Science.gov

Sample records for multiple horizontal transfers

  1. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi.

    PubMed

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-10-01

    Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136

  2. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi

    PubMed Central

    Ropars, Jeanne; Rodríguez de la Vega, Ricardo C.; López-Villavicencio, Manuela; Gouzy, Jérôme; Sallet, Erika; Dumas, Émilie; Lacoste, Sandrine; Debuchy, Robert; Dupont, Joëlle; Branca, Antoine; Giraud, Tatiana

    2015-01-01

    Summary Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. PMID:26412136

  3. Multiple recent horizontal transfers of a large genomic region in cheese making fungi

    PubMed Central

    Cheeseman, Kevin; Ropars, Jeanne; Renault, Pierre; Dupont, Joëlle; Gouzy, Jérôme; Branca, Antoine; Abraham, Anne-Laure; Ceppi, Maurizio; Conseiller, Emmanuel; Debuchy, Robert; Malagnac, Fabienne; Goarin, Anne; Silar, Philippe; Lacoste, Sandrine; Sallet, Erika; Bensimon, Aaron; Giraud, Tatiana; Brygoo, Yves

    2014-01-01

    While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti—called Wallaby—present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes. PMID:24407037

  4. Migration and horizontal gene transfer divide microbial genomes into multiple niches

    PubMed Central

    Niehus, Rene; Mitri, Sara; Fletcher, Alexander G.; Foster, Kevin R.

    2015-01-01

    Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches. PMID:26592443

  5. Migration and horizontal gene transfer divide microbial genomes into multiple niches.

    PubMed

    Niehus, Rene; Mitri, Sara; Fletcher, Alexander G; Foster, Kevin R

    2015-01-01

    Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches. PMID:26592443

  6. Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation

    PubMed Central

    Kondrashov, Fyodor A; Koonin, Eugene V; Morgunov, Igor G; Finogenova, Tatiana V; Kondrashova, Marie N

    2006-01-01

    Background The glyoxylate cycle is thought to be present in bacteria, protists, plants, fungi, and nematodes, but not in other Metazoa. However, activity of the glyoxylate cycle enzymes, malate synthase (MS) and isocitrate lyase (ICL), in animal tissues has been reported. In order to clarify the status of the MS and ICL genes in animals and get an insight into their evolution, we undertook a comparative-genomic study. Results Using sequence similarity searches, we identified MS genes in arthropods, echinoderms, and vertebrates, including platypus and opossum, but not in the numerous sequenced genomes of placental mammals. The regions of the placental mammals' genomes expected to code for malate synthase, as determined by comparison of the gene orders in vertebrate genomes, show clear similarity to the opossum MS sequence but contain stop codons, indicating that the MS gene became a pseudogene in placental mammals. By contrast, the ICL gene is undetectable in animals other than the nematodes that possess a bifunctional, fused ICL-MS gene. Examination of phylogenetic trees of MS and ICL suggests multiple horizontal gene transfer events that probably went in both directions between several bacterial and eukaryotic lineages. The strongest evidence was obtained for the acquisition of the bifunctional ICL-MS gene from an as yet unknown bacterial source with the corresponding operonic organization by the common ancestor of the nematodes. Conclusion The distribution of the MS and ICL genes in animals suggests that either they encode alternative enzymes of the glyoxylate cycle that are not orthologous to the known MS and ICL or the animal MS acquired a new function that remains to be characterized. Regardless of the ultimate solution to this conundrum, the genes for the glyoxylate cycle enzymes present a remarkable variety of evolutionary events including unusual horizontal gene transfer from bacteria to animals. Reviewers Arcady Mushegian (Stowers Institute for Medical

  7. Multiple Phenotypic Changes Associated with Large-Scale Horizontal Gene Transfer

    PubMed Central

    Dougherty, Kevin; Smith, Brian A.; Moore, Autumn F.; Maitland, Shannon; Fanger, Chris; Murillo, Rachel; Baltrus, David A.

    2014-01-01

    Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts. PMID:25048697

  8. Multiple Inter-Kingdom Horizontal Gene Transfers in the Evolution of the Phosphoenolpyruvate Carboxylase Gene Family

    PubMed Central

    Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  9. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    PubMed

    Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing

    2012-01-01

    Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought. PMID:23251445

  10. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community

    PubMed Central

    Wang, Ningxin; Jia, Sisi; Xu, Heng; Liu, Yong; Huang, Dawei

    2016-01-01

    Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasp. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23) and 39.1% (9/23), respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a specific clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future. PMID:26913026

  11. Multiple Horizontal Transfers of Bacteriophage WO and Host Wolbachia in Fig Wasps in a Closed Community.

    PubMed

    Wang, Ningxin; Jia, Sisi; Xu, Heng; Liu, Yong; Huang, Dawei

    2016-01-01

    Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasp. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23) and 39.1% (9/23), respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a specific clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future. PMID:26913026

  12. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.

    PubMed

    He, Ding; Fu, Cheng-Jie; Baldauf, Sandra L

    2016-01-01

    The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis. PMID:26412445

  13. Multiple Horizontal Gene Transfer Events and Domain Fusions Have Created Novel Regulatory and Metabolic Networks in the Oomycete Genome

    PubMed Central

    Morris, Paul Francis; Schlosser, Laura Rose; Onasch, Katherine Diane; Wittenschlaeger, Tom; Austin, Ryan; Provart, Nicholas

    2009-01-01

    Complex enzymes with multiple catalytic activities are hypothesized to have evolved from more primitive precursors. Global analysis of the Phytophthora sojae genome using conservative criteria for evaluation of complex proteins identified 273 novel multifunctional proteins that were also conserved in P. ramorum. Each of these proteins contains combinations of protein motifs that are not present in bacterial, plant, animal, or fungal genomes. A subset of these proteins were also identified in the two diatom genomes, but the majority of these proteins have formed after the split between diatoms and oomycetes. Documentation of multiple cases of domain fusions that are common to both oomycetes and diatom genomes lends additional support for the hypothesis that oomycetes and diatoms are monophyletic. Bifunctional proteins that catalyze two steps in a metabolic pathway can be used to infer the interaction of orthologous proteins that exist as separate entities in other genomes. We postulated that the novel multifunctional proteins of oomycetes could function as potential Rosetta Stones to identify interacting proteins of conserved metabolic and regulatory networks in other eukaryotic genomes. However ortholog analysis of each domain within our set of 273 multifunctional proteins against 39 sequenced bacterial and eukaryotic genomes, identified only 18 candidate Rosetta Stone proteins. Thus the majority of multifunctional proteins are not Rosetta Stones, but they may nonetheless be useful in identifying novel metabolic and regulatory networks in oomycetes. Phylogenetic analysis of all the enzymes in three pathways with one or more novel multifunctional proteins was conducted to determine the probable origins of individual enzymes. These analyses revealed multiple examples of horizontal transfer from both bacterial genomes and the photosynthetic endosymbiont in the ancestral genome of Stramenopiles. The complexity of the phylogenetic origins of these metabolic pathways and

  14. Horizontal gene transfer in plants.

    PubMed

    Gao, Caihua; Ren, Xiaodong; Mason, Annaliese S; Liu, Honglei; Xiao, Meili; Li, Jiana; Fu, Donghui

    2014-03-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components. PMID:24132513

  15. The chloroplast genome of the diatom Seminavis robusta: new features introduced through multiple mechanisms of horizontal gene transfer.

    PubMed

    Brembu, Tore; Winge, Per; Tooming-Klunderud, Ave; Nederbragt, Alexander J; Jakobsen, Kjetill S; Bones, Atle M

    2014-08-01

    The chloroplasts of heterokont algae such as diatoms are the result of a secondary endosymbiosis event, in which a red alga was engulfed by a non-photosynthetic eukaryote. The diatom chloroplast genomes sequenced to date show a high degree of similarity, but some examples of gene replacement or introduction of genes through horizontal gene transfer are known. The evolutionary origin of the gene transfers is unclear. We have sequenced and characterised the complete chloroplast genome and a putatively chloroplast-associated plasmid of the pennate diatom Seminavis robusta. The chloroplast genome contains two introns, a feature that has not previously been found in diatoms. The group II intron of atpB appears to be recently transferred from a Volvox-like green alga. The S. robusta chloroplast genome (150,905 bp) is the largest diatom chloroplast genome characterised to date, mainly due to the presence of four large gene-poor regions. Open reading frames (ORFs) encoded by the gene-poor regions show similarity to putative proteins encoded by the chloroplast genomes of different heterokonts, as well as the plasmids pCf1 and pCf2 found in the diatom Cylindrotheca fusiformis. A tyrosine recombinase and a serine recombinase are encoded by the S. robusta chloroplast genome, indicating a possible mechanism for the introduction of novel genes. A plasmid with similarity to pCf2 was also identified. Phylogenetic analyses of three ORFs identified on pCf2 suggest that two of them are part of an operon-like gene cluster conserved in bacteria. Several genetic elements have moved through horizontal gene transfer between the chloroplast genomes of different heterokonts. Two recombinases are likely to promote such gene insertion events, and the plasmid identified may act as vectors in this process. The copy number of the plasmid was similar to that of the plastid genome indicating a plastid localization. PMID:24365712

  16. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    PubMed Central

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  17. Widespread horizontal transfer of retrotransposons.

    PubMed

    Walsh, Ali Morton; Kortschak, R Daniel; Gardner, Michael G; Bertozzi, Terry; Adelson, David L

    2013-01-15

    In higher organisms such as vertebrates, it is generally believed that lateral transfer of genetic information does not readily occur, with the exception of retroviral infection. However, horizontal transfer (HT) of protein coding repetitive elements is the simplest way to explain the patchy distribution of BovB, a long interspersed element (LINE) about 3.2 kb long, that has been found in ruminants, marsupials, squamates, monotremes, and African mammals. BovB sequences are a major component of some of these genomes. Here we show that HT of BovB is significantly more widespread than believed, and we demonstrate the existence of two plausible arthropod vectors, specifically reptile ticks. A phylogenetic tree built from BovB sequences from species in all of these groups does not conform to expected evolutionary relationships of the species, and our analysis indicates that at least nine HT events are required to explain the observed topology. Our results provide compelling evidence for HT of genetic material that has transformed vertebrate genomes. PMID:23277587

  18. Horizontal gene transfer between bacteria and animals.

    PubMed

    Dunning Hotopp, Julie C

    2011-04-01

    Horizontal gene transfer is increasingly described between bacteria and animals. Such transfers that are vertically inherited have the potential to influence the evolution of animals. One classic example is the transfer of DNA from mitochondria and chloroplasts to the nucleus after the acquisition of these organelles by eukaryotes. Even today, many of the described instances of bacteria-to-animal transfer occur as part of intimate relationships such as those of endosymbionts and their invertebrate hosts, particularly insects and nematodes, while numerous transfers are also found in asexual animals. Both of these observations are consistent with modern evolutionary theory, in particular the serial endosymbiotic theory and Muller's ratchet. Although it is tempting to suggest that these particular lifestyles promote horizontal gene transfer, it is difficult to ascertain given the nonrandom sampling of animal genome sequencing projects and the lack of a systematic analysis of animal genomes for such transfers. PMID:21334091

  19. Horizontal gene transfer, genome innovation and evolution.

    PubMed

    Gogarten, J Peter; Townsend, Jeffrey P

    2005-09-01

    To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories. PMID:16138096

  20. Pervasive Horizontal Transfer of Rolling-Circle Transposons among Animals

    PubMed Central

    Thomas, Jainy; Schaack, Sarah; Pritham, Ellen J.

    2010-01-01

    Horizontal transfer (HT) of genes is known to be an important mechanism of genetic innovation, especially in prokaryotes. The impact of HT of transposable elements (TEs), however, has only recently begun to receive widespread attention and may be significant due to their mutagenic potential, inherent mobility, and abundance. Helitrons, also known as rolling-circle transposons, are a distinctive subclass of TE with a unique transposition mechanism. Here, we describe the first evidence for the repeated HT of four different families of Helitrons in an unprecedented array of organisms, including mammals, reptiles, fish, invertebrates, and insect viruses. The Helitrons present in these species have a patchy distribution and are closely related (80–98% sequence identity), despite the deep divergence times among hosts. Multiple lines of evidence indicate the extreme conservation of sequence identity is not due to selection, including the highly fragmented nature of the Helitrons identified and the lack of any signatures of selection at the nucleotide level. The presence of horizontally transferred Helitrons in insect viruses, in particular, suggests that this may represent a potential mechanism of transfer in some taxa. Unlike genes, Helitrons that have horizontally transferred into new host genomes can amplify, in some cases reaching up to several hundred copies and representing a substantial fraction of the genome. Because Helitrons are known to frequently capture and amplify gene fragments, HT of this unique group of DNA transposons could lead to horizontal gene transfer and incur dramatic shifts in the trajectory of genome evolution. PMID:20693155

  1. High expression hampers horizontal gene transfer.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2012-01-01

    Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient. PMID:22436996

  2. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    PubMed Central

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  3. Horizontal transfer of supernumerary chromosomes in fungi.

    PubMed

    van der Does, H Charlotte; Rep, Martijn

    2012-01-01

    Several species of filamentous fungi contain so-called dispensable or supernumerary chromosomes. These chromosomes are dispensable for the fungus to survive, but may carry genes required for specialized functions, such as infection of a host plant. It has been shown that at least some dispensable chromosomes are able to transfer horizontally (i.e., in the absence of a sexual cycle) from one fungal strain to another. In this paper, we describe a method by which this can be shown. Horizontal chromosome transfer (HCT) occurs during co-incubation of two strains. To document the actual occurrence of HCT, it is necessary to select for HCT progeny. This is accomplished by transforming two different drug-resistance genes into the two parent strains before their co-incubation. In one of the strains (the "donor"), a drug-resistance gene should be integrated in a chromosome of which the propensity for HCT is under investigation. In the "tester" or "recipient" strain, another drug-resistance gene should be integrated somewhere in the core genome. In this way, after co-incubation, HCT progeny can be selected on plates containing both drugs. HCT can be initiated with equal amounts of asexual spores of both strains, plated on regular growth medium for the particular fungus, followed by incubation until new asexual spores are formed. The new asexual spores are then harvested and plated on plates containing both drugs. Double drug-resistant colonies that appear should carry at least one chromosome from each parental strain. Finally, double drug-resistant strains need to be analysed to assess whether HCT has actually occurred. This can be done by various genome mapping methods, like CHEF-gels, AFLP, RFLP, PCR markers, optical maps, or even complete genome sequencing. PMID:22183669

  4. Horizontal gene transfer of stress resistance genes through plasmid transport.

    PubMed

    Shoeb, Erum; Badar, Uzma; Akhter, Jameela; Shams, Hina; Sultana, Maria; Ansari, Maqsood A

    2012-03-01

    The horizontal gene transfer of plasmid-determined stress tolerance was achieved under lab conditions. Bacterial isolates, Enterobacter cloacae (DGE50) and Escherichia coli (DGE57) were used throughout the study. Samples were collected from contaminated marine water and soil to isolate bacterial strains having tolerance against heavy metals and antimicrobial agents. We have demonstrated plasmid transfer, from Amp(+)Cu(+)Zn(-) strain (DGE50) to Amp(-)Cu(-)Zn(+) strain (DGE57), producing Amp(+)Cu(+)Zn(+) transconjugants (DGE(TC50→57)) and Amp(+)Cu(-)Zn(+) transformants (DGE(TF50→57)). DGE57 did not carry any plasmid, therefore, it can be speculated that zinc tolerance gene in DGE57 is located on chromosome. DGE50 was found to carry three plasmids, out of which two were transferred through conjugation into DGE57, and only one was transferred through transformation. Plasmid transferred through transformation was one out of the two transferred through conjugation. Through the results of transformation it was revealed that the genes of copper and ampicillin tolerance in DGE50 were located on separate plasmids, since only ampicillin tolerance genes were transferred through transformation as a result of one plasmid transfer. By showing transfer of plasmids under lab conditions and monitoring retention of respective phenotype via conjugation and transformation, it is very well demonstrated how multiple stress tolerant strains are generated in nature. PMID:22805823

  5. Horizontal gene transfer from Agrobacterium to plants

    PubMed Central

    Matveeva, Tatiana V.; Lutova, Ludmila A.

    2014-01-01

    Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named “cellular T-DNA” (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role. PMID:25157257

  6. 13. DETAIL OF BEVEL GEAR TRANSFERRING HORIZONTAL DRIVE FROM MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF BEVEL GEAR TRANSFERRING HORIZONTAL DRIVE FROM MAIN WATERWHEEL SHAFT TO VERTICAL SHAFT DRIVING COFFEE HUSKING MILL ON SECOND FLOOR - Hacienda Cafetalera Santa Clara, Coffee Mill, KM 19, PR Route 372, Hacienda La Juanita, Yauco Municipio, PR

  7. Evolution of and Horizontal Gene Transfer in the Endornavirus Genus

    PubMed Central

    Park, Sang-Ho; Jo, Yeonhwa; Kim, Kook-Hyung

    2013-01-01

    The transfer of genetic information between unrelated species is referred to as horizontal gene transfer. Previous studies have demonstrated that both retroviral and non-retroviral sequences have been integrated into eukaryotic genomes. Recently, we identified many non-retroviral sequences in plant genomes. In this study, we investigated the evolutionary origin and gene transfer of domains present in endornaviruses which are double-stranded RNA viruses. Using the available sequences for endornaviruses, we found that Bell pepper endornavirus-like sequences homologous to the glycosyltransferase 28 domain are present in plants, fungi, and bacteria. The phylogenetic analysis revealed the glycosyltransferase 28 domain of Bell pepper endornavirus may have originated from bacteria. In addition, two domains of Oryza sativa endornavirus, a glycosyltransferase sugar-binding domain and a capsular polysaccharide synthesis protein, also exhibited high similarity to those of bacteria. We found evidence that at least four independent horizontal gene transfer events for the glycosyltransferase 28 domain have occurred among plants, fungi, and bacteria. The glycosyltransferase sugar-binding domains of two proteobacteria may have been horizontally transferred to the genome of Thalassiosira pseudonana. Our study is the first to show that three glycome-related viral genes in the genus Endornavirus have been acquired from marine bacteria by horizontal gene transfer. PMID:23667703

  8. Widespread and frequent horizontal transfers of transposable elements in plants.

    PubMed

    El Baidouri, Moaine; Carpentier, Marie-Christine; Cooke, Richard; Gao, Dongying; Lasserre, Eric; Llauro, Christel; Mirouze, Marie; Picault, Nathalie; Jackson, Scott A; Panaud, Olivier

    2014-05-01

    Vertical, transgenerational transmission of genetic material occurs through reproduction of living organisms. In addition to vertical inheritance, horizontal gene transfer between reproductively isolated species has recently been shown to be an important, if not dominant, mechanism in the evolution of prokaryotic genomes. In contrast, only a few horizontal transfer (HT) events have been characterized so far in eukaryotes and mainly concern transposable elements (TEs). Whether these are frequent and have a significant impact on genome evolution remains largely unknown. We performed a computational search for highly conserved LTR retrotransposons among 40 sequenced eukaryotic genomes representing the major plant families. We found that 26 genomes (65%) harbor at least one case of horizontal TE transfer (HTT). These transfers concern species as distantly related as palm and grapevine, tomato and bean, or poplar and peach. In total, we identified 32 cases of HTTs, which could translate into more than 2 million among the 13,551 monocot and dicot genera. Moreover, we show that these TEs have remained functional after their transfer, occasionally causing a transpositional burst. This suggests that plants can frequently exchange genetic material through horizontal transfers and that this mechanism may be important in TE-driven genome evolution. PMID:24518071

  9. Evolution of and horizontal gene transfer in the Endornavirus genus.

    PubMed

    Song, Dami; Cho, Won Kyong; Park, Sang-Ho; Jo, Yeonhwa; Kim, Kook-Hyung

    2013-01-01

    The transfer of genetic information between unrelated species is referred to as horizontal gene transfer. Previous studies have demonstrated that both retroviral and non-retroviral sequences have been integrated into eukaryotic genomes. Recently, we identified many non-retroviral sequences in plant genomes. In this study, we investigated the evolutionary origin and gene transfer of domains present in endornaviruses which are double-stranded RNA viruses. Using the available sequences for endornaviruses, we found that Bell pepper endornavirus-like sequences homologous to the glycosyltransferase 28 domain are present in plants, fungi, and bacteria. The phylogenetic analysis revealed the glycosyltransferase 28 domain of Bell pepper endornavirus may have originated from bacteria. In addition, two domains of Oryza sativa endornavirus, a glycosyltransferase sugar-binding domain and a capsular polysaccharide synthesis protein, also exhibited high similarity to those of bacteria. We found evidence that at least four independent horizontal gene transfer events for the glycosyltransferase 28 domain have occurred among plants, fungi, and bacteria. The glycosyltransferase sugar-binding domains of two proteobacteria may have been horizontally transferred to the genome of Thalassiosira pseudonana. Our study is the first to show that three glycome-related viral genes in the genus Endornavirus have been acquired from marine bacteria by horizontal gene transfer. PMID:23667703

  10. Horizontal transfer of DNA methylation patterns into bacterial chromosomes

    PubMed Central

    Shin, Jung-Eun; Lin, Chris; Lim, Han N.

    2016-01-01

    Horizontal gene transfer (HGT) is the non-inherited acquisition of novel DNA sequences. HGT is common and important in bacteria because it enables the rapid generation of new phenotypes such as antibiotic resistance. Here we show that in vivo and in vitro DNA methylation patterns can be horizontally transferred into bacterial chromosomes to program cell phenotypes. The experiments were performed using a synthetic system in Escherichia coli where different DNA methylation patterns within the cis-regulatory sequence of the agn43 gene turn on or off a fluorescent reporter (CFP). With this system we demonstrated that DNA methylation patterns not only accompany the horizontal transfer of genes into the bacterial cytoplasm but can be transferred into chromosomes by: (i) bacteriophage P1 transduction; and (ii) transformation of extracellular synthetic DNA. We also modified the experimental system by replacing CFP with the SgrS small RNA, which regulates glucose and methyl α-D-glucoside uptake, and showed that horizontally acquired DNA methylation patterns can increase or decrease cell fitness. That is, horizontally acquired DNA methylation patterns can result in the selection for and against cells that have HGT. Findings from these proof-of-concept experiments have applications in synthetic biology and potentially broad implications for bacterial adaptation and evolution. PMID:27084942

  11. Horizontal transfer of DNA methylation patterns into bacterial chromosomes.

    PubMed

    Shin, Jung-Eun; Lin, Chris; Lim, Han N

    2016-05-19

    Horizontal gene transfer (HGT) is the non-inherited acquisition of novel DNA sequences. HGT is common and important in bacteria because it enables the rapid generation of new phenotypes such as antibiotic resistance. Here we show that in vivo and in vitro DNA methylation patterns can be horizontally transferred into bacterial chromosomes to program cell phenotypes. The experiments were performed using a synthetic system in Escherichia coli where different DNA methylation patterns within the cis-regulatory sequence of the agn43 gene turn on or off a fluorescent reporter (CFP). With this system we demonstrated that DNA methylation patterns not only accompany the horizontal transfer of genes into the bacterial cytoplasm but can be transferred into chromosomes by: (i) bacteriophage P1 transduction; and (ii) transformation of extracellular synthetic DNA. We also modified the experimental system by replacing CFP with the SgrS small RNA, which regulates glucose and methyl α-D-glucoside uptake, and showed that horizontally acquired DNA methylation patterns can increase or decrease cell fitness. That is, horizontally acquired DNA methylation patterns can result in the selection for and against cells that have HGT. Findings from these proof-of-concept experiments have applications in synthetic biology and potentially broad implications for bacterial adaptation and evolution. PMID:27084942

  12. Interaction between Conjugative and Retrotransposable Elements in Horizontal Gene Transfer

    PubMed Central

    Novikova, Olga; Smith, Dorie; Hahn, Ingrid; Beauregard, Arthur; Belfort, Marlene

    2014-01-01

    Mobile genetic elements either encode their own mobilization machineries or hijack them from other mobile elements. Multiple classes of mobile elements often coexist within genomes and it is unclear whether they have the capacity to functionally interact and even collaborate. We investigate the possibility that molecular machineries of disparate mobile elements may functionally interact, using the example of a retrotransposon, in the form of a mobile group II intron, found on a conjugative plasmid pRS01 in Lactococcus lactis. This intron resides within the pRS01 ltrB gene encoding relaxase, the enzyme required for nicking the transfer origin (oriT) for conjugal transmission of the plasmid into a recipient cell. Here, we show that relaxase stimulates both the frequency and diversity of retrotransposition events using a retromobility indicator gene (RIG), and by developing a high-throughput genomic retrotransposition detection system called RIG-Seq. We demonstrate that LtrB relaxase not only nicks ssDNA of its cognate oriT in a sequence- and strand-specific manner, but also possesses weak off-target activity. Together, the data support a model in which the two different mobile elements, one using an RNA-based mechanism, the other using DNA-based transfer, do functionally interact. Intron splicing facilitates relaxase expression required for conjugation, whereas relaxase introduces spurious nicks in recipient DNA that stimulate both the frequency of intron mobility and the density of events. We hypothesize that this functional interaction between the mobile elements would promote horizontal conjugal gene transfer while stimulating intron dissemination in the donor and recipient cells. PMID:25474706

  13. A heat transfer model of a horizontal ground heat exchanger

    NASA Astrophysics Data System (ADS)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  14. Global Analysis of Horizontal Gene Transfer in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The co-occurrence of microbes within plants and other specialized niches may facilitate horizontal gene transfer (HGT) affecting host-pathogen interactions. We recently identified fungal-to-fungal HGTs involving metabolic gene clusters. For a global analysis of HGTs in the maize pathogen Fusarium ve...

  15. Horizontal Transfer of Spinosad in Coptotermes formosanus (Isoptera: Rhinotermitidae).

    PubMed

    Bhatta, D; Henderson, G

    2016-08-01

    Slow-acting and nonrepellent termiticides are possible candidates for nestmate to nestmate transfer called horizontal transfer. For the horizontal transfer study of spinosad, Coptotermes formosanus Shiraki was released in sand and soil at 1, 25, and 50 ppm Entrust(®) for 1 h and then mixed with healthy untreated termites for 21 d at the ratio of 1:1. Donor and recipient termites began to contact and groom each other immediately after release. Mortality of termites was recorded at 1, 3, 7, and 14 d after treatment. Spinosad was more effectively transferred in sand than in soil. In sand at 25 and 50 ppm, significantly high mortality of donors and recipients was observed after 7 d. When termites were exposed to treated soil at day 21, all three concentrations resulted in significantly higher mortality compared to the control. In our laboratory study, spinosad was effectively transferred by donor termites. Transfer of spinosad depended on its bioavailability and concentration. Further study is needed to address its effects against C. formosanus under field conditions. PMID:27207263

  16. Detection of homologous horizontal gene transfer in SNP data

    Energy Science and Technology Software Center (ESTSC)

    2012-07-23

    We study the detection of mutations, sequencing errors, and homologous horizontal gene transfers (HGT) in a set of closely related microbial genomes. We base the model on single nucleotide polymorphisms (SNP's) and break the genomes into blocks to handle the rearrangement problem. Then we apply a synamic programming algorithm to model whether changes within each block are likely a result of mutations, sequencing errors, or HGT.

  17. Horizontal transfer of non-LTR retrotransposons in vertebrates.

    PubMed

    Kordis, D; Gubensek, F

    1999-01-01

    Since their discovery in family Bovidae (bovids), Bov-B LINEs, believed to be order-specific SINEs, have been found in all ruminants and recently also in Viperidae snakes. The distribution and the evolutionary relationships of Bov-B LINEs provide an indication of their origin and evolutionary dynamics in different species. The evolutionary origin of Bov-B LINE elements has been shown unequivocally to be in Squamata (squamates). The horizontal transfer of Bov-B LINE elements in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The direction of horizontal transfer from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution of Bov-B LINE elements. The ancestral snake lineage (Boidae) has been recognized as a possible donor of Bov-B LINE elements to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINE elements in Ruminantia and the fossil data of Ruminantia to be 40-50 mya. The phylogenetic relationships of Bov-B LINE elements from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINE elements have been stably maintained by vertical transmission since the origin of Squamata in the Mesozoic era. PMID:10952205

  18. Detection of horizontal gene transfers from phylogenetic comparisons.

    PubMed

    Pylro, Victor Satler; Vespoli, Luciano de Souza; Duarte, Gabriela Frois; Yotoko, Karla Suemy Clemente

    2012-01-01

    Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases. PMID:22675653

  19. Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss.

    PubMed

    Zamani-Dahaj, Seyed Alireza; Okasha, Mohamed; Kosakowski, Jakub; Higgs, Paul G

    2016-07-01

    We analyze patterns of gene presence and absence in a maximum likelihood framework with rate parameters for gene gain and loss. Standard methods allow independent gains and losses in different parts of a tree. While losses of the same gene are likely to be frequent, multiple gains need to be considered carefully. A gene gain could occur by horizontal transfer or by origin of a gene within the lineage being studied. If a gene is gained more than once, then at least one of these gains must be a horizontal transfer. A key parameter is the ratio of gain to loss rates, a/v We consider the limiting case known as the infinitely many genes model, where a/v tends to zero and a gene cannot be gained more than once. The infinitely many genes model is used as a null model in comparison to models that allow multiple gains. Using genome data from cyanobacteria and archaea, it is found that the likelihood is significantly improved by allowing for multiple gains, but the average a/v is very small. The fraction of genes whose presence/absence pattern is best explained by multiple gains is only 15% in the cyanobacteria and 20% and 39% in two data sets of archaea. The distribution of rates of gene loss is very broad, which explains why many genes follow a treelike pattern of vertical inheritance, despite the presence of a significant minority of genes that undergo horizontal transfer. PMID:27189546

  20. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance.

    PubMed

    Jutkina, Jekaterina; Rutgersson, Carolin; Flach, Carl-Fredrik; Larsson, D G Joakim

    2016-04-01

    Ability to understand the factors driving horizontal transfer of antibiotic resistance from unknown, harmless bacteria to pathogens is crucial in order to tackle the growing resistance problem. However, current methods to measure effects of stressors on horizontal gene transfer have limitations and often fall short, as the estimated endpoints can be a mix of both the number of transfer events and clonal growth of transconjugants. Our aim was therefore to achieve a proper strategy for assessing the minimal concentration of a stressor (exemplified by tetracycline) that drives horizontal transfer of antibiotic resistance from a complex community to a model pathogen. Conditions were optimized to improve a culture-based approach using the bacterial community of treated sewage effluent as donor, and fluorescent, traceable Escherichia coli as recipient. Reduced level of background resistance, differentiation of isolates as well as decreased risk for measuring effects of selection were achieved through the use of chromogenic medium, optimization of conjugation time as well as applying a different antibiotic for isolation of transconjugants than the one tested for its ability to drive transfer. Using this assay, we showed that a very low concentration of tetracycline, 10μg/L i.e. 150 times below the minimal inhibitory concentration of the recipient, promoted horizontal transfer of multiple antibiotic-resistance determinants. Higher concentrations favoured selection of a tetracycline-resistance phenotype along with a decline in the number of detectable transfer events. The described method can be used to evaluate different environmental conditions and factors that trigger horizontal dissemination of mobile resistance elements, eventually resulting in the formation of drug-resistant pathogens. PMID:26802341

  1. Dynamic monitoring of horizontal gene transfer in soil

    NASA Astrophysics Data System (ADS)

    Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.

    2015-12-01

    Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.

  2. Evidence for horizontal transfer of a recently active Academ transposon.

    PubMed

    Zhang, H-H; Shen, Y-H; Xiong, X-M; Han, M-J; Qi, D-W; Zhang, X-G

    2016-06-01

    Horizontal transfer (HT), the exchange of genetic material between species, plays important roles in transposon biology and genome evolution. In this study, we provide the first documented example of a new Academ transposon involved in recent and distant HTs into the genomes of species belonging to seven different orders of insects: Lepidoptera, Hymenoptera, Neuroptera, Embioptera, Dermaptera, Trichoptera and Zoraptera. These results suggest that HT of DNA transposons amongst insects has occurred on a broader scale than previously appreciated. The Academ transposon discovered in the Lepidoptera and parasitic wasps is of particular interest because the intimate association between wasps and their lepidopteran hosts might provide an opportunity for HT of transposons. PMID:26959720

  3. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  4. Horizontal Transfer of Small RNAs to and from Plants

    PubMed Central

    Han, Lu; Luan, Yu-Shi

    2015-01-01

    Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs. PMID:26697056

  5. Horizontal Transfer of Small RNAs to and from Plants.

    PubMed

    Han, Lu; Luan, Yu-Shi

    2015-01-01

    Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs. PMID:26697056

  6. Heat Transfer from a Horizontal Cylinder Rotating in Oil

    NASA Technical Reports Server (NTRS)

    Seban, R. A.; Johnson, H. A.

    1959-01-01

    Measurements of the heat transfer from a horizontal cylinder rotating about its axis have been made with oil as the surrounding fluid to provide an addition to the heat-transfer results for this system heretofore available only for air. The results embrace a Prandtl number range from about 130 to 660, with Reynolds numbers up to 3 x 10(exp 4), and show an increasing dependence of free-convection heat transfer on rotation as the Prandtl number is increased by reducing the oil temperature. Some correlation of this effect, which agrees with the prior results for air, has been achieved. At higher rotative speeds the flow becomes turbulent, the free- convection effect vanishes, and the results with oil can be correlated generally with those for air and with mass-transfer results for even higher Prandtl numbers. For this system, however, the analogy calculations which have successfully related the heat transfer to the friction for pipe flows at high Prandtl numbers fail.

  7. Horizontal Gene Transfer and the Genomics of Enterococcal Antibiotic Resistance

    PubMed Central

    Palmer, Kelli L.; Kos, Veronica N.

    2010-01-01

    Summary Enterococci are Gram-positive bacteria that normally colonize gastrointestinal tracts of humans and animals. They are of growing concern because of their ability to cause antibiotic resistant hospital infections. Antibiotic resistance has been acquired, and has disseminated throughout enterococci, via horizontal transfer of mobile genetic elements. This transmission has been mediated mainly by conjugative plasmids of the pheromone-responsive and broad host range incompatibility group 18 type. Genome sequencing is revealing the extent of diversity of these and other mobile elements in enterococci, as well as the extent of recombination and rearrangement resulting in new phenotypes. Pheromone-responsive plasmids were recently shown to promote genome plasticity in antibiotic resistant Enterococcus faecalis, and their involvement has been implicated in E. faecium as well. Further, incompatibility group 18 plasmids have recently played an important role in mediating transfer of vancomycin resistance from enterococci to methicillin resistant strains of S. aureus. PMID:20837397

  8. Horizontal functional gene transfer from bacteria to fishes

    PubMed Central

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shun-Min; Huang, Da-Wei

    2015-01-01

    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution. PMID:26691285

  9. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    PubMed

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-10-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain. PMID:26439115

  10. Detecting Horizontal Gene Transfer between Closely Related Taxa

    PubMed Central

    Adato, Orit; Ninyo, Noga; Gophna, Uri; Snir, Sagi

    2015-01-01

    Horizontal gene transfer (HGT), the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived) genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM). Using CRM, the algorithm assigns a confidence score based on “unusual” sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain. PMID:26439115

  11. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory

    PubMed Central

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G.; Van Leeuwen, Thomas

    2016-01-01

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. PMID:27307274

  12. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    PubMed

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-01-01

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. PMID:27307274

  13. Horizontal transfer of transposons between and within crustaceans and insects

    PubMed Central

    2014-01-01

    Background Horizontal transfer of transposable elements (HTT) is increasingly appreciated as an important source of genome and species evolution in eukaryotes. However, our understanding of HTT dynamics is still poor in eukaryotes because the diversity of species for which whole genome sequences are available is biased and does not reflect the global eukaryote diversity. Results In this study we characterized two Mariner transposable elements (TEs) in the genome of several terrestrial crustacean isopods, a group of animals particularly underrepresented in genome databases. The two elements have a patchy distribution in the arthropod tree and they are highly similar (>93% over the entire length of the element) to insect TEs (Diptera and Hymenoptera), some of which were previously described in Ceratitis rosa (Crmar2) and Drosophila biarmipes (Mariner-5_Dbi). In addition, phylogenetic analyses and comparisons of TE versus orthologous gene distances at various phylogenetic levels revealed that the taxonomic distribution of the two elements is incompatible with vertical inheritance. Conclusions We conclude that the two Mariner TEs each underwent at least three HTT events. Both elements were transferred once between isopod crustaceans and insects and at least once between isopod crustacean species. Crmar2 was also transferred between tephritid and drosophilid flies and Mariner-5 underwent HT between hymenopterans and dipterans. We demonstrate that these various HTTs took place recently (most likely within the last 3 million years), and propose iridoviruses and/or Wolbachia endosymbionts as potential vectors of these transfers. PMID:24472097

  14. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  15. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    SciTech Connect

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  16. HGTree: database of horizontally transferred genes determined by tree reconciliation

    PubMed Central

    Jeong, Hyeonsoo; Sung, Samsun; Kwon, Taehyung; Seo, Minseok; Caetano-Anollés, Kelsey; Choi, Sang Ho; Cho, Seoae; Nasir, Arshan; Kim, Heebal

    2016-01-01

    The HGTree database provides putative genome-wide horizontal gene transfer (HGT) information for 2472 completely sequenced prokaryotic genomes. This task is accomplished by reconstructing approximate maximum likelihood phylogenetic trees for each orthologous gene and corresponding 16S rRNA reference species sets and then reconciling the two trees under parsimony framework. The tree reconciliation method is generally considered to be a reliable way to detect HGT events but its practical use has remained limited because the method is computationally intensive and conceptually challenging. In this regard, HGTree (http://hgtree.snu.ac.kr) represents a useful addition to the biological community and enables quick and easy retrieval of information for HGT-acquired genes to better understand microbial taxonomy and evolution. The database is freely available and can be easily scaled and updated to keep pace with the rapid rise in genomic information. PMID:26578597

  17. Horizontal gene transfer in eukaryotes: The weak-link model

    PubMed Central

    Huang, Jinling

    2013-01-01

    The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes. PMID:24037739

  18. Microwave radiative transfer through horizontally inhomogeneous precipitating clouds

    NASA Technical Reports Server (NTRS)

    Roberti, Laura; Haferman, Jeff; Kummerow, Christian

    1994-01-01

    Recent advances in cloud microphysical models have led to realistic three-dimensional distributions of cloud constituents. Radiative transfer schemes can make use of this detailed knowledge in order to study the effects of horizontal as well as vertical inhomogeneities within clouds. This study looks specifically at the differences between three-dimensional radiative transfer results and those obtained by plane parallel, independent pixel approximations in the microwave spectrum. A three-dimensional discrete ordinates method as well as a backward Monte Carlo method are used to calculate realistic radiances emerging from the cloud. Analyses between these models and independent pixel approximations reveal that plane parallel approximations introduce two distinct types of errors. The first error is physical in nature and is related to the fact that plane parallel approximations do not allow energy to leak out of dense areas into surrouding areas. In general, it was found that these errors are quite small for emission-dominated frequencies (37 GHz and lower) and that physical errors are highly pronounced only at scattering frequencies (85 GHz) where large deviations and biases up to 8 K averaged over the entire cloud were found. The second error is more geometric in nature and is related to the fact that plane parallel approximations cannot accommodate physical boundaries in the horizontal dimension for off-nadir viewing angles. The geometric errors were comparable in magnitude for all frequencies. Their magnitude, however, depends on a number of factors including the scheme used to deal with the edge, the nature of the surface, and the viewing angle.

  19. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus.

    PubMed

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-08-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton-virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  20. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    PubMed Central

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  1. Evidence of horizontal gene transfer between obligate leaf nodule symbionts.

    PubMed

    Pinto-Carbó, Marta; Sieber, Simon; Dessein, Steven; Wicker, Thomas; Verstraete, Brecht; Gademann, Karl; Eberl, Leo; Carlier, Aurelien

    2016-09-01

    Bacteria of the genus Burkholderia establish an obligate symbiosis with plant species of the Rubiaceae and Primulaceae families. The bacteria, housed within the leaves, are transmitted hereditarily and have not yet been cultured. We have sequenced and compared the genomes of eight bacterial leaf nodule symbionts of the Rubiaceae plant family. All of the genomes exhibit features consistent with genome erosion. Genes potentially involved in the biosynthesis of kirkamide, an insecticidal C7N aminocyclitol, are conserved in most Rubiaceae symbionts. However, some have partially lost the kirkamide pathway due to genome erosion and are unable to synthesize the compound. Kirkamide synthesis is therefore not responsible for the obligate nature of the symbiosis. More importantly, we find evidence of intra-clade horizontal gene transfer (HGT) events affecting genes of the secondary metabolism. This indicates that substantial gene flow can occur at the early stages following host restriction in leaf nodule symbioses. We propose that host-switching events and plasmid conjugative transfers could have promoted these HGTs. This genomic analysis of leaf nodule symbionts gives, for the first time, new insights in the genome evolution of obligate symbionts in their early stages of the association with plants. PMID:26978165

  2. Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

    PubMed Central

    Getino, María; Sanabria-Ríos, David J.; Fernández-López, Raúl; Campos-Gómez, Javier; Sánchez-López, José M.; Fernández, Antonio; Carballeira, Néstor M.

    2015-01-01

    ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation. PMID:26330514

  3. compartment transfer rates in horizontal flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Maier, Uli; Oswald, Sascha; Thullner, Martin; Grathwohl, Peter

    2010-05-01

    A conceptual computer model has been constructed to simulate the compartment transfer rates in horizontal flow constructed wetlands. The model accounts for flow and transport in the variably saturated porous medium as well as biogeochemical change reactions. The most concentrated contaminants such as BTEX, MTBE and gasoline hydrocarbons and dissolved as well as mineral phase electron acceptors are considered. Also of major interest are reduced species with high oxygen demand such as ammonium. The influence of marsh plants on microbial activity, gas transport, water balance and contaminant fate in general is matter of current investigation. The constructed wetlands consist of a coarse sand or fine gravel porous medium. Marsh plants were introduced after installation, however, a number of control basins are operated unplanted. Water levels and through flow rates are adjusted to optimize the remediation efficiency. The system is likely to be neither reaction nor mixing limited, thus both, values of dispersivity and degradation kinetics may be crucial for remediation efficiency. Biogeochemical modelling is able to delineate in detail (i) the zonation of processes, (ii) temporal variation (breakthrough curves) and (iii) mass balance information. The contributions of biodegradation and volatilisation and the influence of plants (compartment transfer) can generally best be evaluated by the component's mass balance. More efficient mixing is expected in the wetlands with open water body which leads to both, more biodegradation and volatilisation. An important task is to quantify the role of plants and root systems for contaminant attenuation in constructed wetlands. The long term goal of investigation is to allow for predictions for the design of large scale compartment transfer wetlands that may be applied to remediate the site as a whole.

  4. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    PubMed Central

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  5. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species.

    PubMed

    Glenn, Anthony E; Davis, C Britton; Gao, Minglu; Gold, Scott E; Mitchell, Trevor R; Proctor, Robert H; Stewart, Jane E; Snook, Maurice E

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  6. Recurrent Horizontal Transfers of Chapaev Transposons in Diverse Invertebrate and Vertebrate Animals

    PubMed Central

    Zhang, Hua-Hao; Feschotte, Cédric; Han, Min-Jin; Zhang, Ze

    2014-01-01

    Horizontal transfer (HT) of a transposable element (TE) into a new genome is regarded as an important force to drive genome variation and biological innovation. In addition, HT also plays an important role in the persistence of TEs in eukaryotic genomes. Here, we provide the first documented example for the repeated HT of three families of Chapaev transposons in a wide range of animal species, including mammals, reptiles, jawed fishes, lampreys, insects, and in an insect bracovirus. Multiple alignments of the Chapaev transposons identified in these species revealed extremely high levels of nucleotide sequence identity (79–99%), which are inconsistent with vertical evolution given the deep divergence time separating these host species. Rather, the discontinuous distribution amongst species and lack of purifying selection acting on these transposons strongly suggest that they were independently and horizontally transferred into these species lineages. The detection of Chapaev transposons in an insect bracovirus indicated that these viruses might act as a possible vector for the horizontal spread of Chapaev transposons. One of the Chapaev families was also shared by lampreys and some of their common hosts (such as sturgeon and paddlefish), which suggested that parasite–host interaction might facilitate HTs. PMID:24868016

  7. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution.

    PubMed

    Schaack, Sarah; Gilbert, Clément; Feschotte, Cédric

    2010-09-01

    Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation. PMID:20591532

  8. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution

    PubMed Central

    Schaack, Sarah; Gilbert, Clément; Feschotte, Cédric

    2010-01-01

    Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation. PMID:20591532

  9. Domain transfer multiple kernel learning.

    PubMed

    Duan, Lixin; Tsang, Ivor W; Xu, Dong

    2012-03-01

    Cross-domain learning methods have shown promising results by leveraging labeled patterns from the auxiliary domain to learn a robust classifier for the target domain which has only a limited number of labeled samples. To cope with the considerable change between feature distributions of different domains, we propose a new cross-domain kernel learning framework into which many existing kernel methods can be readily incorporated. Our framework, referred to as Domain Transfer Multiple Kernel Learning (DTMKL), simultaneously learns a kernel function and a robust classifier by minimizing both the structural risk functional and the distribution mismatch between the labeled and unlabeled samples from the auxiliary and target domains. Under the DTMKL framework, we also propose two novel methods by using SVM and prelearned classifiers, respectively. Comprehensive experiments on three domain adaptation data sets (i.e., TRECVID, 20 Newsgroups, and email spam data sets) demonstrate that DTMKL-based methods outperform existing cross-domain learning and multiple kernel learning methods. PMID:21646679

  10. Lack of evidence for horizontal transfer of the lac operon into Escherichia coli.

    PubMed

    Stoebel, Daniel M

    2005-03-01

    The idea that Escherichia coli gained the lac operon via horizontal transfer, allowing it to invade a new niche and form a new species, has become a paradigmatic example of bacterial nonpathogenic adaptation and speciation catalyzed by horizontal transfer. Surprisingly, empirical evidence for this event is essentially nonexistent. To see whether horizontal transfer occurred, I compared a phylogeny of 14 Enterobacteriaceae based on two housekeeping genes to a phylogeny of a part of their lac operon. Although several species in this clade appear to have acquired some or all of the operon via horizontal transfer, there is no evidence of horizontal transfer into E. coli. It is not clear whether the horizontal transfer events for which there is evidence were adaptive because those species which have acquired the operon are not thought to live in high lactose environments. I propose that vertical transmission from the common ancestor of the Enterobacteriaceae, with subsequent loss of these genes in many species can explain much of the patchy distribution of lactose use in this clade. Finally, I argue that we need new, well-supported examples of horizontal transfer spurring niche expansion and speciation, particularly in nonpathogenic cases, before we can accept claims that horizontal transfer is a hallmark of bacterial adaptation. PMID:15563718

  11. Microbial Evolution Is in the Cards: Horizontal Gene Transfer in the Classroom

    ERIC Educational Resources Information Center

    Kagle, Jeanne; Hay, Anthony G.

    2007-01-01

    Horizontal gene transfer, the exchange of genetic material between bacteria, is a potentially important factor in the degradation of synthetic compounds introduced to the environment and in the acquisition of other characteristics including antibiotic resistance. This game-based activity illustrates the role of horizontal gene transfer in the…

  12. Reverse transcriptase-related enzymes are associated with horizontal chromosome transfer in an asexual pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supernumerary chromosomes have been shown to transfer horizontally from one isolate to another. However, the mechanism by which horizontal chromosome transfer (HCT) occurs is unknown. In this study, we compared the genomes of 11 isolates comprising six Fusarium species that cause soybean sudden dea...

  13. Horizontal gene transfer in the acquisition of novel traits by metazoans

    PubMed Central

    Boto, Luis

    2014-01-01

    Horizontal gene transfer is accepted as an important evolutionary force modulating the evolution of prokaryote genomes. However, it is thought that horizontal gene transfer plays only a minor role in metazoan evolution. In this paper, I critically review the rising evidence on horizontally transferred genes and on the acquisition of novel traits in metazoans. In particular, I discuss suspected examples in sponges, cnidarians, rotifers, nematodes, molluscs and arthropods which suggest that horizontal gene transfer in metazoans is not simply a curiosity. In addition, I stress the scarcity of studies in vertebrates and other animal groups and the importance of forthcoming studies to understand the importance and extent of horizontal gene transfer in animals. PMID:24403327

  14. Horizontal Transfer of Bacterial Symbionts: Heritability and Fitness Effects in a Novel Aphid Host

    PubMed Central

    Russell, Jacob A.; Moran, Nancy A.

    2005-01-01

    Members of several bacterial lineages are known only as symbionts of insects and move among hosts through maternal transmission. Such vertical transfer promotes strong fidelity within these associations, favoring the evolution of microbially mediated effects that improve host fitness. However, phylogenetic evidence indicates occasional horizontal transfer among different insect species, suggesting that some microbial symbionts retain a generalized ability to infect multiple hosts. Here we examine the abilities of three vertically transmitted bacteria from the Gammaproteobacteria to infect and spread within a novel host species, the pea aphid, Acyrthosiphon pisum. Using microinjection, we transferred symbionts from three species of natural aphid hosts into a common host background, comparing transmission efficiencies between novel symbionts and those naturally infecting A. pisum. We also examined the fitness effects of two novel symbionts to determine whether they should persist under natural selection acting at the host level. Our results reveal that these heritable bacteria vary in their capacities to utilize A. pisum as a host. One of three novel symbionts failed to undergo efficient maternal transmission in A. pisum, and one of the two efficiently transmitted bacteria depressed aphid growth rates. Although these findings reveal that negative fitness effects and low transmission efficiency can prevent the establishment of a new infection following horizontal transmission, they also indicate that some symbionts can overcome these obstacles, accounting for their widespread distributions across aphids and related insects. PMID:16332777

  15. Heat transfer in porous duct: Effect of horizontal outer wall heating

    NASA Astrophysics Data System (ADS)

    Khaleed, H. M. T.; Al-Rashed, Abdullah A. A. A.; Athani, Abdulgaphur

    2016-06-01

    Heat transfer in porous medium is one of the important areas of research for last few decades. The current work is considered to investigate the effect of top and bottom wall heating of a square duct that contains porous medium between its inner and outer boundaries. The other six surfaces of duct are cooled to isothermal temperature Tc. The resulting momentum and energy equations that govern the heat and fluid flow behavior in porous medium are solved with the help of finite element method. It is observed that the heat transfer and fluid flow behavior of horizontal wall heating is quite different from other cases being reported in literature. It is found that the fluid flows in multiple circulation cells around corners of the duct giving a unique flow pattern. The isotherms tend to concentrate on lower and upper section of duct with huge middle area of cavity having least thermal energy.

  16. Horizontal Transfer and Evolution of Prokaryote Transposable Elements in Eukaryotes

    PubMed Central

    Gilbert, Clément; Cordaux, Richard

    2013-01-01

    Horizontal transfer (HT) of transposable elements (TEs) plays a key role in prokaryotic evolution, and mounting evidence suggests that it has also had an important impact on eukaryotic evolution. Although many prokaryote-to-prokaryote and eukaryote-to-eukaryote HTs of TEs have been characterized, only few cases have been reported between prokaryotes and eukaryotes. Here, we carried out a comprehensive search for all major groups of prokaryotic insertion sequences (ISs) in 430 eukaryote genomes. We uncovered a total of 80 sequences, all deriving from the IS607 family, integrated in the genomes of 14 eukaryote species belonging to four distinct phyla (Amoebozoa, Ascomycetes, Basidiomycetes, and Stramenopiles). Given that eukaryote IS607-like sequences are most closely related to cyanobacterial IS607 and that their phylogeny is incongruent with that of their hosts, we conclude that the presence of IS607-like sequences in eukaryotic genomes is the result of several HT events. Selection analyses further suggest that our ability to detect these prokaryote TEs today in eukaryotes is because HT of these sequences occurred recently and/or some IS607 elements were domesticated after HT, giving rise to new eukaryote genes. Supporting the recent age of some of these HTs, we uncovered intact full-length, potentially active IS607 copies in the amoeba Acanthamoeba castellani. Overall, our study shows that prokaryote-to-eukaryote HT of TEs occurred at relatively low frequency during recent eukaryote evolution and it sets IS607 as the most widespread TE (being present in prokaryotes, eukaryotes, and viruses). PMID:23563966

  17. Horizontal Transfer of Genetic Material among Saccharomyces Yeasts

    PubMed Central

    Marinoni, Gaelle; Manuel, Martine; Petersen, Randi Føns; Hvidtfeldt, Jeanne; Sulo, Pavol; Piškur, Jure

    1999-01-01

    isolates could mate freely in nature, horizontal transfer of genetic material could have occurred during the evolution of modern yeast species. PMID:10515941

  18. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

    PubMed

    Nikolaidis, Nikolas; Doran, Nicole; Cosgrove, Daniel J

    2014-02-01

    Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species. PMID:24150040

  19. Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers.

    PubMed

    Suzuki, Katsunori; Moriguchi, Kazuki; Yamamoto, Shinji

    2015-12-01

    Horizontal gene transfer (HGT) is widespread among bacteria and plays a key role in genome dynamics. HGT is much less common in eukaryotes, but is being reported with increasing frequency in eukaryotes. The mechanism as to how eukaryotes acquired genes from distantly related organisms remains obscure yet. This paper cites examples of bacteria-derived genes found in eukaryotic organisms, and then describes experimental DNA transports to eukaryotes by bacterial type 4 secretion systems in optimized conditions. The mechanisms of the latter are efficient, quite reproducible in vitro and predictable, and thereby would provide insight into natural HGT and to the development of new research tools. PMID:26291765

  20. Widespread impact of horizontal gene transfer on plant colonization of land

    PubMed Central

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants. PMID:23093189

  1. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene

    PubMed Central

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan

    2015-01-01

    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese’s complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity <98.0%), and further analysis revealed HGT events and potential donors of the heterogeneous copies (such as HGT from Chlamydia suis to Chlamydia trachomatis) and mutation events of some heterogeneous copies (such as Streptococcus suis JS14). Interestingly, HGT of the 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes. PMID:26220935

  2. Horizontal transfer of the msp130 gene supported the evolution of metazoan biomineralization.

    PubMed

    Ettensohn, Charles A

    2014-05-01

    It is widely accepted that biomineralized structures appeared independently in many metazoan clades during the Cambrian. How this occurred, and whether it involved the parallel co-option of a common set of biochemical and developmental pathways (i.e., a shared biomineralization "toolkit"), are questions that remain unanswered. Here, I provide evidence that horizontal gene transfer supported the evolution of biomineralization in some metazoans. I show that Msp130 proteins, first described as proteins expressed selectively by the biomineral-forming primary mesenchyme cells of the sea urchin embryo, have a much wider taxonomic distribution than was previously appreciated. Msp130 proteins are present in several invertebrate deuterostomes and in one protostome clade (molluscs). Surprisingly, closely related proteins are also present in many bacteria and several algae, and I propose that msp130 genes were introduced into metazoan lineages via multiple, independent horizontal gene transfer events. Phylogenetic analysis shows that the introduction of an ancestral msp130 gene occurred in the sea urchin lineage more than 250 million years ago and that msp130 genes underwent independent, parallel duplications in each of the metazoan phyla in which these genes are found. PMID:24735463

  3. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes

    PubMed Central

    Huddleston, Jennifer R

    2014-01-01

    Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed. PMID:25018641

  4. Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods.

    PubMed

    Pace, John K; Gilbert, Clément; Clark, Marlena S; Feschotte, Cédric

    2008-11-01

    Horizontal transfer (HT) is central to the evolution of prokaryotic species. Selfish and mobile genetic elements, such as phages, plasmids, and transposons, are the primary vehicles for HT among prokaryotes. In multicellular eukaryotes, the prevalence and evolutionary significance of HT remain unclear. Here, we identified a set of DNA transposon families dubbed SPACE INVADERS (or SPIN) whose consensus sequences are approximately 96% identical over their entire length (2.9 kb) in the genomes of murine rodents (rat/mouse), bushbaby (prosimian primate), little brown bat (laurasiatherian), tenrec (afrotherian), opossum (marsupial), and two non-mammalian tetrapods (anole lizard and African clawed frog). In contrast, SPIN elements were undetectable in other species represented in the sequence databases, including 19 other mammals with draft whole-genome assemblies. This patchy distribution, coupled with the extreme level of SPIN identity in widely divergent tetrapods and the overall lack of selective constraint acting on these elements, is incompatible with vertical inheritance, but strongly indicative of multiple horizontal introductions. We show that these germline infiltrations likely occurred around the same evolutionary time (15-46 mya) and spawned some of the largest bursts of DNA transposon activity ever recorded in any species lineage (nearly 100,000 SPIN copies per haploid genome in tenrec). The process also led to the emergence of a new gene in the murine lineage derived from a SPIN transposase. In summary, HT of DNA transposons has contributed significantly to shaping and diversifying the genomes of multiple mammalian and tetrapod species. PMID:18936483

  5. Health Considerations Regarding Horizontal Transfer of Microbial Transgenes Present in Genetically Modified Crops

    PubMed Central

    Kleter, Gijs A.

    2005-01-01

    The potential effects of horizontal gene transfer on human health are an important item in the safety assessment of genetically modified organisms. Horizontal gene transfer from genetically modified crops to gut microflora most likely occurs with transgenes of microbial origin. The characteristics of microbial transgenes other than antibiotic-resistance genes in market-approved genetically modified crops are reviewed. These characteristics include the microbial source, natural function, function in genetically modified crops, natural prevalence, geographical distribution, similarity to other microbial genes, known horizontal transfer activity, selective conditions and environments for horizontally transferred genes, and potential contribution to pathogenicity and virulence in humans and animals. The assessment of this set of data for each of the microbial genes reviewed does not give rise to health concerns. We recommend including the above-mentioned items into the premarket safety assessment of genetically modified crops carrying transgenes other than those reviewed in the present study. PMID:16489267

  6. Evidence for the recent horizontal transfer of long terminal repeat retrotransposon

    PubMed Central

    Jordan, I. King; Matyunina, Lilya V.; McDonald, John F.

    1999-01-01

    The evolutionary dynamics existing between transposable elements (TEs) and their host genomes have been likened to an “arms race.” The selfish drive of TEs to replicate, in turn, elicits the evolution of host-mediated regulatory mechanisms aimed at repressing transpositional activity. It has been postulated that horizontal (cross-species) transfer may be one effective strategy by which TEs and other selfish genes can escape host-mediated silencing mechanisms over evolutionary time; however, to date, the most definitive evidence that TEs horizontally transfer between species has been limited to class II or DNA-type elements. Evidence that the more numerous and widely distributed retroelements may also be horizontally transferred between species has been more ambiguous. In this paper, we report definitive evidence for a recent horizontal transfer of the copia long terminal repeat retrotransposon between Drosophila melanogaster and Drosophila willistoni. PMID:10535972

  7. Multiple Tune Jumps to Overcome Horizontal Depolarizing Resonances

    NASA Astrophysics Data System (ADS)

    Huang, H.; Ahrens, L. A.; Bai, M.; Brown, K. A.; Dutheil, Y.; Gardner, C.; Glenn, J. W.; Lin, F.; Mackay, W. W.; Meot, F.; Poblaguev, A.; Ranjbar, V.; Roser, T.; Schoefer, V.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2016-02-01

    Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the Alternative Gradient Synchrotron(AGS). The relatively weak but numerous horizontal resonances are the main source of polarization loss in the AGS. A pair of horizontal tune jump quads have been used to overcome these weak resonances. The locations of the two quads have to be chosen such that the disturbance to the beam optics is minimum. The emittance growth has to be mitigated for this method to work. In addition, this technique needs very accurate jump timing. Using two partial Siberian snakes, with vertical tune inside the spin tune gap and 80% polarization at AGS injection, polarized proton beam had reached 1.5 × 1011 proton per bunch with 65% polarization. With the tune jump timing optimized and emittance preserved, more than 70% polarization with 2 × 1011 protons per bunch has been achieved.

  8. Texture synthesis and transfer from multiple samples

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Zhao, Qinping

    2003-09-01

    Texture Mapping plays a very important role in Computer Graphics. Texture Synthesis is one of the main methods to obtain textures, it makes use of sample textures to generate new textures. Texture Transfer is based on Texture Synthesis, it renders objects with textures taken from different objects. Currently, most of Texture Synthesis and Transfer methods use a single sample texture. A method for Texture Synthesis adn Transfer from multi samples was presented. For texture synthesis, the L-shaped neighborhood seaching approach was used. Users specify the proportion of each sample, the number of seed points, and these seed points are scattered randomly according to their samples in horizontal and vertical direction synchronously to synthesize textures. The synthesized textures are very good. For texture transfer, the luminance of the target image and the sample textures are analyzed. This procedure is from coarse to fine, and can produce a visually pleasing result.

  9. Tropical Africa as a cradle for horizontal transfers of transposable elements between species of the genera Drosophila and Zaprionus

    PubMed Central

    2011-01-01

    We have recently reported numerous cases of horizontal transfers of transposable elements between species of drosophilids. These studies revealed a substantial number of horizontal transfers between species of the subgroup melanogaster of the genus Drosophila and between these species and species of the genus Zaprionus. In this review, these transfers and similar, previously reported events are discussed and reanalysed to portray the interrelationships between the species that allowed the occurrence of so many horizontal transfers. The paper also addresses problems that may arise in drawing inferences about the time period during which the horizontal transfers occurred and the factors that may be associated with these transfers are discussed. PMID:22312591

  10. Fiscal Transfers, Horizontal Equity and Post Secondary Education.

    ERIC Educational Resources Information Center

    Hum, Derek; Strain, Frank

    1988-01-01

    An amendment to the Canada Assistance Plan, a national-provincial cost-sharing arrangement, is suggested. The adjustment would ensure that citizens in all provinces have access to comparable services and bear comparable tax burdens by allowing greater fiscal transfers to provinces with greater need and/or smaller tax bases. (Author/MSE)

  11. Evidence for horizontal transfer of Wolbachia by a Drosophila mite.

    PubMed

    Brown, Amy N; Lloyd, Vett K

    2015-07-01

    Mites are common ectoparasites of Drosophila and have been implicated in bacterial and mobile element invasion of Drosophila stocks. The obligate endobacterium, Wolbachia, has widespread effects on gene expression in their arthropod hosts and alters host reproduction to enhance its survival and propagation, often with deleterious effects in Drosophila hosts. To determine whether Wolbachia could be transferred between Drosophila melanogaster laboratory stocks by the mite Tyrophagus putrescentiae, mites were introduced to Wolbachia-infected Drosophila vials. These vials were kept adjacent to mite-free and Wolbachia-uninfected Drosophila stock vials. The Wolbachia infection statuses of the infected and uninfected flies were checked from generation 1 to 5. Results indicate that Wolbachia DNA could be amplified from mites infesting Wolbachia-infected fly stocks and infection in the previously uninfected stocks arose within generation 1 or 2, concomitant with invasion of mites from the Wolbachia-infected stock. A possible mechanism for the transfer of Wolbachia from flies to mites and vice versa, can be inferred from time-lapse photography of fly and mite interactions. We demonstrated that mites ingest Drosophila corpses, including Wolbachia-infected corpses, and Drosophila larva ingest mites, providing possible sources of Wolbachia infection and transfer. This research demonstrated that T. putrescentiae white mites can facilitate Wolbachia transfer between Drosophila stocks and that this may occur by ingestion of infected corpses. Mite-vectored Wolbachia transfer allows for rapid establishment of Wolbachia infection within a new population. This mode of Wolbachia introduction may be relevant in nature as well as in the laboratory, and could have a variety of biological consequences. PMID:25921489

  12. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions.

    PubMed

    Koonin, Eugene V

    2016-01-01

    The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of 'lateral genomics' to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly) universal genes, translates into the notion of a statistical tree of life (STOL), which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT) dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller's ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies. PMID:27508073

  13. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions

    PubMed Central

    Koonin, Eugene V.

    2016-01-01

    The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of ‘lateral genomics’ to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly) universal genes, translates into the notion of a statistical tree of life (STOL), which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT) dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller’s ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies. PMID:27508073

  14. Amoebozoa possess lineage-specific globin gene repertoires gained by individual horizontal gene transfers.

    PubMed

    Dröge, Jasmin; Buczek, Dorota; Suzuki, Yutaka; Makałowski, Wojciech

    2014-01-01

    The Amoebozoa represent a clade of unicellular amoeboid organisms that display a wide variety of lifestyles, including free-living and parasitic species. For example, the social amoeba Dictyostelium discoideum has the ability to aggregate into a multicellular fruiting body upon starvation, while the pathogenic amoeba Entamoeba histolytica is a parasite of humans. Globins are small heme proteins that are present in almost all extant organisms. Although several genomes of amoebozoan species have been sequenced, little is known about the phyletic distribution of globin genes within this phylum. Only two flavohemoglobins (FHbs) of D. discoideum have been reported and characterized previously while the genomes of Entamoeba species are apparently devoid of globin genes. We investigated eleven amoebozoan species for the presence of globin genes by genomic and phylogenetic in silico analyses. Additional FHb genes were identified in the genomes of four social amoebas and the true slime mold Physarum polycephalum. Moreover, a single-domain globin (SDFgb) of Hartmannella vermiformis, as well as two truncated hemoglobins (trHbs) of Acanthamoeba castellanii were identified. Phylogenetic evidence suggests that these globin genes were independently acquired via horizontal gene transfer from some ancestral bacteria. Furthermore, the phylogenetic tree of amoebozoan FHbs indicates that they do not share a common ancestry and that a transfer of FHbs from bacteria to amoeba occurred multiple times. PMID:25013378

  15. Parameterization of the three-dimensional room transfer function in horizontal plane.

    PubMed

    Bu, Bing; Abhayapala, Thushara D; Bao, Chang-chun; Zhang, Wen

    2015-09-01

    This letter proposes an efficient parameterization of the three-dimensional room transfer function (RTF) which is robust for the position variations of source and receiver in respective horizontal planes. Based on azimuth harmonic analysis, the proposed method exploits the underlying properties of the associated Legendre functions to remove a portion of the spherical harmonic coefficients of RTF which have no contribution in the horizontal plane. This reduction leads to a flexible measuring-point structure consisting of practical concentric circular arrays to extract horizontal plane RTF coefficients. The accuracy of the above parameterization is verified through numerical simulations. PMID:26428827

  16. Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions

    SciTech Connect

    Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D

    2007-12-21

    This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.

  17. Enhanced Horizontal Transfer of Antibiotic Resistance Genes in Freshwater Microcosms Induced by an Ionic Liquid

    PubMed Central

    Wang, Qing; Mao, Daqing; Mu, Quanhua; Luo, Yi

    2015-01-01

    The spread and propagation of antibiotic resistance genes (ARGs) is a worldwide public health concern. Ionic liquids (ILs), considered as “environmentally friendly” replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) (0.001-5.0 g/L) was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups) by the IL [BMIm][PF6] (1.0 g/L). Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM). This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs. PMID:25951456

  18. Inference of Horizontal Genetic Transfer from Molecular Data: An Approach Using the Bootstrap

    PubMed Central

    Lawrence, J. G.; Hartl, D. L.

    1992-01-01

    Inconsistencies in taxonomic relationships implicit in different sets ofnucleic acid sequences potentially result from horizontal transfer ofgenetic material between genomes. A nonparametric method is proposed todetermine whether such inconsistencies are statistically significant. Asimilarity coefficient is calculated from ranked pairwise identities andevaluated against a distribution of similarity coefficients generatedfrom resampled data. Subsequent analyses of partial data sets, obtainedby the elimination of individual taxa, identify particular taxa to whichthe significance may be attributed, and can sometimes help indistinguishing horizontal genetic transfer from inconsistencies due toconvergent evolution or variation in evolutionary rate. The method wassuccessfully applied to data sets that were not found to be significantlydifferent with existing methods that use comparisons of phylogenetictrees. The new statistical framework is also applicable to the inferenceof horizontal transfer from restriction fragment length polymorphismdistributions and proteinsequences. PMID:1628816

  19. VHICA, a New Method to Discriminate between Vertical and Horizontal Transposon Transfer: Application to the Mariner Family within Drosophila.

    PubMed

    Wallau, Gabriel Luz; Capy, Pierre; Loreto, Elgion; Le Rouzic, Arnaud; Hua-Van, Aurélie

    2016-04-01

    Transposable elements (TEs) are genomic repeated sequences that display complex evolutionary patterns. They are usually inherited vertically, but can occasionally be transmitted between sexually independent species, through so-called horizontal transposon transfers (HTTs). Recurrent HTTs are supposed to be essential in life cycle of TEs, which are otherwise destined for eventual decay. HTTs also impact the host genome evolution. However, the extent of HTTs in eukaryotes is largely unknown, due to the lack of efficient, statistically supported methods that can be applied to multiple species sequence data sets. Here, we developed a new automated method available as a R package "vhica" that discriminates whether a given TE family was vertically or horizontally transferred, and potentially infers donor and receptor species. The method is well suited for TE sequences extracted from complete genomes, and applicable to multiple TEs and species at the same time. We first validated our method using Drosophila TE families with well-known evolutionary histories, displaying both HTTs and vertical transmission. We then tested 26 different lineages of mariner elements recently characterized in 20 Drosophila genomes, and found HTTs in 24 of them. Furthermore, several independent HTT events could often be detected within the same mariner lineage. The VHICA (Vertical and Horizontal Inheritance Consistence Analysis) method thus appears as a valuable tool to analyze the evolutionary history of TEs across a large range of species. PMID:26685176

  20. VHICA, a New Method to Discriminate between Vertical and Horizontal Transposon Transfer: Application to the Mariner Family within Drosophila

    PubMed Central

    Wallau, Gabriel Luz; Capy, Pierre; Loreto, Elgion; Le Rouzic, Arnaud; Hua-Van, Aurélie

    2016-01-01

    Transposable elements (TEs) are genomic repeated sequences that display complex evolutionary patterns. They are usually inherited vertically, but can occasionally be transmitted between sexually independent species, through so-called horizontal transposon transfers (HTTs). Recurrent HTTs are supposed to be essential in life cycle of TEs, which are otherwise destined for eventual decay. HTTs also impact the host genome evolution. However, the extent of HTTs in eukaryotes is largely unknown, due to the lack of efficient, statistically supported methods that can be applied to multiple species sequence data sets. Here, we developed a new automated method available as a R package “vhica” that discriminates whether a given TE family was vertically or horizontally transferred, and potentially infers donor and receptor species. The method is well suited for TE sequences extracted from complete genomes, and applicable to multiple TEs and species at the same time. We first validated our method using Drosophila TE families with well-known evolutionary histories, displaying both HTTs and vertical transmission. We then tested 26 different lineages of mariner elements recently characterized in 20 Drosophila genomes, and found HTTs in 24 of them. Furthermore, several independent HTT events could often be detected within the same mariner lineage. The VHICA (Vertical and Horizontal Inheritance Consistence Analysis) method thus appears as a valuable tool to analyze the evolutionary history of TEs across a large range of species. PMID:26685176

  1. Prokaryotic genes in eukaryotic genome sequences: when to infer horizontal gene transfer and when to suspect an actual microbe.

    PubMed

    Artamonova, Irena I; Lappi, Tanya; Zudina, Liudmila; Mushegian, Arcady R

    2015-07-01

    Assessment of phylogenetic positions of predicted gene and protein sequences is a routine step in any genome project, useful for validating the species' taxonomic position and for evaluating hypotheses about genome evolution and function. Several recent eukaryotic genome projects have reported multiple gene sequences that were much more similar to homologues in bacteria than to any eukaryotic sequence. In the spirit of the times, horizontal gene transfer from bacteria to eukaryotes has been invoked in some of these cases. Here, we show, using comparative sequence analysis, that some of those bacteria-like genes indeed appear likely to have been horizontally transferred from bacteria to eukaryotes. In other cases, however, the evidence strongly indicates that the eukaryotic DNA sequenced in the genome project contains a sample of non-integrated DNA from the actual bacteria, possibly providing a window into the host microbiome. Recent literature suggests also that common reagents, kits and laboratory equipment may be systematically contaminated with bacterial DNA, which appears to be sampled by metagenome projects non-specifically. We review several bioinformatic criteria that help to distinguish putative horizontal gene transfers from the admixture of genes from autonomously replicating bacteria in their hosts' genome databases or from the reagent contamination. PMID:25919787

  2. Statistical Mechanics of Horizontal Gene Transfer in Evolutionary Ecology

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Goldenfeld, Nigel

    2011-04-01

    The biological world, especially its majority microbial component, is strongly interacting and may be dominated by collective effects. In this review, we provide a brief introduction for statistical physicists of the way in which living cells communicate genetically through transferred genes, as well as the ways in which they can reorganize their genomes in response to environmental pressure. We discuss how genome evolution can be thought of as related to the physical phenomenon of annealing, and describe the sense in which genomes can be said to exhibit an analogue of information entropy. As a direct application of these ideas, we analyze the variation with ocean depth of transposons in marine microbial genomes, predicting trends that are consistent with recent observations using metagenomic surveys.

  3. Spontaneously induced prophages in Lactobacillus gasseri contribute to horizontal gene transfer.

    PubMed

    Baugher, J L; Durmaz, E; Klaenhammer, T R

    2014-06-01

    Lactobacillus gasseri is an endogenous species of the human gastrointestinal tract and vagina. With recent advances in microbial taxonomy, phylogenetics, and genomics, L. gasseri is recognized as an important commensal and is increasingly being used in probiotic formulations. L. gasseri strain ADH is lysogenic and harbors two inducible prophages. In this study, prophage adh was found to spontaneously induce in broth cultures to populations of ∼ 10(7) PFU/ml by stationary phase. The adh prophage-cured ADH derivative NCK102 was found to harbor a new, second inducible phage, vB_Lga_jlb1 (jlb1). Phage jlb1 was sequenced and found to be highly similar to the closely related phage LgaI, which resides as two tandem prophages in the neotype strain L. gasseri ATCC 33323. The common occurrence of multiple prophages in L. gasseri genomes, their propensity for spontaneous induction, and the high degree of homology among phages within multiple species of Lactobacillus suggest that temperate bacteriophages likely contribute to horizontal gene transfer (HGT) in commensal lactobacilli. In this study, the host ranges of phages adh and jlb1 were determined against 16 L. gasseri strains. The transduction range and the rate of spontaneous transduction were investigated in coculture experiments to ascertain the degree to which prophages can promote HGT among a variety of commensal and probiotic lactobacilli. Both adh and jlb1 particles were confirmed to mediate plasmid transfer. As many as ∼10(3) spontaneous transductants/ml were obtained. HGT by transducing phages of commensal lactobacilli may have a significant impact on the evolution of bacteria within the human microbiota. PMID:24682298

  4. Genome-wide experimental determination of barriers to horizontal gene transfer.

    PubMed

    Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J; Francino, M Pilar; Bork, Peer; Rubin, Edward M

    2007-11-30

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to that of another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into Escherichia coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Our data suggest that toxicity to the host inhibited transfer regardless of the species of origin and that increased gene dosage and associated increased expression may be a predominant cause for transfer failure. Although these experimental studies examined transfer solely into E. coli, a computational analysis of gene-transfer rates across available bacterial and archaeal genomes supports that the barriers observed in our study are general across the tree of life. PMID:17947550

  5. Genome-wide experimental determination of barriers to horizontal gene transfer

    SciTech Connect

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.

    2007-09-24

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  6. Horizontal transference of S-layer genes within Thermus thermophilus.

    PubMed Central

    Fernández-Herrero, L A; Olabarría, G; Castón, J R; Lasa, I; Berenguer, J

    1995-01-01

    The S-layers of Thermus thermophilus HB27 and T. thermophilus HB8 are composed of protein units of 95 kDa (P95) and 100 kDa (P100), respectively. We have selected S-layer deletion mutants from both strains by complete replacement of the slpA gene. Mutants of the two strains showed similar defects in growth and morphology and overproduced an external cell envelope inside of which cells remained after division. However, the nature of this external layer is strain specific, being easily stained and regular in the HB8 delta slpA derivative and amorphous and poorly stained in the HB27 delta slpA strain. The addition of chromosomic DNA from T. thermophilus HB8 to growing cultures of T. thermophilus HB27 delta slpA led to the selection of a new strain, HB27C8, which expressed a functional S-layer composed of the P100 protein. Conversely, the addition of chromosomic DNA from T. thermophilus HB27 to growing cultures of T. thermophilus HB8 delta slpA allowed the isolation of strain HB8C27, which expressed a functional S-layer composed of the P95 protein. The driving force which selected the transference of the S-layer genes in these experiments was the difference in growth rates, one of the main factors leading to selection in natural environments. PMID:7559330

  7. Horizontal transfer of a non-autonomous Helitron among insect and viral genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The movement of genetic material among species by horizontal transfer (HT) influences genome evolution through the modification of structure and function. Helitrons are a relatively new lineage of DNA-based (class II) transposable elements (TEs) that propagate by rolling-circle replication and are ...

  8. Horizontal transfer of methoprene by Tribolium castaneum (Herbst) and T. confusum Jacquelin du Val

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In food facilities the majority of insect populations typically occur within hidden locations with limited direct exposure to insecticides, but there is potential for dispersing insects to transport insecticides into hidden areas and transfer insecticide to other individuals (i.e., horizontal transf...

  9. Mechanisms for horizontal transfer of methoprene from treated to untreated Tribolium castaneum (Herbst)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were performed to determine the relative impact of different mechanisms of horizontal transfer of methoprene by Tribolium castaneum (Herbst), the red flour beetle. Insects exposed to 5 methoprene treated developmental stages (late-stage larvae, pupae, or adults) resulted in 100% mortalit...

  10. Horizontal Gene Transfer and Redundancy of Tryptophan Biosynthetic Enzymes in Dinotoms

    PubMed Central

    Imanian, Behzad; Keeling, Patrick J.

    2014-01-01

    A tertiary endosymbiosis between a dinoflagellate host and diatom endosymbiont gave rise to “dinotoms,” cells with a unique nuclear and mitochondrial redundancy derived from two evolutionarily distinct eukaryotic lineages. To examine how this unique redundancy might have affected the evolution of metabolic systems, we investigated the transcription of genes involved in biosynthesis of the amino acid tryptophan in three species, Durinskia baltica, Kryptoperidinium foliaceum, and Glenodinium foliaceum. From transcriptome sequence data, we recovered two distinct sets of protein-coding transcripts covering the entire tryptophan biosynthetic pathway. Phylogenetic analyses suggest a diatom origin for one set of the proteins, which we infer to be expressed in the endosymbiont, and that the other arose from multiple horizontal gene transfer events to the dinoflagellate ancestor of the host lineage. This is the first indication that these cells retain redundant sets of transcripts and likely metabolic pathways for the biosynthesis of small molecules and extend their redundancy to their two distinct nuclear genomes. PMID:24448981

  11. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    PubMed Central

    Labonté, Jessica M.; Field, Erin K.; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K. Eric; Kieft, Thomas L.; Onstott, Tullis C.; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  12. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population.

    PubMed

    Labonté, Jessica M; Field, Erin K; Lau, Maggie; Chivian, Dylan; Van Heerden, Esta; Wommack, K Eric; Kieft, Thomas L; Onstott, Tullis C; Stepanauskas, Ramunas

    2015-01-01

    A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT) and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a 3 km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32% of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs) and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment. PMID:25954269

  13. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade.

    PubMed

    Koblížek, Michal; Moulisová, Vladimíra; Muroňová, Markéta; Oborník, Miroslav

    2015-01-01

    The Roseobacter clade represents one of the most important bacterial groups in marine environments. While some of its members are heterotrophs, many Roseobacter clade members contain bacterial photosynthetic reaction centers. We investigated the phylogeny of pufL and pufM genes encoding the L and M subunits of reaction centers using available genomic data and our own cultured species. Interestingly, phylogeny of pufL and pufM genes largely deviated from 16S rRNA-based phylogeny. The sequences split into two clearly distinct clades. While most of the studied species contained pufL and pufM sequences related to those found in Roseobacter litoralis, some of the marine species contained sequences related to the freshwater Rhodobacter species. In addition, genomic data documents that Roseobacter-type centers contain cytochrome c subunits (pufC gene product), whereas Rhodobacter-type centers incorporate PufX proteins. This indicates that the two forms of the reaction centers are not only distinct phylogenetically, but also structurally. The large deviation of pufL and pufM phylogeny from 16S phylogeny indicates multiple horizontal transfers of the puf operon among members of the order Rhodobacterales. PMID:25090942

  14. Horizontally transferred genes in the genome of Pacific white shrimp, Litopenaeus vannamei

    PubMed Central

    2013-01-01

    Background In recent years, as the development of next-generation sequencing technology, a growing number of genes have been reported as being horizontally transferred from prokaryotes to eukaryotes, most of them involving arthropods. As a member of the phylum Arthropoda, the Pacific white shrimp Litopenaeus vannamei has to adapt to the complex water environments with various symbiotic or parasitic microorganisms, which provide a platform for horizontal gene transfer (HGT). Results In this study, we analyzed the genome-wide HGT events in L. vannamei. Through homology search and phylogenetic analysis, followed by experimental PCR confirmation, 14 genes with HGT event were identified: 12 of them were transferred from bacteria and two from fungi. Structure analysis of these genes showed that the introns of the two fungi-originated genes were substituted by shrimp DNA fragment, two genes transferred from bacteria had shrimp specific introns inserted in them. Furthermore, around other three bacteria-originated genes, there were three large DNA segments inserted into the shrimp genome. One segment was a transposon that fully transferred, and the other two segments contained only coding regions of bacteria. Functional prediction of these 14 genes showed that 6 of them might be related to energy metabolism, and 4 others related to defense of the organism. Conclusions HGT events from bacteria or fungi were happened in the genome of L. vannamei, and these horizontally transferred genes can be transcribed in shrimp. This is the first time to report the existence of horizontally transferred genes in shrimp. Importantly, most of these genes are exposed to a negative selection pressure and appeared to be functional. PMID:23914989

  15. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict.

    PubMed

    Croucher, Nicholas J; Mostowy, Rafal; Wymant, Christopher; Turner, Paul; Bentley, Stephen D; Fraser, Christophe

    2016-03-01

    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that

  16. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict

    PubMed Central

    Croucher, Nicholas J.; Mostowy, Rafal; Wymant, Christopher; Turner, Paul; Bentley, Stephen D.; Fraser, Christophe

    2016-01-01

    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell–cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing “arms race.” Reduced rates of transformation have also been observed in cells infected by MGEs that

  17. Complexity of genetic sequences modified by horizontal gene transfer and degraded-DNA uptake

    NASA Astrophysics Data System (ADS)

    Tremberger, George; Dehipawala, S.; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    Horizontal gene transfer has been a major vehicle for efficient transfer of genetic materials among living species and could be one of the sources for noncoding DNA incorporation into a genome. Our previous study of lnc- RNA sequence complexity in terms of fractal dimension and information entropy shows a tight regulation among the studied genes in numerous diseases. The role of sequence complexity in horizontal transferred genes was investigated with Mealybug in symbiotic relation with a 139K genome microbe and Deinococcus radiodurans as examples. The fractal dimension and entropy showed correlation R-sq of 0.82 (N = 6) for the studied Deinococcus radiodurans sequences. For comparison the Deinococcus radiodurans oxidative stress tolerant catalase and superoxide dismutase genes under extracellular dGMP growth condition showed R-sq ~ 0.42 (N = 6); and the studied arsenate reductase horizontal transferred genes for toxicity survival in several microorganisms showed no correlation. Simulation results showed that R-sq < 0.4 would be improbable at less than one percent chance, suggestive of additional selection pressure when compared to the R-sq ~ 0.29 (N = 21) in the studied transferred genes in Mealybug. The mild correlation of R-sq ~ 0.5 for fractal dimension versus transcription level in the studied Deinococcus radiodurans sequences upon extracellular dGMP growth condition would suggest that lower fractal dimension with less electron density fluctuation favors higher transcription level.

  18. Forced convection heat transfer of subcooled liquid hydrogen in horizontal tubes

    NASA Astrophysics Data System (ADS)

    Tatsumoto, Hideki; Shirai, Yasuyuki; Shiotsu, Masahiro; Hata, Koichi; Naruo, Yoshihiro; Kobayashi, Hiroyuki; Inatani, Yoshifumi; Kinoshita, K.

    2012-06-01

    Forced flow heat transfers of liquid hydrogen through horizontally-mounted tubes with the diameter of 3.0 mm and 6.0 mm were measured at the pressure of 0.7 MPa for various inlet temperatures and flow velocities. The measured non-boiling heat transfer coefficients agree with those by the Dittus-Boelter correlation. The heat fluxes at the onset of nucleate boiling and the departure from nucleate boiling (DNB) heat fluxes, where the heat transfer continuously changes to film boiling regime, are higher for higher flow velocity, larger subcooling and larger tube diameter. The DNB heat fluxes for the horizontally-mounted tube are slightly lower than those for the vertically-mounted tube, although the effect of the tube attitude direction disappears for a small tube diameter. The measured DNB heat fluxes agree with the correlation for vertically-mounted tubes.

  19. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events.

    PubMed

    Johnsen, Anders R; Kroer, Niels

    2007-03-01

    Selection pressure may affect the horizontal transfer of plasmids. The inability to distinguish between gene transfer and the growth of transconjugants complicates testing. We have developed a method that enables the quantification of discrete transfer events. It uses large numbers of replicate matings (192 or 384) in microtiter wells and the counting of transfer-positive and transfer-negative wells. We applied the method to study the transfer of the IncP1 plasmid pRO103 between Escherichia coli and Pseudomonas putida strains. pRO103 encodes resistance to mercury and tetracycline and partial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). The results showed positive correlation between transfer and donor metabolic activity, and an optimal temperature for transfer of 29 degrees C. On stimulation of donor activity, the optimal temperature was decreased to 24.5 degrees C. HgCl(2) above 1.0 microg L(-1) negatively affected transfer, whereas 2,4-D up to 0.3 mM had no effect. The negative effect of mercury was shown to be a result of stressing of the recipient. No effects of mercury on transfer could be detected by traditional filter mating. Thus, the method is superior to filter mating and, as the experimental design allows the manipulation of individual parameters, it is ideal for the assessment and comparison of effects of environmental factors on plasmid transfer. PMID:17100984

  20. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes.

    PubMed

    Kordis, D; Gubensek, F

    1998-09-01

    We have shown previously by Southern blot analysis that Bov-B long interspersed nuclear elements (LINEs) are present in different Viperidae snake species. To address the question as to whether Bov-B LINEs really have been transmitted horizontally between vertebrate classes, the analysis has been extended to a larger number of vertebrate, invertebrate, and plant species. In this paper, the evolutionary origin of Bov-B LINEs is shown unequivocally to be in Squamata. The previously proposed horizontal transfer of Bov-B LINEs in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The horizontal transfer of Bov-B LINEs from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution. The ancestor of Colubroidea snakes is a possible donor of Bov-B LINEs to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINEs in Ruminantia and the fossil data of Ruminantia to be 40-50 My ago. The phylogenetic relationships of Bov-B LINEs from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINEs have been maintained stably by vertical transmission since the origin of Squamata in the Mesozoic era. PMID:9724768

  1. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers

    PubMed Central

    Grilli, Jacopo; Romano, Mariacristina; Bassetti, Federico; Cosentino Lagomarsino, Marco

    2014-01-01

    Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome ‘flux’. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection. PMID:24829449

  2. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera

    PubMed Central

    Qiu, Zhigang; Yu, Yunmei; Chen, Zhaoli; Jin, Min; Yang, Dong; Zhao, Zuguo; Wang, Jingfeng; Shen, Zhiqiang; Wang, Xinwei; Qian, Di; Huang, Aihua; Zhang, Buchang; Li, Jun-Wen

    2012-01-01

    Antibiotic resistance is a worldwide public health concern. Conjugative transfer between closely related strains or species of bacteria is an important method for the horizontal transfer of multidrug-resistance genes. The extent to which nanomaterials are able to cause an increase in antibiotic resistance by the regulation of the conjugative transfer of antibiotic-resistance genes in bacteria, especially across genera, is still unknown. Here we show that nanomaterials in water can significantly promote the horizontal conjugative transfer of multidrug-resistance genes mediated by the RP4, RK2, and pCF10 plasmids. Nanoalumina can promote the conjugative transfer of the RP4 plasmid from Escherichia coli to Salmonella spp. by up to 200-fold compared with untreated cells. We also explored the mechanisms behind this phenomenon and demonstrate that nanoalumina is able to induce oxidative stress, damage bacterial cell membranes, enhance the expression of mating pair formation genes and DNA transfer and replication genes, and depress the expression of global regulatory genes that regulate the conjugative transfer of RP4. These findings are important in assessing the risk of nanomaterials to the environment, particularly from water and wastewater treatment systems, and in the estimation of the effect of manufacture and use of nanomaterials on the environment. PMID:22411796

  3. A case of horizontal gene transfer from Wolbachia to Aedes albopictus C6/36 cell line

    PubMed Central

    Hou, Qing; He, Ji; Yu, Jing; Ye, Yuting; Zhou, Dan; Sun, Yan; Zhang, Donghui; Ma, Lei; Shen, Bo; Zhu, Changliang

    2014-01-01

    Horizontal gene transfer plays an essential role in evolution and ecological adaptation, yet this phenomenon has remained controversial, particularly where it occurs between prokaryotes and eukaryotes. There are a handful of reported examples of horizontal gene transfer occurring between prokaryotes and eukaryotes in the literature, with most of these documented cases pertaining to invertebrates and endosymbionts. However, the vast majority of these horizontally transferred genes were either eventually excluded or rapidly became nonfunctional in the recipient genome. In this study, we report the discovery of a horizontal gene transfer from the endosymbiont Wolbachia in the C6/36 cell line derived from the mosquito Aedes albopictus. Moreover, we report that this horizontally transferred gene displayed high transcription level. This finding and the results of further experimentation strongly suggest this gene is functional and has been expressed and translated into a protein in the mosquito host cells. PMID:24812591

  4. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers.

    PubMed

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  5. Prediction of condensation heat transfer of low GWP refrigerants inside smooth horizontal tube

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Anowar; Afroz, Hasan M. M.; Talukder, Shaon; Miyara, Akio

    2016-07-01

    The present research work observed the experimental and analytical results of two phase condensation heat transfer of the refrigerants R1234ze(E), R32, R410A, and R1234ze(E)/R32 mixtures inside a smooth horizontal tube. A water heated double tube horizontal heat exchanger with effective length of 3.6m and inner diameter of 4.35mm is used to take place the experiment. Mass flux and the saturation temperature are the design variables under which the experiment is carried out whose values varying from the range 160 to 400 Kg m-2s-1 and 30°C to 45°C, respectively. A new correlation for pure refrigerant has been proposed to predict the heat transfer inside a smooth horizontal tube by investigating the experimental data. The newly proposed correlation and some other existing correlations of condensation heat transfer for pure refrigerant have been used to predict the condensation heat transfer of R1234ze(E), R32, R410A and dimethyl ether (DME) and compared the results. The comparison allows that the proposed model of pure refrigerant offered a better performance for all the refrigerants. All the experimental data can be predicted within a 10.2% mean deviation by using the proposed correlation.

  6. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers

    PubMed Central

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  7. Decreasing the effects of horizontal gene transfer on bacterial phylogeny: the Escherichia coli case study.

    PubMed

    Escobar-Páramo, Patricia; Sabbagh, Audrey; Darlu, Pierre; Pradillon, Olivier; Vaury, Christelle; Denamur, Erick; Lecointre, Guillaume

    2004-01-01

    Phylogenetic reconstructions of bacterial species from DNA sequences are hampered by the existence of horizontal gene transfer. One possible way to overcome the confounding influence of such movement of genes is to identify and remove sequences which are responsible for significant character incongruence when compared to a reference dataset free of horizontal transfer (e.g., multilocus enzyme electrophoresis, restriction fragment length polymorphism, or random amplified polymorphic DNA) using the incongruence length difference (ILD) test of Farris et al. [Cladistics 10 (1995) 315]. As obtaining this "whole genome dataset" prior to the reconstruction of a phylogeny is clearly troublesome, we have tested alternative approaches allowing the release from such reference dataset, designed for a species with modest level of horizontal gene transfer, i.e., Escherichia coli. Eleven different genes available or sequenced in this work were studied in a set of 30 E. coli reference (ECOR) strains. Either using ILD to test incongruence between each gene against the all remaining (in this case 10) genes in order to remove sequences responsible for significant incongruence, or using just a simultaneous analysis without removals, gave robust phylogenies with slight topological differences. The use of the ILD test remains a suitable method for estimating the level of horizontal gene transfer in bacterial species. Supertrees also had suitable properties to extract the phylogeny of strains, because the way they summarize taxonomic congruence clearly limits the impact of individual gene transfers on the global topology. Furthermore, this work allowed a significant improvement of the accuracy of the phylogeny within E. coli. PMID:15022774

  8. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes.

    PubMed

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches. PMID:26789284

  9. Horizontal Gene Transfers from Bacteria to Entamoeba Complex: A Strategy for Dating Events along Species Divergence

    PubMed Central

    Romero, Miguel; Ximenez, Cecilia

    2016-01-01

    Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasite Entamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genus Entamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of some Entamoeba species was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence between E. histolytica and E. nuttallii probably occurred 5.93 million years ago (Mya); this lineage diverged from E. dispar 9.97 Mya, while the ancestor of the latter separated from E. invadens 68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of the Entamoeba genus. PMID:27239333

  10. Horizontal Gene Transfers from Bacteria to Entamoeba Complex: A Strategy for Dating Events along Species Divergence.

    PubMed

    Romero, Miguel; Cerritos, R; Ximenez, Cecilia

    2016-01-01

    Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasite Entamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genus Entamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of some Entamoeba species was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence between E. histolytica and E. nuttallii probably occurred 5.93 million years ago (Mya); this lineage diverged from E. dispar 9.97 Mya, while the ancestor of the latter separated from E. invadens 68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of the Entamoeba genus. PMID:27239333

  11. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  12. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    PubMed Central

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E.; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  13. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments.

    PubMed

    Moreno-Letelier, Alejandra; Olmedo, Gabriela; Eguiarte, Luis E; Martinez-Castilla, Leon; Souza, Valeria

    2011-01-01

    The high affinity phosphate transport system (pst) is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB) has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS) were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events. PMID:21461370

  14. Detecting horizontal gene transfer with T-REX and RHOM programs.

    PubMed

    Li, Zuofeng; Wang, Li; Zhong, Yang

    2005-12-01

    As the Human Genome Project and other genome projects experience remarkable success and a flood of biological data is produced by means of high-throughout sequencing techniques, detection of horizontal gene transfer (HGT) becomes a promising field in bioinformatics. This review describes two freeware programs: T-REX for MS Windows and RHOM for Linux. T-REX is a graphical user interface program that offers functions to reconstruct the HGT network among the donor and receptor hosts from the gene and species distance matrices. RHOM is a set of command-line driven programs used to detect HGT in genomes. While T-REX impresses with a user-friendly interface and drawing of the reticulation network, the strength of RHOM is an extensive statistical framework of genome and the graphical display of the estimated sequence position probabilities for the candidate horizontally transferred genes. PMID:16420738

  15. Emergence of collective territorial defense in bacterial communities: horizontal gene transfer can stabilize microbiomes.

    PubMed

    Juhász, János; Kertész-Farkas, Attila; Szabó, Dóra; Pongor, Sándor

    2014-01-01

    Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and resilient even though they consist of cells and species that compete for resources and also produce a large number of antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome. The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens and restore a protective environment. PMID:24755769

  16. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer.

    PubMed

    Bromberg, Raquel; Grishin, Nick V; Otwinowski, Zbyszek

    2016-06-01

    Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. PMID:27336403

  17. Phylogeny Reconstruction with Alignment-Free Method That Corrects for Horizontal Gene Transfer

    PubMed Central

    Grishin, Nick V.; Otwinowski, Zbyszek

    2016-01-01

    Advances in sequencing have generated a large number of complete genomes. Traditionally, phylogenetic analysis relies on alignments of orthologs, but defining orthologs and separating them from paralogs is a complex task that may not always be suited to the large datasets of the future. An alternative to traditional, alignment-based approaches are whole-genome, alignment-free methods. These methods are scalable and require minimal manual intervention. We developed SlopeTree, a new alignment-free method that estimates evolutionary distances by measuring the decay of exact substring matches as a function of match length. SlopeTree corrects for horizontal gene transfer, for composition variation and low complexity sequences, and for branch-length nonlinearity caused by multiple mutations at the same site. We tested SlopeTree on 495 bacteria, 73 archaea, and 72 strains of Escherichia coli and Shigella. We compared our trees to the NCBI taxonomy, to trees based on concatenated alignments, and to trees produced by other alignment-free methods. The results were consistent with current knowledge about prokaryotic evolution. We assessed differences in tree topology over different methods and settings and found that the majority of bacteria and archaea have a core set of proteins that evolves by descent. In trees built from complete genomes rather than sets of core genes, we observed some grouping by phenotype rather than phylogeny, for instance with a cluster of sulfur-reducing thermophilic bacteria coming together irrespective of their phyla. The source-code for SlopeTree is available at: http://prodata.swmed.edu/download/pub/slopetree_v1/slopetree.tar.gz. PMID:27336403

  18. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus

    PubMed Central

    Ma, Peng-Fei; Zhang, Yu-Xiao; Guo, Zhen-Hua; Li, De-Zhu

    2015-01-01

    In flowering plants, three genomes (nuclear, mitochondrial, and plastid) coexist and intracellular horizontal transfer of DNA is prevalent, especially from the plastid to the mitochondrion genome. However, the plastid genomes are generally conserved in evolution and have long been considered immune to foreign DNA. Recently, the opposite direction of DNA transfer from the mitochondrial to the plastid genome has been reported in two eudicot lineages. Here we sequenced 6 plastid genomes of bamboos, three of which are neotropical woody species and three are herbaceous ones. Several unusual features were found, including the duplication of trnT-GGU and loss of one copy of rps19 due to contraction of inverted repeats (IRs). The most intriguing was the ~2.7 kb insertion in the plastid IR regions in the three herbaceous bamboos. Furthermore, the insertion was documented to be horizontally transferred from the mitochondrial to the plastid genome. Our study provided evidence of the mitochondrial-to-plastid DNA transfer in the monocots, demonstrating again that this rare event does occur in other angiosperm lineages. However, the mechanism underlying the transfer remains obscure, and more studies in other plants may elucidate it in the future. PMID:26100509

  19. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects

    PubMed Central

    Shelomi, Matan; Danchin, Etienne G. J.; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects’ digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion. PMID:27210832

  20. Radiative and free-convective heat transfer from a finite horizontal plate inside an enclosure

    NASA Technical Reports Server (NTRS)

    Hrycak, Peter; Sandman, D. J.

    1986-01-01

    An experimental and analytical investigation of heat transfer from a horizontal, thin, square plate inside of an enclosure was carried out. Experimental results were obtained from both the upward-facing and the downward-facing sides of the heated plate. Starting with the integrated momentum and energy equations, approximate solutions were obtained for heat transfer in the laminar and the turbulent regime that correlate well with experimental data. Radiative heat transfer correction was given special attention. Effects of the enclosure-related recirculation of the test fluid, as well as effects of simultaneous heat transfer on both sides of the plate, caused an early transition, and indicated a high level of internal turbulence.

  1. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects.

    PubMed

    Shelomi, Matan; Danchin, Etienne G J; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    Genes acquired by horizontal transfer are increasingly being found in animal genomes. Understanding their origin and evolution requires knowledge about the phylogenetic relationships from both source and recipient organisms. We used RNASeq data and respective assembled transcript libraries to trace the evolutionary history of polygalacturonase (pectinase) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early euphasmatodean ancestor that took place between 60 and 100 million years ago. This transfer preceded the rapid diversification of the suborder, enabling symbiont-free pectinase production that would increase the insects' digestive efficiency and reduce dependence on microbes. Bacteria-to-insect gene transfer was thought to be uncommon, however the increasing availability of large-scale genomic data may change this prevailing notion. PMID:27210832

  2. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    NASA Astrophysics Data System (ADS)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  3. Natural convection heat transfer from a horizontal wavy surface in a porous enclosure

    SciTech Connect

    Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.

    1997-02-07

    The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase {phi}, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0{degree} and 350{degree}. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system.

  4. Isolated bilateral horizontal gaze palsy as first manifestation of multiple sclerosis.

    PubMed

    Kipfer, Stefan; Crook, David W

    2014-05-01

    Predilection sites for infratentorial multiple sclerosis lesions are well known and frequently involve the fasciculus longitudinalis medialis leading to classical internuclear ophthalmoplegia. We report a very rare oculomotor disorder due to a demyelinating central nervous system (CNS) lesion in the medial part of the lower pontine tegmentum. A 36-year-old man presented with sudden onset of blurred vision. Clinically there was limited eye adduction and abduction to either side, which corresponds to bilateral horizontal gaze palsy. Brain magnetic resonance imaging (MRI) showed a demyelinating CNS lesion affecting the fasciculus longitudinalis medialis, abducens nuclei or abducens fibres in the medial part of the lower pontine tegmentum. Furthermore there were six further demyelinating white matter lesions fulfilling all Barkhof criteria for multiple sclerosis. Demyelinating CNS lesions causing isolated bilateral horizontal gaze palsy are exceptional and usually associated with further focal neurological deficits, which was not the case in the presenting patient. This is a unique video report of isolated bilateral horizontal gaze palsy as the initial manifestation of demyelinating CNS disease, which lead to definite diagnosis of relapsing remitting multiple sclerosis. PMID:24402040

  5. Ribonucleotide reduction - horizontal transfer of a required function spans all three domains

    PubMed Central

    2010-01-01

    Background Ribonucleotide reduction is the only de novo pathway for synthesis of deoxyribonucleotides, the building blocks of DNA. The reaction is catalysed by ribonucleotide reductases (RNRs), an ancient enzyme family comprised of three classes. Each class has distinct operational constraints, and are broadly distributed across organisms from all three domains, though few class I RNRs have been identified in archaeal genomes, and classes II and III likewise appear rare across eukaryotes. In this study, we examine whether this distribution is best explained by presence of all three classes in the Last Universal Common Ancestor (LUCA), or by horizontal gene transfer (HGT) of RNR genes. We also examine to what extent environmental factors may have impacted the distribution of RNR classes. Results Our phylogenies show that the Last Eukaryotic Common Ancestor (LECA) possessed a class I RNR, but that the eukaryotic class I enzymes are not directly descended from class I RNRs in Archaea. Instead, our results indicate that archaeal class I RNR genes have been independently transferred from bacteria on two occasions. While LECA possessed a class I RNR, our trees indicate that this is ultimately bacterial in origin. We also find convincing evidence that eukaryotic class I RNR has been transferred to the Bacteroidetes, providing a stunning example of HGT from eukaryotes back to Bacteria. Based on our phylogenies and available genetic and genomic evidence, class II and III RNRs in eukaryotes also appear to have been transferred from Bacteria, with subsequent within-domain transfer between distantly-related eukaryotes. Under the three-domains hypothesis the RNR present in the last common ancestor of Archaea and eukaryotes appears, through a process of elimination, to have been a dimeric class II RNR, though limited sampling of eukaryotes precludes a firm conclusion as the data may be equally well accounted for by HGT. Conclusions Horizontal gene transfer has clearly played an

  6. Horizontal transfer of archaeal genes into the deinococcaceae: detection by molecular and computer-based approaches

    NASA Technical Reports Server (NTRS)

    Olendzenski, L.; Liu, L.; Zhaxybayeva, O.; Murphey, R.; Shin, D. G.; Gogarten, J. P.

    2000-01-01

    Members of the Deinococcaceae (e.g., Thermus, Meiothermus, Deinococcus) contain A/V-ATPases typically found in Archaea or Eukaryotes which were probably acquired by horizontal gene transfer. Two methods were used to quantify the extent to which archaeal or eukaryotic genes have been acquired by this lineage. Screening of a Meiothermus ruber library with probes made against Thermoplasma acidophilum DNA yielded a number of clones which hybridized more strongly than background. One of these contained the prolyl tRNA synthetase (RS) gene. Phylogenetic analysis shows the M. ruber and D. radiodurans prolyl RS to be more closely related to archaeal and eukaryal forms of this gene than to the typical bacterial type. Using a bioinformatics approach, putative open reading frames (ORFs) from the prerelease version of the D. radiodurans genome were screened for genes more closely related to archaeal or eukaryotic genes. Putative ORFs were searched against representative genomes from each of the three domains using automated BLAST. ORFs showing the highest matches against archaeal and eukaryotic genes were collected and ranked. Among the top-ranked hits were the A/V-ATPase catalytic and noncatalytic subunits and the prolyl RS genes. Using phylogenetic methods, ORFs were analyzed and trees assessed for evidence of horizontal gene transfer. Of the 45 genes examined, 20 showed topologies in which D. radiodurans homologues clearly group with eukaryotic or archaeal homologues, and 17 additional trees were found to show probable evidence of horizontal gene transfer. Compared to the total number of ORFs in the genome, those that can be identified as having been acquired from Archaea or Eukaryotes are relatively few (approximately 1%), suggesting that interdomain transfer is rare.

  7. Evolution and Horizontal Transfer of dUTPase-Encoding Genes in Viruses and Their Hosts

    PubMed Central

    Baldo, Angela M.; McClure, Marcella A.

    1999-01-01

    dUTPase is a ubiquitous and essential enzyme responsible for regulating cellular levels of dUTP. The dut gene exists as single, tandemly duplicated, and tandemly triplicated copies. Crystallized single-copy dUTPases have been shown to assemble as homotrimers. dUTPase is encoded as an auxiliary gene in a number of virus genomes. The origin of viral dut genes has remained unresolved since their initial discovery. A comprehensive analysis of dUTPase amino acid sequence relationships was performed to explore the evolutionary dynamics of dut in viruses and their hosts. Our data set, comprised of 24 host and 51 viral sequences, includes representative sequences from available eukaryotes, archaea, eubacteria cells, and viruses, including herpesviruses. These amino acid sequences were aligned by using a hidden Markov model approach developed to align divergent data. Known secondary structures from single-copy crystals were mapped onto the aligned duplicate and triplicate sequences. We show how duplicated dUTPases might fold into a monomer, and we hypothesize that triplicated dUTPases also assemble as monomers. Phylogenetic analysis revealed at least five viral dUTPase sequence lineages in well-supported monophyletic clusters with eukaryotic, eubacterial, and archaeal hosts. We have identified all five as strong examples of horizontal transfer as well as additional potential transfer of dut genes among eubacteria, between eubacteria and viruses, and between retroviruses. The evidence for horizontal transfers is particularly interesting since eukaryotic dut genes have introns, while DNA virus dut genes do not. This implies that an intermediary retroid agent facilitated the horizontal transfer process between host mRNA and DNA viruses. PMID:10438861

  8. Heat Transfer of HC290-OIL Mixtures in a Horizontal Condensing Micro-Fin Tube

    NASA Astrophysics Data System (ADS)

    Tong, M. W.; Dong, M. L.; Li, Y.

    Heat transfer coefficients was experimentally determined for a horizontal micro-fin tube (2m in length, 11.44mm ID) with HC290-oil mixtures. The oil is Suniso 3GS, which is a widely used oil in refrigerant systems. The micro-fin tube is a internally enhanced tube, which has 60 fins with a height of 0.25mm and 20° spiral angle. The condensation temperatures varied from 40° to 45° and the refrigerant mass flux was varied from 40kg/(m2s) to 220kg/(m2s). The results showed that the mean condensation heat transfer coefficients on the test section (inlet vapor quality 1, outlet vapor quality 0.1~0.25) decreased as the oil concentrations were increased and the condensation temperature had negligible effect on the heat transfer coefficients.

  9. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure.

    PubMed

    Yang, Mei

    2016-01-01

    Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k-ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared. PMID:27458729

  10. Horizontal versus vertical charge and energy transfer in hybrid assemblies of semiconductor nanoparticles

    PubMed Central

    Gotesman, Gilad; Guliamov, Rahamim

    2012-01-01

    Summary We studied the photoluminescence and time-resolved photoluminescence from self-assembled bilayers of donor and acceptor nanoparticles (NPs) adsorbed on a quartz substrate through organic linkers. Charge and energy transfer processes within the assemblies were investigated as a function of the length of the dithiolated linker (DT) between the donors and acceptors. We found an unusual linker-length-dependency in the emission of the donors. This dependency may be explained by charge and energy transfer processes in the vertical direction (from the donors to the acceptors) that depend strongly on charge transfer processes occurring in the horizontal plane (within the monolayer of the acceptor), namely, parallel to the substrate. PMID:23019559

  11. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure

    PubMed Central

    Yang, Mei

    2016-01-01

    Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k−ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared. PMID:27458729

  12. HGT-Finder: A New Tool for Horizontal Gene Transfer Finding and Application to Aspergillus genomes

    PubMed Central

    Nguyen, Marcus; Ekstrom, Alex; Li, Xueqiong; Yin, Yanbin

    2015-01-01

    Horizontal gene transfer (HGT) is a fast-track mechanism that allows genetically unrelated organisms to exchange genes for rapid environmental adaptation. We developed a new phyletic distribution-based software, HGT-Finder, which implements a novel bioinformatics algorithm to calculate a horizontal transfer index and a probability value for each query gene. Applying this new tool to the Aspergillus fumigatus, Aspergillus flavus, and Aspergillus nidulans genomes, we found 273, 542, and 715 transferred genes (HTGs), respectively. HTGs have shorter length, higher guanine-cytosine (GC) content, and relaxed selection pressure. Metabolic process and secondary metabolism functions are significantly enriched in HTGs. Gene clustering analysis showed that 61%, 41% and 74% of HTGs in the three genomes form physically linked gene clusters (HTGCs). Overlapping manually curated, secondary metabolite gene clusters (SMGCs) with HTGCs found that 9 of the 33 A. fumigatus SMGCs and 31 of the 65 A. nidulans SMGCs share genes with HTGCs, and that HTGs are significantly enriched in SMGCs. Our genome-wide analysis thus presented very strong evidence to support the hypothesis that HGT has played a very critical role in the evolution of SMGCs. The program is freely available at http://cys.bios.niu.edu/HGTFinder/HGTFinder.tar.gz. PMID:26473921

  13. Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study

    PubMed Central

    Slot, Jason C.; Hibbett, David S.

    2007-01-01

    High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC) that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts). We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts) to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota), which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the “selfish operon” hypothesis for maintenance of gene clusters. PMID:17971860

  14. Heat transfer in horizontal tubes during two phase natural circulation with presence of noncondensing gas

    NASA Astrophysics Data System (ADS)

    Alt, S.; Lischke, W.

    The condensation process of steam inside horizontal tubes during natural circulation gains in importance regarding the reactor safety research for existing and future nuclear power plants. Experimental investigations due to the condensation process were realized with the rig HORUS to study the behaviour of water-steam-gas mixtures in horizontal tubes. The paper includes statements regarding the flow and heat transfer conditions inside the tube and the temperature distribution inside the small tube wall. The experiments showed a blockade of the heat transfer area with Nitrogen which is connected with an increasing primary pressure followed by a compression of the Nitrogen and a reentry of steam into the tube. The experiments serve for the creation of an experimental data base. A model development for calculation of the heat transfer is described. The model was implemented in the German thermal-hydraulic code ATHLET. The comparison of calculated data and the measured parameters of HORUS rig show the code improvement for the simulation of noncondensing gases.

  15. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    SciTech Connect

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  16. The influence of horizontal gene transfer on the mean fitness of unicellular populations in static environments.

    PubMed

    Raz, Yoav; Tannenbaum, Emmanuel

    2010-05-01

    Horizontal gene transfer (HGT) is believed to be a major source of genetic variation, particularly for prokaryotes. It is believed that horizontal gene transfer plays a major role in shaping bacterial genomes and is also believed to be responsible for the relatively rapid dissemination and acquisition of new, adaptive traits across bacterial strains. Despite the importance of horizontal gene transfer as a major source of genetic variation, the bulk of research on theoretical evolutionary dynamics and population genetics has focused on point mutations (sometimes coupled with gene duplication events) as the main engine of genomic change. Here, we seek to specifically model HGT processes in bacterial cells, by developing a mathematical model describing the influence that conjugation-mediated HGT has on the mutation-selection balance in an asexually reproducing population of unicellular, prokaryotic organisms. It is assumed that mutation-selection balance is reached in the presence of a fixed background concentration of antibiotic, to which the population must become resistant to survive. We find that HGT has a nontrivial effect on the mean fitness of the population. However, one of the central results that emerge from our analysis is that, at mutation-selection balance, conjugation-mediated HGT has a slightly deleterious effect on the mean fitness of a population. Therefore, we conclude that HGT does not confer a selection advantage in static environments. Rather, its advantage must lie in its ability to promote faster adaptation in dynamic environments, an interpretation that is consistent with the observation that HGT can be promoted by environmental stresses on a population. PMID:20194966

  17. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    PubMed

    Sinkovics, Joseph G

    2009-09-01

    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  18. Heat transfer enhancement of a horizontal microchannel using ferro-nanoparticles injection

    NASA Astrophysics Data System (ADS)

    Shams, M.; Tolou, S.

    2012-05-01

    A numerical study of Ferro-nanoparticles dispersion has been performed inside a micro-channel by using two phase method. Euler-Lagrange approach was conducted to simulate the presence of Ferro-nanoparticles in the horizontal micro-channel under laminar flow condition. Considering slip velocity and temperature jump due to the effect of decreasing hydrodynamic diameter of channel, temperature and velocity profiles were evaluated and effect of some different parameters on heat transfer has been discussed. Drag, Gravity and Brownian forces were considered using a Lagrangian approach. Furthermore, in order to consider slip effects in micro-channels, Cunningham slip correction factor has been pondered in correcting drag force influence.

  19. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    SciTech Connect

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.

  20. Multiple Flux transfer events observed by Cluster

    NASA Astrophysics Data System (ADS)

    Trenchi, Lorenzo; Trattner, Karlheinz; Fazakerley, Andrew; Fear, Robert; Mihaljcic, Branislav

    2016-07-01

    Time-varying reconnection at the Earth magnetopause generates magnetic structures called Flux Transfer Events (FTE) characterized by the typical bipolar variation in the magnetic field component normal to the magnetopause. Different generation mechanisms have been proposed: the original Russell and Elphic FTE model (1978) predicts a pair of elbow shaped flux tubes of reconnected field lines generated by intermittent and localized reconnection. Alternatively, Lee and Fu (1985) propose that FTEs are caused by reconnection along multiple extended X-lines while a third FTE model is based on bursty reconnection along a single X-line (Scholer et al. 1988; Southwood et al., 1988). In this presentation, we present the detailed analysis of several FTEs sequentially observed by Cluster on 27 March 2007. While the Grad Shafranov analysis gives FTE orientations completely different from each other that are more in agreement with the Russell and Elphic model, the FTE orientations obtained from multi-spacecraft timing, which are probably more reliable, have smaller deviations with respect to the X line orientation, and are therefore more consistent with the extended X line models. Most of these FTEs are associated with a single reconnection jet, moving in the same direction of the FTEs, which appears consistently at the trailing edge of the FTEs. This signature suggests a generation mechanism based on single X line reconnection. We also used the Grad Shafranov reconstruction to recover the field topology of a large FTE, which is not associated with reconnection jets. The reconstruction suggests that this FTE is a flux rope with nested helical field lines, which is expected in the multiple X line reconnection. A possible interpretation suggests that both single X line and multiple X line generation mechanisms contributed to the formation of the FTEs during this magnetopause crossing.

  1. Effects of observed horizontal inhomogeneities within cirrus clouds on solar radiative transfer

    NASA Astrophysics Data System (ADS)

    Buschmann, Nicole; McFarquhar, Greg M.; Heymsfield, Andrew J.

    2002-10-01

    In situ microphysical and combined radar and radiometer measurements of 11 cirrus clouds from Central Equatorial Pacific Experiment (CEPEX), European Cloud and Radiation Experiment (EUCREX), investigation of Clouds by Ground-Based and Airborne Radar and Lidar (CARL), and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) are used to investigate effects of horizontal cloud inhomogeneities on solar radiative transfer. A three-dimensional ray-tracing model (GRIMALDI), based on the Monte Carlo method, is used to calculate upward and downward flux densities and absorption for the spectral range from 0.38 to 4.0 μm. Radiative flux densities are calculated using the inhomogeneous clouds derived from the observations and for horizontally and vertically averaged homogeneous clouds. Horizontally averaged values of radiative flux densities and absorption for heterogeneous clouds can differ by up to 30% from those calculated for the homogeneous clouds for convectively induced tropical cirrus clouds. The midlatitude cases examined tended to be more homogeneous, and hence differences between radiative properties for the homogeneous and heterogeneous clouds did not exceed 10%. For cirrus clouds with mean optical thicknesses smaller than 5 and with relative variances of optical thickness smaller than 0.2, errors caused by the homogeneous assumption are smaller than ±10%.

  2. An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis.

    PubMed

    Woolfit, Megan; Iturbe-Ormaetxe, Iñaki; McGraw, Elizabeth A; O'Neill, Scott L

    2009-02-01

    The extent and biological relevance of horizontal gene transfer (HGT) in eukaryotic evolution remain highly controversial. Recent studies have demonstrated frequent and large-scale HGT from endosymbiotic bacteria to their hosts, but the great majority of these transferred genes rapidly become nonfunctional in the recipient genome. Here, we investigate an ancient HGT between a host metazoan and an endosymbiotic bacterium, Wolbachia pipientis. The transferred gene has so far been found only in mosquitoes and Wolbachia. In mosquitoes, it is a member of a gene family encoding candidate receptors required for malaria sporozoite invasion of the mosquito salivary gland. The gene copy in Wolbachia has substantially diverged in sequence from the mosquito homolog, is evolving under purifying selection, and is expressed, suggesting that this gene is also functional in the bacterial genome. Several lines of evidence indicate that the gene may have been transferred from eukaryotic host to bacterial endosymbiont. Regardless of the direction of transfer, however, these results demonstrate that interdomain HGT may give rise to functional, persistent, and possibly evolutionarily significant new genes. PMID:18988686

  3. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria.

    PubMed

    Demanèche, Sandrine; Monier, Jean-Michel; Dugat-Bony, Eric; Simonet, Pascal

    2011-10-01

    The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes. PMID:21564143

  4. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.

    PubMed

    Keeling, Patrick J

    2009-01-01

    Plastids are the organelles derived from a cyanobacterium through endosymbiosis. Unlike mitochondria, plastids are not found in all eukaryotes, but their evolution has an added layer of complexity since plastids have moved between eukaryotic lineages by secondary and tertiary endosymbiotic events. This complex history, together with the genetic integration between plastids and their host, has led to many opportunities for gene flow between phylogenetically distinct lineages. Some intracellular transfers do not lead to a protein functioning in a new environment, but many others do and the protein makeup of many plastids appears to have been influenced by exogenous sources as well. Here, different evolutionary sources and cellular destinations of gene flow that has affected the plastid lineage are reviewed. Most horizontal gene transfer (HGT) affecting the modern plastid has taken place via the host nucleus, in the form of genes for plastid-targeted proteins. The impact of this varies greatly from lineage to lineage, but in some cases such transfers can be as high as one fifth of analyzed genes. More rarely, genes have also been transferred to the plastid genome itself, and plastid genes have also been transferred to other non-plant, non-algal lineages. Overall, the proteome of many plastids has emerged as a mosaic of proteins from many sources, some from within the same cell (e.g., cytosolic genes or genes left over from the replacement of an earlier plastid), some from the plastid of other algal lineages, and some from completely unrelated sources. PMID:19271204

  5. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  6. Negative Feedback and Transcriptional Overshooting in a Regulatory Network for Horizontal Gene Transfer

    PubMed Central

    Fernandez-Lopez, Raul; del Campo, Irene; Revilla, Carlos; Cuevas, Ana; de la Cruz, Fernando

    2014-01-01

    Horizontal gene transfer (HGT) is a major force driving bacterial evolution. Because of their ability to cross inter-species barriers, bacterial plasmids are essential agents for HGT. This ability, however, poses specific requisites on plasmid physiology, in particular the need to overcome a multilevel selection process with opposing demands. We analyzed the transcriptional network of plasmid R388, one of the most promiscuous plasmids in Proteobacteria. Transcriptional analysis by fluorescence expression profiling and quantitative PCR revealed a regulatory network controlled by six transcriptional repressors. The regulatory network relied on strong promoters, which were tightly repressed in negative feedback loops. Computational simulations and theoretical analysis indicated that this architecture would show a transcriptional burst after plasmid conjugation, linking the magnitude of the feedback gain with the intensity of the transcriptional burst. Experimental analysis showed that transcriptional overshooting occurred when the plasmid invaded a new population of susceptible cells. We propose that transcriptional overshooting allows genome rebooting after horizontal gene transfer, and might have an adaptive role in overcoming the opposing demands of multilevel selection. PMID:24586200

  7. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

    PubMed Central

    Wybouw, Nicky; Dermauw, Wannes; Tirry, Luc; Stevens, Christian; Grbić, Miodrag; Feyereisen, René; Van Leeuwen, Thomas

    2014-01-01

    Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide. DOI: http://dx.doi.org/10.7554/eLife.02365.001 PMID:24843024

  8. Horizontal transfers of feminizing versus non-feminizing Wolbachia strains: from harmless passengers to pathogens.

    PubMed

    Le Clec'h, Winka; Raimond, Maryline; Guillot, Sylvain; Bouchon, Didier; Sicard, Mathieu

    2013-11-01

    The endosymbiont Wolbachia pipientis infects various hosts in which it navigates vertically from mothers to offspring. However, horizontal transfers of Wolbachia can occur between hosts. The virulence of the horizontally acquired Wolbachia can change in the new host as it has been illustrated by the case of the feminizing strain wVulC from the woodlouse Armadillidium vulgare that turns to a pathogen when introduced into Porcellio dilatatus dilatatus. In the present study, we aim to show whether symbiotic traits, such as (i) host sex manipulation and (ii) colonization patterns, which differ between eight isopod Wolbachia strains, are connected to their virulence towards the recipient host P. d. dilatatus. Among the transferred Wolbachia, some feminizing strains gradually differing in feminizing intensity in their native hosts induced different levels of pathogenicity to P. d. dilatatus. Not a single feminizing strain passed vertically with high titres to the next generation. The non-feminizing Wolbachia strains, even if they reached high densities in the host, did not impact host life-history traits and some vertically passed with high titres to the offspring. These results suggest that a potential link between the manners Wolbachia manipulates its native host reproduction, its virulence and its ability to vertically infect the offspring. PMID:23802876

  9. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer

    PubMed Central

    Arkhipova, Oksana V.; Meer, Margarita V.; Mikoulinskaia, Galina V.; Zakharova, Marina V.; Galushko, Alexander S.; Kondrashov, Fyodor A.

    2015-01-01

    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1. PMID:25962149

  10. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning.

    PubMed

    Wybouw, Nicky; Dermauw, Wannes; Tirry, Luc; Stevens, Christian; Grbić, Miodrag; Feyereisen, René; Van Leeuwen, Thomas

    2014-01-01

    Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.DOI: http://dx.doi.org/10.7554/eLife.02365.001. PMID:24843024

  11. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns.

    PubMed

    Li, Fay-Wei; Villarreal, Juan Carlos; Kelly, Steven; Rothfels, Carl J; Melkonian, Michael; Frangedakis, Eftychios; Ruhsam, Markus; Sigel, Erin M; Der, Joshua P; Pittermann, Jarmila; Burge, Dylan O; Pokorny, Lisa; Larsson, Anders; Chen, Tao; Weststrand, Stina; Thomas, Philip; Carpenter, Eric; Zhang, Yong; Tian, Zhijian; Chen, Li; Yan, Zhixiang; Zhu, Ying; Sun, Xiao; Wang, Jun; Stevenson, Dennis W; Crandall-Stotler, Barbara J; Shaw, A Jonathan; Deyholos, Michael K; Soltis, Douglas E; Graham, Sean W; Windham, Michael D; Langdale, Jane A; Wong, Gane Ka-Shu; Mathews, Sarah; Pryer, Kathleen M

    2014-05-01

    Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns. PMID:24733898

  12. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens

    PubMed Central

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-01-01

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses. PMID:27270140

  13. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens.

    PubMed

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-01-01

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses. PMID:27270140

  14. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later.

    PubMed

    Ratajczak, Mariusz Z; Ratajczak, Janina

    2016-12-01

    Extracellular microvesicles (ExMVs) are part of the cell secretome, and evidence has accumulated for their involvement in several biological processes. Fourteen years ago our team demonstrated for the first time that ExMVs carry functional RNA species and proteins from one cell to another, an observation that opened up the new research field of horizontal transfer of bioactive molecules in cell-to-cell communication. Moreover, the presence of mRNA, noncoding RNA, and miRNA in ExMVs in blood and other biological fluids opened up the possibility of employing ExMVs as new detection markers for pathological processes, and ExMVs became a target for "liquid biopsy" approaches. While ExMV-derived mRNAs may be translated in target cells into appropriate proteins, miRNAs regulate expression of corresponding mRNA species, and both RNA-depended ExMV-mediated mechanisms lead to functional changes in the target cells. Following from this observation, several excellent papers have been published that confirm the existence of the horizontal transfer of RNA. Moreover, in addition to RNA, proteins, bioactive lipids, infectious particles and intact organelles such as mitochondria may follow a similar mechanism. In this review we will summarize the impressive progress in this field-14 years after initial report. PMID:26943717

  15. Horizontal gene transfer of a Chlamydial tRNA-guanine transglycosylase gene to eukaryotic microbes.

    PubMed

    Manna, Sam; Harman, Ashley

    2016-01-01

    tRNA-guanine transglycosylases are found in all domains of life and mediate the base exchange of guanine with queuine in the anticodon loop of tRNAs. They can also regulate virulence in bacteria such as Shigella flexneri, which has prompted the development of drugs that inhibit the function of these enzymes. Here we report a group of tRNA-guanine transglycosylases in eukaryotic microbes (algae and protozoa) which are more similar to their bacterial counterparts than previously characterized eukaryotic tRNA-guanine transglycosylases. We provide evidence demonstrating that the genes encoding these enzymes were acquired by these eukaryotic lineages via horizontal gene transfer from the Chlamydiae group of bacteria. Given that the S. flexneri tRNA-guanine transglycosylase can be targeted by drugs, we propose that the bacterial-like tRNA-guanine transglycosylases could potentially be targeted in a similar fashion in pathogenic amoebae that possess these enzymes such as Acanthamoeba castellanii. This work also presents ancient prokaryote-to-eukaryote horizontal gene transfer events as an untapped resource of potential drug target identification in pathogenic eukaryotes. PMID:26435002

  16. Global regulation by horizontally transferred regulators establishes the pathogenicity of Escherichia coli.

    PubMed

    Abe, Hiroyuki; Miyahara, Akira; Oshima, Taku; Tashiro, Kosuke; Ogura, Yoshitoshi; Kuhara, Satoru; Ogasawara, Naotake; Hayashi, Tetsuya; Tobe, Toru

    2008-02-29

    Enterohemorrhagic Escherichia coli is an emerging pathogen that causes diarrhea and hemolytic uremic syndrome. Much of the genomic information that affects virulence is acquired by horizontal transfer. Genes necessary for attaching and effacing lesions are located in the locus for enterocyte effacement (LEE) pathogenicity island. LEE gene transcription is positively regulated by Ler, which is also encoded by the LEE, and by Pch regulators, which are encoded at other loci. Here we identified genes whose transcription profiles were similar to those of the LEE genes, by comparing the effects of altering ler and pch transcript levels. We assigned these genes into two classes, according to their transcription profiles. By determining the binding profiles for Ler and Pch, we showed that both were involved in regulating one class of genes, but only Pch was involved in regulating the other class. Binding sites were found in the coding region as well as the promoter region of regulated genes, which include genes common to K12 strains as well as 0157-specific genes, suggesting that both act as a global regulator. These results indicate that Ler and Pch orchestrate the transcription of virulence genes, which are captured by horizontal transfer and scattered throughout the chromosome. PMID:18222925

  17. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns

    PubMed Central

    Li, Fay-Wei; Villarreal, Juan Carlos; Kelly, Steven; Rothfels, Carl J.; Melkonian, Michael; Frangedakis, Eftychios; Ruhsam, Markus; Sigel, Erin M.; Der, Joshua P.; Pittermann, Jarmila; Burge, Dylan O.; Pokorny, Lisa; Larsson, Anders; Chen, Tao; Weststrand, Stina; Thomas, Philip; Carpenter, Eric; Zhang, Yong; Tian, Zhijian; Chen, Li; Yan, Zhixiang; Zhu, Ying; Sun, Xiao; Wang, Jun; Stevenson, Dennis W.; Crandall-Stotler, Barbara J.; Shaw, A. Jonathan; Deyholos, Michael K.; Soltis, Douglas E.; Graham, Sean W.; Windham, Michael D.; Langdale, Jane A.; Wong, Gane Ka-Shu; Mathews, Sarah; Pryer, Kathleen M.

    2014-01-01

    Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor—neochrome—that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns. PMID:24733898

  18. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    PubMed Central

    Monier, Adam; Claverie, Jean-Michel; Ogata, Hiroyuki

    2007-01-01

    Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria) that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA) genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their modern hosts. The large

  19. Effects of confining walls on heat transfer from a vertical array of isothermal horizontal elliptic cylinders

    SciTech Connect

    Yousefi, T.; Paknezhad, M.; Ashjaee, M.; Yazdani, S.

    2009-09-15

    Steady state two-dimensional natural convection heat transfer from the vertical array of five horizontal isothermal elliptic cylinders with vertical major axis which confined between two adiabatic walls has been studied experimentally. Experiments were carried out using a Mach-Zehnder interferometer. The Rayleigh number based on cylinder major axis was in the range 10{sup 3}{<=}Ra{<=}2.5 x 10{sup 3}, and dimensionless wall spacing 1.5{<=} t/b{<=}9 and infinity. The effect of wall spacing and Rayleigh number on the heat transfer from the individual cylinder and the array were investigated. Experiments are performed for ratio wall spacing to major diameter t/b = 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 and infinity. A correlation based on the experimental data for the average Nusselt number of the array as a function of Ra and t/b is presented in the aforementioned ranges. A relation has been derived for optimum wall spacing at which the Nusselt number of the array attains its maximum value. At optimum wall spacing, approximately 10% increase in the heat transfer from the confined array of elliptic cylinders has been observed as compared to the unconfined case. Also, a heat transfer correlation has been proposed for a single elliptic cylinder with vertical major axis and has been compared with earlier works. (author)

  20. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12

    PubMed Central

    Kingston, Anthony W.; Raleigh, Elisabeth A.

    2015-01-01

    In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F’-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10-12 CFU/recipient per hour. PMID:26162088

  1. Prediction of Heat Transfer Coefficient for Refrigerant With Oil Contained in Horizontal Evaporator Tuvbes

    NASA Astrophysics Data System (ADS)

    Matsunaga, Takeshi; Yoshida, Suguru

    A method which is generally applicable to predict the axially local (circumferentially averaged) heat transfer coefficient for refrigerant with oil contained flowing in horizontal evaporator tubes was developed by modifying a prediction method for pure refrigerants. The dimensionless correlation for an annular flow regime takes account of the influence of oil on an improvement or a reduction in the heat transfer, in addition to the change of the properties due to the addition of oil. For a separated flow regime, the correlations of the average heat transfer coefficients in the top part and the bottom part and their boundary angle were developed by modifying each correlation for pure refrigerants. The circumferentially averaged heat transfer coefficient for the separated flow regime can be obtained by using the solution of the steady heat conduction equation in the tube wall, to which the values calculated from the above correlations are applied as the boundary conditions at the inside surface of the tube. Which flow regime, annular or separated, prevails can be determined by the correlation of the boundary angle. The present prediction method was confirmed to be applicable to various kinds of refrigerant-oil mixture.

  2. Heat transfer and bubble formation on horizontal copper tubes with different diameters and roughness structures

    NASA Astrophysics Data System (ADS)

    Kotthoff, Stephan; Gorenflo, Dieter

    2009-05-01

    Heat transfer in flooded evaporators of the refrigeration, air conditioning or process industries is mainly enhanced by modifying the surface structure of evaporator tubes in the micro and/or macro range. To quantify the effect of such modifications, however, the influence of the basic roughness structure on the heated surface has to be separated. Starting from recent publications, experimental results of heat transfer and bubble formation from horizontal copper tubes with different outer diameters (8 or 25 mm) and roughness structures to various boiling liquids are analyzed in this paper to improve our knowledge of the specific events connected with the formation of bubbles at active nucleation sites and their effect on local heat transfer. It is shown that a single, standardized roughness parameter like the (integral) mean roughness height P a is not sufficient to explain the effect of the heating surface structure on nucleate boiling heat transfer. Instead, detailed information on characteristic roughness parameters of the heated surfaces is necessary for the analysis, making it possible to define the size and form of cavities included in the roughness structure and their positions on the surface. An analysis that aims in this direction is given in a separate contribution to this special issue by A. Luke, who prepared the surfaces and provided the basic data on the set of standardized roughness parameters, the probability distributions of which are used in this paper.

  3. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    PubMed

    Kingston, Anthony W; Roussel-Rossin, Chloé; Dupont, Claire; Raleigh, Elisabeth A

    2015-01-01

    In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length) donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP) increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12) CFU/recipient per hour. PMID:26162088

  4. Heat and mass transfer characteristics of absorption of R134a into DMAC in a horizontal tube absorber

    NASA Astrophysics Data System (ADS)

    Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.

    2009-10-01

    In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.

  5. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    PubMed

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine. PMID:26683492

  6. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    SciTech Connect

    Hata, K.; Shiotsu, M.; Takeuchi, Y.

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  7. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    PubMed Central

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  8. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes.

    PubMed

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J M; Paulsen, Peter; Szostak, Michael P; Humphrey, Tom; Hilbert, Friederike

    2015-07-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  9. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    PubMed

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages. PMID:19584142

  10. Effects of Adding Nanoparticles on Boiling and Condensing Heat Transfer inside a horizontal round tube

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Mohsen; Sadoughi, Mohammadkazem; Shariatmadar, Hamed; Akhavan-Behabadi, Mohammad Ali

    2015-11-01

    An experimental investigation is performed on heat transfer evaluation of a nano-refrigerant flow during condensation and evaporation inside a horizontal round tube. Experiments are carried out for three working fluid types including: i) pure refrigerant (R600a); ii) refrigerant/lubricant (R600a/oil); and iii) nano-refrigerant: refrigerant/lubricant/nanoparticles (R600a/oil/CuO). Nanoparticles are added to the lubricant and their mixture is mixed with pure refrigerant. Therefore, nano-refrigerants (R600a/oil/CuO) are prepared by dispersing CuO nanoparticles with different fractions of 0.5%, 1% and 1.5% in the baseline mixture (R600a/oil). Effects of different factors including vapor quality, mass flux, and nanoparticles on the heat transfer coefficient are examined for both of condensation and evaporation flows, separately. The results shows that maximum heat transfer augmentation of 79% and 83% are achieved by using the refrigerant/lubricant/nanoparticles mixture, in comparison with the pure refrigerant case in condensation and evaporation, respectively which are occurred for nano-refrigerant with 1.5% mass fraction in both of them.

  11. Extensive Horizontal Gene Transfer during Staphylococcus aureus Co-colonization In Vivo

    PubMed Central

    McCarthy, Alex J.; Loeffler, Anette; Witney, Adam A.; Gould, Katherine A.; Lloyd, David H.; Lindsay, Jodi A.

    2014-01-01

    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. PMID:25260585

  12. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model

    PubMed Central

    Trejo-Becerril, Catalina; Pérez-Cárdenas, Enrique; Taja-Chayeb, Lucía; Anker, Philippe; Herrera-Goepfert, Roberto; Medina-Velázquez, Luis A.; Hidalgo-Miranda, Alfredo; Pérez-Montiel, Delia; Chávez-Blanco, Alma; Cruz-Velázquez, Judith; Díaz-Chávez, José; Gaxiola, Miguel; Dueñas-González, Alfonso

    2012-01-01

    It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy. PMID:23285175

  13. Horizontal Transfer of Diatomaceous Earth and Botanical Insecticides in the Common Bed Bug, Cimex lectularius L.; Hemiptera: Cimicidae

    PubMed Central

    Akhtar, Yasmin; Isman, Murray B.

    2013-01-01

    Background Horizontal transfer of insecticide occurs when insects contact or ingest an insecticide, return to an aggregation or a nest, and transfer the insecticide to other conspecific insects through contact. This phenomenon has been reported in a number of insects including social insects, however it has not been reported in bed bugs. Since horizontal transfer can facilitate the spread of insecticide into hard to reach spaces, it could contribute greatly to the management of these public health pests. Methodology/Results To demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in C. lectularius, an exposed (donor) bed bug, following a 10-minute acquisition period, was placed with unexposed (recipient) bed bugs. Mortality data clearly demonstrates that diatomaceous earth (DE 51) was actively transferred from a single exposed bug to unexposed bugs in a concentration dependent manner. LC50 values varied from 24.4 mg at 48 h to 5.1 mg at 216 h when a single exposed bed bug was placed with 5 unexposed bed bugs. LT50 values also exhibited a concentration response. LT50 values varied from 1.8 days to 8.4 days when a ‘donor’ bug exposed to 20 and 5 mg of dust respectively was placed with 5 ‘recipient’ bugs. Dust was also actively transferred from adult bed bugs to the nymphs. In addition we observed horizontal transfer of botanical insecticides including neem, ryania, and rotenone to varying degrees. Conclusion/Significance Our data clearly demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug, C. lectularius. Use of a fluorescent dust provided visual confirmation that contaminated bed bugs transfer dust to untreated bed bugs in harborage. This result is important because bedbugs live in hard-to-reach places and interaction between conspecifics can be exploited for delivery and dissemination of management products directed at this public health pest. PMID:24086593

  14. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes

    PubMed Central

    Suh, Alexander; Witt, Christopher C.; Menger, Juliana; Sadanandan, Keren R.; Podsiadlowski, Lars; Gerth, Michael; Weigert, Anne; McGuire, Jimmy A.; Mudge, Joann; Edwards, Scott V.; Rheindt, Frank E.

    2016-01-01

    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83–99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25–22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20–17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity. PMID:27097561

  15. Origin of Ecdysosteroid UDP-glycosyltransferases of Baculoviruses through Horizontal Gene Transfer from Lepidoptera

    PubMed Central

    Hughes, Austin L.

    2014-01-01

    Baculoviruses infecting Lepidoptera (butterflies and moths) encodes an enzyme known as ecdysosteroid UDP-glycosyltransferase (EGT), which inactivates insect host ecdysosteroid hormones, thereby preventing molt and pupation and permitting a build-up of the viral population within the host. Baculovirus EGT shows evidence of homology to insect UDP-glycosyltransferases, and a phylogenetic analysis supported the closest relative of baculovirus EGT are the UGT33 and UGT34 families of lepidopteran UDP-glycosyltransferases. The phylogenetic analysis thus supported that baculovirus EGT arose by horizontal gene transfer of a UDP-glycosyltransferase from a lepidopteran host, an event that occurred 70 million years ago at the earliest but possibly much more recently. Three amino acid replacements unique to baculovirus EGTs and conserved in all available baculovirus sequences were identified in the N-terminal region of the molecule. Because of their conservation, these amino acids are candidates for playing an important functional role in baculovirus EGT function. PMID:24834437

  16. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae.

    PubMed

    Metzger, Lisa C; Blokesch, Melanie

    2016-04-01

    The human pathogen Vibrio cholerae is an autochthonous inhabitant of aquatic environments where it often interacts with zooplankton and their chitinous molts. Chitin induces natural competence for transformation in V. cholerae, a key mode of horizontal gene transfer (HGT). Recent comparative genomic analyses were indicative of extensive HGT in this species. However, we can still expand our understanding of the complex regulatory network that drives competence in V. cholerae. Here, we present recent advances, including the elucidation of bipartite competence regulation mediated by QstR, the inclusion of the type VI secretion system in the competence regulon of pandemic O1 El Tor strains, and the identification of TfoS as a transcriptional regulator that links chitin to competence induction in V. cholerae. PMID:26615332

  17. Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes.

    PubMed

    Suh, Alexander; Witt, Christopher C; Menger, Juliana; Sadanandan, Keren R; Podsiadlowski, Lars; Gerth, Michael; Weigert, Anne; McGuire, Jimmy A; Mudge, Joann; Edwards, Scott V; Rheindt, Frank E

    2016-01-01

    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83-99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25-22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20-17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity. PMID:27097561

  18. Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance

    PubMed Central

    2014-01-01

    An easy and low-cost method to transfer large-scale horizontally aligned Si nanowires onto a substrate is reported. Si nanowires prepared by metal-assisted chemical etching were assembled and anchored to fabricate multiwire photoconductive devices with standard Si technology. Scanning electron microscopy images showed highly aligned and successfully anchored Si nanowires. Current-voltage tests showed an approximately twofold change in conductivity between the devices in dark and under laser irradiation. Fully reversible light switching ON/OFF response was also achieved with an ION/IOFF ratio of 230. Dynamic response measurement showed a fast switching feature with response and recovery times of 10.96 and 19.26 ms, respectively. PMID:25520603

  19. Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Song, Yong Jae

    The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet

  20. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?

    PubMed Central

    Budd, Aidan; Blandin, Stephanie; Levashina, Elena A; Gibson, Toby J

    2004-01-01

    Background Invasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion. Results Database searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor. Conclusions Metazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might

  1. Extensive Intra-Kingdom Horizontal Gene Transfer Converging on a Fungal Fructose Transporter Gene

    PubMed Central

    Coelho, Marco A.; Gonçalves, Carla; Sampaio, José Paulo; Gonçalves, Paula

    2013-01-01

    Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT) among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1) with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT) involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed. PMID:23818872

  2. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer

    PubMed Central

    Mosig, Gisela; Gewin, John; Luder, Andreas; Colowick, Nancy; Vo, Daniel

    2001-01-01

    Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses. PMID:11459968

  3. Flow interaction between multiple cross-flow inlets in a horizontal pipe or channel

    NASA Astrophysics Data System (ADS)

    Jha, Pranab N.; Smith, Chuck; Metcalfe, Ralph W.

    2013-11-01

    Incompressible flow in horizontal channels and pipes with multiple cross-flow inlets was studied numerically. Flow interference among the inlets was studied using an axisymmetric pipe flow model with five cross-flow inlets. Three basic flow regimes - trickle flow, partially blocked flow and fully blocked flow - were identified with respect to the blocking of upstream inlets by the downstream ones. The effects of inlet pressure and inlet size on the flow regimes under steady state conditions were studied. The presence of these regimes was supported by field data obtained from a horizontal natural gas well at two different times in the production cycle. Using a hydrostatic pressure model of reservoirs as the inlet boundary condition that drained fluid into the channel, the dynamic interaction of the inlets was studied. The transient behavior of the flow regimes was simulated and the key time-scales involved were identified. This is supported by field data where a similar behavior can be observed over time. Initially, the upstream inlets were in a blocked state, but opened up at a later time, leading to a trickle flow regime. Supported in Part by Apache Corporation.

  4. Characteristic analysis of a directional coupler in horizontal multiple-slotted silicon wires with slanted sidewalls

    NASA Astrophysics Data System (ADS)

    Xiao, Jinbiao; Li, Wenliang; Xia, Saisai; Sun, Xiaohan

    2012-09-01

    The characteristics of the directional couplers based on the horizontal multiple-slotted waveguides with slanted sidewalls are analyzed in detail by using a mode solver based on the full-vectorial finite element method with perfectly matched layers absorbing boundary conditions. The coupling length of the directional coupler as functions of the structural parameters including waveguide spacing, sidewalls angle, the thickness and refractive index of the slot regions, both in quasi-TE and quasi-TM modes, is obtained. The effective indexes and the field distributions of the even and odd modes also are presented. The numerical results show that polarization-independent directional couplers can be realized by properly choosing structural and material parameters.

  5. The Defective Prophage Pool of Escherichia coli O157: Prophage–Prophage Interactions Potentiate Horizontal Transfer of Virulence Determinants

    PubMed Central

    Asadulghani, Md; Ogura, Yoshitoshi; Ooka, Tadasuke; Itoh, Takehiko; Sawaguchi, Akira; Iguchi, Atsushi; Nakayama, Keisuke; Hayashi, Tetsuya

    2009-01-01

    Bacteriophages are major genetic factors promoting horizontal gene transfer (HGT) between bacteria. Their roles in dynamic bacterial genome evolution have been increasingly highlighted by the fact that many sequenced bacterial genomes contain multiple prophages carrying a wide range of genes. Enterohemorrhagic Escherichia coli O157 is the most striking case. A sequenced strain (O157 Sakai) possesses 18 prophages (Sp1–Sp18) that encode numerous genes related to O157 virulence, including those for two potent cytotoxins, Shiga toxins (Stx) 1 and 2. However, most of these prophages appeared to contain multiple genetic defects. To understand whether these defective prophages have the potential to act as mobile genetic elements to spread virulence determinants, we looked closely at the Sp1–Sp18 sequences, defined the genetic defects of each Sp, and then systematically analyzed all Sps for their biological activities. We show that many of the defective prophages, including the Stx1 phage, are inducible and released from O157 cells as particulate DNA. In fact, some prophages can even be transferred to other E. coli strains. We also show that new Stx1 phages are generated by recombination between the Stx1 and Stx2 phage genomes. The results indicate that these defective prophages are not simply genetic remnants generated in the course of O157 evolution, but rather genetic elements with a high potential for disseminating virulence-related genes and other genetic traits to other bacteria. We speculate that recombination and various other types of inter-prophage interactions in the O157 prophage pool potentiate such activities. Our data provide new insights into the potential activities of the defective prophages embedded in bacterial genomes and lead to the formulation of a novel concept of inter-prophage interactions in defective prophage communities. PMID:19412337

  6. Effect of different magnetic field distributions on laminar ferroconvection heat transfer in horizontal tube

    NASA Astrophysics Data System (ADS)

    Sheikhnejad, Yahya; Hosseini, Reza; Saffar-avval, Majid

    2015-09-01

    The forced convection heat transfer of ferrofluid steady state laminar flow through a circular axisymmetric horizontal pipe under different magnetic field is the focus of this study. The pipe is under constant heat flux while different linear axial magnetic fields were applied on the ferrofluid with equal magnetic energy. In this scenario, viscosity of ferrofluid is temperature dependent, to capture ferrofluid real behavior a nonlinear Langevin equation was considered for equilibrium magnetization. For this purpose, the set of nonlinear governing PDEs was solved using proper CFD techniques: the finite volume method and SIMPLE algorithm were used to discretize and numerically solve the governing equation in order to obtain thermohydrodynamic flow characteristics. The numerical results show a promising enhancement of up to 135.7% in heat transfer as a consequence of the application of magnetic field. The magnetic field also increases pressure loss of up to 77% along the pipe; but effectiveness (favorable to unfavorable effect ratio) of the magnetic field as a performance index economically justifies its application such that higher magnetic field intensity causes higher effectiveness of up to 1.364.

  7. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    PubMed Central

    Boothby, Thomas C.; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R.; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Glasscock, Jarret; Goldstein, Bob

    2015-01-01

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes. PMID:26598659

  8. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade.

    PubMed

    Boothby, Thomas C; Tenlen, Jennifer R; Smith, Frank W; Wang, Jeremy R; Patanella, Kiera A; Osborne Nishimura, Erin; Tintori, Sophia C; Li, Qing; Jones, Corbin D; Yandell, Mark; Messina, David N; Glasscock, Jarret; Goldstein, Bob

    2015-12-29

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes. PMID:26598659

  9. Indications for Acquisition of Reductive Dehalogenase Genes through Horizontal Gene Transfer by Dehalococcoides ethenogenes Strain 195

    PubMed Central

    Regeard, Christophe; Maillard, Julien; Dufraigne, Christine; Deschavanne, Patrick; Holliger, Christof

    2005-01-01

    The genome of Dehalococcoides ethenogenes strain 195, an anaerobic dehalorespiring bacterium, contains 18 copies of putative reductive dehalogenase genes, including the well-characterized tceA gene, whose gene product functions as the key enzyme in the environmentally important dehalorespiration process. The genome of D. ethenogenes was analyzed using a bioinformatic tool based on the frequency of oligonucleotides. The results in the form of a genomic signature revealed several local disruptions of the host signature along the genome sequence. These fractures represent DNA segments of potentially foreign origin, so-called atypical regions, which may have been acquired by an ancestor through horizontal gene transfer. Most interestingly, 15 of the 18 reductive dehalogenase genes, including the tceA gene, were found to be located in these regions, strongly indicating the foreign nature of the dehalorespiration activity. The GC content and the presence of recombinase genes within some of these regions corroborate this hypothesis. A hierarchical classification of the atypical regions containing the reductive dehalogenase genes indicated that these regions were probably acquired by several gene transfer events. PMID:15932990

  10. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy

    PubMed Central

    Elmer, Jacob J.; Christensen, Matthew D.; Rege, Kaushal

    2014-01-01

    Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases. PMID:23994344

  11. Horizontal Transfer of Tetracycline Resistance Genes in the Subsurface of a Poultry Farm

    NASA Astrophysics Data System (ADS)

    You, Y.; Ward, M.; Hilpert, M.

    2008-12-01

    Concentrated animal feeding operations (CAFOs) are considered to be important man-made reservoirs of antibiotic resistant bacteria and antibiotic resistance genes. At a poultry farm, we, together with Mr.~James Doolittle from USDA, measured the apparent subsurface electrical conductivity (ECa) using a EM38 meter. The resulting ECaR) associated with the poultry farm due to the fact that tetracycline (Tc) is one of the most frequently used antibiotics in food animal production and therefore is probably used at this farm. Soil and aquifer samples were taken from the farm. TcR bacteria were detected, with higher concentrations in the top layer of soil than in the aquifer. TcR bacteria were then enriched from a soil sample, and two classes of TcR genes were detected: tet(M) genes encoding ribosomal protection proteins and tet(L) genes encoding tet efflux pumps. Sequences of the PCR products were compared to known tet(M) and tet(L) genes in GenBank using BLASTN. Phylogenetic trees were also built based on the sequence information. The tet(M) genes found in our soil sample were highly similar to those located on transposons. In a soil microcosm experiment, we used the aforementioned soil sample as incubation medium as well as genetic donor (TcR soil bacteria), and a green fluorescent strain of E. coli as a model genetic recipient to study horizontal transfer of TcR genes from soil bacteria to naïve bacteria. Concentrations of inoculated E. coli were continuously monitored for 15 days, TcR E. coli isolated, and colony PCR performed. The tet(M) genes were found to be transferred to naïve E. coli. The highest horizontal transfer ratio, 0.62 transconjugant per recipient, was observed when Tc was supplemented to a soil microcosm at a concentration of 140 μg/kg soil. Modeling is also ongoing to obtain a better understanding of this complex phenomenon.

  12. Horizontal Gene Transfer Regulation in Bacteria as a “Spandrel” of DNA Repair Mechanisms

    PubMed Central

    Fall, Saliou; Mercier, Anne; Bertolla, Franck; Calteau, Alexandra; Gueguen, Laurent; Perrière, Guy; Vogel, Timothy M.; Simonet, Pascal

    2007-01-01

    Horizontal gene transfer (HGT) is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3%) of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic “hot spots”, which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination “hot-spots” to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment might have led

  13. Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.

    PubMed

    Noda-García, Lianet; Camacho-Zarco, Aldo R; Medina-Ruíz, Sofía; Gaytán, Paul; Carrillo-Tripp, Mauricio; Fülöp, Vilmos; Barona-Gómez, Francisco

    2013-09-01

    Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole l-tryptophan biosynthetic operon, whereas in certain closely related actinobacteria, for example, Mycobacterium, the trpF gene is missing. In Mycobacterium, the function of the trpF gene is performed by a dual-substrate (βα)8 phosphoribosyl isomerase (priA gene) also involved in l-histidine (hisA gene) biosynthesis. We investigated the effect of a HGT-acquired TrpF enzyme upon PriA's substrate specificity in Corynebacterium through comparative genomics and phylogenetic reconstructions. After comprehensive in vivo and enzyme kinetic analyses of selected PriA homologs, a novel (βα)8 isomerase subfamily with a specialized function in l-histidine biosynthesis, termed subHisA, was confirmed. X-ray crystallography was used to reveal active-site mutations in subHisA important for narrowing of substrate specificity, which when mutated to the naturally occurring amino acid in PriA led to gain of function. Moreover, in silico molecular dynamic analyses demonstrated that the narrowing of substrate specificity of subHisA is concomitant with loss of ancestral protein conformational states. Our results show the importance of HGT in shaping enzyme evolution and metabolism. PMID:23800623

  14. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria

    PubMed Central

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-01-01

    Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986

  15. Influence of exogenous melatonin on horizontal transfer of Escherichia coli O157:H7 in experimentally infected sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the current research was to determine if exogenous melatonin would exert a “protective” effect on the gastrointestinal tract of sheep and prevent or reduce the horizontal transfer of E. coli O157:H7 from experimentally-infected to non-infected or “naïve” sheep. Sixteen crossbred ewe...

  16. Horizontal gene transfer confers adaptive advantages to phytopathogenic fungi: a case study of catalase-peroxidase in Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different evolutionary lineages, is widely observed in fungi. We hypothesize that successful stabilization of HGT elements provides adaptive advantages (e.g., virulence). Catalase/peroxidases (KatGs) are ...

  17. Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions

    PubMed Central

    Guo, Xuezhu; Gao, Jingkun; Li, Fei; Wang, Jianjun

    2014-01-01

    Horizontal transfer (HT) of transposable elements has been recognized to be a major force driving genomic variation and biological innovation of eukaryotic organisms. However, the mechanisms of HT in eukaryotes remain poorly appreciated. The non-autonomous Helitron family, Lep1, has been found to be widespread in lepidopteran species, and showed little interspecific sequence similarity of acquired sequences at 3′ end, which makes Lep1 a good candidate for the study of HT. In this study, we describe the Lep1-like elements in multiple non-lepidopteran species, including two aphids, Acyrthosiphon pisum and Aphis gossypii, two parasitoid wasps, Cotesia vestalis, and Copidosoma floridanum, one beetle, Anoplophora glabripennis, as well as two bracoviruses in parasitoid wasps, and one intracellular microsporidia parasite, Nosema bombycis. The patchy distribution and high sequence similarity of Lep1-like elements among distantly related lineages as well as incongruence of Lep1-like elements and host phylogeny suggest the occurrence of HT. Remarkably, the acquired sequences of both NbLep1 from N. bombycis and CfLep1 from C. floridanum showed over 90% identity with their lepidopteran host Lep1. Thus, our study provides evidence of HT facilitated by host-parasite interactions. Furthermore, in the context of these data, we discuss the putative directions and vectors of HT of Lep1 Helitrons. PMID:24874102

  18. Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions.

    PubMed

    Guo, Xuezhu; Gao, Jingkun; Li, Fei; Wang, Jianjun

    2014-01-01

    Horizontal transfer (HT) of transposable elements has been recognized to be a major force driving genomic variation and biological innovation of eukaryotic organisms. However, the mechanisms of HT in eukaryotes remain poorly appreciated. The non-autonomous Helitron family, Lep1, has been found to be widespread in lepidopteran species, and showed little interspecific sequence similarity of acquired sequences at 3' end, which makes Lep1 a good candidate for the study of HT. In this study, we describe the Lep1-like elements in multiple non-lepidopteran species, including two aphids, Acyrthosiphon pisum and Aphis gossypii, two parasitoid wasps, Cotesia vestalis, and Copidosoma floridanum, one beetle, Anoplophora glabripennis, as well as two bracoviruses in parasitoid wasps, and one intracellular microsporidia parasite, Nosema bombycis. The patchy distribution and high sequence similarity of Lep1-like elements among distantly related lineages as well as incongruence of Lep1-like elements and host phylogeny suggest the occurrence of HT. Remarkably, the acquired sequences of both NbLep1 from N. bombycis and CfLep1 from C. floridanum showed over 90% identity with their lepidopteran host Lep1. Thus, our study provides evidence of HT facilitated by host-parasite interactions. Furthermore, in the context of these data, we discuss the putative directions and vectors of HT of Lep1 Helitrons. PMID:24874102

  19. Multiple functions of microsomal triglyceride transfer protein

    PubMed Central

    2012-01-01

    Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition. PMID:22353470

  20. Multiple horizontally acquired genes from fungal and prokaryotic donors encode cellulolytic enzymes in the bdelloid rotifer Adineta ricciae.

    PubMed

    Szydlowski, L; Boschetti, C; Crisp, A; Barbosa, E G G; Tunnacliffe, A

    2015-07-25

    The bdelloid rotifer, Adineta ricciae, an anhydrobiotic microinvertebrate, exhibits a high rate of horizontal gene transfer (HGT), with as much as 10% of its transcriptome being of foreign origin. Approximately 80% of these foreign transcripts are involved in metabolic processes, and therefore bdelloids represent a useful model for assessing the contribution of HGT to biochemical diversity. To validate this concept, we focused on cellulose digestion, an unusual activity in animals, which is represented by at least 16 genes encoding cellulolytic enzymes in A. ricciae. These genes have been acquired from a variety of different donor organisms among the bacteria and fungi, demonstrating that bdelloids use diverse genetic resources to construct a novel biochemical pathway. A variable complement of the cellulolytic gene set was found in five other bdelloid species, indicating a dynamic process of gene acquisition, duplication and loss during bdelloid evolution. For example, in A. ricciae, gene duplications have led to the formation of three copies of a gene encoding a GH45 family glycoside hydrolase, at least one of which encodes a functional enzyme; all three of these gene copies are present in a close relative, Adineta vaga, but only one copy was found in each of four Rotaria species. Furthermore, analysis of expression levels of the cellulolytic genes suggests that a bacterial-origin cellobiase is upregulated upon desiccation. In summary, bdelloid rotifers have apparently developed cellulolytic functions by the acquisition and domestication of multiple foreign genes. PMID:25863176

  1. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer

    NASA Astrophysics Data System (ADS)

    Kotnik, Tadej

    2013-09-01

    Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism - cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT.

  2. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria

    PubMed Central

    Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I.

    2015-01-01

    Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10–90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (k cat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular

  3. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales.

    PubMed

    Gophna, Uri; Kristensen, David M; Wolf, Yuri I; Popa, Ovidiu; Drevet, Christine; Koonin, Eugene V

    2015-09-01

    The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)-Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR-Cas maintenance and one of the causes of the patchy distribution of CRISPR-Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR-Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR-Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution. PMID:25710183

  4. Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs

    PubMed Central

    López-Madrigal, Sergio; Beltrà, Aleixandre; Resurrección, Serena; Soto, Antonia; Latorre, Amparo; Moya, Andrés; Gil, Rosario

    2014-01-01

    Intracellular bacterial supply of essential amino acids is common among sap-feeding insects, thus complementing the scarcity of nitrogenous compounds in plant phloem. This is also the role of the two mealybug endosymbiotic systems whose genomes have been sequenced. In the nested endosymbiotic system from Planococcus citri (Pseudococcinae), “Candidatus Tremblaya princeps” and “Candidatus Moranella endobia” cooperate to synthesize essential amino acids, while in Phenacoccus avenae (Phenacoccinae) this function is performed by its single endosymbiont “Candidatus Tremblaya phenacola.” However, little is known regarding the evolution of essential amino acid supplementation strategies in other mealybug systems. To address this knowledge gap, we screened for the presence of six selected loci involved in essential amino acid biosynthesis in five additional mealybug species. We found evidence of ongoing complementarity among endosymbionts from insects of subfamily Pseudococcinae, as well as horizontal gene transfer affecting endosymbionts from insects of family Phenacoccinae, providing a more comprehensive picture of the evolutionary history of these endosymbiotic systems. Additionally, we report two diagnostic motifs to help identify invasive mealybug species. PMID:25206351

  5. Characterization of horizontally transferred β-fructofuranosidase (ScrB) genes in Agrilus planipennis.

    PubMed

    Zhao, C; Doucet, D; Mittapalli, O

    2014-12-01

    The emerald ash borer (Agrilus planipennis) is an important invasive insect pest of Fraxinus spp. that feeds on host tissues containing high levels of sucrose. However, little is known about how it digests sucrose. Here, using larval midgut transcriptome data and preliminary genome sequence efforts, two β-fructofuranosidase-encoding ScrB genes, AplaScrB-1 and AplaScrB-2, were identified, and proved to reside within the A. planipennis genome. Homology and phylogenetic analysis revealed that they were acquired by A. planipennis via horizontal gene transfer (HGT) from bacteria, possibly an event independent from that reported in bark beetles (eg ScrB genes). Microsynteny between A. planipennis DNA scaffold #2042940, which hosts AplaScrB-1, and a region in the Tribolium castaneum chromosome LG4 suggested that A. planipennis gained this gene after the separation of Buprestidae and Tenebrionidae. Although both of the putative AplaScrB proteins have conserved β-fructofuranosidase motifs, only AplaScrB-2 was predicted to be a secretory protein. Expression of AplaScrB-1 seemed constitutive during development and in all tissues examined, whereas AplaScrB-2 showed a peak expression in adults and in the midgut. We propose that acquisition of these genes by A. planipennis from bacteria is adaptive, and specifically AplaScrB-2 is involved in breaking down dietary sucrose to obtain energy for development. PMID:25224649

  6. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.

    PubMed

    Mao, Junwen; Lu, Ting

    2016-01-01

    Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general. PMID:26745428

  7. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer

    PubMed Central

    Montaña, Sabrina; Schramm, Sareda T. J.; Traglia, German Matías; Chiem, Kevin; Parmeciano Di Noto, Gisela; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Quiroga, Cecilia; Tolmasky, Marcelo E.; Iriarte, Andrés; Ramírez, María Soledad

    2016-01-01

    Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes. PMID:27548264

  8. Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer

    PubMed Central

    2015-01-01

    Background Species tree estimation is challenged by gene tree heterogeneity resulting from biological processes such as duplication and loss, hybridization, incomplete lineage sorting (ILS), and horizontal gene transfer (HGT). Mathematical theory about reconstructing species trees in the presence of HGT alone or ILS alone suggests that quartet-based species tree methods (known to be statistically consistent under ILS, or under bounded amounts of HGT) might be effective techniques for estimating species trees when both HGT and ILS are present. Results We evaluated several publicly available coalescent-based methods and concatenation under maximum likelihood on simulated datasets with moderate ILS and varying levels of HGT. Our study shows that two quartet-based species tree estimation methods (ASTRAL-2 and weighted Quartets MaxCut) are both highly accurate, even on datasets with high rates of HGT. In contrast, although NJst and concatenation using maximum likelihood are highly accurate under low HGT, they are less robust to high HGT rates. Conclusion Our study shows that quartet-based species-tree estimation methods can be highly accurate under the presence of both HGT and ILS. The study suggests the possibility that some quartet-based methods might be statistically consistent under phylogenomic models of gene tree heterogeneity with both HGT and ILS. PMID:26450506

  9. Think laterally: horizontal gene transfer from symbiotic microbes may extend the phenotype of marine sessile hosts

    PubMed Central

    Degnan, Sandie M.

    2014-01-01

    Since the origin of the animal kingdom, marine animals have lived in association with viruses, prokaryotes and unicellular eukaryotes, often as symbionts. This long and continuous interaction has provided ample opportunity not only for the evolution of intimate interactions such as sharing of metabolic pathways, but also for horizontal gene transfer (HGT) of non-metazoan genes into metazoan genomes. The number of demonstrated cases of inter-kingdom HGT is currently small, such that it is not yet widely appreciated as a significant player in animal evolution. Sessile marine invertebrates that vertically inherit bacterial symbionts, that have no dedicated germ line, or that bud or excise pluripotent somatic cells during their life history may be particularly receptive to HGT from their symbionts. Closer scrutiny of the growing number of genomes being accrued for these animals may thus reveal HGT as a regular source of novel variation that can function to extend the host phenotype metabolically, morphologically, or even behaviorally. Taxonomic identification of symbionts will help to address the intriguing question of whether past HGT events may constrain contemporary symbioses. PMID:25477875

  10. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee.

    PubMed

    Acuña, Ricardo; Padilla, Beatriz E; Flórez-Ramos, Claudia P; Rubio, José D; Herrera, Juan C; Benavides, Pablo; Lee, Sang-Jik; Yeats, Trevor H; Egan, Ashley N; Doyle, Jeffrey J; Rose, Jocelyn K C

    2012-03-13

    Horizontal gene transfer (HGT) involves the nonsexual transmission of genetic material across species boundaries. Although often detected in prokaryotes, examples of HGT involving animals are relatively rare, and any evolutionary advantage conferred to the recipient is typically obscure. We identified a gene (HhMAN1) from the coffee berry borer beetle, Hypothenemus hampei, a devastating pest of coffee, which shows clear evidence of HGT from bacteria. HhMAN1 encodes a mannanase, representing a class of glycosyl hydrolases that has not previously been reported in insects. Recombinant HhMAN1 protein hydrolyzes coffee berry galactomannan, the major storage polysaccharide in this species and the presumed food of H. hampei. HhMAN1 was found to be widespread in a broad biogeographic survey of H. hampei accessions, indicating that the HGT event occurred before radiation of the insect from West Africa to Asia and South America. However, the gene was not detected in the closely related species H. obscurus (the tropical nut borer or "false berry borer"), which does not colonize coffee beans. Thus, HGT of HhMAN1 from bacteria represents a likely adaptation to a specific ecological niche and may have been promoted by intensive agricultural practices. PMID:22371593

  11. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix

    NASA Astrophysics Data System (ADS)

    Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali

    2016-07-01

    In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.

  12. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer.

    PubMed

    von Wintersdorff, Christian J H; Penders, John; van Niekerk, Julius M; Mills, Nathan D; Majumder, Snehali; van Alphen, Lieke B; Savelkoul, Paul H M; Wolffs, Petra F G

    2016-01-01

    The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs) encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria-and also mobile genetic elements and bacteriophages-form a reservoir of ARGs (the resistome) from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT). HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance. PMID:26925045

  13. Ancient horizontal transfer of transaldolase-like protein gene and its role in plant vascular development.

    PubMed

    Yang, Zefeng; Zhou, Yong; Huang, Jinling; Hu, Yunyun; Zhang, Enying; Xie, Zhengwen; Ma, Sijia; Gao, Yun; Song, Song; Xu, Chenwu; Liang, Guohua

    2015-04-01

    A major event in land plant evolution is the origin of vascular tissues, which ensure the long-distance transport of water, nutrients and organic compounds. However, the molecular basis for the origin and evolution of plant vascular tissues remains largely unknown. Here, we investigate the evolution of the land plant TAL-type transaldolase (TAL) gene and its potential function in rice (Oryza sativa) based on phylogenetic analyses and transgenic experiments, respectively. TAL genes are only present in land plants and bacteria. Phylogenetic analyses suggest that land plant TAL genes are derived from Actinobacteria through an ancient horizontal gene transfer (HGT) event. Further evidence reveals that land plant TAL genes have undergone positive selection and gained several introns following its acquisition by the most recent common ancestor of land plants. Transgenic plant experiments show that rice TAL is specifically expressed in vascular tissues and that knockdown of TAL expression leads to changes in both the number and pattern of vascular bundles. Our findings show that the ancient HGT of TAL from bacteria probably plays an important role in plant vascular development and adaptation to land environments. PMID:25420550

  14. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen

    PubMed Central

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L.; Beauseigle, Stéphanie; Bernier, Louis; Copeland, Alex; Foster, Adam; Gill, Navdeep; Henrissat, Bernard; Herath, Padmini; LaButti, Kurt M.; Levasseur, Anthony; Lindquist, Erika A.; Majoor, Eline; Ohm, Robin A.; Pangilinan, Jasmyn L.; Pribowo, Amadeus; Saddler, John N.; Sakalidis, Monique L.; de Vries, Ronald P.; Grigoriev, Igor V.; Goodwin, Stephen B.; Tanguay, Philippe; Hamelin, Richard C.

    2015-01-01

    Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems. PMID:25733908

  15. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer

    PubMed Central

    von Wintersdorff, Christian J. H.; Penders, John; van Niekerk, Julius M.; Mills, Nathan D.; Majumder, Snehali; van Alphen, Lieke B.; Savelkoul, Paul H. M.; Wolffs, Petra F. G.

    2016-01-01

    The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs) encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria—and also mobile genetic elements and bacteriophages—form a reservoir of ARGs (the resistome) from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT). HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance. PMID:26925045

  16. Influence of mold length and mold heat transfer on horizontal continuous casting of nonferrous alloy rods

    NASA Astrophysics Data System (ADS)

    Verwijs, J. P.; Weckman, D. C.

    1988-04-01

    The influence of mold length and mold heat transfer on the conventional hot-top D.C. continuous casting process was studied through numerical simulations and experiments with horizontally cast 20 mm diameter lead and zinc rods. The minimum casting speed was found to be a nonlinear function of the mold length. For short molds, an inverse relationship between mold length and minimum casting speed was observed. However, the minimum casting speed for zinc cast from molds longer than 12 mm was constant at 2.5 mm/s. For lead cast in molds longer than 12 mm, the minimum observed casting speed was constant at 4.0 mm/s. The observed nonlinear relationship between minimum casting speed and mold length was predicted using a numerical model of the process. For this, an analytical expression for the mold boundary conditions was derived which included the influence of gas gap formation between the rod and the mold due to thermoelastic deformations of both the rod and the mold. Correlation between observed and predicted behavior was demonstrated for both the lead and zinc rods. Maximum casting speed was observed to increase with increased mold length; however, this speed was found to be critically dependent on process attributes such as mold and pinch wheel alignment and mold lubrication.

  17. The plant GABA signaling downregulates horizontal transfer of the Agrobacterium tumefaciens virulence plasmid.

    PubMed

    Lang, Julien; Gonzalez-Mula, Almudena; Taconnat, Ludivine; Clement, Gilles; Faure, Denis

    2016-05-01

    In the tumor-inducing (Ti) Agrobacterium tumefaciens, quorum sensing activates the horizontal transfer of the virulent Ti plasmid. In pure culture, this process can be impaired by the A. tumefaciens BlcC lactonase, whose expression is induced by gamma-aminobutyrate (GABA). It was therefore hypothesized that host GABA content might modulate quorum sensing and virulence gene dissemination during A. tumefaciens infection. We examined GABA metabolism and transport in Arabidopsis thaliana tumors combining transcriptomic, metabolomic and histological approaches. In addition, using genetically modified plants and bacteria, we evaluated the impact of plant host GABA content on Ti plasmid dissemination. The results showed that GABA and free proline, which acts as an antagonist of GABA uptake in A. tumefaciens, accumulated in wild-type tumors relative to uninfected plant tissues. Moreover, comparisons of tumors induced on Col-0 and her1 plants showed that the increase in the plant GABA : proline ratio was associated with both the upregulated expression of the blcC gene and the decreased dissemination of Ti plasmid in tumor-colonizing A. tumefaciens populations. This work demonstrates experimentally that the variation in the GABA content in plant tumors can interfere with the dissemination of A. tumefaciens Ti plasmids, and therefore highlights plant GABA content as an important trait in the struggle against pathogenic bacteria. PMID:26714842

  18. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini

    PubMed Central

    Koutsovoulos, Georgios; Laetsch, Dominik R.; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A.

    2016-01-01

    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976–15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini. As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1–2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination. PMID:27035985

  19. No evidence of inhibition of horizontal gene transfer by CRISPR–Cas on evolutionary timescales

    PubMed Central

    Gophna, Uri; Kristensen, David M; Wolf, Yuri I; Popa, Ovidiu; Drevet, Christine; Koonin, Eugene V

    2015-01-01

    The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)–Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR–Cas maintenance and one of the causes of the patchy distribution of CRISPR–Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR–Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR–Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution. PMID:25710183

  20. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    SciTech Connect

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  1. The Fusarium graminearum Genome Reveals More Secondary Metabolite Gene Clusters and Hints of Horizontal Gene Transfer

    PubMed Central

    Wong, Philip; Münsterkötter, Martin; Mewes, Hans-Werner; Schmeitzl, Clemens; Varga, Elisabeth; Berthiller, Franz; Adam, Gerhard; Güldener, Ulrich

    2014-01-01

    Fungal secondary metabolite biosynthesis genes are of major interest due to the pharmacological properties of their products (like mycotoxins and antibiotics). The genome of the plant pathogenic fungus Fusarium graminearum codes for a large number of candidate enzymes involved in secondary metabolite biosynthesis. However, the chemical nature of most enzymatic products of proteins encoded by putative secondary metabolism biosynthetic genes is largely unknown. Based on our analysis we present 67 gene clusters with significant enrichment of predicted secondary metabolism related enzymatic functions. 20 gene clusters with unknown metabolites exhibit strong gene expression correlation in planta and presumably play a role in virulence. Furthermore, the identification of conserved and over-represented putative transcription factor binding sites serves as additional evidence for cluster co-regulation. Orthologous cluster search provided insight into the evolution of secondary metabolism clusters. Some clusters are characteristic for the Fusarium phylum while others show evidence of horizontal gene transfer as orthologs can be found in representatives of the Botrytis or Cochliobolus lineage. The presented candidate clusters provide valuable targets for experimental examination. PMID:25333987

  2. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.

    PubMed

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A; Blaxter, Mark

    2016-05-01

    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination. PMID:27035985

  3. Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco.

    PubMed

    Pontiroli, Alessandra; Rizzi, Aurora; Simonet, Pascal; Daffonchio, Daniele; Vogel, Timothy M; Monier, Jean-Michel

    2009-05-01

    Plant surfaces, colonized by numerous and diverse bacterial species, are often considered hot spots for horizontal gene transfer (HGT) between plants and bacteria. Plant DNA released during the degradation of plant tissues can persist and remain biologically active for significant periods of time, suggesting that soil or plant-associated bacteria could be in direct contact with plant DNA. In addition, nutrients released during the decaying process may provide a copiotrophic environment conducive for opportunistic microbial growth. Using Acinetobacter baylyi strain BD413 and transplastomic tobacco plants harboring the aadA gene as models, the objective of this study was to determine whether specific niches could be shown to foster bacterial growth on intact or decaying plant tissues, to develop a competence state, and to possibly acquire exogenous plant DNA by natural transformation. Visualization of HGT in situ was performed using A. baylyi strain BD413(rbcL-DeltaPaadA::gfp) carrying a promoterless aadA::gfp fusion. Both antibiotic resistance and green fluorescence phenotypes were restored in recombinant bacterial cells after homologous recombination with transgenic plant DNA. Opportunistic growth occurred on decaying plant tissues, and a significant proportion of the bacteria developed a competence state. Quantification of transformants clearly supported the idea that the phytosphere constitutes a hot spot for HGT between plants and bacteria. The nondisruptive approach used to visualize transformants in situ provides new insights into environmental factors influencing HGT for plant tissues. PMID:19329660

  4. The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer.

    PubMed

    Montaña, Sabrina; Schramm, Sareda T J; Traglia, German Matías; Chiem, Kevin; Parmeciano Di Noto, Gisela; Almuzara, Marisa; Barberis, Claudia; Vay, Carlos; Quiroga, Cecilia; Tolmasky, Marcelo E; Iriarte, Andrés; Ramírez, María Soledad

    2016-01-01

    Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are susceptible to virtually all antibiotics, strains harboring a variety of β-lactamases have recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtaining the whole genome sequence of the Aj2199 strain. Genome comparison studies on Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. Genomic analysis showed evidence of horizontal genetic transfer (HGT) events. Forty-five insertion sequences and two intact prophages were found in addition to several resistance determinants such as blaPER-2, blaOXA-58, blaTEM-1, strA, strB, ereA, sul1, aacC2 and a new variant of blaOXA-211, called blaOXA-498. In particular, blaPER-2 and blaTEM-1 are present within the typical contexts previously described in the Enterobacteriaceae family. These results suggest that A. johnsonii actively acquires exogenous DNA from other bacterial species and concomitantly becomes a reservoir of resistance genes. PMID:27548264

  5. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen.

    PubMed

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L; Beauseigle, Stéphanie; Bernier, Louis; Copeland, Alex; Foster, Adam; Gill, Navdeep; Henrissat, Bernard; Herath, Padmini; LaButti, Kurt M; Levasseur, Anthony; Lindquist, Erika A; Majoor, Eline; Ohm, Robin A; Pangilinan, Jasmyn L; Pribowo, Amadeus; Saddler, John N; Sakalidis, Monique L; de Vries, Ronald P; Grigoriev, Igor V; Goodwin, Stephen B; Tanguay, Philippe; Hamelin, Richard C

    2015-03-17

    Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems. PMID:25733908

  6. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee

    PubMed Central

    Acuña, Ricardo; Padilla, Beatriz E.; Flórez-Ramos, Claudia P.; Rubio, José D.; Herrera, Juan C.; Benavides, Pablo; Lee, Sang-Jik; Yeats, Trevor H.; Egan, Ashley N.; Doyle, Jeffrey J.; Rose, Jocelyn K. C.

    2012-01-01

    Horizontal gene transfer (HGT) involves the nonsexual transmission of genetic material across species boundaries. Although often detected in prokaryotes, examples of HGT involving animals are relatively rare, and any evolutionary advantage conferred to the recipient is typically obscure. We identified a gene (HhMAN1) from the coffee berry borer beetle, Hypothenemus hampei, a devastating pest of coffee, which shows clear evidence of HGT from bacteria. HhMAN1 encodes a mannanase, representing a class of glycosyl hydrolases that has not previously been reported in insects. Recombinant HhMAN1 protein hydrolyzes coffee berry galactomannan, the major storage polysaccharide in this species and the presumed food of H. hampei. HhMAN1 was found to be widespread in a broad biogeographic survey of H. hampei accessions, indicating that the HGT event occurred before radiation of the insect from West Africa to Asia and South America. However, the gene was not detected in the closely related species H. obscurus (the tropical nut borer or “false berry borer”), which does not colonize coffee beans. Thus, HGT of HhMAN1 from bacteria represents a likely adaptation to a specific ecological niche and may have been promoted by intensive agricultural practices. PMID:22371593

  7. Alexander’s Law in Patients with Acute Vestibular Tone Asymmetry—Evidence for Multiple Horizontal Neural Integrators

    PubMed Central

    Hegemann, S.; Straumann, D.

    2007-01-01

    Alexander’s law (AL) states that the slow-phase velocity of spontaneous nystagmus of peripheral vestibular origin is dependent on horizontal gaze position, with greater velocity when gaze is directed in the fast-phase direction. AL is thought to be a compensatory reaction resulting from adaptive changes in the horizontal ocular motor neural integrator. Until now, only horizontal eye movements have been investigated with respect to AL. Because spontaneous nystagmus usually includes vertical and torsional components, we asked whether horizontal gaze changes would have an effect on the 3D drift of spontaneous nystagmus and, thus, on the vertical/torsional neural integrator. We hypothesized that AL reduces all nystagmus components proportionally. Moreover, we questioned the classical theory of a single bilaterally organized horizontal integrator and searched for nonlinearities of AL implying a network of multiple integrators. Using dual scleral search coils, we measured AL in 17 patients with spontaneous nystagmus. Patients followed a pulsed laser dot at eye level jumping in 5° steps along the horizontal meridian between 25° right and left in otherwise complete darkness. AL was observed in 15 of 17 patients. Whereas individual patients typically showed a change of 3D-drift direction at different horizontal eye positions, the average change in direction was not different from zero. The strength of AL (= rate of change of total velocity with gaze position) correlated with nystagmus slow-phase velocity (Spearman’s rho = 0.5; p < 0.05) and, on average, did not change the 3D nystagmus drift direction. In general, eye velocity did not vary linearly with eye position. Rather, there was a stronger dependence of velocity on horizontal position when subjects looked in the slow-phase direction compared to the fast-phase direction. We conclude that the theory of a simple leak of a single horizontal neural integrator is not sufficient to explain all aspects of AL

  8. Stagnation point flow and heat transfer behavior of Cu-water nanofluid towards horizontal and exponentially stretching/shrinking cylinders

    NASA Astrophysics Data System (ADS)

    Sulochana, C.; Sandeep, N.

    2016-03-01

    In this study we analyzed the stagnation point flow and heat transfer behavior of Cu-water nanofluid towards horizontal and exponentially permeable stretching/shrinking cylinders in presence of suction/injection, heat source and shape of nanoparticles. The governing boundary layer equations are transformed to nonlinear ordinary differential equations using similarity transformation which are then solved numerically using bvp4c Matlab package. The influence of non-dimensional governing parameters on the flow field and heat transfer characteristics are discussed and presented through graphs and tables. The study indicates that the solutions for the horizontal and exponential cylinders are non-unique and shape of nanoparticles also influences the rate of heat transfer. Comparisons of the present results with existed studies are presented. Present study has an excellent agreement with the existed studies under some special conditions.

  9. Study on transient characteristics of mist-cooling heat transfer from a horizontal upward-facing surface

    SciTech Connect

    Ohkubo, Hidetoshi; Nishio, Shigefumi )

    1993-04-01

    The effects of cooling rate and thermal conductivity of a heat-transfer plate on mist-cooling heat transfer were investigated experimentally for the high-temperature region. Experiments were conducted for horizontal upward-facing surfaces made of silver, stainless steel, and fused quartz. The experimental conditions of mist flow were as follows: The air velocity V[sub a] = 20 m/s, the temperature of water droplet T[sub l] = 21 C, and the volumetric droplet-flow-rate D = 0.00043-0.00472[sup 3]/(m[sup 2]s). It was found that, in the case where the horizontal surfaces face upward, the thermal properties of surface material does not significantly affect the heat-transfer coefficient, but the cooling rate of the surface affects it if the heat capacity of the surface is less than a critical value.

  10. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, T.D.

    1997-08-26

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.