, V

    2008-01-01

    Fall detection and prevention require logged physiological activity data of a patient for a long period of time. This work develops a data acquisition system to collect motion data from multiple patients and store in a data base. A wireless sensor network is built using high precision inertia sensors and low power Zigbee wireless transceivers. Testing results prove the system function properly. Researchers and physicians can now retrieve and analyze the accurate data of the patient movement with ease. PMID:19163174

  5. 47 CFR 27.17 - Discontinuance of service in the 2000-2020 MHz and 2180-2200 MHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Discontinuance of service in the 2000-2020 MHz and 2180-2200 MHz bands. 27.17 Section 27.17 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Applications and...

  6. Optical concepts for dual band infrared continuous zoom lenses

    NASA Astrophysics Data System (ADS)

    Vizgaitis, Jay N.

    2010-08-01

    Dual band focal plane arrays enable the simultaneous imaging of the MWIR and LWIR onto the same detector. Each spectral band is read out independently providing a separable MWIR and LWIR image. The development of this technology has necessitated the further development of dual band optics. Although reflective solutions simplify the need for color correction, multiple field of view reflective optics do not package nearly as well as refractive or catadioptric solutions. Dual band optical systems require that both bands focus at the same image plane at the same time. The challenge lies with the very broad spectral band of 3.5 - 11.0 microns, the different partial dispersions between the MWIR and LWIR, and the need to minimize the number of lenses to maximize transmission. This paper looks at the development of refractive and catadioptric concepts for designing continuous zoom lenses for dual band detectors.

  7. Amniotic Band Syndrome - A Dreaded Condition

    PubMed Central

    Renukadevi, T.K.

    2016-01-01

    Amniotic band syndrome is a unique condition in which amnion a normal structure causes complications. A case of second gravid, obese who is a known diabetic came to OPD at 13 weeks pregnancy for regular antenatal check up. A routine ultrasonogram was advised in which multiple anomalies were noted and the diagnosis of amniotic band syndrome was made. The parents were counseled for medical termination of pregnancy and after obtaining the consent termination were performed and the parents were asked to postpone the next pregnancy for minimum 6 months. This anomaly as seen in this patient could be due to risk factors like diabetes and obesity. PMID:26894130

  8. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.

    PubMed

    Thotahewa, Kasun M S; Redouté, Jean-Michel; Yuce, Mehmet R

    2013-01-01

    The usage of implanted wireless transmitting devices inside the human body has become widely popular in recent years. Applications such as multi-channel neural recording systems require high data rates in the wireless transmission link. Because of the inherent advantages provided by Impulse-Radio Ultra Wide Band (IR-UWB) such as high data rate capability, low power consumption and small form factor, there has been an increased research interest in using IR-UWB for bio-medical implant applications. Hence it has become imperative to analyze the electromagnetic effects caused by the use of IR-UWB when it is operated in or near the human body. This paper reports the electromagnetic effects of head implantable transmitting devices operating based on Impulse Radio Ultra Wide Band (IR-UWB) wireless technology. Simulations illustrate the performance of an implantable UWB antenna tuned to operate at 4 GHz with an -10 dB bandwidth of approximately 1 GHz when it is implanted in a human head model. Specific Absorption Rate (SAR), Specific Absorption (SA) and temperature increase are analyzed to compare the compliance of the transmitting device with international safety regulations. PMID:24110902

  9. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  10. On computer vision in wireless sensor networks.

    SciTech Connect

    Berry, Nina M.; Ko, Teresa H.

    2004-09-01

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an image capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.

  11. Epidemic Propagation In Overlaid Wireless Networks

    SciTech Connect

    Yanmaz, Evsen

    2008-01-01

    Witb tbe emergence of computer worms tbat can spread over air interfaces, wireless ad boc and sensor networks can be vulnerable to node compromises even if the deployed network is not connected to the backbone. Depending on the physical topology of the wireless network, even a single infected node can compromise the whole network. In this work, epidemic (e.g., worm) propagation in a static wireless network is studied, where a number of inCected mobile nodes are injected over the existing network. It is shown that the epidemic spread threshold and size depend on the physical topology of the underlying static wireless network as well as the mobility model employed by the infected mobile nodes. More specifically, results show that in a Cully-connected static wirelessnctwork targeted attacks are more effective, wbereas Cor a random topology random attacks can be sufficient to compromise the whole network.

  12. Feasibility study of wireless power transmission systems

    NASA Technical Reports Server (NTRS)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  13. Wireless technology in disease management and medicine.

    PubMed

    Clifford, Gari D; Clifton, David

    2012-01-01

    Healthcare information, and to some extent patient management, is progressing toward a wireless digital future. This change is driven partly by a desire to improve the current state of medicine using new technologies, partly by supply-and-demand economics, and partly by the utility of wireless devices. Wired technology can be cumbersome for patient monitoring and can restrict the behavior of the monitored patients, introducing bias or artifacts. However, wireless technologies, while mitigating some of these issues, have introduced new problems such as data dropout and "information overload" for the clinical team. This review provides an overview of current wireless technology used for patient monitoring and disease management. We identify some of the major related issues and describe some existing and possible solutions. In particular, we discuss the rapidly evolving fields of telemedicine and mHealth in the context of increasingly resource-constrained healthcare systems. PMID:22053737

  14. Securing radars using secure wireless sensor networking

    NASA Astrophysics Data System (ADS)

    Tahmoush, David

    2014-06-01

    Radar sensors can be viewed as a limited wireless sensor network consisting of radar transmitter nodes, target nodes, and radar receiver nodes. The radar transmitter node sends a communication signal to the target node which then reflects it in a known pattern to the radar receiver nodes. This type of wireless sensor network is susceptible to the same types of attacks as a traditional wireless sensor network, but there is less opportunity for defense. The target nodes in the network are unable to validate the return signal, and they are often uncooperative. This leads to ample opportunities for spoofing and man-in-the-middle attacks. This paper explores some of the fundamental techniques that can be used against a limited wireless network system as well as explores the techniques that can be used to counter them.

  15. Wireless Networking for Control: Technologies and Models

    NASA Astrophysics Data System (ADS)

    Johansson, Mikael; Jäntti, Riku

    This chapter discusses technologies and models for low power wireless industrial communication. The aim of the text is to narrow the gap between the models used in the theoretical control literature with models that arise when tools from communication theory are used to model emerging standards for industrial wireless. The chapter provides a tutorial overview covering basic concepts and models for wireless propagation, medium access control, multi-hop networking, routing and transport protocols. Throughout, an effort is made to describe both key technologies and associated models of control-relevant characteristics such as latency and loss. Some existing and emerging specifications and standards, including Zigbee, WirelessHART and ISA100, are described in some detail, and links are made between the developed models and useful network abstractions for control design.

  16. MC-CDMA for optical wireless communications

    NASA Astrophysics Data System (ADS)

    Luan, Yingzi; Jiang, Guang; Li, Jiandong

    2005-11-01

    MC-CDMA is a spectrum-efficient modulation in RF systems. Here it is used in optical wireless communications. Performance is simulated by using multiuser detection. Spatial Diversity is also considered and analyzed.

  17. Wireless powering of e -swimmers

    PubMed Central

    Roche, Jérome; Carrara, Serena; Sanchez, Julien; Lannelongue, Jérémy; Loget, Gabriel; Bouffier, Laurent; Fischer, Peer; Kuhn, Alexander

    2014-01-01

    Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers). PMID:25330809

  18. Reliability of wireless sensor networks.

    PubMed

    Dâmaso, Antônio; Rosa, Nelson; Maciel, Paulo

    2014-01-01

    Wireless Sensor Networks (WSNs) consist of hundreds or thousands of sensor nodes with limited processing, storage, and battery capabilities. There are several strategies to reduce the power consumption of WSN nodes (by increasing the network lifetime) and increase the reliability of the network (by improving the WSN Quality of Service). However, there is an inherent conflict between power consumption and reliability: an increase in reliability usually leads to an increase in power consumption. For example, routing algorithms can send the same packet though different paths (multipath strategy), which it is important for reliability, but they significantly increase the WSN power consumption. In this context, this paper proposes a model for evaluating the reliability of WSNs considering the battery level as a key factor. Moreover, this model is based on routing algorithms used by WSNs. In order to evaluate the proposed models, three scenarios were considered to show the impact of the power consumption on the reliability of WSNs. PMID:25157553

  19. Low Frequency Wireless Communications Technology

    SciTech Connect

    Bartone, Erik J; Carbone, John F

    2004-01-27

    The purpose of this project was to demonstrate Nxegen's real-time wireless electricity monitoring and load management technologies in selected commercial, industrial, and municipal end user facilities. The purpose of which is to demonstrate the ability for Nxegen's technology to collect real-time electricity data to a central location (Nxegen's Network Operation Center "NOC"), aggregate customer load profiles into portfolios of profiles, and be able to dispatch load curtailment commands from the NOC to individual customer loads to demonstrate the ability to integrate demand resources into the overall electric utility system for the purpose of; (1) improving overall system reliability, (2) reducing wholesale electric generation prices (locational marginal prices "LMP"), and (3) reducing congestion costs in energy constrained areas (southwest Connecticut).

  20. Wireless Orbiter Hang-Angle Inclinometer System

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.