Science.gov

Sample records for multiple drug resistant

  1. Expression of cytokeratin confers multiple drug resistance

    SciTech Connect

    Bauman, P.A.; Dalton, W.S.; Anderson, J.M.; Cress, A.E. )

    1994-06-07

    The cytokeratin network is an extensive filamentous structure in the cytoplasm whose biological function(s) is unknown. Based upon previous data showing the modification of cytokeratin by mitoxantrone, the authors investigated the ability of cytokeratin networks to influence the survival response of cells to chemotherapeutic agents. They have compared the survival of mouse L fibroblasts lacking cytokeratins with that of L cells transfected with cytokeratins 8 and 18 in the presence of chemotherapeutic drugs. The expression of cytokeratins 8 and 18 conferred a multiple drug resistance phenotype on cells exposed to mitoxantrone, doxorubicin, methotrexate, melphalan, Colcemid, and vincristine. The degree of drug resistance was 5-454 times that of parental cells, depending upon the agent used. Drug resistance could not be attributed to altered growth characteristics, altered drug accumulation, or an altered drug efflux in the transfected cells. Cytokeratin does not confer resistance to ionizing radiation, which damages DNA independently on intracellular transport mechanisms. These data suggest a role for cytokeratin networks in conferring a drug resistance phenotype.

  2. MULTIPLE DRUG RESISTANCE: TRENDS AND IMPLICATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antimicrobial resistance (AR) has emerged as a global problem. Although AR occurs shortly after the introduction and use of an antimicrobial, resistance levels vary over time. Historically, antimicrobials were regarded as wonder drugs and for years, when resistance to a single antimicrobial occurr...

  3. Molecular mechanisms in multiple myeloma drug resistance

    PubMed Central

    Nikesitch, Nicholas; Ling, Silvia C W

    2016-01-01

    Multiple myeloma (MM) is predominantly an incurable malignancy despite high-dose chemotherapy, autologous stem cell transplant and novel agents. MM is a genetically heterogeneous disease and the complexity increases as the disease progresses to a more aggressive stage. MM arises from a plasma cell, which produces and secretes non-functioning immunoglobulins. Most MM cells are sensitive to proteasome inhibitors (PIs), which have become the main drug in the treatment of newly diagnosed and relapsed MM. However, not all MM is sensitive to PIs. This review summarises the literature regarding molecular biology of MM with a focus on the unfolded protein response and explores how this could affect drug sensitivity and progression of disease. PMID:26598624

  4. Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma

    PubMed Central

    Yang, Wen-Chi; Lin, Sheng-Fung

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy that remains incurable because most patients eventually relapse or become refractory to current treatments. Although the treatments have improved, the major problem in MM is resistance to therapy. Clonal evolution of MM cells and bone marrow microenvironment changes contribute to drug resistance. Some mechanisms affect both MM cells and microenvironment, including the up- and downregulation of microRNAs and programmed death factor 1 (PD-1)/PD-L1 interaction. Here, we review the pathogenesis of MM cells and bone marrow microenvironment and highlight possible drug resistance mechanisms. We also review a potential molecular targeting treatment and immunotherapy for patients with refractory or relapse MM. PMID:26649299

  5. Rapid evolution of drug resistance of multiple myeloma in the microenvironment with drug gradients

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Zhang, Qiucen; Lambert, Guillaume; Khin, Zayar; Silva, Ariosto; Gatenby, Robert; Kim, John; Pourmand, Nader; Austin, Robert; Sturm, James

    2013-03-01

    Drug resistance in cancer is usually caused by the spatial drug gradients in tumor environment. Here, we culture multiple myeloma in a gradient from 0 to 20 nM of doxorubicin (genotoxic drug) across 2 mm wide region for 12 days. The myeloma cells grew rapidly and formed 3D colonies in the regions with less drug concentration. However, we have seen emergent colonies forming in regions with drug concentration above the minimal inhibitory concentration in less than one week. Once the cells have occupied the regions with less drug concentration, they tend to migrate toward the regions with higher drug concentration in a collective behavior. To characterize their resistance, we collect them from this microfluidic system, for further analysis of the dose response. We find that the IC50 (drug concentration that inhibits 50% of controlled population) of the cells, undergone a drug gradient, increase 16-fold of the wildtype cells. We further discover that these resistant cells express more Multidrug Resistance (mdr) protein, which pumps out the drugs and causes drug resistance, than the wildtype. Our current works on RNA-sequencing analysis may discover other biomolecular mechanisms that may confer the drug resistance.

  6. The multiple facets of drug resistance: one history, different approaches

    PubMed Central

    2014-01-01

    Some cancers like melanoma and pancreatic and ovarian cancers, for example, commonly display resistance to chemotherapy, and this is the major obstacle to a better prognosis of patients. Frequently, literature presents studies in monolayer cell cultures, 3D cell cultures or in vivo studies, but rarely the same work compares results of drug resistance in different models. Several of these works are presented in this review and show that usually cells in 3D culture are more resistant to drugs than monolayer cultured cells due to different mechanisms. Searching for new strategies to sensitize different tumors to chemotherapy, many methods have been studied to understand the mechanisms whereby cancer cells acquire drug resistance. These methods have been strongly advanced along the years and therapies using different drugs have been increasingly proposed to induce cell death in resistant cells of different cancers. Recently, cancer stem cells (CSCs) have been extensively studied because they would be the only cells capable of sustaining tumorigenesis. It is believed that the resistance of CSCs to currently used chemotherapeutics is a major contributing factor in cancer recurrence and later metastasis development. This review aims to appraise the experimental progress in the study of acquired drug resistance of cancer cells in different models as well as to understand the role of CSCs as the major contributing factor in cancer recurrence and metastasis development, describing how CSCs can be identified and isolated. PMID:24775603

  7. Drug Resistance

    MedlinePlus

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  8. Multiple myeloma and persistence of drug resistance in the age of novel drugs (Review).

    PubMed

    Krishnan, Sabna Rajeev; Jaiswal, Ritu; Brown, Ross D; Luk, Frederick; Bebawy, Mary

    2016-07-01

    Multiple myeloma (MM) is a mature B cell neoplasm that results in multi-organ failure. The median age of onset, diverse clinical manifestations, heterogeneous survival rate, clonal evolution, intrinsic and acquired drug resistance have impact on the therapeutic management of the disease. Specifically, the emergence of multidrug resistance (MDR) during the course of treatment contributes significantly to treatment failure. The introduction of the immunomodulatory agents and proteasome inhibitors has seen an increase in overall patient survival, however, for the majority of patients, relapse remains inevitable with evidence that these agents, like the conventional chemotherapeutics are also subject to the development of MDR. Clinical management of patients with MM is currently compromised by lack of a suitable procedure to monitor the development of clinical drug resistance in individual patients. The current MM prognostic measures fail to pick the clonotypic tumor cells overexpressing drug efflux pumps, and invasive biopsy is insufficient in detecting sporadic tumors in the skeletal system. This review summarizes the challenges associated with treating the complex disease spectrum of myeloma, with an emphasis on the role of deleterious multidrug resistant clones orchestrating relapse. PMID:27175906

  9. Analysis of Antimicrobial Resistance Genes in Multiple Drug Resistant (MDR) Salmonella enterica Isolated from Animals and Humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Multiple Drug Resistant (MDR) foodborne bacteria are a concern in animal and human health. Identification of resistance genes in foodborne pathogens is necessary to determine similarities of resistance mechanisms in animal, food and human clinical isolates. This information will help us ...

  10. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma.

    PubMed

    Furukawa, Yusuke; Kikuchi, Jiro

    2016-09-01

    Multiple myeloma cells acquire the resistance to anti-cancer drugs through physical and functional interactions with the bone marrow microenvironment via two overlapping mechanisms. First, bone marrow stromal cells (BMSCs) produce soluble factors, such as interleukin-6 and insulin-like growth factor-1, to activate signal transduction pathways leading to drug resistance (soluble factor-mediated drug resistance). Second, BMSCs up-regulate the expression of cell cycle inhibitors, anti-apoptotic members of the Bcl-2 family and ABC drug transporters in myeloma cells upon direct adhesion [cell adhesion-mediated drug resistance (CAM-DR)]. Elucidation of the mechanisms underlying drug resistance may greatly contribute to the advancement of cancer therapies. Recent investigations, including ours, have revealed the involvement of epigenetic alterations in drug resistance especially CAM-DR. For example, we found that class I histone deacetylases (HDACs) determine the sensitivity of proteasome inhibitors and the histone methyltransferase EZH2 regulates the transcription of anti-apoptotic genes during the acquisition of CAM-DR by myeloma cells. In addition, another histone methyltransferase MMSET was shown to confer drug resistance to myeloma cells by facilitating DNA repair. These findings provide a rationale for the inclusion of epigenetic drugs, such as HDAC inhibitors and histone methylation modifiers, in combination chemotherapy for MM patients to increase the therapeutic index. PMID:27411688

  11. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms

    PubMed Central

    Abdi, Jahangir; Chen, Guoan; Chang, Hong

    2013-01-01

    In the era of new and mostly effective therapeutic protocols, multiple myeloma still tends to be a hard-to-treat hematologic cancer. This hallmark of the disease is in fact a sequel to drug resistant phenotypes persisting initially or emerging in the course of treatment. Furthermore, the heterogeneous nature of multiple myeloma makes treating patients with the same drug challenging because finding a drugable oncogenic process common to all patients is not yet feasible, while our current knowledge of genetic/epigenetic basis of multiple myeloma pathogenesis is outstanding. Nonetheless, bone marrow microenvironment components are well known as playing critical roles in myeloma tumor cell survival and environment-mediated drug resistance happening most possibly in all myeloma patients. Generally speaking, however; real mechanisms underlying drug resistance in multiple myeloma are not completely understood. The present review will discuss the latest findings and concepts in this regard. It reviews the association of important chromosomal translocations, oncogenes (e.g. TP53) mutations and deranged signaling pathways (e.g. NFκB) with drug response in clinical and experimental investigations. It will also highlight how bone marrow microenvironment signals (Wnt, Notch) and myeloma cancer stem cells could contribute to drug resistance in multiple myeloma. PMID:24327604

  12. Metabolic signature identifies novel targets for drug resistance in Multiple Myeloma

    PubMed Central

    Maiso, Patricia; Huynh, Daisy; Moschetta, Michele; Sacco, Antonio; Aljawai, Yosra; Mishima, Yuji; Asara, John M.; Roccaro, Aldo M.; Kimmelman, Alec C.; Ghobrial, Irene M.

    2015-01-01

    Drug resistance remains a major clinical challenge for cancer treatment. Multiple myeloma (MM) is an incurable plasma cell cancer selectively localized in the bone marrow (BM). The main cause of resistance in myeloma is the minimal residual disease (MRD) cells that are resistant to the original therapy including bortezomib treatment and high dose melphalan in stem cell transplant. In this study, we demonstrate that altered tumor cell metabolism is essential for the regulation of drug resistance in MM cells. We show the unprecedented role of the metabolic phenotype in inducing drug resistance through LDHA and HIF1A in MM; and that specific inhibition of LDHA and HIF1A can restore sensitivity to therapeutic agents such as bortezomib and can also inhibit tumor growth induced by altered metabolism. Knockdown of LDHA can restore sensitivity of bortezomib resistance cell lines while gain of function studies using LDHA or HIF1A induced resistance in bortezomib sensitive cell lines. Taken together, these data suggest that HIF1A and LDHA are important targets for hypoxia-driven drug resistance. Novel drugs that regulate metabolic pathways in MM, specifically targeting LDHA, can be beneficial to inhibit tumor growth and overcome drug resistance. PMID:25769724

  13. Tris DBA palladium overcomes hypoxia-mediated drug resistance in multiple myeloma.

    PubMed

    de la Puente, Pilar; Azab, Feda; Muz, Barbara; Luderer, Micah; Arbiser, Jack; Azab, Abdel Kareem

    2016-07-01

    Despite recent progress in novel and targeted therapies, multiple myeloma (MM) remains a therapeutically challenging incurable disease. The regulation of important cellular processes and its link to cancer presented Src as an attractive target for MM. We suggest a novel strategy to improve the treatment of MM and overcome the drug resistance for the current therapeutic agents by specific inhibition of Src in MM cells by Tris (Dibenzylideneacetone) dipalladium (Tris DBA). Tris DBA reduces proliferation, induces G1 arrest and apoptosis in MM cells. Tris DBA showed additive effect with proteasome inhibitors reducing proliferation, cell cycle signaling, and increasing apoptosis more than each drug alone. Tris DBA overcame hypoxia-induced effects such as enhanced chemotaxis or drug resistance to proteasome inhibitors by inhibition of HIF1α expression. Moreover, we found that Tris DBA is an effective anti-myeloma agent alone or in combination with other targeted drugs and that it reverses hypoxia-induced drug resistance in myeloma. PMID:26421357

  14. Monitoring a Nuclear Factor-κB Signature of Drug Resistance in Multiple Myeloma*

    PubMed Central

    Xiang, Yun; Remily-Wood, Elizabeth R.; Oliveira, Vasco; Yarde, Danielle; He, Lili; Cheng, Jin Q.; Mathews, Linda; Boucher, Kelly; Cubitt, Christopher; Perez, Lia; Gauthier, Ted J.; Eschrich, Steven A.; Shain, Kenneth H.; Dalton, William S.; Hazlehurst, Lori; Koomen, John M.

    2011-01-01

    The emergence of acquired drug resistance results from multiple compensatory mechanisms acting to prevent cell death. Simultaneous monitoring of proteins involved in drug resistance is a major challenge for both elucidation of the underlying biology and development of candidate biomarkers for assessment of personalized cancer therapy. Here, we have utilized an integrated analytical platform based on SDS-PAGE protein fractionation prior to liquid chromatography coupled to multiple reaction monitoring mass spectrometry, a versatile and powerful tool for targeted quantification of proteins in complex matrices, to evaluate a well-characterized model system of melphalan resistance in multiple myeloma (MM). Quantitative assays were developed to measure protein expression related to signaling events and biological processes relevant to melphalan resistance in multiple myeloma, specifically: nuclear factor-κB subunits, members of the Bcl-2 family of apoptosis-regulating proteins, and Fanconi Anemia DNA repair components. SDS-PAGE protein fractionation prior to liquid chromatography coupled to multiple reaction monitoring methods were developed for quantification of these selected target proteins in amounts of material compatible with direct translation to clinical specimens (i.e. less than 50,000 cells). As proof of principle, both relative and absolute quantification were performed on cell line models of MM to compare protein expression before and after drug treatment in naïve cells and in drug resistant cells; these liquid chromatography-multiple reaction monitoring results are compared with existing literature and Western blots. The initial stage of a systems biology platform for examining drug resistance in MM has been implemented in cell line models and has been translated to MM cells isolated from a patient. The ultimate application of this platform could assist in clinical decision-making for individualized patient treatment. Although these specific assays have

  15. Predictive performance of microarray gene signatures: impact of tumor heterogeneity and multiple mechanisms of drug resistance

    PubMed Central

    A’Hern, Roger; Bidard, Francois-Clement; Lemetre, Christophe; Swanton, Charles; Shen, Ronglai; Reis-Filho, Jorge S.

    2014-01-01

    Gene signatures have failed to predict responses to breast cancer therapy in patients to date. In this study, we used bioinformatic methods to explore the hypothesis that the existence of multiple drug resistance mechanisms in different patients may limit the power of gene signatures to predict responses to therapy. Additionally, we explored whether sub-stratification of resistant cases could improve performance. Gene expression profiles from 1,550 breast cancers analyzed with the same microarray platform were retrieved from publicly available sources. Gene expression changes were introduced in cases defined as sensitive or resistant to a hypothetical therapy. In the resistant group, up to five different mechanisms of drug resistance causing distinct or overlapping gene expression changes were generated bioinformatically, and their impact on sensitivity, specificity and predictive values of the signatures was investigated. We found that increasing the number of resistance mechanisms corresponding to different gene expression changes weakened the performance of the predictive signatures generated, even if the resistance-induced changes in gene expression were sufficiently strong and informative. Performance was also affected by cohort composition and the proportion of sensitive versus resistant cases or resistant cases that were mechanistically distinct. It was possible to improve response prediction by sub-stratifying chemotherapy-resistant cases from actual datasets (non-bioinformatically-perturbed datasets), and by using outliers to model multiple resistance mechanisms. Our work supports the hypothesis that the presence of multiple resistance mechanisms to a given therapy in patients limits the ability of gene signatures to make clinically-useful predictions. PMID:24706696

  16. Autophagy in drug resistance of the multiple myeloma cell line RPMI8226 to doxorubicin.

    PubMed

    Pan, Y-Z; Wang, X; Bai, H; Wang, C-B; Zhang, Q; Xi, R

    2015-01-01

    We investigated the effect of autophagy on drug resistance of multiple myeloma (MM) to doxorubicin (DOX). A DOX-resistant MM cell line (RPMI8226/DOX) was developed by progressively increasing the DOX concentration gradient. The drug resistance index was determined using the MTT method. Transmission electron microscopy, anti-light chain 3-fluorescein isothiocyanate immunofluorescence, and Western blotting were used to detect autophagy of MM cells. Flow cytometry was applied to detect changes in apoptosis of RPMI8226/DOX cells (stained with annexin-V/propidium iodide) caused by inhibition by hydroxychloroquine and 3-methyladenine on autophagy. The drug resistance index of RPMI8226/DOX to DOX was 10.8, and autophagy/lysosomal was clearly observed in RPMI8226/DOX cells under transmission electron microscopy, while immunofluorescence showed granular immunofluorescence in cells. Western blot analysis showed that light chain 3-II protein expression level was higher in RPMI8226/DOX cells than in RPMI8226/S cells. The apoptosis test showed that hydroxychloroquine or 3-methyladenine partially reversed the drug resistance of RPMI8226/DOX cells by inhibiting autophagy. Activation of autophagy in MM cells may explain the drug resistance of myeloma. PMID:26125760

  17. Multiple resistance of gastrointestinal nematodes to nine different drugs in a sheep flock in southern Brazil.

    PubMed

    Cezar, Alfredo Skrebsky; Toscan, Gustavo; Camillo, Giovana; Sangioni, Luís Antônio; Ribas, Henrique Olmedo; Vogel, Fernanda Silveira Flôres

    2010-10-11

    Based on clinical observation of a flock of approximately 5000 sheep (breed Merino) from southern Brazil, the failure of anthelmintic treatments was suspected. The sensitivity of the gastrointestinal nematodes that infected these sheep to nine drugs (Levamisole, Moxidectin, Albendazole, Ivermectin, Nitroxynil, Disophenol, Trichlorphon, Closantel, and a combination of Ivermectin, Levamisole and Albendazole) was evaluated. None of the drugs reduced the count of nematode eggs per gram of feces (EPG) in the sheep to an adequate extent (defined as a 95% reduction in EPG). Therefore, we found multiple parasite resistance to all classes of anthelmintic drugs available for small ruminants in the Brazilian market. The genera Haemonchus spp., Trichostrongylus spp. and Ostertagia spp. had various degrees of resistance (or natural tolerance) to each of the drug treatments. PMID:20619543

  18. An update on molecular biology and drug resistance mechanisms of multiple myeloma.

    PubMed

    Mutlu, Pelin; Kiraz, Yağmur; Gündüz, Ufuk; Baran, Yusuf

    2015-12-01

    Multiple myeloma (MM), a neoplasm of plasma cells, is the second most common hematological malignancy. Incidance rates increase after age 40. MM is most commonly seen in men and African-American population. There are several factors to this, such as obesity, environmental factors, family history, genetic factors and monoclonal gammopathies of undetermined significance (MGUS) that have been implicated as potentially etiologic. Development of MM involves a series of complex molecular events, including chromosomal abnormalities, oncogene activation and growth factor dysregulation. Chemotherapy is the most commonly used treatment strategy in MM. However, MM is a difficult disease to treat because of its marked resistance to chemotherapy. MM has been shown to be commonly multidrug resistance (MDR)-negative at diagnosis and associated with a high incidence of MDR expression at relapse. This review deals with the molecular aspects of MM, drug resistance mechanisms during treatment and also possible new applications for overcoming drug resistance. PMID:26235594

  19. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma

    PubMed Central

    Xia, Jiliang; Gu, Zhimin; Wendlandt, Erik; Zhan, Xin; Janz, Siegfried; Tricot, Guido; Zhan, Fenghuang

    2014-01-01

    We reported previously that increased expression of aldehyde dehydrogenase 1 (ALDH1) in multiple myeloma (MM) is a marker of tumor-initiating cells (TICs) that is further associated with chromosomal instability (CIN). Here we demonstrate that member A1 of the ALDH1 family of proteins, ALDH1A1, is most abundantly expressed in myeloma. Enforced expression of ALDH1A1 in myeloma cells led to increased clonogenicity, tumor formation in mice, and resistance to myeloma drugs in vitro and in vivo. The mechanism underlying these phenotypes included the ALDH1A1-dependent activation of drug-efflux pump, ABCB1, and survival proteins, AKT and BCL2. Over expression of ALDH1A1 in myeloma cells led to increased mRNA and protein levels of NIMA-related kinase 2 (NEK2), whereas shRNA-mediated knock down of NEK2 decreased drug efflux pump activity and drug resistance. The activation of NEK2 in myeloma cells relied on the ALDH1A1-dependent generation of the retinoid X receptor α (RXRα) ligand, 9-cis retinoic acid (9CRA) – not the retinoic acid receptor α (RARα) ligand, all-trans retinoic acid (ATRA). These findings implicate the ALDH1A1-RXRα-NEK2 pathway in drug resistance and disease relapse in myeloma and suggest that specific inhibitors of ALDH1A1 are worthy of consideration for clinical development of new approaches to overcome drug resistance in myeloma. PMID:25230277

  20. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma

    PubMed Central

    Kikuchi, Jiro; Koyama, Daisuke; Wada, Taeko; Izumi, Tohru; Hofgaard, Peter O.; Bogen, Bjarne; Furukawa, Yusuke

    2015-01-01

    Alterations in chromatin modifications, such as histone methylation, have been suggested as mediating chemotherapy resistance in several cancer types; therefore, elucidation of the epigenetic mechanisms that underlie drug resistance may greatly contribute to the advancement of cancer therapies. In the present study, we identified histone H3–lysine 27 (H3K27) as a critical residue for epigenetic modification in multiple myeloma. We determined that abrogation of drug-induced H3K27 hypermethylation is associated with cell adhesion–mediated drug resistance (CAM-DR), which is the most important form of drug resistance, using a coculture system to evaluate stroma cell adhesion–dependent alterations in multiple myeloma cells. Cell adhesion counteracted anticancer drug–induced hypermethylation of H3K27 via inactivating phosphorylation of the transcription regulator EZH2 at serine 21, leading to the sustained expression of antiapoptotic genes, including IGF1, B cell CLL/lymphoma 2 (BCL2), and hypoxia inducible factor 1, α subunit (HIF1A). Pharmacological and genetic inhibition of the IGF-1R/PI3K/AKT pathway reversed CAM-DR by promoting EZH2 dephosphorylation and H3K27 hypermethylation both in vitro and in refractory murine myeloma models. Together, our findings identify and characterize an epigenetic mechanism that underlies CAM-DR and suggest that kinase inhibitors to counteract EZH2 phosphorylation should be included in combination chemotherapy to increase therapeutic index. PMID:26517694

  1. Public Health Risks of Multiple-Drug-Resistant Enterococcus spp. in Southeast Asia

    PubMed Central

    Lee, Sui Mae; Dykes, Gary A.; Rahman, Sadequr

    2015-01-01

    Enterococci rank as one of the leading causes of nosocomial infections, such as urinary tract infections, surgical wound infections, and endocarditis, in humans. These infections can be hard to treat because of the rising incidence of antibiotic resistance. Enterococci inhabiting nonhuman reservoirs appear to play a critical role in the acquisition and dissemination of antibiotic resistance determinants. The spread of antibiotic resistance has become a major concern in both human and veterinary medicine, especially in Southeast Asia, where many developing countries have poor legislation and regulations to control the supply and excessive use of antimicrobials. This review addresses the occurrence of antibiotic-resistant enterococci in Association of Southeast Asian Nations countries and proposes infection control measures that should be applied to limit the spread of multiple-drug-resistant enterococci. PMID:26150452

  2. Artesunate overcomes drug resistance in multiple myeloma by inducing mitochondrial stress and non-caspase apoptosis

    PubMed Central

    Papanikolaou, Xenofon; Johnson, Sarah; Garg, Tarun; Tian, Erming; Tytarenko, Ruslana; Zhang, Qing; Stein, Caleb; Barlogie, Bart; Epstein, Joshua; Heuck, Christoph

    2014-01-01

    Although novel drugs have contributed immensely to improving outcomes of patients with multiple myeloma (MM), many patients develop drug resistance and ultimately succumb to MM. Here, we show that artesunate, an anti-malarial drug, reliably induces cell death in vitro in naïve as well as drug-resistant MM cells at concentrations shown to be safe in humans. Artesunate induced apoptosis predominantly through the non-caspase mediated pathway by primarily targeting mitochondria and causing outer mitochondrial membrane permeabilization that led to cytosolic and subsequent nuclear translocation of mitochondrial proteins apoptosis inducing factor (AIF) and endonuclease G (EndoG). Nuclear translocation of AIF and EndoG was accompanied by low levels of reactive oxygen species (ROS) and increased mitochondrial production of superoxide. These effects were present before apoptosis was evident and were related to intracellular levels of bivalent iron (Fe+2). Artesunate's unique mechanism probably was at least partially responsible for, its ability to act synergistically with multiple anti-myeloma agents. Our findings suggest that artesunate acts through iron to affect the mitochondria and induce low ROS and non-caspase–mediated apoptosis. Its potency, toxicity profile, and synergism with other drugs make it an intriguing new candidate for MM treatment. PMID:24948357

  3. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future.

    PubMed Central

    Huycke, M. M.; Sahm, D. F.; Gilmore, M. S.

    1998-01-01

    Enterococci, leading causes of nosocomial bacteremia, surgical wound infection, and urinary tract infection, are becoming resistant to many and sometimes all standard therapies. New rapid surveillance methods are highlighting the importance of examining enterococcal isolates at the species level. Most enterococcal infections are caused by Enterococcus faecalis, which are more likely to express traits related to overt virulence but--for the moment--also more likely to retain sensitivity to at least one effective antibiotic. The remaining infections are mostly caused by E. faecium, a species virtually devoid of known overt pathogenic traits but more likely to be resistant to even antibiotics of last resort. Effective control of multiple-drug resistant enterococci will require 1) better understanding of the interaction between enterococci, the hospital environment, and humans, 2) prudent antibiotic use, 3) better contact isolation in hospitals and other patient care environments, and 4) improved surveillance. Equally important is renewed vigor in the search for additional drugs, accompanied by the evolution of new therapeutic paradigms less vulnerable to the cycle of drug introduction and drug resistance. PMID:9621194

  4. Drug Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drug resistance refers to both intrinsic and acquired abilities of cells or organisms to become insensitive or refractory to chemotherapeutic intervention. The advent of antibiotics is considered one of the most important medicinal developments in human history, which has led to significantly reduce...

  5. RANK-RANKL interactions are involved in cell adhesion-mediated drug resistance in multiple myeloma cell lines.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Yoshizumi, Misako; Ueda, Emi; Itoh, Tatsuki; Imano, Motohiro; Satou, Takao; Nishida, Shozo

    2016-07-01

    Interaction between multiple myeloma (MM) cells and the bone marrow microenvironment plays a critical role in MM pathogenesis and the development of drug resistance. Recently, it has been reported that MM cells express the receptor activator of nuclear factor-κB (NF-κB) (RANK). However, the role of the RANK/RANK ligand (RANKL) system in drug resistance remains unclear. In this study, we demonstrated a novel function of the RANK/RANKL system in promoting drug resistance in MM. We found that RANKL treatment induced drug resistance in RANK-expressing but not RANK-negative cell lines. RANKL stimulation of RANK-expressing cells increased multidrug resistance protein 1 (MDR1), breast cancer resistance protein (BCRP), and lung resistance protein 1 (LRP1) expression and decreased Bim expression through various signaling molecules. RNA silencing of Bim expression induced drug resistance, but the RANKL-mediated drug resistance could not be overcome through the RNA silencing of MDR1, BCRP, and LRP1 expression. These results indicate that the RANK/RANKL system induces chemoresistance through the activation of multiple signal transduction pathways and by decreasing Bim expression in RANK-positive MM cells. These findings may prove to be useful in the development of cell adhesion-mediated drug resistance inhibitors in RANK-positive MM cells. PMID:26762414

  6. An exhaustive yet simple virtual screening campaign against Sortase A from multiple drug resistant Staphylococcus aureus.

    PubMed

    Uddin, Reaz; Saeed, Kiran

    2014-08-01

    Methicillin resistant Staphylococcus aureus (MRSA) is one of the challenging bacterial pathogen due to its acquired resistance to the β lactam antibiotics. The Sortase A is an enzyme of Gram-positive bacteria including S. aureus to anchor surface proteins to the cell wall. Sortase A is well studied enzyme and considered as the drug target against MRSA. Sortase A plays active role in anchoring the virulence proteins on the cell wall of the Gram-positive bacteria. The inhibition of Sortase A activity results in the separation of S. aureus from the host cells and ultimately alleviation of the infection. Here, we adapted a structure-based virtual screening protocol which helped in identification of novel potential inhibitors of Sortase A. The protocol involved the docking of a chemical library of druglike compounds with the Sortase A binding site represented by multiple crystal structures. The compounds were ranked by multiple scoring functions and shortlisted for future experimental screening. The method resulted in shortlisting of three compounds as potential novel inhibitors of Sortase A out of a large chemical library. The high rankings of shortlisted compounds estimated by multiple scoring functions showed their binding potential with Sortase A. The results are proved to be a simple yet efficient choice of structure-based virtual screening. The identified compounds are druglike and show high rankings among all set protocols of the virtual screening. We hope that the study would eventually help to expedite the discovery of novel drug candidates against MRSA. PMID:24797540

  7. Multiple drug resistant mechanisms against darunavir, amprenavir, and nelfinavir of HIV-1 PR

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Dai, Qi; Xiu, Zhilong

    2013-02-01

    Acquired immune deficiency syndrome (AIDS) is a disease of the human immune system caused by the human immunodeficiency virus (HIV), which is infecting more humans and is expanding faster in the world. The illness interferes with the immune system, making people with AIDS much more likely to get infections, including opportunistic infections and tumors that do not affect people with working immune systems. HIV-1 PR is one of the major targets of anti-AIDS drug discovery. It is, therefore, necessary to develop some inhibitors against HIV-1 PR. In this work, we executed molecular dynamics (MDs) simulation of HIV-1 PR with drugs darunavir (DRV), amprenavir (APV), nelfinavir (NFV), and examined the resistant mechanism of L10I, G48V, I54V, and L90M mutations of this PR, aiming at designing promising drugs. The comparative analysis suggests that the existences of dodecahydroisoquinoline ring at P1' subsite, 4-aminophenylsulfonamide at P2' subsite, and bis-tetrahydrofuranylurethane at P2 subsite are helpful for maintaining the high affinity of the inhibitor for the protease and exhibiting high potency against multiple drug resistance (MDR) mutant protease.

  8. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?

    PubMed

    Franqui-Machin, Reinaldo; Wendlandt, Erik B; Janz, Siegfried; Zhan, Fenghuang; Tricot, Guido

    2015-12-01

    Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains - just like many other cancers - a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138-, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma "stemness", the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease. PMID:26415231

  9. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?

    PubMed Central

    Janz, Siegfried; Zhan, Fenghuang; Tricot, Guido

    2015-01-01

    Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains – just like many other cancers – a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138−, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma “stemness”, the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease. PMID:26415231

  10. Characterization of naturally acquired multiple-drug resistance of Yoshida rat ascites hepatoma AH66 cell line.

    PubMed

    Miyamoto, K; Wakabayashi, D; Minamino, T; Nomura, M; Wakusawa, S; Nakamura, S

    1996-01-01

    Characteristics of multiple-drug resistance of rat ascites hepatoma AH66, a cell line induced by dimethylaminoazobenzene and established as a transplantable tumor, were compared with those of AH66F, a drug sensitive line obtained from AH66. The AH66 cell line was resistant to vinblastine, adriamycin, SN-38 an active form of camptothesine, etoposide, and clorambucil by 10-fold or more than the AH66F cell line. The resistance of AH66 cells to vinblastine, adriamycin, and SN-38 was closely related to P-glycoprotein overexpression in the plasma membrane, because the resistance was significantly inhibited by verapamil. AH66 cells contained much glutahione and had a high activity of glutathione S-transferase P-form (GST-P), compared with AH66F cells, and resistance to clorambucil was decreased by treatment with buthionine sulfoximine, an inhibitor of glutathione synthesis. AH66 cells have a similar topoisomerase I activity, but about 6 times lower topoisomerase II activity than AH66F cells. Therefore, the resistance to etoposide and a part of the resistance to adriamycin of AH66 cells seems to depend upon this low topoisomerase II activity. These results, show that the AH66 cell line has high multiple-drug resistance compared with the AH66F cell line, by several mechanisms. Consequently, the AH66 and AH66F cell lines are useful to study naturally acquired multiple-drug resistance of hepatomas. PMID:8702243

  11. Transfer and expression of the human multiple drug resistance gene into live mice.

    PubMed Central

    Podda, S; Ward, M; Himelstein, A; Richardson, C; de la Flor-Weiss, E; Smith, L; Gottesman, M; Pastan, I; Bank, A

    1992-01-01

    The human multiple drug resistance (MDR) gene has been used as a selectable marker to increase the proportion of bone marrow cells that contain and express this gene by drug selection. By constructing retroviral vectors containing and expressing the MDR gene and a nonselectable gene such as the beta-globin gene, enrichment for cells containing both of these genes can be achieved. A retroviral construct containing MDR cDNA in a Harvey virus-based vector has been used to transfect our ecotropic 3T3 retroviral packaging line GP+E86. Clones have been isolated by exposure of the retrovirally transfected cells (MDR producer cells) to colchicine (60 ng/ml), a selective agent that kills MDR-negative cells. Flow cytometry analysis (fluorescence-activated cell sorting) with an antibody to MDR demonstrates expression of human MDR protein on the surface of these colchicine-resistant producer clones. Untransfected GP+E86 cells are negative. Colchicine-resistant clones were titered using clone supernatants and the highest titer clone (4 x 10(4) viral particles per ml) was cocultured with 10(6) donor mouse bone marrow cells for 24-48 hr. The donor cells were then injected into congenic irradiated mice, and the presence of the MDR gene was assayed by the polymerase chain reaction (PCR) analysis using MDR-specific primers. In one experiment eight of nine transduced mice were positive for MDR by PCR of peripheral blood 14 and 50 days posttransplantation; after 240 days three of nine transduced mice were positive. Bone marrow obtained from one of these positive animals was stained with the MDR monoclonal antibody and the granulocyte population was analyzed by FACS. Approximately 14% of the total granulocyte pool contain increased levels of MDR protein. In addition, the bone marrow cells of several mice initially positive for MDR gene by PCR, and subsequently negative, were exposed to taxol, a drug whose detoxification depends on MDR gene expression; a positive signal was obtained in

  12. Inhibition of MDR1 gene expression by antimessenger oligonucleotides lowers multiple drug resistance.

    PubMed

    Quattrone, A; Papucci, L; Morganti, M; Coronnello, M; Mini, E; Mazzei, T; Colonna, F P; Garbesi, A; Capaccioli, S

    1994-01-01

    The multiple drug resistance of neoplastic cells is mediated by overexpression of the human MDR1 gene, which encodes the transmembrane efflux pump P-glycoprotein. In both cell lines and human tumors the MDR phenotype closely correlates with MDR1 mRNA and P-glycoprotein levels. Reversion of the MDR phenotype was attempted in human colorectal adenocarcinoma doxorubicin (Dx)-resistant cells (Lo Vo/Dx) by long-term administration of an equimolecular mixture of three unmodified ODNs (18mer) targeted to adjacent binding sites of the MDR1 mRNA and carried by a synthetic cationic lipid (DOTAP). Three different experimental parameters were used to evaluate the antimessenger agent's effectiveness in comparison with a random sequence ODN: the level of cell resistance to Dx; the level of P-glycoprotein (determined by flow cytometry); the level of MDR1 mRNA (determined by quantitative RT-PCR). Experimental data indicate that the level of both the MDR1 mRNA and the P-glycoprotein is reduced by approximately 50% by treatment of Lo Vo/Dx cells with a 10 microM total concentration of the aODN mixture every 24 h for 15 days. In agreement with these findings, sensitivity to Dx of the antimessenger agent-treated Lo Vo/Dx cells was almost doubled in comparison with random sequence ODN-treated controls. PMID:7865906

  13. Antimicrobial (Drug) Resistance

    MedlinePlus

    ... Antimicrobial (Drug) Resistance Antibiotic-Resistant Mycobacterium tuberculosis (TB) Methicillin-Resistant Staphylococcus aureus (MRSA) Vancomycin-Resistant Enterococci (VRE) Multidrug-Resistant Neisseria ...

  14. Isolation of multiple drug-resistant enteric bacteria from feces of wild Western Lowland Gorilla (Gorilla gorilla gorilla) in Gabon.

    PubMed

    Mbehang Nguema, Pierre Philippe; Okubo, Torahiko; Tsuchida, Sayaka; Fujita, Shiho; Yamagiwa, Juichi; Tamura, Yutaka; Ushida, Kazunari

    2015-05-01

    Prevalence of drug-resistant bacteria in wildlife can reveal the actual level of anthropological burden on the wildlife. In this study, we isolated two multiple drug-resistant strains, GG6-2 and GG6-1-1, from 27 fresh feces of wild western lowland gorillas in Moukalaba-Doudou National Park, Gabon. Isolates were identified as Achromobacter xylosoxidans and Providencia sp., respectively. Minimum inhibitory concentrations of the following 12 drugs-ampicillin (ABPC), cefazolin (CEZ), cefotaxime (CTX), streptomycin (SM), gentamicin (GM), kanamycin (KM), tetracycline (TC), nalidixic acid (NA), ciprofloxacin (CPFX), colistin (CL), chloramphenicol (CP) and trimethoprim (TMP)-were determined. Isolate GG6-2 was resistant to all antimicrobials tested and highly resistant to CTX, SM, TC, NA and TMP. Isolate GG6-1-1 was resistant to ABPC, CEZ, TC, CL, CP and TMP. PMID:25649412

  15. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review

    PubMed Central

    Ma, Ping; Mumper, Russell J.

    2013-01-01

    Anthracyclines (doxorubicin, daunorubicin, and idarubicin) are very effective chemotherapeutic drugs to treat many cancers; however, the development of multiple drug resistance (MDR) is one of the major limitations for their clinical applications. Nano-delivery systems have emerged as the novel cancer therapeutics to overcome MDR. Up until now, many anthracycline nano-delivery systems have been developed and reported to effectively circumvent MDR both in-vitro and in-vivo, and some of these systems have even advanced to clinical trials, such as the HPMA-doxorubicin (HPMA-DOX) conjugate. Doxil, a DOX PEGylated liposome formulation, was developed and approved by FDA in 1995. Unfortunately, this formulation does not address the MDR problem. In this comprehensive review, more than ten types of developed anthracycline nano-delivery systems to overcome MDR and their proposed mechanisms are covered and discussed, including liposomes; polymeric micelles, conjugate and nanoparticles; peptide/protein conjugates; solid-lipid, magnetic, gold, silica, and cyclodextrin nanoparticles; and carbon nanotubes. PMID:23888183

  16. Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma

    PubMed Central

    Raninga, Prahlad V.; Di Trapani, Giovanna; Vuckovic, Slavica; Bhatia, Maneet; Tonissen, Kathryn F.

    2015-01-01

    Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant accumulation of clonal plasma cells in the bone marrow. Despite recent advancement in anti-myeloma treatment, MM remains an incurable disease. This study showed higher intrinsic oxidative stress and higher Trx1 and TrxR1 protein levels in MM cells compared to normal cells. Drug-induced Trx1 (PX-12) and TrxR1 (Auranofin) inhibition disrupted redox homeostasis resulting in ROS-induced apoptosis in MM cells and a reduction in clonogenic activity. Knockdown of either Trx1 or TrxR1 reduced MM cell viability. Trx1 inhibition by PX-12 sensitized MM cells to undergo apoptosis in response to the NF-кβ inhibitors, BAY 11-7082 and curcumin. PX-12 treatment decreased the expression of the NF-кβ subunit p65 in MM cells. Bortezomib-resistant MM cells contained higher Trx1 protein levels compared to the parental cells and PX-12 treatment resulted in apoptosis. Thus, increased Trx1 enhances MM cell growth and survival and exerts resistance to NF-кβ inhibitors. Therefore inhibiting the thioredoxin system may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM. PMID:25945832

  17. Inhibition of thioredoxin 1 leads to apoptosis in drug-resistant multiple myeloma.

    PubMed

    Raninga, Prahlad V; Di Trapani, Giovanna; Vuckovic, Slavica; Bhatia, Maneet; Tonissen, Kathryn F

    2015-06-20

    Multiple myeloma (MM) is a hematological malignancy characterized by the aberrant accumulation of clonal plasma cells in the bone marrow. Despite recent advancement in anti-myeloma treatment, MM remains an incurable disease. This study showed higher intrinsic oxidative stress and higher Trx1 and TrxR1 protein levels in MM cells compared to normal cells. Drug-induced Trx1 (PX-12) and TrxR1 (Auranofin) inhibition disrupted redox homeostasis resulting in ROS-induced apoptosis in MM cells and a reduction in clonogenic activity. Knockdown of either Trx1 or TrxR1 reduced MM cell viability. Trx1 inhibition by PX-12 sensitized MM cells to undergo apoptosis in response to the NF-κβ inhibitors, BAY 11-7082 and curcumin. PX-12 treatment decreased the expression of the NF-κβ subunit p65 in MM cells. Bortezomib-resistant MM cells contained higher Trx1 protein levels compared to the parental cells and PX-12 treatment resulted in apoptosis. Thus, increased Trx1 enhances MM cell growth and survival and exerts resistance to NF-κβ inhibitors. Therefore inhibiting the thioredoxin system may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM. PMID:25945832

  18. HIV drug resistance interpreted by cumulative versus last genotypes in HIV-infected patients with multiple treatment failures.

    PubMed

    Punyacam, Punthiya; Iemwimangsa, Nareenart; Chantratita, Wasun; Sukasem, Chonlaphat; Sungkanuparph, Somnuek

    2012-04-01

    Genotypic resistance test has been recommended to evaluate HIV drug resistance and guide the effective regimens of antiretroviral therapy (ART) in HIV-infected patients with treatment failure. In patients with multiple treatment failures, drug resistance-associated mutations may disappear due to the loss of selective drug pressure after switching regimens. A cohort study was conducted among HIV-infected patients who had ≥2 genotypic resistance tests during 2003-2011. HIV-1 pol nucleotide sequencing of reverse transcriptase and protease region was carried out using TRUGENE HIV-1 Genotypic Assay. Sequencing data was analyzed using Stanford rule-based interpretation algorithms. Of 54 patients with mean age of 30.1 years, 46.3% were males. HIV-1 subtype A/E was observed in 88.9% of patients. At the latest failure, 55.3% were receiving protease inhibitor-based regimens. Median CD4 and HIV RNA were 167 cells/mm(3) and 22,359 copies/mL. During a median duration of ART of 38.6 months, 72.2%, 22.2%, and 5.6% had 5, 3, and 2 genotype tests, respectively. When compared between using cumulative (CG) and last genotypes (LG), CG interpreted resistance to any drug 59.3% higher than LG did. For NRTI, NNRTI, and PI drug classes, CG interpreted as resistance 42.6%, 27.8%, and 7.4% higher than LG, respectively. The most common drugs that CG interpreted resistance with the higher rate than LG were lamivudine/emtricitabine, nevirapine, efavirenz, etravirine and abacavir. In conclusion, CG interprets HIV drug resistance at a higher rate than LG and may be more accurate to use for selecting the next effective regimen of ART among HIV-infected patients with multiple treatment failures. PMID:22497699

  19. Analysis of antimicrobial resistance genes detected in multiple-drug-resistant Escherichia coli isolates from broiler chicken carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multi-drug resistant (MDR) bacteria in food animals are a potential problem in both animal and human health. In this study, MDR commensal Escherichia coli isolates from poultry were examined. Thirty-two E. coli isolates from broiler carcass rinses were selected based on resistance to aminoglycosid...

  20. Isolation of multiple drug-resistant enteric bacteria from feces of wild Western Lowland Gorilla (Gorilla gorilla gorilla) in Gabon

    PubMed Central

    MBEHANG NGUEMA, Pierre Philippe; OKUBO, Torahiko; TSUCHIDA, Sayaka; FUJITA, Shiho; YAMAGIWA, Juichi; TAMURA, Yutaka; USHIDA, Kazunari

    2015-01-01

    Prevalence of drug-resistant bacteria in wildlife can reveal the actual level of anthropological burden on the wildlife. In this study, we isolated two multiple drug-resistant strains, GG6-2 and GG6-1-1, from 27 fresh feces of wild western lowland gorillas in Moukalaba-Doudou National Park, Gabon. Isolates were identified as Achromobacter xylosoxidans and Providencia sp., respectively. Minimum inhibitory concentrations of the following 12 drugs—ampicillin (ABPC), cefazolin (CEZ), cefotaxime (CTX), streptomycin (SM), gentamicin (GM), kanamycin (KM), tetracycline (TC), nalidixic acid (NA), ciprofloxacin (CPFX), colistin (CL), chloramphenicol (CP) and trimethoprim (TMP)—were determined. Isolate GG6-2 was resistant to all antimicrobials tested and highly resistant to CTX, SM, TC, NA and TMP. Isolate GG6-1-1 was resistant to ABPC, CEZ, TC, CL, CP and TMP. PMID:25649412

  1. Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells.

    PubMed

    Donnenberg, Vera S; Meyer, E Michael; Donnenberg, Albert D

    2009-01-01

    Multiple drug resistance, mediated by the expression and activity of ABC-transporters, is a major obstacle to antineoplastic therapy. Normal tissue stem cells and their malignant counterparts share MDR transporter activity as a major mechanism of self-protection. Although MDR activity is upregulated in response to substrate chemotherapeutic agents, it is also constitutively expressed on both normal tissue stem cells and a subset of tumor cells prior to the initiation of therapy, representing a built-in obstacle to therapeutic ratio. Constitutive and induced MDR activity can be detected in cellular subsets of disaggregated tissues, using the fluorescent substrates Rhodamine 123 and Hoechst 33342 for ABCB1 (also known as P-gp and MDR1) and ABCG2 (BCRP1). In this chapter, we will describe the complete procedure for the detection of MDR activity, including: (1) Preparing single-cell suspensions from tumor and normal tissue specimens; (2) An efficient method to perform cell surface marker staining on large numbers of cells; (3) Flow cytometer setup and controls; (4) Simultaneous measurement of Hoechst 33342 and Rhodamine123 transport; and (5) Data acquisition and analysis. PMID:19582433

  2. Steps toward discovering the function and expression of multiple drug resistance genes in "Arabidopsis thaliana"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ATP-binding cassette (ABC) superfamily is the largest protein family identified in all organisms. It is a highly conserved domain responsible for the ATP-dependent transport of substances including ions, carbohydrates, xenobiotics, drugs, and peptides. Also, the subfamily, multidrug resistance...

  3. Improving cancer treatment with cyclotron produced radionuclides. [Multiple Drug Resistance (MDR)

    SciTech Connect

    Larson, S.M.; Finn, R.D.

    1990-10-15

    The overall objective of this work was to promote nuclear medicine applications in oncology. This is being done by improving the scientific basis of diagnosis, treatment and treatment follow-up with cyclotron-produced tracers. For diagnostic use, positron-emitting isotopes such as Ga-66 and I-124 are being used. Initial studies on the characterization of He-4 particle energies required for Ga-66 production have been completed. Parameters for I-124 radiolabelling of monoclonal antibodies have been determined; the labelled antibodies have been used in animal studies using positron emission tomography (PET) to quantify antibody concentration within tumors in vivo. Imaging physics studies have demonstrated that I-124 can be quantitatively imaged by PET, even in the presence of 100-told greater concentrations of I-131. Measurement of concentrations of label in vivo has been accomplished in nuclei mice bearing neuroblastoma tumors and nude rats bearing human ovarian cancer cells. These studies have major implications for both the quantification of dosimetry and quantification kinetic assessment of anti-tumor antibody localization in vivo. For treatment of tumors, F-18 has been incorporated in 2-fluoro-2-deoxy glucose and 5-fluoro uridine, and O-15 labelled water has been produced. Reagents incorporating C-11 and N-13 are under development. In a related area, C-14 labelled colchicine is being studied as a means of assaying cells for multiple drug resistance (MDR). Cells expressing MDR are shown to retain significantly less C-14 colchiene. This suggest that colchiene retention may be of useful probe in modelling and studying MDR development in human tumors. The precursor required for producing C-11 colchicine has also been synthesized. 11 refs. (MHB)

  4. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance.

    PubMed

    Downing, Tim; Imamura, Hideo; Decuypere, Saskia; Clark, Taane G; Coombs, Graham H; Cotton, James A; Hilley, James D; de Doncker, Simonne; Maes, Ilse; Mottram, Jeremy C; Quail, Mike A; Rijal, Suman; Sanders, Mandy; Schönian, Gabriele; Stark, Olivia; Sundar, Shyam; Vanaerschot, Manu; Hertz-Fowler, Christiane; Dujardin, Jean-Claude; Berriman, Matthew

    2011-12-01

    Visceral leishmaniasis is a potentially fatal disease endemic to large parts of Asia and Africa, primarily caused by the protozoan parasite Leishmania donovani. Here, we report a high-quality reference genome sequence for a strain of L. donovani from Nepal, and use this sequence to study variation in a set of 16 related clinical lines, isolated from visceral leishmaniasis patients from the same region, which also differ in their response to in vitro drug susceptibility. We show that whole-genome sequence data reveals genetic structure within these lines not shown by multilocus typing, and suggests that drug resistance has emerged multiple times in this closely related set of lines. Sequence comparisons with other Leishmania species and analysis of single-nucleotide diversity within our sample showed evidence of selection acting in a range of surface- and transport-related genes, including genes associated with drug resistance. Against a background of relative genetic homogeneity, we found extensive variation in chromosome copy number between our lines. Other forms of structural variation were significantly associated with drug resistance, notably including gene dosage and the copy number of an experimentally verified circular episome present in all lines and described here for the first time. This study provides a basis for more powerful molecular profiling of visceral leishmaniasis, providing additional power to track the drug resistance and epidemiology of an important human pathogen. PMID:22038251

  5. Incidence and Characterization of Integrons, Genetic Elements Mediating Multiple-Drug Resistance, in Avian Escherichia coli

    PubMed Central

    Bass, Lydia; Liebert, Cynthia A.; Lee, Margie D.; Summers, Anne O.; White, David G.; Thayer, Stephan G.; Maurer, John J.

    1999-01-01

    Antibiotic resistance among avian bacterial isolates is common and is of great concern to the poultry industry. Approximately 36% (n = 100) of avian, pathogenic Escherichia coli isolates obtained from diseased poultry exhibited multiple-antibiotic resistance to tetracycline, oxytetracycline, streptomycin, sulfonamides, and gentamicin. Clinical avian E. coli isolates were further screened for the presence of markers for class 1 integrons, the integron recombinase intI1 and the quaternary ammonium resistance gene qacEΔ1, in order to determine the contribution of integrons to the observed multiple-antibiotic resistance phenotypes. Sixty-three percent of the clinical isolates were positive for the class 1 integron markers intI1 and qacEΔ1. PCR analysis with the conserved class 1 integron primers yielded amplicons of approximately 1 kb from E. coli isolates positive for intI1 and qacEΔ1. These PCR amplicons contained the spectinomycin-streptomycin resistance gene aadA1. Further characterization of the identified integrons revealed that many were part of the transposon Tn21, a genetic element that encodes both antibiotic resistance and heavy-metal resistance to mercuric compounds. Fifty percent of the clinical isolates positive for the integron marker gene intI1 as well as for the qacEΔ1 and aadA1 cassettes also contained the mercury reductase gene merA. The correlation between the presence of the merA gene with that of the integrase and antibiotic resistance genes suggests that these integrons are located in Tn21. The presence of these elements among avian E. coli isolates of diverse genetic makeup as well as in Salmonella suggests the mobility of Tn21 among pathogens in humans as well as poultry. PMID:10582884

  6. Multiple drugs compete for transport via the Plasmodium falciparum chloroquine resistance transporter at distinct but interdependent sites.

    PubMed

    Bellanca, Sebastiano; Summers, Robert L; Meyrath, Max; Dave, Anurag; Nash, Megan N; Dittmer, Martin; Sanchez, Cecilia P; Stein, Wilfred D; Martin, Rowena E; Lanzer, Michael

    2014-12-26

    Mutations in the "chloroquine resistance transporter" (PfCRT) are a major determinant of drug resistance in the malaria parasite Plasmodium falciparum. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates. Here we show that mutant PfCRT also transports quinine, quinidine, and verapamil, indicating that the protein behaves as a multidrug resistance carrier. Detailed kinetic analyses revealed that chloroquine and quinine compete for transport via PfCRT in a manner that is consistent with mixed-type inhibition. Moreover, our analyses suggest that PfCRT accepts chloroquine and quinine at distinct but antagonistically interacting sites. We also found verapamil to be a partial mixed-type inhibitor of chloroquine transport via PfCRT, further supporting the idea that PfCRT possesses multiple substrate-binding sites. Our findings provide new mechanistic insights into the workings of PfCRT, which could be exploited to design potent inhibitors of this key mediator of drug resistance. PMID:25378409

  7. Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens

    PubMed Central

    Chang, Hsiao-Han; Cohen, Ted; Grad, Yonatan H.; Hanage, William P.; O'Brien, Thomas F.

    2015-01-01

    SUMMARY Many studies report the high prevalence of multiply drug-resistant (MDR) strains. Because MDR infections are often significantly harder and more expensive to treat, they represent a growing public health threat. However, for different pathogens, different underlying mechanisms are traditionally used to explain these observations, and it is unclear whether each bacterial taxon has its own mechanism(s) for multidrug resistance or whether there are common mechanisms between distantly related pathogens. In this review, we provide a systematic overview of the causes of the excess of MDR infections and define testable predictions made by each hypothetical mechanism, including experimental, epidemiological, population genomic, and other tests of these hypotheses. Better understanding the cause(s) of the excess of MDR is the first step to rational design of more effective interventions to prevent the origin and/or proliferation of MDR. PMID:25652543

  8. Development, Maintenance, and Reversal of Multiple Drug Resistance: At the Crossroads of TFPI1, ABC Transporters, and HIF1α

    PubMed Central

    Arnason, Terra; Harkness, Troy

    2015-01-01

    Early detection and improved therapies for many cancers are enhancing survival rates. Although many cytotoxic therapies are approved for aggressive or metastatic cancer; response rates are low and acquisition of de novo resistance is virtually universal. For decades; chemotherapeutic treatments for cancer have included anthracyclines such as Doxorubicin (DOX); and its use in aggressive tumors appears to remain a viable option; but drug resistance arises against DOX; as for all other classes of compounds. Our recent work suggests the anticoagulant protein Tissue Factor Pathway Inhibitor 1α (TFPI1α) plays a role in driving the development of multiple drug resistance (MDR); but not maintenance; of the MDR state. Other factors; such as the ABC transporter drug efflux pumps MDR-1/P-gp (ABCB1) and BCRP (ABCG2); are required for MDR maintenance; as well as development. The patient population struggling with therapeutic resistance specifically requires novel treatment options to resensitize these tumor cells to therapy. In this review we discuss the development, maintenance, and reversal of MDR as three distinct phases of cancer biology. Possible means to exploit these stages to reverse MDR will be explored. Early molecular detection of MDR cancers before clinical failure has the potential to offer new approaches to fighting MDR cancer. PMID:26501324

  9. The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms.

    PubMed

    Isaac, Methvin; Siu, Allan; Jongstra, Jan

    2011-01-01

    Resistance to chemotherapeutic drugs is a significant clinical problem for the treatment of cancer patients and has been linked to the activation of survival pathways and expression of multidrug efflux transporters. Thus inhibition of these survival pathways or efflux transporter expression may increase the efficacy of drug treatment. Here we review the role of the oncogenic PIM kinase family in regulating important proliferation and survival pathways in cancer cells and the involvement of PIM kinases in the expression and activity of MDR-1 and BCRP, two of the most important drug efflux transporters. PIM kinases are over expressed in various types of tumors and regulate the activation of signaling pathways that are important for tumor cell proliferation, survival and expression of drug efflux proteins. This makes PIM kinases attractive targets for the development of anti-cancer chemotherapeutic drugs. Focussing mainly on solid tumors, we provide an update on the literature describing the tumorigenic functions of PIM kinases. Also we provide an overview of the development of selective small molecule PIM kinase inhibitors. Because of the intense effort by pharmaceutical companies and academia it is reasonable to expect that PIM kinase inhibitors will enter the clinic in the foreseeable future. We therefore finish this review with a discussion on the most efficient application of these PIM inhibitors. This includes a consideration of which tumor type is the most appropriate target for treatment, how to select the patient population that stands to gain the most from treatment with PIM inhibitors, which molecular markers are suitable to follow the course of treatment and whether PIM kinase inhibitors should be used as monotherapy or in combination with other cytotoxic agents. PMID:21601509

  10. Trastuzumab-deBouganin Conjugate Overcomes Multiple Mechanisms of T-DM1 Drug Resistance.

    PubMed

    Dillon, Rachelle L; Chooniedass, Shilpa; Premsukh, Arjune; Adams, Gregory P; Entwistle, Joycelyn; MacDonald, Glen C; Cizeau, Jeannick

    2016-04-01

    The development of antibody drug conjugates has provided enhanced potency to tumor-targeting antibodies by the addition of highly potent payloads. In the case of trastuzumab-DM1 (T-DM1), approved for the treatment of metastatic breast cancer, the addition of mertansine (DM1) to trastuzumab substantially increased progression-free survival. Despite these improvements, most patients eventually relapse due to complex mechanisms of resistance often associated with small molecule chemotherapeutics. Therefore, identifying payloads with different mechanisms of action (MOA) is critical for increasing the efficacy of targeted therapeutics and ultimately improving patient outcomes. To evaluate payloads with different MOA, deBouganin, a deimmunized plant toxin that inhibits protein synthesis, was conjugated to trastuzumab and compared with T-DM1 both in vitro and in vivo. The trastuzumab-deBouganin conjugate (T-deB) demonstrated greater potency in vitro against most cells lines with high levels of Her2 expression. In addition, T-deB, unlike T-DM1, was unaffected by inhibitors of multidrug resistance, Bcl-2-mediated resistance, or Her2-Her3 dimerization. Contrary to T-DM1 that showed only minimal cytotoxicity, T-deB was highly potent in vitro against tumor cells with cancer stem cell properties. Overall, the results demonstrate the potency and efficacy of deBouganin and emphasize the importance of using payloads with different MOAs. The data suggest that deBouganin could be a highly effective against tumor cell phenotypes not being addressed by current antibody drug conjugate formats and thereby provide prolonged clinical benefit. PMID:26938945

  11. Hemibody irradiation. An effective second-line therapy in drug-resistance multiple myeloma

    SciTech Connect

    Singer, C.R.; Tobias, J.S.; Giles, F.; Rudd, G.N.; Blackman, G.M.; Richards, J.D.

    1989-06-15

    The authors report the results of treatment of 41 patients with melphalan-resistant multiple myeloma using single half-body irradiation (HBI) or double half-body irradiation (DHBI). Patients were grouped using prognostic classification reported by the Medical Research Council. Patients in group I and II showed the best response to therapy with reduction in serum of urinary paraprotein and improvement in symptoms, most notably a marked reduction in bone pain. In these groups five patients have survived over 2 years after therapy. The therapeutic response appeared better in those patients who received DHBI as opposed to those whom treated with single HBI. Patients in group III did not achieve prolonged survival but effective relief of bone pain was a consistent finding in these patients also. Thus HBI represents an alternative to combination chemotherapy as second-line treatment of patients with melphalan-resistant multiple myeloma. A comparative study of HBI versus combination chemotherapy is now indicated to establish which therapeutic approach is most effective.

  12. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B.

    PubMed

    Hisatsune, Junzo; Hirakawa, Hideki; Yamaguchi, Takayuki; Fudaba, Yasuyuki; Oshima, Kenshiro; Hattori, Masahira; Kato, Fuminori; Kayama, Shizuo; Sugai, Motoyuki

    2013-12-01

    We report the complete nucleotide sequence and analysis of pETBTY825, a Staphylococcus aureus TY825 plasmid encoding exfoliative toxin B (ETB). S. aureus TY825 is a clinical isolate obtained from an impetigo patient in 2002. The size of pETBTY825, 60.6 kbp, was unexpectedly larger than that of the archetype pETBTY4 (∼30 kbp). Genomic comparison of the plasmids shows that pETBTY825 has the archetype pETBTY4 as the backbone and has a single large extra DNA region of 22.4 kbp. The extra DNA region contains genes for resistance to aminoglycoside [aac(6')/aph(2″)], macrolide (msrA), and penicillin (blaZ). A plasmid deletion experiment indicated that these three resistance elements were functionally active. We retrospectively examined the resistance profile of the clinical ETB-producing S. aureus strains isolated in 1977 to 2007 using a MIC determination with gentamicin (GM), arbekacin (ABK), and erythromycin (EM) and by PCR analyses for aac(6')/aph(2″) and msrA using purified plasmid preparations. The ETB-producing S. aureus strains began to display high resistance to GM, which was parallel with the detection of aac(6')/aph(2″) and mecA, after 1990. Conversely, there was no significant change in the ABK MIC during the testing period, although it had a tendency to slightly increase. After 2001, isolates resistant to EM significantly increased; however, msrA was hardly detected in ETB-producing S. aureus strains, and only five isolates were positive for both aac(6')/aph(2″) and msrA. In this study, we report the emergence of a fusion plasmid carrying the toxin gene etb and drug resistance genes. Prevalence of the pETBTY825 carrier may further increase the clinical threat, since ETB-producing S. aureus is closely related to more severe impetigo or staphylococcal scalded-skin syndrome (SSSS), which requires a general antimicrobial treatment. PMID:24080652

  13. Ursodeoxycholic acid pretreatment reduces oral bioavailability of the multiple drug resistance-associated protein 2 substrate baicalin in rats.

    PubMed

    Wu, Tao; Li, Xi-Ping; Xu, Yan-Jiao; Du, Guang; Liu, Dong

    2013-11-01

    Baicalin is a major bioactive component of Scutellaria baicalensis and a substrate of multiple drug resistance-associated protein 2. Expression of multiple drug resistance-associated protein 2 is regulated by NF-E2-related factor 2. The aim of this study was to explore whether ursodeoxycholic acid, an NF-E2-related factor 2 activator, could influence the oral bioavailability of baicalin. A single dose of baicalin (200 mg/kg) was given orally to rats pretreated with ursodeoxycholic acid (75 mg/kg and 150 mg/kg, per day, intragastrically) or normal saline (per day, intragastrically) for six consecutive days. The plasma concentration of baicalin was measured with the HPLC method. The result indicated that the oral bioavailability of baicalin was significantly and dose-dependently reduced in rats pretreated with ursodeoxycholic acid. Compared with control rats, the mean area under concentration-time curve of baicalin was reduced from 13.25 ± 0.24 mg/L h to 7.62 ± 0.15 mg/L h and 4.97 ± 0.21 mg/L h, and the C(max) value was decreased from 1.31 ± 0.03 mg/L to 0.62 ± 0.05 mg/L and 0.36 ± 0.04 mg/L in rats pretreated with ursodeoxycholic acid at doses of 75 mg/kg and 150 mg/kg, respectively, for six consecutive days. Hence, ursodeoxycholic acid treatment reduced the oral bioavailability of baicalin in rats, probably due to the enhanced efflux of baicalin from the intestine and liver by multiple drug resistance-associated protein 2. PMID:24135887

  14. SerpinE2 promotes multiple cell proliferation and drug resistance in osteosarcoma.

    PubMed

    Mao, Minzhi; Wang, Wanchun

    2016-07-01

    SerpinE2 is a member of the Serpins family, which could inhibit serine protease and promote tumor progression, particularly in tumor metastasis. However, at present, its role in the progression of osteosarcoma has not been determined. The present study analyzed the expression profiles of SerpinE2 in cancer tissues, including tissues from osteosarcoma of different stages. Higher expression of SerpinE2 was shown in osteosarcoma tissues, particularly in tissue from patients with metastasis and a tumor-node-metastasis stage II‑III. Following chemotherapy, the SerpinE2 expression levels were shown to be higher than those at diagnosis. Cell proliferation and colony formation were increased after transfection with SerpinE2 over‑expression vector. Additionally, drug resistance to bortezomib and doxorubicin treatment following SerpinE2 transfection was analyzed. MG‑63 and SAOS‑2 cells showed less sensitivity following transfection with SerpinE2. The cell cycle‑related genes, cyclin‑dependent kinase (CDK)4 and cyclin D1 were positively correlated with SerpinE2 expression in patient‑derived tissue and in osteosarcoma cells. Finally, the high expression of SerpinE2 contributes to poor survival rates in patients with osteosarcoma. In conclusion, high expression of SerpinE2 in osteosarcoma stimulates cell proliferation, promotes drug‑resistance, and results in poor survival by regulating CDK4 and cyclin D1. Thus, SerpinE2 could be a potential target for treatment of patients with osteosarcoma. PMID:27221371

  15. Bedaquiline versus placebo for management of multiple drug-resistant tuberculosis: A systematic review

    PubMed Central

    Charan, Jaykaran; Reljic, Tea; Kumar, Ambuj

    2016-01-01

    Background: Multidrug-resistant tuberculosis (MDR-TB) is associated with significant morbidity and mortality. Bedaquiline is the first drug approved for treating MDR-TB. Objectives: We performed a systematic review and meta-analysis to summarize the totality of all available evidence on the efficacy of bedaquiline for the management of MDR-TB. Materials and Methods: We searched the following PubMed and Cochrane Registry of Clinical Trials. Randomized controlled trials (RCTs) with a parallel design comparing bedaquiline versus any treatment for the management of MDR-TB in adults were eligible for inclusion. Data were pooled under a random effects model. Results: Two trials published as three manuscripts with a total of 207 patients were included. As per the Cochrane risk of bias tool, majority of parameter were labeled as high or unclear risk of bias. Bedaquiline compared with placebo was associated with a statistically significant decrease in time to conversion of positive sputum culture to negative at 8 and 24 weeks with a significant increase in mortality on long-term follow-up. There was no difference in completion rates between bedaquiline and placebo. Conclusion: Bedaquiline is an effective treatment modality for MDR-TB but needs to be balanced against significant mortality. Future Phase 3 RCTs are needed to make a conclusive recommendation. PMID:27127322

  16. Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells.

    PubMed

    Chakravarty, Geetika; Mathur, Aditi; Mallade, Pallavi; Gerlach, Samantha; Willis, Joniece; Datta, Amrita; Srivastav, Sudesh; Abdel-Mageed, Asim B; Mondal, Debasis

    2016-05-01

    Development of multidrug resistance (MDR) remains a significant problem in cancer chemotherapy and underscores the importance of using chemosensitizers. Well known MDR mechanisms include: (i) upregulation of drug-efflux; (ii) increased signaling via AKT; and (iii) decreased apoptosis. Therefore, chemosensitizers should target multiple resistance mechanisms. We investigated the efficacy of nelfinavir (NFV), a clinically approved anti-HIV drug, in increasing doxorubicin (DOX) toxicity in a MDR breast cancer cell line, MCF-7/Dox. As compared to parental MCF-7 cells, the MCF-7/Dox were 15-20 fold more resistant to DOX-induced cytotoxicity at 48 h post-exposure (DOX IC50 = 1.8 μM vs. 32.4 μM). Coexposures to NFV could significantly (p < 0.05) decrease DOX-IC50 in MCF-7/Dox cells. Multiple exposures to physiologic concentrations of NFV (2.25 μM or 6.75 μM) decreased DOX-IC50 by 21-fold and 50-fold, respectively. Interestingly, although single exposure to NFV transiently induced P-glycoprotein (P-gp) levels, multiple treatments with NFV inhibited both P-gp expression and efflux function, which increased intracellular DOX concentrations. Single exposure to NFV augmented the markers of cell-survival (AKT) and autophagy (LC3-II), whereas multiple exposures enabled suppression of both total AKT (t-AKT) and insulin like growth factor-1 (IGF-1)-induced phosphorylated AKT (p-AKT) levels. Multiple exposures to NFV also resulted in increased unfolded protein response (UPR) transducers, e.g. Grp78, p-PERK, p-eIF2α, and ATF-4; and endoplasmic reticulum (ER) stress induced death sensors, e.g. CHOP & TRIB-3. Multiple exposures to NFV also abrogated the mitogenic effects of IGF-1. In mice carrying MCF-7/Dox tumor xenografts, intraperitoneal (i.p.) injection of NFV (20 mg/kg/day) and DOX (2 mg/kg/twice/wk) decreased tumor growth more significantly (p < 0.01) than either agent alone. Immunohistochemical (IHC) analysis revealed decreased p-AKT and Ki-67 levels. Thus

  17. Detection of multiple drug-resistant Trypanosoma congolense populations in village cattle of south-east Mali

    PubMed Central

    2012-01-01

    responded positively to DIM treatment. Conclusions The overreliance on trypanocides in the control of trypanosomosis will ultimately lead to multiple drug-resistant trypanosome populations as detected in villages in south-east Mali rendering the use of drugs doubtful. Effective alternative methods for trypanosomosis control ought to substitute chemotherapy to ensure sustainable cattle production in these villages. Since there is no single strategy for containing trypanocidal drug resistance, promotion of an integrated approach combining proven trypanosomosis control approaches in high trypanosomosis risk areas is most desirous. The best-bet strategy this study recommended for areas with multiple drug resistance included area-wide community tsetse control, control of co-infections to exploit self-cure against resistant trypanosome populations and the rational use of trypanocidal drugs which should be urgently promoted at all levels as a way of containing or reversing resistance. PMID:22852796

  18. Molecular diagnostics of a single drug-resistant multiple myeloma case using targeted next-generation sequencing

    PubMed Central

    Ikeda, Hiroshi; Ishiguro, Kazuya; Igarashi, Tetsuyuki; Aoki, Yuka; Hayashi, Toshiaki; Ishida, Tadao; Sasaki, Yasushi; Tokino, Takashi; Shinomura, Yasuhisa

    2015-01-01

    A 69-year-old man was diagnosed with IgG λ-type multiple myeloma (MM), Stage II in October 2010. He was treated with one cycle of high-dose dexamethasone. After three cycles of bortezomib, the patient exhibited slow elevations in the free light-chain levels and developed a significant new increase of serum M protein. Bone marrow cytogenetic analysis revealed a complex karyotype characteristic of malignant plasma cells. To better understand the molecular pathogenesis of this patient, we sequenced for mutations in the entire coding regions of 409 cancer-related genes using a semiconductor-based sequencing platform. Sequencing analysis revealed eight nonsynonymous somatic mutations in addition to several copy number variants, including CCND1 and RB1. These alterations may play roles in the pathobiology of this disease. This targeted next-generation sequencing can allow for the prediction of drug resistance and facilitate improvements in the treatment of MM patients. PMID:26491355

  19. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia

    PubMed Central

    Zhou, Zhemin; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Kan, Biao

    2016-01-01

    Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the ‘amplifier’ function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks. PMID:26930352

  20. The Transmission and Antibiotic Resistance Variation in a Multiple Drug Resistance Clade of Vibrio cholerae Circulating in Multiple Countries in Asia.

    PubMed

    Pang, Bo; Du, Pengcheng; Zhou, Zhemin; Diao, Baowei; Cui, Zhigang; Zhou, Haijian; Kan, Biao

    2016-01-01

    Vibrio cholerae has caused massive outbreaks and even trans-continental epidemics. In 2008 and 2010, at least 3 remarkable cholera outbreaks occurred in Hainan, Anhui and Jiangsu provinces of China. To address the possible transmissions and the relationships to the 7th pandemic strains of those 3 outbreaks, we sequenced the whole genomes of the outbreak isolates and compared with the global isolates from the 7th pandemic. The three outbreaks in this study were caused by a cluster of V. cholerae in clade 3.B which is parallel to the clade 3.C that was transmitted from Nepal to Haiti and caused an outbreak in 2010. Pan-genome analysis provided additional evolution information on the mobile element and acquired multiple antibiotic resistance genes. We suggested that clade 3.B should be monitored because the multiple antibiotic resistant characteristics of this clade and the 'amplifier' function of China in the global transmission of current Cholera pandemic. We also show that dedicated whole genome sequencing analysis provided more information than the previous techniques and should be applied in the disease surveillance networks. PMID:26930352

  1. Drug Resistance in Leishmaniasis

    PubMed Central

    Chakravarty, Jaya; Sundar, Shyam

    2010-01-01

    The treatment options of leishmaniasis are limited and far from satisfactory. For more than 60 years, treatment of leishmaniasis has centered around pentavalent antimonials (Sbv). Widespread misuse has led to the emergence of Sbv resistance in the hyperendemic areas of North Bihar. Other antileishmanials could also face the same fate, especially in the anthroponotic cycle. The HIV/ visceral leishmaniasis (VL) coinfected patients are another potential source for the emergence of drug resistance. At present no molecular markers of resistance are available and the only reliable method for monitoring resistance of isolates is the technically demanding in vitro amastigote-macrophage model. As the armametrium of drugs for leishmaniasis is limited, it is important that effective monitoring of drug use and response should be done to prevent the spread of resistance. Regimens of simultaneous or sequential combinations should be seriously considered to limit the emergence of resistance. PMID:20606973

  2. Multiple antibiotic resistance in Rhizobium japonicum.

    PubMed

    Cole, M A; Elkan, G H

    1979-05-01

    A total of 48 strains of the soil bacterium Rhizobium japonicum were screened for their response to several widely used antibiotics. Over 60% of the strains were resistant to chloramphenicol, polymyxin B, and erythromycin, and 47% or more of the strains were resistant to neomycin and penicillin G, when tested by disk assay procedures. The most common grouping of resistances in strains was simultaneous resistance to tetracycline, penicillin G, neomycin, chloramphenicol, and streptomycin (25% of all strains tested). The occurrence of multiple drug resistance in a soil bacterium that is not a vertebrate pathogen suggests that chemotherapeutic use of antibiotics is not required for the development of multiple drug resistance. PMID:485137

  3. Analysis of Antimicrobial Resistance Genes in Multiple Drug Resistant (MDR) Escherichia coli Isolated from Broiler Chicken Carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: MDR food-borne bacteria are a concern in both animal and human health. To understand the mechanisms driving this problem, the genetic elements responsible for resistance need to be determined and analyzed. Methods: From 2000-2007, 16,912 Escherichia coli were isolated from broiler carcas...

  4. Antibiotic Resistance, RAPD- PCR Typing of Multiple Drug Resistant Strains of Escherichia Coli From Urinary Tract Infection (UTI)

    PubMed Central

    Marialouis, Xavier Alexander

    2016-01-01

    Introduction Global spreading of multidrug resistant strains of Escherichia coli is responsible for Urinary Tract Infection (UTI) which is a major health problem in of concern. Among the gram negative bacteria, the major contributors for UTI belongs to the family Enterobacteriaceae, which includes E. coli, Klebsiella, Citrobacter and Proteus. However, E. coli accounts for the major cause of Urinary tract infections (UTIs) and accounts for 75% to 90% of UTI isolates. Aim The main aim of this study is to analyse the phylogenetic grouping of clinical isolates of UTI E. coli. Materials and Methods In this study nearly 58 E. coli strains were isolated and confirmed through microbiological, biochemical characterization. The urine samples were collected from outpatients having symptoms of UTI, irrespective of age and sex in Tamil Nadu, India. The isolates were subjected to analyse for ESBL and AmpC β-lactamase production. To understand its genetic correlation, molecular typing was carried out using RAPD-PCR method. Results Here we noted phenotypically twenty seven isolates were positive for ESBL and seven for AmpC β-lactamase production. However, among the ESBL isolates higher sensitivity was noted for Nitrofurantoin and Cefoxitin. It is worth to note that the prevalence of UTIs was more common among female and elderly male. Phylogenetic grouping revealed the presence of 24 isolates belonged to B2 group followed by 19 isolates to group A, eight isolates to group B1 and Seven isolates to group D. Conclusion Phenotypically most of the strains were positive for ESBL and showed high sensitivity for Nitrofurantoin and cefoxitin. PMID:27134870

  5. Drug resistance in leishmaniasis.

    PubMed

    Croft, Simon L; Sundar, Shyam; Fairlamb, Alan H

    2006-01-01

    Leishmaniasis is a complex disease, with visceral and cutaneous manifestations, and is caused by over 15 different species of the protozoan parasite genus Leishmania. There are significant differences in the sensitivity of these species both to the standard drugs, for example, pentavalent antimonials and miltefosine, and those on clinical trial, for example, paromomycin. Over 60% of patients with visceral leishmaniasis in Bihar State, India, do not respond to treatment with pentavalent antimonials. This is now considered to be due to acquired resistance. Although this class of drugs has been used for over 60 years for leishmaniasis treatment, it is only in the past 2 years that the mechanisms of action and resistance have been identified, related to drug metabolism, thiol metabolism, and drug efflux. With the introduction of new therapies, including miltefosine in 2002 and paromomycin in 2005-2006, it is essential that there be a strategy to prevent the emergence of resistance to new drugs; combination therapy, monitoring of therapy, and improved diagnostics could play an essential role in this strategy. PMID:16418526

  6. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens

    PubMed Central

    Karuppiah, Ponmurugan; Rajaram, Shyamkumar

    2012-01-01

    Objective To evaluate the antibacterial properties of Allium sativum (garlic) cloves and Zingiber officinale (ginger) rhizomes against multi-drug resistant clinical pathogens causing nosocomial infection. Methods The cloves of garlic and rhizomes of ginger were extracted with 95% (v/v) ethanol. The ethanolic extracts were subjected to antibacterial sensitivity test against clinical pathogens. Results Anti-bacterial potentials of the extracts of two crude garlic cloves and ginger rhizomes were tested against five gram negative and two gram positive multi-drug resistant bacteria isolates. All the bacterial isolates were susceptible to crude extracts of both plants extracts. Except Enterobacter sp. and Klebsiella sp., all other isolates were susceptible when subjected to ethanolic extracts of garlic and ginger. The highest inhibition zone was observed with garlic (19.45 mm) against Pseudomonas aeruginosa (P. aeruginosa). The minimal inhibitory concentration was as low as 67.00 µg/mL against P. aeruginosa. Conclusions Natural spices of garlic and ginger possess effective anti-bacterial activity against multi-drug clinical pathogens and can be used for prevention of drug resistant microbial diseases and further evaluation is necessary. PMID:23569978

  7. Drugs Approved for Multiple Myeloma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for multiple myeloma and other plasma cell neoplasms. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters. The drug names link to NCI's Cancer Drug Information summaries.

  8. A Treatment Plant Receiving Waste Water from Multiple Bulk Drug Manufacturers Is a Reservoir for Highly Multi-Drug Resistant Integron-Bearing Bacteria

    PubMed Central

    Walujkar, Sandeep A.; Charan, Shakti Singh; Moore, Edward R. B.; Larsson, D. G. Joakim; Shouche, Yogesh S.

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  9. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria.

    PubMed

    Marathe, Nachiket P; Regina, Viduthalai R; Walujkar, Sandeep A; Charan, Shakti Singh; Moore, Edward R B; Larsson, D G Joakim; Shouche, Yogesh S

    2013-01-01

    The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into

  10. Identifying representative drug resistant mutants of HIV

    PubMed Central

    2015-01-01

    Background Drug resistance is one of the most important causes for failure of anti-AIDS treatment. During therapy, multiple mutations accumulate in the HIV genome, eventually rendering the drugs ineffective in blocking replication of the mutant virus. The huge number of possible mutants precludes experimental analysis to explore the molecular mechanisms of resistance and develop improved antiviral drugs. Results In order to solve this problem, we have developed a new algorithm to reveal the most representative mutants from the whole drug resistant mutant database based on our newly proposed unified protein sequence and 3D structure encoding method. Mean shift clustering and multiple regression analysis were applied on genotype-resistance data for mutants of HIV protease and reverse transcriptase. This approach successfully chooses less than 100 mutants with the highest resistance to each drug out of about 10K in the whole database. When considering high level resistance to multiple drugs, the numbers reduce to one or two representative mutants. Conclusion This approach for predicting the most representative mutants for each drug has major importance for experimental verification since the results provide a small number of representative sequences, which will be amenable for in vitro testing and characterization of the expressed mutant proteins. PMID:26678327

  11. CD44hiCD24lo mammosphere-forming cells from primary breast cancer display resistance to multiple chemotherapeutic drugs.

    PubMed

    Ji, Ping; Zhang, Yong; Wang, Shu-Jun; Ge, Hai-Liang; Zhao, Guo-Ping; Xu, Ying-Chun; Wang, Ying

    2016-06-01

    -like properties together with multiple drug resistance. Determination of the sensitivity of these primary cancer-derived mammosphere-forming cells to chemotherapeutic drugs may thus provide useful instructions for individualized therapy against the recurrence of breast cancer in the future. PMID:27109463

  12. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics.

    PubMed

    Wijdeven, Ruud H; Pang, Baoxu; Assaraf, Yehuda G; Neefjes, Jacques

    2016-09-01

    Efficacy of chemotherapy in the treatment of distinct malignancies is often hampered by drug resistance arising in the tumor. Understanding the molecular basis of drug resistance and translating this knowledge into personalized treatment decisions can enhance therapeutic efficacy and even curative outcome. Over the years, multiple drug resistance mechanisms have been identified that enable tumors to cope with the damage instigated by a specific drug or group of anti-tumor agents. Here we provide an overview of the molecular pathways leading to resistance against conventional anti-cancer drugs, with emphasis on the utility of these pathways for rational selection of treatments for individual cancer patients. We further complement the review by discussing the pitfalls and difficulties in translating these findings into novel treatment strategies for cancer patients. PMID:27620955

  13. Antimalarial drug resistance: An overview.

    PubMed

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  14. Antimalarial drug resistance: An overview

    PubMed Central

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  15. Multiple Introduction and Naturally Occuring Drug Resistance of HCV among HIV-Infected Intravenous Drug Users in Yunnan: An Origin of China’s HIV/HCV Epidemics

    PubMed Central

    Chen, Min; Ma, Yanling; Chen, Huichao; Luo, Hongbing; Dai, Jie; Song, Lijun; Yang, Chaojun; Mei, Jingyuan; Yang, Li; Dong, Lijuan; Jia, Manhong; Lu, Lin

    2015-01-01

    Background The human immunodeficiency virus 1 (HIV-1) epidemic in China historically stemmed from intravenous drug users (IDUs) in Yunnan. Due to a shared transmission route, hepatitis C virus (HCV)/HIV-1 co-infection is common. Here, we investigated HCV genetic characteristics and baseline drug resistance among HIV-infected IDUs in Yunnan. Methods Blood samples of 432 HIV-1/HCV co-infected IDUs were collected from January to June 2014 in six prefectures of Yunnan Province. Partial E1E2 and NS5B genes were sequenced. Phylogenetic, evolutionary and genotypic drug resistance analyses were performed. Results Among the 293 specimens successfully genotyped, seven subtypes were identified, including subtypes 3b (37.9%, 111/293), 3a (21.8%, 64/293), 6n (14.0%, 41/293), 1b (10.6%, 31/293), 1a (8.2%, 24/293), 6a (5.1%, 15/293) and 6u (2.4%, 7/293). The distribution of HCV subtypes was mostly related to geographic location. Subtypes 3b, 3a, and 6n were detected in all six prefectures, however, the other four subtypes were detected only in parts of the six prefectures. Phylogeographic analyses indicated that 6n, 1a and 6u originated in the western prefecture (Dehong) and spread eastward and showed genetic relatedness with those detected in Burmese. However, 6a originated in the southeast prefectures (Honghe and Wenshan) bordering Vietnam and was transmitted westward. These subtypes exhibited different evolutionary rates (between 4.35×10−4 and 2.38×10−3 substitutions site-1 year-1) and times of most recent common ancestor (tMRCA, between 1790.3 and 1994.6), suggesting that HCV was multiply introduced into Yunnan. Naturally occurring resistance-associated mutations (C316N, A421V, C445F, I482L, V494A, and V499A) to NS5B polymerase inhibitors were detected in direct-acting antivirals (DAAs)-naïve IDUs. Conclusion This work reveals the temporal-spatial distribution of HCV subtypes and baseline HCV drug resistance among HIV-infected IDUs in Yunnan. The findings enhance our

  16. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid

    PubMed Central

    Ro, Dae-Kyun; Ouellet, Mario; Paradise, Eric M; Burd, Helcio; Eng, Diana; Paddon, Chris J; Newman, Jack D; Keasling, Jay D

    2008-01-01

    Background Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. Results Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 μg mL-1 in shake-flask cultures and 1 g L-1 in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by

  17. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3

    PubMed Central

    Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-01-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis. PMID:26848618

  18. Nosocomial outbreak of septicaemia in neonatal intensive care unit due to extended spectrum β-lactamase producing Klebsiella pneumoniae showing multiple mechanisms of drug resistance.

    PubMed

    Rastogi, V; Nirwan, P S; Jain, S; Kapil, A

    2010-01-01

    A total of 14 phenotypically similar clinical isolates of Klebsiella pneumoniae, resistant to multiple drugs including cefotaxime and ceftazidime, were isolated from blood of neonates admitted to neonatal intensive care unit (NICU) within a short span of 10 days. Alarmed at the possibility of occurrence of outbreak, a thorough investigation was done. Microbiological sampling of the NICU and labour room (LR) environment yielded 12 K. pneumoniae isolates. The presence of extended spectrum β-lactamase (ESBL) in the clinical and environmental strains was detected by double-disk synergy test (DDST), CLSI phenotypic confirmatory disk diffusion test (PCDDT) and E-test ESBL strips. Amp-C screen (disk) test was done to determine Amp-C β-lactamase production. 100% clinical strains, 57% NICU strains and 80% LR strains were ESBL positive. 57% clinical, 43% NICU and 20% LR strains were Amp-C screen positive. Polymerase chain reaction (PCR) of representative ESBL positive (10 clinical and 5 environmental) strains showed CTX gene and TEM and/or SHV gene in all. K. pneumoniae showing multiple mechanisms of drug resistance was responsible for the outbreak. PMID:20966575

  19. Mechanisms of drug resistance: quinolone resistance.

    PubMed

    Hooper, David C; Jacoby, George A

    2015-09-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large. PMID:26190223

  20. Mechanisms of drug resistance: quinolone resistance

    PubMed Central

    Hooper, David C.; Jacoby, George A.

    2015-01-01

    Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large. PMID:26190223

  1. Relationship between multiple drug resistance and biofilm formation in Staphylococcus aureus isolated from medical and non-medical personnel in Yaounde, Cameroon

    PubMed Central

    Eyoh, Agnes Bedie; Toukam, Michel; Atashili, Julius; Fokunang, Charles; Gonsu, Hortense; Lyonga, Emilia Enjema; Mandi, Henshaw; Ikomey, George; Mukwele, Bertha; Mesembe, Martha; Assoumou, Marie Claire Okomo

    2014-01-01

    Introduction Monitoring the prevalence of nasal carriage of multiple drug resistance (MDR) Staphylococcus aureus (SA) strains in hospital personnel is essential. These strains when transmitted from hospital personnel to patients with already weakened immune states or in-built medical devices, may limit the latter's treatment options. This study aimed at assessing the potential exposure of patients to these MDR SA in a resource-limited hospital setting by assessing the prevalence and relationship between antimicrobial susceptibility and biofilm forming capacity of SA isolates from hospital personnel. Methods A total of 59 bacteria isolates phenotypically identified as Staphylococcus aureus obtained from medical (39) and non-medical personnel (20) in Yaounde were used in the study. Multiple drug resistance defined as resistance to four or more of twelve locally used antibiotics were determined by Kirby Bauer disc diffusion technique whereas quantification of biofilm production was by the microtitre plate method. Results Among the 59 SA isolates, the prevalence of MDR was 50.9%. Among medical personnel 48.7% had MDR as against 55.9% for non-medical personnel (p-value=0.648). The overall percentage of weak biofilm producers was 35.6%. Although the prevalence of weak biofilm formers was higher in isolates from non-medical personnel (40%) than medical personnel (33.3%) the difference was not statistically significant (p-value= 0.246). Slightly less than half (42.9%) of the weak biofilm producers were MDR. Conclusion Considering the high rates of MDR and that slightly less than half of biofilm formers were MDR, these trends need to be monitored regularly among hospital personnel in Yaounde. PMID:25396012

  2. Fosfomycin, interesting alternative drug for treatment of urinary tract infections created by multiple drug resistant and extended spectrum β-lactamase producing strains

    PubMed Central

    Yeganeh-Sefidan, Fatemeh; Ghotaslou, Reza; Akhi, Mohammad Taghi; Sadeghi, Mohammad Reza; Mohammadzadeh-Asl, Yalda; Bannazadeh Baghi, Hussein

    2016-01-01

    Background and Objectives: The emergence and spread of multidrug resistant (MDR) and extended spectrum β-lactamase (ESBL) producing strains reduces the number of effective drugs that can be used for treatment. The aim of this study was to evaluate the susceptibility profile of Enterobacteriaceae isolated from UTIs, specifically MDR and ESBL producing strains, to fosfomycin and other antibiotics. Materials and Methods: The study was performed during a 6 month period (February 2014 to August 2015). A total of 219 non-duplicate urinary isolates of Enterobacteriaceae were collected. Identification and susceptibility testing was done according to standard microbiological procedures and the Kirby-Bauer test, respectively. Based on the results obtained from susceptibility testing, MDR bacteria were recovered and identification of ESBL production was done according to CLSI recommendation. Results: Isolates of E. coli and Klebsiella spp. were responsible for 80.8% and 12.8% of patients with UTIs respectively. The rates of resistance to ampicillin, cefazolin, nalidixic acid, trimethoprim-sulfamethoxazole were 86.3%, 79.4%, 68.5% and 63.9% respectively. In contrast, high sensitivity rates were detected to fosfomycin, amikacin and amoxicillin-clavulanic acid with 97.3%, 91.8% and 80.8%, respectively. Of all isolates, 167 (76.3%) were detected as MDR and 75 (34.2%) as ESBL producing strains. Conclusion: The rate of antibiotic resistance among uropathogens Enterobacteriaceae is remarkably high. The most effective antibiotic was fosfomycin. Moreover, susceptibility to fosfomycin is over 90% for MDR and ESBL producer isolates. Therefore, fosfomycin can be a good option for treating UTIs. PMID:27307978

  3. [Resistance to the antimalarial drugs].

    PubMed

    Venanzi, E; López-Vélez, R

    2016-09-01

    Malaria is one of the most widespread infectious diseases around the world with 214 million cases and 438,000 deaths in 2015. In the early twentieth century it was described for the first time the resistance to quinine and, since then, drug resistance to antimalarial drugs has spread up to represent a global challenge in the fight and control of malaria. Understanding the mechanisms, geography and monitoring tools that we can act against resistance to antimalarial drugs is critical to prevent its expansion. PMID:27608319

  4. Dissemination of Multiple Drug Resistance Genes by Class 1 Integrons in Klebsiella pneumoniae Isolates from Four Countries: a Comparative Study ▿

    PubMed Central

    Roy Chowdhury, Piklu; Ingold, Ana; Vanegas, Natasha; Martínez, Elena; Merlino, John; Merkier, Andrea Karina; Castro, Mercedes; González Rocha, Gerardo; Borthagaray, Graciela; Centrón, Daniela; Bello Toledo, Helia; Márquez, Carolina M.; Stokes, H. W.

    2011-01-01

    A comparative genetic analysis of 42 clinical Klebsiella pneumoniae isolates, resistant to two or more antibiotics belonging to the broad-spectrum β-lactam group, sourced from Sydney, Australia, and three South American countries is presented. The study focuses on the genetic contexts of class 1 integrons, mobilizable genetic elements best known for their role in the rapid evolution of antibiotic resistance among Gram-negative pathogens. It was found that the class 1 integrons in this cohort were located in a number of different genetic contexts with clear regional differences. In Sydney, IS26-associated Tn21-like transposons on IncL/M plasmids contribute greatly to the dispersal of integron-associated multiple-drug-resistant (MDR) loci. In contrast, in the South American countries, Tn1696-like transposons on an IncA/C plasmid(s) appeared to be disseminating a characteristic MDR region. A range of mobile genetic elements is clearly being recruited by clinically important mobile class 1 integrons, and these elements appear to be becoming more common with time. This in turn is driving the evolution of complex and laterally mobile MDR units and may further complicate antibiotic therapy. PMID:21518841

  5. Cbl-b inhibits P-gp transporter function by preventing its translocation into caveolae in multiple drug-resistant gastric and breast cancers

    PubMed Central

    Zhang, Ye; Qu, Xiujuan; Teng, Yuee; Li, Zhi; Xu, Ling; Liu, Jing; Ma, Yanju; Fan, Yibo; Li, Ce; Liu, Shizhou; Wang, Zhenning; Hu, Xuejun; Zhang, Jingdong; Liu, Yunpeng

    2015-01-01

    The transport function of P-glycoprotein (P-gp) requires its efficient localization to caveolae, a subset of lipid rafts, and disruption of caveolae suppresses P-gp transport function. However, the regulatory molecules involved in the translocation of P-gp into caveolae remain unknown. In the present study, we showed that c-Src dependent Caveolin-1 phosphorylation promoted the translocation of P-gp into caveolae, resulting in multidrug resistance in adriamycin resistant gastric cancer SGC7901/Adr and breast cancer MCF-7/Adr cells. In a negative feedback loop, the translocation of Cbl-b from the nucleus to the cytoplasm prevented the localization of P-gp to caveolae resulting in the reversal of MDR through the ubiquitination and degradation of c-Src. Clinical data showed a significant positive relationship between Cbl-b expression and survival in P-gp positive breast cancer patients who received anthracycline-based chemotherapy. Our findings identified a new regulatory mechanism of P-gp transport function in multiple drug-resistant gastric and breast cancers. PMID:25788263

  6. How drug resistance takes shape

    PubMed Central

    Jeselsohn, Rinath

    2016-01-01

    Mutations in a hormone receptor can lead to therapeutic resistance by making it less able to bind and respond to hormone blocking drugs and by making it active, even when the hormome is not present. PMID:27010172

  7. A nano ultra-performance liquid chromatography-high resolution mass spectrometry approach for global metabolomic profiling and case study on drug-resistant multiple myeloma.

    PubMed

    Jones, Drew R; Wu, Zhiping; Chauhan, Dharminder; Anderson, Kenneth C; Peng, Junmin

    2014-04-01

    Global metabolomics relies on highly reproducible and sensitive detection of a wide range of metabolites in biological samples. Here we report the optimization of metabolome analysis by nanoflow ultraperformance liquid chromatography coupled to high-resolution orbitrap mass spectrometry. Reliable peak features were extracted from the LC-MS runs based on mandatory detection in duplicates and additional noise filtering according to blank injections. The run-to-run variation in peak area showed a median of 14%, and the false discovery rate during a mock comparison was evaluated. To maximize the number of peak features identified, we systematically characterized the effect of sample loading amount, gradient length, and MS resolution. The number of features initially rose and later reached a plateau as a function of sample amount, fitting a hyperbolic curve. Longer gradients improved unique feature detection in part by time-resolving isobaric species. Increasing the MS resolution up to 120000 also aided in the differentiation of near isobaric metabolites, but higher MS resolution reduced the data acquisition rate and conferred no benefits, as predicted from a theoretical simulation of possible metabolites. Moreover, a biphasic LC gradient allowed even distribution of peak features across the elution, yielding markedly more peak features than the linear gradient. Using this robust nUPLC-HRMS platform, we were able to consistently analyze ~6500 metabolite features in a single 60 min gradient from 2 mg of yeast, equivalent to ~50 million cells. We applied this optimized method in a case study of drug (bortezomib) resistant and drug-sensitive multiple myeloma cells. Overall, 18% of metabolite features were matched to KEGG identifiers, enabling pathway enrichment analysis. Principal component analysis and heat map data correctly clustered isogenic phenotypes, highlighting the potential for hundreds of small molecule biomarkers of cancer drug resistance. PMID:24611431

  8. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    PubMed

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases. PMID:26204087

  9. Drug resistance in eukaryotic microorganisms.

    PubMed

    Fairlamb, Alan H; Gow, Neil A R; Matthews, Keith R; Waters, Andrew P

    2016-01-01

    Eukaryotic microbial pathogens are major contributors to illness and death globally. Although much of their impact can be controlled by drug therapy as with prokaryotic microorganisms, the emergence of drug resistance has threatened these treatment efforts. Here, we discuss the challenges posed by eukaryotic microbial pathogens and how these are similar to, or differ from, the challenges of prokaryotic antibiotic resistance. The therapies used for several major eukaryotic microorganisms are then detailed, and the mechanisms that they have evolved to overcome these therapies are described. The rapid emergence of resistance and the restricted pipeline of new drug therapies pose considerable risks to global health and are particularly acute in the developing world. Nonetheless, we detail how the integration of new technology, biological understanding, epidemiology and evolutionary analysis can help sustain existing therapies, anticipate the emergence of resistance or optimize the deployment of new therapies. PMID:27572976

  10. Overexpression of PDZK1 within the 1q12-q22 Amplicon Is Likely To Be Associated with Drug-Resistance Phenotype in Multiple Myeloma

    PubMed Central

    Inoue, Jun; Otsuki, Takemi; Hirasawa, Akira; Imoto, Issei; Matsuo, Yoshinobu; Shimizu, Shiroh; Taniwaki, Masafumi; Inazawa, Johji

    2004-01-01

    We investigated DNA copy number aberrations in 37 cell lines derived from multiple myelomas (MMs) using comparative genomic hybridization, and 11 (29.7%) showed high-level gain indicative of gene amplification at 1q12-q22. A corresponding transcriptional mapping using oligonucleotide arrays extracted three up-regulated genes (IRTA2, PDZK1, and S100A6) within the smallest region of overlapping in amplifications. Among them PDZK1 showed amplification and consequent overexpression in the MM cell lines. Amplification of PDZK1 was observed in primary cases of MM as well. MM cell lines with amplification of PDZK1 exhibited the resistance to melphalan-, cis-platin-, and vincristin-induced cell death compared with MM cell lines without its amplifications. Furthermore, down-regulation of PDZK1 with an anti-sense oligonucleotide sensitized a cell line KMS-11 to melphalan, cis-platin, and vincristin. Taken together, our results indicate that PDZK1 is likely to be one of targets for 1q12-q22 amplification in MM and may be associated with the malignant phenotype, including drug resistance, in this type of tumor. PMID:15215163

  11. [Infection caused by Mycobacterium tuberculosis with primary resistance to multiple drugs: a case report of a patient with AIDS].

    PubMed

    Grinbaum, R S; Daher, M; Medeiros, E A; de Mendonça, J S; Beu, M F; Kusano, E; Telles, M A; Ueki, S Y

    1995-01-01

    Primary multidrug-resistant Mycobacterium tuberculosis is an important problem in the United States. There is no report in formal literature of this pathogen in Brazilian patients. CASE REPORT--We report a case of ganglionar tuberculosis diagnosed by acid-fast smears in a male, HIV positive patient. Mode of acquisition of HIV was not determined. Treatment was started, and isoniazid, rifampicin and pyrazinamide were prescribed. The patient and his family reported strict adherence to therapy, but no improvement was observed. After 75 days, the patient was admitted in our hospital because of clinical worsening. Clinical features were the presence of large submandibular and axillar lymph nodes, respiratory insufficiency and complains of abdominal pain. He died six days after admission. Culture obtained from the ganglionar aspirate disclosed M. tuberculosis susceptible to ethambutol, but resistant to isoniazid, rifampicin, pyrazinamide, ethionamide and streptomycin. DISCUSSION--Although this was a case of extrapulmonary tuberculosis, there is a concern about multidrug-resistant tuberculosis, that has been poorly evaluated in Brazil. Since high lethality and intrahospital transmission have been reported, we discuss the need of performing culture and antibiogram in suspected cases, and the prevention of the spread of M. tuberculosis to patients and health-care workers through the strict adherence to the isolation practices. PMID:8574241

  12. Exploiting Nanotechnology to Overcome Tumor Drug Resistance: Challenges and Opportunities

    PubMed Central

    Kirtane, Ameya; Kalscheuer, Stephen; Panyam, Jayanth

    2013-01-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. PMID:24036273

  13. Antimicrobial (Drug) Resistance Prevention

    MedlinePlus

    ... Action Plan for Combating Antibiotic-Resistant Bacteria (PDF) ​​​​​​ Javascript Error Your browser JavaScript is turned off causing certain features of the ... incorrectly. Please visit your browser settings and turn JavaScript on. Read more information on enabling JavaScript. Skip ...

  14. Antifungals: Mechanism of Action and Drug Resistance.

    PubMed

    Prasad, Rajendra; Shah, Abdul Haseeb; Rawal, Manpreet Kaur

    2016-01-01

    There are currently few antifungals in use which show efficacy against fungal diseases. These antifungals mostly target specific components of fungal plasma membrane or its biosynthetic pathways. However, more recent class of antifungals in use is echinocandins which target the fungal cell wall components. The availability of mostly fungistatic antifungals in clinical use, often led to the development of tolerance to these very drugs by the pathogenic fungal species. Thus, the development of clinical multidrug resistance (MDR) leads to higher tolerance to drugs and its emergence is helped by multiple mechanisms. MDR is indeed a multifactorial phenomenon wherein a resistant organism possesses several mechanisms which contribute to display reduced susceptibility to not only single drug in use but also show collateral resistance to several drugs. Considering the limited availability of antifungals in use and the emergence of MDR in fungal infections, there is a continuous need for the development of novel broad spectrum antifungal drugs with better efficacy. Here, we briefly present an overview of the current understanding of the antifungal drugs in use, their mechanism of action and the emerging possible novel antifungal drugs with great promise. PMID:26721281

  15. Multiple Disease Resistance in Plants.

    PubMed

    Wiesner-Hanks, Tyr; Nelson, Rebecca

    2016-08-01

    Many plants, both in nature and in agriculture, are resistant to multiple diseases. Although much of the plant innate immunity system provides highly specific resistance, there is emerging evidence to support the hypothesis that some components of plant defense are relatively nonspecific, providing multiple disease resistance (MDR). Understanding MDR is of fundamental and practical interest to plant biologists, pathologists, and breeders. This review takes stock of the available evidence related to the MDR hypothesis. Questions about MDR are considered primarily through the lens of forward genetics, starting at the organismal level and proceeding to the locus level and, finally, to the gene level. At the organismal level, MDR may be controlled by clusters of R genes that evolve under diversifying selection, by dispersed, pathogen-specific genes, and/or by individual genes providing MDR. Based on the few MDR loci that are well-understood, MDR is conditioned by diverse mechanisms at the locus and gene levels. PMID:27296142

  16. In Vitro Resistance Selections for Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors Give Mutants with Multiple Point Mutations in the Drug-binding Site and Altered Growth*

    PubMed Central

    Ross, Leila S.; Gamo, Francisco Javier; Lafuente-Monasterio, Maria José; Singh, Onkar M. P.; Rowland, Paul; Wiegand, Roger C.; Wirth, Dyann F.

    2014-01-01

    Malaria is a preventable and treatable disease; yet half of the world's population lives at risk of infection, and an estimated 660,000 people die of malaria-related causes every year. Rising drug resistance threatens to make malaria untreatable, necessitating both the discovery of new antimalarial agents and the development of strategies to identify and suppress the emergence and spread of drug resistance. We focused on in-development dihydroorotate dehydrogenase (DHODH) inhibitors. Characterizing resistance pathways for antimalarial agents not yet in clinical use will increase our understanding of the potential for resistance. We identified resistance mechanisms of Plasmodium falciparum (Pf) DHODH inhibitors via in vitro resistance selections. We found 11 point mutations in the PfDHODH target. Target gene amplification and unknown mechanisms also contributed to resistance, albeit to a lesser extent. These mutant parasites were often hypersensitive to other PfDHODH inhibitors, which immediately suggested a novel combination therapy approach to preventing resistance. Indeed, a combination of wild-type and mutant-type selective inhibitors led to resistance far less often than either drug alone. The effects of point mutations in PfDHODH were corroborated with purified recombinant wild-type and mutant-type PfDHODH proteins, which showed the same trends in drug response as the cognate cell lines. Comparative growth assays demonstrated that two mutant parasites grew less robustly than their wild-type parent, and the purified protein of those mutants showed a decrease in catalytic efficiency, thereby suggesting a reason for the diminished growth rate. Co-crystallography of PfDHODH with three inhibitors suggested that hydrophobic interactions are important for drug binding and selectivity. PMID:24782313

  17. Extensively drug-resistant tuberculosis.

    PubMed

    Jassal, Mandeep; Bishai, William R

    2009-01-01

    Extensively drug-resistant (XDR) tuberculosis is defined as disease caused by Mycobacterium tuberculosis with resistance to at least isoniazid and rifampicin, any fluoroquinolone, and at least one of three injectable second-line drugs (amikacin, capreomycin, or kanamycin). The definition has applicable clinical value and has allowed for more uniform surveillance in varied international settings. Recent surveillance data have indicated that the prevalence of tuberculosis drug resistance has risen to the highest rate ever recorded. The gold standard for drug-susceptibility testing has been the agar proportion method; however, this technique requires several weeks for results to be determined. More sensitive and specific diagnostic tests are still unavailable in resource-limited settings. Clinical manifestations, although variable in different settings and among different strains, have in general shown that XDR tuberculosis is associated with greater morbidity and mortality than non-XDR tuberculosis. The treatment of XDR tuberculosis should include agents to which the organism is susceptible, and should continue for a minimum of 18-24 months. However, treatment continues to be limited in tuberculosis-endemic countries largely because of weaknesses in national tuberculosis health-care models. The ultimate strategy to control drug-resistant tuberculosis is one that implements a comprehensive approach incorporating innovation from the political, social, economic, and scientific realms. PMID:18990610

  18. Identification of drug-resistant subpopulations in canine hemangiosarcoma.

    PubMed

    Khammanivong, A; Gorden, B H; Frantz, A M; Graef, A J; Dickerson, E B

    2016-09-01

    Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. PMID:25112808

  19. Lysosomes as mediators of drug resistance in cancer.

    PubMed

    Zhitomirsky, Benny; Assaraf, Yehuda G

    2016-01-01

    Drug resistance remains a leading cause of chemotherapeutic treatment failure and cancer-related mortality. While some mechanisms of anticancer drug resistance have been well characterized, multiple mechanisms remain elusive. In this respect, passive ion trapping-based lysosomal sequestration of multiple hydrophobic weak-base chemotherapeutic agents was found to reduce the accessibility of these drugs to their target sites, resulting in a markedly reduced cytotoxic effect and drug resistance. Recently we have demonstrated that lysosomal sequestration of hydrophobic weak base drugs triggers TFEB-mediated lysosomal biogenesis resulting in an enlarged lysosomal compartment, capable of enhanced drug sequestration. This study further showed that cancer cells with an increased number of drug-accumulating lysosomes are more resistant to lysosome-sequestered drugs, suggesting a model of drug-induced lysosome-mediated chemoresistance. In addition to passive drug sequestration of hydrophobic weak base chemotherapeutics, other mechanisms of lysosome-mediated drug resistance have also been reported; these include active lysosomal drug sequestration mediated by ATP-driven transporters from the ABC superfamily, and a role for lysosomal copper transporters in cancer resistance to platinum-based chemotherapeutics. Furthermore, lysosomal exocytosis was suggested as a mechanism to facilitate the clearance of chemotherapeutics which highly accumulated in lysosomes, thus providing an additional line of resistance, supplementing the organelle entrapment of chemotherapeutics away from their target sites. Along with these mechanisms of lysosome-mediated drug resistance, several approaches were recently developed for the overcoming of drug resistance or exploiting lysosomal drug sequestration, including lysosomal photodestruction and drug-induced lysosomal membrane permeabilization. In this review we explore the current literature addressing the role of lysosomes in mediating cancer drug

  20. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    PubMed Central

    Chou, Sunwen

    2010-01-01

    Summary Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B. PMID:20466277

  1. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.

    PubMed

    Avner, Benjamin S; Fialho, Arsenio M; Chakrabarty, Ananda M

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens--including bacteria such as Pseudomonas aeruginosa, viruses, and parasites--and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of their

  2. Transformation of cinnamic acid from trans- to cis-form raises a notable bactericidal and synergistic activity against multiple-drug resistant Mycobacterium tuberculosis.

    PubMed

    Chen, Yen-Ling; Huang, Shao-Tsung; Sun, Fang-Ming; Chiang, Yu-Ling; Chiang, Chia-Jung; Tsai, Chiung-Man; Weng, Chia-Jui

    2011-06-14

    Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis. The long course of treatments on TB with a combination of antibiotics leads unfavorable side effects and poor patient compliance which contributes to sustaining multiple-drug resistant tuberculosis (MDR-TB). Therefore, the development of a new effective drug or synergist to reduce the prevalence of MDR-TB is urgent to date. Cinnamic acid (CA) is a natural occurring phenolic compound with anti-microbial activity. Both trans- and cis-isoforms of CA exist in planta, and cis-cinnamic acid (c-CA) can be transformed from trans-cinnamic acid (t-CA) under sunlight. Due to the unavailability of c-CA, the literature regarding the biological functions of c-CA is still limited. We had previously developed a practicable method for the transformation of c-CA from t-CA and the isolation of c-CA. Using the techniques, sufficient c-CA was obtained to evaluate its antituberculosis activity against a MDR M. tuberculosis strain. Moreover, the synergistic effects of c-CA and t-CA with two first-line anti-TB antibiotics, isoniazid (INH) and rifampicin (RIF), were also determined. Although both of c-CA and t-CA decreased the viability of MDR-TB bacilli in a dose-dependent manner, the antituberculosis activity of c-CA was approximately 120-fold of t-CA. Furthermore, the c-CA exhibited higher synergistic effect with INH or RIF against tuberculosis than t-CA. The micrographs of scanning electron microscope (SEM) display that c-CA caused an injury on the out-layer of MDR-TB bacilli. The c-CA might be a potential anti-mycobacterial or synergistic agent that can be developed to against tuberculosis. PMID:21536127

  3. Resistant multiple sparse canonical correlation.

    PubMed

    Coleman, Jacob; Replogle, Joseph; Chandler, Gabriel; Hardin, Johanna

    2016-04-01

    Canonical correlation analysis (CCA) is a multivariate technique that takes two datasets and forms the most highly correlated possible pairs of linear combinations between them. Each subsequent pair of linear combinations is orthogonal to the preceding pair, meaning that new information is gleaned from each pair. By looking at the magnitude of coefficient values, we can find out which variables can be grouped together, thus better understanding multiple interactions that are otherwise difficult to compute or grasp intuitively. CCA appears to have quite powerful applications to high-throughput data, as we can use it to discover, for example, relationships between gene expression and gene copy number variation. One of the biggest problems of CCA is that the number of variables (often upwards of 10,000) makes biological interpretation of linear combinations nearly impossible. To limit variable output, we have employed a method known as sparse canonical correlation analysis (SCCA), while adding estimation which is resistant to extreme observations or other types of deviant data. In this paper, we have demonstrated the success of resistant estimation in variable selection using SCCA. Additionally, we have used SCCA to find multiple canonical pairs for extended knowledge about the datasets at hand. Again, using resistant estimators provided more accurate estimates than standard estimators in the multiple canonical correlation setting. R code is available and documented at https://github.com/hardin47/rmscca. PMID:26963062

  4. Cytokines in cancer drug resistance: Cues to new therapeutic strategies.

    PubMed

    Jones, Valerie Sloane; Huang, Ren-Yu; Chen, Li-Pai; Chen, Zhe-Sheng; Fu, Liwu; Huang, Ruo-Pan

    2016-04-01

    The development of oncoprotein-targeted anticancer drugs is an invaluable weapon in the war against cancer. However, cancers do not give up without a fight. They may develop multiple mechanisms of drug resistance, including apoptosis inhibition, drug expulsion, and increased proliferation that reduce the effectiveness of the drug. The collective work of researchers has highlighted the role of cytokines in the mechanisms of cancer drug resistance, as well as in cancer cell progression. Furthermore, recent studies have described how specific cytokines secreted by cancer stromal cells confer resistance to chemotherapeutic treatments. In order to gain a better understanding of mechanism of cancer drug resistance and a prediction of treatment outcome, it is imperative that correlations are established between global cytokine profiles and cancer drug resistance. Here we discuss the recent discoveries in this field of research and discuss their implications for the future development of effective anti-cancer medicines. PMID:26993403

  5. Nanomedicine therapeutic approaches to overcome cancer drug resistance.

    PubMed

    Markman, Janet L; Rekechenetskiy, Arthur; Holler, Eggehard; Ljubimova, Julia Y

    2013-11-01

    Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment. PMID:24120656

  6. Mutational Pathway Determines Whether Drug Gradients Accelerate Evolution of Drug-Resistant Cells

    NASA Astrophysics Data System (ADS)

    Greulich, Philip; Waclaw, Bartłomiej; Allen, Rosalind J.

    2012-08-01

    Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance may actually be slowed down by drug gradients. These predictions can be verified experimentally, and may help to improve strategies for combating the emergence of resistance.

  7. Drug resistance in Giardia duodenalis.

    PubMed

    Ansell, Brendan R E; McConville, Malcolm J; Ma'ayeh, Showgy Y; Dagley, Michael J; Gasser, Robin B; Svärd, Staffan G; Jex, Aaron R

    2015-11-01

    Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen. PMID:25922317

  8. Comprehensive Treatment of Extensively Drug-Resistant Tuberculosis

    PubMed Central

    Mitnick, Carole D.; Shin, Sonya S.; Seung, Kwonjune J.; Rich, Michael L.; Atwood, Sidney S.; Furin, Jennifer J.; Fitzmaurice, Garrett M.; Alcantara Viru, Felix A.; Appleton, Sasha C.; Bayona, Jaime N.; Bonilla, Cesar A.; Chalco, Katiuska; Choi, Sharon; Franke, Molly F.; Fraser, Hamish S.F.; Guerra, Dalia; Hurtado, Rocio M.; Jazayeri, Darius; Joseph, Keith; Llaro, Karim; Mestanza, Lorena; Mukherjee, Joia S.; Muñoz, Maribel; Palacios, Eda; Sanchez, Epifanio; Sloutsky, Alexander; Becerra, Mercedes C.

    2009-01-01

    BACKGROUND Extensively drug-resistant tuberculosis has been reported in 45 countries, including countries with limited resources and a high burden of tuberculosis. We describe the management of extensively drug-resistant tuberculosis and treatment outcomes among patients who were referred for individualized outpatient therapy in Peru. METHODS A total of 810 patients were referred for free individualized therapy, including drug treatment, resective surgery, adverse-event management, and nutritional and psychosocial support. We tested isolates from 651 patients for extensively drug-resistant tuberculosis and developed regimens that included five or more drugs to which the infecting isolate was not resistant. RESULTS Of the 651 patients tested, 48 (7.4%) had extensively drug-resistant tuberculosis; the remaining 603 patients had multidrug-resistant tuberculosis. The patients with extensively drug-resistant tuberculosis had undergone more treatment than the other patients (mean [±SD] number of regimens, 4.2±1.9 vs. 3.2±1.6; P<0.001) and had isolates that were resistant to more drugs (number of drugs, 8.4±1.1 vs. 5.3±1.5; P<0.001). None of the patients with extensively drug-resistant tuberculosis were coinfected with the human immunodeficiency virus (HIV). Patients with extensively drug-resistant tuberculosis received daily, supervised therapy with an average of 5.3±1.3 drugs, including cycloserine, an injectable drug, and a fluoroquinolone. Twenty-nine of these patients (60.4%) completed treatment or were cured, as compared with 400 patients (66.3%) with multidrug-resistant tuberculosis (P=0.36). CONCLUSIONS Extensively drug-resistant tuberculosis can be cured in HIV-negative patients through outpatient treatment, even in those who have received multiple prior courses of therapy for tuberculosis. PMID:18687637

  9. YAP and the drug resistance highway.

    PubMed

    Keren-Paz, Alona; Emmanuel, Rafi; Samuels, Yardena

    2015-03-01

    Deciphering mechanisms of drug resistance is crucial to winning the battle against cancer. A new study points to an unexpected function of YAP in drug resistance and illuminates its potential role as a therapeutic target. PMID:25711863

  10. YAP and the drug resistance highway

    PubMed Central

    Keren-Paz, Alona; Emmanuel, Rafi

    2016-01-01

    Deciphering mechanisms of drug resistance is crucial to winning the battle against cancer. A new study points to an unexpected function of YAP in drug resistance and illuminates its potential role as a therapeutic target. PMID:25711863

  11. Drug Resistance Mechanisms in Mycobacterium tuberculosis

    PubMed Central

    Palomino, Juan Carlos; Martin, Anandi

    2014-01-01

    Tuberculosis (TB) is a serious public health problem worldwide. Its situation is worsened by the presence of multidrug resistant (MDR) strains of Mycobacterium tuberculosis, the causative agent of the disease. In recent years, even more serious forms of drug resistance have been reported. A better knowledge of the mechanisms of drug resistance of M. tuberculosis and the relevant molecular mechanisms involved will improve the available techniques for rapid drug resistance detection and will help to explore new targets for drug activity and development. This review article discusses the mechanisms of action of anti-tuberculosis drugs and the molecular basis of drug resistance in M. tuberculosis. PMID:27025748

  12. Contemporary drug therapies for multiple myeloma.

    PubMed

    de la Puente, P; Azab, A K

    2013-09-01

    Multiple myeloma (MM) is an incurable disease characterized by the proliferation of plasma cells. The survival in MM patients has improved significantly in the past decade due to the introduction of novel agents. In this review, we focus on novel agents used in MM, including immunomodulatory drugs (thalidomide, lenalidomide and pomalidomide), proteasome inhibitors (bortezomib, carfilzomib, marizomib and ixazomib citrate), monoclonal antibodies (elotuzumab, siltuximab, daratumumab and BT-062), and drugs affecting an interaction with the tumor microenvironment (anti-VLA4 monoclonal antibody, chemokine CXCR4 inhibitor AMD-3100 and selectin inhibitor GMI-1070). We discuss their mechanism of action, preclinical and clinical outcome in the treatment of MM. Although the development of novel agents has improved the outcomes of MM treatment, most of the patients will still relapse and become refractory to therapy due to development of drug resistance. A better understanding of the biological mechanisms of MM progression, including cellular and molecular events in the MM cells and in their bone marrow microenvironment, is warranted to provide new therapeutic targets and develop new drugs and therapeutic strategies to treat MM. PMID:24086952

  13. Antifungal drug resistance of oral fungi.

    PubMed

    Niimi, Masakazu; Firth, Norman A; Cannon, Richard D

    2010-02-01

    Fungi comprise a minor component of the oral microbiota but give rise to oral disease in a significant proportion of the population. The most common form of oral fungal disease is oral candidiasis, which has a number of presentations. The mainstay for the treatment of oral candidiasis is the use of polyenes, such as nystatin and amphotericin B, and azoles including miconazole, fluconazole, and itraconazole. Resistance of fungi to polyenes is rare, but some Candida species, such as Candida glabrata and C. krusei, are innately less susceptible to azoles, and C. albicans can acquire azole resistance. The main mechanism of high-level fungal azole resistance, measured in vitro, is energy-dependent drug efflux. Most fungi in the oral cavity, however, are present in multispecies biofilms that typically demonstrate an antifungal resistance phenotype. This resistance is the result of multiple factors including the expression of efflux pumps in the fungal cell membrane, biofilm matrix permeability, and a stress response in the fungal cell. Removal of dental biofilms, or treatments to prevent biofilm development in combination with antifungal drugs, may enable better treatment and prevention of oral fungal disease. PMID:20155503

  14. Cancer Metabolism and Drug Resistance

    PubMed Central

    Rahman, Mahbuba; Hasan, Mohammad Rubayet

    2015-01-01

    Metabolic alterations, driven by genetic and epigenetic factors, have long been known to be associated with the etiology of cancer. Furthermore, accumulating evidence suggest that cancer metabolism is intimately linked to drug resistance, which is currently one of the most important challenges in cancer treatment. Altered metabolic pathways help cancer cells to proliferate at a rate higher than normal, adapt to nutrient limited conditions, and develop drug resistance phenotypes. Application of systems biology, boosted by recent advancement of novel high-throughput technologies to obtain cancer-associated, transcriptomic, proteomic and metabolomic data, is expected to make a significant contribution to our understanding of metabolic properties related to malignancy. Indeed, despite being at a very early stage, quantitative data obtained from the omics platforms and through applications of 13C metabolic flux analysis (MFA) in in vitro studies, researchers have already began to gain insight into the complex metabolic mechanisms of cancer, paving the way for selection of molecular targets for therapeutic interventions. In this review, we discuss some of the major findings associated with the metabolic pathways in cancer cells and also discuss new evidences and achievements on specific metabolic enzyme targets and target-directed small molecules that can potentially be used as anti-cancer drugs. PMID:26437434

  15. Suppression of Drug Resistance in Dengue Virus

    PubMed Central

    Mateo, Roberto; Nagamine, Claude M.

    2015-01-01

    ABSTRACT Dengue virus is a major human pathogen responsible for 400 million infections yearly. As with other RNA viruses, daunting challenges to antiviral design exist due to the high error rates of RNA-dependent RNA synthesis. Indeed, treatment of dengue virus infection with a nucleoside analog resulted in the expected genetic selection of resistant viruses in tissue culture and in mice. However, when the function of the oligomeric core protein was inhibited, no detectable selection of drug resistance in tissue culture or in mice was detected, despite the presence of drug-resistant variants in the population. Suppressed selection of drug-resistant virus correlated with cooligomerization of the targeted drug-susceptible and drug-resistant core proteins. The concept of “dominant drug targets,” in which inhibition of oligomeric viral assemblages leads to the formation of drug-susceptible chimeras, can therefore be used to prevent the outgrowth of drug resistance during dengue virus infection. PMID:26670386

  16. Extensively Drug-Resistant Tuberculosis: A New Face to an Old Pathogen

    PubMed Central

    Shenoi, Sheela; Friedland, Gerald

    2009-01-01

    The presence and consequences of resistance to drugs used for the treatment of tuberculosis have long been neglected. The recent detection and recognition of widespread multiple-drug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis have raised interest and concern among clinicians and public health authorities globally. In this article, we describe the current global status of drug-resistant tuberculosis. We discuss the development of resistance, current management, and strategies for control. PMID:19630575

  17. Superinfection and the evolution of resistance to antimalarial drugs

    PubMed Central

    Klein, Eili Y.; Smith, David L.; Laxminarayan, Ramanan; Levin, Simon

    2012-01-01

    A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance. PMID:22787024

  18. Mathematical models of the epidemiology and control of drug-resistant TB.

    PubMed

    Cohen, Ted; Dye, Christopher; Colijn, Caroline; Williams, Brian; Murray, Megan

    2009-02-01

    Recent reports of extensively drug-resistant TB in South Africa have renewed concerns that antibiotic resistance may undermine progress in TB control. We review three major questions for which mathematical models elucidate the epidemiology and control of drug-resistant TB. How is multiple drug-resistant Mycobacterium tuberculosis selected for in individuals exposed to combination chemotherapy? What factors determine the prevalence of drug-resistant TB? Which interventions to prevent the spread of drug-resistant TB are effective and feasible? Models offer insight into the acquisition and amplification of drug resistance, reveal the importance of distinguishing the intrinsic and extrinsic determinants of the reproductive capacity of drug-resistant M. tuberculosis, and demonstrate the cost effectiveness of interventions for drug-resistant TB. These models also highlight knowledge gaps for which new research will improve our ability to project trends of drug resistance and develop more effective policies for its control. PMID:20477283

  19. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  20. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  1. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance

    PubMed Central

    Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  2. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    PubMed

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID

  3. Clinical Management of HIV Drug Resistance

    PubMed Central

    Cortez, Karoll J.; Maldarelli, Frank

    2011-01-01

    Combination antiretroviral therapy for HIV-1 infection has resulted in profound reductions in viremia and is associated with marked improvements in morbidity and mortality. Therapy is not curative, however, and prolonged therapy is complicated by drug toxicity and the emergence of drug resistance. Management of clinical drug resistance requires in depth evaluation, and includes extensive history, physical examination and laboratory studies. Appropriate use of resistance testing provides valuable information useful in constructing regimens for treatment-experienced individuals with viremia during therapy. This review outlines the emergence of drug resistance in vivo, and describes clinical evaluation and therapeutic options of the individual with rebound viremia during therapy. PMID:21994737

  4. Drug-Resistant Tuberculosis: Challenges and Progress.

    PubMed

    Kurz, Sebastian G; Furin, Jennifer J; Bark, Charles M

    2016-06-01

    Antimicrobial resistance is a natural evolutionary process, which in the case of Mycobacterium tuberculosis is based on spontaneous chromosomal mutations, meaning that well-designed combination drug regimens provided under supervised therapy will prevent the emergence of drug-resistant strains. Unfortunately, limited resources, poverty, and neglect have led to the emergence of drug-resistant tuberculosis throughout the world. The international community has responded with financial and scientific support, leading to new rapid diagnostics, new drugs and regimens in advanced clinical development, and an increasingly sophisticated understanding of resistance mechanisms and their application to all aspects of TB control and treatment. PMID:27208770

  5. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique*, **

    PubMed Central

    Pires, Germano Manuel; Folgosa, Elena; Nquobile, Ndlovu; Gitta, Sheba; Cadir, Nureisha

    2014-01-01

    OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST) between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3%) were resistant to at least one antituberculosis drug and 280 (43.7%) were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7%) were in previously treated patients, most of whom were from southern Mozambique. Two (0.71%) of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients. PMID:24831398

  6. A functional variomics tool for discovering drug resistance genes and drug targets

    PubMed Central

    Huang, Zhiwei; Chen, Kaifu; Zhang, Jianhuai; Li, Yongxiang; Wang, Hui; Cui, Dandan; Tang, Jiangwu; Liu, Yong; Shi, Xiaomin; Li, Wei; Liu, Dan; Chen, Rui; Sucgang, Richard S.; Pan, Xuewen

    2013-01-01

    Comprehensive discovery of genetic mechanisms of drug resistance and identification of in vivo drug targets represent significant challenges. Here we present a functional variomics technology in the model organism Saccharomyces cerevisiae. This tool analyzes numerous genetic variants and effectively tackles both problems simultaneously. Using this tool, we discovered almost all genes that, due to mutations or modest overexpression, confer resistance to rapamycin, cycloheximide, and amphotericin B. Most significant among the resistance genes were drug targets, including multiple targets of a given drug. With amphotericin B, we discovered the highly conserved membrane protein Pmp3 as a potent resistance factor and a possible novel target. Widespread application of this tool should allow rapid identification of conserved resistance mechanisms and targets of many more compounds. New genes and alleles that confer resistance to other stresses can also be discovered. Similar tools in other systems such as human cell lines will also be useful. PMID:23416056

  7. Medical Management of Drug-Resistant Tuberculosis

    PubMed Central

    2015-01-01

    Drug-resistant tuberculosis (TB) is still a major threat worldwide. However, recent scientific advances in diagnostic and therapeutic tools have improved the management of drug-resistant TB. The development of rapid molecular testing methods allows for the early detection of drug resistance and prompt initiation of an appropriate treatment. In addition, there has been growing supportive evidence for shorter treatment regimens in multidrug-resistant TB; and for the first time in over 50 years, new anti-TB drugs have been developed. The World Health Organization has recently revised their guidelines, primarily based on evidence from a meta-analysis of individual patient data (n=9,153) derived from 32 observational studies, and outlined the recommended combination and correct use of available anti-TB drugs. This review summarizes the updated guidelines with a focus on the medical management of drug-resistant TB. PMID:26175768

  8. Preventing drug resistance in severe influenza

    NASA Astrophysics Data System (ADS)

    Dobrovolny, Hana; Deecke, Lucas

    2015-03-01

    Severe, long-lasting influenza infections are often caused by new strains of influenza. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic for new strains of influenza since there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply periodic treatment. During treatment the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. We combine a mathematical model of severe influenza with a model of drug resistance to study emergence of drug resistance during a long-lasting infection. We apply periodic treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. We compare the efficacy of the two drugs in reducing emergence of drug resistant mutants and examine the effect of treatment frequency on the emergence of drug resistant mutants.

  9. Emergence of therapy resistance in multiple myeloma in heterogeneous microenvironment

    NASA Astrophysics Data System (ADS)

    Wu, Amy; Zhang, Qiucen; Lambert, Guillaume; Khin, Zayar; Silva, Ariosto; Gatenby, Robert; Kim, Hyungsung; Pourmand, Nader; Austin, Robert; Sturm, James

    2014-03-01

    Cancer chemotherapy resistance is always a problem that is not clear considering spatial heterogeneity in the tumor microenvironment. We culture multiple myeloma in a gradient from 0 to 20 nM of doxorubicin (genotoxic drug) across 2 mm wide region in a microfluidic device which mimics the tumor microenvironment with a chemotherapy drug gradient and microhabitats. Resistance of the multiple myeloma cells to doxorubicin emerged within two weeks. For the resistant cells evolved from the devices, the doxorubicin concentration that inhibits 50% of the controlled population increased by 16-fold than the parental cells. Whole transcriptome sequencing revealed that 39% of newly acquired mutational hotspots (the genes with more than 3 non-synonymous point mutation) of the resistant cells are involved in apoptosis and DNA repair. On the other hand, 40% of the non-mutated genes that are abnormally regulated in the resistant cells, are involved in metabolism, biosynthesis, and biomolecular transport. Among them, metabolic drug efflux pumps and oxidative stress scavengers are up-regulated to reduce the cytotoxicity of doxorubicin and further result in the resistance. The roles of the spatial drug gradients and microhabitats in rapid emergence of cancer resistance will be discussed. The project described was supported by the National Science Foundation and the National Cancer Institute.

  10. Anticipating designer drug-resistant cancer cells.

    PubMed

    Frangione, Mark L; Lockhart, John H; Morton, Daniel T; Pava, Libia M; Blanck, George

    2015-07-01

    Successful use of anticancer designer drugs is likely to depend on simultaneous combinations of these drugs to minimize the development of resistant cancer cells. Considering the knowledge base of cancer signaling pathways, mechanisms of designer drug resistance should be anticipated, and early clinical trials could be designed to include arms that combine new drugs specifically with currently US Food and Drug Administration (FDA)-approved drugs expected to blunt alternative signaling pathways. In this review, we indicate examples of alternative signal pathways for recent anticancer drugs, and the use of original, Python-based software to systematically identify signaling pathways that could facilitate resistance to drugs targeting a particular protein. Pathway alternatives can be assessed at http://www.alternativesignalingpathways.com, developed with this review article. PMID:25697478

  11. Drug-Resistant Candida glabrata Infection in Cancer Patients

    PubMed Central

    Farmakiotis, Dimitrios; Tarrand, Jeffrey J.

    2014-01-01

    Cancer patients are at risk for candidemia, and increasing Candida spp. resistance poses an emerging threat. We determined rates of antifungal drug resistance, identified factors associated with resistance, and investigated the correlation between resistance and all-cause mortality rates among cancer patients with ≥1 C. glabrata–positive blood culture at MD Anderson Cancer Center, Houston, Texas, USA, during March 2005–September 2013. Of 146 isolates, 30 (20.5%) were resistant to fluconazole, 15 (10.3%) to caspofungin, and 10 (6.8%) to multiple drugs (9 caspofungin-resistant isolates were also resistant to fluconazole, 1 to amphotericin B). Independently associated with fluconazole resistance were azole preexposure, hematologic malignancy, and mechanical ventilation. Independently associated with caspofungin resistance were echinocandin preexposure, monocytopenia, and total parenteral nutrition. Fluconazole resistance was highly associated with caspofungin resistance, independent of prior azole or echinocandin use. Caspofungin resistance was associated with increased 28-day all-cause mortality rates. These findings highlight the need for good stewardship of antifungal drugs. PMID:25340258

  12. The role of glucuronidation in drug resistance.

    PubMed

    Mazerska, Zofia; Mróz, Anna; Pawłowska, Monika; Augustin, Ewa

    2016-03-01

    The final therapeutic effect of a drug candidate, which is directed to a specific molecular target strongly depends on its absorption, distribution, metabolism and excretion (ADME). The disruption of at least one element of ADME may result in serious drug resistance. In this work we described the role of one element of this resistance: phase II metabolism with UDP-glucuronosyltransferases (UGTs). UGT function is the transformation of their substrates into more polar metabolites, which are better substrates for the ABC transporters, MDR1, MRP and BCRP, than the native drug. UGT-mediated drug resistance can be associated with (i) inherent overexpression of the enzyme, named intrinsic drug resistance or (ii) induced expression of the enzyme, named acquired drug resistance observed when enzyme expression is induced by the drug or other factors, as food-derived compounds. Very often this induction occurs via ligand binding receptors including AhR (aryl hydrocarbon receptor) PXR (pregnane X receptor), or other transcription factors. The effect of UGT dependent resistance is strengthened by coordinate action and also a coordinate regulation of the expression of UGTs and ABC transporters. This coupling of UGT and multidrug resistance proteins has been intensively studied, particularly in the case of antitumor treatment, when this resistance is "improved" by differences in UGT expression between tumor and healthy tissue. Multidrug resistance coordinated with glucuronidation has also been described here for drugs used in the management of epilepsy, psychiatric diseases, HIV infections, hypertension and hypercholesterolemia. Proposals to reverse UGT-mediated drug resistance should consider the endogenous functions of UGT. PMID:26808161

  13. Effects of the W153L Substitution in HIV Reverse Transcriptase on Viral Replication and Drug Resistance to Multiple Categories of Reverse Transcriptase Inhibitors

    PubMed Central

    Xu, Hong-Tao; Colby-Germinario, Susan P.; Oliveira, Maureen; Rajotte, Daniel; Bethell, Richard

    2014-01-01

    A W153L substitution in HIV-1 reverse transcriptase (RT) was recently identified by selection with a novel nucleotide-competing RT inhibitor (NcRTI) termed compound A that is a member of the benzo[4,5]furo[3,2,d]pyrimidin-2-one NcRTI family of drugs. To investigate the impact of W153L, alone or in combination with the clinically relevant RT resistance substitutions K65R (change of Lys to Arg at position 65), M184I, K101E, K103N, E138K, and Y181C, on HIV-1 phenotypic susceptibility, viral replication, and RT enzymatic function, we generated recombinant RT enzymes and viruses containing each of these substitutions or various combinations of them. We found that W153L-containing viruses were impaired in viral replicative capacity and were hypersusceptible to tenofovir (TFV) while retaining susceptibility to most nonnucleoside RT inhibitors. The nucleoside 3TC retained potency against W153L-containing viruses but not when the M184I substitution was also present. W153L was also able to reverse the effects of the K65R substitution on resistance to TFV, and K65R conferred hypersusceptibility to compound A. Biochemical assays demonstrated that W153L alone or in combination with K65R, M184I, K101E, K103N, E138K, and Y181C impaired enzyme processivity and polymerization efficiency but did not diminish RNase H activity, providing mechanistic insights into the low replicative fitness associated with these substitutions. We show that the mechanism of the TFV hypersusceptibility conferred by W153L is mainly due to increased efficiency of TFV-diphosphate incorporation. These results demonstrate that compound A and/or derivatives thereof have the potential to be important antiretroviral agents that may be combined with tenofovir to achieve synergistic results. PMID:24867966

  14. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance.

    PubMed

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C; Ma, Xiaowei; Liang, Xing-Jie

    2015-09-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a "green" and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  15. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance

    PubMed Central

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C.; Ma, Xiaowei; Liang, Xing-Jie

    2016-01-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a “green” and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  16. Plasmodium falciparum drug resistance in Angola.

    PubMed

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-01-01

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination. PMID:26858018

  17. Mechanisms of Drug Resistance: Daptomycin Resistance

    PubMed Central

    Tran, Truc T.; Munita, Jose M.; Arias, Cesar A.

    2016-01-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction in clinical practice in 2003, DAP has become an important key front-line antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP-resistance (R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp, and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP resistance are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have offered novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria. PMID:26495887

  18. A novel asymmetric-loop molecular beacon-based two-phase hybridization assay for accurate and high-throughput detection of multiple drug resistance-conferring point mutations in Mycobacterium tuberculosis

    PubMed Central

    Chen, Qinghai; Wu, Nan; Xie, Meng; Zhang, Bo; Chen, Ming; Li, Jianjun; Zhuo, Lisha; Kuang, Hong; Fu, Weiling

    2012-01-01

    Summary The accurate and high-throughput detection of drug resistance-related multiple point mutations remains a challenge. Although the combination of molecular beacons with bio-immobilization technology, such as microarray, is promising, its application is difficult due to the ineffective immobilization of molecular beacons on the chip surface. Here, we propose a novel asymmetric-loop molecular beacon in which the loop consists of 2 parts. One is complementary to a target, while the other is complementary to an oligonucleotide probe immobilized on the chip surface. With this novel probe, a two-phase hybridization assay can be used for simultaneously detecting multiple point mutations. This assay will have advantages, such as easy probe availability, multiplex detection, low background, and high-efficiency hybridization, and may provide a new avenue for the immobilization of molecular beacons and high-throughput detection of point mutations. PMID:22460100

  19. Sphingolipids in neuroblastoma: their role in drug resistance mechanisms.

    PubMed

    Sietsma, Hannie; Dijkhuis, Anne Jan; Kamps, Willem; Kok, Jan Willem

    2002-08-01

    Disseminated neuroblastoma usually calls for chemotherapy as the primary approach for treatment. Treatment failure is often attributable to drug resistance. This involves a variety of cellular mechanisms, including increased drug efflux through expression of ATP-binding cassette transporters (e.g., P-glycoprotein) and the inability of tumor cells to activate or propagate the apoptotic response. In recent years it has become apparent that sphingolipid metabolism and the generation of sphingolipid species, such as ceramide, also play a role in drug resistance. This may involve an autonomous mechanism, related to direct effects of sphingolipids on the apoptotic response, but also a subtle interplay between sphingolipids and ATP-binding cassette transporters. Here, we present an overview of the current understanding of the multiple levels at which sphingolipids function in drug resistance, with an emphasis on sphingolipid function in neuroblastoma and how modulation of sphingolipid metabolism may be used as a novel treatment paradigm. PMID:12374201

  20. Emerging pathogens: Dynamics, mutation and drug resistance

    SciTech Connect

    Perelson, A.S.; Goldstein, B.; Korber, B.T.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  1. [Research development of HIV drug resistance].

    PubMed

    Zou, Wen; Liu, Ying; Wang, Jian; Gao, Guo-Jian; Dong, Ji-Peng; Xian, Qing-Fei

    2013-08-01

    Highly active antiretroviral combination therapy significantly reduced the mortality, but in the high-speed copying, high genetic variation and drug selection pressure under the effect of the increasingly serious problem of drug resistance greatly weakened the role of HAART inhibit viral replication and reduce antiviral treatment. This paper reports the latest trends in HIV drug-resistance in order to develop anti-HIV drugs in clinical programs, research and development of new guidance anti-HIV-1 strategy to bring guidance. PMID:24228557

  2. Facing multi-drug resistant tuberculosis.

    PubMed

    Sotgiu, Giovanni; Migliori, Giovanni Battista

    2015-06-01

    Multi-drug resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains resistant to at least two of the most effective anti-tuberculosis drugs (i.e., isoniazid and rifampicin). Therapeutic regimens based on second- and third-line anti-tuberculosis medicines showed poor efficacy, safety, and tolerability profiles. It was estimated that in 2012 the multi-drug resistant tuberculosis incidence ranged from 300,000 to 600,000 cases, mainly diagnosed in the Eastern European and Central Asian countries. The highest proportion of cases is among individuals previously exposed to anti-tuberculosis drugs. Three main conditions can favour the emergence and spread of multi-drug resistant tuberculosis: the poor implementation of the DOTS strategy, the shortage or the poor quality of the anti-tuberculosis drugs, and the poor therapeutic adherence of the patients to the prescribed regimens. Consultation with tuberculosis experts (e.g., consilium) is crucial to tailor the best anti-tuberculosis therapy. New therapeutic options are necessary: bedaquiline and delamanid seem promising drugs; in particular, during the development phase they demonstrated a protective effect against the emergence of further resistances towards the backbone drugs. In the recent past, other antibiotics have been administered off-label: the most relevant efficacy, safety, and tolerability profile was proved in linezolid-, meropenem/clavulanate-, cotrimoxazole-containing regimens. New research and development activities are needed in the diagnostic, therapeutic, preventive fields. PMID:24792579

  3. Antimicrobial (Drug) Resistance: Methicillin-Resistant Staphylococcus aureus (MRSA)

    MedlinePlus

    ... NIAID invests in basic research to understand the biology of microbes, their behavior, and how drug resistance ... Nucleotide Polymorphism Phylogenetics & Ontology Proteomics & Protein Analysis Systems Biology Data Portals Software Applications BCBB Mobyle Interface Designer ( ...

  4. Impact of treatment heterogeneity on drug resistance and supply chain costs☆

    PubMed Central

    Spiliotopoulou, Eirini; Boni, Maciej F.; Yadav, Prashant

    2013-01-01

    The efficacy of scarce drugs for many infectious diseases is threatened by the emergence and spread of resistance. Multiple studies show that available drugs should be used in a socially optimal way to contain drug resistance. This paper studies the tradeoff between risk of drug resistance and operational costs when using multiple drugs for a specific disease. Using a model for disease transmission and resistance spread, we show that treatment with multiple drugs, on a population level, results in better resistance-related health outcomes, but more interestingly, the marginal benefit decreases as the number of drugs used increases. We compare this benefit with the corresponding change in procurement and safety stock holding costs that result from higher drug variety in the supply chain. Using a large-scale simulation based on malaria transmission dynamics, we show that disease prevalence seems to be a less important factor when deciding the optimal width of drug assortment, compared to the duration of one episode of the disease and the price of the drug(s) used. Our analysis shows that under a wide variety of scenarios for disease prevalence and drug cost, it is optimal to simultaneously deploy multiple drugs in the population. If the drug price is high, large volume purchasing discounts are available, and disease prevalence is high, it may be optimal to use only one drug. Our model lends insights to policy makers into the socially optimal size of drug assortment for a given context. PMID:25843982

  5. Mechanisms of echinocandin antifungal drug resistance

    PubMed Central

    Perlin, David S.

    2015-01-01

    Fungal infections due to Candida and Aspergillus species cause extensive morbidity and mortality, especially among immunosuppressed patients, and antifungal therapy is critical to patient management. Yet only a few drug classes are available to treat invasive fungal diseases, and this problem is compounded by the emergence of antifungal resistance. Echinocandin drugs are the preferred choice to treat candidiasis. They are the first cell wall–active agents and target the fungal-specific enzyme glucan synthase, which catalyzes the biosynthesis of β-1,3-glucan, a key cell wall polymer. Therapeutic failures occur rarely among common Candida species, with the exception of Candida glabrata, which are frequently multidrug resistant. Echinocandin resistance in susceptible species is always acquired during therapy. The mechanism of resistance involves amino acid changes in hot-spot regions of Fks subunits of glucan synthase, which decrease the sensitivity of the enzyme to drug. Cellular stress response pathways lead to drug adaptation, which promote the formation of resistant fks strains. Clinical factors promoting echinocandin resistance include empiric therapy, prophylaxis, gastrointestinal reservoirs, and intra-abdominal infections. A better understanding of the echinocandin resistance mechanism, along with cellular and clinical factors promoting resistance, will promote more effective strategies to overcome and prevent echinocandin resistance. PMID:26190298

  6. Antiretroviral drug resistance and routine therapy, Cameroon.

    PubMed

    Laurent, Christian; Kouanfack, Charles; Vergne, Laurence; Tardy, Michèle; Zekeng, Léopold; Noumsi, Nathalie; Butel, Christelle; Bourgeois, Anke; Mpoudi-Ngolé, Eitel; Koulla-Shiro, Sinata; Peeters, Martine; Delaporte, Eric

    2006-06-01

    Among 128 patients routinely receiving highly active antiretroviral therapy in an HIV/AIDS outpatient clinic in Cameroon, 16.4% had drug resistance after a median of 10 months. Of these, 12.5% had resistance to nucleoside reverse transcriptase inhibitors (NRTIs), 10.2% to non-NRTIs, and 2.3% to protease inhibitors. PMID:16707062

  7. Evolution of Drug Resistance in Bacteria.

    PubMed

    Waclaw, B

    2016-01-01

    Resistance to antibiotics is an important and timely problem of contemporary medicine. Rapid evolution of resistant bacteria calls for new preventive measures to slow down this process, and a longer-term progress cannot be achieved without a good understanding of the mechanisms through which drug resistance is acquired and spreads in microbial populations. Here, we discuss recent experimental and theoretical advances in our knowledge how the dynamics of microbial populations affects the evolution of antibiotic resistance . We focus on the role of spatial and temporal drug gradients and show that in certain situations bacteria can evolve de novo resistance within hours. We identify factors that lead to such rapid onset of resistance and discuss their relevance for bacterial infections. PMID:27193537

  8. Antimicrobial (Drug) Resistance: Vancomycin-Resistant Enterococci (VRE) Frequently Asked Questions

    MedlinePlus

    ... Understanding Antimicrobial (Drug) Resistance Examples of Antimicrobial Resistance Methicillin-Resistant Staphylococcus aureus (MRSA) Vancomycin-Resistant Enterococci (VRE) Overview Transmission Diagnosis ...

  9. Nitroheterocyclic drug resistance mechanisms in Trypanosoma brucei

    PubMed Central

    Wyllie, Susan; Foth, Bernardo J.; Kelner, Anna; Sokolova, Antoaneta Y.; Berriman, Matthew; Fairlamb, Alan H.

    2016-01-01

    Objectives The objective of this study was to identify the mechanisms of resistance to nifurtimox and fexinidazole in African trypanosomes. Methods Bloodstream-form Trypanosoma brucei were selected for resistance to nifurtimox and fexinidazole by stepwise exposure to increasing drug concentrations. Clones were subjected to WGS to identify putative resistance genes. Transgenic parasites modulating expression of genes of interest were generated and drug susceptibility phenotypes determined. Results Nifurtimox-resistant (NfxR) and fexinidazole-resistant (FxR) parasites shared reciprocal cross-resistance suggestive of a common mechanism of action. Previously, a type I nitroreductase (NTR) has been implicated in nitro drug activation. WGS of resistant clones revealed that NfxR parasites had lost >100 kb from one copy of chromosome 7, rendering them hemizygous for NTR as well as over 30 other genes. FxR parasites retained both copies of NTR, but lost >70 kb downstream of one NTR allele, decreasing NTR transcription by half. A single knockout line of NTR displayed 1.6- and 1.9-fold resistance to nifurtimox and fexinidazole, respectively. Since NfxR and FxR parasites are ∼6- and 20-fold resistant to nifurtimox and fexinidazole, respectively, additional factors must be involved. Overexpression and knockout studies ruled out a role for a putative oxidoreductase (Tb927.7.7410) and a hypothetical gene (Tb927.1.1050), previously identified in a genome-scale RNAi screen. Conclusions NTR was confirmed as a key resistance determinant, either by loss of one gene copy or loss of gene expression. Further work is required to identify which of the many dozens of SNPs identified in the drug-resistant cell lines contribute to the overall resistance phenotype. PMID:26581221

  10. Does multiple paternity influence offspring disease resistance?

    PubMed

    Thonhauser, K E; Raveh, S; Thoß, M; Penn, D J

    2016-06-01

    It has been suggested that polyandry allows females to increase offspring genetic diversity and reduce the prevalence and susceptibility of their offspring to infectious diseases. We tested this hypothesis in wild-derived house mice (Mus musculus) by experimentally infecting the offspring from 15 single- and 15 multiple-sired litters with two different strains of a mouse pathogen (Salmonella Typhimurium) and compared their ability to control infection. We found a high variation in individual infection resistance (measured with pathogen loads) and significant differences among families, suggesting genetic effects on Salmonella resistance, but we found no difference in prevalence or infection resistance between single- vs. multiple-sired litters. We found a significant sex difference in infection resistance, but surprisingly, males were more resistant to infection than females. Also, infection resistance was correlated with weight loss during infection, although only for females, indicating that susceptibility to infection had more harmful health consequences for females than for males. To our knowledge, our findings provide the first evidence for sex-dependent resistance to Salmonella infection in house mice. Our results do not support the hypothesis that multiple-sired litters are more likely to survive infection than single-sired litters; however, as we explain, additional studies are required before ruling out this hypothesis. PMID:26949230

  11. Drug Resistance in Glioblastoma: A Mini Review

    PubMed Central

    Haar, Catherine P.; Hebbar, Preetha; Wallace, Gerald C.; Das, Arabinda; Vandergrift, William A.; Smith, Joshua A.; Giglio, Pierre; Patel, Sunil J.; Ray, Swapan K.; Banik, Naren L.

    2015-01-01

    Glioblastoma multiforme (GBM) is recognized as the most common and lethal form of central nervous system cancer. Currently used surgical techniques, chemotherapeutic agents, and radiotherapy strategies have done very little in extending the life expectancies of patients diagnosed with GBM. The difficulty in treating this malignant disease lies both in its inherent complexity and numerous mechanisms of drug resistance. In this review, we summarize several of the primary mechanisms of drug resistance. We reviewed available published literature in the English language regarding drug resistance in glioblastoma. The reasons for drug resistance in glioblastoma include drug efflux, hypoxic areas of tumor cells, cancer stem cells, DNA damage repair, and miRNAs. Many potential therapies target these mechanisms, including a series of investigated alternative and plant-derived agents. Future research and clinical trials in glioblastoma patients should pursue combination of therapies to help combat drug resistance. The emerging new data on the potential of plant-derived therapeutics should also be closely considered and further investigated. PMID:22228201

  12. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    PubMed Central

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants), the community level resistance (i.e., bilofilms and persisters) is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals. PMID:27092125

  13. Coinfection and the evolution of drug resistance.

    PubMed

    Hansen, J; Day, T

    2014-12-01

    Recent experimental work in the rodent malaria model has shown that when two or more strains share a host, there is competitive release of drug-resistant strains upon treatment. In other words, the propagule output of a particular strain is repressed when competing with other strains and increases upon the removal of this competition. This within-host effect is predicted to have an important impact on the evolution and growth of resistant strains. However, how this effect translates to epidemiological parameters at the between-host level, the level at which disease and resistance spread, has yet to be determined. Here we present a general, between-host epidemiological model that explicitly takes into account the effect of coinfection and competitive release. Although our model does show that when there is coinfection competitive release may contribute to the emergence of resistance, it also highlights an additional between-host effect. It is the combination of these two effects, the between-host effect and the within-host effect, that determines the overall influence of coinfection on the emergence of resistance. Therefore, even when competitive release of drug-resistant strains occurs, within an infected individual, it is not necessarily true that coinfection will result in the increased emergence of resistance. These results have important implications for the control of the emergence and spread of drug resistance. PMID:25417787

  14. Drug targeting of leptin resistance.

    PubMed

    Santoro, Anna; Mattace Raso, Giuseppina; Meli, Rosaria

    2015-11-01

    Leptin regulates glucose, lipid and energy homeostasis as well as feeding behavior, serving as a bridge between peripheral metabolically active tissues and the central nervous system (CNS). Indeed, this adipocyte-derived hormone, whose circulating levels mirror fat mass, not only exerts its anti-obesity effects mainly modulating the activity of specific hypothalamic neurons expressing the long form of the leptin receptor (Ob-Rb), but it also shows pleiotropic functions due to the activation of Ob-Rb in peripheral tissues. Nevertheless, several mechanisms have been suggested to mediate leptin resistance, including obesity-associated hyperleptinemia, impairment of leptin access to CNS and the reduction in Ob-Rb signal transduction effectiveness, among others. During the onset and progression of obesity, the dampening of leptin sensitivity often occurs, preventing the efficacy of leptin replacement therapy from overcoming obesity and/or its comorbidities. This review focuses on obesity-associated leptin resistance and the mechanisms underpinning this condition, to highlight the relevance of leptin sensitivity restoration as a useful therapeutic strategy to treat common obesity and its complications. Interestingly, although promising strategies to counteract leptin resistance have been proposed, these pharmacological approaches have shown limited efficacy or even relevant adverse effects in preclinical and clinical studies. Therefore, the numerous findings from this review clearly indicate a lack of a single and efficacious treatment for leptin resistance, highlighting the necessity to find new therapeutic tools to improve leptin sensitivity, especially in patients with most severe disease profiles. PMID:26071010

  15. First Report of blaIMP-14 on a Plasmid Harboring Multiple Drug Resistance Genes in Escherichia coli Sequence Type 131

    PubMed Central

    Sheppard, Anna E.; Peirano, Gisele; Sebra, Robert P.; Lynch, Tarah; Anson, Luke W.; Kasarskis, Andrew; Motyl, Mary R.; Crook, Derrick W.; Pitout, Johann D.

    2016-01-01

    The blaIMP-14 carbapenem resistance gene has largely previously been observed in Pseudomonas aeruginosa and Acinetobacter spp. As part of global surveillance and sequencing of carbapenem-resistant Escherichia coli, we identified a sequence type 131 strain harboring blaIMP-14 within a class 1 integron, itself nested within an ∼54-kb multidrug resistance region on an epidemic IncA/C2 plasmid. The emergence of blaIMP-14 in this context in the ST131 lineage is of potential clinical concern. PMID:27246777

  16. First Report of blaIMP-14 on a Plasmid Harboring Multiple Drug Resistance Genes in Escherichia coli Sequence Type 131.

    PubMed

    Stoesser, Nicole; Sheppard, Anna E; Peirano, Gisele; Sebra, Robert P; Lynch, Tarah; Anson, Luke W; Kasarskis, Andrew; Motyl, Mary R; Crook, Derrick W; Pitout, Johann D

    2016-08-01

    The blaIMP-14 carbapenem resistance gene has largely previously been observed in Pseudomonas aeruginosa and Acinetobacter spp. As part of global surveillance and sequencing of carbapenem-resistant Escherichia coli, we identified a sequence type 131 strain harboring blaIMP-14 within a class 1 integron, itself nested within an ∼54-kb multidrug resistance region on an epidemic IncA/C2 plasmid. The emergence of blaIMP-14 in this context in the ST131 lineage is of potential clinical concern. PMID:27246777

  17. Antibacterial drug discovery in the resistance era.

    PubMed

    Brown, Eric D; Wright, Gerard D

    2016-01-21

    The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era. PMID:26791724

  18. Drug resistance genomics of the antimalarial drug artemisinin.

    PubMed

    Winzeler, Elizabeth A; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene. PMID:25470531

  19. Drug-resistant tuberculosis: emerging treatment options

    PubMed Central

    Adhvaryu, Meghna; Vakharia, Bhasker

    2011-01-01

    Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV), inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drugsusceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO) has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and markers for adequacy of treatment and an integrative approach to fulfill WHO goals. However, regulatory control over the drug market, as well as public-private partnership to use health program facilities to track patients and ensure

  20. Drug-resistant Neisseria gonorrhoeae in Michigan

    PubMed Central

    Boehme, Martha S.; Rudrik, James T.; Ganoczy, Dara; Crandell-Alden, Erin; Schneider, William A.; Somsel, Patricia A.

    2005-01-01

    The increasing prevalence of quinolone-resistant Neisseria gonorrhoeae (QRNG) in the United States is a cause for concern. Detecting resistance is complicated by the widespread use of molecular tests that do not provide isolates for susceptibility testing. The Michigan Department of Community Health developed a sentinel surveillance program to detect antimicrobial drug resistance in N. gonorrhoeae. Sentinel surveillance from 11 laboratories submitted 1,122 isolates for antimicrobial drug susceptibility testing and detected 2 clusters of QRNG from January 2003 to September 2004. These clusters were epidemiologically distinct: one involved young, heterosexual youth, and the other involved older men who have sex with men. This finding led to changes in local treatment recommendations that limited spread of resistant strains. Development of the sentinel program, collection of data, and epidemiologic analysis of the clusters are discussed. PMID:16022773

  1. Conjugation to polymeric chains of influenza drugs targeting M2 ion channels partially restores inhibition of drug-resistant mutants

    PubMed Central

    Larson, Alyssa M.; Chen, Jianzhu; Klibanov, Alexander M.

    2013-01-01

    By attaching multiple copies of the influenza M2 ion channel inhibitors amantadine (1) and rimantadine (2) to polymeric chains we endeavored to recover their potency in inhibiting drug-resistant influenza viruses. Depending on loading densities, as well as the nature of the drug, the polymer, and the spacer arm, polymer-conjugated drugs were up to 30-fold more potent inhibitors of drug-resistant strains than their monomeric parents. In particular, a 20% loading density and a short linker group on the negatively charged poly-L-glutamate resulted in some of the most potent inhibitors for 2′s conjugates against drug-resistant influenza strains. Although full recovery of the inhibitory action against drug-resistant strains was not achieved, this study may be a step toward salvaging anti-influenza drugs that are no longer effective. PMID:23832466

  2. Conjugation to polymeric chains of influenza drugs targeting M2 ion channels partially restores inhibition of drug-resistant mutants.

    PubMed

    Larson, Alyssa M; Chen, Jianzhu; Klibanov, Alexander M

    2013-08-01

    By attaching multiple copies of the influenza M2 ion channel inhibitors amantadine (1) and rimantadine (2) to polymeric chains, we endeavored to recover their potency in inhibiting drug-resistant influenza viruses. Depending on loading densities, as well as the nature of the drug, the polymer, and the spacer arm, polymer-conjugated drugs were up to 30-fold more potent inhibitors of drug-resistant strains than their monomeric parents. In particular, a 20% loading density and a short linker group on the negatively charged poly-l-glutamate resulted in one of the most potent inhibitors for 2's conjugates against drug-resistant influenza strains. Although full recovery of the inhibitory action against drug-resistant strains was not achieved, this study may be a step toward salvaging anti-influenza drugs that are no longer effective. PMID:23832466

  3. Virologic Tools for HCV Drug Resistance Testing

    PubMed Central

    Fourati, Slim; Pawlotsky, Jean-Michel

    2015-01-01

    Recent advances in molecular biology have led to the development of new antiviral drugs that target specific steps of the Hepatitis C Virus (HCV) lifecycle. These drugs, collectively termed direct-acting antivirals (DAAs), include non-structural (NS) HCV protein inhibitors, NS3/4A protease inhibitors, NS5B RNA-dependent RNA polymerase inhibitors (nucleotide analogues and non-nucleoside inhibitors), and NS5A inhibitors. Due to the high genetic variability of HCV, the outcome of DAA-based therapies may be altered by the selection of amino-acid substitutions located within the targeted proteins, which affect viral susceptibility to the administered compounds. At the drug developmental stage, preclinical and clinical characterization of HCV resistance to new drugs in development is mandatory. In the clinical setting, accurate diagnostic tools have become available to monitor drug resistance in patients who receive treatment with DAAs. In this review, we describe tools available to investigate drug resistance in preclinical studies, clinical trials and clinical practice. PMID:26690198

  4. Vaults: a ribonucleoprotein particle involved in drug resistance?

    PubMed

    Mossink, Marieke H; van Zon, Arend; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2003-10-20

    Vaults are ribonucleoprotein particles found in the cytoplasm of eucaryotic cells. The 13 MDa particles are composed of multiple copies of three proteins: an M(r) 100 000 major vault protein (MVP) and two minor vault proteins of M(r) 193 000 (vault poly-(ADP-ribose) polymerase) and M(r) 240 000 (telomerase-associated protein 1), as well as small untranslated RNA molecules of approximately 100 bases. Although the existence of vaults was first reported in the mid-1980s no function has yet been attributed to this organelle. The notion that vaults might play a role in drug resistance was suggested by the molecular identification of the lung resistance-related (LRP) protein as the human MVP. MVP/LRP was found to be overexpressed in many chemoresistant cancer cell lines and primary tumor samples of different histogenetic origin. Several, but not all, clinico-pathological studies showed that MVP expression at diagnosis was an independent adverse prognostic factor for response to chemotherapy. The hollow barrel-shaped structure of the vault complex and its subcellular localization indicate a function in intracellular transport. It was therefore postulated that vaults contributed to drug resistance by transporting drugs away from their intracellular targets and/or the sequestration of drugs. Here, we review the current knowledge on the vault complex and critically discuss the evidence that links vaults to drug resistance. PMID:14576851

  5. Suspect aggression and victim resistance in multiple perpetrator rapes.

    PubMed

    Woodhams, Jessica; Cooke, Claire

    2013-11-01

    Several research studies have reported an elevated level of aggression in rapes committed by multiple perpetrators compared to rapes committed by lone suspects. Several factors that have been linked to elevated aggression in generic samples of rape were examined for the first time with a sample of multiple perpetrator rapes. Factors that might be associated with victim resistance were also investigated. Victim and offender characteristics, as well as the behaviors displayed by victims and offenders, were extracted from the police files of 89 multiple perpetrator stranger rapes perpetrated against female victims in the United Kingdom. These behaviors were rated for their level of suspect (non-sexual) aggression and victim resistance, respectively. Degree of victim resistance was significantly and positively associated with suspect aggression. Older victims were the recipients of significantly higher levels of suspect aggression. Victims who were incapacitated from drugs and/or alcohol were less likely to be the recipients of suspect aggression. Group leaders displayed more aggression towards the victim than the followers in the groups. The number of perpetrators was significantly related to the degree of resistance displayed by the victim with offences perpetrated by fewer suspects being characterized by more victim resistance. Research regarding cognitive appraisal during criminal interactions and the respective roles of offenders is referred to in considering these relationships. PMID:23740469

  6. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    PubMed

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections. PMID:25897961

  7. Repurposing Salicylanilide Anthelmintic Drugs to Combat Drug Resistant Staphylococcus aureus

    PubMed Central

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L.; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M.; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections. PMID:25897961

  8. Malaria drug resistance: new observations and developments

    PubMed Central

    Sá, Juliana M.; Chong, Jason L.; Wellems, Thomas E.

    2012-01-01

    Drug-resistant micro-organisms became widespread in the 20th Century, often with devastating consequences, in response to widespread use of natural and synthetic drugs against infectious diseases. Antimalarial resistance provides one of the earliest examples, following the introduction of new medicines that filled important needs for prophylaxis and treatment around the globe. In the present chapter, we offer a brief synopsis of major antimalarial developments from two natural remedies, the qinghaosu and cinchona bark infusions, and of synthetic drugs inspired by the active components of these remedies. We review some contributions that early efficacy studies of antimalarial treatment brought to clinical pharmacology, including convincing documentation of atebrine-resistant malaria in the 1940s, prior to the launching of what soon became first-choice antimalarials, chloroquine and amodiaquine. Finally, we discuss some new observations on the molecular genetics of drug resistance, including delayed parasite clearances that have been increasingly observed in response to artemisinin derivatives in regions of South-East Asia. PMID:22023447

  9. Drugs Approved for Multiple Myeloma and Other Plasma Cell Neoplasms

    MedlinePlus

    ... Professionals Questions to Ask about Your Treatment Research Drugs Approved for Multiple Myeloma and Other Plasma Cell ... plasma cell neoplasms that are not listed here. Drugs Approved for Multiple Myeloma and Other Plasma Cell ...

  10. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors

    PubMed Central

    Zhang, Gao; Frederick, Dennie T.; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C.; Schuchter, Lynn M.; Gangadhar, Tara C.; Amaravadi, Ravi K.; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A.; Wargo, Jennifer A.; Avadhani, Narayan G.; Lu, Yiling; Mills, Gordon B.; Altieri, Dario C.; Flaherty, Keith T.

    2016-01-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  11. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors.

    PubMed

    Zhang, Gao; Frederick, Dennie T; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Ope, Omotayo; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C; Schuchter, Lynn M; Gangadhar, Tara C; Amaravadi, Ravi K; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Liu, Qin; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A; Wargo, Jennifer A; Avadhani, Narayan G; Lu, Yiling; Mills, Gordon B; Altieri, Dario C; Flaherty, Keith T; Herlyn, Meenhard

    2016-05-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  12. Multiple-anion nonvolatile acetal (MANA) resists

    NASA Astrophysics Data System (ADS)

    Guevremont, Jeffrey M.; Brainard, Robert L.; Reeves, Scott D.; Zhou, Xin; Nguyen, Thinh B.; Mackevich, Joseph F.; Anderson, Erik H.; Taylor, Gary N.

    2001-08-01

    New acetal or ketal blocking reagents were investigated for use in e-beam lithography and compared with the performance of ethyl vinyl either (EVE). Three blocking groups, (alpha) -Angelicalactone (AL), 6-methylene-5,6-benzo-1,4- dioxane (MBD), and MANA50 (an undisclosed blocking group used to show the potential of this chemistry) were reacted with poly(p-hydroxystyrene) (PHS) under acid catalyzed conditions to form AL-PHS, MBD-PHS, MANA50-PHS. The performance objectives pursued in the design of these new materials was to use acetal (ketal) chemistry to deliver wide process latitudes (e.g. good PED performance and minimal PEB sensitivity), use high molecular weight blocking groups to eliminate outgassing, and use the novel concept of multiple anions to deliver lithographic performance. These new materials are called Multiple Anion Nonvolatile Acetal (MANA) resists. Resists films were exposed with 50kV electrons, post exposure baked (PEB), and developed with 0.26 N TMAH. Resists prepared with the third blocking group, MANA50, gave contrast and imaging performance independent of PEB humidity and were relatively insensitive to PEB temperature and post exposure delay (PED). These resists gave the best resolution (90 nm) and profiles of all the materials tested, as well as showing no outgassing (as measured by film thickness loss).

  13. Challenges of drug-resistant malaria

    PubMed Central

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  14. Challenges of drug-resistant malaria.

    PubMed

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia-Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  15. Multiple mechanisms contribute to the development of clinically significant azole resistance in Aspergillus fumigatus

    PubMed Central

    Moye-Rowley, W. S.

    2015-01-01

    Infections caused by the filamentous fungus Aspergillus fumigatus are a significant clinical issue and represent the second most-common form of fungal infection. Azole drugs are effective against this pathogen but resistant isolates are being found more frequently. Infections associated with azole resistant A. fumigatus have a significantly increased mortality making understanding drug resistance in this organism a priority. The target of azole drugs is the lanosterol α-14 demethylase enzyme encoded by the cyp51A gene in A. fumigatus. Mutations in cyp51A have been described that give rise to azole resistance and been argued to be the primary, if not sole, contributor to azole resistance. Here, I discuss recent developments that indicate multiple mechanisms, including increased expression of ATP-binding cassette (ABC) transporter proteins, contribute to azole resistance. ABC transporters are well-established determinants of drug resistance in other fungal pathogens and seem likely to play a similar role in A. fumigatus. PMID:25713565

  16. Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies

    PubMed Central

    Armstrong, Cameron M; Gao, Allen C

    2015-01-01

    Several mechanisms facilitate the progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). At present, the approved chemotherapies for CRPC include systemic drugs (docetaxel and cabazitaxel) and agents that target androgen signaling, including enzalutamide and abiraterone. While up to 30% of patients have primary resistance to these treatments, each of these drugs confers a significant survival benefit for many. Over time, however, all patients inevitably develop resistance to treatment and their disease will continue to progress. Several key mechanisms have been identified that give rise to drug resistance. Expression of constitutively active variants of the androgen receptor, such as AR-V7, intracrine androgens and overexpression of androgen synthesis enzymes like AKR1C3, and increased drug efflux through ABCB1 are just some of the many discovered mechanisms of drug resistance. Treatment strategies are being developed to target these pathways and reintroduce drug sensitivity. Niclosamide has been discovered to reduce AR-V7 activity and synergized to enzalutamide. Indomethacin has been explored to inhibit AKR1C3 activity and showed to be able to reverse resistance to enzalutamide. ABCB1 transport activity can be mitigated by the phytochemical apigenin and by antiandrogens such as bicalutamide, with each improving cellular response to chemotherapeutics. By better understanding the mechanisms by which drug resistance develops improved treatment strategies will be made possible. Herein, we review the existing knowledge of CRPC therapies and resistance mechanisms as well as methods that have been identified which may improve drug sensitivity. PMID:26309896

  17. Drug Resistant Fetal Arrhythmia in Obstetric Cholestasis

    PubMed Central

    Altug, Nahide; Kirbas, Ayse; Daglar, Korkut; Biberoglu, Ebru; Uygur, Dilek; Danisman, Nuri

    2015-01-01

    Obstetric cholestasis (OC) is a pregnancy specific liver disease characterized by increased levels of bile acid (BA) and pruritus. Raised maternal BA levels could be associated with intrauterine death, fetal distress, and preterm labor and also alter the rate and rhythm of cardiomyocyte contraction and may cause fetal arrhythmic events. We report a case of drug resistant fetal supraventricular tachycardia and concomitant OC. Conclusion. If there are maternal OC and concomitant fetal arrhythmia, possibility of the resistance to antiarrhythmic treatment should be kept in mind. PMID:25821617

  18. MicroRNAs and drug resistance in prostate cancers.

    PubMed

    Li, Feng; Mahato, Ram I

    2014-08-01

    Prostate cancer is the second leading cause of cancer related death in American men. Androgen deprivation therapy (ADT) is used to treat patients with aggressive prostate cancers. After androgen deprivation therapy, prostate cancers slowly progress to an androgen-independent status. Taxanes (e.g., docetaxel) are used as standard treatments for androgen-independent prostate cancers. However, these chemotherapeutic agents will eventually become ineffective due to the development of drug resistance. A microRNA (miRNA) is a small noncoding RNA molecule, which can regulate gene expression at the post-transcription level. miRNAs elicit their effects by binding to the 3'-untranslated region (3'-UTR) of their target mRNAs, leading to the inhibition of translation or the degradation of the mRNAs. miRNAs have received increasing attention as targets for cancer therapy, as they can target multiple signaling pathways related to tumor progression, metastasis, invasion, and chemoresistance. Emerging evidence suggests that aberrant expression of miRNAs can lead to the development of resistant prostate cancers. Here, we discuss the roles of miRNAs in the development of resistant prostate cancers and their involvement in various drug resistant mechanisms including androgen signaling, apoptosis avoidance, multiple drug resistance (MDR) transporters, epithelialmesenchymal transition (EMT), and cancer stem cells (CSCs). In addition, we also discuss strategies for treating resistant prostate cancers by targeting specific miRNAs. Different delivery strategies are also discussed with focus on those that have been successfully used in human clinical trials. PMID:24742219

  19. Evaluation of the potential antimicrobial resistance transfer from a multi-drug resistant Escherichia coli to Salmonella in dairy calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research conducted by our laboratory investigated the incidence of multi-drug resistant (MDR) Salmonella in dairy cattle and reported that individual cattle, and most often calves, shed multiple Salmonella serotypes that vary in the degree of antibiotic resistance. More recently, we invest...

  20. Does a multi-drug resistant Escherichia coli facilitate dissemination of resistance to Salmonella in dairy calves?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research conducted by our laboratory investigated the incidence of multi-drug resistant (MDR) Salmonella in dairy cattle and reported that individual cattle, and most often calves, can shed multiple Salmonella serotypes that vary in the degree of antibiotic resistance. More recently, we di...

  1. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae.

    PubMed

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-10-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea. PMID:22089602

  2. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae

    PubMed Central

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-01-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea. PMID:22089602

  3. Emerging Technologies for Monitoring Drug-Resistant Tuberculosis at the Point-of-Care

    PubMed Central

    Mani, Vigneshwaran; Wang, ShuQi; Inci, Fatih; De Libero, Gennaro; Singhal, Amit; Demirci, Utkan

    2014-01-01

    Infectious diseases are the leading cause of death worldwide. Among them, tuberculosis (TB) remains a major threat to public health, exacerbated by the emergence of multiple drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (Mtb). MDR-Mtb strains are resistant to first-line anti-TB drugs such as isoniazid and rifampicin; whereas XDR-Mtb strains are resistant to additional drugs including at least to any fluoroquinolone and at least one of the second-line anti-TB injectable drugs such as kanamycin, capreomycin, or amikacin. Clinically, these strains have significantly impacted the management of TB in high-incidence developing countries, where systemic surveillance of TB drug resistance is lacking. For effective management of TB on-site, early detection of drug resistance is critical to initiate treatment, to reduce mortality, and to thwart drug-resistant TB transmission. In this review, we discuss the diagnostic challenges to detect drug-resistant TB at the point-of-care (POC). Moreover, we present the latest advances in nano/microscale technologies that can potentially detect TB drug resistance to improve on-site patient care. PMID:24882226

  4. Ceftaroline desensitization procedure in a pregnant patient with multiple drug allergies.

    PubMed

    Kuhlen, James L; Blumenthal, Kimberly G; Sokol, Caroline L; Balekian, Diana S; Weil, Ana A; Varughese, Christy A; Shenoy, Erica S; Banerji, Aleena

    2015-01-01

    Validated skin testing is lacking for many drugs, including ceftaroline. The cross-reactivity between ceftaroline and other β-lactam antibiotics is unknown. We report a case of a pregnant patient with cystic fibrosis and multiple drug allergies who required ceftaroline for methicillin-resistant Staphylococcus aureus pneumonia and underwent an uncomplicated empiric desensitization procedure. PMID:26034776

  5. Clinical relevance of HCV antiviral drug resistance.

    PubMed

    Welsch, C; Zeuzem, S

    2012-10-01

    The approval of direct-acting antiviral agents (DAAs) against the hepatitis C virus (HCV) NS3 protease revolutionized antiviral therapy in chronic hepatitis C. They mark the beginning of an era with drugs designed to inhibit specific viral proteins involved in the virus life cycle rather than the nonspecific antiviral activity of interferon. Upcoming generations of antivirals are expected that lead to viral eradication in most patients who undergo treatment with hope held for years that HCV can be cured without interferon. Antiviral drug resistance plays a key role in DAA-treatment failure. Knowledge on molecular escape mechanisms of resistant variants, their time to wild-type reversal and potential persistence is of upmost importance to design treatment strategies for patients with previous DAA-treatment failure. PMID:23006585

  6. Current Perspectives on HIV-1 Antiretroviral Drug Resistance

    PubMed Central

    Iyidogan, Pinar; Anderson, Karen S.

    2014-01-01

    Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly. PMID:25341668

  7. Upregulation of Cyclooxygenase-2/Prostaglandin E2 (COX-2/PGE2) Pathway Member Multiple Drug Resistance-Associated Protein 4 (MRP4) and Downregulation of Prostaglandin Transporter (PGT) and 15-Prostaglandin Dehydrogenase (15-PGDH) in Triple-Negative Breast Cancer

    PubMed Central

    Kochel, Tyler J.; Goloubeva, Olga G.; Fulton, Amy M.

    2016-01-01

    Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) are indicators of a poor prognosis in breast cancer. Using several independent publicly available breast cancer gene expression databases, we investigated other members of the PGE2 pathway. PGE2 is produced by COX-2 and actively exported by multiple drug resistance-associated protein 4 (MRP4) into the extracellular microenvironment, where PGE2 can bind four cognate EP receptors (EP1–EP4) and initiate diverse biological signaling pathways. Alternatively, PGE2 is imported via the prostaglandin transporter (PGT) and metabolized by 15-prostaglandin dehydrogenase (15-PGDH/HPGD). We made the novel observation that MRP4, PGT, and 15-PGDH are differentially expressed among distinct breast cancer molecular subtypes; this finding was confirmed in independent datasets. In triple-negative breast cancer, the observed gene expression pattern (high COX-2, high MRP4, low PGT, and low 15-PGDH) would favor high levels of tumor-promoting PGE2 in the tumor microenvironment that may contribute to the overall poor prognosis of triple-negative breast cancer. PMID:27257388

  8. Drugs in development for relapsing multiple sclerosis.

    PubMed

    Ali, Rehiana; Nicholas, Richard St John; Muraro, Paolo Antonio

    2013-05-01

    Drug development for multiple sclerosis (MS), as with any other neurological disease, faces numerous challenges, with many drugs failing at various stages of development. The disease-modifying therapies (DMTs) first introduced for MS are only moderately effective, but given the lack of competition, they have been widely accepted in clinical practice. Although safety and efficacy continue to be the two main metrics by which drugs will be judged, the newer agents in the market also face challenges of a more comparative nature-are they more efficacious than the currently available drugs on the market? Are they safer or better tolerated? Do they offer any practical advantages over current treatments? Fingolimod represented a milestone following its approval as an oral drug for MS in 2010, offering patients a far more convenient administration route. However, association with cardiovascular complications has led to a more cautious approach in its initial prescribing, now requiring cardiac monitoring for the first 6 h as well as subsequent monitoring of blood pressure and for macular oedema. Natalizumab, amongst licensed drugs, represents the current benchmark for efficacy. The risk of progressive multifocal leukoencephalopathy during natalizumab treatment is now more quantifiable. Other monoclonal antibodies are in various phases of development. Marketing authorisation for alemtuzumab has been filed, and whilst trial data suggest that its efficacy outperforms both licensed drugs and others in development, there is a significant risk of secondary autoimmunity. Its once-yearly administration, however, seems particularly advantageous. Rituximab is unlikely to be developed further as its license will expire, but ocrelizumab, another monoclonal antibody directly targeting B cells, is currently in phase 2 development and looks promising. Daclizumab is also moderately efficacious but may struggle to establish itself given its monthly subcutaneous dosing. There are new oral

  9. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study

    PubMed Central

    Basak, Silpi; Singh, Priyanka; Rajurkar, Monali

    2016-01-01

    Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) bacterial isolates in a tertiary care hospital. Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria. Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1%) bacterial strains were MDR, 146 (13.8%) strains were XDR, and no PDR was isolated. All (100%) Gram negative bacterial strains were sensitive to colistin whereas all (100%) Gram positive bacterial strains were sensitive to vancomycin. Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance. PMID:26942013

  10. Rates and risk factors for drug resistance tuberculosis in Northeastern China

    PubMed Central

    2013-01-01

    Background Drug-resistant tuberculosis (TB) has emerged as a major challenge toward TB control and prevention. In Lianyungang city, the extent and trend of drug resistant TB is not well known. The objective of the survey was to assess drug resistance pattern of MTB and risk factors for drug resistant TB, including multidrug resistance tuberculosis (MDR-TB) in this area. Methods We performed drug susceptibility testing on Mycobacterium tuberculosis (MTB) isolates with first- and second-line anti-tuberculosis drugs of 1012 culture positive TB cases by using the proportion method, who were consecutively enrolled from January 2011 to December 2012 in Lianyungang city, China. The patterns of drug resistance in MTB were investigated and multiple logistic regression analysis was performed to assess the risk factors for drug resistant TB. Results Among the 1012 strains tested, 308 (30.4%) strains were resistant to at least one first-line drug; the prevalence of MDR-TB was 88 (8.7%), 5 (0.5%) strains were found to be extensively drug-resistant tuberculosis (XDR-TB). Female gender was a risk factor for MDR-TB (adjusted odds ratio (aOR) 1.763, 95% CI (1.060-2.934). The aged 28–54 years was significantly associated with the risk of MDR-TB with an aOR: 2.224, 95% CI (1.158-4.273) when compared with those 65 years or older. Patients with previous treatment history had a more than 7-fold increased risk of MDR-TB, compared with those never previously treated. Conclusions The burden of drug resistant TB cases is sizeable, which highlights an urgent need to reinforce control, detection and treatment strategies for drug resistant TB. PMID:24330553

  11. Aberrant splicing and drug resistance in AML.

    PubMed

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  12. Frequency of Natural Resistance within NS5a Replication Complex Domain in Hepatitis C Genotypes 1a, 1b: Possible Implication of Subtype-Specific Resistance Selection in Multiple Direct Acting Antivirals Drugs Combination Treatment.

    PubMed

    Bagaglio, Sabrina; Andolina, Andrea; Merli, Marco; Uberti-Foppa, Caterina; Morsica, Giulia

    2016-01-01

    Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs) were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV) or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV) was higher in G1b compared to G1a (37/1552 (2.4%) in 1b sequences and 15/1209 (1.2%) in 1a isolates, p = 0.040). Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1%) G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5%) harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p < 0.0001). Finally, 28 (2.3%) G1a and none of G1b isolates harbored M28V RAP to OMV (p < 0.0001). In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs) targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs. PMID:27023593

  13. Frequency of Natural Resistance within NS5a Replication Complex Domain in Hepatitis C Genotypes 1a, 1b: Possible Implication of Subtype-Specific Resistance Selection in Multiple Direct Acting Antivirals Drugs Combination Treatment

    PubMed Central

    Bagaglio, Sabrina; Andolina, Andrea; Merli, Marco; Uberti-Foppa, Caterina; Morsica, Giulia

    2016-01-01

    Different HCV subtypes may naturally harbor different resistance selection to anti-NS5a inhibitors. 2761 sequences retrieved from the Los Alamos HCV database were analyzed in the NS5a domain 1, the target of NS5a inhibitors. The NS5a resistance-associated polymorphisms (RAPs) were more frequently detected in HCV G1b compared to G1a. The prevalence of polymorphisms associated with cross-resistance to compounds in clinical use (daclatasvir, DCV, ledipasvir, LDV, ombitasvir, and OMV) or scheduled to come into clinical use in the near future (IDX719, elbasvir, and ELV) was higher in G1b compared to G1a (37/1552 (2.4%) in 1b sequences and 15/1209 (1.2%) in 1a isolates, p = 0.040). Interestingly, on the basis of the genotype-specific resistance pattern, 95 (6.1%) G1b sequences had L31M RAP to DCV/IDX719, while 6 sequences of G1a (0.5%) harbored L31M RAP, conferring resistance to DCV/LDV/IDX719/ELV (p < 0.0001). Finally, 28 (2.3%) G1a and none of G1b isolates harbored M28V RAP to OMV (p < 0.0001). In conclusion, the pattern of subtype-specific resistance selection in the naturally occurring strains may guide the treatment option in association with direct acting antivirals (DAAs) targeting different regions, particularly in patients that are difficult to cure, such as those with advanced liver disease or individuals who have failed previous DAAs. PMID:27023593

  14. Multi-Drug Resistance among Salmonella spp. Isolated from Food Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Since the early 1990’s there has been increasing awareness and concern regarding the development of antimicrobial resistance among bacteria of public health significance. Of particular concern starting in 2000, was the emergence of multiple drug resistant (MDR) Salmonella Newport. How...

  15. Evaluation of Idaho's DARE "Drug Abuse Resistance Education Projects."

    ERIC Educational Resources Information Center

    Silva, Roberta K.

    The goal of DARE (Drug Abuse Resistance Education) is not to completely eliminate the drug and alcohol problems of society. It is a proactive prevention program designed to equip youth (focusing on elementary school) with skills for resisting peer pressure to experiment with drugs, and to manage anger without resorting to violence or the use of…

  16. Rural Adolescent Perceptions of Alcohol and Other Drug Resistance.

    ERIC Educational Resources Information Center

    Jenkins, Jeanne E.

    2001-01-01

    Used questionnaires and focus groups to examine 361 rural high schoolers' perceptions of drug resistance difficulties when offered beer, marijuana, and hard drugs. Found that drug nonusers had the widest range of explanations for resistance difficulty. Peer pressure was cited most frequently by nonusers, and seldom by heavy users. Frequent users…

  17. Evaluation of Idaho's DARE "Drug Abuse Resistance Education" Projects.

    ERIC Educational Resources Information Center

    Silva, Roberta K.

    The DARE (Drug Abuse Resistance Education) program teaches students decision-making skills, shows them how to resist peer pressure to experiment with drugs and alcohol, and provides positive alternatives to drug use. This report looks at one state's DARE programs. Included are an overview of the implementation process, a program appraisal with…

  18. Young Women's Experiences of Resisting Invitations to Use Illicit Drugs

    ERIC Educational Resources Information Center

    Koehn, Corinne V.; O'Neill, Linda K.

    2011-01-01

    Ten young women were interviewed regarding their experiences of resisting invitations to use illicit drugs. Hermeneutic phenomenology was used to gather and analyze information. One key theme was the motivations that inspired women to refuse drug offers. Young women resisted drug invitations because of their desires to be authentic, protect their…

  19. Bioinformatics Identification of Drug Resistance-Associated Gene Pairs in Mycobacterium tuberculosis.

    PubMed

    Cui, Ze-Jia; Yang, Qing-Yong; Zhang, Hong-Yu; Zhu, Qiang; Zhang, Qing-Ye

    2016-01-01

    Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb). Due to the extensive use of anti-tuberculosis drugs and the development of mutations, the emergence and spread of multidrug-resistant tuberculosis is recognized as one of the most dangerous threats to global tuberculosis control. Some single mutations have been identified to be significantly linked with drug resistance. However, the prior research did not take gene-gene interactions into account, and the emergence of transmissible drug resistance is connected with multiple genetic mutations. In this study we use the bioinformatics software GBOOST (The Hong Kong University, Clear Water Bay, Kowloon, Hong Kong, China) to calculate the interactions of Single Nucleotide Polymorphism (SNP) pairs and identify gene pairs associated with drug resistance. A large part of the non-synonymous mutations in the drug target genes that were included in the screened gene pairs were confirmed by previous reports, which lent sound solid credits to the effectiveness of our method. Notably, most of the identified gene pairs containing drug targets also comprise Pro-Pro-Glu (PPE) family proteins, suggesting that PPE family proteins play important roles in the drug resistance of Mtb. Therefore, this study provides deeper insights into the mechanisms underlying anti-tuberculosis drug resistance, and the present method is useful for exploring the drug resistance mechanisms for other microorganisms. PMID:27618895

  20. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network.

    PubMed

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K; Rosenthal, Philip J

    2015-09-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  1. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network

    PubMed Central

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K.; Rosenthal, Philip J.

    2015-01-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  2. Prevalence of multi-drug resistant Salmonella on comercial dairies utilizing a single heifer raising facility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the current research were two-fold: 1) Determine the prevalence of multiple drug resistant (MDR) Salmonella in the various classes of dairy cattle; and 2) Determine if co-mingling of calves from multiple farms at a heifer feedlot serves as a transmission vector for Salmonella back ...

  3. Drug resistance of organisms isolated from feces of laboratory mice and rats.

    PubMed

    Maejima, K; Urano, T; Tamura, H; Terakado, N

    1980-01-01

    A total of 248 strains of EScherichia coli, 132 of Staphylococcus epidermidis, 137 of Streptococcus faecalis and 89 of STr. faecium were collected from feces of 40 mice and 36 rats of 8 colonies in 1978, and drug resistance were examined by an agar dieution method using 23 antibiotics. The results indicated a positive relation between use of antibiotics and appearance of multiple drug resistant organisms. PMID:6772455

  4. The Use of Multiple Matrix Sampling for Drug Questionnaires

    ERIC Educational Resources Information Center

    Pascale, Pietro J.

    1976-01-01

    This paper presents a procedure called multiple matrix sampling which simplifies data collection for drug incidence surveys. Advantages for the use of multiple matrix sampling with drug surveys are discussed and a practical example is outlined presenting the guidelines for a sampling plan. (Author)

  5. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance.

    PubMed

    Gupta, Roohi; Shea, Jill; Scafe, Courtney; Shurlygina, Anna; Rapoport, Natalya

    2015-08-28

    The manuscript reports the side-by-side comparison of therapeutic properties of polymeric micelles and nanoemulsions generated from micelles. The effect of the structure of a hydrophobic block of block copolymer on the therapeutic efficacy, tumor recurrence, and development of drug resistance was studied in pancreatic tumor bearing mice. Mice were treated with paclitaxel (PTX) loaded poly(ethylene oxide)-co-polylactide micelles or corresponding perfluorocarbon nanoemulsions. Two structures of the polylactide block differing in a physical state of micelle cores or corresponding nanodroplet shells were compared. Poly(ethylene oxide)-co-poly(d,l-lactide) (PEG-PDLA) formed micelles with elastic amorphous cores while poly(ethylene oxide)-co-poly(l-lactide) (PEG-PLLA) formed micelles with solid crystalline cores. Micelles and nanoemulsions stabilized with PEG-PDLA copolymer manifested higher therapeutic efficacy than those formed with PEG-PLLA copolymer studied earlier. Better performance of PEG-PDLA micelles and nanodroplets was attributed to the elastic physical state of micelle cores (or droplet shells) allowing adequate rate of drug release via drug diffusion and/or copolymer biodegradation. The biodegradation of PEG-PDLA stabilized nanoemulsions was monitored by the ultrasonography of nanodroplets injected directly into the tumor; the PEG-PDLA stabilized nanodroplets disappeared from the injection site within 48h. In contrast, nanodroplets stabilized with PEG-PLLA copolymer were preserved at the injection site for weeks and months indicating extremely slow biodegradation of solid PLLA blocks. Multiple injections of PTX-loaded PEG-PDLA micelles or nanoemulsions to pancreatic tumor bearing mice resulted in complete tumor resolution. Two of ten tumors treated with either PEG-PDLA micellar or nanoemulsion formulation recurred after the completion of treatment but proved sensitive to the second treatment cycle indicating that drug resistance has not been developed. This

  6. [Factors of multiple resistance to antibiotics in nodule bacteria].

    PubMed

    Pariĭskaia, A N; Gorelova, O P

    1976-01-01

    Multiple resistance to antibiotics (penicillin, levomycetin, neomycin, tetracycline) was found in 15% of collection strains of nodule bacteria and in strains isolated from natural environment. PMID:1050635

  7. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    MedlinePlus

    ... the Spread of Superbugs Help Fight Drug-Resistant Bacteria For nearly a century, bacteria-fighting drugs known as antibiotics have helped to control and destroy many of the harmful bacteria that can make us sick. But in recent ...

  8. Engineered reversal of drug resistance in cancer cells—metastases suppressor factors as change agents

    PubMed Central

    Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu

    2014-01-01

    Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50–60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles. PMID:24157835

  9. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies

    PubMed Central

    McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta

    2014-01-01

    The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical

  10. Fatal case of extensively drug-resistant Mycobacterium tuberculosis Beijing genotype infection in an injecting drug user, Athens, Greece, 2012.

    PubMed

    Leuow, K; Papaventsis, D; Kourkoundi, S; Ioannidis, P; Karabela, S; Tsikrika, S; Marinou, I; Papavasileiou, A; Stone, M; Drobniewski, F; Paparisos, V; Vogiatzakis, E

    2013-01-01

    We present the first fatal case of extensively drug-resistant tuberculosis (XDR-TB) in an injecting drug user (IDU) in Athens, Greece, co-infected with human immunodeficiency virus and hepatitis C virus and discuss the implications for public health. Despite immediate initiation of treatment, the patient's condition gradually deteriorated and he died 16 days after hospital admission because of multiple organ failure. The contact tracing investigation revealed no further infections among the patient's contacts. PMID:23557942

  11. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015.

    PubMed

    Zhang, Y; Yew, W-W

    2015-11-01

    Drug-resistant tuberculosis (DR-TB), including multi- and extensively drug-resistant TB, is posing a significant challenge to effective treatment and TB control worldwide. New progress has been made in our understanding of the mechanisms of resistance to anti-tuberculosis drugs. This review provides an update on the major advances in drug resistance mechanisms since the previous publication in 2009, as well as added information on mechanisms of resistance to new drugs and repurposed agents. The recent application of whole genome sequencing technologies has provided new insight into the mechanisms and complexity of drug resistance. However, further research is needed to address the significance of newly discovered gene mutations in causing drug resistance. Improved knowledge of drug resistance mechanisms will help understand the mechanisms of action of the drugs, devise better molecular diagnostic tests for more effective DR-TB management (and for personalised treatment), and facilitate the development of new drugs to improve the treatment of this disease. PMID:26467578

  12. Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

    PubMed Central

    Sanchez, Guillermo V.; Master, Ronald N.; Clark, Richard B.; Fyyaz, Madiha; Duvvuri, Padmaraj; Ekta, Gupta

    2013-01-01

    We studied antimicrobial-resistant Klebsiella pneumoniae for 1998–2010 by using data from The Surveillance Network. Susceptibility results (n = 3,132,354) demonstrated significant increases in resistance to all antimicrobial drugs studied, except tetracycline. Cross-resistance among carbapenem-resistant K. pneumoniae was lower for tetracycline and amikacin. PMID:23260464

  13. Resistance to antimalarial drugs: molecular, pharmacological and clinical considerations

    PubMed Central

    Travassos, Mark A.; Laufer, Miriam K.

    2009-01-01

    One of the greatest obstacles to the control of malaria has been the spread of resistance to drugs used on a large scale. This review provides an update of the current understanding of the molecular basis for antimalarial drug resistance. Parasite intrinsic resistance is just one component that determines the in vivo efficacy of a drug. Human immune responses and pharmacological properties play important roles in determining the clinical outcome of treatment. The emergence and spread of resistance also results from an interplay of these factors. Current efforts to characterize and deter resistance to new combination therapy are also discussed. PMID:19918214

  14. New approaches for understanding mechanisms of drug resistance in schistosomes

    PubMed Central

    GREENBERG, ROBERT M.

    2013-01-01

    SUMMARY Schistosomes are parasitic flatworms that cause schistosomiasis, a neglected tropical disease that affects hundreds of millions worldwide. Treatment and control of schistosomiasis relies almost entirely on the single drug praziquantel (PZQ), making the prospect of emerging drug resistance particularly worrisome. This review will survey reports of PZQ (and other drug) resistance in schistosomes and other platyhelminths, and explore mechanisms by which drug resistance might develop. Newer genomic and post-genomic strategies that offer the promise of better understanding of how drug resistance might arise in these organisms will be discussed. These approaches could also lead to insights into the mode of action of these drugs and potentially provide markers for monitoring the emergence of resistance. PMID:23552512

  15. Public health implications of antiretroviral therapy and HIV drug resistance.

    PubMed

    Wainberg, M A; Friedland, G

    1998-06-24

    Widespread use of antiretroviral agents and increasing occurrence of human immunodeficiency virus (HIV) strains resistant to these drugs have given rise to a number of important issues. Some of these concerns are distinct from the obvious question of the relationship between drug resistance and treatment failure and have potentially widespread public health implications. The relevant issues include but are not limited to the following: (1) frequency with which drug-resistant virus may be transmitted via sexual, intravenous, or mother-to-child routes; (2) ability of drug-resistant variants to be transmitted, a question that relates, in part, to the relative fitness of such strains; (3) effectiveness of antiviral therapy in diminishing viral burden in both blood and genital secretions, and whether this may be compromised in persons harboring resistant virus; and (4) importance of patient adherence to antiviral therapy and its relationship to sustained reduction in viral load to minimize the appearance in and transmission of drug-resistant virus from both blood and genital secretions. Thus, prevention of both development of HIV drug resistance as well as transmission of drug-resistant variants is a central issue of public health importance. Unless this topic is appropriately addressed, the likelihood is that drug-resistant variants of HIV, if able to successfully replicate, will sustain the epidemic and limit the effectiveness of antiviral therapy. PMID:9643862

  16. [Dynamics of drug resistance in Proteus mirabilis cultures 1970-1985].

    PubMed

    Shvidenko, I G

    1988-04-01

    Resistance of 669 clinical strains of Proteus mirabilis to 18 chemotherapeutic drugs was studied in dynamics within 1970-1985. An increase in the number of cultures resistant to ampicillin and carbenicillin was noted while the number of cultures resistant to cephalosporines did not change. Within the period from 1970 to 1975 there was observed a marked increase in the number of Proteus strains resistant to aminoglycoside antibiotics. After that period their number gradually lowered and in 1985 reached the level of 1970. Beginning from 1973 there were observed a decrease in the number of Proteus chloramphenicol resistant strains and simultaneous occurrence of cultures sensitive to this antibiotic. The predominating number of the tested strains preserved during the whole observation period their resistance to tetracycline, doxycycline, rifampicin, novobiocin, furazolidone and furagin. No increase in the number of Proteus strains with multiple drug resistance including those resistant to 5-7 drugs was noted in the observation periods of 1970-1975, 1980 and 1985. The most frequent were Proteus strains resistant to 2-4 drugs. Among them cultures resistant to chloramphenicol and aminoglycoside antibiotics of the first generation predominated. Grouping of the strains by the same resistance spectra provided dividing the rested cultures of Proteus mirabilis into 69 variants. PMID:3291802

  17. Action of anti-HIV drugs and resistance: reverse transcriptase inhibitors and protease inhibitors.

    PubMed

    Imamichi, Tomozumi

    2004-01-01

    Currently, 20 drugs have been approved for Human Immunodeficiency Virus type-1 (HIV-1) clinical therapy. These drugs inhibit HIV-1 reverse transcriptase, protease, or virus entry. Introduction of a combination therapy with reverse transcriptase inhibitors and protease inhibitors has resulted in a drastic decrease in HIV-1 related mortality. Although the combination therapy can suppress viral replication below detection levels in current available assays, low levels of on-going viral replication still persist in some patients. Long-term administration of the combination therapy may increase selective pressure against viruses, and subsequently induce emergence of multiple drug-resistant HIV-1 variants. Attempts have been made to design novel antiretroviral drugs that would be able to suppress replication of the resistant variants. At present, several investigational drugs are being tested in clinical trials. These drugs target not only the resistant variants, but also improvement in oral bioavilability or other viral proteins such as HIV-1 integrase, ribonuclease H, and HIV-1 entry (CD4 attachment inhibitors, chemokine receptors antagonists, and fusion inhibitors). Understanding mechanism(s) of action of the drugs and mechanisms of drug resistance is necessary for successful designs in the next generation of anti-HIV-1 drugs. In this review, the mechanisms of action of reverse transcriptase- and protease-inhibitors, and the mechanism of resistance to these inhibitors, are described. PMID:15579086

  18. Prediction of resistance development against drug combinations by collateral responses to component drugs

    PubMed Central

    Munck, Christian; Gumpert, Heidi K.; Nilsson Wallin, Annika I.; Wang, Harris H.; Sommer, Morten O. A.

    2015-01-01

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance evolution. PMID:25391482

  19. Prediction of resistance development against drug combinations by collateral responses to component drugs.

    PubMed

    Munck, Christian; Gumpert, Heidi K; Wallin, Annika I Nilsson; Wang, Harris H; Sommer, Morten O A

    2014-11-12

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance evolution. PMID:25391482

  20. Presenting Multiple Drug Alerts in an Ambulatory Electronic Prescribing System

    PubMed Central

    Weinger, M.B.; Gregg, W.M.; Johnson, K.B.

    2014-01-01

    Summary Objective This study explores alternative approaches to the display of drug alerts, and examines whether and how human-factors based interface design can be used to improve the prescriber’s perception about drug alert presentation, signal detection from noisy alert data, and their comprehension of clinical decision support during electronic prescribing. Methods We reviewed issues with presenting multiple drug alerts in electronic prescribing systems. User-centered design, consisting of iterative usability and prototype testing was applied. After an iterative design phase, we proposed several novel drug alert presentation interfaces; expert evaluation and formal usability testing were applied to access physician prescribers’ perceptions of the tools. We mapped drug alert attributes to different interface constructs. We examined four different interfaces for presenting multiple drug alerts. Results A TreeDashboard View was better perceived than a text-based ScrollText View with respect to the ability to detect critical information, the ability to accomplish tasks, and the perceptional efficacy of finding information. Conclusion A robust model for studying multiple drug-alert presentations was developed. Several drug alert presentation interfaces were proposed. The TreeDashboard View was better perceived than the text-based ScrollText View in delivering multiple drug alerts during a simulation of electronic prescribing. PMID:25024753

  1. Multiple Myeloma Gets Three New Drugs.

    PubMed

    Poh, Alissa

    2016-01-01

    In the last few weeks, the FDA approved three new therapies for multiple myeloma: ixazomib, the first oral proteasome inhibitor; and daratumumab and elotuzumab, two monoclonal antibodies that target CD38 and SLAMF7, respectively. PMID:26658418

  2. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis

    PubMed Central

    Kipiani, Maia; Mirtskhulava, Veriko; Tukvadze, Nestani; Magee, Matthew J.; Blumberg, Henry M.

    2015-01-01

    Rates and risk factors for acquired drug resistance and association with outcomes among patients with multidrug-resistant tuberculosis (MDR TB) are not well defined. In an MDR TB cohort from the country of Georgia, drug susceptibility testing for second-line drugs (SLDs) was performed at baseline and every third month. Acquired resistance was defined as any SLD whose status changed from susceptible at baseline to resistant at follow-up. Among 141 patients, acquired resistance in Mycobacterium tuberculosis was observed in 19 (14%); prevalence was 9.1% for ofloxacin and 9.8% for capreomycin or kanamycin. Baseline cavitary disease and resistance to >6 drugs were associated with acquired resistance. Patients with M. tuberculosis that had acquired resistance were at significantly increased risk for poor treatment outcome compared with patients without these isolates (89% vs. 36%; p<0.01). Acquired resistance occurs commonly among patients with MDR TB and impedes successful treatment outcomes. PMID:25993036

  3. Improving Viral Protease Inhibitors to Counter Drug Resistance.

    PubMed

    Kurt Yilmaz, Nese; Swanstrom, Ronald; Schiffer, Celia A

    2016-07-01

    Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design. PMID:27090931

  4. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance

    PubMed Central

    Chevereau, Guillaume; Dravecká, Marta; Batur, Tugce; Guvenek, Aysegul; Ayhan, Dilay Hazal; Toprak, Erdal; Bollenbach, Tobias

    2015-01-01

    The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE) of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the “morbidostat”, a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations—an almost paradoxical behavior since this drug causes DNA damage and increases the mutation rate. Overall

  5. Molecular mechanisms of drug resistance and its reversal in cancer.

    PubMed

    Kartal-Yandim, Melis; Adan-Gokbulut, Aysun; Baran, Yusuf

    2016-08-01

    Chemotherapy is the main strategy for the treatment of cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance. The resistance can be intrinsic or acquired. The resistance phenotype is associated with the tumor cells that gain a cross-resistance to a large range of drugs that are structurally and functionally different. Multidrug resistance arises via many unrelated mechanisms, such as overexpression of energy-dependent efflux proteins, decrease in uptake of the agents, increase or alteration in drug targets, modification of cell cycle checkpoints, inactivation of the agents, compartmentalization of the agents, inhibition of apoptosis and aberrant bioactive sphingolipid metabolism. Exact elucidation of resistance mechanisms and molecular and biochemical approaches to overcome multidrug resistance have been a major goal in cancer research. This review comprises the mechanisms guiding multidrug resistance in cancer chemotherapy and also touches on approaches for reversing the resistance. PMID:25757878

  6. Drug Abuse - Multiple Languages: MedlinePlus

    MedlinePlus

    ... drogas Tagalog (Tagalog) Substance Abuse or Dependence Pag-abuso sa Paggamit ng Mga Bagay o Dependensya - Tagalog (Tagalog) Bilingual PDF Health Information Translations Vietnamese (Tiếng Việt) Drugs, Alcohol and HIV/AIDS: A Consumer Guide English Rượu & ...

  7. Drug-Resistant Malaria: The Era of ACT

    PubMed Central

    Lin, Jessica T.; Juliano, Jonathan J.

    2010-01-01

    As drug-resistant falciparum malaria has continued to evolve and spread worldwide, artemisinin-based combination therapies (ACT) have become the centerpiece of global malaria control over the past decade. This review discusses how advances in antimalarial drug resistance monitoring and rational use of the array of ACTs now available can maximize the impact of this highly efficacious therapy, even as resistance to artemisinins is emerging in Southeast Asia. PMID:21308525

  8. Overcome Cancer Cell Drug Resistance Using Natural Products

    PubMed Central

    Wang, Pu; Yang, Hua Li; Yang, Ying Juan; Wang, Lan; Lee, Shao Chin

    2015-01-01

    Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1) in vitro studies using cell line models; (2) serum pharmacology; (3) in vivo studies using animal models; and (4) clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance. PMID:26421052

  9. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    PubMed

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. PMID:27191035

  10. Shigella Antimicrobial Drug Resistance Mechanisms, 2004–2014

    PubMed Central

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert

    2016-01-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004–2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. PMID:27191035

  11. Totally drug-resistant tuberculosis and adjunct therapies.

    PubMed

    Parida, S K; Axelsson-Robertson, R; Rao, M V; Singh, N; Master, I; Lutckii, A; Keshavjee, S; Andersson, J; Zumla, A; Maeurer, M

    2015-04-01

    The first cases of totally drug-resistant (TDR) tuberculosis (TB) were reported in Italy 10 years ago; more recently, cases have also been reported in Iran, India and South Africa. Although there is no consensus on terminology, it is most commonly described as 'resistance to all first- and second-line drugs used to treat TB'. Mycobacterium tuberculosis (M.tb) acquires drug resistance mutations in a sequential fashion under suboptimal drug pressure due to monotherapy, inadequate dosing, treatment interruptions and drug interactions. The treatment of TDR-TB includes antibiotics with disputed or minimal effectiveness against M.tb, and the fatality rate is high. Comorbidities such as diabetes and infection with human immunodeficiency virus further impact on TB treatment options and survival rates. Several new drug candidates with novel modes of action are under late-stage clinical evaluation (e.g., delamanid, bedaquiline, SQ109 and sutezolid). 'Repurposed' antibiotics have also recently been included in the treatment of extensively drug resistant TB. However, because of mutations in M.tb, drugs will not provide a cure for TB in the long term. Adjunct TB therapies, including therapeutic vaccines, vitamin supplementation and/or repurposing of drugs targeting biologically and clinically relevant molecular pathways, may achieve better clinical outcomes in combination with standard chemotherapy. Here, we review broader perspectives of drug resistance in TB and potential adjunct treatment options. PMID:24809736

  12. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB

    SciTech Connect

    Chen, Wenjing; Biswas, Tapan; Porter, Vanessa R.; Tsodikov, Oleg V.; Garneau-Tsodikova, Sylvie

    2011-09-06

    The emergence of multidrug-resistant and extensively drug-resistant (XDR) tuberculosis (TB) is a serious global threat. Aminoglycoside antibiotics are used as a last resort to treat XDR-TB. Resistance to the aminoglycoside kanamycin is a hallmark of XDR-TB. Here, we reveal the function and structure of the mycobacterial protein Eis responsible for resistance to kanamycin in a significant fraction of kanamycin-resistant Mycobacterium tuberculosis clinical isolates. We demonstrate that Eis has an unprecedented ability to acetylate multiple amines of many aminoglycosides. Structural and mutagenesis studies of Eis indicate that its acetylation mechanism is enabled by a complex tripartite fold that includes two general control non-derepressible 5 (GCN5)-related N-acetyltransferase regions. An intricate negatively charged substrate-binding pocket of Eis is a potential target of new antitubercular drugs expected to overcome aminoglycoside resistance.

  13. Drug Abuse - Multiple Languages: MedlinePlus

    MedlinePlus

    ... 繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Portuguese (português) Russian (Русский) Somali (af Soomaali) ... 薬物の乱用または依存症 - 日本語 (Japanese) Bilingual PDF Health Information Translations Korean (한국어) Drugs, Alcohol and HIV/AIDS: A Consumer ...

  14. Prevalence of pyrazinamide resistance across the spectrum of drug resistant phenotypes of Mycobacterium tuberculosis.

    PubMed

    Whitfield, Michael G; Streicher, Elizabeth M; Dolby, Tania; Simpson, John A; Sampson, Samantha L; Van Helden, Paul D; Van Rie, Annelies; Warren, Robin M

    2016-07-01

    Pyrazinamide resistance is largely unknown in the spectrum of drug resistant phenotypes. We summarize data on PZA resistance in clinical isolates from South Africa. PZA DST should be performed when considering its inclusion in treatment of patients with rifampicin-resistant TB or MDR-TB. PMID:27450014

  15. Structure and function of efflux pumps that confer resistance to drugs.

    PubMed Central

    Borges-Walmsley, M Ines; McKeegan, Kenneth S; Walmsley, Adrian R

    2003-01-01

    Resistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases. Worryingly, it is a problem that is increasing, and consequently there is a pressing need to develop new and effective classes of drugs. This has provided a powerful stimulus in promoting research on drug resistance and, ultimately, it is hoped that this research will provide novel approaches that will allow the deliberate circumvention of well understood resistance mechanisms. A major mechanism of resistance in both microbes and cancer cells is the membrane protein-catalysed extrusion of drugs from the cell. Resistant cells exploit proton-driven antiporters and/or ATP-driven ABC (ATP-binding cassette) transporters to extrude cytotoxic drugs that usually enter the cell by passive diffusion. Although some of these drug efflux pumps transport specific substrates, many are transporters of multiple substrates. These multidrug pumps can often transport a variety of structurally unrelated hydrophobic compounds, ranging from dyes to lipids. If we are to nullify the effects of efflux-mediated drug resistance, we must first of all understand how these efflux pumps can accommodate a diverse range of compounds and, secondly, how conformational changes in these proteins are coupled to substrate translocation. These are key questions that must be addressed. In this review we report on the advances that have been made in understanding the structure and function of drug efflux pumps. PMID:13678421

  16. Bayesian analysis of complex interacting mutations in HIV drug resistance and cross-resistance.

    PubMed

    Kozyryev, Ivan; Zhang, Jing

    2015-01-01

    A successful treatment of AIDS world-wide is severely hindered by the HIV virus' drug resistance capability resulting from complicated mutation patterns of viral proteins. Such a system of mutations enables the virus to survive and reproduce despite the presence of various antiretroviral drugs by disrupting their binding capability. Although these interacting mutation patterns are extremely difficult to efficiently uncover and interpret, they contribute valuable information to personalized therapeutic regimen design. The use of Bayesian statistical modeling provides an unprecedented opportunity in the field of anti-HIV therapy to understand detailed interaction structures of drug resistant mutations. Multiple Bayesian models equipped with Markov Chain Monte Carlo (MCMC) methods have been recently proposed in this field (Zhang et al. in PNAS 107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]; Svicher et al. in Antiviral Res 93(1):86-93, 2012 [3]; Svicher et al. in Antiviral Therapy 16(7):1035-1045, 2011 [4]; Svicher et al. in Antiviral Ther 16(4):A14-A14, 2011 [5]; Svicher et al. in Antiviral Ther 16(4):A85-A85, 2011 [6]; Alteri et al. in Signature mutations in V3 and bridging sheet domain of HIV-1 gp120 HIV-1 are specifically associated with dual tropism and modulate the interaction with CCR5 N-Terminus, 2011 [7]). Probabilistically modeling mutations in the HIV-1 protease or reverse transcriptase (RT) isolated from drug-treated patients provides a powerful statistical procedure that first detects mutation combinations associated with single or multiple-drug resistance, and then infers detailed dependence structures among the interacting mutations in viral proteins (Zhang et al. in PNAS 107:1321, 2010 [1]; Zhang et al. in J Proteome Sci Comput Biol 1:2, 2012 [2]). Combined with molecular dynamics simulations and free energy calculations, Bayesian analysis predictions help to uncover genetic and structural mechanisms in the HIV treatment

  17. Drug Resistance among Pulmonary Tuberculosis Patients in Calabar, Nigeria

    PubMed Central

    Otu, Akaninyene; Umoh, Victor; Habib, Abdulrazak; Ameh, Soter; Lawson, Lovett

    2013-01-01

    Background. This study aimed to determine the pattern of drug susceptibility to first-line drugs among pulmonary TB patients in two hospitals in Calabar, Nigeria. Methods. This was a descriptive cross-sectional study carried out between February 2011 and April 2012. Sputum samples from consecutive TB patients in Calabar were subjected to culture on Lowenstein-Jensen (LJ) slopes followed by drug susceptibility testing (DST). The DST was performed on LJ medium by the proportion method. Results. Forty-two of the 100 Mycobacterium tuberculosis strains were found to be resistant to at least one drug. Resistance to only one drug (monoresistance) was found in 17 patients. No strains with monoresistance to rifampicin were found. Resistance to two drugs was found in 22 patients, while one patient was resistant to both three and four drugs. MDR TB was seen in 4% (4/100). The independent variables of HIV serology and sex were not significantly associated with resistance (P > 0.05). Conclusion. There was a high prevalence of anti-TB drug resistance in Calabar. PMID:24078872

  18. Drug interactions and the evolution of antibiotic resistance

    PubMed Central

    Yeh, Pamela J.; Hegreness, Matthew J.; Aiden, Aviva Presser; Kishony, Roy

    2010-01-01

    Large-scale, systems biology approaches now allow us to systematically map synergistic and antagonistic interactions between drugs. Consequently, drug antagonism is emerging as a powerful tool to study biological function and relatedness between cellular components as well as to uncover mechanisms of drug action. Furthermore, theoretical models and new experiments suggest that antagonistic interactions between antibiotics can counteract the evolution of drug resistance. PMID:19444248

  19. Genotypic Testing for Human Immunodeficiency Virus Type 1 Drug Resistance

    PubMed Central

    Shafer, Robert W.

    2002-01-01

    There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs. PMID:11932232

  20. Drug resistance analysis of bacterial strains isolated from burn patients.

    PubMed

    Wang, L F; Li, J L; Ma, W H; Li, J Y

    2014-01-01

    This study aimed to analyze the spectrum and drug resistance of bacteria isolated from burn patients to provide a reference for rational clinical use of antibiotics. Up to 1914 bacterial strain specimens isolated from burn patients admitted to hospital between 2001 and 2010 were subjected to resistance monitoring by using the K-B paper disk method. Retrospective analysis was performed on drug resistance analysis of burn patients. The top eight bacterium strains according to detection rate. A total of 1355 strains of Gram-negative (G(-)) bacteria and 559 strains of Gram-positive (G(+)) bacteria were detected. The top eight bacterium strains, according to detection rate, were Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterobacter cloacae, and Enterococcus. Drug resistance rates were higher than 90% in A. baumannii, P. aeruginosa, S. epidermidis, and S. aureus, which accounted for 52.2, 21.7, 27.8, and 33.3%, respectively, of the entire sample. Those with drug resistance rates lower than 30% accounted for 4.3, 30.4, 16.7, and 16.7%, respectively. Multidrug-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) accounted for 49.2 and 76.4% of the S. epidermis and S. aureus resistance, respectively. Antibacterial drugs that had drug resistance rates to MRSE and MRSA higher than 90% accounted for 38.9 and 72.2%, respectively, whereas those with lower than 30% drug resistance rates accounted for 11.1 and 16.7%, respectively. The burn patients enrolled in the study were mainly infected with G(-) bacteria. These results strongly suggest that clinicians should practice rational use of antibiotics based on drug susceptibility test results. PMID:24535909

  1. Prediction of Cancer Drug Resistance and Implications for Personalized Medicine

    PubMed Central

    Volm, Manfred; Efferth, Thomas

    2015-01-01

    Drug resistance still impedes successful cancer chemotherapy. A major goal of early concepts in individualized therapy was to develop in vitro tests to predict tumors’ drug responsiveness. We have developed an in vitro short-term test based on nucleic acid precursor incorporation to determine clinical drug resistance. This test detects inherent and acquired resistance in vitro and transplantable syngeneic and xenografted tumors in vivo. In several clinical trials, clinical resistance was predictable with more than 90% accuracy, while drug sensitivity was detected with less accuracy (~60%). Remarkably, clinical cross-resistance to numerous drugs (multidrug resistance, broad spectrum resistance) was detectable by a single compound, doxorubicin, due to its multifactorial modes of action. The results of this predictive test were in good agreement with predictive assays of other authors. As no predictive test has been established as yet for clinical diagnostics, the identification of sensitive drugs may not reach sufficiently high reliability for clinical routine. A meta-analysis of the literature published during the past four decades considering test results of more than 15,000 tumor patients unambiguously demonstrated that, in the majority of studies, resistance was correctly predicted with an accuracy between 80 and 100%, while drug sensitivity could only be predicted with an accuracy of 50–80%. This synopsis of the published literature impressively illustrates that prediction of drug resistance could be validated. The determination of drug resistance was reliable independent of tumor type, test assay, and drug used in these in vitro tests. By contrast, chemosensitivity could not be predicted with high reliability. Therefore, we propose a rethinking of the “chemosensitivity” concept. Instead, predictive in vitro tests may reliably identify drug-resistant tumors. The clinical consequence imply to subject resistant tumors not to chemotherapy, but to other new

  2. The Impact of Microenvironmental Heterogeneity on the Evolution of Drug Resistance in Cancer Cells

    PubMed Central

    Mumenthaler, Shannon M; Foo, Jasmine; Choi, Nathan C; Heise, Nicholas; Leder, Kevin; Agus, David B; Pao, William; Michor, Franziska; Mallick, Parag

    2015-01-01

    Therapeutic resistance arises as a result of evolutionary processes driven by dynamic feedback between a heterogeneous cell population and environmental selective pressures. Previous studies have suggested that mutations conferring resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in non-small-cell lung cancer (NSCLC) cells lower the fitness of resistant cells relative to drug-sensitive cells in a drug-free environment. Here, we hypothesize that the local tumor microenvironment could influence the magnitude and directionality of the selective effect, both in the presence and absence of a drug. Using a combined experimental and computational approach, we developed a mathematical model of preexisting drug resistance describing multiple cellular compartments, each representing a specific tumor environmental niche. This model was parameterized using a novel experimental dataset derived from the HCC827 erlotinib-sensitive and -resistant NSCLC cell lines. We found that, in contrast to in the drug-free environment, resistant cells may hold a fitness advantage compared to parental cells in microenvironments deficient in oxygen and nutrients. We then utilized the model to predict the impact of drug and nutrient gradients on tumor composition and recurrence times, demonstrating that these endpoints are strongly dependent on the microenvironment. Our interdisciplinary approach provides a model system to quantitatively investigate the impact of microenvironmental effects on the evolutionary dynamics of tumor cells. PMID:26244007

  3. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    PubMed Central

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F. M.; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates for the enzymatic reaction. In this study, susceptibility of HIV mutations to drugs was evaluated by selective formation of three FL products after the enzymatic HIV-PR reaction. This proof-of-concept study indicates that the present HPLC-FL method could be an alternative to current phenotypic assays for the evaluation of HIV drug resistance. PMID:25988960

  4. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants.

    PubMed

    Zhu, Qinchang; Yu, Zhiqiang; Kabashima, Tsutomu; Yin, Sheng; Dragusha, Shpend; El-Mahdy, Ahmed F M; Ejupi, Valon; Shibata, Takayuki; Kai, Masaaki

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates for the enzymatic reaction. In this study, susceptibility of HIV mutations to drugs was evaluated by selective formation of three FL products after the enzymatic HIV-PR reaction. This proof-of-concept study indicates that the present HPLC-FL method could be an alternative to current phenotypic assays for the evaluation of HIV drug resistance. PMID:25988960

  5. Bedaquiline for the treatment of drug-resistant tuberculosis.

    PubMed

    Bélard, Sabine; Heuvelings, Charlotte C; Janssen, Saskia; Grobusch, Martin P

    2015-05-01

    Bedaquiline is a much-needed novel drug which is highly effective against drug-resistant tuberculosis. While its clinical development has been laudably fast-tracked and the drug is now available for inclusion into treatment regimens when no suitable alternatives exist, clinical experience with bedaquiline is still limited. Phase III trial data and Phase IV studies are needed particularly to study different patient populations and to optimize treatment regimens. Drug resistance to bedaquiline needs to be monitored carefully, and full access to bedaquiline treatment where it is appropriate and needed must be promoted. PMID:25797824

  6. Longitudinal Detection and Persistence of Minority Drug-Resistant Populations and Their Effect on Salvage Therapy

    PubMed Central

    Nishizawa, Masako; Matsuda, Masakazu; Hattori, Junko; Shiino, Teiichiro; Matano, Tetsuro; Heneine, Walid; Johnson, Jeffrey A.; Sugiura, Wataru

    2015-01-01

    Background Drug-resistant HIV are more prevalent and persist longer than previously demonstrated by bulk sequencing due to the ability to detect low-frequency variants. To clarify a clinical benefit to monitoring minority-level drug resistance populations as a guide to select active drugs for salvage therapy, we retrospectively analyzed the dynamics of low-frequency drug-resistant population in antiretroviral (ARV)-exposed drug resistant individuals. Materials and Methods Six HIV-infected individuals treated with ARV for more than five years were analyzed. These individuals had difficulty in controlling viremia, and treatment regimens were switched multiple times guided by standard drug resistance testing using bulk sequencing. To detect minority variant populations with drug resistance, we used a highly sensitive allele-specific PCR (AS-PCR) with detection thresholds of 0.3–2%. According to ARV used in these individuals, we focused on the following seven reverse transcriptase inhibitor-resistant mutations: M41L, K65R, K70R, K103N, Y181C, M184V, and T215F/Y. Results of AS-PCR were compared with bulk sequencing data for concordance and presence of additional mutations. To clarify the genetic relationship between low-frequency and high-frequency populations, AS-PCR amplicon sequences were compared with bulk sequences in phylogenetic analysis. Results The use of AS-PCR enabled detection of the drug-resistant mutations, M41L, K103N, Y181C, M184V and T215Y, present as low-frequency populations in five of the six individuals. These drug resistant variants persisted for several years without ARV pressure. Phylogenetic analysis indicated that pre-existing K103N and T215I variants had close genetic relationships with high-frequency K103N and T215I observed during treatment. Discussion and Conclusion Our results demonstrate the long-term persistence of drug-resistant viruses in the absence of drug pressure. The rapid virologic failures with pre-existing mutant viruses

  7. Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis

    PubMed Central

    Cegielski, J. Peter; Dalton, Tracy; Yagui, Martin; Wattanaamornkiet, Wanpen; Volchenkov, Grigory V.; Via, Laura E.; Van Der Walt, Martie; Tupasi, Thelma; Smith, Sarah E.; Odendaal, Ronel; Leimane, Vaira; Kvasnovsky, Charlotte; Kuznetsova, Tatiana; Kurbatova, Ekaterina; Kummik, Tiina; Kuksa, Liga; Kliiman, Kai; Kiryanova, Elena V.; Kim, HeeJin; Kim, Chang-ki; Kazennyy, Boris Y.; Jou, Ruwen; Huang, Wei-Lun; Ershova, Julia; Erokhin, Vladislav V.; Diem, Lois; Contreras, Carmen; Cho, Sang Nae; Chernousova, Larisa N.; Chen, Michael P.; Caoili, Janice Campos; Bayona, Jaime; Akksilp, Somsak; Calahuanca, Gloria Yale; Wolfgang, Melanie; Viiklepp, Piret; Vasilieva, Irina A.; Taylor, Allison; Tan, Kathrine; Suarez, Carmen; Sture, Ingrida; Somova, Tatiana; Smirnova, Tatyana G.; Sigman, Erika; Skenders, Girts; Sitti, Wanlaya; Shamputa, Isdore C.; Riekstina, Vija; Pua, Kristine Rose; Therese, M.; Perez, C.; Park, Seungkyu; Norvaisha, Inga; Nemtsova, Evgenia S.; Min, Seonyeong; Metchock, Beverly; Levina, Klavdia; Lei, Yung-Chao; Lee, Jongseok; Larionova, Elena E.; Lancaster, Joey; Jeon, Doosoo; Jave, Oswaldo; Khorosheva, Tatiana; Hwang, Soo Hee; Huang, Angela Song-En; Gler, M. Tarcela; Dravniece, Gunta; Eum, Seokyong; Demikhova, Olga V.; Degtyareva, Irina; Danilovits, Manfred; Cirula, Anda; Cho, Eunjin; Cai, Ying; Brand, Jeanette; Bonilla, Cesar; Barry, Clifton E.; Asencios, Luis; Andreevskaya, Sofia N.; Akksilp, Rattanawadee

    2014-01-01

    Background. Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. Methods. To assess the GLC's impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. Results. In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16–.47) for XDR tuberculosis, 0.28 (.17–.45) for FQ, and 0.15 (.06–.39) to 0.60 (.34–1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07–.62) for acquired XDR tuberculosis and 0.23 (.09–.59) for acquired FQ resistance. Conclusions. Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards. PMID:25057101

  8. Origin of Robustness in Generating Drug-Resistant Malaria Parasites

    PubMed Central

    Kümpornsin, Krittikorn; Modchang, Charin; Heinberg, Adina; Ekland, Eric H.; Jirawatcharadech, Piyaporn; Chobson, Pornpimol; Suwanakitti, Nattida; Chaotheing, Sastra; Wilairat, Prapon; Deitsch, Kirk W.; Kamchonwongpaisan, Sumalee; Fidock, David A.; Kirkman, Laura A.; Yuthavong, Yongyuth; Chookajorn, Thanat

    2014-01-01

    Biological robustness allows mutations to accumulate while maintaining functional phenotypes. Despite its crucial role in evolutionary processes, the mechanistic details of how robustness originates remain elusive. Using an evolutionary trajectory analysis approach, we demonstrate how robustness evolved in malaria parasites under selective pressure from an antimalarial drug inhibiting the folate synthesis pathway. A series of four nonsynonymous amino acid substitutions at the targeted enzyme, dihydrofolate reductase (DHFR), render the parasites highly resistant to the antifolate drug pyrimethamine. Nevertheless, the stepwise gain of these four dhfr mutations results in tradeoffs between pyrimethamine resistance and parasite fitness. Here, we report the epistatic interaction between dhfr mutations and amplification of the gene encoding the first upstream enzyme in the folate pathway, GTP cyclohydrolase I (GCH1). gch1 amplification confers low level pyrimethamine resistance and would thus be selected for by pyrimethamine treatment. Interestingly, the gch1 amplification can then be co-opted by the parasites because it reduces the cost of acquiring drug-resistant dhfr mutations downstream in the same metabolic pathway. The compensation of compromised fitness by extra GCH1 is an example of how robustness can evolve in a system and thus expand the accessibility of evolutionary trajectories leading toward highly resistant alleles. The evolution of robustness during the gain of drug-resistant mutations has broad implications for both the development of new drugs and molecular surveillance for resistance to existing drugs. PMID:24739308

  9. [Resistance to antiplatelet drugs in patients with cerebrovascular disorders].

    PubMed

    Suslina, Z A; Tanashian, M M; Domashenko, M A

    2011-01-01

    This review concerns clinical and laboratory resistance to antiplatelet drugs (aspirin and clopidogrel) in patients with cerebrovascular disorders. Results of certain clinical trials showed that laboratory resistance to antiaggregants is associated with recurrent thromboembolic vascular events. The commonest causes of aspirin resistance are production of arachidonic acid metabolites via the lipoxygenase pathway, poor compliance with the treatment, polymorphism of the genes encoding for cyclooxygenase and glycoprotein (GP) IIb/IIIa, endothelial dysfunction. The causes of clopidogrel resistance include inadequate doses of the drug, its low absorption, poor compliance with the treatment, polymorphism of ADP receptors, GP IIb/IIIa and cytochrome P450 genes, acute coronary syndrome and stroke, metabolic syndrome. Therapeutic efficacy of antiaggregants can be improved by increasing their doses, using membranotropic agents, correcting endothelial dysfunction, etc. Because the apparent variability of antiplatelet drug resistance is currently due to the use of different test-systems by different authors, the evaluation of individual sensitivity to a given drug showing laboratory resistance and the choice of alternative therapy are thus far possible only in the framework of clinical studies. Large-scale prospective multicenter trials of antiplatelet drug resistance are needed along with research for better understanding mechanisms of individual platelet sensitivity and resistance to antiaggregants and developing efficacious methods for their correction. PMID:21901881

  10. Systematic identification of signaling pathways with potential to confer anticancer drug resistance.

    PubMed

    Martz, Colin A; Ottina, Kathleen A; Singleton, Katherine R; Jasper, Jeff S; Wardell, Suzanne E; Peraza-Penton, Ashley; Anderson, Grace R; Winter, Peter S; Wang, Tim; Alley, Holly M; Kwong, Lawrence N; Cooper, Zachary A; Tetzlaff, Michael; Chen, Pei-Ling; Rathmell, Jeffrey C; Flaherty, Keith T; Wargo, Jennifer A; McDonnell, Donald P; Sabatini, David M; Wood, Kris C

    2014-12-23

    Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)-mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF(V600E) melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts. PMID:25538079