Science.gov

Sample records for multipoint thomson scattering

  1. Multipoint Thomson scattering diagnostic for DIII-D

    NASA Astrophysics Data System (ADS)

    Hsieh, C. L.; Chase, R.; Deboo, J. C.; Evanko, R. G.; Gohil, P.; Snider, R. T.; Stockdale, R. E.

    1988-02-01

    The multipoint Thomson scattering diagnostic for DIII-D has been in operation since early 1987. Its capability of measuring electron temperatures as low as 50 eV at densities of a few times 10 to the 12th/cu cm and a spatial resolution of 1.4 cm in the plasma edge region has been essential in the study of H-mode plasmas. The major components of the diagnositic system consist of a 10-J ruby laser, many stages of funnel shaped beam baffles, stacks of razor blades for viewing and stray light dumps, two wide-angle lenses for the collection of scattered light through re-entrant window ports with protection shutters, 88 fiber bundles 15 m in length for light transmission to an focal length/1.9 spectrometer, an intensified CCD camera system capable of single photon detection, and a VAX computer for hardware control and data processing. The input end of the fiber bundle is made demountable so the view locations can be reconfigured to optimize the spatial resolution for the plasma region of interest.

  2. Multipoint Thomson scattering diagnostic for DIII-D

    NASA Astrophysics Data System (ADS)

    Hsieh, C. L.; Chase, R.; DeBoo, J. C.; Evanko, R. G.; Gohil, P.; Snider, R. T.; Stockdale, R. E.

    1988-08-01

    The multipoint Thomson scattering diagnostic for DIII-D has been in operation since early 1987. Its capability of measuring electron temperatures as low as 50 eV at densities of a few times 1012 cm-3 and a spatial resolution of 1.4 cm in the plasma edge region has been essential in the study of H-mode plasmas. The major components of the diagnostic system consist of a 10-J ruby laser, many stages of funnel-shaped beam baffles, stacks of razor blades for viewing and stray light dumps, two wide-angle lenses for the collection of scattered light through reentrant window ports with protection shutters, 88 fiber bundles 15 m in length for light transmission to an f/1.9 spectrometer, an intensified CCD camera system capable of single-photon detection, and a VAX computer for hardware control and data processing. The input end of the fiber bundle is made demountable so the view locations can be reconfigured to optimize the spatial resolution for the plasma region of interest.

  3. Multipoint Thomson scattering diagnostic for DIII-D

    SciTech Connect

    Hsieh, C.L.; Chase, R.; DeBoo, J.C.; Evanko, R.G.; Gohil, P.; Snider, R.T.; Stockdale, R.E.

    1988-08-01

    The multipoint Thomson scattering diagnostic for DIII-D has been in operation since early 1987. Its capability of measuring electron temperatures as low as 50 eV at densities of a few times 10/sup 12/ cm/sup -3/ and a spatial resolution of 1.4 cm in the plasma edge region has been essential in the study of H-mode plasmas. The major components of the diagnostic system consist of a 10-J ruby laser, many stages of funnel-shaped beam baffles, stacks of razor blades for viewing and stray light dumps, two wide-angle lenses for the collection of scattered light through reentrant window ports with protection shutters, 88 fiber bundles 15 m in length for light transmission to an f/1.9 spectrometer, an intensified CCD camera system capable of single-photon detection, and a VAX computer for hardware control and data processing. The input end of the fiber bundle is made demountable so the view locations can be reconfigured to optimize the spatial resolution for the plasma region of interest.

  4. Multipoint Thomson scattering diagnostic for DIII-D

    SciTech Connect

    Hsieh, C.L.; Chase, R.; DeBoo, J.C.; Evanko, R.G.; Gohil, P.; Snider, R.T.; Stockdale, R.E.

    1988-02-01

    The multipoint Thomson scattering diagnostic for DIII-D has been in operation since early 1987. Its capability of measuring electron temperatures as low as 50 eV at densities of a few times 10/sup 12/ cm/sup -3/ and a spatial resolution of 1.4 cm in the plasma edge region has been essential in the study of H-mode plasmas. The major components of the diagnositic system consist of a 10-J ruby laser, many stages of funnel shaped beam baffles, stacks of razor blades for viewing and stray light dumps, two wide-angle lenses for the collection of scattered light through re-entrant window ports with protection shutters, 88 fiber bundles 15 m in length for light transmission to an /line integral/1.9 spectrometer, an intensified CCD camera system capable of single photon detection, and a VAX computer for hardware control and data processing. The input end of the fiber bundle is made demountable so the view locations can be reconfigured to optimize the spatial resolution for the plasma region of interest. 2 refs., 7 figs.

  5. Public Data Set: Control and Automation of the Pegasus Multi-point Thomson Scattering System

    DOE Data Explorer

    Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-08-12

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in G.M. Bodner et al., 'Control and Automation of the Pegasus Multi-point Thomson Scattering System,' Rev. Sci. Instrum. 87, 11E523 (2016).

  6. Multipoint Thomson Scattering Diagnostic For The TCABR Tokamak With Centimeter Spatial Resolution

    SciTech Connect

    Alonso, M. P.; Varandas, C. A. F.; Berni, L. A.; Severo, J. H.; Borges, F. O.; Elizondo, J. I.; Galvao, R. M. O.; Machida, M.

    2008-04-07

    This paper describes a multi-point Thomson scattering system that is being developed for the TCABR tokamak based on a signal delay technique, which allows the determination of the electron temperature and plasma density radial profiles, with approximately 1 cm spatial resolution, employing just one spectrometer.

  7. Multipoint Thomson scattering diagnostic for the ETE tokamak

    SciTech Connect

    Berni, L.A.; Alonso, M.P.; Oliveira, R.M.

    2004-10-01

    To measure the electron temperature and plasma density profiles on the Experimento Tokamak Esferico tokamak a multiplexed Thomson scattering diagnostic was implemented. The diagnostic is based on a 10 J ruby laser and a single five spectral channel filter polychromator. A collection lens with f/6.3 relay the scattered light from 23 spatial points to optical fibers. The fibers have a monotonous increasing length and are inserted into the polychromator. Between the collection lens and each fiber optic we have a microlens to match the numerical aperture and to enlarge the plasma observation volume. This work describes the project, the simulations, and the preliminary results obtained with the first four optical fibers.

  8. Multi-Point Thomson Scattering First Results in HIT-II Plasmas

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Hamp, W. T.; Liptac, J. E.; Jarboe, T. R.; Nelson, B. A.; Leblanc, B. P.; Phillips, P.

    2000-10-01

    A multi-point Thomson scattering diagnostic has recently been implemented on the Helicity Injected Torus (HIT-II). The HIT-II device is a low-aspect-ratio (R_o=0.3m, a=0.2m) torus with an on-axis toroidal field of up to 0.5 Tesla. The machine configuration allows both inductive current drive and Coaxial Helicity Injection (CHI) current drive operations and has demonstrated plasma currents on the order of 200 kA in either mode. Electron temperature and density profile measurements for both inductive- and CHI-driven plasmas are presented. The Thomson scattering data is discussed in the context of complimentary diagnostics on the HIT-II device, including: a two-chord FIR interferometer; a 16-channel ion Doppler spectrometer; two tangentially-viewing VUV spectrometers; and, finally, a triple Langmuir probe for direct internal measurements.

  9. Public Data Set: A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586)

    2016-08-13

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in D.J. Schlossberg et. al., 'A Novel, Cost-Effective, Multi-Point Thomson Scattering System on the Pegasus Toroidal Experiment,' accepted for publication in Review of Scientific Instruments.

  10. A parallelized Python based Multi-Point Thomson Scattering analysis in NSTX-U

    NASA Astrophysics Data System (ADS)

    Miller, Jared; Diallo, Ahmed; Leblanc, Benoit

    2014-10-01

    Multi-Point Thomson Scattering (MPTS) is a reliable and accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Nd:YAG (1064 nm) lasers are fired into the plasma with a frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the midplane of the tokamak pick up the light at various radii/scattering angles, and the avalanche photodiode's voltages are added to an MDSplus tree for later analysis. This project ports and optimizes the prior serial IDL MPTS code into a well-documented Python package that runs in parallel. Since there are 30 polychromators in the current NSTX setup (12 more will be added when NSTX-U is completed), using parallelism offers vast savings in performance. NumPy and SciPy further accelerate numerical calculations and matrix operations, Matplotlib and PyQt make an intuitive GUI with plots of the output, and Multiprocessing parallelizes the computationally intensive calculations. The Python package was designed with portability and flexibility in mind so it can be adapted for use in any polychromator-based MPTS system.

  11. Multi-point Thomson Scattering First Results on the HIT-II Plasma

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Liptac, J. E.; Jarboe, T. R.; Nelson, B. A.; Leblanc, B. P.; Phillips, P.

    1999-11-01

    A multi-point Thomson scattering diagnostic has recently been implemented on the Helicity Injected Torus--II (HIT--II). The HIT--II device is a low-aspect ratio (Ro = 0.3 m, a = 0.2 m) torus with a 0.5 Tesla field on axis. The machine configuration allows both inductive current drive and Coaxial Helicity Injection (CHI) current drive operations and is capable of producing plasma currents on the order of 200 kA in either mode. Electron temperature and density profile measurements for both inductive and CHI current driven plasmas are presented and discussed along with results from complimentary diagnostics on the HIT--II device --- a two chord FIR interferometer, a 16 channel ion doppler spectrometer and two symmetrically viewing VUV spectrometers.

  12. Operation of the NSTX Thomson Scattering System

    SciTech Connect

    LeBlanc, B.P.; Bell, R.E.; Johnson, D.W.; Hoffman, D.E.; Long, D.C.; and Palladino, R.W.

    2002-09-03

    The NSTX multi-point Thomson scattering system has been in operation for nearly two years and provides routine Te(R,t) and ne(R,t) measurements. The laser beams from two 30-Hz Nd:YAG lasers are imaged by a spherical mirror onto 36 fiber-optics bundles. In the present configuration, the output ends of 20 of these bundles are instrumented with filter polychromators and avalanche photodiode detectors. In this paper, we discuss the laser implementation and the installed collection optics. We follow with examples of raw and analyzed data. We close with some comments about calibration.

  13. Thomson scattering from laser plasmas

    SciTech Connect

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  14. Scaling Thomson scattering to big machines

    NASA Astrophysics Data System (ADS)

    Bílková, P.; Walsh, M.; Böhm, P.; Bassan, M.; Aftanas, M.; Pánek, R.

    2016-03-01

    Thomson scattering is a widely used diagnostic tool for local measurement of both electron temperature and electron density. It is used for both low and high temperature plasmas and it is a key diagnostic on all fusion devices. The extremely low cross-section of the reaction increases the complexity of the design. Since the early days of fusion, when a simple single point measurement was used, the design moved to a multi-point system with a large number of spatial points, LIDAR system or high repetition Thomson scattering diagnostic which are used nowadays. The initial low electron temperature approximation has been replaced by the full relativistic approach necessary for large devices as well as for ITER with expected higher plasma temperature. Along the way, the different development needs and the issues that exist need to be addressed to ensure that the technique is developed sufficiently to handle challenges of the bigger devices of the future as well as current developments needed for ITER. For large devices, the achievement of the necessary temperature range represents an important task. Both high and low temperatures can be measured, however, a large dynamic range makes the design difficult as size of detector and dynamic range are linked together. Therefore, the requirements of the new devices are extending the boundaries of these parameters. Namely, ITER presents challenges as access is also difficult but big efforts have been made to cope with this. This contribution contains a broad review of Thomson scattering diagnostics used in current devices together with comments on recent progress and speculation regarding future developments needed for future large scale devices.

  15. Development of KSTAR Thomson scattering system

    SciTech Connect

    Lee, J. H.; Oh, S. T.; Wi, H. M.

    2010-10-15

    To measure the electron temperature (T{sub e}) and electron density (n{sub e}) profiles in the Korean Superconducting Tokamak Advanced Research (KSTAR) device for the KSTAR third campaign (September 2010), we designed and installed a Thomson scattering system. The KSTAR Thomson scattering system is designed as a tangential Thomson scattering system and utilizes the N-, L-, and B-ports. The N-port is designed for the collection optics with a cassette system, the L-port is the laser input port, and the B-port is the location of the beam dump. In this paper, we will describe the final design of the KSTAR Thomson scattering system.

  16. Design of Thomson Scattering Diagnostic for HIT-SI

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Fryett, Taylor; Golingo, Raymond; Jarboe, Tom; Victor, Brian

    2012-10-01

    Steady Inductive Helicity Injection (SIHI) is used to create a spheromak inside the HIT-SI machine. A multi-point Thomson scattering diagnostic has been designed and is under construction for the HIT-SI experiment. The system uses a 20J Ruby Laser with 20ns pulse length. The collection system allows for eight spatial measurement locations, with four being active at any time. Four polychromators are being used to spectrally resolve the scattered light. Present Langmuir probe measurements show an electron temperature of about 12eV, within the range the polychromators can resolve. Properties of system and expected measurement are given.

  17. Quantum theory of Thomson scattering

    NASA Astrophysics Data System (ADS)

    Crowley, B. J. B.; Gregori, G.

    2014-12-01

    The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the non-relativistic regime, in which account is taken of the Kramers-Heisenberg polarization terms in the Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula for the double differential Thomson scattering cross section in an isotropic finite temperature multi-component system, this work also considers closely related phenomena such as absorption, refraction, Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential relationships between these quantities. In particular, the work introduces the concept of scattering strength and the strength-density field which replaces the normal particle density field in the standard treatment of scattering by a collection of similar particles and it is the decomposition of the strength-density correlation function into more familiar-looking components that leads to the final result. Comparisons are made with previous work, in particular that of Chihara [1].

  18. Alpha particle collective Thomson scattering in TFTR

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  19. Thomson scattering on inhomogeneous targets

    SciTech Connect

    Thiele, R.; Sperling, P.; Bornath, Th.; Kraeft, W.-D.; Redmer, R.; Chen, M.; Faeustlin, R. R.; Toleikis, S.; Fortmann, C.; Glenzer, S. H.; Pukhov, A.; Tschentscher, Th.

    2010-11-15

    The introduction of brilliant free-electron lasers enables new pump-probe experiments to characterize warm dense matter states. For instance, a short-pulse optical laser irradiates a liquid hydrogen jet that is subsequently probed with brilliant soft x-ray radiation. The strongly inhomogeneous plasma prepared by the optical laser is characterized with particle-in-cell simulations. The interaction of the soft x-ray probe radiation for different time delays between pump and probe with the inhomogeneous plasma is also taken into account via radiative hydrodynamic simulations. We calculate the respective scattering spectrum based on the Born-Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We can identify plasmon modes that are generated in different target regions and monitor their temporal evolution. Therefore, such pump-probe experiments are promising tools not only to measure the important plasma parameters density and temperature but also to gain valuable information about their time-dependent profile through the target. The method described here can be applied to various pump-probe scenarios by combining optical lasers and soft x ray, as well as x-ray sources.

  20. Thomson scattering on inhomogeneous targets.

    PubMed

    Thiele, R; Sperling, P; Chen, M; Bornath, Th; Fäustlin, R R; Fortmann, C; Glenzer, S H; Kraeft, W-D; Pukhov, A; Toleikis, S; Tschentscher, Th; Redmer, R

    2010-11-01

    The introduction of brilliant free-electron lasers enables new pump-probe experiments to characterize warm dense matter states. For instance, a short-pulse optical laser irradiates a liquid hydrogen jet that is subsequently probed with brilliant soft x-ray radiation. The strongly inhomogeneous plasma prepared by the optical laser is characterized with particle-in-cell simulations. The interaction of the soft x-ray probe radiation for different time delays between pump and probe with the inhomogeneous plasma is also taken into account via radiative hydrodynamic simulations. We calculate the respective scattering spectrum based on the Born-Mermin approximation for the dynamic structure factor considering the full density and temperature-dependent Thomson scattering cross section throughout the target. We can identify plasmon modes that are generated in different target regions and monitor their temporal evolution. Therefore, such pump-probe experiments are promising tools not only to measure the important plasma parameters density and temperature but also to gain valuable information about their time-dependent profile through the target. The method described here can be applied to various pump-probe scenarios by combining optical lasers and soft x ray, as well as x-ray sources. PMID:21230599

  1. Thomson Scattering Lineshape Fitting for Plasma Diagnostics

    Energy Science and Technology Software Center (ESTSC)

    1994-02-04

    HFIT30 is used for interpreting lineshape (intensity versus frequency) data from Thomson and Rayleigh light scattering from a plasma, to obtain temperatures and number densities of the component species in the plasma.

  2. Relativistic Thomson Scatter from Factor Calculation

    Energy Science and Technology Software Center (ESTSC)

    2009-11-01

    The purpose of this program is calculate the fully relativistic Thomson scatter from factor in unmagnetized plasmas. Such calculations are compared to experimental diagnoses of plasmas at such facilities as the Jupiter laser facility here a LLNL.

  3. Thomson-scattering systems on TMX

    SciTech Connect

    Goodman, R.K.; Clauser, J.F.; Frank, A.M.; Goerz, D.A.; Lang, D.D.

    1982-01-30

    This report summarizes the criteria and designs that were used for the two TMX Thomson-scattering systems. It describes the optical, mechanical, electronic, and computer analysis features of these installations. A brief discussion of general Thomson-scattering principles and sensitivity limits is given. Also included are some plasma electron temperature and density measurements from TMX that were obtained through the use of these systems.

  4. Radiation Reaction and Thomson Scattering

    SciTech Connect

    Koga, James

    2007-07-11

    In recent years high power high irradiance lasers of peta-watt order have been or are under construction. In addition, in the next 10 years lasers of unprecedented powers, exa-watt, could be built If lasers such as these are focused to very small spot sizes, extremely high laser irradiances will be achieved. When electrons interact with such a laser, they become highly relativistic over very short time and spatial scales. Usually the motion of an electron under the influence of electromagnetic fields is influenced to a small extent by radiation emission from acceleration. However, under such violent acceleration the amount of radiation emitted by electrons can become so large that significant damping of the electron motion by the emission of this radiation can occur. In this lecture note we will study this problem of radiation reaction by first showing how the equations of motion are obtained. Then, we will examine the problems with such equations and what approximations are made. We will specifically examine the effects of radiation reaction on the Thomson scattering of radiation from counter-streaming laser pulses and high energy electrons through the numerical integration of the equations of motion. We will briefly address the fundamental physics, which can be addressed by using such high irradiance lasers interacting with high energy electrons.

  5. Theory of Thomson scattering in inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.

    2016-04-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.

  6. Theory of Thomson scattering in inhomogeneous media.

    PubMed

    Kozlowski, P M; Crowley, B J B; Gericke, D O; Regan, S P; Gregori, G

    2016-01-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems. PMID:27068215

  7. Theory of Thomson scattering in inhomogeneous media

    PubMed Central

    Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.

    2016-01-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems. PMID:27068215

  8. Thomson scattering in short pulse laser experiments

    SciTech Connect

    Hill, E. G.; Rose, S. J.

    2012-08-15

    Thomson scattering is well used as a diagnostic in many areas of high energy density physics. In this paper, we quantitatively demonstrate the practicality of using Thomson scattering as a diagnostic of short-pulse laser-plasma experiments in the regime, where the plasmas probed are at solid density and have temperatures of many hundreds of eV using a backlighter produced with an optical laser. This method allows a diagnosis both spatially and temporally of the density and temperature distributions in high energy density laser-plasma interactions which is independent from, and would act as a useful complement to, the existing spectroscopic methods.

  9. Recent improvements in Thomson scattering data analysis

    SciTech Connect

    Tillack, M.S.; Lazarus, E.A.

    1980-04-01

    A new profile analysis package for use with the Thomson scattering data on ISX-B has recently been implemented. The primary feature of this package is a weighted least squares fitting of temperature and density data to generate a representative curve, as opposed to the previous hand-fitting technique. The changes will automate the manner in which data are transmitted and manipulated, without affecting the calculational techniques previously used. The computer programs have also been used to estimate the sensitivity of various plasma quantities to the accuracy of the Thomson scattering data.

  10. Thomson Scattering Measurements on HIT-SI3

    NASA Astrophysics Data System (ADS)

    Everson, C. J.; Morgan, K. D.; Jarboe, T. R.

    2015-11-01

    A multi-point Thomson Scattering diagnostic has been implemented on HIT-SI3 (Helicity Injected Torus - Steady Inductive 3) to measure electron temperature. The HIT-SI3 experiment is a modification of the original HIT-SI apparatus that uses three injectors instead of two. This modification alters the configuration of magnetic fields and thus the plasma behavior in the device. The scientific aim of HIT-SI3 is to develop a deeper understanding of how injector behavior and interactions influence current drive and plasma performance in the spheromak. The Thomson Scattering system includes a 20 J (1 GW pulse) Ruby laser that provides the incident beam, and collection optics that are installed such that measurements can be taken at four spatial locations in HIT-SI3 plasmas. For each measurement point, a 3-channel polychromator is used to detect the relative level of scattering. These measurements allow for the presence of temperature gradients in the spheromak to be investigated. Preliminary HIT-SI3 temperature data are presented and can be compared to predictions from computational models. Work supported by the D.O.E.

  11. Pulsed Laser Nonlinear Thomson Scattering for General Scattering Geometries

    SciTech Connect

    Geoffrey Krafft; A. Doyuran; James Rosenzweig

    2005-05-01

    In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degree Thomson scattering. Such geometries have been increasingly studied as X-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases.

  12. Thomson scattering for core plasma on DEMO

    SciTech Connect

    Mukhin, E. E.; Kurskiev, G. S.; Tolstyakov, S. Yu.; Bukreev, I. M.; Chernakov, P. V.; Kochergin, M. M.; Koval, A. N.; Litvinov, A. E.; Masyukevich, S. V.; Razdobarin, A. G.; Semenov, V. V.; Kukushkin, A. B.; Sdvizhenskii, P. A.; Andrew, P.

    2014-08-21

    This paper describes the challenges of Thomson scattering implementation for core plasma on DEMO and evaluates the capability to measure extremely high electron temperature range 0.5-40keV. A number of solutions to be developed for ITER diagnostics are suggested in consideration of their realization for DEMO. New approaches suggested for DEMO may also be of interest to ITER and currently operating magnetic confinement devices.

  13. Thomson Scattering Density Calibration by Rayleigh and Rotational Raman Scattering on NSTX

    SciTech Connect

    B.P. LeBlanc

    2008-07-16

    The multi-point Thomson scattering (MPTS) diagnostic measures the profiles of the electron temperature Te(R) and density ne(R) on the horizontal midplane of NSTX. Normal operation makes use of Rayleigh scattering in nitrogen or argon to derive the density profile. While the Rayleigh scattering ne(R) calibration has been validated by comparison with other density measurements and through its correlation with plasma phenomena, it does require dedicated detectors at the laser wavelength in this filter polychromator based diagnostic. The presence of dust and/or stray laser light precludes routine use of these dedicated spectral channels for Thomson scattering measurement. Hence it is of interest to investigate the use of Raman scattering in nitrogen for the purpose of density calibration, since it could free up detection equipment, which could then be used for the instrumentation of additional radial channels. In this paper the viewing optics "geometrical factor" profiles obtained from Rayleigh and Raman scattering are compared. While both techniques agree nominally, residual effects on the order of 10% remain and will be discussed.

  14. Thomson scattering at 250 kHz

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Den Hartog, D. J.

    2015-12-01

    Several upgrades have been applied to the high-repetition-rate Thomson scattering diagnostic on the MST experiment, having increased the rate and number of electron temperature measurements. The detector portion of the Thomson scattering system requires 1.5-2.0 J, 10-20 ns laser pulses at 1064 nm. A high-repetition-rate laser produces suitable pulses for short 3-4 pulse bursts with only 3 μs pulse spacing. Alternatively, the laser timing can be optimized to maximize the number of pulses in a single burst, producing up to 44 pulses at a rate of 100 kHz. The laser follows a master oscillator, power amplifier architecture. Upgrades to the laser include: a new acousto-optic modulator chopped CW laser based master oscillator, a sixth power amplifier, optimized Nd doping within Nd:glass amplifiers via optical modeling of the pump chamber, and a yet to be installed new cavity reflector. Additionally, a new long wavelength filter has been added to the Thomson scattering diagnostic's polychromator based detector, allowing possible detection of net electron drift.

  15. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    SciTech Connect

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-15

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  16. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak.

    PubMed

    Berni, L A; Albuquerque, B F C

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times. PMID:21198020

  17. Thomson scattering in warm dense matter

    NASA Astrophysics Data System (ADS)

    Thiele, R.; Bornath, T.; F"Austlin, R. R.; Fortmann, C.; Glenzer, S.; Gregori, G.; Holst, B.; Tschentscher, T.; Schwarz, V.; Redmer, R.

    2009-11-01

    Free electron lasers employing scattering of high-brilliant, coherent photons in the extreme ultraviolet (VUV), e.g. at FLASH (DESY Hamburg) or LCLS (Stanford), allow for a systematic study of basic plasma properties in the region of warm dense matter (WDM). WDM is characterized by condensed matter-like densities and temperatures of several eV. Collective Thomson scattering with VUV or x-ray has demonstrated its capacity for robust measurements of the free electron density and temperature in WDM. Collective excitations like plasmons (``electron feature'') appear as maxima in the scattering signal. The respective frequencies can be related to the free electron density. Furthermore, the asymmetry of the red- and blue shifted plasmon intensity gives the electron temperature due to detailed balance. We treat collective Thomson scattering in the Born-Mermin-approximation which includes collisions and present a generalized Gross-Bohm dispersion for plasmas. The influence of plasma inhomogeneities on the scattering spectrum is studied by comparing density and temperature averaged scattering signals with calculations assuming homogeneous targets. For the ``ion feature,'' results of semi-classical hypernetted chain (HNC) calculations and of quantum molecular dynamics simulations are shown for dense beryllium.

  18. Collection optics design for KSTAR Thomson scattering system

    SciTech Connect

    Oh, S.; Lee, J. H.

    2010-10-15

    The collection optics designs are described for the Thomson scattering diagnostic of the Korea superconducting tokamak advanced research (KSTAR) device. The optical systems collecting the light emission induced through the interaction between the plasma electrons and a laser beam are key components for the Thomson scattering system. A duo-lens system was examined, and the final optical designs were derived for Thomson scattering diagnostic of KSTAR.

  19. Thomson scattering from inertial confinement fusion plasmas

    SciTech Connect

    Glenzer, S.H.; Back, C.A.; Suter, L.J.

    1997-07-08

    Thomson scattering has been developed at the Nova laser facility as a direct and accurate diagnostic to characterize inertial confinement fusion plasmas. Flat disks coated with thin multilayers of gold and beryllium were with one laser beam to produce a two ion species plasma with a controlled amount of both species. Thomson scattering spectra from these plasmas showed two ion acoustic waves belonging to gold and beryllium. The phase velocities of the ion acoustic waves are shown to be a sensitive function of the relative concentrations of the two ion species and are in good agreement with theoretical calculations. These open geometry experiments further show that an accurate measurement of the ion temperature can be derived from the relative damping of the two ion acoustic waves. Subsequent Thomson scattering measurements from methane-filled, ignition-relevant hohlraums apply the theory for two ion species plasmas to obtain the electron and ion temperatures with high accuracy. The experimental data provide a benchmark for two-dimensional hydrodynamic simulations using LASNEX, which is presently in use to predict the performance of future megajoule laser driven hohlraums of the National Ignition Facility (NIF). The data are consistent with modeling using significantly inhibited heat transport at the peak of the drive. Applied to NIF targets, this flux limitation has little effect on x- ray production. The spatial distribution of x-rays is slightly modified but optimal symmetry can be re-established by small changes in power balance or pointing. Furthermore, we find that stagnating plasma regions on the hohlraum axis are well described by the calculations. This result implies that stagnation in gas-filled hohlraums occurs too late to directly affect the capsule implosion in ignition experiments.

  20. MFTF Thomson scattering: a system study

    SciTech Connect

    Frank, A.M.

    1980-09-11

    This report documents the design effort for a Thomson scattering diagnostic system for MFTF. The principal problem is obtaining enough photons, in the presence of a poorly known background, to make satisfactory measurements. No currently available laser will yield enough photons to do this. Design concepts for imaging and detection are discussed. The ability of components to survive in the high-radiation environment of MFTF is identified as an important problem. The transition to MFTF-B makes many of the problems identified here more serious.

  1. The PBX-M Thomson scattering system

    SciTech Connect

    LeBlanc, B.; Bell, R.; Dimock, D.; Duperrex, P.; Felt, J.; Palladino, R.; Tolnas, E. )

    1990-10-01

    The PBX-M Thomson scattering system is reviewed after its first 9 months of operation. The system measures {ital T}{sub {ital e}}({ital R}) and {ital n}{sub {ital e}}({ital R}) at 55 radial points on the horizontal midplane with a spatial resolution of {le}1.1 cm. The scattered light is collected by a Bouwers concentric mirror system and imaged onto 12-m-long fiber bundles. A composite entrance slit is used to optimize the system performance. The synchronization between the scattered light and detector gate is done via a laser-triggered spark gap. A penetration in the indentation coil allows the (ruby) laser beam to be dumped away from the plasma chamber. Other aspects of the system will be discussed.

  2. Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.

  3. Thomson scattering of polarized photons in an intense laser beam

    SciTech Connect

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  4. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    SciTech Connect

    McLean, A. G. Soukhanovskii, V. A.; Allen, S. L.; Carlstrom, T. N.; LeBlanc, B. P.; Ono, M.; Stratton, B. C.

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.

  5. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U.

    PubMed

    McLean, A G; Soukhanovskii, V A; Allen, S L; Carlstrom, T N; LeBlanc, B P; Ono, M; Stratton, B C

    2014-11-01

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, Te, and density, ne, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring Te to 0.5 eV. If implemented on NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma. PMID:25430390

  6. MAST YAG Thomson scattering upgrade alignment system

    SciTech Connect

    Figueiredo, J.; Serra, F.; Naylor, G.; Walsh, M.; Dunstan, M.; Scannell, R.

    2010-10-15

    The recent upgrade to the MAST YAG Thomson scattering while enhancing the diagnostic capabilities increased the complexity of the system. There are eight YAG lasers now operational, doubling the number from the previous setup. This means alignment between each laser individually and reference points is essential to guarantee data quality and diagnostic reliability. To address this issue an alignment system was recently installed. It mimics the beams alignment in MAST by sampling 1% of the laser beam that is sent into a telescope which demagnifies by a factor of 8. The demagnified beam is viewed with a CCD camera. By scanning the camera the profile and position of the beams in the scattering zone and in a range of several meters inside MAST can be determined. Therefore alignment is checked along the beam path without having to sample it inside the vessel. The experimental apparatus and test procedures are described.

  7. Commissioning of Thomson Scattering on the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Fonck, R. J.; Peguero, L. M.; Winz, G. R.

    2013-10-01

    A new multipoint Thomson scattering diagnostic has been installed on the PEGASUS Toroidal Experiment. It employs a frequency-doubled Nd:YAG laser (λ0 = 532 nm) and spectrometers using volume phase holographic gratings and gated, intensified CCD cameras. Spectral, temporal and intensity calibrations of the spectrometer systems were conducted. Sources of laser energy loss were identified and reduced, beam termination was optimized to minimize reflections during collection time, and inter-shot alignment monitoring was installed. Rayleigh and Raman calibration efforts revealed significant stray light from in-vessel reflections; hence, a vacuum-compatible optical baffling system was designed, fabricated, and is being installed. Operation of the diagnostic will support characterization of helicity dissipation mechanisms and confinement scaling during local DC helicity injection startup on PEGASUS. Additionally, H-mode temperature and density profiles will be obtained to support equilibrium reconstructions and stability studies of ELMs in the H-mode plasma edge. Initial measurements will be conducted with an 8-spatial channel array; expansion to 24 channels is in progress. Work supported by US DOE Grant DE-FG02-96ER54375.

  8. Implementation of a Thomson Scattering Diagnostic on Pegasus

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Moritz, J. I.; Schoenbeck, N. L.; Winz, G. R.

    2011-10-01

    The multipoint Thomson scattering system on PEGASUS will diagnose point-source helicity-driven plasmas, including dominant particle transport mechanisms and sources of helicity dissipation. Helicity-driven plasmas are estimated to have áTe ñ ~ 50 eV for stochastic field line confinement and ~200 eV for standard Ohmic closed flux surface confinement. To accurately characterize these regimes, a novel system is being designed, installed, and calibrated. A Nd:YAG laser is frequency doubled to provide a 9 ns, 2 J pulse radially across the plasma. Remote alignment of steering mirrors can be performed between shots along the 6 m length of the external laser beam-line. The 532 nm laser beam is focused to a <= 3 mm diameter beam within the plasma. Plasma background measurements are made simultaneously with data collection. A custom optical system collects signal from >70% of the plasma cross-section with 1.4 cm radial resolution. Optical fibers relay light to a high-efficiency volume phase holographic grating spectrometer coupled to a high quantum efficiency image intensified CCD camera, gated at >= 2 ns. Signal levels for plasmas with ne >1018 m-3 and 10 eV

  9. Radial resolution enhancement of the NSTX Thomson scattering diagnostic

    SciTech Connect

    LeBlanc, B. P.; Diallo, A.; Labik, G.; Stevens, D. R.

    2012-10-15

    Current magnetic confinement plasma physics research has increased the demand for radial resolution in profile diagnostics, in particular in the edge and pedestal regions. On NSTX, an upgrade of the existing multi-point Thomson scattering diagnostic has been implemented in order to respond to the research program needs. Twelve new radial channels have been added bringing the total number of positions to 42. Four previously un-instrumented fiber bundles were put in service. Eight existing 'active' fiber bundles were divided in two sub-bundles each in order to increase spatial resolution. Twelve radial channels now cover the pedestal region with a resolution near one centimeter. Fifteen radial channels cover the core and internal transport barrier regions. Two additional channels were added, one near the inner edge and one in the outer scrape-off layer. The intersection of the focused viewing optics field of view with a finite-width laser beam results in major-radius cross talk between adjacent fiber sub-bundles. A discussion and calculation of the cross talk will be presented.

  10. Recent electron temperature and density results from the ATF Thomson scattering system

    SciTech Connect

    Rasmussen, D.A.; England, A.C.; Murakami, M.; Howe, H.C.; Clark, T.L.; Kindsfather, R.R.; Rayburn, T.M.; Stewart, K.A.; Rogers, P.S.; Bell, G.L.

    1989-01-01

    A spatial multipoint Thomson scattering system has been developed for the Advanced Toroidal Facility (ATF) torsatron. The system measures temperature and density at 15 vertical locations on a vertical chord for each laser shot (one per plasma discharge). By remotely relocating the laser beam and reconfiguring the viewing optics during a series of ATF discharges, a two-dimensional (2-D) electron temperature and density map of the plasma cross section can be obtained. Results obtained with this system during ATF operation in 1988 and early 1989 are presented. 7 refs., 6 figs.

  11. Signal evaluations using singular value decomposition for Thomson scattering diagnostics.

    PubMed

    Tojo, H; Yamada, I; Yasuhara, R; Yatsuka, E; Funaba, H; Hatae, T; Hayashi, H; Itami, K

    2014-11-01

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (Te) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters. PMID:25430278

  12. Signal evaluations using singular value decomposition for Thomson scattering diagnostics

    SciTech Connect

    Tojo, H. Yatsuka, E.; Hatae, T.; Itami, K.; Yamada, I.; Yasuhara, R.; Funaba, H.; Hayashi, H.

    2014-11-15

    This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.

  13. Triple grating polychromator for Thomson scattering.

    PubMed

    Greenwald, M; Smith, W I

    1977-03-01

    A high rejection, high transmission, triple grating polychromator with crossed dispersion has been designed and constructed for Thomson scattering plasma diagnostics. Identical gratings, collimating, and field lenses were used for all three stages. A mechanically convenient arrangement was made possible by using the field lenses to adjust the dispersion of the second stage to the required design value. The transmission in the passband for light polarized perpendicular to the rulings of the grating was measured at 33% for the instrument itself, and at 15% through the instrument and 1.8 m of attached fiber optics. With the 30-nm passband set 4-34-nm wavelengths away from the ruby laser line, the order of 10(-11) of 694-nm light incident in the input slit was present in each 3-nm wide output channel, giving a relative rejection factor of 10(-10). PMID:20168547

  14. A compact multichannel spectrometer for Thomson scattering

    SciTech Connect

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  15. Dense Matter Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Edwards, M J; Lee, R W; Collins, G W; Cauble, R C; Hsing, W W; Hammel, B A

    2000-12-29

    We discuss the extension of the powerful technique of Thomson scattering to the x-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally-resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution to. We also present a discussion for a proof-of-principle experiment appropriate for a high energy laser facility.

  16. Thomson Scattering Measurements of Plasma Dynamics

    SciTech Connect

    Holl, A; Redmer, R; Tschentscher, T; Toleikis, S; Forster, E; Cao, L; Glenzer, S H; Neumayer, P

    2006-03-29

    The authors propose to investigate the dynamics of plasmas in the warm dense matter (WDM) regime on ultra-short time scales. Accessible plasma conditions are in the density range of n = 10{sup 20} - 10{sup 23} cm{sup -3} and at moderate temperatures of T = 1 - 20 eV. These plasmas are of importance for laboratory astrophysics, high energy density science and inertial confinement fusion. They are characterized by a coupling parameter of {Lambda} {approx}> 1, where electromagnetic interactions are of the same order as the kinetic energy. The high density of the plasma makes it opaque to radiation in the visible range and, as a consequence, UV up to x-ray radiation can be used to probe such systems. Therefore a wide range in the temperature-density plane of WDM is presently unexplored and only the VUV-FEL opens for the first time the opportunity for its detailed investigation. In equilibrium, the macroscopic state of the plasma is completely characterized by its density and temperature. In pump-probe experiments however, the plasma is initially in a nonequilibrium state and relaxes towards equilibrium within the relaxation time {tau}{sub R}. For t > {tau}{sub R}, the plasma is in an equilibrium state and expands hydrodynamically on a time scale {tau}{sub H}. The proposed experiment measures the time-resolved Thomson scattering signal with the VUV-FEL radiation characterizing the plasma in equilibrium and nonequilibrium states. Both regimes are extremely interesting and will provide new insight into the following phenomena: (1) details of nonequilibrium correlations, (2) relaxation phenomena, (3) hydrodynamic expansion, (4) recombination kinetics. The time-resolved Thomson scattering signal is obtained in a pump-probe experiment by varying the delay between pump and probe. The final stage of the relaxation process (t {approx} {tau}{sub R}) is of special interest since the plasma components (electrons and ion species) can be assumed to be in quasi-equilibrium. This

  17. Upgrades to the MST Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Kubala, S. Z.; Borchardt, M. T.; den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2015-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV to 5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1-25 kHz. A new laser system is being commissioned to enable measurements up to 250 kHz. Other subsystems of the diagnostic are also being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being updated to improve safety, reliability, and maintainablity. Each of the 144 APDs will have an individual rack-mounted switched supply with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) are being added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable electron-velocity measurement. A supercontinuum pulsed white-light source is being implemented to improve spectral calibration of the polychromators. This work is supported by the US DOE and NSF.

  18. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8

  19. Thomson Scattering at 250 kHz

    NASA Astrophysics Data System (ADS)

    Young, William; den Hartog, D. J.; Morton, L. A.; MST Team

    2015-11-01

    The fast Thomson scattering diagnostic on the MST Reversed-Field Pinch experiment now measures electron temperature at rates of up to 250 kHz, allowing for single shot analysis of phenomena that previously required ensembles of measurements from many shots. Recent laser upgrades include the addition of a second Nd:glass amplifier (giving a total of six amplifiers including four Nd:YAG stages) and optimization of neodymium doping levels within the glass amplifier stages to reduce thermal defocusing. The master-oscillator power-amplifier laser system operates in a pulse-burst mode where the laser generates multiple pulses per flashlamp firing and these bursts of laser pulses are repeated multiple times. When optimizing for the largest number of laser pulses, the laser produces up to 30 pulses at a rate of 100 kHz per burst repeated up to 4 times every 2 ms for a total of 120 temperature measurements per MST discharge. When optimizing for fastest pulsing rate, the laser can produce 8 pulses at 250 kHz within a single burst. A laser system upgrade currently underway is replacement of the diode-pumped pulsed Nd:YVO4 master oscillator with a CW laser chopped by an acoustic-optic modulator; this upgrade may enable pulsing rates faster than 250 kHz. This work is supported by the US DOE and NSF.

  20. Dust in FTU with the Thomson Scattering diagnostic

    SciTech Connect

    Giovannozzi, E.; Castaldo, C.; Apruzzese, G.; Maddaluno, G.; Rydzy, A.; Ratynskaia, S.

    2008-09-07

    The Thomson scattering diagnostic has been used to measure the dust present in plasma discharges on FTU tokamak after disruption. The vaporization of the dust particles due to the high power of the laser used by the Thomson scattering diagnostic imply that only a rough estimate of the particle size could be derived from the elastic scattering of the laser light. A simple model for dust particle evaporation has been used to infer the size of the dust particle from the scattered light data.

  1. Thomson Scattering on the HBT-EP Tokamak

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Hanson, J. M.; James, R.; Maurer, D. A.; Mauel, M. E.; Navratil, G. A.; Pedersen, T. S.

    2007-11-01

    Thomson scattering can be used as a non-invasive method for measuring local electron density and temperature in plasmas. We describe the HBT-EP Thomson Scattering diagnostic, which is based on a design in use at DIII-D [1]. A five-channel interference filter polychrometer measures incoherent scattered light from an 8ns, 800mJ, 1064nm Nd:YAG laser pulse. A set of pre-amplification circuits designed by Princeton Scientific Instruments [2] has recently been installed for signal detection using avalanche photodiodes. System layout, alignment, and straylight level reduction techniques will be outlined. Rayleigh and Raman scattering calibration procedures have been used to absolutely calibrate the collection optics and detection system. Recent progress on diagnosing different HBT-EP plasmas using the Thomson scattering diagnostic will be presented. [1] T. N. Carlstrom, et al, Rev. Sci. Instr. 61, 2858, 1990. [2] D. Johnson, et al, Rev. Sci. Instr. 72, 1, 1129, 2001.

  2. Observation of relativistic effects in collective Thomson scattering

    SciTech Connect

    Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Divol, L; Tynan, G R; Froula, D H

    2009-10-08

    We observe relativistic modifications to the Thomson scattering spectrum in a traditionally classical regime: v{sub osc}/c = eE{sub 0}/cm{omega}{sub 0} << 1 and T{sub e} < 1 keV. The modifications result from scattering off electron-plasma fluctuations with relativistic phase velocities. Normalized phase velocities v/c between 0.03 and 0.12 have been achieved in a N{sub 2} gas-jet plasma by varying the plasma density from 3 x 10{sup 18} cm{sup -3} to 7 x 10{sup 19} cm{sup -3} and electron temperature between 85 eV and 700 eV. For these conditions, the complete temporally resolved Thomson scattering spectrum including the electron and ion features has been measured. A fully relativistic treatment of the Thomson scattering form factor has been developed and shows excellent agreement with the experimental data.

  3. Molecular origin of background light in Thomson scattering measurements

    SciTech Connect

    McNeill, D.H.

    1986-06-01

    The plasma background light in Thomson scattering measurements is often far higher than expected for a pure hydrogen plasma. The spectral distribution of light from three plasmas (duration: 1 ms to steady state; electron density: below 10/sup 12/ to over 10/sup 14/ cm/sup -3/; temperature: below 20 to over 1000 eV) and signal-to-noise and intensity data from the Thomson scattering systems used on them are compared with analytic estimates to show that in two of these plasmas molecular light dominates the spectrum, while in the other, molecular light is present, but bremsstrahlung is usually more intense. Knowledge of the mechanism for background light can aid in designing detection systems for Thomson scattering and provide information on the neutral species composition and effective charge of the plasma.

  4. LIDAR Thomson scattering for advanced tokamaks. Final report

    SciTech Connect

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  5. Applications of phase conjugate mirror to Thomson scattering diagnostics (invited)

    SciTech Connect

    Hatae, T.; Naito, O.; Nakatsuka, M.; Yoshida, H.

    2006-10-15

    A high performance phase conjugate mirror based on stimulated Brillouin scattering (SBS-PCM) has been applied to the Thomson scattering system in the JT-60U tokamak for the first time in order to improve the measurement performance. A SBS-PCM realized a high reflectivity of 95% at a high input power of 145 W (2.9 J, 50 Hz). Using the SBS-PCM, two methods have been developed to increase the intensity of scattered light. For the first method, we have developed a new optical design to provide a double-pass scattering method with the SBS-PCM. A laser beam passing through the plasma is reflected by the SBS-PCM. The reflected beam passes the plasma again along the same path by means of the phase conjugation of the optically nonlinear stimulated Brillouin scattering process. The double-pass Thomson scattering method using the SBS-PCM has demonstrated an increase of the scattered light by a factor of 1.6 compared with the single-pass scattering method in JT-60U. A multipass Thomson scattering method in which the laser beam can be confined between a couple of SBS-PCMs is also proposed. It is estimated that the multipass scattering method generates the scattered light more than several times as large as that of the single-pass scattering method. For the second method, a high-average-power yttrium aluminum garnet (Nd:YAG) laser system has been developed using the SBS-PCM. The SBS-PCM effectively compensated thermal degradation at two amplifier lines, and the average power was increased by a factor of >8 from 45 W (1.5 J, 30 Hz) to 373 W (7.46 J, 50 Hz). A Nd:YAG laser (5 J, 100 Hz) for the edge Thomson scattering in International Thermonuclear Experimental Reactor (ITER) has been designed based on the result.

  6. Progress of development of Thomson scattering diagnostic system on COMPASS

    SciTech Connect

    Bilkova, P.; Melich, R.; Aftanas, M.; Boehm, P.; Sestak, D.; Jares, D.; Weinzettl, V.; Stoeckel, J.; Hron, M.; Panek, R.; Walsh, M. J.

    2010-10-15

    A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

  7. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    SciTech Connect

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  8. Thomson scattering in a magnetic field. II - Arbitrary field orientation

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.

    1991-01-01

    This paper presents solutions to the equation of transfer for Thomson scattering in a constant magnetic field of arbitrary orientation. Results from several atmospheres are combined to give the flux from a dipole star. The results are compared to the polarization data of the magnetic white dwarf Grw + 70 deg 8247. The fit is good, though it implies a very large polarization in the ultraviolet. Thomson scattering is not thought to be an important opacity source in white dwarfs, so the good fit is either fortuitous or is perhaps explained by assuming the magnetic field affects the polarization processes in all opacities similarly.

  9. Thomson scattering in dense plasmas with density and temperature gradients

    NASA Astrophysics Data System (ADS)

    Fortmann, C.; Thiele, R.; Fäustlin, R. R.; Bornath, Th.; Holst, B.; Kraeft, W.-D.; Schwarz, V.; Toleikis, S.; Tschentscher, Th.; Redmer, R.

    2009-09-01

    Collective X-ray Thomson scattering has become a versatile tool for the diagnostics of dense plasmas. Assuming homogeneous density and temperature throughout the target sample, these parameters can be determined directly from the plasmon dispersion and the ratio of plasmon amplitudes via detailed balance. In inhomogeneous media, the scattering signal is an average of the density and temperature dependent scattering cross-section weighted with the density and temperature profiles. We analyse Thomson scattering spectra in the XUV range from near solid density hydrogen targets generated by free electron laser radiation. The influence of plasma inhomogeneities on the scattering spectrum is investigated by comparing density and temperature averaged scattering signals to calculations assuming homogeneous targets. We find discrepancies larger than 10% between the mean electron density and the effective density as well as between the mean temperature and the effective temperature.

  10. Design and implementation of a Thomson scattering diagnostic for the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, P. J.; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Goforth, M. M.; Loch, S. D.; Pearce, A. J.; Cianciosa, M. R.

    2014-10-01

    A Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The initial system takes a single point measurement and will be used to assess options for an upgrade to a multi-point system providing electron temperature and density profiles. This single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both ohmically driven, current-carrying plasmas and future gyrotron-heated stellarator plasmas. A principle design goal is to minimize stray laser light, geometrically on the machine side and spectrally on the collection side, to allow measurements of both full and half Thomson scattered spectral profiles. The beam, generated by a frequency doubled Continuum 2 J Nd:YaG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize stray light. Light collection, spectral processing, and signal detection are accomplished with an f / # ~ 1 aspheric lens, a Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. The estimated number of scattered photons per channel will be of the order of 5 ×103 with a signal to noise ratio of S / N = 19 This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  11. Temporal laser-pulse-shape effects in nonlinear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Kharin, V. Yu.; Seipt, D.; Rykovanov, S. G.

    2016-06-01

    The influence of the laser-pulse temporal shape on the nonlinear Thomson scattering on-axis photon spectrum is analyzed in detail. Using the classical description, analytical expressions for the temporal and spectral structure of the scattered radiation are obtained for the case of symmetric laser-pulse shapes. The possibility of reconstructing the incident laser pulse from the scattered spectrum averaged over interference fringes in the case of high peak intensity and symmetric laser-pulse shape is discussed.

  12. Thomson scattering as a method for laser plasma diagnostics

    SciTech Connect

    Alayi, Y.

    1983-12-01

    The Thomson scattering has been used to determine the density and temperature of an inhomogeneous nonstationary plasma. A common method to calibrate the Thomson scattering device consists in replacing the plasma by a gas and measuring the Rayleigh scattering cross section. The angular distribution of the scattered light in Argon is measured, the incident light is a ruby laser with ..delta..t = 30ns and lambda = 6943nm and vertically polarized. We have found that angular distribution is strongly favored in the forward direction (30/sup 0/, 45/sup 0/, 60/sup 0/) and defavored for backward direction (90/sup 0/, 120/sup 0/, 135/sup 0/, 150/sup 0/) in agreement with the results of George, et al, but in disagreement with the Rayleigh theory which assumes a uniform distribution. Our results may be related to the form of the scattered light spectrum which undergoes a dramatic change through the kinetic-hydrodynamic transition. The general form of the spectrum is determined by the parameter y = 1/Kl (where K = 4..pi.. sin (theta/2)/lambda, theta is the scattering angle and l is the free path path), which increases in the direction of the hydrodynamic regime (small angles). By analogy, the Thomson scattering presents the same aspects with ..cap alpha.. = 1/Klambda /SUB D/ (where lambda /SUB D/ is the Debye length). The deviation from the uniform distribution provides the possibility to determine the plasma turbulence spectrum from the scattered light.

  13. Examinations of electron temperature calculation methods in Thomson scattering diagnostics

    SciTech Connect

    Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin

    2012-10-15

    Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. {chi}-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the {chi}-square test are examined and scale factor test is proposed as an alternative method.

  14. Note: Statistical errors estimation for Thomson scattering diagnostics

    SciTech Connect

    Maslov, M.; Beurskens, M. N. A.; Flanagan, J.; Kempenaars, M.; Collaboration: JET-EFDA Contributors

    2012-09-15

    A practical way of estimating statistical errors of a Thomson scattering diagnostic measuring plasma electron temperature and density is described. Analytically derived expressions are successfully tested with Monte Carlo simulations and implemented in an automatic data processing code of the JET LIDAR diagnostic.

  15. Thomson scattering from a three-component plasma.

    PubMed

    Johnson, W R; Nilsen, J

    2014-02-01

    A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)]. PMID:25353586

  16. Thomson scattering on a 20-psec time scale.

    PubMed

    Baldis, H A; Walsh, C J; Benesch, R

    1982-01-15

    A technique for high resolution Thomson scattering is discussed. By coupling a spectrograph to a streak camera with high sensitivity detectors, time and spectrally resolved scattered signals are obtained. Time resolutions down to 20 psec have been achieved, with the primary limitation on this figure coming from temporal dispersion in the spectrograph. The results of some laser plasma interaction experiments designed to study plasma instabilities are presented. PMID:20372444

  17. Imaging interferometers for analysis of Thomson scattered spectraa)

    NASA Astrophysics Data System (ADS)

    Howard, J.; Hatae, T.

    2008-10-01

    Polarization interferometers have some potential efficiency advantages for imaging Thomson scattering spectral analysis. In this article we present a number of designs for high-efficiency imaging polarization interferometers for Thomson scattering spectral analysis. The use of high-efficiency crystal polarizing beamsplitters (both displacement and angle) results in low-loss complementary passbands (no edge losses), simple imaging systems, and wide field of view. The efficiency and relative merits of both multiple-filter and dispersive-type configurations are being assessed before installation on the JT-60U ruby-laser Thomson scattering system. Light is transferred from the viewing port via a linear array of optical fiber bundles which will be imaged through the interferometer onto the photocathode of an intensified charge coupled device camera. Because of the broadband nature of the Thomson light, the optical delays required to Fourier analyze the spectrum are quite small. This leads to compact multicolor or dispersive systems based on combinations of Wollaston and Savart splitters and traditional waveplates.

  18. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  19. Calculation of Thomson scattering spectral fits for interpenetrating flows

    SciTech Connect

    Swadling, G. F. Lebedev, S. V. Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F.; Harvey-Thompson, A. J.; Rozmus, W.; Hall, G. N.; Yuan, J.

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  20. LIDAR Thomson scattering for ITER core plasma revisited

    NASA Astrophysics Data System (ADS)

    Gowers, C.; Nielsen, P.; Salzmann, H.

    2016-02-01

    The authors have become aware that the development of the hitherto planned time-of-flight Thomson scattering system for the ITER core plasma is not proceeding and that conventional Thomson scattering set-ups are being discussed as an alternative. In this paper, we want to point out the advantages of LIDAR and show how criticized details of the original design can be improved. We present a design of the front optics, which in neutronics terms closely resembles a layout already previously accepted. The presented design does not require Raman scattering calibration for the density measurement. Comparison with the JET Core LIDAR system and simulations at higher temperatures both show that with the new design the specified accuracy can be met with a 1-2 J laser. Current laser and detector technology is reviewed. A strategy for how to proceed is presented.

  1. Thomson scattering diagnostic for the measurement of ion species fraction

    SciTech Connect

    Ross, J S; Park, H S; Amendt, A; Divol, L; Kugland, N L; Rozmus, W; Glenzer, S H

    2012-05-01

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.

  2. Thomson scattering diagnostic for the measurement of ion species fraction

    SciTech Connect

    Ross, J. S.; Park, H.-S.; Amendt, P.; Divol, L.; Kugland, N. L.; Glenzer, S. H.; Rozmus, W.

    2012-10-15

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.

  3. A Pulse-Burst Laser System for Thomson Scattering

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Yang, Y. M.; Ambuel, J. R.; Holly, D. J.; Mattison, H. E.; Robl, P. E.

    2008-11-01

    A ``pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the MST reversed-field pinch. This laser will produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition rates 5--250 kHz. The laser will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.1--20 ms) of the flashlamps is accomplished by IGBT switching of large electrolytic capacitor banks. In the near term, these flashlamp power supplies will be adapted to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on the MST RFP. This will enable these lasers to produce a burst of up to 40 pulses at repetition frequencies <= 1 kHz. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot.

  4. Collective Thomson scattering measurements with high frequency resolution at TEXTORa)

    NASA Astrophysics Data System (ADS)

    Stejner, M.; Nielsen, S. K.; Korsholm, S. B.; Salewski, M.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Bürger, A.; Kantor, M.; de Baar, M.

    2010-10-01

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general and is a prerequisite for measurements of ion Bernstein wave signatures in CTS spectra. The first results from the new acquisition system are shown to be consistent with theory and with simultaneous measurements by the standard receiver system.

  5. Electron-exchange and quantum screening effects on the Thomson scattering process in quantum Fermi plasmas

    SciTech Connect

    Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590

    2013-06-15

    The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with an increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.

  6. Design and development of the large helical device TV Thomson scattering

    SciTech Connect

    Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.

    2004-10-01

    We have developed a television (TV) Thomson scattering and installed it on the large helical device (LHD). The LHD TV Thomson scattering consists of a yttrium-aluminum-garnet (YAG) laser, beam transport system, scattered light collection optics, spectrometer, intensified charge coupled device camera, and data acquisition system. The spatial and temporal resolutions are about 7 mm and a few seconds, respectively. The temporal resolution of the LHD TV Thomson scattering is not good, but will be enough for long-time, steady-state discharge experiments in LHD. In the initial experiments, we measured electron temperature profiles of LHD plasmas at five spatial points. It has been found that the electron temperatures measured by the LHD TV Thomson scattering reasonably agree with those obtained by the LHD YAG Thomson scattering. We will report the details of the LHD TV Thomson scattering system with some experimental data.

  7. APD detector electronics for the NSTX Thomson scattering system

    SciTech Connect

    D.W. Johnson; B.P. LeBlanc; D.L. Long; G. Renda

    2000-08-07

    An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of {approximately}25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration.

  8. Design of the polarization multi-pass Thomson scattering system

    SciTech Connect

    Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H.; Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Minami, T.

    2012-10-15

    A novel configuration of the multi-pass Thomson scattering (TS) system is proposed to improve the time resolution and accuracy of electron temperature measurements by use of a polarization control technique. This configuration can realize a perfect coaxial multi-passing at each pass, and the number of round trips is not limited by the optical configuration. To confirm the feasibility of the new method, we installed this system in the GAMMA 10 plasma system. As a result, the integrated scattering signal of the double-pass configuration is about two times larger than that of the single-pass configuration. These results are in good agreement with the design.

  9. Collective Thomson scattering for studying plasma instabilities in electric thrusters

    NASA Astrophysics Data System (ADS)

    Tsikata, S.; Honoré, C.; Grésillon, D.

    2013-10-01

    Collective (or coherent) Thomson scattering has recently emerged as an important tool for identifying and characterizing certain instabilities in Hall thrusters. Plasma instabilities in electric thrusters are implicated in diverse phenomena, including reduced efficiency, lifetime and anomalous particle transport. This work discusses the main features of the collective scattering diagnostic PRAXIS, and recent applications of the diagnostic to study the nature of microturbulence at different thruster operating regimes. Early measurements show the presence of a small-scale azimuthal instability may be linked with regimes of unstable thruster operation.

  10. Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD

    SciTech Connect

    Giudicotti, L.

    2014-11-15

    In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature T{sub e}, the electron density n{sub e} and the relative calibration coefficients of spectral channels sensitivity C{sub i} were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual‑angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible.

  11. Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD.

    PubMed

    Giudicotti, L; Pasqualotto, R; Fassina, A

    2014-11-01

    In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature Te, the electron density ne and the relative calibration coefficients of spectral channels sensitivity Ci were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual‑angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible. PMID:25430236

  12. Dual-angle, self-calibrating Thomson scattering measurements in RFX-MOD

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.; Fassina, A.

    2014-11-01

    In the multipoint Thomson scattering (TS) system of the RFX-MOD experiment the signals from a few spatial positions can be observed simultaneously under two different scattering angles. In addition the detection system uses optical multiplexing by signal delays in fiber optic cables of different length so that the two sets of TS signals can be observed by the same polychromator. Owing to the dependence of the TS spectrum on the scattering angle, it was then possible to implement self-calibrating TS measurements in which the electron temperature Te, the electron density ne and the relative calibration coefficients of spectral channels sensitivity Ci were simultaneously determined by a suitable analysis of the two sets of TS data collected at the two angles. The analysis has shown that, in spite of the small difference in the spectra obtained at the two angles, reliable values of the relative calibration coefficients can be determined by the analysis of good S/N dual-angle spectra recorded in a few tens of plasma shots. This analysis suggests that in RFX-MOD the calibration of the entire set of TS polychromators by means of the similar, dual-laser (Nd:YAG/Nd:YLF) TS technique, should be feasible.

  13. Thomson scattering diagnostic for the Microwave Tokamak Experiment

    SciTech Connect

    Foote, J.H.; Barter, J.D.; Sewall, N.R.; Jolly, J.J.; Schlander, L.F.

    1990-05-04

    The Thomson-scattering diagnostic system (TSS) on the Microwave Tokamak Experiment (MTX) at LLNL routinely monitors electron temperature (T{sub e}) and density. Typical measured values at the plasma center under clean conditions are 900 {plus minus} 70 eV and 1 to 2 {times} 10{sup 14} ({plus minus}30%) cm{sup {minus}3}. The TSS apparatus is compact, with all elements mounted on one sturdy, two-level optics table. Because of this, we maintain with minimum effort the alignment of both the ruby-laser input optics and the scattered-light collecting optics. Undesired background signals, e.g., plasma light as well as ruby-laser light scattered off obstacles and walls, are generally small compared with the Thomson-scattered signals we normally detect. In the MTX T{sub e} region, the TSS data are definitely fitted better when relativistic effects are included in the equations. Besides determining the temperature of the Maxwellian electron distribution, the system is designed to detect electron heating from GW-level free-electron laser (FEL) pulses by measuring large wavelength shifts of the scattered laser photons. TSS data suggest that we may indeed by able to detect these electrons, which can have energies up to 10 keV, according to computer simulation. 7 refs., 4 figs.

  14. RELATIVISTIC THOMSON SCATTERING EXPERIMENT AT BNL - STATUS REPORT.

    SciTech Connect

    POGORELSKY,I.V.; BEN ZVI,I.; KUSCHE,K.; SIDDONS,P.; YAKIMENKO,V.; HIROSE,T.; KUMITA,T.; KAMIYA,Y.; ET AL

    2001-12-03

    1.7 x 10{sup 8} x-ray photons per 3.5 ps pulse have been produced in Thomson scattering by focusing CO{sub 2} laser pulse on counter-propagating relativistic electron beam. We explore a possibility of further enhancement of process efficiency by propagating both beams in a plasma capillary. Conventional synchrotron light sources based on using giga-electron-volt electron synchrotron accelerators and magnetic wigglers generate x-ray radiation for versatile application in multi-disciplinary research. An intense laser beam causes relativistic electron oscillations similar to a wiggler. However, because the laser wavelength is thousand times shorter than a wiggler period, very moderate electron energy is needed to produce hard x-rays via Thomson scattering. This allows using relatively compact mega-electron-volt linear accelerators instead of giga-electron-volt synchrotrons. Another important advantage of Thomson sources is a possibility to generate femtosecond x-ray pulses whereas conventional synchrotron sources have typically {approx}300 ps pulse duration. This promises to revolutionize x-ray research in chemistry, physics, and biology expanding it to ultra-fast processes. Thomson sources do not compete in repetition rate and average intensity with conventional light sources that operate at the megahertz frequency. However, Thomson sources have a potential to produce much higher photon numbers per pulse. This may allow developing a single shot exposure important for structural analysis of live biological objects. The BNL Thomson source is a user's experiment conducted at the Accelerator Test Facility since 1998 by an international collaboration in High Energy Physics. Since inception, the ATF source produces the record peak x-ray yield, intensity and brightness among other similar proof-of-principle demonstrations attempted elsewhere. Note that this result is achieved with a moderate laser power of 15 GW. A key to this achievement is in choosing right apparatus and

  15. Electron Temperature Measurements on BCTX using Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Morse, E.; Coomer, E.

    1997-11-01

    The Berkeley Compact Toroid Experiment (BCTX) is a spheromak configuration with a 70 cm diameter flux conserver. Studies have been undertaken to determine the core energy transport in the spheromak by investigation of the scaling of the core electron temperature (as measured by single point Thomson scattering) with various parameters. Elevated temperatures have been observed with lower core electron densities, as observed by the Thomson system. Careful studies of the magnetic decay have been undertaken using ten edge magnetic field B -dot coils. Density control has been achieved using a Penning discharge mode for the initial gas breakdown in the Marshall gun. A 20 MW lower hybrid heating pulse ( 430 MHz ) was used to study tranisent heating effects on the core plasma. Methods of controlling breakdown at the antenna will be presented, along with data for RF-heated plasma experiments. Comparison with recent theoretical work on spheromak energy transport by T. K. Fowler will be presented.

  16. Edge profile measurements using Thomson scattering on the KSTAR tokamak.

    PubMed

    Lee, J H; Oh, S; Lee, W R; Ko, W H; Kim, K P; Lee, K D; Jeon, Y M; Yoon, S W; Cho, K W; Narihara, K; Yamada, I; Yasuhara, R; Hatae, T; Yatsuka, E; Ono, T; Hong, J H

    2014-11-01

    In the KSTAR Tokamak, a "Tangential Thomson Scattering" (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10-15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper. PMID:25430170

  17. A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA

    SciTech Connect

    Katz, J.; Boni, R.; Sorce, C.; Follett, R.; Shoup, M. J. III; Froula, D. H.

    2012-10-15

    A reflective optical transport system has been designed for the OMEGA Thomson-scattering diagnostic. A Schwarzschild objective that uses two concentric spherical mirrors coupled to a Pfund objective provides diffraction-limited imaging across all reflected wavelengths. This enables the operator to perform Thomson-scattering measurements of ultraviolet (0.263 {mu}m) light scattered from electron plasma waves.

  18. Exact relativistic expressions for polarization of incoherent Thomson scattering

    NASA Astrophysics Data System (ADS)

    Mirnov, V. V.; Den Hartog, D. J.; Parke, E.

    2016-05-01

    We present a derivation of the degree of polarization for incoherent Thomson scattering (TS) using Mueller matrix formalism. An exact analytic solution is obtained for spectrum-integrated matrix elements. The solution is valid for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. It is based on a newly developed theoretical model, a finite transit time (FTT) correction to previous theoretical work on TS polarization. The Mueller matrix elements are substantially different from previous calculations without the FTT correction, even to the lowest linear order in Te/mec2≪1 . Mathematically, the derivation is a unique example of fully analytical integration of the 3D scattering operator over a relativistic Maxwellian distribution function; experimentally, the results have application to the use of the polarization properties of Thomson scattered light as a method of electron temperature measurement. The results can also be used as a reliable tool for benchmarking and verification of numerical codes for frequency resolved properties of TS polarization.

  19. Cavity Enhanced Thomson Scattering for Low Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Yalin, Azer; Friss, Adam; Lee, Brian; Franka, Isaiah

    2013-09-01

    This contribution describes the design, simulation, and initial experimental development of a novel laser Thomson scattering (LTS) system for measurement of weakly-ionized low temperature plasmas. The LTS approach uses a high power intra-cavity beam of power ~10-100 kW to provide increased scattered photon counts and sensitivity as compared to conventional LTS experiments that use light sources with orders of magnitude lower average power. The high power intra-cavity beam is generated by locking a narrow linewidth source laser to a high-finesse optical cavity via Pound-Drever-Hall locking. The plasma (to be studied) is housed with the high-finesse optical cavity. The high-power source is combined with a detection system comprised of a high-suppression triple monochromator and a low-noise photomultiplier tube used in photon counting mode. We present simulations of signal strengths and scattering spectra including elastic scatter background, detector dark counts, and random (counting) noise contributions. Expected experimental performance is assessed from fits to the simulated data. The number density and electron temperature of a 1010 cm-3 plasma should be accurately measurable with standard deviation of <5% in a measurement time of 5 minutes per wavelength channel. We also present experimental development including characterization of laser locking, and initial Rayleigh and Raman signals which will be used to calibrate the Thomson system.

  20. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  1. Polychromator for the edge Thomson scattering system in ITERa)

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Fujie, D.; Kurokawa, A.; Kusama, Y.

    2012-10-01

    A new type polychromator has been designed for the edge Thomson scattering system in ITER. Signal light is parallelly dispersed into two parts at the first interference filter. Spectral transmissivities for some spectral channels may enhance better than the conventional type polychromator. In the new type polychromator, the misalignment due to the machine accuracy is expected to be within the margin of APD area. In order to calibrate the spectral transmissivity using the dual-laser injection method during the plasma discharge, it is preferred that the spectral channels are separated at the geometric mean of the injected two wavelengths.

  2. Laser beam combiner for Thomson scattering core LIDARa)

    NASA Astrophysics Data System (ADS)

    Balboa, I.; Huang, B.; Naylor, G.; Walsh, M.; Sirinelli, A.; Parsons, P.; Fessey, J.; Townsend, M.; Beurskens, M.; Conway, N.; Flanagan, J.; Kempenaars, M.; Kirk, A.

    2010-10-01

    The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate. This paper presents a scanning mirror as a laser beam combiner. Measurements of the position accuracy and jitter show that the pointing stability of the laser beam is within ±25 μrad for over tens of seconds. A control feedback loop is implemented to demonstrate the long term stability. Such a system could be applied for ITER and JET.

  3. Laser beam combiner for Thomson scattering core LIDAR.

    PubMed

    Balboa, I; Huang, B; Naylor, G; Walsh, M; Sirinelli, A; Parsons, P; Fessey, J; Townsend, M; Beurskens, M; Conway, N; Flanagan, J; Kempenaars, M; Kirk, A

    2010-10-01

    The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate. This paper presents a scanning mirror as a laser beam combiner. Measurements of the position accuracy and jitter show that the pointing stability of the laser beam is within ±25 μrad for over tens of seconds. A control feedback loop is implemented to demonstrate the long term stability. Such a system could be applied for ITER and JET. PMID:21033888

  4. Thomson scattering in magnetic fields. [of white dwarf stars

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara

    1989-01-01

    The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.

  5. Laser beam combiner for Thomson scattering core LIDAR

    SciTech Connect

    Balboa, I.; Naylor, G.; Sirinelli, A.; Parsons, P.; Fessey, J.; Townsend, M.; Beurskens, M.; Conway, N.; Kempenaars, M.; Kirk, A.; Walsh, M. [Diagnostics Division, Department of CHD, ITER Organization, CS 90 046, Bulding 155 Flanagan, J.

    2010-10-15

    The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate. This paper presents a scanning mirror as a laser beam combiner. Measurements of the position accuracy and jitter show that the pointing stability of the laser beam is within {+-}25 {mu}rad for over tens of seconds. A control feedback loop is implemented to demonstrate the long term stability. Such a system could be applied for ITER and JET.

  6. Imaging Thomson scattering measurements of radiatively heated Xe

    SciTech Connect

    Pollock, B; Meinecke, J; Kuschel, S; Ross, J S; Divol, L; Glenzer, S H; Tynan, G R

    2012-05-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {micro}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {micro}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {micro}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {micro}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20 {+-} 4 at up to 200 eV electron temperatures.

  7. On the calibration of polarimetric Thomson scattering by Raman polarimetry

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.

    2015-12-01

    Polarimetric Thomson scattering (TS) is an alternative method for the analysis of Thomson scattering spectra in which the plasma temperature T e is determined from the depolarization of the TS radiation. This is a relativistic effect and therefore the technique is suitable only for very hot plasmas (T e  >  10 keV) such as those of ITER. The practical implementation of polarimetric TS requires a method to calibrate the polarimetric response of the collection optics carrying the TS light to the detection system, and in particular to measure the additional depolarization of the TS radiation introduced by the plasma-exposed first mirror. Rotational Raman scattering of laser light from diatomic gases such as H2, D2, N2 and O2 can provide a radiation source of predictable intensity and polarization state from a well-defined volume inside the vacuum vessel and is therefore suitable for these calibrations. In this paper we discuss Raman polarimetry as a technique for the calibration of a hypothetical polarimetric TS system operating in the same conditions of the ITER core TS system and suggest two calibration methods for the measurement of the additional depolarization introduced by the plasma-exposed first mirror, and in general for calibrating the polarimetric response of the detection system.

  8. Thomson scattering measurements in the RFX reversed field pinch

    SciTech Connect

    Bassan, M.; Bilato, R.; Giudicotti, L.; Pasqualotto, R.; Sardella, A.

    1997-01-01

    The first systematic measurements of the electron temperature (T{sub e}) spatial profile have been obtained in the reversed field pinch experiment RFX with a single pulse Thomson scattering (TS) diagnostic. Scattered light from a ruby laser pulse (E{le}15 J, {Delta}t=30 ns) is collected through three objectives from 10 positions along a diameter in the plasma equatorial plane, with a spatial resolution of 2.5 cm. Plasma discharges with current in the range 700{endash}900 kA have been investigated finding evidence of a quite flat T{sub e} profile. Data dispersion significantly greater than experimental uncertainties provides an indication of remarkable plasma fluctuations. Results are in good agreement with T{sub e} measurements from other single chord spectroscopic diagnostics (SiLi detector and SXR double filter), showing a reliable operation down to an electron density n{sub e}=3{times}10{sup 19} m{sup {minus}3}. Integration of this apparatus with a ND:YLF laser system for multipulse Thomson scattering measurements, sharing the same input optics, is under way. {copyright} {ital 1997 American Institute of Physics.}

  9. Horizontal Thomson Scattering Systems for DIII-D and SSPX

    SciTech Connect

    Nilson, D.G.; Hill, D.N.; Wood, R.D.; McClean, H.; Moeller, J.M.; Labik, G.; Carlstron, T.N.; Bray, B.; Hsieh, C.L.

    1999-08-01

    DIII-D--Three of the seven existing core Thomson scattering laser beams were redirected to probe the previously unmeasured central region of the DIII-D plasma. Modifications to the existing collection optics system and support tower were made to inject the lasers and collect scattered light in this new extended region. Stray light levels were reduced to acceptable levels to permit Rayleigh scattering calibration on five of the six new channels, indicating that the new in-vessel dump operates well. Measurements of the plasma temperature and density from the plasma edge to the center are now possible. Peaked density profiles are now observed in this new measurement region. SSPX--We have completed the design and installation of a 10-spatial channel Thomson scattering system to measure the plasma temperature and density profile on SSPX. A single-pulsed YAG laser operating at 0.7 J and 8 ns is used to scatter photons into a 7-element collection optic that provides a spatial resolution of 1.5 cm at the outer plasma edge and 7.5 cm at the inner edge of a .5 m radius spheromak plasma. The collected light is then analyzed by a 4-channel interference filtered polychromator which has been optimized to measure temperatures between 2 eV and 2 keV and densities as low as 1 x 10{sup 12} cm{sup 3}. We use an in-vessel beam dump and a series of entrance and exit baffles to reduce the stray laser light and provide for an absolute density calibration by Rayleigh scattering in argon gas.

  10. Examination of scattering volume aligment in Thomson scattering off of a shock front in argon

    SciTech Connect

    Reighard, A B; Froula, D H; Drake, R P; Ross, J S; Divol, L

    2007-07-26

    Thomson scattering in argon gas successfully probed the region of plasma just behind the shock front. The instantaneous shock velocity can be inferred from the duration of the signal, taking into account the size and shape of the scattering volume. Possible misalignment of the probe beam and spectrometer slits greatly affects the size and shape of the scattering volume, and therefore affects the calculation of the instantaneous shock velocity.

  11. Pulse-Burst Laser Systems for Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Harris, W. S.; Reusch, J. A.; Yang, Y. M.

    2009-11-01

    A new purpose-built ``pulse-burst'' laser system is being constructed for the Thomson scattering diagnostic on the MST reversed-field pinch. This new laser will produce a burst of 1--2 J Q-switched pulses at repetition rates 5--250 kHz. It will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.15--20 ms) of the flashlamps in this laser will be accomplished by IGBT switching of large electrolytic capacitor banks. A subset of these power supplies has already been constructed and is currently being used to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on MST. Each of these upgraded lasers now produces a burst of up to fifteen 2 J Q-switched pulses (1064 nm) at repetition rates 1--12.5 kHz. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are currently being used to study the dynamic evolution of electron temperature in MST. The new purpose-built ``pulse-burst'' laser system will further expand this capability.

  12. Thomson scattering in a magnetic field. I - Field along z

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.

    1991-01-01

    The Monte Carlo method is used here to solve the radiative transfer equation for Thomson scattering in a constant magnetic field perpendicular to the atmosphere. Emergent radiation and polarization are presented for various atmospheric thicknesses. The circular polarization peaks at frequencies near the cyclotron, omega(c), and for propagation direction along the field. At low field strengths, the circular polarization is roughly proportional to omega(c)/omega; the linear polarization is proportional to the square of omega(c)/omega and the amount of circular polarization present at each scatter and is therefore much smaller than the circular polarization. The linear polarization is large for propagation direction perpendicular to the magnetic field and at frequencies near the cyclotron and in the strong-field limit. The position angle of the linear polarization undergoes a rotation of 90 deg at a value of omega(c)/omega near the square root of three.

  13. Subterahertz gyrotron developments for collective Thomson scattering in LHD.

    PubMed

    Notake, T; Saito, T; Tatematsu, Y; Kubo, S; Shimozuma, T; Tanaka, K; Nishiura, M; Fujii, A; Agusu, La; Ogawa, I; Idehara, T

    2008-10-01

    Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted. PMID:19044548

  14. Subterahertz gyrotron developments for collective Thomson scattering in LHD

    SciTech Connect

    Notake, T.; Saito, T.; Tatematsu, Y.; Fujii, A.; Agusu, La; Ogawa, I.; Idehara, T.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2008-10-15

    Collective Thomson scattering (CTS) is expected to provide the spatially resolved velocity distribution functions of not only thermal and tail ions but also alpha particles resulting from fusion reactions. CTS using gyrotrons with frequency higher than the conventional ones used for plasma heating would have advantages to alleviate refraction, cutoff effects, and background electron cyclotron emission noise. Therefore, a high-power pulse gyrotron operating at approximately 400 GHz is being developed for CTS in Large Helical Device (LHD). A single-mode oscillation with a frequency greater than 400 GHz, applying the second-harmonic resonance, was successfully demonstrated in the first stage. At the same time, concrete feasibility study based on ray tracing, scattering spectra, and electron cyclotron emission calculations has been conducted.

  15. Development of a nine spatial point, multipulse Thomson scattering diagnostic.

    PubMed

    Glass, F; Deng, B H; Garate, E; Gornostaeva, O; Schroeder, J

    2010-10-01

    A Thomson scattering diagnostic has been developed for the C-2 field-reversed configuration device. Based on a multipulse ruby laser, the system measures the electron temperature at nine spatial points. These points are chosen from 22 selectable positions covering r≈1-41 cm. Twin collection lenses couple the scattered photons to nine optical fiber pairs. Extra fiber lengths delay the signals from different spatial points relative to each other, allowing up to three points to be analyzed by a single polychromator. The polychromator, using compact photomultipliers as detectors, has six spectral channels covering the range of 685-725 nm and is able to estimate electron temperatures of ≈10-200 eV. The photomultiplier output signals are recorded by digital storage oscilloscopes integrated with the main MDSplus database, with temperature and error estimates generated automatically at the conclusion of each plasma discharge. PMID:21033861

  16. Conceptual design of a polarimetric Thomson scattering diagnostic in ITER

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Bassan, M.; Orsitto, F. P.; Pasqualotto, R.; Kempenaars, M.; Flanagan, J.

    2016-01-01

    Polarimetric Thomson scattering (TS) is a novel diagnostic technique proposed as an alternative to conventional (spectral) TS, for the measurement of the electron temperature Te and density ne in very hot fusion plasmas. Contrary to spectral TS, which is based on the reconstruction of the Doppler broadened frequency spectrum, in polarimetric TS Te is determined from the depolarization of the scattered radiation. The technique is suitable for ITER, where it is expected to be competitive with conventional spectral TS for measurements in the highest Te range, specially in backward-like conditions with the scattering angle 90° ll θ <= 180°. In this paper we consider a hypothetical polarimetric TS diagnostic for ITER and evaluate its performance for the θ = 145° scattering condition typical of the core TS system and also for a different scattering geometry in which, using a tangential laser beam, the central region of the ITER plasma can be observed under a scattering angle θ ~ 75°. In both cases we calculate the expected errors on the measured Te and ne that can be obtained with a simple, two-channel polarimeter, and taking into account that only a fraction of the TS wavelength spectrum is detected. In both cases the expected performances are compared with those of the conventional spectral core TS diagnostic to determine the plasma conditions in which the polarimetric technique is more advantageous. A measurement of the depolarization effect of the TS radiation using the JET High Resolution TS system of JET is also discussed.

  17. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    SciTech Connect

    T. Strickler, R. Majeski, R. Kaita, B. LeBlanc

    2008-07-31

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ~ 3.4kG, IP ~ 400kA, and pulse length ~ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited "line of sight" access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  18. Nonlinear Thomson scattering of an ultrashort laser pulse

    SciTech Connect

    Golovinski, P. A. Mikhin, E. A.

    2011-10-15

    The nonlinear scattering of an ultrashort laser pulse by free electrons is considered. The pulse is described in the 'Mexican hat' wavelet basis. The equation of motion for a charged particle in the field of a plane electromagnetic wave has an exact solution allowing, together with the instant spectrum approximation, the calculation of the intensity of nonlinear Thomson scattering for a high-intensity laser pulse. The spectral distribution of scattered radiation for the entire pulse duration is found by integrating with respect to time. The maximum of the emission spectrum of a free electron calculated in 10{sup 19}-10{sup 21} W/cm{sup 2} fields lies in the UV spectral region between 3 and 12 eV. A part of the continuous spectrum achieves high photon energies. One percent of the scattered energy for the field intensity 10{sup 20} W/cm{sup 2} is concentrated in the range h{omega} > 2.7 Multiplication-Sign 10{sup 2} eV, for a field intensity of 10{sup 21} W/cm{sup 2} in the range h{Omega} > 7.9 Multiplication-Sign 10{sup 2} eV, and for an intensity of 10{sup 22} W/cm{sup 2} in the range h{Omega} > 2.45 Multiplication-Sign 10{sup 5} eV. These results allow us to estimate nonlinear scattering as a source of hard X-rays.

  19. The Thomson scattering systems of the ASDEX upgrade tokamak

    SciTech Connect

    Murmann, H.; Goetsch, S.; Roehr, H.; Salzmann, H.; Steuer, K.H. )

    1992-10-01

    The Thomson scattering system of the ASDEX upgrade (AUG) tokamak is described. One of the main objectives of AUG is to investigate plasma wall interaction in reactor relevant discharges with a magnetic divertor. The very successful Nd:YAG scattering system developed for its predecessor ASDEX, has been upgraded to give higher spatial and temporal resolution, reliability, and flexibility to different discharge conditions. The system consists of two independently operating devices, each using a cluster of six lasers: One measures the electron temperature and density along three possible vertical chords alternatively through the magnetic axis, or the inner or outer boundary layer; a second chord in the equatorial plane will always cover the magnetic center even in the case of considerable Shafranov shifts. An additional compact spectrometer has been designed for measurements with high radial resolution in the equatorial plane across the separatrix. A third system, using the laser beams for the vertical arrangement once again, has been designed for profile measurements in the energy deposition zone 2 cm above the outer divertor plate. Each laser is run at a repetition rate of 20 Hz and 1 J per pulse. A variety of synchronization modes are available, e.g., 20 Hz/6 J, 120 Hz/1 J etc., or repetitive bursts at 20 Hz. In this case the minimum delay between two pulses is presently limited to {approx}30 {mu}s by the existing data acquisition. This mode will be used for investigating fast phenomena such as sawteeth or disruptive instabilities. During the time intervals between the laser pulses the bremsstrahlung radiation (line integral) will be measured by the Thomson scattering detection system to calculate {ital Z}{sub eff}.

  20. High resolution Thomson scattering for Joint European Torus (JET)

    SciTech Connect

    Pasqualotto, R.; Nielsen, P.; Gowers, C.; Beurskens, M.; Kempenaars, M.; Carlstrom, T.; Johnson, D.

    2004-10-01

    A Thomson scattering system is being developed for Joint European Torus with 15 mm spatial resolution and a foreseen accuracy for temperature better than 15% at a density of 10{sup 19} m{sup -3}. This resolution is required at the internal transport barrier and edge pedestal and it can not be fully achieved with the present light detection and ranging systems. The laser for this system is Nd:YAG, 5 Joule, 20 Hz. Scattering volumes from R=2.9 m to R=3.9 m are imaged onto 1 mm diameter fibers, with F/25 collection aperture. Two fibers are used per scattering volume. Using optical delay lines, three scattering volumes are combined in each of the 21 filter polychromators. The signals are recorded with transient digitizers, which allow the combined time delayed signals to be resolved. Knowledge of the time delay between signals allows the use of correlation techniques in determining signal levels. The ac output of the amplifier is used, which tolerates a higher level of background signal without affecting dynamic range. The noise resulting from plasma light is determined directly.

  1. Design of multipulse Thomson scattering diagnostic for SST-1 tokamak

    NASA Astrophysics Data System (ADS)

    Kumar, Ajai; Chavda, Chhaya; Saxena, Y. C.; Singh, Ranjeet; Thakar, Aruna; Thomas, Jinto; Patel, Kiran; Pandya, Kaushal; Bedakihale, Vijay

    2007-04-01

    A multipulse Nd:YAG (Yttrium aluminum garnet) Thomson scattering (TS) system is designed and developed for measuring electron temperature (Te) and density (ne) profiles of SST-1 tokamak. The system operates at vertical, divertor, and horizontal (midplane) regions of plasma and measures the electron temperature of 20eVto1.5keV and density of 1018-1019m-3. Six Nd:YAG lasers synchronized with external control is used to get three different temporal resolutions (30Hz, 180Hz, and 1kHz). The entire system is laboratory tested for the stability of alignment and performance over a distance of 30m. Different imaging lens assemblies are designed to image the scattered photons from each of the scattering region to an array of optical fibers. A low cost and compact five-channel interference filter polychromator is designed, fabricated, and tested for its image quality and the filter transmission characteristics. Detection system with an avalanche photodiode and required signal conditioning electronics is developed for detecting the scattered photons. A data acquisition and control module operating on PXI bus is developed for the real time data acquisition and system control. A detailed description of design and testing of TS subsystems is presented in this article.

  2. Progress of microwave collective Thomson scattering in LHD

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Nishiura, M.; Kubo, S.; Shimozuma, T.; Saito, T.

    2015-12-01

    Microwave collective Thomson scattering (CTS) by using a 77 GHz gyrotron is routinely working in LHD and the improvements of the system is now underway. The targets of this diagnostic are measurements of energetic fast ion distribution and ion ratio. In the present system, 800kW 77 GHz gyrotron is injected horizontally and scattered radiation is received changing scattering angle. The system works with existence of electron cyclotron resonance layer. Thus, most of the power is absorbed at the layer like beam damping and stray radiation dramatically decreases. Gyrotron is modulated at 40 Hz, then, background ECE, which is signal in gyrotron off phase, is subtracted from scattered signal in gyrotron on phase. The perturbation of electron temperature due to the gyrotron injection is almost negligible. Temporal evolution of CTS spectrum is obtained by 32ch filter bank receiver through discharge and fine spectrum is obtained by 10 GHz sampling fast digitizer for 80 ms. Change of the width and asymmetry of CTS spectrum is observed after turning off of tangentially injected neutral beam (NB). This is qualitatively consistent with reduction of fast ion density. Preliminary data of ion ratio between hydrogen and helium are also obtained.

  3. Thomson scattering experiments on a 100 MHz inductively coupled plasma calibrated by Raman scattering

    SciTech Connect

    de Regt, J.M.; Engeln, R.A.H.; de Groote, F.P.J.; van der Mullen, J.A.M.; Schram, D.C.

    1995-05-01

    A new calibration method to obtain the electron density from Thomson scattering on an inductively coupled plasma is discussed. Raman scattering of nitrogen is used for recovering the Rayleigh scattering signal. This has the advantage that no corrections are necessary for stray light, like with other calibration methods, using the direct measured Rayleigh scattering signal on a well-known gas. It is shown that electron densities and electron temperatures can be measured with an accuracy of about 15% in density and of about 150 K in temperature. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. Thomson scattering diagnostic upgrade on DIII-D

    SciTech Connect

    Ponce-Marquez, D. M.; Bray, B. D.; Deterly, T. M.; Liu, C.; Eldon, D.

    2010-10-15

    The DIII-D Thomson scattering system has been upgraded. A new data acquisition hardware was installed, adding the capacity for additional spatial channels and longer acquisition times for temperature and density measurements. Detector modules were replaced with faster transimpedance circuitry, increasing the signal-to-noise ratio by a factor of 2. This allows for future expansion to the edge system. A second phase upgrade scheduled for 2010-2011 includes the installation of four 1 J/pulse Nd:YAG lasers at 50 Hz repetition rate. This paper presents the first completed phase of the upgrade and performance comparison between the original system and the upgraded system. The plan for the second phase is also presented.

  5. Collective Thomson scattering investigations of the Hall thruster plasma

    NASA Astrophysics Data System (ADS)

    Tsikata, Sedina; Honore, Cyrille; Gresillon, Dominique; Lemoine, Nicolas; Cavalier, Jordan

    2012-10-01

    Anomalous electron transport outside the Hall thruster channel is believed to be due to plasma turbulence. Recent experiments using a specially-designed collective Thomson scattering diagnostic on a 5kW thruster have permitted the identification of a wave believed to be involved in transport. The observed properties of the mode, which is naturally driven by the fast azimuthal electron drift, are in line with predictions from PIC simulations and linear kinetic theory analysis. Detailed characterizations of mode properties, including dispersion relation, directivity, spatial extent and fluctuation amplitude have been obtained. These studies are now extended to consider the universality of mode features in a 200W permanent magnet Hall thruster and links between thruster performance, operating r'egimes and the presence of such a mode.

  6. Calibration of a Thomson scattering diagnostic for fluctuation measurements

    SciTech Connect

    Stephens, H. D.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Holly, D. J.; O'Connell, R.; Reusch, J. A.

    2008-10-15

    Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for electron temperature fluctuation measurements. All calibrations have taken place focusing on accuracy, ease of use and repeatability, and in situ measurements wherever possible. Novel calibration processes have been made possible with an insertable integrating sphere (ISIS), using an avalanche photodiode (APD) as a reference detector and optical parametric oscillator (OPO). Discussed are a novel in situ spatial calibration with the use of the ISIS, the use of an APD as a reference detector to streamline the APD calibration process, a standard dc spectral calibration, and in situ pulsed spectral calibration made possible with a combination of an OPO as a light source, the ISIS, and an APD used as a reference detector. In addition a relative quantum efficiency curve for the APDs is obtained to aid in uncertainty analysis.

  7. Performance of JT-60SA divertor Thomson scattering diagnostics

    SciTech Connect

    Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato; Enokuchi, Akito

    2015-08-15

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views.

  8. Thomson scattering in high-intensity chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Holkundkar, Amol R.; Harvey, Chris; Marklund, Mattias

    2015-10-01

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  9. Thomson scattering in high-intensity chirped laser pulses

    SciTech Connect

    Holkundkar, Amol R.; Harvey, Chris Marklund, Mattias

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  10. Thomson scattering measurements from asymmetric interpenetrating plasma flows.

    PubMed

    Ross, J S; Moody, J D; Fiuza, F; Ryutov, D; Divol, L; Huntington, C M; Park, H-S

    2014-11-01

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined. PMID:25430359

  11. Performance of JT-60SA divertor Thomson scattering diagnostics.

    PubMed

    Kajita, Shin; Hatae, Takaki; Tojo, Hiroshi; Enokuchi, Akito; Hamano, Takashi; Shimizu, Katsuhiro; Kawashima, Hisato

    2015-08-01

    For the satellite tokamak JT-60 Super Advanced (JT-60SA), a divertor Thomson scattering measurement system is planning to be installed. In this study, we improved the design of the collection optics based on the previous one, in which it was found that the solid angle of the collection optics became very small, mainly because of poor accessibility to the measurement region. By improvement, the solid angle was increased by up to approximately five times. To accurately assess the measurement performance, background noise was assessed using the plasma parameters in two typical discharges in JT-60SA calculated from the SONIC code. Moreover, the influence of the reflection of bremsstrahlung radiation by the wall is simulated by using a ray tracing simulation. The errors in the temperature and the density are assessed based on the simulation results for three typical field of views. PMID:26329196

  12. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    SciTech Connect

    Ross, J. S. Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S.

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  13. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned. PMID:21033868

  14. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  15. Progress on Thomson scattering in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bongard, M. W.; Fonck, R. J.; Schoenbeck, N. L.; Winz, G. R.

    2013-11-01

    A novel Thomson scattering system has been implemented on the Pegasus Toroidal Experiment where typical densities of 1019 m-3 and electron temperatures of 10 to 500 eV are expected. The system leverages technological advances in high-energy pulsed lasers, volume phase holographic (VPH) diffraction gratings, and gated image intensified (ICCD) cameras to provide a relatively low-maintenance, economical, robust diagnostic system. Scattering is induced by a frequency-doubled, Q-switched Nd:YAG laser (2 J at 532 nm, 7 ns FWHM pulse) directed to the plasma over a 7.7 m long beam path, and focused to < 3 mm throughout the collection region. Inter-shot beam alignment is adjustable with less than a 0.01 mm spatial resolution in the collection region. A custom lens system collects scattered photons at radii 15 cm to 85 cm from the machine's center, at ~ F/6 with 14 mm radial resolution. The initial configuration provides scattering measurements at 12 spatial locations and 12 simultaneous background measurements at adjacent locations. If plasma background subtraction proves to be insignificant, these background channels will be used as viewing channels. Each spectrometer supports 8 spatial channels and can provide 8 or more spectral bins each. The spectrometers use high-efficiency VPH transmission gratings (eff. > 80%) and fast-gated ICCDs (gate > 2 ns, Gen III intensifier) with high-throughput (F/1.8), achromatic lensing. A stray light mitigation facility has been implemented, consisting of a multi-aperture optical baffle system and a simple beam dump. Successful stray light reduction has enabled detection of scattered signal, and Rayleigh scattering has been used to provide a relative calibration. Initial temperature measurements have been made and data analysis algorithms are under development.

  16. Comparative electron temperature measurements of Thomson scattering and electron cyclotron emission diagnostics in TCABR plasmas

    SciTech Connect

    Alonso, M. P.; Figueiredo, A. C. A.; Berni, L. A.; Machida, M.

    2010-10-15

    We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfven wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfven wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.

  17. Thomson scattering diagnostic for the TdeV tokamak

    NASA Astrophysics Data System (ADS)

    Côté, A.; Michaud, D.; Richard, N.; Neufeld, R.; Legros, C.

    1995-01-01

    The Thomson scattering diagnostic system on the TdeV tokamak (R/a=87/27 cm, BT=1.5 T, Ip<300 kA) routinely monitors electron temperature (Te) and density (ne). The scattered light from a vertically oriented Nd:YAG laser beam (E=0.8 J, f=50 Hz, Δt=30 ns) is analyzed by six polychromators looking at different vertical positions. Each polychromator splits the light into three spectral bands by means of bandpass interference filters. Avalanche photodiode detectors are used to measure the scattered radiation. These detectors also measure the plasma radiation (including bremsstrahlung) between laser pulses. Two polychromators are optimized for edge temperature measurements (50

  18. Study of the effects of photon statistics on Thomson scattering data

    SciTech Connect

    Hart, G.W.; Levinton, F.M.; McNeill, D.H.

    1985-12-01

    A computer code has been developed which simulates the counting statistics of a Thomson scattering measurement. The scattered and background signals in each of the wavelength channels are assumed to obey Poisson statistics, and the spectral data are fitted to a Gaussian curve using a nonlinear least-squares fitting algorithm. This method should be applicable to Thomson scattering measurements in which the signal-to-noise ratio is low due to low signal or high background. Thomson scattering data from the S-1 Spheromak have been compared to this simulation, and they have been found to be in good agreement. This code has proved to be useful assessing the effects of counting statistics relative to shot-to-shot variability in producing the observed spread in the data. It was also useful for designing improvements for the S-1 Thomson scattering system, and this method would be applicable to any measurements affected by counting statistics. 5 refs., 1 fig.

  19. Dual-laser calibration of Thomson scattering systems in ITER and RFX-mod

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.

    2014-04-01

    We first review the principles of the dual-laser calibration technique for measuring the relative sensitivities of the spectral channels in a Thomson scattering (TS) diagnostic system by detecting with the same spectrometer the spectra scattered by the same plasma volume from two laser pulses of different wavelengths. A new data analysis method is then introduced, based on the minimization of a single χ2 function, that provides a simpler and more convenient way to determine the measurement errors on the calibration coefficients. The new analysis method is used here to investigate the expected performances of this calibration technique in the core LIDAR TS system of ITER currently under design and in the conventional multipoint TS system of RFX-mod. By calculating the expected calibration errors for typical plasma scenarios we discuss the different possible choices of the calibration laser, the characteristics of the calibrating plasma and other system parameters with an impact on the application of the technique. For ITER core LIDAR TS, designed with Nd : YAG at 1064 nm as main laser, a ruby laser shows slightly better performances as a calibration laser compared with a second harmonic Nd : YAG and a calibration accuracy ˜1% can be achieved in a relatively small number of pairs of laser pulses. In RFX-mod the combination of a Nd : YAG and a Nd : YLF laser systems is the only viable choice, and we find that, in spite of the small difference between the two wavelengths (λ = 1064 nm and λ = 1053 nm, respectively), dual-laser calibration is still possible to the required accuracy with an affordable number of pairs of laser shots.

  20. Installation of a Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, P. J.; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Cianciosa, M. R.

    2015-11-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The initial system takes a single point measurement on the magnetic axis and will be used to assess options for an expansion to a multi-point system to enable better 3D equilibrium reconstructions using the V3FIT code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line is designed to propagate ~ 8 m to the mid-plane of the CTH device with the beam diameter < 3 mm inside the plasma volume. An Andor iStar DH740-18U-C3 image intensified CCD camera is used in conjunction with a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 532-580 nm. A single point system will initially measure plasmas with core electron temperatures of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  1. Single-pulse Multi-point Multi-component Interferometric Rayleigh Scattering Velocimeter

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.; Gaffney, Richard L., Jr.; Cutler, Andrew W.

    2006-01-01

    A simultaneous multi-point, multi-component velocimeter using interferometric detection of the Doppler shift of Rayleigh, Mie, and Rayleigh-Brillouin scattered light in supersonic flow is described. The system uses up to three sets of collection optics and one beam combiner for the reference laser light to form a single collimated beam. The planar Fabry-Perot interferometer used in the imaging mode for frequency detection preserves the spatial distribution of the signal reasonably well. Single-pulse multi-points measurements of up to two orthogonal and one non-orthogonal components of velocity in a Mach 2 free jet were performed to demonstrate the technique. The average velocity measurements show a close agreement with the CFD calculations using the VULCAN code.

  2. New Thomson scattering Laser Control for DIII-D

    SciTech Connect

    Makariou, C.C.; Stockdale, R.E.; Carlstrom, T.N.; Hsieh, C.L.; Bramson, G.

    1993-10-01

    A Laser Control system has been built for the DIII-D Scattering Diagnostic. This new system has provided the capability to place the laser probe pulses with one microsecond timing precision throughout the DIII-D shot. The new system fires the eight lasers with a programmable sequence which repeats ever 50 ms. If one wants to probe the plasma at a higher rate to study a fast paced event, the new control circuit can fire all charged lasers in rapid succession (BURST MODE). This burst rate is programmable. The new Laser Control system successfully replaced the previous control scheme which consisted of three VME Motorola 68030 computers (one host under UNIX VME V/68 and two interrupt driven targets under VME Exec. The old system was not successful due to the many VME interrupts needed to service the lasers. The new hardware approach is much more reliable. The old system still controls data acquisition and as a monitoring system since it does not have the burden of controlling the lasers. A brief description of the Thomson Scattering diagnostic will be presented with emphasis in the new upgraded laser firing control system and data acquisition timing control.

  3. Laser Thomson Scattering Diagnostics in the Low-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Woo, Hyun-Jong; Chung, Kyu-Sun

    2008-10-01

    Laser Thomson Scattering (LTS) is the non-invasive method for measuring the electron temperature and its density, which can be used for the calibrations of electric probes within collisional and magnetized plasmas. For LTS diagnostics in the low-temperature plasmas, one need to special optics for detection of the scattered light with restricting the Rayleigh and Stray lights. For this, one uses the Triple Grating Spectrometer (TGS), which is composed of Rayleigh block (notch filter for Rayleigh light) and double grating filter (DGF). All focusing lenses are used with achromatic doublet configuration for reducing the non-linear optical effects such as spherical aberration, coma, etc. The specifications of the grating and achromatic doublet lens are 1800 gr/mm with the dimensions of 84 mm x 84 mm and 400 mm of focal length with the diameter of 100 mm, respectively. In this configurations, the linear dispersion is given as 1.006 nm/mm. Considering the dimension of Charged Coupled Device (CCD) with the linear dispersion, the LTS system can be measure the electron temperatures of less than 10 eV (in most laboratory plasmas). The initial measurement of LTS measurement and comparative study with single probe are done in Divertor Plasma Simulator (DiPS) with the following plasma parameters; plasma density of 10^11-10^13 cm-3, electron temperature of 1-4 eV, and the magnetic field of 0.2-1 kG, respectively.

  4. Optical Thomson scattering measurements of cylindrical wire array parameters

    SciTech Connect

    Harvey-Thompson, A. J.; Lebedev, S. V.; Patankar, S.; Bland, S. N.; Burdiak, G.; Chittenden, J. P.; Colaitis, A.; De Grouchy, P.; Hall, G. N.; Khoory, E.; Pickworth, L.; Suzuki-Vidal, F.; Smith, R. A.; Skidmore, J.; Suttle, L.; Swadling, G. F.; Hohenberger, M.

    2012-05-15

    A Thomson scattering diagnostic has been used to measure the parameters of cylindrical wire array Z pinch plasmas. The scattering operates in the collective regime ({alpha}>1) allowing spatially localised measurements of the ion or electron plasma temperatures and of the plasma bulk velocity. The ablation flow is found to accelerate towards the axis reaching peak velocities of 1.2-1.3 Multiplication-Sign 10{sup 7} cm/s in aluminium and {approx}1 Multiplication-Sign 10{sup 7} cm/s in tungsten arrays. Measurements of the precursor ion temperature shortly after formation are found to correspond to the kinetic energy of the converging ablation flow. Measurements during the implosion phase of tungsten arrays show the main imploding mass reaches velocities of {approx}1.4-1.7 Multiplication-Sign 10{sup 7} cm/s and is non-zero even at large radii close to the start of the x-ray pulse indicating current flow in the trailing mass.

  5. Central Thomson scattering upgrade on DIII-D

    SciTech Connect

    Nilson, D.G.; Stallard, B.W.; Carlstrom, T.N.; Hsieh, C.L.; Stockdale, R.E.

    1997-11-01

    The existing 36 channel Thomson scattering system on the DIII-D tokamak measures the plasma temperature and density in the core region. However, with the recent interest in core peaked density profiles, coverage needs to be extended into the magnetic axis. This paper addresses the technical issues involved with extending the viewing region from a major radius of 194 cm to 165 cm. At least one of the existing seven core laser beams will be rerouted to probe the plasma horizontally instead of vertically. To do this, a rigid extension of the existing laser/collection optics tower will be built to route the laser to a nearby tangential port. A fiber bundle array from one of the two existing core plasma collection optics sets will be rotated to allow up to 10 of the 36 core channels to view along this new beam path. A new in-vessel absorbing glass laser dump must be developed since there are no appropriate laser beam exit ports. The close proximity of this laser dump to the viewing region presents stray light issues that must be resolved to allow for an accurate density calibration using Rayleigh scattering in argon gas.

  6. Beam-shape effects in nonlinear Compton and Thomson scattering

    SciTech Connect

    Heinzl, T.; Seipt, D.; Kaempfer, B.

    2010-02-15

    We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus is on the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzing the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane-wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focusing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focusing, and hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of intensity-induced spectral red shift, higher harmonics, and their substructure becomes feasible.

  7. Detection of dust on JET with the high resolution Thomson scattering systema)

    NASA Astrophysics Data System (ADS)

    Giovannozzi, E.; Beurskens, M.; Kempenaars, M.; Pasqualotto, R.; Rydzy, A.; JET EFDA Contributors

    2010-10-01

    Dust particles have been observed with Thomson scattering systems on several tokamaks. We present here the first evidence of dust particles observed by the new high resolution Thomson scattering system on JET. The system consists of filter spectrometers that analyze the Thomson scattering spectrum from 670 to 1050 nm in four spectral channels. The laser source is a 5 J Q-switched Nd:YAG laser. Without a spectral channel at the laser wavelength, only dust particles that emit broadband light could be detected; these particles have been observed on JET after disruptions. The timing of their emission is clearly different from that expected for a Thomson scattering pulse. The light pulse from dust happens after the peak of the laser light and has a long tail.

  8. Detection of dust on JET with the high resolution Thomson scattering system

    SciTech Connect

    Giovannozzi, E.; Rydzy, A.; Beurskens, M.; Kempenaars, M.; Collaboration: JET EFDA Contributors

    2010-10-15

    Dust particles have been observed with Thomson scattering systems on several tokamaks. We present here the first evidence of dust particles observed by the new high resolution Thomson scattering system on JET. The system consists of filter spectrometers that analyze the Thomson scattering spectrum from 670 to 1050 nm in four spectral channels. The laser source is a 5 J Q-switched Nd:YAG laser. Without a spectral channel at the laser wavelength, only dust particles that emit broadband light could be detected; these particles have been observed on JET after disruptions. The timing of their emission is clearly different from that expected for a Thomson scattering pulse. The light pulse from dust happens after the peak of the laser light and has a long tail.

  9. In-line phase-contrast imaging based on Tsinghua Thomson scattering x-ray source.

    PubMed

    Zhang, Zhen; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Yang, Jin; Xiao, Yongshun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2014-08-01

    Thomson scattering x-ray sources can produce ultrashort, energy tunable x-ray pulses characterized by high brightness, quasi-monochromatic, and high spatial coherence, which make it an ideal source for in-line phase-contrast imaging. We demonstrate the capacity of in-line phase-contrast imaging based on Tsinghua Thomson scattering X-ray source. Clear edge enhancement effect has been observed in the experiment. PMID:25173262

  10. Structures in Te profiles: High resolution Thomson scattering in the Rijnhuizen tokamak project

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Barth, C. J.; Lopes Cardozo, N. J.; van der Meiden, H. J.

    1999-01-01

    In the Rijnhuizen tokamak project, the double pulse multiposition Thomson scattering diagnostic is in full operation. Its high spatial resolution enables the measurement of small scale structures in Te, ne, and pe. Thomson scattering profiles during an ordinary sawtooth crash show the displacement of the hot core in great detail. Measurements on off-axis sawtoothing plasmas show that a small central part remains unaffected. Filaments are observed in plasmas which show a transient central temperature rise in response to fast edge cooling.

  11. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-01-01

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  12. Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter

    SciTech Connect

    Strozzi, D J; Williams, E A; Langdon, A B; Bers, A

    2006-09-01

    1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW observed in our simulations is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.

  13. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  14. Linear plasma response, electrostatic fluctuations and Thomson scattering

    NASA Astrophysics Data System (ADS)

    Rozmus, Wojciech; Zheng, Zhen; Bychenkov, Valery Yu.; Brantov, Andrei V.

    2011-10-01

    Our nonlocal and nonstationary transport theory provides a method of solution of the initial value problem for the full set of linearized Fokker-Planck kinetic equations with Landau collision operators. The closure relations reduce the problem of finding particle distribution functions to the solution of the close set of fluid equations. This has been recently realized for the electron-ion plasma in the entire range of plasma collisionality. No particular choice of the initial distribution function is necessary to derive the longitudinal plasma susceptibility from the full set of kinetic equations. We will discuss new complete results for in electron-ion plasmas. The full description of the longitudinal plasma response is used in the derivation of damping and dispersion relations for electrostatic fluctuations such as Langmuir waves, ion-acoustic and entropy modes. Particle collision effects are rigorously accounted for. The Onsager's regression of fluctuations method is applied to derive dynamical form factor S(k,w) and Thomson scattering (TS) cross-section from the set of fluid equations. We will discuss application of the nonlocal hydrodynamics to the derivation of S(k,w). In particular, we will examine the importance of an entropy mode peak as the direct measure of ion temperature in TS experiments.

  15. The LIDAR Thomson scattering diagnostic on JET (invited)

    NASA Astrophysics Data System (ADS)

    Salzmann, H.; Bundgaard, J.; Gadd, A.; Gowers, C.; Hansen, K. B.; Hirsch, K.; Nielsen, P.; Reed, K.; Schrödter, C.; Weisberg, K.

    1988-08-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3-J pulse energy, 300-ps pulse duration, 0.5-Hz repetition rate) together with a 700-MHz bandwidth detection and registration system yields a spatial resolution of about 12 cm. A spectrometer with six channels in the wavelength range 400-800 nm gives a dynamic range of the temperature measurements of 0.3-20 keV. The stray light problem in the backscatter geometry is overcome by spectral discrimination and gating of the photomultipliers. A ruby filter in the spectral channel containing the laser wavelength allows calibration of the vignetting along the line of sight by means of Raman scattering, enabling the measurement of density profiles. The low level of background signal due to the short integration time for a single spatial point yields low statistical errors (ΔTe /Te ≊6%, Δne /ne ≊4% at Te =6 keV, ne =3×1019 m-3 ). Goodness-of-fit tests indicate that the systematic errors are within the same limits. The system is described and examples of measurements are given.

  16. Laser Thomson Scattering Diagnostics of Pulsed Filamentary Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Bolouki, Nima

    2012-10-01

    Laser Thomson scattering (LTS) has been applied to measure spatiotemporal evolution of electron density and electron temperature in a pulsed filamentary discharge. The light source of LTS is the second harmonics Nd:YAG laser with a energy of 8 mJ. Also a triple grating spectrometer (TGS) having high rejection rate for stray light is used to measure LTS spectra. In our experimental conditions, non-thermal and non-equilibrium micro-plasmas are generated at round atmospheric pressure. Moreover, the electrode set in this experiment is consisted of a needle electrode and a hemispherical electrode with an inter-electrode gap of 0.5 mm. The total electric charge that flows through the discharge channel vary from 20 nC to 850 nC by changing capacitance in electrical circuit. We could show that the total charge variation leads to increase in electron density from 10^22 m-3 to 10^23 m-3. However, the electron temperature remains almost constant at the main discharge. In order to investigate the streamer phase, we changed the gap up to 16mm, and then performed the LTS method to measure the electron density and electron temperature.

  17. Spectroscopic Analysis and Thomson Scattering Diagnostics of Wire Produced Plasma

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher; Sotnikov, Vladimir; Main, Daniel; Caplinger, James; Wallerstein, Austin; Kim, Tony

    2014-10-01

    The Lower Hybrid Drift Instability (LHDI) in plasma is driven by the presence of inhomogeneities in density, temperature, or magnetic field (Krall 1971, Davidson 1977), and occurs in systems where the electrons are magnetized and the ions are effectively unmagnetized. The LHDI is thought to occur in magnetic reconnection (Huba 1977), and has also been investigated as a mitigation technique which can allow for communications to take place through the plasma formed around hypersonic aircraft (Sotnikov 2010). To further understand the phenomenology of the LHDI, we plan to carry out experiments at the Air Force Research Laboratory, in the newly formed Plasma Physics Sensors Laboratory. In experiment, a pulsed power generator is employed to produce plasma by passing current through single, or dual-wire configurations. To characterize the plasma, a Thomson scattering diagnostic is employed, along with a visible spectroscopy diagnostic. This work was performed under the auspices of the U.S. Department of Defense by Riverside Research under Contract BAA-FA8650-13-C-1539.

  18. Chevron beam dump for ITER edge Thomson scattering system.

    PubMed

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated. PMID:24182106

  19. Chevron beam dump for ITER edge Thomson scattering system

    SciTech Connect

    Yatsuka, E.; Hatae, T.; Bassan, M.; Itami, K.; Vayakis, G.

    2013-10-15

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  20. Observation of Hot Remnant Islands using Fast Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Morton, L. A.; Young, W. C.; den Hartog, D. J.; Hegna, C. C.; Parke, E.; Reusch, J. A.; Jacobson, C. M.

    2015-11-01

    The MST Fast Thomson Scattering Laser, operating with repetition rates of up to 100 kHz for up to 25 laser pulses, has allowed direct observation of temperature structures produced by tearing modes rotating at 10 - 20 kHz. A hot spot observed by Fast TS coincides with the O-point of the dominant m/n = 1/6 mode reconstructed by MHD modeling from edge magnetic measurements. The electron thermal conductivity inside the island is estimated from power balance to be 75 m2/s. However, MHD modeling also predicts overlap between the n =6 and n =7 islands, producing chaotic field lines and total loss of the island flux surfaces. Ensemble-averaged data from the slower burst laser (25 kHz for 8 pulses) also indicates overlap between the temperature fluctuations associated with these modes. These temperature fluctuation also exhibits the large higher-harmonic content that characterizes the hot island in the single-shot cases. DEBS finite-beta MHD simulations qualitatively reproduce MST temperature structures in certain cases. This work is supported by the US DoE and the NSF.

  1. X-Ray Thomson Scattering Without the Chihara Decomposition

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  2. Thomson scattering calibration with ultrabright supercontinuum light source

    SciTech Connect

    Pasqualotto, R.; Alfier, A.

    2006-10-15

    The recently developed supercontinuum light source (SLS) finds a useful application in the calibration of a Thomson scattering (TS) diagnostic. When filter polychromators are used, the relative responsivity of the spectral channels is generally measured with a cw halogen light source from the dc output of the detectors, while the TS signal is measured from an ac output. In a TS system with optical delay lines, like in RFX-mod, a cw light source cannot discriminate differences between the relative responsivities of the positions that share the same polychromator but are connected to different delay lines: this can be achieved with a pulsed white light source instead. In addition a pulsed source with a time response similar to the TS signals would avoid any frequency response problem, because the same ac output of the detectors used for the TS signals could also be used for the calibration. An SLS produces a 5 ns Gaussian pulse, with a wide and smooth spectrum that covers the range of 550-1600 nm. The SLS provides a light source sufficiently bright to calibrate simultaneously all spectrometers. The experimental setup used for the calibration and obtained results are presented.

  3. Prospects for the Thomson scattering system on NSTX-Upgrade

    SciTech Connect

    Diallo, A.; LeBlanc, B. P.; Labik, G.; Stevens, D.

    2012-10-15

    The paper discusses the projected configuration of the Thomson system on the National Spherical Torus Experiment (NSTX-U). In this paper, we discuss the projected configuration of the Thomson system on NSTX-U. More specifically, we determine, through both optical modeling of the collection optics and in-vessel measurements, that the collecting fibers are to be displaced by at most 1 cm toward the imaging plane along the optical axis. Finally, we estimate the performance of the Thomson system in measuring the electron temperature for NSTX-U discharges.

  4. A simple, high performance Thomson scattering diagnostic for high temperature plasma research

    SciTech Connect

    Hartog, D.J.D.; Cekic, M.

    1994-02-01

    This Thomson scattering diagnostic is used to measure the electron temperature and density of the plasma in the MST reversed-field pinch, a magnetic confinement fusion research device. This diagnostic system is unique for its type in that it combines high performance with simple design and low cost components. In the design of this instrument, careful attention was given to the suppression of stray laser line light with simple and effective beam dumps, viewing dumps, aperatures, and a holographic edge filter. This allows the use of a single grating monochromator for dispersion of the Thomson scattered spectrum onto the microchannel plate detector. Alignment and calibration procedures for the laser beam delivery system, the scattered light collection system, and the spectrometer and detector are described. A sample Thomson scattered spectrum illustrates typical data.

  5. Synoptic maps constructed from brightness observations of Thomson scattering by heliospheric electrons

    NASA Technical Reports Server (NTRS)

    Hick, P.; Jackson, B.; Schwenn, R.

    1991-01-01

    Observations of the Thomson scattering brightness by electrons in the inner heliosphere provide a means of probing the heliospheric electron distributions. An extensive data base of Thomson scattering observations, stretching over many years, is available from the zodiacal light photometers on board the two Helios spacecraft. A survey of these data is in progress, presenting these scattering intensities in the form of synoptic maps for successive Carrington rotations. The Thomson scattering maps reflect conditions at typically several tenths of an astronomical unit from the sun. Some representative examples from the survey in comparison with other solar/heliospheric data, such as in situ observations of the Helios plasma experiment and synoptic maps constructed from magnetic field, H alpha and K-coronameter data are presented. The comparison will provide some information about the extension of solar surface features into the inner heliosphere.

  6. Studies on scattering of laser radiation from viewing dump in tokamak Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Singh, R.; Kumar, A.

    2012-08-01

    Thomson scattering is among one of the primary diagnostics used for tokamak plasma temperature and density measurements. Spuriously scattered stray signal further deteriorates the already existing poor signal-to-noise ratio in this technique. The present paper reports experimental investigations on the angular distribution of the scattered/stray radiation from graphite and a stack of laser blades dumps for different angles of incidence. Experimental results show a dependence of the stray signal on the dump-edge orientation. It is found that horizontally oriented dump edge produces a minimum level of stray light (around two orders less than in case of plane graphite tiles) in the horizontal plane, in which detectors for most of the diagnostics are installed. Studies are also made for p-polarized and s-polarized incident laser beams of 632.8 nm and 1064 nm wavelengths.

  7. Raman calibration of the HT-7 yttrium aluminum garnet Thomson scattering for electron density measurements

    SciTech Connect

    Zang Qing; Zhao Junyu; Gao Xiang; Shi Lingwei; Zhang Tao; Xi Xiaoqi; Yang Li; Hu Qingsheng; Sajjad, S.

    2007-11-15

    A multipulse neodym doped yttrium aluminum garnet laser Thomson scattering system calibrated by the anti-Stokes rotational Raman scattering from nitrogen gas had been developed in the HT-7 superconducting Tokmak. By virtue of this system, measured electron density results of the plasma were obtained. The results showed good repeatability and its total uncertainty was estimated to be {+-}18%.

  8. Improvements of data quality of the LHD Thomson scattering diagnostics in high-temperature plasma experiments

    SciTech Connect

    Yamada, I.; Narihara, K.; Funaba, H.; Hayashi, H.; Kohmoto, T.; Takahashi, H.; Shimozuma, T.; Kubo, S.; Yoshimura, Y.; Igami, H.; Tamura, N.

    2010-10-15

    In Large Helical Device (LHD) experiments, an electron temperature (T{sub e}) more than 15 keV has been observed by the yttrium-aluminum-garnet (YAG) laser Thomson scattering diagnostic. Since the LHD Thomson scattering system has been optimized for the temperature region, 50 eV{<=}T{sub e}{<=}10 keV, the data quality becomes worse in the higher T{sub e} region exceeding 10 keV. In order to accurately determine T{sub e} in the LHD high-T{sub e} experiments, we tried to increase the laser pulse energy by simultaneously firing three lasers. The technique enables us to decrease the uncertainties in the measured T{sub e}. Another signal accumulation method was also tested. In addition, we estimated the influence of high-energy electrons on T{sub e} obtained by the LHD Thomson scattering system.

  9. Advanced Thomson scattering system for high-flux linear plasma generator

    SciTech Connect

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A.; Donne, A. J. H.; Schram, D. C.; Naumenko, N. N.; Tugarinov, S. N.

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  10. Scattering volume in the collective Thomson scattering measurement using high power gyrotron in the LHD

    NASA Astrophysics Data System (ADS)

    Kubo, S.; Nishiura, M.; Tanaka, K.; Moseev, D.; Ogasawara, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tsujimura, T. I.; Makino, R.

    2016-06-01

    High-power gyrotrons prepared for the electron cyclotron heating at 77 GHz has been used for a collective Thomson scattering (CTS) study in LHD. Due to the difficulty in removing fundamental and/or second harmonic resonance in the viewing line of sight, the subtraction of the background ECE from measured signal was performed by modulating the probe beam power from a gyrotron. The separation of the scattering component from the background has been performed successfully taking into account the response time difference between both high-energy and bulk components. The other separation was attempted by fast scanning the viewing beam across the probing beam. It is found that the intensity of the scattered spectrum corresponding to the bulk and high energy components were almost proportional to the calculated scattering volume in the relatively low density region, while appreciable background scattered component remains even in the off volume in some high density cases. The ray-trace code TRAVIS is used to estimate the change in the scattering volume due to probing and receiving beam deflection effect.

  11. Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD.

    PubMed

    Yasuhara, R; Sakamoto, R; Yamada, I; Motojima, G; Hayashi, H

    2014-11-01

    Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition. PMID:25430235

  12. Short-interval multi-laser Thomson scattering measurements of hydrogen pellet ablation in LHD

    SciTech Connect

    Yasuhara, R. Sakamoto, R.; Yamada, I.; Motojima, G.; Hayashi, H.

    2014-11-15

    Thomson scattering forms an important aspect of measuring the electron density and temperature profiles of plasmas. In this study, we demonstrate Thomson scattering measurements obtained over a short interval (<1 ms) by using an event triggering system with a multi-laser configuration. We attempt to use our system to obtain the electron temperature and density profiles before and immediately after pellet injection into the large helical device. The obtained profiles exhibit dramatic changes after pellet injection as per our shot-by-shot measurements. We believe that this measurement technique will contribute towards a better understanding of the physics of the pellet deposition.

  13. Experimental evidence of the effect of heat flux on thomson scattering off ion acoustic waves

    PubMed

    Amiranoff; Baton; Huller; Malka; Modena; Mounaix; Galloudec; Rousseaux; Salvati

    2000-02-01

    Thomson self-scattering measurements are performed in a preionized helium gas jet plasma at different locations along the laser propagation direction. A systematic and important variation of the intensity ratio between the blue and the red ion spectral components is observed, depending on whether the location of the probed region is in front of or behind the focal plane. A simple theoretical calculation of Thomson scattering shows that this behavior can be qualitatively understood in terms of a deformation of the electron distribution function due to the return current correlated with the classical thermal heat flux. PMID:11046481

  14. DIII-D Thomson Scattering Diagnostic Data Acquisition, Processing and Analysis Software

    SciTech Connect

    Middaugh, K.R.; Bray, B.D.; Hsieh, C.L.; McHarg, B.B., Jr.; Penaflor, B.G.

    1999-06-01

    One of the diagnostic systems critical to the success of the DIII-D tokamak experiment is the Thomson scattering diagnostic. This diagnostic is unique in that it measures local electron temperature and density: (1) at multiple locations within the tokamak plasma; and (2) at different times throughout the plasma duration. Thomson ''raw'' data are digitized signals of scattered light, measured at different times and locations, from the laser beam paths fired into the plasma. Real-time acquisition of this data is performed by specialized hardware. Once obtained, the raw data are processed into meaningful temperature and density values which can be analyzed for measurement quality. This paper will provide an overview of the entire Thomson scattering diagnostic software and will focus on the data acquisition, processing, and analysis software implementation. The software falls into three general categories: (1) Set-up and Control: Initializes and controls all Thomson hardware and software, synchronizes with other DIII-D computers, and invokes other Thomson software as appropriate. (2) Data Acquisition and Processing: Obtains raw measured data from memory and processes it into temperature and density values. (3) Analysis: Provides a graphical user interface in which to perform analysis and sophisticated plotting of analysis parameters.

  15. Improvement in data processing of Thomson scattering diagnostic on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Wang, Y. Q.; Feng, Z.; Huang, Y.

    2015-12-01

    There are two types of digitizers to acquire the values of Thomson scattering signals in HL-2A tokamak. One is charge-sensitive analogue-to-digital converters (Q-ADCs) which simply integrates the signal over a gate interval, and the other is transient recorders with 12 bits resolution and 1 GHz sampling rate at each channel. Because the Thomson scattering diagnostic is prone to electrical noisy environment, in which Q-switched Nd:YAG lasers and polychromators are located closely to the HL-2A device, the high speed transient digitizers are found helpful to reduce noise overlapped in Thomson scattering signals. After triggered by the front of TTL pulse generated by laser light, data acquisition is fulfilled from -250 ns to 250 ns, so that the temporal evolution of Thomson scattering signals is obtained. A Gaussian function is utilized to fit the pulse shape of the digitized scattering signal by nonlinear least square methods. By pulse fitting and data processing, the influence of background perturbations is substantially reduced.

  16. First results from the Thomson scattering diagnostic on Proto-MPEX

    SciTech Connect

    Biewer, Theodore M; Meitner, Steven J; Rapp, Juergen

    2016-01-01

    A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.

  17. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    SciTech Connect

    Xie, M.

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  18. Conceptual design of new polychromator on Thomson scattering system to measure Z{sub eff}

    SciTech Connect

    Lee, Jongha; Oh, Seungtae; Wi, Hanmin; Oh, Youngkook; Yamada, I.; Narihara, K.; Kawahata, K.; Jeon, Jongsu

    2012-10-15

    To measure the Z{sub eff} with electron temperature (T{sub e}) and electron density (n{sub e}) profiles at the same time and the same position in the KSTAR tokamak, we design a new polychromator for Thomson scattering system that has additional function. The additional function is measuring bremsstrahlung intensity to calculate Z{sub eff} independent of Thomson signals. For this new polychromator, we design and fabricate a collimation lens set, and interference filter that has center wavelength of 523 nm and 2 nm FWHM. Finally, we change the lenses, detector diodes, and add the bremsstrahlung filter on the KSTAR edge Thomson scattering polychromator. Then this new polychromator was tested by Tungsten light and monochromator.

  19. Edge profile measurements using Thomson scattering on the KSTAR tokamak

    SciTech Connect

    Lee, J. H. Ko, W. H.; Oh, S.; Lee, W. R.; Kim, K. P.; Lee, K. D.; Jeon, Y. M.; Yoon, S. W.; Cho, K. W.; Narihara, K.; Yamada, I.; Yasuhara, R.; Hatae, T.; Yatsuka, E.; Ono, T.; Hong, J. H.

    2014-11-15

    In the KSTAR Tokamak, a “Tangential Thomson Scattering” (TTS) diagnostic system has been designed and installed to measure electron density and temperature profiles. In the edge system, TTS has 12 optical fiber bundles to measure the edge profiles with 10–15 mm spatial resolution. These 12 optical fibers and their spatial resolution are not enough to measure the pedestal width with a high accuracy but allow observations of L-H transition or H-L transitions at the edge. For these measurements, the prototype ITER edge Thomson Nd:YAG laser system manufactured by JAEA in Japan is installed. In this paper, the KSTAR TTS system is briefly described and some TTS edge profiles are presented and compared against the KSTAR Charge Exchange Spectroscopy and other diagnostics. The future upgrade plan of the system is also discussed in this paper.

  20. First measurement of electron temperature from signal ratios in a double-pass Thomson scattering system

    SciTech Connect

    Tojo, H.; Itami, K.; Hatae, T.; Ejiri, A.; Yamaguchi, T.; Takase, Y.; Hiratsuka, J.

    2012-02-15

    This paper presents an experimental demonstration to determine electron temperature (T{sub e}) with unknown spectral sensitivity (transmissivity) in a Thomson scattering system. In this method, a double-pass scattering configuration is used and the scattered lights from each pass (with different scattering angles) are measured separately. T{sub e} can be determined from the ratio of the signal intensities without knowing a real chromatic dependence in the sensitivity. Note that the wavelength range for each spectral channel must be known. This method was applied to the TST-2 Thomson scattering system. As a result, T{sub e} measured from the ratio (T{sub e,r}) and T{sub e} measured from a standard method (T{sub e,s}) showed a good agreement with <|T{sub e,r}-T{sub e,s}|/T{sub e,s}>= 7.3%.

  1. Mirror system for collecting Thomson-scattered light in a tangential direction.

    PubMed

    Barth, C J; Grobben, B J; Verhaag, G C

    1994-09-01

    We describe an optical system for collecting Thomson-scattering light in the tangential direction of a tokamak. The key part of the optics is a set of mirrors arranged as a Venetian blind. This system makes it possible to look around the corner of the tokamak vessel. Design considerations and test performance are presented. PMID:20936021

  2. A reflective image-rotating periscope for spatially resolved Thomson-scattering experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Katz, J.; Ross, J. S.; Sorce, C.; Froula, D. H.

    2013-12-01

    A reflective image rotating periscope has been deployed on the Thomson-scattering system at the Laboratory for Laser Energetics, enabling the capability to make spatially resolved measurements of plasma conditions using either the 2ω (527-nm) or 4ω (263-nm) probe beam. The spectral content of ion-acoustic and electron plasma wave Thomson-scattering features are analyzed along the probe beam's axis of propagation using a pair of imaging Czerny-Turner spectrometers. A method for calculating image rotation was applied to design a translating periscope mirror assembly that provides fine adjustment of the image orientation at the spectrometer input plane. Spectrally dispersed Thomson-scattering signals are recorded using time-gated intensified charge-coupled-device cameras. Spectral resolution of up to 0.03 nm (0.2 nm) is achieved using a 1-m (0.3-m) spectrometer, allowing for simultaneous measurements of the ion-acoustic and electron plasma wave features. The optical system's 20-μm imaging resolution provides excellent noise rejection and spatial definition of the Thomson-scattering volume.

  3. Mechanical design aspects of the Advanced Toroidal Facility Thomson scattering diagnostic

    SciTech Connect

    Shipley, W.D.; Kindsfather, R.R.; Rasmussen, D.A.

    1987-01-01

    A two-dimensional Thomson scattering system has been designed for the Advanced Toroidal Facility (ATF), a torsatron experiment at the Oak Ridge National Laboratory (ORNL). The system is a modification of the Thomson scattering system used on the Impurity Study Experiment (ISX-B) tokamak. It will provide measurements of electron temperature (T/sub e/) and density (n/sub e/) at 15 points along a vertical chord. With multiple shots, a T/sub e/ and n/sub e/ map of a toroidal cross section of ATF can be obtained. The horizontal Thomson scattering viewing port is offset by 15/sup 0/ toroidally from the ports through which the vertical laser beam passes. The modifications to the ISX-B Thomson scattering system are either changes required to adapt the system to the ATF device geometry or changes that result in improvements to the original system. This paper deals with the mechanical design aspects of the laser light baffle plates that reduce the amount of extraneous light entering the plasma, the upper and lower vacuum extensions that contain the baffles and attach to the ATF vacuum vessel, the entrance window assembly, the laser dump assembly, the viewing window and shutter assembly, and the alignment target mechanism and drive used to determine the ampping of data points in the plasma cross section.

  4. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering.

    PubMed

    Follett, R K; Edgell, D H; Henchen, R J; Hu, S X; Katz, J; Michel, D T; Myatt, J F; Shaw, J; Froula, D H

    2015-03-01

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability. PMID:25871046

  5. Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering

    SciTech Connect

    Follett, R. K.; Edgell, D. H.; Henchen, R. J.; Hu, S. X.; Katz, J.; Michel, D. T.; Myatt, J. F.; Shaw, J.; Froula, D. H.

    2015-03-26

    A 263-nm Thomson-scattering beam was used to directly probe two-plasmon-decay (TPD) excited electron plasma waves (EPWs) driven by between two and five 351-nm beams on the OMEGA Laser System. The amplitude of these waves was nearly independent of the number of drive beams at constant overlapped intensity, showing that the observed EPWs are common to the multiple beams. In an experimental configuration where the Thomson-scattering diagnostic was not wave matched to the common TPD EPWs, a broad spectrum of TPD-driven EPWs was observed, indicative of nonlinear effects associated with TPD saturation. Electron plasma waves corresponding to Langmuir decay of TPD EPWs were observed in both Thomson-scattering spectra, suggesting the Langmuir decay instability as a TPD saturation mechanism. Simulated Thomson-scattering spectra from three-dimensional numerical solutions of the extended Zakharov equations of TPD are in excellent agreement with the experimental spectra and verify the presence of the Langmuir decay instability.

  6. Initial simultaneous Thomson-scattering measurements in the TMX-U tandem mirror

    SciTech Connect

    Goodman, R.K.; Rognlien, T.D.

    1983-12-27

    In this report, we briefly describe the TMX-U Thomson-scattering systems; we compare TMX-U velocity-distribution measurements with computer modeling; and we present and discuss our first simultaneous measurements of end-plug and central-cell electron temperatures.

  7. Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH

    SciTech Connect

    Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-07-15

    We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

  8. Fast ion dynamics measured by collective Thomson scattering

    NASA Astrophysics Data System (ADS)

    Bindslev, Henrik

    2001-10-01

    In magnetically confined fusion plasmas, fast ions, from fusion reactions and auxiliary heating, typically carry a third of the total plasma kinetic energy, and even more of the free energy. This free energy must be channelled into heating the bulk plasma, but is also available for driving waves in the plasma, affecting confinement of bulk and fast ions. We know that fast ions can drive Alfvén waves, affect sawteeth and fishbones. In turn all three can redistribute or ejects the fast ions. Wave particle interaction, also the basis of Ion Cyclotron Resonance Heating (ICRH), depends crucially on the phase space distribution of the fast ions. Conversely the effect waves and instabilities have of fast ions will manifest itself in the detail of the fast ion phase space distribution. To explore the dynamics of fast ions and their interaction with the plasma thus begs for measurements of the fast ion distribution resolved in space, time and velocity. This has long been the promise of Collective Thomson Scattering (CTS) [1]. First demonstrated at JET [2]and subsequently at TEXTOR [3], CTS is living up to its promise and is now contributing to the understanding of fast ion dynamics. With the TEXTOR CTS, temporal behaviours of fast ion velocity distributions have been uncovered. The fast ion populations are produced by ICRH and Neutral Beam Injection (NBI). At sawteeth, we see clear variations in the fast ion population, which depend on ion energy, pitch angle and spatial location. Investigating the region just inside the inversion radius, we find that ions with small parallel energy, and with perpendicular energies up to a soft threshold well above thermal, are lost from the high field side near the inversion radius, while more energetic ions in the same pitch angle range remain insensitive to the sawteeth. The sensitive population could include the potato and stagnation orbit particles identified theoretically as being sensitive the sawteeth [4]. Under the same conditions

  9. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

    NASA Astrophysics Data System (ADS)

    Donnelly, Vincent M.; Belostotskiy, Sergey G.; Economou, Demetre J.; Sadeghi, Nader

    2010-05-01

    Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (ne) and electron temperature (Te). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded Te = 0.9 ± 0.3 eV and ne = (6 ± 3)·1013 cm-3, in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (Tg) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with Tg values obtained by optical emission spectroscopy.

  10. Intracavity Rayleigh/Mie Scattering for Multipoint, Two-Component Velocity Measurement

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Lee, Joseph W.

    2006-01-01

    A simultaneous multi-point two-component Doppler velocimeter is described. The system uses two optical cavities: a Fabry-Perot etalon and an optical cavity for collecting and re-circulating the Rayleigh/Mie scattered light that is collected from the measurement volume in two parallel, but opposite directions. Single-pulse measurements of two orthogonal components of the velocity vector in a supersonic free jet were performed to demonstrate the technique. The re-circulation of the light rejected by the interferometer input mirror also increased the signal intensity by a factor of 3.5. 2005 Optical Society of America Interferometric Rayleigh scattering has previously been used for single-point velocity measurements in unseeded gas flow. However, this past work has generally been limited to probing with continuous-wave lasers resulting in time-averaged measurements of velocity. Multiple velocity components have been measured simultaneously by separate instruments.1,2 It has also been demonstrated that two orthogonal velocity components can be measured simultaneously at one point using one interferometer by reflecting back the probing laser beam, although this approach results in directional ambiguity of the flow velocity vector.3 This measurement ambiguity was removed by prior knowledge of the approximate magnitude and sign of the velocity components. Furthermore, it was shown that multiple points could be measured simultaneously with a Rayleigh scattering interferometric approach, but only one component of velocity was measured.4 Another method of performing multiple component velocity measurements with Rayleigh scattering uses a pair of cameras to image the flow, one of which views the flow through an iodine gas filter. This iodine-filter technique has the advantage of allowing high-resolution velocity imaging, but it generally has a lower dynamic range.

  11. Controlling the spectral shape of nonlinear Thomson scattering with proper laser chirping

    NASA Astrophysics Data System (ADS)

    Rykovanov, S. G.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2016-03-01

    Effects of nonlinearity in Thomson scattering of a high intensity laser pulse from electrons are analyzed. Analytic expressions for laser pulse shaping in frequency (chirping) are obtained which control spectrum broadening for high laser pulse intensities. These analytic solutions allow prediction of the spectral form and required laser parameters to avoid broadening. Results of analytical and numerical calculations agree well. The control over the scattered radiation bandwidth allows narrow bandwidth sources to be produced using high scattering intensities, which in turn greatly improves scattering yield for future x- and gamma-ray sources.

  12. A scalable multipass laser cavity based on injection by frequency conversion for noncollective Thomson scattering

    SciTech Connect

    Schaeffer, D. B.; Constantin, C. G.; Everson, E. T.; Van Compernolle, B.; Kugland, N. L.; Niemann, C.; Ebbers, C. A.; Glenzer, S. H.

    2010-10-15

    A scalable setup using injection by frequency conversion to establish a multipassing cavity for noncollective Thomson scattering on low density plasmas is presented. The cavity is shown to support >10 passes through the target volume with a 400% increase in energy on target versus a single-pass setup. Rayleigh scattering experiments were performed and demonstrate the viability of the cell to study low density plasmas of the order of 10{sup 12}-10{sup 13} cm{sup -3}. A high-repetition, low-energy, single-pass Thomson scattering setup was also performed on the University of California, Los Angeles Large Plasma Device and shows that the multipass cavity could have a significant advantage over the high-repetition approach due to the cavity setup's inherently higher signal per shot.

  13. A scalable multipass laser cavity based on injection by frequency conversion for noncollective Thomson scattering.

    PubMed

    Schaeffer, D B; Kugland, N L; Constantin, C G; Everson, E T; Van Compernolle, B; Ebbers, C A; Glenzer, S H; Niemann, C

    2010-10-01

    A scalable setup using injection by frequency conversion to establish a multipassing cavity for noncollective Thomson scattering on low density plasmas is presented. The cavity is shown to support >10 passes through the target volume with a 400% increase in energy on target versus a single-pass setup. Rayleigh scattering experiments were performed and demonstrate the viability of the cell to study low density plasmas of the order of 10(12)-10(13) cm(-3). A high-repetition, low-energy, single-pass Thomson scattering setup was also performed on the University of California, Los Angeles Large Plasma Device and shows that the multipass cavity could have a significant advantage over the high-repetition approach due to the cavity setup's inherently higher signal per shot. PMID:21033873

  14. Imaging x-ray Thomson scattering spectrometer design and demonstration (invited).

    PubMed

    Gamboa, E J; Huntington, C M; Trantham, M R; Keiter, P A; Drake, R P; Montgomery, D S; Benage, J F; Letzring, S A

    2012-10-01

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam. PMID:23126930

  15. Imaging x-ray Thomson scattering spectrometer design and demonstration (invited)a)

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Huntington, C. M.; Trantham, M. R.; Keiter, P. A.; Drake, R. P.; Montgomery, D. S.; Benage, J. F.; Letzring, S. A.

    2012-10-01

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  16. A high-power spatial filter for Thomson scattering stray light reduction

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  17. Imaging x-ray Thomson scattering spectrometer design and demonstration (invited)

    SciTech Connect

    Gamboa, E. J.; Huntington, C. M.; Trantham, M. R.; Keiter, P. A.; Drake, R. P.; Montgomery, D. S.; Benage, J. F.; Letzring, S. A.

    2012-10-15

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  18. Improving measurement accuracy by optimum data acquisition for Nd:YAG Thomson scattering system.

    PubMed

    Minami, T; Itoh, Y; Yamada, I; Yasuhara, R; Funaba, H; Nakanishi, H; Hatae, T

    2014-11-01

    A new high speed Nd:YAG Thomson scattering AD Convertor (HYADC) that can directly convert the detected scattered light signal into a digital signal is under development. The HYADC is expected to improve a signal to noise ratio of the Nd:YAG Thomson scattering measurement. The data storage of the HYADC which is required for the direct conversion of whole plasma discharge is drastically reduced by a ring buffer memory and a stop trigger system. Data transfer of the HYADC is performed by the SiTCP. The HYADC is easily expandable to a multi-channel system by the distributed data processing, and is very compact and easy to implement as a built-in system of the polychromators. PMID:25430250

  19. A high-power spatial filter for Thomson scattering stray light reduction

    SciTech Connect

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-15

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  20. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas.

    PubMed

    Washeleski, Robert L; Meyer, Edmond J; King, Lyon B

    2013-10-01

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed. PMID:24182157

  1. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas

    NASA Astrophysics Data System (ADS)

    Washeleski, Robert L.; Meyer, Edmond J.; King, Lyon B.

    2013-10-01

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.

  2. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited).

    PubMed

    Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios. PMID:25430162

  3. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)

    SciTech Connect

    Mirnov, V. V.; Hartog, D. J. Den; Duff, J.; Parke, E.; Brower, D. L.; Ding, W. X.

    2014-11-15

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sub e} measurement relevant to ITER operational scenarios.

  4. Application of maximum likelihood methods to laser Thomson scattering measurements of low density plasmas

    SciTech Connect

    Washeleski, Robert L.; Meyer, Edmond J. IV; King, Lyon B.

    2013-10-15

    Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.

  5. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering.

    PubMed

    Bindslev, H; Nielsen, S K; Porte, L; Hoekzema, J A; Korsholm, S B; Meo, F; Michelsen, P K; Michelsen, S; Oosterbeek, J W; Tsakadze, E L; Westerhof, E; Woskov, P

    2006-11-17

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injection and ion cyclotron resonance heating. The temporal behavior of the spatially resolved fast-ion velocity distribution is inferred from the received scattered radiation. The fast-ion dynamics at sawteeth and the slowdown after switch off of auxiliary heating is resolved in time. The latter is shown to be in close agreement with modeling results. PMID:17155690

  6. 4{omega} Thomson scattering probe for high-density plasma characterization at Titan

    SciTech Connect

    Ross, J. S.; Pollock, B. B.; Kline, J. L.; Yang, S.; Henesian, M.; Weiland, T.; Price, D.; Glenzer, S. H.

    2010-10-15

    In preparation for the upcoming experiments on the Titan laser at the Jupiter Laser Facility, a new Thomson scattering system has been designed and implemented. This system allows electron temperature and density measurements in a high-density regime (n{sub e}>10{sup 21} cm{sup -3}). A 263 nm probe has been demonstrated to produce a total energy of 15 J at 4{omega}(263 nm) in a 1 ns square pulse with a focal spot size of 100 {mu}m. This probe has been used for imaging Thomson scattering of the ion feature. The goal of this study is to investigate the heating of a preformed plasma by a short-pulse heater beam.

  7. Optimal Design of a Tunable Thomson-Scattering Based Gamma-Ray Source

    SciTech Connect

    Gibson, D J; Anderson, S G; Betts, S M; Hartemann, F V; Jovanovic, I; McNabb, D P; Messerly, M J; Pruet, J A; Shverdin, M Y; Siders, C W; Tremaine, A M; Barty, C J

    2007-06-07

    Thomson-Scattering based systems offer a path to high-brightness high-energy (> 1 MeV) x-ray and {gamma}-ray sources due to their favorable scaling with electron energy. LLNL is currently engaged in an effort to optimize such a device, dubbed the ''Thomson-Radiated Extreme X-Ray'' (T-REX) source, targeting up to 680 keV photon energy. Such a system requires precise design of the interaction between a high-intensity laser pulse and a high-brightness electron beam. Presented here are the optimal design parameters for such an interaction, including factors such as the collision angle, focal spot size, optimal bunch charge, and laser energy. These parameters were chosen based on extensive modeling using PARMELA and in-house, well-benchmarked scattering simulation codes.

  8. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  9. Design of a submillimeter laser Thomson scattering system for measurement of ion temperature in SUMMA

    NASA Technical Reports Server (NTRS)

    Praddaude, H. C.; Woskoboinikow, P.

    1978-01-01

    A thorough discussion of submillimeter laser Thomson scattering for the measurement of ion temperature in plasmas is presented. This technique is very promising and work is being actively pursued on the high power lasers and receivers necessary for its implementation. In this report we perform an overall system analysis of the Thomson scattering technique aimed to: (1) identify problem areas; (2) establish specifications for the main components of the apparatus; (3) study signal processing alternatives and identify the optimum signal handling procedure. Because of its importance for the successful implementation of this technique, we also review the work presently being carried out on the optically pumped submillimeter CH3F and D2O lasers.

  10. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases. PMID:27475558

  11. Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Babzien, Marcus; Ben-Zvi, Ilan; Kusche, Karl; Pavlishin, Igor V.; Pogorelsky, Igor V.; Siddons, David P.; Yakimenko, Vitaly; Cline, David; Zhou, Feng; Hirose, Tachishige; Kamiya, Yoshio; Kumita, Tetsuro; Omori, Tsunehiko; Urakawa, Junji; Yokoya, Kaoru

    2006-02-01

    A free relativistic electron in an electromagnetic field is a pure case of a light-matter interaction. In the laboratory environment, this interaction can be realized by colliding laser pulses with electron beams produced from particle accelerators. The process of single photon absorption and reemission by the electron, so-called linear Thomson scattering, results in radiation that is Doppler shifted into the x-ray and γ-ray regions. At elevated laser intensity, nonlinear effects should come into play when the transverse motion of the electrons induced by the laser beam is relativistic. In the present experiment, we achieved this condition and characterized the second harmonic of Thomson x-ray scattering using the counterpropagation of a 60 MeV electron beam and a subterawatt CO2 laser beam.

  12. Electron beam final focus system for Thomson scattering at ELBE

    NASA Astrophysics Data System (ADS)

    Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.

    2016-09-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  13. Development of a YAG laser system for the edge Thomson scattering system in ITER

    SciTech Connect

    Hatae, T.; Yatsuka, E.; Hayashi, T.; Ono, T.; Kusama, Y.; Yoshida, H.

    2012-10-15

    A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).

  14. 21nm x-ray laser Thomson scattering of laser-heated exploding foil plasmas

    SciTech Connect

    Dunn, J; Rus, B; Mocek, T; Nelson, A J; Foord, M E; Rozmus, W; Baldis, H A; Shepherd, R L; Kozlova, M; Polan, J; Homer, P; Stupka, M

    2007-09-26

    Recent experiments were carried out on the Prague Asterix Laser System (PALS) towards the demonstration of a soft x-ray laser Thomson scattering diagnostic for a laser-produced exploding foil. The Thomson probe utilized the Ne-like zinc x-ray laser which was double-passed to deliver {approx}1 mJ of focused energy at 21.2 nm wavelength and lasting {approx}100 ps. The plasma under study was heated single-sided using a Gaussian 300-ps pulse of 438-nm light (3{omega} of the PALS iodine laser) at laser irradiances of 10{sup 13}-10{sup 14} W cm{sup -2}. Electron densities of 10{sup 20}-10{sup 22} cm{sup -3} and electron temperatures from 200 to 500 eV were probed at 0.5 or 1 ns after the peak of the heating pulse during the foil plasma expansion. A flat-field 1200 line mm{sup -1} variable-spaced grating spectrometer with a cooled charge-coupled device readout viewed the plasma in the forward direction at 30{sup o} with respect to the x-ray laser probe. We show results from plasmas generated from {approx}1 {micro}m thick targets of Al and polypropylene (C{sub 3}H{sub 6}). Numerical simulations of the Thomson scattering cross-sections will be presented. These simulations show electron peaks in addition to a narrow ion feature due to collective (incoherent) Thomson scattering. The electron features are shifted from the frequency of the scattered radiation approximately by the electron plasma frequency {+-}{omega}{sub pe} and scale as n{sub e}{sup 1/2}.

  15. Gyrotron collective Thomson scattering from plasma fluctuations in a Tara axicell

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Myer, R.C.; Mulligan, W.J.; Cohn, D.R.; Gerver, M.; Golovato, S.N.; Horne, S.; Kubota, S.; Post, R.S.; and others

    1988-08-01

    Collective Thomson scattering in the Tara Tandem Mirror axicell at MIT was accomplished with a 137-GHz, approx.0.4-kW, 75-ms pulsed gyrotron. Ion cyclotron waves, ion Bernstein wave harmonics, and other plasma fluctuations possibly due to microinstabilities and magnetohydrodynamic (MHD) activity have been observed during ion cyclotron resonance frequency (ICRF) heating. The observation of ion Bernstein waves may be due to an enhanced ion thermal fluctuation spectrum in an ICRF heated plasma.

  16. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    SciTech Connect

    Kurzan, B.; Murmann, H. D.

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  17. A large area Thomson-scattering stellar X-ray polarimeter.

    NASA Technical Reports Server (NTRS)

    Novick, R.; Wolff, R. S.

    1971-01-01

    An instrument for measuring the polarization of stellar X-ray emission has been designed, constructed, and tested. The polarization dependence of incoherent Thomson scattering in lithium metal is utilized. Means for suppression of cosmic ray background effects have been provided. The apparatus has been flown in rockets to obtain data in the polarization of X-ray sources in Sco X-1 and Tau X-1.

  18. Temporally resolved plasma composition measurements by collective Thomson scattering in TEXTOR (invited)

    SciTech Connect

    Stejner, M.; Korsholm, S. B.; Nielsen, S. K.; Salewski, M.; Leipold, F.; Michelsen, P. K.; Meo, F.; Bindslev, H.; Moseev, D.; Buerger, A.; Kantor, M.; Baar, M. de

    2012-10-15

    Fusion plasma composition measurements by collective Thomson scattering (CTS) were demonstrated in recent proof-of-principle measurements in TEXTOR [S. B. Korsholm et al., Phys. Rev. Lett. 106, 165004 (2011)]. Such measurements rely on the ability to resolve and interpret ion cyclotron structure in CTS spectra. Here, we extend these techniques to enable temporally resolved plasma composition measurements by CTS in TEXTOR, and we discuss the prospect for such measurements with newly installed hardware upgrades for the CTS system on ASDEX Upgrade.

  19. Out-of-equilibrium conditions in x-ray Thomson scattering experiments.

    PubMed

    Faussurier, Gérald; Blancard, Christophe

    2015-06-01

    We study out-of-equilibrium conditions in recent x-ray Thomson scattering experiments performed in warm dense matter. We use an effective one-component plasma model to characterize the states in which electron and ion temperatures are different. An estimation of the ion temperature is obtained. This method is tested against two recent experiments. Strong out-of-equilibrium conditions are found. PMID:26172805

  20. Measurements of Intrinsic Ion Bernstein Waves in a Tokamak by Collective Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Korsholm, S. B.; Stejner, M.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Salewski, M.; de Baar, M.; Delabie, E.; Kantor, M.; Bürger, A.

    2011-04-01

    In this Letter we report measurements of collective Thomson scattering (CTS) spectra with clear signatures of ion Bernstein waves and ion cyclotron motion in tokamak plasmas. The measured spectra are in accordance with theoretical predictions and show clear sensitivity to variation in the density ratio of the main ion species in the plasma. Measurements with this novel diagnostic demonstrate that CTS can be used as a fuel ion ratio diagnostic in burning fusion plasma devices.

  1. The data acquisition and control system for Thomson Scattering on ATF (Advanced Toroidal Facility)

    SciTech Connect

    Stewart, K.A.; Kindsfather, R.R.; Rasmussen, D.A.

    1989-01-01

    The 2-dimensional Thomson Scattering System measuring electron temperatures and densities in the Advanced Toroidal Facility (ATF) is interfaced to a VAX-8700 computer system running in a clustered configuration. Calibration, alignment, and operation of this diagnostic is under computer control. Extensive CAMAC instrumentation is used for timing control, data acquisition, and laser alignment. This paper will discuss the computer hardware and software, system operations, and data storage and retrieval. 3 refs.

  2. Using collective x-ray Thomson scattering to measure temperature and density of warm dense matter

    SciTech Connect

    Doeppner, T; Davis, P F; Kritcher, A L; Landen, O L; Lee, H J; Regan, S P; Glenzer, S

    2009-07-29

    Collective x-ray Thomson scattering allows measuring plasmons, i.e electron plasma oscillations (Langmuir waves). This is manifest in the appearance of spectrally up- and down-shifted spectral features in addition to the Rayleigh signal. The ratio of the up- and down-shifted signals is directly related to detailed balance, allowing to determine the plasma temperature from first principles. The spectral shift of the plasmon signals is sensitive to temperature and electron density. We discuss the experimental considerations that have to be fulfilled to observe plasmon signals with x-ray Thomson scattering. As an example, we describe an experiment that used the Cl Ly-{alpha} x-ray line at 2.96 keV to measure collective Thomson scattering from solid beryllium, isochorically heated to 18 eV. Since temperature measurement based on detailed balance is based on first principles, this method is important to validate models that, for example, calculate the static ion-ion structure factor S{sub ii}(k).

  3. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10. PMID:24089826

  4. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    SciTech Connect

    Zang, Qing; Zhao, Junyu; Chen, Hui; Li, Fengjuan; Hsieh, C. L.

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  5. The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Datte, P.; Ross, J. S.; Froula, D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G.; Weaver, J.; Vergel de Dios, G.; Vitalich, M.

    2016-05-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion programs. We report on the preliminary design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beamsplitter and gratings before the shot. A deep-UV probe beam (λ0 between 185-215 nm) will optimally collect Thomson scattered light from plasma densities of 5 x 1020 electrons/cm3 while a 3ω probe will optimally collect Thomson scattered light from plasma densities of 1 x 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS recording system to measure background levels at NIF and phase II will include the integration of a probe laser.

  6. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  7. Polarization from Thomson scattering of the light of a spherical, limb-darkened star

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.

    1979-01-01

    The polarized flux produced by the Thomson scattering of the light of a spherical, limb-darkened star by optically thin, extrastellar regions of electrons is calculated and contrasted to previous models which treated the star as a point source. The point-source approximation is found to be valid for scattering by particles more than a stellar radius from the surface of the star but is inappropriate for those lying closer. The specific effect of limb darkening on the fractional polarization of the total light of a system is explored. If the principal source of light is the unpolarized flux of the star, the polarization is nearly independent of limb darkening.

  8. K-(alpha) X-ray Thomson Scattering From Dense Plasmas

    SciTech Connect

    Kritcher, A L; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

    2009-05-07

    Spectrally resolved Thomson scattering using ultra-fast K-{alpha} x-rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7 x 10{sup 23}cm{sup -3}, were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  9. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    SciTech Connect

    Xu, Tong; Chen, Min Li, Fei-Yu; Yu, Lu-Le; Sheng, Zheng-Ming; SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG ; Zhang, Jie; Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

  10. Thomson Scattering Observation of Non-Maxwellian EEDF and the Effect of Local Electron Heating

    NASA Astrophysics Data System (ADS)

    Kono, A.; Funahashi, H.

    2001-10-01

    Laser Thomson scattering measurements were carried out to study electron energy distribution function (EEDF) of inductively coupled plasmas using C_4F_8/Ar and CF_4/Ar mixture gases. The plasma was produced using a one-turn coil antenna immersed in the plasma at a total pressure of 25 mTorr. A specially designed triple-grating spectrometer was used, which produces Thomson spectra on the output focal plane with the interfering Rayleigh and stray components highly suppressed; an ICCD camera operated in the photon-counting mode was used for multichannel detection of the spectrum. At a RF (13.56 MHz) input power of 300 W in the case of pure Ar plasma, EEDF was Maxwellian with an enectron density >10^12 cm-3. Upon mixing of C_4F8 as well as CF_4, decrease in the electron density and upward bend of the plot of the Thomson spectrum (energy vs. logarithmic scattering intensity) at energies around 5 eV was observed. The mechanism for producing this bend was studied via Monte-Carlo particle simulation. The results indicate that electron heating in a uniform electric field does not lead to upward bend; electrons should be heated locally near the antenna surface where the RF electric field is strong and cooled in other part of the plasma by inelastic collisions.

  11. RF photoinjector development for a short-pulse, hard x-ray Thomson scattering source

    SciTech Connect

    Le Sage, G P; Anderson, S G; Cowan, T E; Crane, J K; Ditmire, T; Rosenzweig, J B

    2000-08-15

    An important motivation in the development of the next generation x-ray light sources is to achieve picosecond and sub-ps pulses of hard x-rays for dynamic studies of a variety of physical, chemical and biological processes. Present hard x-ray sources are either pulse-width or intensity limited, which allows ps-scale temporal resolution only for signal averaging of highly repetitive processes. A much faster and brighter hard x-ray source is being developed at LLNL, based on Thomson scattering of fs-laser pulses by a relativistic electron beam, which will enable x-ray characterization of the transient structure of a sample in a single shot. Experimental and diagnostic techniques relevant to the development of next generation sources including the Linac Coherent Light Source can be tested with the Thomson scattering hard x-ray source. This source will combine an RF photoinjector with a 100 MeV S-band linac. The photoinjector and linac also provide an ideal test-bed for examining space-charge induced emittance growth effects. A program of beam dynamics and diagnostic experiments are planned in parallel with Thomson source development. Our experimental progress and future plans will be discussed.

  12. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    SciTech Connect

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  13. Use of fast scopes to enable Thomson scattering measurement in presence of fluctuating plasma light.

    SciTech Connect

    McLean, H; Moller, J; Hill, D

    2004-04-19

    The addition of inexpensive high-speed oscilloscopes has enabled higher Te Thomson scattering measurements on the SSPX spheromak. Along with signal correlation techniques, the scopes allow new analyses based on the shape of the scattered laser pulse to discriminate against fluctuating background plasma light that often make gated-integrator measurements unreliable. A 1.4 J Nd:YAG laser at 1064 nm is the scattering source. Spatial locations are coupled by viewing optics and fibers to 4-wavelength-channel filter polychrometers. Ratios between the channels determine Te while summations of the channels determine density. Typically, the channel that provides scattered signal at higher Te is contaminated by fluctuating background light. Individual channels are correlated with either a modeled representation of the laser pulse or a noise-free stray light signal to extract channel amplitudes.

  14. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    DOE PAGESBeta

    Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; Pak, A.; Ma, T.; Doppner, T.; Fortmann, C.; Divol, L.; Landen, O. L.; Vorberger, J.; et al

    2013-05-24

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm–3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less

  15. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    SciTech Connect

    Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; Pak, A.; Ma, T.; Doppner, T.; Fortmann, C.; Divol, L.; Landen, O. L.; Vorberger, J.; Chapman, D. A.; Gericke, D. O.; Falcone, R. W.

    2013-05-24

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules, with a maximum measured density of ρ > 6 g cm–3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.

  16. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    SciTech Connect

    Fletcher, L. B.; Kritcher, A.; Pak, A.; Ma, T.; Döppner, T.; Divol, L.; Landen, O. L.; Glenzer, S. H.; Fortmann, C.; Vorberger, J.; Gericke, D. O.; Chapman, D. A.; Falcone, R. W.

    2013-05-15

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules, with a maximum measured density of ρ > 6 g cm{sup −3}. In addition, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.

  17. Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering

    NASA Astrophysics Data System (ADS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Drebot, I.; Giribono, A.; Maroli, C.; Rossi, A. R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Variola, A.

    2015-11-01

    A systematic study of the polarization of x-gamma rays produced in Thomson and Compton scattering is presented, in both classical and quantum schemes. Numerical results and analytical considerations let us to establish the polarization level as a function of acceptance, bandwidth and energy. Few sources have been considered: the SPARC_LAB Thomson device, as an example of a x-ray Thomson source, ELI-NP, operating in the gamma range. Then, the typical parameters of a beam produced by a plasma accelerator has been analyzed. In the first case, with bandwidths up to 10%, a contained reduction (<10 % ) in the average polarization occurs. In the last case, for the nominal ELI-NP relative bandwidth of 5 ×1 0-3 , the polarization is always close to 1. For applications requiring larger bandwidth, however, a degradation of the polarization up to 30% must be taken into account. In addition, an all optical gamma source based on a plasma accelerated electron beam cannot guarantee narrow bandwidth and high polarization operational conditions required in nuclear photonics experiments.

  18. Measurements of ion temperature and plasma hydrogenic composition by collective Thomson scattering in neutral beam heated discharges at TEXTOR

    NASA Astrophysics Data System (ADS)

    Stejner, M.; Salewski, M.; Korsholm, S. B.; Bindslev, H.; Delabie, E.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Bürger, A.; de Baar, M.; the TEXTOR Team

    2013-08-01

    A method is developed to perform plasma composition and ion temperature measurements across the plasma minor radius in TEXTOR based on ion cyclotron structures in collective Thomson scattering spectra. By gradually moving the scattering volume, we obtain measurements across the outer midplane of the plasma. Results for the ion temperature are compared with ion temperatures measured by active charge-exchange recombination spectroscopy.

  19. The ITER divertor Thomson scattering system: engineering and advanced hardware solutions

    NASA Astrophysics Data System (ADS)

    Mukhin, E. E.; Semenov, V. V.; Razdobarin, A. G.; Tolstyakov, S. Yu; Kochergin, M. M.; Kurskiev, G. S.; Berezutsky, A. A.; Podushnikova, K. A.; Masyukevich, S. V.; Chernakov, P. V.; Borovkov, A. I.; Modestov, V. S.; Nemov, A. S.; Voinov, A. S.; Kornev, A. F.; Stupnikov, V. K.; Borisov, A. A.; Baranov, G. N.; Koval, A. N.; Makushina, A. F.; Yelizarov, B. A.; Kukushkin, A. S.; Encheva, A.; Andrew, P.

    2012-02-01

    A divertor Thomson scattering (TS) system being developed for ITER has incorporated proven solutions from currently available TS systems. On the other hand any ITER diagnostic has to operate in a hostile environment and very restricted access geometry. Therefore the operation in an environment of intensive stray light, plasma background radiation, the necessity meet the requirement using only a 20 mm gap between divertor cassettes for plasma diagnosis as well as to measure plasma temperatures as low as 1 eV severely constrain the divertor TS diagnostic design. The challenging solutions of this novel diagnostic system which has to ensure its steady performance and also the operability and maintenance are the focus of this report. One of the most demanding parts of the in-vessel diagnostic equipment development is the design assessment using different engineering analyses. The task definition and first results of thermal, e/m and seismic analyses are provided. The process of further improving of the design involves identification of susceptible areas and multiple iterations of the design, as needed. One of the key points for all Thomson scattering diagnostics are the laser capabilities. A high-performance and high-power laser system using a steady-state and high-repetitive mode Nd:YAG laser (2J, 50-100Hz, 3ns) has been developed. The reduced laser pulse duration matched with high-speed low-noise APD detector can be very important under high background light level. For diagnostics such as Thomson scattering and Raman spectroscopy, a high-degree of discrimination against stray light at the laser wavelength is required for successful detection of wavelength-shifted light from the laser-plasma interaction region. For this case of high stray light level, a triple grating polychromator characterized by high rejection and high transmission has been designed and developed. The novel polychromator design minimizes stray light while still maintaining a relatively high

  20. Edge Thomson scattering diagnostic on COMPASS tokamak: Installation, calibration, operation, improvements

    SciTech Connect

    Bohm, P. Bilkova, P.; Melich, R.; Sestak, D.; Weinzettl, V.; Stockel, J.; Hron, M.; Panek, R.; Mikulin, O.; Scannell, R.; Naylor, G.; Frassinetti, L.; Fassina, A.; Walsh, M. J.

    2014-11-15

    The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles.

  1. Femtosecond x-rays from Thomson scattering using laser wakefield accelerators

    SciTech Connect

    Catravas, P.; Esarey, E.; Leemans, W.P.

    2001-03-01

    The possibility of producing femtosecond x-rays through Thomson scattering high power laser beams off laser wakefield generated relativistic electron beams is discussed. The electron beams are produced with either a self-modulated laser wakefield accelerator (SM-LWFA) or through a standard laser wakefield accelerator (LWFA) with optical injection. For a SM-LWFA (LWFA) produced electron beam, a broad (narrow) energy distribution is assumed, resulting in X-ray spectra that are broadband (monochromatic). Designs are presented for 3-100 fs x-ray pulses and the expected flux and brightness of these sources are compared.

  2. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  3. X-ray Thomson scattering diagnostics of impact ionization in laser-driven carbon foils

    NASA Astrophysics Data System (ADS)

    Sperling, P.; Zastrau, U.; Toleikis, S.; Glenzer, S. H.; Redmer, R.

    2015-06-01

    We have studied the light-matter interaction of ultra-short, intense optical laser fields with thin carbon foils via particle-in-cell simulations. Especially, the influence of additional impact ionization on the density and temperature of the generated plasma and on the corresponding Thomson scattering spectra was investigated. We predict a pump-probe experiment at the free electron laser FLASH in order to verify the importance of this effect in the laser-matter interaction on ultra-short time scales and to check our predictions quantitatively.

  4. Data processing and analysis of the imaging Thomson scattering diagnostic system on HT-7 tokamak

    SciTech Connect

    Han Xiaofeng; Shao Chunqiang; Xi Xiaoqi; Zhao Junyu; Qing Zang; Yang Jianhua; Dai Xingxing; Shinichiro, Kado

    2013-05-15

    A high spatial resolution imaging Thomson scattering diagnostic system was developed in ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences). After about one month trial running on the superconducting HT-7 (Hefei Tokamak-7) tokamak, the system was proved to be capable of measuring plasma electron temperature. The system setup and data calibration are described in this paper and then the instrument function is studied in detail, as well as the measurement capability, an electron temperature of 50 eV to 2 keV and density beyond 1 Multiplication-Sign 10{sup 19} m{sup -3}. Finally, the data processing method and experimental results are presented.

  5. Thomson scattering measurement of a shock in laser-produced counter-streaming plasmas

    SciTech Connect

    Morita, T.; Kuramitsu, Y.; Moritaka, T.; Sakawa, Y.; Takabe, H.; Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 560-0043 ; Tomita, K.; Nakayama, K.; Inoue, K.; Uchino, K.; Ide, T.; Tsubouchi, K.; Nishio, K.; Ide, H.; Kuwada, M.

    2013-09-15

    We report the first direct measurement of temporally and spatially resolved plasma temperatures at a shock as well as its spatial structure and propagation in laser-produced counter-streaming plasmas. Two shocks are formed in counter-streaming collisionless plasmas early in time, and they propagate opposite directions. This indicates the existence of counter-streaming collisionless flows to keep exciting the shocks, even though the collisional effects increase later in time. The shock images are observed with optical diagnostics, and the upstream and downstream plasma parameters of one of the shocks are measured using Thomson scattering technique.

  6. Data processing and analysis of the imaging Thomson scattering diagnostic system on HT-7 tokamak.

    PubMed

    Han, Xiaofeng; Shao, Chunqiang; Xi, Xiaoqi; Zhao, Junyu; Qing, Zang; Yang, Jianhua; Dai, Xingxing; Kado, Shinichiro

    2013-05-01

    A high spatial resolution imaging Thomson scattering diagnostic system was developed in ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences). After about one month trial running on the superconducting HT-7 (Hefei Tokamak-7) tokamak, the system was proved to be capable of measuring plasma electron temperature. The system setup and data calibration are described in this paper and then the instrument function is studied in detail, as well as the measurement capability, an electron temperature of 50 eV to 2 keV and density beyond 1 × 10(19) m(-3). Finally, the data processing method and experimental results are presented. PMID:23742546

  7. Edge Thomson scattering diagnostic on COMPASS tokamak: installation, calibration, operation, improvements.

    PubMed

    Bohm, P; Aftanas, M; Bilkova, P; Stefanikova, E; Mikulin, O; Melich, R; Janky, F; Havlicek, J; Sestak, D; Weinzettl, V; Stockel, J; Hron, M; Panek, R; Scannell, R; Frassinetti, L; Fassina, A; Naylor, G; Walsh, M J

    2014-11-01

    The core Thomson scattering diagnostic (TS) on the COMPASS tokamak was put in operation and reported earlier. Implementation of edge TS, with spatial resolution along the laser beam up to ∼1/100 of the tokamak minor radius, is presented now. The procedure for spatial calibration and alignment of both core and edge systems is described. Several further upgrades of the TS system, like a triggering unit and piezo motor driven vacuum window shutter, are introduced as well. The edge TS system, together with the core TS, is now in routine operation and provides electron temperature and density profiles. PMID:25430338

  8. Effect of changes in viewing window transmission on high-temperature Thomson scattering data

    SciTech Connect

    McNeill, D.H. )

    1990-04-01

    Unmonitored changes in the transmission of viewing windows owing to deposited films can produce errors in Thomson scattering temperature measurements. This effect is illustrated by a recent run on the Tokamak Fusion Test Reactor (TFTR) where apparent errors of over 25% in peak temperatures of 9 keV owing to carbon films were noted. Since coatings can also be removed by hydrogen discharges, the transmission of a window may change with time, resulting in variable errors in the temperature. It is proposed that these changes be monitored by calibration {ital in} {ital situ} with the aid of a low-pressure hydrogen glow discharge.

  9. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    SciTech Connect

    Chin, A.H.; Schoenlein, R.W.; Glover, T.E.

    1997-04-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale.

  10. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    SciTech Connect

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-07-28

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.