Sample records for multipolar induction machine

  1. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  2. Hybrid-secondary uncluttered induction machine

    DOEpatents

    Hsu, John S.

    2001-01-01

    An uncluttered secondary induction machine (100) includes an uncluttered rotating transformer (66) which is mounted on the same shaft as the rotor (73) of the induction machine. Current in the rotor (73) is electrically connected to current in the rotor winding (67) of the transformer, which is not electrically connected to, but is magnetically coupled to, a stator secondary winding (40). The stator secondary winding (40) is alternately connected to an effective resistance (41), an AC source inverter (42) or a magnetic switch (43) to provide a cost effective slip-energy-controlled, adjustable speed, induction motor that operates over a wide speed range from below synchronous speed to above synchronous speed based on the AC line frequency fed to the stator.

  3. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  4. Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning.

    PubMed

    Fletcher, Timothy L; Popelier, Paul L A

    2016-06-14

    A machine learning method called kriging is applied to the set of all 20 naturally occurring amino acids. Kriging models are built that predict electrostatic multipole moments for all topological atoms in any amino acid based on molecular geometry only. These models then predict molecular electrostatic interaction energies. On the basis of 200 unseen test geometries for each amino acid, no amino acid shows a mean prediction error above 5.3 kJ mol(-1), while the lowest error observed is 2.8 kJ mol(-1). The mean error across the entire set is only 4.2 kJ mol(-1) (or 1 kcal mol(-1)). Charged systems are created by protonating or deprotonating selected amino acids, and these show no significant deviation in prediction error over their neutral counterparts. Similarly, the proposed methodology can also handle amino acids with aromatic side chains, without the need for modification. Thus, we present a generic method capable of accurately capturing multipolar polarizable electrostatics in amino acids.

  5. Applications of Machine Learning and Rule Induction,

    DTIC Science & Technology

    1995-02-15

    An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic

  6. Magnetar Giant Flares in Multipolar Magnetic Fields. III. Multipolar Magnetic Field Structure Variations

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Rui; Huang, Lei; Yu, Cong; Shen, Zhi-Qiang

    2018-02-01

    We have analyzed the multipolar magnetic field structure variation at neutron star surface by means of the catastrophic eruption model and find that the variation of the geometry of multipolar fields on the magnetar surface could result in the catastrophic rearrangement of the magnetosphere, which provides certain physical mechanism for the outburst of giant flares. The magnetospheric model we adopted consists of two assumptions: (1) a helically twisted flux rope is suspended in an ideal force-free magnetosphere around the magnetar, and (2) a current sheet emerges during the flux rope evolution. Magnetic energy accumulates during the flux rope’s gradual evolution along with the variation of magnetar surface magnetic structure before the eruption. The two typical behaviors, either state transition or catastrophic escape, would take place once the flux rope loses equilibrium; thus, tremendous accumulated energy is radiated. We have investigated the equilibrium state of the flux rope and the energy release affected by different multipolar structures and find structures that could trigger violent eruption and provide the radiation approximately 0.5% of the total magnetic energy during the giant flare outburst. Our results provide certain multipolar structures of the neutron star’s magnetic field with an energy release percentage 0.42% in the state transition and 0.51% in the catastrophic escape case, which are sufficient for the previously reported energy release from SGR 1806–20 giant flares.

  7. Optimal Control of Induction Machines to Minimize Transient Energy Losses

    NASA Astrophysics Data System (ADS)

    Plathottam, Siby Jose

    Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the

  8. Induced electric fields in workers near low-frequency induction heating machines.

    PubMed

    Kos, Bor; Valič, Blaž; Kotnik, Tadej; Gajšek, Peter

    2014-04-01

    Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace. © 2013 Wiley Periodicals, Inc.

  9. Calculating Synchronous Inductive Reactances of Contactless Machines When Magnetic Circuit is Saturated and of Machines with Superconducting Excitation Windings,

    DTIC Science & Technology

    The work studies the effect of magnetic circuit saturation on the synchronous inductive reactance of the armature. A practical method is given for...calculating synchronized parameters in saturating synchronized machines with additional clearances and machines with superconducting excitation windings.

  10. Reactive power generation in high speed induction machines by continuously occurring space-transients

    NASA Astrophysics Data System (ADS)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  11. Thermal protection performance of magnetohydrodynamic heat shield system based on multipolar magnetic field

    NASA Astrophysics Data System (ADS)

    Kai, Li; Jun, Liu; Weiqiang, Liu

    2017-07-01

    In order to cover the shortage of dipole magnetic field in the magnetohydrodynamic(MHD) heat shield system, physical model of a multipolar magnetic field with central and peripheral solenoids is constructed. By employing the governing equations of three dimensional thermochemical nonequilibrium flow with electromagnetic source terms based on the low magneto-Reynolds assumption, the flow control performance of the dipole and multipolar magnetic fields are numerically simulated. To make the results comparable, two groups of cases are designed by first assuming equal stagnation magnetic induction strength and secondly assuming equal ampere-turns. Results show that, the five-magnet system, whose central polar orientation is the same with the peripheral ones, have stronger work capability and better shock control and thermal protection performance. Moreover, the five-solenoid systems are the best when the ampere-turns of the central solenoid are twice and fourth of the peripheral ones under those two circumstances respectively. Compared with the dipole magnetic field, the stagnation non-catalytic heat fluxes are decreased by a factor of 47.5% and 34.0% respectively.

  12. Effects of Cascaded Voltage Collapse and Protection of Many Induction Machine Loads upon Load Characteristics Viewed from Bulk Transmission System

    NASA Astrophysics Data System (ADS)

    Kumano, Teruhisa

    As known well, two of the fundamental processes which give rise to voltage collapse in power systems are the on load tap changers of transformers and dynamic characteristics of loads such as induction machines. It has been well established that, comparing among these two, the former makes slower collapse while the latter makes faster. However, in realistic situations, the load level of each induction machine is not uniform and it is well expected that only a part of loads collapses first, followed by collapse process of each load which did not go into instability during the preceding collapses. In such situations the over all equivalent collapse behavior viewed from bulk transmission level becomes somewhat different from the simple collapse driven by one aggregated induction machine. This paper studies the process of cascaded voltage collapse among many induction machines by time simulation, where load distribution on a feeder line is modeled by several hundreds of induction machines and static impedance loads. It is shown that in some cases voltage collapse really cascades among induction machines, where the macroscopic load dynamics viewed from upper voltage level makes slower collapse than expected by the aggregated load model. Also shown is the effects of machine protection of induction machines, which also makes slower collapse.

  13. A new self-regulated self-excited single-phase induction generator using a squirrel cage three-phase induction machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukami, Tadashi; Imamura, Michinori; Kaburaki, Yuichi

    1995-12-31

    A new single-phase capacitor self-excited induction generator with self-regulating feature is presented. The new generator consists of a squirrel cage three-phase induction machine and three capacitors connected in series and parallel with a single phase load. The voltage regulation of this generator is very small due to the effect of the three capacitors. Moreover, since a Y-connected stator winding is employed, the waveform of the output voltage becomes sinusoidal. In this paper the system configuration and the operating principle of the new generator are explained, and the basic characteristics are also investigated by means of a simple analysis and experimentsmore » with a laboratory machine.« less

  14. Pole-phase modulated toroidal winding for an induction machine

    DOEpatents

    Miller, John Michael; Ostovic, Vlado

    1999-11-02

    A stator (10) for an induction machine for a vehicle has a cylindrical core (12) with inner and outer slots (26, 28) extending longitudinally along the inner and outer peripheries between the end faces (22, 24). Each outer slot is associated with several adjacent inner slots. A plurality of toroidal coils (14) are wound about the core and laid in the inner and outer slots. Each coil occupies a single inner slot and is laid in the associated outer slot thereby minimizing the distance the coil extends from the end faces and minimizing the length of the induction machine. The toroidal coils are configured for an arbitrary pole phase modulation wherein the coils are configured with variable numbers of phases and poles for providing maximum torque for cranking and switchable to a another phase and pole configuration for alternator operation. An adaptor ring (36) circumferentially positioned about the stator improves mechanical strength, and provides a coolant channel manifold (34) for removing heat produced in stator windings during operation.

  15. Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications

    NASA Astrophysics Data System (ADS)

    Das, Tanya

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  16. Measurements of multipolarities in 225Ra

    NASA Astrophysics Data System (ADS)

    Andersen, E.; Borge, M. J. G.; Burke, D. G.; Gietz, H.; Hill, P.; Kaffrell, N.; Kurcewicz, W.; Løvhøiden, G.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Thorsteinsen, T. F.; Isolde Collaboration

    1989-01-01

    Multipolarities of 45 transitions in 225Ra have been established by investigating the radiations associated with the β - decay of 225Fr. The study includes β -, e - and γ-singles spectra, e -γ- and γγ-coincidence measurements. The conversion electrons were measured with a mini-orange electron spectrometer, and the γ-spectra with Ge detectors. The multipolarities obtained from the measured conversion coefficients support the assignments of spin-parity doublets thus giving evidence for a stable octupole deformation of this nucleus. The negative parity of the 394.2 keV level established in the present work indicates that this level is a candidate for the parity-doublet partner of the {5}/{2}+ state at 236.3 keV.

  17. Numerical analysis method for linear induction machines.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1972-01-01

    A numerical analysis method has been developed for linear induction machines such as liquid metal MHD pumps and generators and linear motors. Arbitrary phase currents or voltages can be specified and the moving conductor can have arbitrary velocity and conductivity variations from point to point. The moving conductor is divided into a mesh and coefficients are calculated for the voltage induced at each mesh point by unit current at every other mesh point. Combining the coefficients with the mesh resistances yields a set of simultaneous equations which are solved for the unknown currents.

  18. Radiofrequency ablation of hepatocellular carcinoma: Mono or multipolar?

    PubMed

    Cartier, Victoire; Boursier, Jérôme; Lebigot, Jérôme; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Aubé, Christophe

    2016-03-01

    Thermo-ablation by radiofrequency is recognized as a curative treatment for early-stage hepatocellular carcinoma. However, local recurrence may occur because of incomplete peripheral tumor destruction. Multipolar radiofrequency has been developed to increase the size of the maximal ablation zone. We aimed to compare the efficacy of monopolar and multipolar radiofrequency for the treatment of hepatocellular carcinoma and determine factors predicting failure. A total of 171 consecutive patients with 214 hepatocellular carcinomas were retrospectively included. One hundred fifty-eight tumors were treated with an expandable monopolar electrode and 56 with a multipolar technique using several linear bipolar electrodes. Imaging studies at 6 weeks after treatment, then every 3 months, assessed local effectiveness. Radiofrequency failure was defined as persistent residual tumor after two sessions (primary radiofrequency failure) or local tumor recurrence during follow-up. This study received institutional review board approval (number 2014/77). Imaging showed complete tumor ablation in 207 of 214 lesions after the first session of radiofrequency. After a second session, only two cases of residual viable tumor were observed. During follow-up, there were 46 local tumor recurrences. Thus, radiofrequency failure occurred in 48/214 (22.4%) cases. By multivariate analysis, technique (P < 0.001) and tumor size (P = 0.023) were independent predictors of radiofrequency failure. Failure rate was lower with the multipolar technique for tumors < 25 mm (P = 0.023) and for tumors between 25 and 45 mm (P = 0.082). There was no difference for tumors ≥ 45 mm (P = 0.552). Compared to monopolar radiofrequency, multipolar radiofrequency improves tumor ablation with a subsequent lower rate of local tumor recurrence. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. Coupled multipolar interactions in small-particle metallic clusters.

    PubMed

    Pustovit, Vitaly N; Sotelo, Juan A; Niklasson, Gunnar A

    2002-03-01

    We propose a new formalism for computing the optical properties of small clusters of particles. It is a generalization of the coupled dipole-dipole particle-interaction model and allows one in principle to take into account all multipolar interactions in the long-wavelength limit. The method is illustrated by computations of the optical properties of N = 6 particle clusters for different multipolar approximations. We examine the effect of separation between particles and compare the optical spectra with the discrete-dipole approximation and the generalized Mie theory.

  20. Multipolar electrostatics based on the Kriging machine learning method: an application to serine.

    PubMed

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-04-01

    A multipolar, polarizable electrostatic method for future use in a novel force field is described. Quantum Chemical Topology (QCT) is used to partition the electron density of a chemical system into atoms, then the machine learning method Kriging is used to build models that relate the multipole moments of the atoms to the positions of their surrounding nuclei. The pilot system serine is used to study both the influence of the level of theory and the set of data generator methods used. The latter consists of: (i) sampling of protein structures deposited in the Protein Data Bank (PDB), or (ii) normal mode distortion along either (a) Cartesian coordinates, or (b) redundant internal coordinates. Wavefunctions for the sampled geometries were obtained at the HF/6-31G(d,p), B3LYP/apc-1, and MP2/cc-pVDZ levels of theory, prior to calculation of the atomic multipole moments by volume integration. The average absolute error (over an independent test set of conformations) in the total atom-atom electrostatic interaction energy of serine, using Kriging models built with the three data generator methods is 11.3 kJ mol⁻¹ (PDB), 8.2 kJ mol⁻¹ (Cartesian distortion), and 10.1 kJ mol⁻¹ (redundant internal distortion) at the HF/6-31G(d,p) level. At the B3LYP/apc-1 level, the respective errors are 7.7 kJ mol⁻¹, 6.7 kJ mol⁻¹, and 4.9 kJ mol⁻¹, while at the MP2/cc-pVDZ level they are 6.5 kJ mol⁻¹, 5.3 kJ mol⁻¹, and 4.0 kJ mol⁻¹. The ranges of geometries generated by the redundant internal coordinate distortion and by extraction from the PDB are much wider than the range generated by Cartesian distortion. The atomic multipole moment and electrostatic interaction energy predictions for the B3LYP/apc-1 and MP2/cc-pVDZ levels are similar, and both are better than the corresponding predictions at the HF/6-31G(d,p) level.

  1. Wireless Monitoring of Induction Machine Rotor Physical Variables

    PubMed Central

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; de Paiva, José Alvaro

    2017-01-01

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor. PMID:29156564

  2. Wireless Monitoring of Induction Machine Rotor Physical Variables.

    PubMed

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro

    2017-11-18

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  3. Sensorless speed detection of squirrel-cage induction machines using stator neutral point voltage harmonics

    NASA Astrophysics Data System (ADS)

    Petrovic, Goran; Kilic, Tomislav; Terzic, Bozo

    2009-04-01

    In this paper a sensorless speed detection method of induction squirrel-cage machines is presented. This method is based on frequency determination of the stator neutral point voltage primary slot harmonic, which is dependent on rotor speed. In order to prove method in steady state and dynamic conditions the simulation and experimental study was carried out. For theoretical investigation the mathematical model of squirrel cage induction machines, which takes into consideration actual geometry and windings layout, is used. Speed-related harmonics that arise from rotor slotting are analyzed using digital signal processing and DFT algorithm with Hanning window. The performance of the method is demonstrated over a wide range of load conditions.

  4. The Role of Angular Momentum in the Construction of Electromagnetic Multipolar Fields

    ERIC Educational Resources Information Center

    Tischler, Nora; Zambrana-Puyalto, Xavier; Molina-Terriza, Gabriel

    2012-01-01

    Multipolar solutions of Maxwell's equations are used in many practical applications and are essential for the understanding of light-matter interactions at the fundamental level. Unlike the set of plane wave solutions of electromagnetic fields, the multipolar solutions do not share a standard derivation or notation. As a result, expressions…

  5. Physiological significance of multipolar cells generated from neural stem cells and progenitors for the establishment of neocortical cytoarchitecture.

    PubMed

    Mizutani, Ken-Ichi

    2018-01-01

    Neurogenesis encompasses an entire set of events that leads to the generation of newborn neurons from neural stem cells and more committed progenitor cells, including cell division, the production of migratory precursors and their progeny, differentiation and integration into circuits. In particular, the precise control of neuronal migration and morphological changes is essential for the development of the neocortex. Postmitotic cells within the intermediate zone have been found to transiently assume a characteristic "multipolar" morphology, after which a multipolar-to-bipolar transition occurs before the cells enter the cortical plate; however, the importance of this multipolar phase in the establishment of mature cortical cytoarchitecture and the precise genetic control of this phase remains largely unknown. Thus, this review article focuses on the multipolar phase in the developing neocortex. It begins by summarizing the molecular mechanism that underlies multipolar migration for the regulation of each step in multipolar phase in intermediate zone. The physiological significance of this multipolar phase in the establishment of mature cortical lamination and neurodevelopmental disorders associated with migration defects is then described. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  6. The reflection of evolving bearing faults in the stator current's extended park vector approach for induction machines

    NASA Astrophysics Data System (ADS)

    Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan

    2018-07-01

    Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.

  7. A global optimization approach to multi-polarity sentiment analysis.

    PubMed

    Li, Xinmiao; Li, Jing; Wu, Yukeng

    2015-01-01

    Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From

  8. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    NASA Astrophysics Data System (ADS)

    Pietrowski, Wojciech; Górny, Konrad

    2017-12-01

    Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  9. New Technique of High-Performance Torque Control Developed for Induction Machines

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.

    2003-01-01

    Two forms of high-performance torque control for motor drives have been described in the literature: field orientation control and direct torque control. Field orientation control has been the method of choice for previous NASA electromechanical actuator research efforts with induction motors. Direct torque control has the potential to offer some advantages over field orientation, including ease of implementation and faster response. However, the most common form of direct torque control is not suitable for the highspeed, low-stator-flux linkage induction machines designed for electromechanical actuators with the presently available sample rates of digital control systems (higher sample rates are required). In addition, this form of direct torque control is not suitable for the addition of a high-frequency carrier signal necessary for the "self-sensing" (sensorless) position estimation technique. This technique enables low- and zero-speed position sensorless operation of the machine. Sensorless operation is desirable to reduce the number of necessary feedback signals and transducers, thus improving the reliability and reducing the mass and volume of the system. This research was directed at developing an alternative form of direct torque control known as a "deadbeat," or inverse model, solution. This form uses pulse-width modulation of the voltage applied to the machine, thus reducing the necessary sample and switching frequency for the high-speed NASA motor. In addition, the structure of the deadbeat form allows the addition of the high-frequency carrier signal so that low- and zero-speed sensorless operation is possible. The new deadbeat solution is based on using the stator and rotor flux as state variables. This choice of state variables leads to a simple graphical representation of the solution as the intersection of a constant torque line with a constant stator flux circle. Previous solutions have been expressed only in complex mathematical terms without a

  10. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    PubMed Central

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  11. Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos.

    PubMed

    Vitale, Ilio; Senovilla, Laura; Jemaà, Mohamed; Michaud, Mickaël; Galluzzi, Lorenzo; Kepp, Oliver; Nanty, Lisa; Criollo, Alfredo; Rello-Varona, Santiago; Manic, Gwenola; Métivier, Didier; Vivet, Sonia; Tajeddine, Nicolas; Joza, Nicholas; Valent, Alexander; Castedo, Maria; Kroemer, Guido

    2010-04-07

    Tetraploidy can constitute a metastable intermediate between normal diploidy and oncogenic aneuploidy. Here, we show that the absence of p53 is not only permissive for the survival but also for multipolar asymmetric divisions of tetraploid cells, which lead to the generation of aneuploid cells with a near-to-diploid chromosome content. Multipolar mitoses (which reduce the tetraploid genome to a sub-tetraploid state) are more frequent when p53 is downregulated and the product of the Mos oncogene is upregulated. Mos inhibits the coalescence of supernumerary centrosomes that allow for normal bipolar mitoses of tetraploid cells. In the absence of p53, Mos knockdown prevents multipolar mitoses and exerts genome-stabilizing effects. These results elucidate the mechanisms through which asymmetric cell division drives chromosomal instability in tetraploid cells.

  12. Induction machine bearing faults detection based on a multi-dimensional MUSIC algorithm and maximum likelihood estimation.

    PubMed

    Elbouchikhi, Elhoussin; Choqueuse, Vincent; Benbouzid, Mohamed

    2016-07-01

    Condition monitoring of electric drives is of paramount importance since it contributes to enhance the system reliability and availability. Moreover, the knowledge about the fault mode behavior is extremely important in order to improve system protection and fault-tolerant control. Fault detection and diagnosis in squirrel cage induction machines based on motor current signature analysis (MCSA) has been widely investigated. Several high resolution spectral estimation techniques have been developed and used to detect induction machine abnormal operating conditions. This paper focuses on the application of MCSA for the detection of abnormal mechanical conditions that may lead to induction machines failure. In fact, this paper is devoted to the detection of single-point defects in bearings based on parametric spectral estimation. A multi-dimensional MUSIC (MD MUSIC) algorithm has been developed for bearing faults detection based on bearing faults characteristic frequencies. This method has been used to estimate the fundamental frequency and the fault related frequency. Then, an amplitude estimator of the fault characteristic frequencies has been proposed and fault indicator has been derived for fault severity measurement. The proposed bearing faults detection approach is assessed using simulated stator currents data, issued from a coupled electromagnetic circuits approach for air-gap eccentricity emulating bearing faults. Then, experimental data are used for validation purposes. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. From dipolar to multipolar interactions between ultracold Feshbach molecules

    NASA Astrophysics Data System (ADS)

    Quéméner, Goulven; Lepers, Maxence; Luc-Koenig, Eliane; Dulieu, Olivier

    2016-05-01

    Using the multipolar expansion of electrostatic and magnetostatic potential energies, we characterize the long-range interactions between two weakly-bound diatomic molecules, taking as an example the paramagnetic Er2 Feshbach molecules which were produced recently. The interaction between atomic magnetic dipoles gives rise to the usual R-3 leading term of the multipolar expansion, where R is the intermolecular distance. We show that additional terms scaling as R-5, R-7 and so on also appear, which are strongly anisotropic with respect to the orientation of the molecules. These terms can be seen as effective molecular multipole moments reflecting the spatial extension of the molecules which is non-negligible compared to R. We acknowledge the financial support of the COPOMOL project (ANR-13-IS04-0004) from Agence Nationale de la Recherche.

  14. Mask induction despite circuit obstruction: an unrecognized hazard of relying on automated machine check technology.

    PubMed

    Yang, Kamie K; Lewis, Ian H

    2014-06-15

    Various equipment malfunctions of anesthesia gas delivery systems have been previously reported. Our profession increasingly uses technology as a means to prevent these errors. We report a case of a near-total anesthesia circuit obstruction that went undetected before the induction of anesthesia despite the use of automated machine check technology. This case highlights that automated machine check modules can fail to detect severe equipment failure and demonstrates how, even in this era of expanding technology, manual checks still remain essential components of safe care.

  15. Direct Torque Control of a Three-Phase Voltage Source Inverter-Fed Induction Machine

    DTIC Science & Technology

    2013-12-01

    factors, FOC acquires all advantages of DC machine control and frees itself from the mechanical commutation drawbacks. Furthermore, FOC leads to high...of three-phase induction motor using microcontroller,” S.R.M Engineering College, Tamil Nadu, India , June/July 2006. [5] Texas Instruments Europe...loop. Direct flux control is possible through the constant magnetic field orientation achieved through commutator action. These two primary factors

  16. Multipolar Spindle Pole Coalescence Is a Major Source of Kinetochore Mis-Attachment and Chromosome Mis-Segregation in Cancer Cells

    PubMed Central

    Silkworth, William T.; Nardi, Isaac K.; Scholl, Lindsey M.; Cimini, Daniela

    2009-01-01

    Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed γ-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells. PMID:19668340

  17. Fault Diagnosis of Induction Machines in a Transient Regime Using Current Sensors with an Optimized Slepian Window

    PubMed Central

    Burriel-Valencia, Jordi; Martinez-Roman, Javier; Sapena-Bano, Angel

    2018-01-01

    The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current’s spectrogram with a significant reduction of the required computational resources. PMID:29316650

  18. Fault Diagnosis of Induction Machines in a Transient Regime Using Current Sensors with an Optimized Slepian Window.

    PubMed

    Burriel-Valencia, Jordi; Puche-Panadero, Ruben; Martinez-Roman, Javier; Sapena-Bano, Angel; Pineda-Sanchez, Manuel

    2018-01-06

    The aim of this paper is to introduce a new methodology for the fault diagnosis of induction machines working in the transient regime, when time-frequency analysis tools are used. The proposed method relies on the use of the optimized Slepian window for performing the short time Fourier transform (STFT) of the stator current signal. It is shown that for a given sequence length of finite duration, the Slepian window has the maximum concentration of energy, greater than can be reached with a gated Gaussian window, which is usually used as the analysis window. In this paper, the use and optimization of the Slepian window for fault diagnosis of induction machines is theoretically introduced and experimentally validated through the test of a 3.15-MW induction motor with broken bars during the start-up transient. The theoretical analysis and the experimental results show that the use of the Slepian window can highlight the fault components in the current's spectrogram with a significant reduction of the required computational resources.

  19. Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine

    DOEpatents

    Amey, David L.; Degner, Michael W.

    2002-01-01

    A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

  20. Bipolar radiofrequency ablation of liver metastases during laparotomy. First clinical experiences with a new multipolar ablation concept.

    PubMed

    Ritz, Joerg-Peter; Lehmann, Kai S; Reissfelder, Christoph; Albrecht, Thomas; Frericks, Bernd; Zurbuchen, Urte; Buhr, Heinz J

    2006-01-01

    radiofrequency using the novel multipolar ablation concept permits a safe and effective therapy for the induction of large volumes of coagulation in the local treatment of liver metastases.

  1. Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Smirnova, Daria; Smirnov, Alexander I.; Kivshar, Yuri S.

    2018-01-01

    By combining analytical and numerical approaches, we study resonantly enhanced second-harmonic generation by individual high-index dielectric nanoparticles made of centrosymmetric materials. Considering both bulk and surface nonlinearities, we describe second-harmonic nonlinear scattering from a silicon nanoparticle optically excited in the vicinity of the magnetic and electric dipolar resonances. We discuss the contributions of different nonlinear sources and the effect of the low-order optical Mie modes on the characteristics of the generated far field. We demonstrate that the multipolar expansion of the radiated field is dominated by dipolar and quadrupolar modes (two axially symmetric electric quadrupoles, an electric dipole, and a magnetic quadrupole) and the interference of these modes can ensure directivity of the nonlinear scattering. The developed multipolar analysis can be instructive for interpreting the far-field measurements of the nonlinear scattering and it provides prospective insights into a design of complementary metal-oxide-semiconductor compatible nonlinear nanoantennas fully integrated with silicon-based photonic circuits, as well as methods of nonlinear diagnostics.

  2. Strategies for Business Schools in a Multi-Polar World

    ERIC Educational Resources Information Center

    Dameron, Stephanie; Durand, Thomas

    2013-01-01

    Purpose: The purpose of this paper is to examine the contours of the emerging business education and institutions in a multi-polar world and to identify the causes of the strategic convergence of management education, to explore the limitations of the dominant models of management education and to propose a range of strategic alternatives for…

  3. Multipolar second harmonic generation in a symmetric nonlinear metamaterial

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Yang, Yuanmu; ...

    2017-08-14

    Optical nonlinearities are intimately related to the spatial symmetry of the nonlinear media. For example, the second order susceptibility vanishes for centrosymmetric materials under the dipole approximation. The latter concept has been naturally extended to the metamaterials’ realm, sometimes leading to the (erroneous) hypothesis that second harmonic (SH) generation is negligible in highly symmetric meta-atoms. In this work we aim to show that such symmetric meta-atoms can radiate SH light efficiently. In particular, we investigate in-plane centrosymmetric meta-atom designs where the approximation for meta-atoms breaks down. In a periodic array this building block allows us to control the directionality ofmore » the SH radiation. We conclude by showing that the use of symmetry considerations alone allows for the manipulation of the nonlinear multipolar response of a meta-atom, resulting in e.g. dipolar, quadrupolar, or multipolar emission on demand. This is because the size of the meta-atom is comparable with the free-space wavelength, thus invalidating the dipolar approximation for meta-atoms.« less

  4. Multipolar electrostatics.

    PubMed

    Cardamone, Salvatore; Hughes, Timothy J; Popelier, Paul L A

    2014-06-14

    Atomistic simulation of chemical systems is currently limited by the elementary description of electrostatics that atomic point-charges offer. Unfortunately, a model of one point-charge for each atom fails to capture the anisotropic nature of electronic features such as lone pairs or π-systems. Higher order electrostatic terms, such as those offered by a multipole moment expansion, naturally recover these important electronic features. The question remains as to why such a description has not yet been widely adopted by popular molecular mechanics force fields. There are two widely-held misconceptions about the more rigorous formalism of multipolar electrostatics: (1) Accuracy: the implementation of multipole moments, compared to point-charges, offers little to no advantage in terms of an accurate representation of a system's energetics, structure and dynamics. (2) Efficiency: atomistic simulation using multipole moments is computationally prohibitive compared to simulation using point-charges. Whilst the second of these may have found some basis when computational power was a limiting factor, the first has no theoretical grounding. In the current work, we disprove the two statements above and systematically demonstrate that multipole moments are not discredited by either. We hope that this perspective will help in catalysing the transition to more realistic electrostatic modelling, to be adopted by popular molecular simulation software.

  5. Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results.

    PubMed

    Bruners, P; Schmitz-Rode, T; Günther, R W; Mahnken, A

    2008-03-01

    To evaluate the clinical feasibility and safety of hepatic radiofrequency (RF) ablation using a multipolar RF system permitting the simultaneous use of up to six electrodes. Ten patients (3 female, 7 male, mean age 61) suffering from 29 hepatic metastases (range: 1 - 5) of different tumors were treated with a modified multipolar RF system (CelonLab Power, Celon Medical Instruments, Teltow, Germany) operating four to six needle-shaped internally cooled RF applicators. The procedure duration, applied energy and generator output were recorded during the intervention. The treatment result and procedure-related complications were analyzed. The achieved coagulation volume was calculated on the basis of contrast-enhanced CT scans 24 hours after RF ablation. Complete tumor ablation was achieved in all cases as determined by the post-interventional lack of contrast enhancement in the target region using four applicators in five patients, five applicators in one patient and six applicators in four patients. A mean energy deposition of 353.9 +/- 176.2 kJ resulted in a mean coagulation volume of 115.9 +/- 79.5 cm (3). The mean procedure duration was 74.9 +/- 21.2 minutes. Four patients showed an intraabdominal hemorrhage which necessitated further interventional treatment (embolization; percutaneous histoacryl injection) in two patients. Multipolar RF ablation of hepatic metastasis with up to six applicators was clinically feasible. In our patient population it was associated with an increased risk of intraabdominal bleeding probably due to the multiple punctures associated with the use of multiple applicators.

  6. On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.

    1999-04-01

    We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo solution of the Einstein equations in terms of bars. We find that each multi-pole corresponds to the Newtonian potential of a bar with linear density proportional to a Legendre polynomial. We use this fact to find an integral representation of the 0264-9381/16/4/010/img1 function. These integral representations are used in the context of the inverse scattering method to find solutions associated with one or more rotating bodies each with their own multi-polar structure.

  7. MEG (Magnetoencephalography) multipolar modeling of distributed sources using RAP-MUSIC (Recursively Applied and Projected Multiple Signal Characterization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, J. C.; Baillet, S.; Jerbi, K.

    2001-01-01

    We describe the use of truncated multipolar expansions for producing dynamic images of cortical neural activation from measurements of the magnetoencephalogram. We use a signal-subspace method to find the locations of a set of multipolar sources, each of which represents a region of activity in the cerebral cortex. Our method builds up an estimate of the sources in a recursive manner, i.e. we first search for point current dipoles, then magnetic dipoles, and finally first order multipoles. The dynamic behavior of these sources is then computed using a linear fit to the spatiotemporal data. The final step in the proceduremore » is to map each of the multipolar sources into an equivalent distributed source on the cortical surface. The method is illustrated through an application to epileptic interictal MEG data.« less

  8. Hubble space telescope observations and geometric models of compact multipolar planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong

    2014-05-20

    We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separatedmore » by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.« less

  9. Post-Newtonian factorized multipolar waveforms for spinning, nonprecessing black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yi; Buonanno, Alessandra; Racine, Etienne

    2011-03-15

    We generalize the factorized resummation of multipolar waveforms introduced by Damour, Iyer, and Nagar to spinning black holes. For a nonspinning test particle spiraling a Kerr black hole in the equatorial plane, we find that factorized multipolar amplitudes which replace the residual relativistic amplitude f{sub lm} with its lth root, {rho}{sub lm}=f{sub lm}{sup 1/l}, agree quite well with the numerical amplitudes up to the Kerr-spin value q{<=}0.95 for orbital velocities v{<=}0.4. The numerical amplitudes are computed solving the Teukolsky equation with a spectral code. The agreement for prograde orbits and large spin values of the Kerr black-hole can be furthermore » improved at high velocities by properly factoring out the lower-order post-Newtonian contributions in {rho}{sub lm}. The resummation procedure results in a better and systematic agreement between numerical and analytical amplitudes (and energy fluxes) than standard Taylor-expanded post-Newtonian approximants. This is particularly true for higher-order modes, such as (2,1), (3,3), (3,2), and (4,4), for which less spin post-Newtonian terms are known. We also extend the factorized resummation of multipolar amplitudes to generic mass-ratio, nonprecessing, spinning black holes. Lastly, in our study we employ new, recently computed, higher-order post-Newtonian terms in several subdominant modes and compute explicit expressions for the half and one-and-half post-Newtonian contributions to the odd-parity (current) and even-parity (odd) multipoles, respectively. Those results can be used to build more accurate templates for ground-based and space-based gravitational-wave detectors.« less

  10. Comparative investigation of diagnosis media for induction machine mechanical unbalance fault.

    PubMed

    Salah, Mohamed; Bacha, Khmais; Chaari, Abdelkader

    2013-11-01

    For an induction machine, we suggest a theoretical development of the mechanical unbalance effect on the analytical expressions of radial vibration and stator current. Related spectra are described and characteristic defect frequencies are determined. Moreover, the stray flux expressions are developed for both axial and radial sensor coil positions and a substitute diagnosis technique is proposed. In addition, the load torque effect on the detection efficiency of these diagnosis media is discussed and a comparative investigation is performed. The decisive factor of comparison is the fault sensitivity. Experimental results show that spectral analysis of the axial stray flux can be an alternative solution to cover effectiveness limitation of the traditional stator current technique and to substitute the classical vibration practice. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Force-balance model of suppression of multipolar division in cancer cells with extra centrosomes

    NASA Astrophysics Data System (ADS)

    Zhu, Jie

    2013-03-01

    Cancer cells often possess extra centrosomes which have the potential to cause cell death due to catastrophic multipolar division. Many cancer cells, however, are able to escape multipolar mitosis by clustering the extra centrosomes to form bipolar spindles. The mechanism of centrosome clustering is therefore of great interest to the development of anti-cancer drugs because the de-clustering of extra centrosomes provides an appealing way to eliminate cancer cells while keeping healthy cells intact. We present a physical model assuming 1) dynamic centrosomal microtubules interact with chromosomes by both pushing on chromosome arms and pulling along kinetochores; 2) these microtubules interact with force generators associated with actin/adhesion structures at the cell boundary; and 3) motors act on anti-parallel microtubules from different centrosomes. We find via computer simulations that chromosomes tend to aggregate near the cell center while centrosomes can be either clustered to form bipolar spindles or scattered to form multipolar spindles, depending on the strengths of relative forces, cell shape and adhesion geometry. The model predictions agree with data from cells plated on adhesive micropatterns and from biochemically or genetically perturbed cells. Furthermore, our model is able to explain various microtubule distributions in interphase cells on patterned substrates. This work was supported by NSF

  12. Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes

    PubMed Central

    Ding, Quan; Besio, Walter G.

    2015-01-01

    Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes, consisting of several elements including the central disc and a number of concentric rings, are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the next step toward further improving the Laplacian estimation with novel multipolar concentric ring electrodes by completing and validating a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. An explicit formula based on inversion of a square Vandermonde matrix is derived to make computation of multipolar Laplacian more efficient. To confirm the analytic result of the accuracy of Laplacian estimate increasing with the increase of n and to assess the significance of this gain in accuracy for practical applications finite element method model analysis has been performed. Multipolar concentric ring electrode configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings (septapolar electrode configuration) were directly compared and obtained results suggest the significance of the increase in Laplacian accuracy caused by increase of n. PMID:26693200

  13. Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Ding, Quan; Besio, Walter G

    2016-02-01

    Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes, consisting of several elements including the central disc and a number of concentric rings, are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the next step toward further improving the Laplacian estimation with novel multipolar concentric ring electrodes by completing and validating a general approach to estimation of the Laplacian for an ( n + 1)-polar electrode with n rings using the (4 n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2 n . An explicit formula based on inversion of a square Vandermonde matrix is derived to make computation of multipolar Laplacian more efficient. To confirm the analytic result of the accuracy of Laplacian estimate increasing with the increase of n and to assess the significance of this gain in accuracy for practical applications finite element method model analysis has been performed. Multipolar concentric ring electrode configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings (septapolar electrode configuration) were directly compared and obtained results suggest the significance of the increase in Laplacian accuracy caused by increase of n .

  14. Forest discrimination with multipolarization imaging radar

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.

    1985-01-01

    The use of radar polarization diversity for discriminating forest canopy variables on airborne synthetic-aperture radar (SAR) images is evaluated. SAR images were acquired at L-Band (24.6 cm) simultaneously in four linear polarization states (HH, HV, VH, and VV) in South Carolina on March 1, 1984. In order to relate the polarization signatures to biophysical properties, false-color composite images were compared to maps of forest stands in the timber compartment. In decreasing order, the most useful correlative forest data are stand basal area, forest age, site condition index, and forest management type. It is found that multipolarization images discriminate variation in tree density and difference in the amount of understory, but do not discriminate between evergreen and deciduous forest types.

  15. On the possibility to detect multipolar order in URu 2 Si 2 by the electric quadrupolar transition of resonant elastic x-ray scattering

    DOE PAGES

    Wang, Y. L.; Fabbris, G.; Meyers, D.; ...

    2017-08-30

    Resonant elastic x-ray scattering is a powerful technique for measuring multipolar order parameters. In this paper, we theoretically and experimentally study the possibility of using this technique to detect the proposed multipolar order parameters in URu 2 Si 2 at the U- L 3 edge with the electric quadrupolar transition. Based on an atomic model, we calculate the azimuthal dependence of the quadrupolar transition at the U- L 3 edge. Our results illustrate the potential of this technique for distinguishing different multipolar order parameters. We then perform experiments on ultraclean single crystals of URu 2 Si 2 at the U-more » L 3 edge to search for the predicted signal, but do not detect any indications of multipolar moments within the experimental uncertainty. We also theoretically estimate the orders of magnitude of the cross section and the expected count rate of the quadrupolar transition and compare them to the dipolar transitions at the U- M 4 and U- L 3 edges, clarifying the difficulty in detecting higher order multipolar order parameters in URu 2 Si 2 in the current experimental setup.« less

  16. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein–Ligand Complexes

    DOE PAGES

    Pollock, Jonathan; Borkin, Dmitry; Lund, George; ...

    2015-08-19

    Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein–ligand complexes. Such fluorine–backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin–MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes withmore » menin. Here, we found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin–MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine–backbone interactions in protein–ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin–MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Lastly, considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine–backbone interactions may represent a particularly attractive approach to improve inhibitors of protein–protein interactions.« less

  17. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn

    2014-04-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefullymore » establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.« less

  18. Induction generators for Wind Energy Conversion Systems. Part I: review of induction generator with squirrel cage rotor. Part II: the Double Output Induction Generator (DOIG). Progress report, July-December 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayadev, T.S.

    1976-02-01

    The application of induction generators in Wind Energy Conversion Systems (WECS) is described. The conventional induction generator, which is an induction machine with a squirrel cage rotor, had been used in large wind power plants in Europe, but has not caught much attention until now by designers of large systems in this country. The induction generator with a squirrel cage rotor is described and useful design techniques to build induction generators for wind energy application are outlined. The Double Output Induction Generator (DOIG) - so called because power is fed into the grid from the stator, as well as themore » rotor is described. It is a wound rotor induction machine with power electronics to convert rotor slip frequency power to that of line frequency.« less

  19. Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.

    PubMed

    Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C

    2012-06-18

    Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear.

  20. CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma: specific technical aspects and clinical results.

    PubMed

    Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L

    2013-06-01

    This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  1. Real time automatic detection of bearing fault in induction machine using kurtogram analysis.

    PubMed

    Tafinine, Farid; Mokrani, Karim

    2012-11-01

    A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor.

  2. Multipolar moments of weak lensing signal around clusters. Weighing filaments in harmonic space

    NASA Astrophysics Data System (ADS)

    Gouin, C.; Gavazzi, R.; Codis, S.; Pichon, C.; Peirani, S.; Dubois, Y.

    2017-09-01

    Context. Upcoming weak lensing surveys such as Euclid will provide an unprecedented opportunity to quantify the geometry and topology of the cosmic web, in particular in the vicinity of lensing clusters. Aims: Understanding the connectivity of the cosmic web with unbiased mass tracers, such as weak lensing, is of prime importance to probe the underlying cosmology, seek dynamical signatures of dark matter, and quantify environmental effects on galaxy formation. Methods: Mock catalogues of galaxy clusters are extracted from the N-body PLUS simulation. For each cluster, the aperture multipolar moments of the convergence are calculated in two annuli (inside and outside the virial radius). By stacking their modulus, a statistical estimator is built to characterise the angular mass distribution around clusters. The moments are compared to predictions from perturbation theory and spherical collapse. Results: The main weakly chromatic excess of multipolar power on large scales is understood as arising from the contraction of the primordial cosmic web driven by the growing potential well of the cluster. Besides this boost, the quadrupole prevails in the cluster (ellipsoidal) core, while at the outskirts, harmonic distortions are spread on small angular modes, and trace the non-linear sharpening of the filamentary structures. Predictions for the signal amplitude as a function of the cluster-centric distance, mass, and redshift are presented. The prospects of measuring this signal are estimated for current and future lensing data sets. Conclusions: The Euclid mission should provide all the necessary information for studying the cosmic evolution of the connectivity of the cosmic web around lensing clusters using multipolar moments and probing unique signatures of, for example, baryons and warm dark matter.

  3. Anatomy of the binary black hole recoil: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van

    2008-02-15

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less

  4. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  5. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    NASA Astrophysics Data System (ADS)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  6. Analysis and design of asymmetrical reluctance machine

    NASA Astrophysics Data System (ADS)

    Harianto, Cahya A.

    Over the past few decades the induction machine has been chosen for many applications due to its structural simplicity and low manufacturing cost. However, modest torque density and control challenges have motivated researchers to find alternative machines. The permanent magnet synchronous machine has been viewed as one of the alternatives because it features higher torque density for a given loss than the induction machine. However, the assembly and permanent magnet material cost, along with safety under fault conditions, have been concerns for this class of machine. An alternative machine type, namely the asymmetrical reluctance machine, is proposed in this work. Since the proposed machine is of the reluctance machine type, it possesses desirable feature, such as near absence of rotor losses, low assembly cost, low no-load rotational losses, modest torque ripple, and rather benign fault conditions. Through theoretical analysis performed herein, it is shown that this machine has a higher torque density for a given loss than typical reluctance machines, although not as high as the permanent magnet machines. Thus, the asymmetrical reluctance machine is a viable and advantageous machine alternative where the use of permanent magnet machines are undesirable.

  7. Multipolar Coupling in Hybrid Metal–Dielectric Metasurfaces

    DOE PAGES

    Guo, Rui; Rusak, Evgenia; Staude, Isabelle; ...

    2016-03-02

    In this paper, we study functional hybrid metasurfaces consisting of metal–dielectric nanoantennas that direct light from an incident plane wave or from localized light sources into a preferential direction. The directionality is obtained by carefully balancing the multipolar contributions to the scattering response from the constituents of the metasurface. The hybrid nanoantennas are composed of a plasmonic gold nanorod acting as a feed element and a silicon nanodisk acting as a director element. In order to experimentally realize this design, we have developed a two-step electron-beam lithography process in combination with a precision alignment step. Finally, the optical response ofmore » the fabricated sample is measured and reveals distinct signatures of coupling between the plasmonic and the dielectric nanoantenna elements that ultimately leads to unidirectional radiation of light.« less

  8. Finite Element Analysis in the Estimation of Air-Gap Torque and Surface Temperature of Induction Machine

    NASA Astrophysics Data System (ADS)

    Mr., J. Ravi Kumar; Banakara, Basavaraja, Dr.

    2017-08-01

    This paper presents electromagnetic and thermal behavior of Induction Motor (IM) through the modeling and analysis by applying multiphysics coupled Finite Element Analysis (FEA). Therefore prediction of the magnetic flux, electromagnetic torque, stator and rotor losses and temperature distribution inside an operating electric motor are the most important issues during its design. Prediction and estimation of these parameters allows design engineers to decide capability of the machine for the proposed load, temperature rating and its application for which it is being designed ensuring normal motor operation at rated conditions. In this work, multiphysics coupled electromagnetic - thermal modeling and analysis of induction motor at rated and high frequency has carried out applying Arkkio’s torque method. COMSOL Multiphysics software is used for modeling and finite element analysis of IM. Transient electromagnetic torque, magnetic field distribution, speed-torque characteristics of IM were plotted and studied at different frequencies. This proposed work helps in the design and prediction of accurate performance of induction motor specific to various industrial drive applications. Results obtained are also validated with experimental analysis. The main purpose of this model is to use it as an integral part of the design aiming to system optimization of Variable Speed Drive (VSD) and its components using coupled simulations.

  9. Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Mao, Chenyang; Yang, Yang; He, Xiaoxiang; Zheng, Jingming; Zhou, Chun

    2017-12-01

    In this paper, a broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface is proposed. The proposed metasurface can effectively convert linear-polarized (TE/TM) incident wave into the reflected wave with three different polarizations within the frequency bands of 5.5-22.75 GHz. Based on the electric and magnetic resonant features of the double-L-shaped structure, the proposed metasurface can convert linearly polarized waves into cross-polarized waves at three resonant frequency bands. Furthermore, the incident linearly polarized waves can be effectively converted into left/right handed circular-polarized (LHCP and RHCP) waves at other four non-resonance frequency bands. Thus, the proposed metasurface can be regarded as a seven-band multi-polarization converter. The prototype of the proposed polarization converter is analyzed and measured. Both simulated and measured results show the 3-dB axis ratio bandwidth of circular polarization bands and the high polarization conversion efficiency of cross-polarization bands when the incident wave changes from 0° to 30° at both TE and TM modes.

  10. Real time PI-backstepping induction machine drive with efficiency optimization.

    PubMed

    Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader

    2017-09-01

    This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Multipolar pacing by cardiac resynchronization therapy with a defibrillators treatment in type 2 diabetes mellitus failing heart patients: impact on responders rate, and clinical outcomes.

    PubMed

    Sardu, Celestino; Barbieri, Michelangela; Santamaria, Matteo; Giordano, Valerio; Sacra, Cosimo; Paolisso, Pasquale; Spirito, Alessandro; Marfella, Raffaele; Paolisso, Giuseppe; Rizzo, Maria Rosaria

    2017-06-09

    Type 2 diabetes mellitus (T2DM) is a multi factorial disease, affecting clinical outcomes in failing heart patients treated by cardiac resynchronization therapy with a defibrillator (CRT-d). One hundred and ninety-five T2DM patients received a CRT-d treatment. Randomly the study population received a CRT-d via multipolar left ventricle (LV) lead pacing (n 99, multipolar group), vs a CRT-d via bipolar LV pacing (n 96, bipolar group). These patients were followed by clinical, and instrumental assessment, and telemetric device control at follow up. In this study we evaluated, in a population of failing heart T2DM patients, cardiac deaths, all cause deaths, arrhythmic events, CRT-d responders rate, hospitalizations for HF worsening, phrenic nerve stimulation (PNS), and LV catheter dislodgment events (and re-intervention for LV catheter re-positioning), comparing multipolar CRT-d vs bipolar CRT-d group of patients at follow up. At follow up there was a statistical significant difference about atrial arrhythmic events [7 (7%) vs 16 (16.7%), p value 0.019], hospitalizations for HF worsening [15 (15.2% vs 24 (25%), p value 0.046], LV catheter dislodgments [1 (1%) vs 9 (9.4%), p value 0018], PNS [5 (5%) vs 18 (18.7%), p value 0.007], and LV re-positioning [1 (1%) vs 9 (9.4%), p value 0.018], comparing multipolar CRT-d vs bipolar CRT-d group of patients. Multipolar pacing was an independent predictor of all these events. CRT-d pacing via multipolar LV lead vs bipolar LV lead may reduce arrhythmic burden, hospitalization rate, PNS, LV catheters dislodgments, and re-interventions in T2DM failing heart patients. Clinical trial number NCT03095196.

  12. Multipolar modes in dielectric disk resonator for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2017-09-01

    We demonstrate a magnetic resonant WPT system based on dielectric disk resonators and investigated the WPT efficiency as a function of separation. It has been demonstrated that the power transfer can be achieved at different multipolar modes. The numerical study shows that the highest WPT efficiency of 99% can be obtained for the MQ mode in an ideal case. However, the efficiency of MQ mode decays much faster than the MD mode which suggests that a trade-off has to be made in the practical WPT system design.

  13. Energy saving concepts relating to induction generators

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1980-01-01

    Energy saving concepts relating to induction generators are presented. The first describes a regenerative scheme using an induction generator as a variable load for prime movers under test is described. A method for reducing losses in induction machines used specifically as wind driven generators is also described.

  14. Grid-connected in-stream hydroelectric generation based on the doubly fed induction machine

    NASA Astrophysics Data System (ADS)

    Lenberg, Timothy J.

    Within the United States, there is a growing demand for new environmentally friendly power generation. This has led to a surge in wind turbine development. Unfortunately, wind is not a stable prime mover, but water is. Why not apply the advances made for wind to in-stream hydroelectric generation? One important advancement is the creation of the Doubly Fed Induction Machine (DFIM). This thesis covers the application of a gearless DFIM topology for hydrokinetic generation. After providing background, this thesis presents many of the options available for the mechanical portion of the design. A mechanical turbine is then specified. Next, a method is presented for designing a DFIM including the actual design for this application. In Chapter 4, a simulation model of the system is presented, complete with a control system that maximizes power generation based on water speed. This section then goes on to present simulation results demonstrating proper operation.

  15. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly utilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilizes induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  16. Induction motor control

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1990-01-01

    Electromechanical actuators developed to date have commonly ultilized permanent magnet (PM) synchronous motors. More recently switched reluctance (SR) motors have been advocated due to their robust characteristics. Implications of work which utilized induction motors and advanced control techniques are discussed. When induction motors are operated from an energy source capable of controlling voltages and frequencies independently, drive characteristics are obtained which are superior to either PM or SR motors. By synthesizing the machine frequency from a high-frequency carrier (nominally 20 kHz), high efficiencies, low distortion, and rapid torque response are available. At this time multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of aerospace actuators. This effort is based upon high-frequency power distribution and management techniques developed by NASA for Space Station Freedom.

  17. Method and device for determining bond separation strength using induction heating

    NASA Technical Reports Server (NTRS)

    Coultrip, Robert H. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Phillips, W. Morris (Inventor); Fox, Robert L. (Inventor)

    1994-01-01

    An induction heating device includes an induction heating gun which includes a housing, a U-shaped pole piece having two spaced apart opposite ends defining a gap there between, the U-shaped pole piece being mounted in one end of the housing, and a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil. A power source is connected to the tank circuit. A pull test machine is provided having a stationary chuck and a movable chuck, the two chucks holding two test pieces bonded together at a bond region. The heating gun is mounted on the pull test machine in close proximity to the bond region of the two test pieces, whereby when the tank circuit is energized, the two test pieces are heated by induction heating while a tension load is applied to the two test pieces by the pull test machine to determine separation strength of the bond region.

  18. A Double-Sided Linear Primary Permanent Magnet Vernier Machine

    PubMed Central

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed. PMID:25874250

  19. A double-sided linear primary permanent magnet vernier machine.

    PubMed

    Du, Yi; Zou, Chunhua; Liu, Xianxing

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  20. Electric Machine with Boosted Inductance to Stabilize Current Control

    NASA Technical Reports Server (NTRS)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  1. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  2. Multipolar radiofrequency ablation with internally cooled electrodes: experimental study in ex vivo bovine liver with mathematic modeling.

    PubMed

    Clasen, Stephan; Schmidt, Diethard; Boss, Andreas; Dietz, Klaus; Kröber, Stefan M; Claussen, Claus D; Pereira, Philippe L

    2006-03-01

    To evaluate the size and geometry of thermally induced coagulation by using multipolar radiofrequency (RF) ablation and to determine a mathematic model to predict coagulation volume. Multipolar RF ablations (n = 80) were performed in ex vivo bovine livers by using three internally cooled bipolar applicators with two electrodes on the same shaft. Applicators were placed in a triangular array (spacing, 2-5 cm) and were activated in multipolar mode (power output, 75-225 W). The size and geometry of the coagulation zone, together with ablation time, were assessed. Mathematic functions were fitted, and the goodness of fit was assessed by using r(2). Coagulation volume, short-axis diameter, and ablation time were dependent on power output and applicator distance. The maximum zone of coagulation (volume, 324 cm(3); short-axis diameter, 8.4 cm; ablation time, 193 min) was induced with a power output of 75 W at an applicator distance of 5 cm. Coagulation volume and ablation time decreased as power output increased. Power outputs of 100-125 W at applicator distances of 2-4 cm led to a reasonable compromise between coagulation volume and ablation time. At 2 cm (100 W), coagulation volume, short-axis diameter, and ablation time were 66 cm(3), 4.5 cm, and 19 min, respectively; at 3 cm (100 W), 90 cm(3), 5.2 cm, and 22 min, respectively; at 4 cm (100 W), 132 cm(3), 6.1 cm, and 27 min, respectively; at 2 cm (125 W), 56 cm(3), 4.2 cm, and 9 min, respectively; at 3 cm (125 W), 73 cm(3), 4.9 cm, and 12 min, respectively; and at 4 cm (125 W), 103 cm(3), 5.5 cm, and 16 min, respectively. At applicator distances of 4 cm (>125 W) and 5 cm (>100 W), the zones of coagulation were not confluent. Coagulation volume (r(2) = 0.80) and RF ablation time (r(2) = 0.93) were determined by using the mathematic model. Multipolar RF ablation with three bipolar applicators may produce large volumes of confluent coagulation ex vivo. A compromise is necessary between prolonged RF ablations at lower

  3. Does Size Matter? The Multipolar International Landscape of Nanoscience

    PubMed Central

    Jensen, Pablo; Kreimer, Pablo

    2016-01-01

    How do different countries tackle nanoscience research? Are all countries similar except for a trivial size effect, as science is often assumed to be universal? Or does size dictate large differences, as large countries are able to develop activities in all directions of research, while small countries have to specialize in some specific niches? Alternatively, is size irrelevant, as all countries have followed different historical paths, leading to different patterns of specialisation? Here, we develop an original method that uses a bottom-up definition of scientific subfields to map the international structure of any scientific field. Our analysis shows that nanoscience research does not show a universal pattern of specialisation, homothetic of that of a single global leader (e.g., the United States). Instead, we find a multipolar world, with four main ways of doing nanosciences. PMID:27992439

  4. Does Size Matter? The Multipolar International Landscape of Nanoscience.

    PubMed

    Levin, Luciano; Jensen, Pablo; Kreimer, Pablo

    2016-01-01

    How do different countries tackle nanoscience research? Are all countries similar except for a trivial size effect, as science is often assumed to be universal? Or does size dictate large differences, as large countries are able to develop activities in all directions of research, while small countries have to specialize in some specific niches? Alternatively, is size irrelevant, as all countries have followed different historical paths, leading to different patterns of specialisation? Here, we develop an original method that uses a bottom-up definition of scientific subfields to map the international structure of any scientific field. Our analysis shows that nanoscience research does not show a universal pattern of specialisation, homothetic of that of a single global leader (e.g., the United States). Instead, we find a multipolar world, with four main ways of doing nanosciences.

  5. MULTIPOLAR SPINDLE 1 (MPS1), a novel coiled-coil protein of Arabidopsis thaliana, is required for meiotic spindle organization.

    PubMed

    Jiang, Hua; Wang, Fen-Fei; Wu, Yu-Ting; Zhou, Xi; Huang, Xue-Yong; Zhu, Jun; Gao, Ju-Fang; Dong, Rui-Bin; Cao, Kai-Ming; Yang, Zhong-Nan

    2009-09-01

    The spindle is essential for chromosome segregation during meiosis, but the molecular mechanism of meiotic spindle organization in higher plants is still not well understood. Here, we report on the identification and characterization of a plant-specific protein, MULTIPOLAR SPINDLE 1 (MPS1), which is involved in spindle organization in meiocytes of Arabidopsis thaliana. The homozygous mps1 mutant exhibits male and female sterility. Light microscopy showed that mps1 mutants produced multiple uneven spores during anther development, most of which aborted in later stages. Cytological analysis showed that chromosome segregation was abnormal in mps1 meiocytes. Immunolocalization showed unequal bipolar or multipolar spindles in mps1 meiocytes, which indicated that aberrant spindles resulted in disordered chromosome segregation. MPS1 encodes a 377-amino-acid protein with putative coiled-coil motifs. In situ hybridization analysis showed that MPS1 is strongly expressed in meiocytes.

  6. Discrimination of coastal wetland environments in the Amazon region based on multi-polarized L-band airborne Synthetic Aperture Radar imagery

    NASA Astrophysics Data System (ADS)

    Souza-Filho, Pedro Walfir M.; Paradella, Waldir R.; Rodrigues, Suzan W. P.; Costa, Francisco R.; Mura, José C.; Gonçalves, Fabrício D.

    2011-11-01

    This study assessed the use of multi-polarized L-band images for the identification of coastal wetland environments in the Amazon coast region of northern Brazil. Data were acquired with a SAR R99B sensor from the Amazon Surveillance System (SIVAM) on board a Brazilian Air Force jet. Flights took place in the framework of the 2005 MAPSAR simulation campaign, a German-Brazilian feasibility study focusing on a L-band SAR satellite. Information retrieval was based on the recognition of the interaction between a radar signal and shallow-water morphology in intertidal areas, coastal dunes, mangroves, marshes and the coastal plateau. Regarding the performance of polarizations, VV was superior for recognizing intertidal area morphology under low spring tide conditions; HH for mapping coastal environments covered with forest and scrub vegetation such as mangrove and vegetated dunes, and HV was suitable for distinguishing transition zones between mangroves and coastal plateau. The statistical results for the classification maps expressed by kappa index and general accuracy were 83.3% and 0.734 for the multi-polarized color composition (R-HH, G-HV, B-VV), 80.7% and 0.694% for HH, 79.7% and 0.673% for VV, and 77.9% and 0.645% for HV amplitude image. The results indicate that use of multi-polarized L-band SAR is a valuable source of information aiming at the identification and discrimination of distinct geomorphic targets in tropical wetlands.

  7. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  8. Estimation of Soil Moisture with L-band Multi-polarization Radar

    NASA Technical Reports Server (NTRS)

    Shi, J.; Chen, K. S.; Kim, Chung-Li Y.; Van Zyl, J. J.; Njoku, E.; Sun, G.; O'Neill, P.; Jackson, T.; Entekhabi, D.

    2004-01-01

    Through analyses of the model simulated data-base, we developed a technique to estimate surface soil moisture under HYDROS radar sensor (L-band multi-polarizations and 40deg incidence) configuration. This technique includes two steps. First, it decomposes the total backscattering signals into two components - the surface scattering components (the bare surface backscattering signals attenuated by the overlaying vegetation layer) and the sum of the direct volume scattering components and surface-volume interaction components at different polarizations. From the model simulated data-base, our decomposition technique works quit well in estimation of the surface scattering components with RMSEs of 0.12,0.25, and 0.55 dB for VV, HH, and VH polarizations, respectively. Then, we use the decomposed surface backscattering signals to estimate the soil moisture and the combined surface roughness and vegetation attenuation correction factors with all three polarizations.

  9. Resolving the multipolar scattering modes of a submicron particle using parametric indirect microscopic imaging

    NASA Astrophysics Data System (ADS)

    Ullah, Kaleem; Liu, Xuefeng; Krasnok, Alex; Habib, Muhammad; Song, Li; Garcia-Camara, Braulio

    2018-07-01

    In this work, we show the spatial distribution of the scattered electromagnetic field of dielectric particles by using a new super-resolution method based on polarization modulation. Applying this technique, we were able to resolve the multipolar distribution of a Cu2O particle with a radius of 450 nm. In addition, FDTD and Mie simulations have been carried out to validate and confirm the experimental results. The results are helpful to understand the resonant modes of dielectric submicron particles which have a broad range of potential applications, such as all-optical devices or nanoantennas.

  10. WAVE2-Abi2 complex controls growth cone activity and regulates the multipolar-bipolar transition as well as the initiation of glia-guided migration.

    PubMed

    Xie, Min-Jue; Yagi, Hideshi; Kuroda, Kazuki; Wang, Chen-Chi; Komada, Munekazu; Zhao, Hong; Sakakibara, Akira; Miyata, Takaki; Nagata, Koh-Ichi; Oka, Yuichiro; Iguchi, Tokuichi; Sato, Makoto

    2013-06-01

    Glia-guided migration (glia-guided locomotion) during radial migration is a characteristic yet unique mode of migration. In this process, the directionality of migration is predetermined by glial processes and not by growth cones. Prior to the initiation of glia-guided migration, migrating neurons transform from multipolar to bipolar, but the molecular mechanisms underlying this multipolar-bipolar transition and the commencement of glia-guided migration are not fully understood. Here, we demonstrate that the multipolar-bipolar transition is not solely a cell autonomous event; instead, the interaction of growth cones with glial processes plays an essential role. Time-lapse imaging with lattice assays reveals the importance of vigorously active growth cones in searching for appropriate glial scaffolds, completing the transition, and initiating glia-guided migration. These growth cone activities are regulated by Abl kinase and Cdk5 via WAVE2-Abi2 through the phosphorylation of tyrosine 150 and serine 137 of WAVE2. Neurons that do not display such growth cone activities are mispositioned in a more superficial location in the neocortex, suggesting the significance of growth cones for the final location of the neurons. This process occurs in spite of the "inside-out" principle in which later-born neurons are situated more superficially.

  11. Harmonic reduction of Direct Torque Control of six-phase induction motor.

    PubMed

    Taheri, A

    2016-07-01

    In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Miniature Gas-Circulating Machine

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.; Valenzuela, Javier A.; Sixsmith, Herbert; Nutt, William E.

    1993-01-01

    Proposed gas-circulating machine consists essentially of centrifugal pump driven by induction motor. Noncontact bearings suppress wear and contamination. Used to circulate helium (or possibly hydrogen or another gas) in regeneration sorption-compressor refrigeration system aboard spacecraft. Also proves useful in terrestrial applications in which long life, reliability, and low contamination essential.

  13. High Velocity Linear Induction Launcher with Exit-Edge Compensation for Testing of Aerospace Components

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Stephen; Marriott, Darin

    2008-01-01

    Advances in ultra high speed linear induction electromagnetic launchers over the past decade have focused on magnetic compensation of the exit and entry-edge transient flux wave to produce efficient and compact linear electric machinery. The paper discusses two approaches to edge compensation in long-stator induction catapults with typical end speeds of 150 to 1,500 m/s. In classical linear induction machines, the exit-edge effect is manifest as two auxiliary traveling waves that produce a magnetic drag on the projectile and a loss of magnetic flux over the main surface of the machine. In the new design for the Stator Compensated Induction Machine (SCIM) high velocity launcher, the exit-edge effect is nulled by a dual wavelength machine or alternately the airgap flux is peaked at a location prior to the exit edge. A four (4) stage LIM catapult is presently being constructed for 180 m/s end speed operation using double-sided longitudinal flux machines. Advanced exit and entry edge compensation is being used to maximize system efficiency, and minimize stray heating of the reaction armature. Each stage will output approximately 60 kN of force and produce over 500 G s of acceleration on the armature. The advantage of this design is there is no ablation to the projectile and no sliding contacts, allowing repeated firing of the launcher without maintenance of any sort. The paper shows results of a parametric study for 500 m/s and 1,500 m/s linear induction launchers incorporating two of the latest compensation techniques for an air-core stator primary and an iron-core primary winding. Typical thrust densities for these machines are in the range of 150 kN/sq.m. to 225 kN/sq.m. and these compete favorably with permanent magnet linear synchronous machines. The operational advantages of the high speed SCIM launcher are shown by eliminating the need for pole-angle position sensors as would be required by synchronous systems. The stator power factor is also improved.

  14. The eXperience Induction Machine: A New Paradigm for Mixed-Reality Interaction Design and Psychological Experimentation

    NASA Astrophysics Data System (ADS)

    Bernardet, Ulysses; Bermúdez I Badia, Sergi; Duff, Armin; Inderbitzin, Martin; Le Groux, Sylvain; Manzolli, Jônatas; Mathews, Zenon; Mura, Anna; Väljamäe, Aleksander; Verschure, Paul F. M. J.

    The eXperience Induction Machine (XIM) is one of the most advanced mixed-reality spaces available today. XIM is an immersive space that consists of physical sensors and effectors and which is conceptualized as a general-purpose infrastructure for research in the field of psychology and human-artifact interaction. In this chapter, we set out the epistemological rational behind XIM by putting the installation in the context of psychological research. The design and implementation of XIM are based on principles and technologies of neuromorphic control. We give a detailed description of the hardware infrastructure and software architecture, including the logic of the overall behavioral control. To illustrate the approach toward psychological experimentation, we discuss a number of practical applications of XIM. These include the so-called, persistent virtual community, the application in the research of the relationship between human experience and multi-modal stimulation, and an investigation of a mixed-reality social interaction paradigm.

  15. Integrated Inverter For Driving Multiple Electric Machines

    DOEpatents

    Su, Gui-Jia [Knoxville, TN; Hsu, John S [Oak Ridge, TN

    2006-04-04

    An electric machine drive (50) has a plurality of inverters (50a, 50b) for controlling respective electric machines (57, 62), which may include a three-phase main traction machine (57) and two-phase accessory machines (62) in a hybrid or electric vehicle. The drive (50) has a common control section (53, 54) for controlling the plurality of inverters (50a, 50b) with only one microelectronic processor (54) for controlling the plurality of inverters (50a, 50b), only one gate driver circuit (53) for controlling conduction of semiconductor switches (S1-S10) in the plurality of inverters (50a, 50b), and also includes a common dc bus (70), a common dc bus filtering capacitor (C1) and a common dc bus voltage sensor (67). The electric machines (57, 62) may be synchronous machines, induction machines, or PM machines and may be operated in a motoring mode or a generating mode.

  16. Pathological documentation of complete elimination of Barrett's metaplasia following endoscopic multipolar electrocoagulation therapy

    PubMed Central

    Fennerty, M; Corless, C; Sheppard, B; Faigel, D; Lieberman, D; Sampliner, R

    2001-01-01

    The previous paradigm that Barrett's is an irreversible premalignant lesion has recently been challenged by a proliferation of reports documenting elimination of Barrett's by a variety of endoscopic techniques. Whether Barrett's is entirely eliminated is unknown as endoscopic biopsy samples the surface of the epithelium only. Numerous reports document underlying specialised columnar epithelium in many of these trials. Until now there have been no reports of pathological examination of the entire oesophagus as a specimen. This case documents complete elimination of intestinal metaplasia from the oesophagus and supports the biological plausibility of these research techniques.


Keywords: Barrett's oesophagus; endoscopy; multipolar electrocoagulation PMID:11413122

  17. Multipolar Ewald methods, 1: theory, accuracy, and performance.

    PubMed

    Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M

    2015-02-10

    The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.

  18. Multipolar Kondo effect in a S10-P32 mixture of 173Yb atoms

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Igor; Kuzmenko, Tetyana; Avishai, Yshai; Jo, Gyu-Boong

    2018-02-01

    Whereas in the familiar Kondo effect the exchange interaction is dipolar, there are systems in which the exchange interaction is multipolar, as has been realized in a recent experiment. Here, we study multipolar Kondo effect in a Fermi gas of cold 173Yb atoms. Making use of different ac polarizabilities of the electronic ground state Yb (S10 ) and the long-lived metastable state Yb*(P32 ), it is suggested that the latter atoms can be localized and serve as a dilute concentration of magnetic impurities while the former ones remain itinerant. The exchange mechanism between the itinerant Yb and the localized Yb* atoms is analyzed and shown to be antiferromagnetic. The quadrupole and octupole interactions act to enhance the Kondo temperature TK that is found to be experimentally accessible. The bare exchange Hamiltonian needs to be decomposed into dipole (d), quadrupole (q), and octupole (o) interactions in order to retain its form under renormalization group (RG) analysis, in which the corresponding exchange constants (λd,λq, and λo) flow independently. Numerical solution of the RG scaling equations reveals a few finite fixed points. Arguments are presented that the Fermi-liquid fixed point at low temperature is unstable, indicating that the impurity is overscreened, which suggests a non-Fermi-liquid phase. The impurity contributions to the specific heat, entropy, and the magnetic susceptibility are calculated in the weak coupling regime (T ≫TK ), and are compared with the analogous results obtained for the standard case of dipolar exchange interaction (the s -d Hamiltonian).

  19. Block-Module Electric Machines of Alternating Current

    NASA Astrophysics Data System (ADS)

    Zabora, I.

    2018-03-01

    The paper deals with electric machines having active zone based on uniform elements. It presents data on disk-type asynchronous electric motors with short-circuited rotors, where active elements are made by integrated technique that forms modular elements. Photolithography, spraying, stamping of windings, pressing of core and combined methods are utilized as the basic technological approaches of production. The constructions and features of operation for new electric machine - compatible electric machines-transformers are considered. Induction motors are intended for operation in hermetic plants with extreme conditions surrounding gas, steam-to-gas and liquid environment at a high temperature (to several hundred of degrees).

  20. Steels with controlled hardenability for induction hardening

    NASA Astrophysics Data System (ADS)

    Shepelyakovskii, K. Z.

    1980-07-01

    Steels of the CH and LH type developed in the Soviet Union permit the use of a new method of induction hardening — bulk-surface hardening — and efficient utilization of the high-strength conditions (σb = 230-250 kgf/mm2). These steels make it possible to improve the structural strength, operating characteristics, service life, and reliability of critical heavily loaded machine parts. At the same time, CH steels make it possible to reduce by a factor of 2-3 the quantity of alloying elements, reduce the electrical energy for heat treatment, and completely exclude the cost of quenching oil for heat treatment in automatic equipment with high labor productivity, while retaining good working conditions. All this leads to substantial savings in production and operation. For example, when transmission gears (cylindrical and conical) are manufactured from LH steels the annual savings amount to more than 700,000 rubles at two automobile plants. Machine parts of CH steels — half axles and bearings in railway cars —have saved respectively six and four million rubles annually. The introduction of controlled-hardenability steels for induction hardening is a necessary condition for technological progress in machine construction and metallurgy.

  1. Laser Transmitter Design and Performance for the Slope Imaging Multi-Polarization Photon-Counting Lidar (SIMPL) Instrument

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Harding, David J.; Dabney, Philip W.

    2016-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument is a polarimetric, two-color, multibeam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program and has been flown successfully on multiple airborne platforms since 2008. In this talk we will discuss the laser transmitter performance and present recent science data collected over the Greenland ice sheet and sea ice in support of the NASA Ice Cloud and land Elevation Satellite 2 (ICESat-2) mission to be launched in 2017.

  2. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  3. Contributions a l'etude et a l'application industrielle de la machine asynchrone

    NASA Astrophysics Data System (ADS)

    Ouhrouche, Mohand-Ameziane

    The work presented in this thesis, done in the Electrical Drives Laboratory of Electrical and Computer Engineering Department, deals with the industrial applications of a three-phase induction machine (electrical drives and electricity generation). This thesis, characterized by its multidisciplinary content, has two major parts. The first one deals with the on-line and off-line parametric identification of the induction machine model necessary to achieve accurate vector control strategy. The second part, which is a resume of a research work sponsored by Hydro-Quebec, deals with the application of an induction machine in Asynchronous Non Utility Generators units (ANUG). As it is shown in the following, major scientific contributions are made in both two parts. In the first part of our research work, we propose a new speed sensorless vector control strategy for an induction machine, which is adaptive to the rotor resistance variations. The proposed control strategy is based on the Extended Kalman Filter approach and a decoupling controller which takes into account the rotor resistance variations. The consideration of coupled electrical and mechanical modes leads to a fifth order nonlinear model of the induction machine. The load torque is taken as a function of the rotor angular speed. The Extended Kalman Filter, based on the process's nonlinear (bilinear) model, estimate simultaneously the rotor resistance, angular speed and the flux vector from the startup to the steady state equilibrium point. The machine-converter-control system is implemented in MATLAB/SIMULINK environment and the obtained results confirm the robustness of the proposed scheme. As in the electrical drives erea, the induction machine is now widely used by small to medium power Non Utility Generator units (NUG) to produce electricity. In Quebec, these NUGs units are integrated into the Hydro-Quebec 25 kV distribution system via transformer which exhibit nonlinear characteristics. We have shown by

  4. Design of motor induction 3-Phase from waste industry to generator for microhydro at isolated village

    NASA Astrophysics Data System (ADS)

    Rimbawati; Azis Hutasuhut, Abdul; Irsan Pasaribu, Faisal; Cholish; Muharnif

    2017-09-01

    There is an electric machine that can operate as a generator either single-phase or three-phase in almost every household and industry today. This electric engine cannot be labeled as a generator but can be functioned as a generator. The machine that is mentioned is “squirrel cage motors” or it is well-known as induction motor that can be found in water pumps, washing machines, fans, blowers and other industrial machines. The induction motor can be functioned as a generator when the rotational speed of the rotor is made larger than the speed of the rotary field. In this regard, this study aims to modify the remains of 3-phase induction motor to be a permanent generator. Data of research based conducted on the river flow of Rumah Sumbul Village, STM Hulu district of Deli Serdang. The method of this research is by changing rotor and stator winding on a 3 phase induction motor, so it can produce a generator with rotation speed of 500 rpm. Based on the research, it can be concluded that the output voltage generator has occurred a voltage drop 10% between before and after loading for Star circuit and 2% for Delta circuit.

  5. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform.

    PubMed

    Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader

    2012-09-01

    In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Toward improving the Laplacian estimation with novel multipolar concentric ring electrodes.

    PubMed

    Makeyev, Oleksandr; Ding, Quan; Kay, Steven M; Besio, Walter G

    2013-01-01

    Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the first fundamental step toward further improving the Laplacian estimation of the novel multipolar concentric ring electrodes by proposing a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. Examples of using the proposed approach to estimate the Laplacian for the cases of tripolar and, for the first time, quadripolar concentric ring electrode are presented.

  7. Impact of equalizing currents on losses and torque ripples in electrical machines with fractional slot concentrated windings

    NASA Astrophysics Data System (ADS)

    Toporkov, D. M.; Vialcev, G. B.

    2017-10-01

    The implementation of parallel branches is a commonly used manufacturing method of the realizing of fractional slot concentrated windings in electrical machines. If the rotor eccentricity is enabled in a machine with parallel branches, the equalizing currents can arise. The simulation approach of the equalizing currents in parallel branches of an electrical machine winding based on magnetic field calculation by using Finite Elements Method is discussed in the paper. The high accuracy of the model is provided by the dynamic improvement of the inductances in the differential equation system describing a machine. The pre-computed table flux linkage functions are used for that. The functions are the dependences of the flux linkage of parallel branches on the branches currents and rotor position angle. The functions permit to calculate self-inductances and mutual inductances by partial derivative. The calculated results obtained for the electric machine specimen are presented. The results received show that the adverse combination of design solutions and the rotor eccentricity leads to a high value of the equalizing currents and windings heating. Additional torque ripples also arise. The additional ripples harmonic content is not similar to the cogging torque or ripples caused by the rotor eccentricity.

  8. Study on magnetic force of electromagnetic levitation circular knitting machine

    NASA Astrophysics Data System (ADS)

    Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.

    2018-06-01

    The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.

  9. A Novelty Design Of Minimization Of Electrical Losses In A Vector Controlled Induction Machine Drive

    NASA Astrophysics Data System (ADS)

    Aryza, Solly; Irwanto, M.; Lubis, Zulkarnain; Putera Utama Siahaan, Andysah; Rahim, Robbi; Furqan, Mhd.

    2018-01-01

    The induction motor has in the industry . More attention has been a focus to develop and design of induction motor drive. With the method of vector control novelty prove the efficiency of induction motor over their entire speed range. In this paper desirable to design a loss minimization controller which can improve the efficiency. Also, this research described Modeling of an induction motor with core loss included. Realization of methods vector control for an induction motor drive with loss element included. The case of the loss minimization condition. The procedure was successful to calculate the gains of a PI controller. Though the problem of obtaining a robust and sensorless induction motor drive is by no means completely solved, the results obtained as part of this work point in a promising direction.

  10. A solid-state controller for a wind-driven slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.; Leary, B. G.

    1984-08-01

    The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.

  11. Multipolar electromagnetic fields around neutron stars: general-relativistic vacuum solutions

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2017-12-01

    Magnetic fields inside and around neutron stars are at the heart of pulsar magnetospheric activity. Strong magnetic fields are responsible for quantum effects, an essential ingredient to produce leptonic pairs and the subsequent broad-band radiation. The variety of electromagnetic field topologies could lead to the observed diversity of neutron star classes. Thus, it is important to include multipolar components to a presumably dominant dipolar magnetic field. Exact analytical solutions for these multipoles in Newtonian gravity have been computed in recent literature. However, flat space-time is not adequate to describe physics in the immediate surroundings of neutron stars. We generalize the multipole expressions to the strong gravity regime by using a slowly rotating metric approximation such as the one expected around neutron stars. Approximate formulae for the electromagnetic field including frame dragging are computed from which we estimate the Poynting flux and the braking index. Corrections to leading order in compactness and spin parameter are presented. As far as spin-down luminosity is concerned, it is shown that frame dragging remains irrelevant. For high-order multipoles starting from the quadrupole, the electric part can radiate more efficiently than the magnetic part. Both analytical and numerical tools are employed.

  12. Vegetation canopy discrimination and biomass assessment using multipolarized airborne SAR

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dobson, M. C.; Held, D. N.

    1985-01-01

    Multipolarized airborne Synthetic Aperture Radar (SAR) data were acquired over a largely agricultural test site near Macomb, Illinois, in conjunction with the Shuttle Imaging Radar (SIR-B) experiment in October 1984. The NASA/JPL L-band SAR operating at 1.225 GHz made a series of daily overflights with azimuth view angles both parallel and orthogonal to those of SIR-B. The SAR data was digitally recorded in the quadpolarization configuration. An extensive set of ground measurements were obtained throughout the test site and include biophysical and soil measurements of approximately 400 agricultural fields. Preliminary evaluation of some of the airborne SAR imagery indicates a great potential for crop discrimination and assessment of canopy condition. False color composites constructed from the combination of three linear polarizations (HH, VV, and HV) were found to be clearly superior to any single polarization for purposes of crop classification. In addition, an image constructed using the HH return to modulate intensity and the phase difference between HH and VV returns to modulate chroma indicates a clear capability for assessment of canopy height and/or biomass. In particular, corn fields heavily damaged by infestations of corn borer are readily distinguished from noninfested fields.

  13. Influence of Pt substitution on magnetic properties of multipolar ordering compounds Ce(Pd,Pt)3S4

    NASA Astrophysics Data System (ADS)

    Michimura, S.; Nishikawa, Ushio; Shimizu, Akihide; Kosaka, Masashi; Numakura, Ryosuke; Iizuka, Ryosuke; Katano, Susumu

    2018-05-01

    We have studied the magnetic properties of the multipolar ordering compounds Ce(Pd1-xPtx) 3S4 with 0.00 ≤ x ≤ 0.53 by means of magnetic susceptibility and magnetization measurements. In CePd3S4 , a simultaneous phase transition of the antiferro quadrupolar (AFQ) ordering and ferro magnetic (FM) ordering has been observed at 6.3 K. It has been suggested that the primary order parameter of CePd3S4 is the quadrupole moments, and it has not been understood why the FM ordering occurs at very high temperature which is almost the same magnetic transition temperature of GdPd3S4 . GdPd3S4 shows an antiferromagnetic (AFM) transition at 5.8 K. With increasing Pt substitution in CePd3S4 , the FM transition temperature TC (x) is rapidly suppressed to 2.4 K for x ≃ 0.3 and approaches asymptotically to 1.9 K (x = 0.53) . The results of magnetization curve suggest that the ordered state below TC (x) remains FM and AFQ ordered state for the whole range of x. For x ≥ 0.29 , TC (x) reaches at around 2 K, a new AFM transition was observed at TN (x) ≃ 7 K . We determined the T - x phase diagram, and discuss the phase transitions at TC (x) and TN (x) . The results suggest the possibility of the presence of the correlation between the magnetic interaction and the quadrupole interaction, and the correlation is not understood based on the previous multipolar model.

  14. Investigation of self-excited induction generators for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, E.; Butterfield, C.P.; Sallan, J.

    2000-02-28

    The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sentmore » to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.« less

  15. Synthetic aperture radar for a crop information system: A multipolarization and multitemporal approach

    NASA Astrophysics Data System (ADS)

    Ban, Yifang

    Acquisition of timely information is a critical requirement for successful management of an agricultural monitoring system. Crop identification and crop-area estimation can be done fairly successfully using satellite sensors operating in the visible and near-infrared (VIR) regions of the spectrum. However, data collection can be unreliable due to problems of cloud cover at critical stages of the growing season. The all-weather capability of synthetic aperture radar (SAR) imagery acquired from satellites provides data over large areas whenever crop information is required. At the same time, SAR is sensitive to surface roughness and should be able to provide surface information such as tillage-system characteristics. With the launch of ERS-1, the first long-duration SAR system became available. The analysis of airborne multipolarization SAR data, multitemporal ERS-1 SAR data, and their combinations with VIR data, is necessary for the development of image-analysis methodologies that can be applied to RADARSAT data for extracting agricultural crop information. The overall objective of this research is to evaluate multipolarization airborne SAR data, multitemporal ERS-1 SAR data, and combinations of ERS-1 SAR and satellite VIR data for crop classification using non-conventional algorithms. The study area is situated in Norwich Township, an agricultural area in Oxford County, southern Ontario, Canada. It has been selected as one of the few representative agricultural 'supersites' across Canada at which the relationships between radar data and agriculture are being studied. The major field crops are corn, soybeans, winter wheat, oats, barley, alfalfa, hay, and pasture. Using airborne C-HH and C-HV SAR data, it was found that approaches using contextual information, texture information and per-field classification for improving agricultural crop classification proved to be effective, especially the per-field classification method. Results show that three of the four best

  16. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  17. Measurements of multipolarities in 227Ra as tests of evidence for stable octupole deformation

    NASA Astrophysics Data System (ADS)

    Borge, M. J. G.; Burke, D. G.; Gietz, H.; Hill, P.; Kaffrell, N.; Kurcewicz, W.; Løvhøiden, G.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Thorsteinsen, T. F.

    1987-03-01

    Multipolarities of ~30 transitions in 227Ra have been established by measuring conversion electrons following the β - decay of 227Fr. For this purpose a "mini-orange"-type electron spectrometer has been constructed. The 227Fr isotopes were produced by the ISOLDE on-line separator at the CERN Synchro-cyclotron. Internal conversion coefficients were obtained from singles spectra and also from simultaneous γe - and γγ coincidence measurements. The new results support the placement of levels and transitions in the earlier level scheme but require changes in the previously assigned parities for four of the levels. Also, one E0 transition was identified. The results are consistent with previous interpretations for most of the levels that have been used to argue in favour of a small permanent octupole deformation for 227Ra.

  18. Performance Analysis of Saturated Induction Motors by Virtual Tests

    ERIC Educational Resources Information Center

    Ojaghi, M.; Faiz, J.; Kazemi, M.; Rezaei, M.

    2012-01-01

    Many undergraduate-level electrical machines textbooks give detailed treatments of the performance of induction motors. Students can deepen this understanding of motor performance by performing the appropriate practical work in laboratories or in simulation using proper software packages. This paper considers various common and less-common tests…

  19. Analysis of laser-induction hybrid cladding processing conditions

    NASA Astrophysics Data System (ADS)

    Huang, Yongjun; Zeng, Xiaoyan; Hu, Qianwu

    2007-12-01

    A new cladding approach based on laser-induction hybrid technique on flat sheets is presented in this paper. Coating is produced by means of 5kw cw CO II laser equipped with 100kw high frequent inductor, and the experiments set-up, involving a special machining-head, which can provide laser-induction hybrid heat resources simultaneously. The formation of thick NiCrSiB coating on a steel substrate by off-axial powder feeding is studied from an experimental point of view. A substrate melting energy model is developed to describe the energy relationship between laser-induction hybrid cladding and laser cladding alone quantitatively. By comparing the experimental results with the calculational ones, it is shown that the tendency of fusion zone height of theoretical calculation is in agreement with that of tests in laser-induction hybrid cladding. Via analyses and tests, the conclusions can be lead to that the fusion zone height can be increased easily and the good bond of cladding track can be achieved within wide cladding processing window in laser-induction hybrid processing. It shows that the induction heating has an obvious effect on substrate melting and metallurgical bond.

  20. Asynchronous machine rotor speed estimation using a tabulated numerical approach

    NASA Astrophysics Data System (ADS)

    Nguyen, Huu Phuc; De Miras, Jérôme; Charara, Ali; Eltabach, Mario; Bonnet, Stéphane

    2017-12-01

    This paper proposes a new method to estimate the rotor speed of the asynchronous machine by looking at the estimation problem as a nonlinear optimal control problem. The behavior of the nonlinear plant model is approximated off-line as a prediction map using a numerical one-step time discretization obtained from simulations. At each time-step, the speed of the induction machine is selected satisfying the dynamic fitting problem between the plant output and the predicted output, leading the system to adopt its dynamical behavior. Thanks to the limitation of the prediction horizon to a single time-step, the execution time of the algorithm can be completely bounded. It can thus easily be implemented and embedded into a real-time system to observe the speed of the real induction motor. Simulation results show the performance and robustness of the proposed estimator.

  1. XRF inductive bead fusion and PLC based control system

    NASA Astrophysics Data System (ADS)

    Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi

    2009-03-01

    In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.

  2. v-Src-induced nuclear localization of YAP is involved in multipolar spindle formation in tetraploid cells.

    PubMed

    Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2017-01-01

    The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing

    NASA Astrophysics Data System (ADS)

    Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.

    2017-11-01

    Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.

  4. Application of high-quality SiO2 grown by multipolar ECR source to Si/SiGe MISFET

    NASA Technical Reports Server (NTRS)

    Sung, K. T.; Li, W. Q.; Li, S. H.; Pang, S. W.; Bhattacharya, P. K.

    1993-01-01

    A 5 nm-thick SiO2 gate was grown on an Si(p+)/Si(0.8)Ge(0.2) modulation-doped heterostructure at 26 C with an oxygen plasma generated by a multipolar electron cyclotron resonance source. The ultrathin oxide has breakdown field above 12 MV/cm and fixed charge density about 3 x 10 exp 10/sq cm. Leakage current as low as 1/micro-A was obtained with the gate biased at 4 V. The MISFET with 0.25 x 25 sq m gate shows maximum drain current of 41.6 mA/mm and peak transconductance of 21 mS/mm.

  5. Soft Computing Application in Fault Detection of Induction Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konar, P.; Puhan, P. S.; Chattopadhyay, P. Dr.

    2010-10-26

    The paper investigates the effectiveness of different patter classifier like Feed Forward Back Propagation (FFBPN), Radial Basis Function (RBF) and Support Vector Machine (SVM) for detection of bearing faults in Induction Motor. The steady state motor current with Park's Transformation has been used for discrimination of inner race and outer race bearing defects. The RBF neural network shows very encouraging results for multi-class classification problems and is hoped to set up a base for incipient fault detection of induction motor. SVM is also found to be a very good fault classifier which is highly competitive with RBF.

  6. The Owl and other strigiform nebulae: multipolar cavities within a filled shell

    NASA Astrophysics Data System (ADS)

    García-Díaz, Ma T.; Steffen, W.; Henney, W. J.; López, J. A.; García-López, F.; González-Buitrago, D.; Áviles, A.

    2018-06-01

    We present the results of long-slit echelle spectroscopy and deep narrow-band imaging of the Owl Nebula (NGC 3587), obtained at the Observatorio Astronómico Nacional, San Pedro Mártir. These data allow us to construct an iso-velocity data cube and develop a 3-D morpho-kinematic model. We find that, instead of the previously assumed bipolar dumbbell shape, the inner cavity consists of multi-polar fingers within an overall tripolar structure. We identify three additional planetary nebulae that show very similar morphologies and kinematics to the Owl, and propose that these constitute a new class of strigiform (owl-like) nebulae. Common characteristics of the strigiform nebulae include a double-shell (thin outside thick) structure, low-luminosity and high-gravity central stars, the absence of a present-day stellar wind, and asymmetric inner cavities, visible in both optical and mid-infrared emission lines, that show no evidence for surrounding bright rims. The origin of the cavities is unclear, but they may constitute relics of an earlier stage of evolution when the stellar wind was active.

  7. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    NASA Technical Reports Server (NTRS)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  8. Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis.

    PubMed

    Zarychta, Bartosz; Lyubimov, Artem; Ahmed, Maqsood; Munshi, Parthapratim; Guillot, Benoît; Vrielink, Alice; Jelsch, Christian

    2015-04-01

    Examination of protein structure at the subatomic level is required to improve the understanding of enzymatic function. For this purpose, X-ray diffraction data have been collected at 100 K from cholesterol oxidase crystals using synchrotron radiation to an optical resolution of 0.94 Å. After refinement using the spherical atom model, nonmodelled bonding peaks were detected in the Fourier residual electron density on some of the individual bonds. Well defined bond density was observed in the peptide plane after averaging maps on the residues with the lowest thermal motion. The multipolar electron density of the protein-cofactor complex was modelled by transfer of the ELMAM2 charge-density database, and the topology of the intermolecular interactions between the protein and the flavin adenine dinucleotide (FAD) cofactor was subsequently investigated. Taking advantage of the high resolution of the structure, the stereochemistry of main-chain bond lengths and of C=O···H-N hydrogen bonds was analyzed with respect to the different secondary-structure elements.

  9. Electric field prediction for a human body-electric machine system.

    PubMed

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  10. Multi-Polarization Reconfigurable Antenna for Wireless Biomedical System.

    PubMed

    Wong, Hang; Lin, Wei; Huitema, Laure; Arnaud, Eric

    2017-06-01

    This paper presents a multi-polarization reconfigurable antenna with four dipole radiators for biomedical applications in body-centric wireless communication system (BWCS). The proposed multi-dipole antenna with switchable 0°, +45°, 90° and -45° linear polarizations is able to overcome the polarization mismatching and multi-path distortion in complex wireless channels as in BWCS. To realize this reconfigurable feature for the first time among all the reported antenna designs, we assembled four dipoles together with 45° rotated sequential arrangements. These dipoles are excited by the same feeding source provided by a ground tapered Balun. A metallic reflector is placed below the dipoles to generate a broadside radiation. By introducing eight PIN diodes as RF switches between the excitation source and the four dipoles, we can control a specific dipole to operate. As the results, 0°, +45°, 90° and -45° linear polarizations can be switched correspondingly to different operating dipoles. Experimental results agree with the simulation and show that the proposed antenna well works in all polarization modes with desirable electrical characteristics. The antenna has a wide impedance bandwidth of 34% from 2.2 to 3.1 GHz (for the reflection coefficient ≤ -10 dB) and exhibits a stable cardioid-shaped radiation pattern across the operating bandwidth with a peak gain of 5.2 dBi. To validate the effectiveness of the multi-dipole antenna for biomedical applications, we also designed a meandered PIFA as the implantable antenna. Finally, the communication link measurement shows that our proposed antenna is able to minimize the polarization mismatching and maintains the optimal communication link thanks to its polarization reconfigurability.

  11. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles

    NASA Astrophysics Data System (ADS)

    Badia, Jordi; Boretius, Tim; Andreu, David; Azevedo-Coste, Christine; Stieglitz, Thomas; Navarro, Xavier

    2011-06-01

    The selection of a suitable nerve electrode for neuroprosthetic applications implies a trade-off between invasiveness and selectivity, wherein the ultimate goal is achieving the highest selectivity for a high number of nerve fascicles by the least invasiveness and potential damage to the nerve. The transverse intrafascicular multichannel electrode (TIME) is intended to be transversally inserted into the peripheral nerve and to be useful to selectively activate subsets of axons in different fascicles within the same nerve. We present a comparative study of TIME, LIFE and multipolar cuff electrodes for the selective stimulation of small nerves. The electrodes were implanted on the rat sciatic nerve, and the activation of gastrocnemius, plantar and tibialis anterior muscles was recorded by EMG signals. Thus, the study allowed us to ascertain the selectivity of stimulation at the interfascicular and also at the intrafascicular level. The results of this study indicate that (1) intrafascicular electrodes (LIFE and TIME) provide excitation circumscribed to the implanted fascicle, whereas extraneural electrodes (cuffs) predominantly excite nerve fascicles located superficially; (2) the minimum threshold for muscle activation with TIME and LIFE was significantly lower than with cuff electrodes; (3) TIME allowed us to selectively activate the three tested muscles when stimulating through different active sites of one device, both at inter- and intrafascicular levels, whereas selective activation using multipolar cuff (with a longitudinal tripolar stimulation configuration) was only possible for two muscles, at the interfascicular level, and LIFE did not activate selectively more than one muscle in the implanted nerve fascicle.

  12. Multipolarization P-, L-, and C-band radar for coastal zone mapping - The Louisiana example

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Tseng

    1989-01-01

    Multipolarization P-, L-, and C-band airborne SAR data sets were acquired over a coastal zone and a forested wetland of southern Louisiana. The data sets were used with field-collected surface-parameter data in order to determine the value of SAR systems in assessing and mapping coastal-zone surface features. The coastal-zone surface features in this study are sediments, sediment distribution, and the formation of new isles and banks. Results of the data analysis indicate that the P-band radar with 68-cm wavelength is capable of detecting the submerged sediment if the area is very shallow (i.e., a water depth of less than one meter). The penetration capability of P-band radar is also demonstrated in the forested wetland area. The composition and condition of the ground surface can be detected, as well as the standing water beneath dense tree leaves.

  13. A machine learning approach to computer-aided molecular design

    NASA Astrophysics Data System (ADS)

    Bolis, Giorgio; Di Pace, Luigi; Fabrocini, Filippo

    1991-12-01

    Preliminary results of a machine learning application concerning computer-aided molecular design applied to drug discovery are presented. The artificial intelligence techniques of machine learning use a sample of active and inactive compounds, which is viewed as a set of positive and negative examples, to allow the induction of a molecular model characterizing the interaction between the compounds and a target molecule. The algorithm is based on a twofold phase. In the first one — the specialization step — the program identifies a number of active/inactive pairs of compounds which appear to be the most useful in order to make the learning process as effective as possible and generates a dictionary of molecular fragments, deemed to be responsible for the activity of the compounds. In the second phase — the generalization step — the fragments thus generated are combined and generalized in order to select the most plausible hypothesis with respect to the sample of compounds. A knowledge base concerning physical and chemical properties is utilized during the inductive process.

  14. Structural Design Optimization of Doubly-Fed Induction Generators Using GeneratorSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sethuraman, Latha; Fingersh, Lee J; Dykes, Katherine L

    2017-11-13

    A wind turbine with a larger rotor swept area can generate more electricity, however, this increases costs disproportionately for manufacturing, transportation, and installation. This poster presents analytical models for optimizing doubly-fed induction generators (DFIGs), with the objective of reducing the costs and mass of wind turbine drivetrains. The structural design for the induction machine includes models for the casing, stator, rotor, and high-speed shaft developed within the DFIG module in the National Renewable Energy Laboratory's wind turbine sizing tool, GeneratorSE. The mechanical integrity of the machine is verified by examining stresses, structural deflections, and modal properties. The optimization results aremore » then validated using finite element analysis (FEA). The results suggest that our analytical model correlates with the FEA in some areas, such as radial deflection, differing by less than 20 percent. But the analytical model requires further development for axial deflections, torsional deflections, and stress calculations.« less

  15. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for

  16. Factorization and resummation: A new paradigm to improve gravitational wave amplitudes. II. The higher multipolar modes

    NASA Astrophysics Data System (ADS)

    Messina, Francesco; Maldarella, Alberto; Nagar, Alessandro

    2018-04-01

    The factorization and resummation approach of Nagar and Shah [Phys. Rev. D 94, 104017 (2016), 10.1103/PhysRevD.94.104017], designed to improve the strong-field behavior of the post-Newtonian (PN) residual waveform amplitudes fℓm's entering the effective-one-body, circularized, gravitational waveform for spinning coalescing binaries, is improved and generalized here to all multipoles up to ℓ=6 . For a test particle orbiting a Kerr black hole, each multipolar amplitude is truncated at relative 6 PN order, both for the orbital (nonspinning) and spin factors. By taking a certain Padé approximant (typically the P24 one) of the orbital factor in conjunction with the inverse Taylor (iResum) representation of the spin factor, it is possible to push the analytical/numerical agreement of the energy flux at the level of 5% at the last-stable orbit for a quasimaximally spinning black hole with dimensionless spin parameter +0.99 . When the procedure is generalized to comparable-mass binaries, each orbital factor is kept at relative 3+3 PN order; i.e., the globally 3 PN-accurate comparable-mass terms are hybridized with higher-PN test-particle terms up to 6 PN relative order in each mode. The same Padé resummation is used for continuity. By contrast, the spin factor is only kept at the highest comparable-mass PN order currently available. We illustrate that the consistency between different truncations in the spin content of the waveform amplitudes is more marked in the resummed case than when using the standard Taylor-expanded form of Pan et al. [Phys. Rev. D 83, 064003 (2011), 10.1103/PhysRevD.83.064003]. We finally introduce a method to consistently hybridize comparable-mass and test-particle information also in the presence of spin (including the spin of the particle), discussing it explicitly for the ℓ=m =2 spin-orbit and spin-square terms. The improved, factorized and resummed, multipolar waveform amplitudes presented here are expected to set a new standard for

  17. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  18. Control Demonstration of Multiple Doubly-Fed Induction Motors for Hybrid Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Bodson, Marc; Csank, Jeffrey T.; Hunker, Keith R.; Theman, Casey J.; Taylor, Linda M.

    2017-01-01

    The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.

  19. Offline detection of broken rotor bars in AC induction motors

    NASA Astrophysics Data System (ADS)

    Powers, Craig Stephen

    ABSTRACT. OFFLINE DETECTION OF BROKEN ROTOR BARS IN AC INDUCTION MOTORS. The detection of the broken rotor bar defect in medium- and large-sized AC induction machines is currently one of the most difficult tasks for the motor condition and monitoring industry. If a broken rotor bar defect goes undetected, it can cause a catastrophic failure of an expensive machine. If a broken rotor bar defect is falsely determined, it wastes time and money to physically tear down and inspect the machine only to find an incorrect diagnosis. Previous work in 2009 at Baker/SKF-USA in collaboration with the Korea University has developed a prototype instrument that has been highly successful in correctly detecting the broken rotor bar defect in ACIMs where other methods have failed. Dr. Sang Bin and his students at the Korea University have been using this prototype instrument to help the industry save money in the successful detection of the BRB defect. A review of the current state of motor conditioning and monitoring technology for detecting the broken rotor bar defect in ACIMs shows improved detection of this fault is still relevant. An analysis of previous work in the creation of this prototype instrument leads into the refactoring of the software and hardware into something more deployable, cost effective and commercially viable.

  20. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer.

    PubMed

    Schecher, Sabrina; Walter, Britta; Falkenstein, Michael; Macher-Goeppinger, Stephan; Stenzel, Philipp; Krümpelmann, Kristina; Hadaschik, Boris; Perner, Sven; Kristiansen, Glen; Duensing, Stefan; Roth, Wilfried; Tagscherer, Katrin E

    2017-10-15

    Cyclin K plays a critical role in transcriptional regulation as well as cell development. However, the role of Cyclin K in prostate cancer is unknown. Here, we describe the impact of Cyclin K on prostate cancer cells and examine the clinical relevance of Cyclin K as a biomarker for patients with prostate cancer. We show that Cyclin K depletion in prostate cancer cells induces apoptosis and inhibits proliferation accompanied by an accumulation of cells in the G2/M phase. Moreover, knockdown of Cyclin K causes mitotic catastrophe displayed by multinucleation and spindle multipolarity. Furthermore, we demonstrate a Cyclin K dependent regulation of the mitotic kinase Aurora B and provide evidence for an Aurora B dependent induction of mitotic catastrophe. In addition, we show that Cyclin K expression is associated with poor biochemical recurrence-free survival in patients with prostate cancer treated with an adjuvant therapy. In conclusion, targeting Cyclin K represents a novel, promising anti-cancer strategy to induce cell cycle arrest and apoptotic cell death through induction of mitotic catastrophe in prostate cancer cells. Moreover, our results indicate that Cyclin K is a putative predictive biomarker for clinical outcome and therapy response for patients with prostate cancer. © 2017 UICC.

  1. Forest biomass, canopy structure, and species composition relationships with multipolarization L-band synthetic aperture radar data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.

    1987-01-01

    The effect of forest biomass, canopy structure, and species composition on L-band synthetic aperature radar data at 44 southern Mississippi bottomland hardwood and pine-hardwood forest sites was investigated. Cross-polarization mean digital values for pine forests were significantly correlated with green weight biomass and stand structure. Multiple linear regression with five forest structure variables provided a better integrated measure of canopy roughness and produced highly significant correlation coefficients for hardwood forests using HV/VV ratio only. Differences in biomass levels and canopy structure, including branching patterns and vertical canopy stratification, were important sources of volume scatter affecting multipolarization radar data. Standardized correction techniques and calibration of aircraft data, in addition to development of canopy models, are recommended for future investigations of forest biomass and structure using synthetic aperture radar.

  2. Intense X-ray machine for penetrating radiography

    NASA Astrophysics Data System (ADS)

    Lucht, Roy A.; Eckhouse, Shimon

    Penetrating radiography has been used for many years in the nuclear weapons research programs. Infrequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash X-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low inductance Marx generator that charges up a 7.4-(Omega), 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-(Omega) water line that rings up the voltage into the high impendance X-ray diode. A long (233-cm) vacuum drift tube is used to separate the large diameter oil-insulated diode region from the X-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is selffocused at the target area using a low pressure background gas.

  3. Diagnosis of the three-phase induction motor using thermal imaging

    NASA Astrophysics Data System (ADS)

    Glowacz, Adam; Glowacz, Zygfryd

    2017-03-01

    Three-phase induction motors are used in the industry commonly for example woodworking machines, blowers, pumps, conveyors, elevators, compressors, mining industry, automotive industry, chemical industry and railway applications. Diagnosis of faults is essential for proper maintenance. Faults may damage a motor and damaged motors generate economic losses caused by breakdowns in production lines. In this paper the authors develop fault diagnostic techniques of the three-phase induction motor. The described techniques are based on the analysis of thermal images of three-phase induction motor. The authors analyse thermal images of 3 states of the three-phase induction motor: healthy three-phase induction motor, three-phase induction motor with 2 broken bars, three-phase induction motor with faulty ring of squirrel-cage. In this paper the authors develop an original method of the feature extraction of thermal images MoASoID (Method of Areas Selection of Image Differences). This method compares many training sets together and it selects the areas with the biggest changes for the recognition process. Feature vectors are obtained with the use of mentioned MoASoID and image histogram. Next 3 methods of classification are used: NN (the Nearest Neighbour classifier), K-means, BNN (the back-propagation neural network). The described fault diagnostic techniques are useful for protection of three-phase induction motor and other types of rotating electrical motors such as: DC motors, generators, synchronous motors.

  4. Comparisons between designs for single-sided linear electric motors: Homopolar synchronous and induction

    NASA Astrophysics Data System (ADS)

    Nondahl, T. A.; Richter, E.

    1980-09-01

    A design study of two types of single sided (with a passive rail) linear electric machine designs, namely homopolar linear synchronous machines (LSM's) and linear induction machines (LIM's), is described. It is assumed the machines provide tractive effort for several types of light rail vehicles and locomotives. These vehicles are wheel supported and require tractive powers ranging from 200 kW to 3735 kW and top speeds ranging from 112 km/hr to 400 km/hr. All designs are made according to specified magnetic and thermal criteria. The LSM advantages are a higher power factor, much greater restoring forces for track misalignments, and less track heating. The LIM advantages are no need to synchronize the excitation frequency precisely to vehicle speed, simpler machine construction, and a more easily anchored track structure. The relative weights of the two machine types vary with excitation frequency and speed; low frequencies and low speeds favor the LSM.

  5. Transverse versus longitudinal tripolar configuration for selective stimulation with multipolar cuff electrodes.

    PubMed

    Nielsen, Thomas N; Kurstjens, G A Mathijs; Struijk, Johannes J

    2011-04-01

    The ability to stimulate subareas of a nerve selectively is highly desirable, since it has the potential of simplifying surgery to implanting one cuff on a large nerve instead of many cuffs on smaller nerves or muscles, or alternatively can improve function where surgical access to the smaller nerves is limited. In this paper, stimulation was performed with a four-channel multipolar cuff electrode implanted on the sciatic nerve of nine rabbits to compare the extensively researched longitudinal tripolar configuration with the transverse tripolar configuration, which has received less interest. The performance of these configurations was evaluated in terms of selectivity in recruitment of the three branches of the sciatic nerve. The results showed that the transverse configuration was able to selectively activate the sciatic nerve branches to a functionally relevant level in more cases than the longitudinal configuration (20/27 versus 11/27 branches) and overall achieved a higher mean selectivity [0.79 ± 0.13 versus 0.61 ± 0.09 (mean ± standard deviation)]. The transverse configuration was most successful at recruiting the small cutaneous and medium-sized peroneal branches, and less successful at recruiting the large tibial nerve.

  6. Per-point and per-field contextual classification of multipolarization and multiple incidence angle aircraft L-band radar data

    NASA Technical Reports Server (NTRS)

    Hoffer, Roger M.; Hussin, Yousif Ali

    1989-01-01

    Multipolarized aircraft L-band radar data are classified using two different image classification algorithms: (1) a per-point classifier, and (2) a contextual, or per-field, classifier. Due to the distinct variations in radar backscatter as a function of incidence angle, the data are stratified into three incidence-angle groupings, and training and test data are defined for each stratum. A low-pass digital mean filter with varied window size (i.e., 3x3, 5x5, and 7x7 pixels) is applied to the data prior to the classification. A predominately forested area in northern Florida was the study site. The results obtained by using these image classifiers are then presented and discussed.

  7. [Morphometry of giant multipolar neurons of the brain stem reticular formation in rats on board the Kosmos-1667 biosatellite].

    PubMed

    Belichenko, P V; Leontovich, T A

    1989-05-01

    Giant multipolar neurons of nucleus reticularis gigantocellularis of rats which had been kept on board the biosatellite "Kosmos-1667" were morphometrically studied. There was a trend towards the increase in the cellular surface, the maximum diameter of dendritic field, the volume of the whole dendritic territory in the test group ad in the control experimental group kept on the earth. A reliable decrease in dendritic mass oriented to nucleus vestibularis and an increase in dendritic mass oriented to the midline were also found in test group, as compared to 3 control groups. Our data were discussed in the light of nervous tissue plasticity in adult mammals.

  8. Induction motor speed drive improvement using fuzzy IP-self-tuning controller. A real time implementation.

    PubMed

    Lokriti, Abdesslam; Salhi, Issam; Doubabi, Said; Zidani, Youssef

    2013-05-01

    An IP-self-tuning controller tuned by a fuzzy adjustor, is proposed to improve induction machine speed control. The interest of such controller is the possibility to adjust only one gain, instead of two gains for the case of the PI-self-tuning controllers commonly used in the literature. This paper presents simulation and experimental results. These latter were obtained by practical implementation on a DSPace 1104 board of three different speed controllers (the classical IP, the fuzzy-like-PI and the IP-self-tuning), for a 1.5KW induction machine. The paper presents different tests used to compare the performances of the proposed controller to the two others in terms of computation time, tracking performances and disturbances rejection. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Using a PC and external media to quantitatively investigate electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-07-01

    In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to quantitatively study the Faraday-Neumann-Lenz law, while the second configuration (falling through a copper pipe) permits learners to investigate the complex phenomena of induction by quantifying the amount of electric power dissipated through the pipe as a result of Foucault eddy currents, when the magnet travels through the pipe. The magnet's fall acceleration can be set by adjusting the counterweight of the Atwood machine so that both the kinematic quantities associated with it and the electromotive force induced within the coil are continuously and quantitatively monitored (respectively, by a common personal computer (PC) equipped with a webcam and by freely available software that makes it possible to use the audio card to convert the PC into an oscilloscope). Measurements carried out when the various experimental parameters are changed provide a useful framework for a thorough understanding and clarification of the conceptual nodes related to electromagnetic induction. The proposed learning path is under evaluation in various high schools participating in the project 'Lauree Scientifiche' promoted by the Italian Department of Education.

  10. Using a PC and External Media to Quantitatively Investigate Electromagnetic Induction

    ERIC Educational Resources Information Center

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.

    2011-01-01

    In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to…

  11. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.

    PubMed

    Patel, Nihir; Wang, Jason T L

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  12. SABRE, a 10-MV linear induction accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corely, J.P.; Alexander, J.A.; Pankuch, P.J.

    SABRE (Sandia Accelerator and Beam Research Experiment) is a 10-MV, 250-kA, 40-ns linear induction accelerator. It was designed to be used in positive polarity output. Positive polarity accelerators are important for application to Sandia's ICF (Inertial Confinement Fusion) and LMF (Laboratory Microfusion Facility) program efforts. SABRE was built to allow a more detailed study of pulsed power issues associated with positive polarity output machines. MITL (Magnetically Insulated Transmission Line) voltage adder efficiency, extraction ion diode development, and ion beam transport and focusing. The SABRE design allows the system to operate in either positive polarity output for ion extraction applications ormore » negative polarity output for more conventional electron beam loads. Details of the design of SABRE and the results of initial machine performance in negative polarity operation are presented in this paper. 13 refs., 12 figs., 1 tab.« less

  13. Induced sadness increases persistence in a simulated slot machine task among recreational gamblers.

    PubMed

    Devos, Gaëtan; Clark, Luke; Maurage, Pierre; Billieux, Joël

    2018-05-01

    Gambling may constitute a strategy for coping with depressive mood, but a direct influence of depressive mood on gambling behaviors has never been tested via realistic experimental designs in gamblers. The current study tested whether experimentally induced sadness increases persistence on a simulated slot machine task using real monetary reinforcement in recreational gamblers. Sixty participants were randomly assigned to an experimental (sadness induction) or control (no emotional induction) condition, and then performed a slot machine task consisting of a mandatory phase followed by a persistence phase. Potential confounding variables (problem gambling symptoms, impulsivity traits, gambling cognitions) were measured to ensure that the experimental and control groups were comparable. The study showed that participants in the sadness condition displayed greater gambling persistence than control participants (p = .011). These data support the causal role of negative affect in decisions to gamble and persistence, which bears important theoretical and clinical implications. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. An inductance Fourier decomposition-based current-hysteresis control strategy for switched reluctance motors

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Qi, Ji; Jia, Meng

    2017-05-01

    Switched reluctance machines (SRMs) have attracted extensive attentions due to the inherent advantages, including simple and robust structure, low cost, excellent fault-tolerance and wide speed range, etc. However, one of the bottlenecks limiting the SRMs for further applications is its unfavorable torque ripple, and consequently noise and vibration due to the unique doubly-salient structure and pulse-current-based power supply method. In this paper, an inductance Fourier decomposition-based current-hysteresis-control (IFD-CHC) strategy is proposed to reduce torque ripple of SRMs. After obtaining a nonlinear inductance-current-position model based Fourier decomposition, reference currents can be calculated by reference torque and the derived inductance model. Both the simulations and experimental results confirm the effectiveness of the proposed strategy.

  15. Machine learning of fault characteristics from rocket engine simulation data

    NASA Technical Reports Server (NTRS)

    Ke, Min; Ali, Moonis

    1990-01-01

    Transformation of data into knowledge through conceptual induction has been the focus of our research described in this paper. We have developed a Machine Learning System (MLS) to analyze the rocket engine simulation data. MLS can provide to its users fault analysis, characteristics, and conceptual descriptions of faults, and the relationships of attributes and sensors. All the results are critically important in identifying faults.

  16. Effects of pole flux distribution in a homopolar linear synchronous machine

    NASA Astrophysics Data System (ADS)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  17. Field-circuit analysis and measurements of a single-phase self-excited induction generator

    NASA Astrophysics Data System (ADS)

    Makowski, Krzysztof; Leicht, Aleksander

    2017-12-01

    The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.

  18. Inductive System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2004-01-01

    The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS uses nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. IMS is able to monitor the system by comparing real time operational data with these classes. We present a description of learning and monitoring method used by IMS and summarize some recent IMS results.

  19. Use of multi-frequency, multi-polarization, multi-angle airborne radars for class discrimination in a southern temperature forest

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1984-01-01

    The utility of radar scatterometers for discrimination and characterization of natural vegetation was investigated. Backscatter measurements were acquired with airborne multi-frequency, multi-polarization, multi-angle radar scatterometers over a test site in a southern temperate forest. Separability between ground cover classes was studied using a two-class separability measure. Very good separability is achieved between most classes. Longer wavelength is useful in separating trees from non-tree classes, while shorter wavelength and cross polarization are helpful for discrimination among tree classes. Using the maximum likelihood classifier, 50% overall classification accuracy is achieved using a single, short-wavelength scatterometer channel. Addition of multiple incidence angles and another radar band improves classification accuracy by 20% and 50%, respectively, over the single channel accuracy. Incorporation of a third radar band seems redundant for vegetation classification. Vertical transmit polarization is critically important for all classes.

  20. THE INFLUENCE OF X RAYS ON ORGANELLE INDUCTION AND DIFFERENTIATION IN GRASSHOPPER SPERMATOGENESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahmisian, T.N.; Devine, R.L.

    1961-01-01

    The effects or x radiation on grasshopper spermatogenesis were studied by light and electron microscopy. The insects were irradiated at the second instar prior to the presence of maturation stages and observed at the last instar and imago stages. Dosages of 100 to 800 r retarded the differentiation of the nucleus and mitochondrial nebenkern in spermatids. Irradiation caused a curtailment and disorganization in the differentiation of the nebenkern from mitochondria. It also induced the formation of supernumerary centrioles, flagellar filaments, and acrosomes; nuclear disorganization as well as pycnosis and fragmentation also occurred. The nucleus appeared to be drawn toward eachmore » radioinduced supernumerary acrosome, with consequent multipolarity of the nucleus. Induction of a set of flagellar filaments was seen only where the centriolar structure was in contact with the nucleus. Details are given of an organelle that is composed of anastomosed and interwoven cytoplasmic strands. The results show that radioinduced changes in cell morphology are preceded by either alteration or curtailment of organelle differentiation. Furthermore, organelle differentiation during spermatogenesis was altered by doses that did not visibly affect the antecedent mitotic, maturation, or meiotic divisions; grasshoppers irradiated during the third instar showed the first effects of radiation at the last instar. (P.C.H.)« less

  1. Multipolar Ewald Methods, 2: Applications Using a Quantum Mechanical Force Field

    PubMed Central

    2015-01-01

    A fully quantum mechanical force field (QMFF) based on a modified “divide-and-conquer” (mDC) framework is applied to a series of molecular simulation applications, using a generalized Particle Mesh Ewald method extended to multipolar charge densities. Simulation results are presented for three example applications: liquid water, p-nitrophenylphosphate reactivity in solution, and crystalline N,N-dimethylglycine. Simulations of liquid water using a parametrized mDC model are compared to TIP3P and TIP4P/Ew water models and experiment. The mDC model is shown to be superior for cluster binding energies and generally comparable for bulk properties. Examination of the dissociative pathway for dephosphorylation of p-nitrophenylphosphate shows that the mDC method evaluated with the DFTB3/3OB and DFTB3/OPhyd semiempirical models bracket the experimental barrier, whereas DFTB2 and AM1/d-PhoT QM/MM simulations exhibit deficiencies in the barriers, the latter for which is related, in part, to the anomalous underestimation of the p-nitrophenylate leaving group pKa. Simulations of crystalline N,N-dimethylglycine are performed and the overall structure and atomic fluctuations are compared with the experiment and the general AMBER force field (GAFF). The QMFF, which was not parametrized for this application, was shown to be in better agreement with crystallographic data than GAFF. Our simulations highlight some of the application areas that may benefit from using new QMFFs, and they demonstrate progress toward the development of accurate QMFFs using the recently developed mDC framework. PMID:25691830

  2. Performance Analysis of Three-Phase Induction Motor with AC Direct and VFD

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh

    2018-03-01

    The electrical machine analysis and performance calculation is a very important aspect of efficient drive system design. The development of power electronics devices and power converters provide smooth speed control of Induction Motors by changing the frequency of input supply. These converters, on one hand are providing a more flexible speed control that also leads to problems of harmonics and their associated ailments like pulsating torque, distorted current and voltage waveforms, increasing losses etc. This paper includes the performance analysis of three phase induction motor with three-phase AC direct and variable frequency drives (VFD). The comparison has been concluded with respect to various parameters. MATLAB-SIMULINKTM is used for the analysis.

  3. Two models for identification and predicting behaviour of an induction motor system

    NASA Astrophysics Data System (ADS)

    Kuo, Chien-Hsun

    2018-01-01

    System identification or modelling is the process of building mathematical models of dynamical systems based on the available input and output data from the systems. This paper introduces system identification by using ARX (Auto Regressive with eXogeneous input) and ARMAX (Auto Regressive Moving Average with eXogeneous input) models. Through the identified system model, the predicted output could be compared with the measured one to help prevent the motor faults from developing into a catastrophic machine failure and avoid unnecessary costs and delays caused by the need to carry out unscheduled repairs. The induction motor system is illustrated as an example. Numerical and experimental results are shown for the identified induction motor system.

  4. Electrophysiological channel interactions using focused multipolar stimulation for cochlear implants

    NASA Astrophysics Data System (ADS)

    George, Shefin S.; Shivdasani, Mohit N.; Wise, Andrew K.; Shepherd, Robert K.; Fallon, James B.

    2015-12-01

    Objective. Speech intelligibility with existing multichannel cochlear implants (CIs) is thought to be limited by poor spatial selectivity and interactions between CI channels caused by overlapping activation with monopolar (MP) stimulation. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation in the inferior colliculus (IC), compared to MP stimulation. Approach. This study explored interactions in the IC produced by simultaneous stimulation of two CI channels. We recorded multi-unit neural activity in the IC of anaesthetized cats with normal and severely degenerated spiral ganglion neuron populations in response to FMP, TP and MP stimulation from a 14 channel CI. Stimuli were applied to a ‘fixed’ CI channel, chosen toward the middle of the cochlear electrode array, and the effects of simultaneously stimulating a more apical ‘test’ CI channel were measured as a function of spatial separation between the two stimulation channels and stimulus level of the fixed channel. Channel interactions were quantified by changes in neural responses and IC threshold (i.e., threshold shift) elicited by simultaneous stimulation of two CI channels, compared to stimulation of the test channel alone. Main results. Channel interactions were significantly lower for FMP and TP than for MP stimulation (p < 0.001), whereas no significant difference was observed between FMP and TP stimulation. With MP stimulation, threshold shifts increased with decreased inter-electrode spacing and increased stimulus levels of the fixed channel. For FMP and TP stimulation, channel interactions were found to be similar for different inter-electrode spacing and stimulus levels of the fixed channel. Significance. The present study demonstrates how the degree of channel interactions in a CI can be controlled using stimulation configurations such as FMP and TP; such knowledge is essential in enhancing CI function in complex

  5. Public Data Set: Non-inductively Driven Tokamak Plasmas at Near-Unity βt in the Pegasus Toroidal Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in J.A. Reusch et al., 'Non-inductively Driven Tokamak Plasmas at Near-Unity βt in the Pegasus Toroidal Experiment,' Phys. Plasmas 25, 056101 (2018).

  6. Mathematical 3D modelling and sensitivity analysis of multipolar radiofrequency ablation in the spine.

    PubMed

    Matschek, Janine; Bullinger, Eric; von Haeseler, Friedrich; Skalej, Martin; Findeisen, Rolf

    2017-02-01

    Radiofrequency ablation is a valuable tool in the treatment of many diseases, especially cancer. However, controlled heating up to apoptosis of the desired target tissue in complex situations, e.g. in the spine, is challenging and requires experienced interventionalists. For such challenging situations a mathematical model of radiofrequency ablation allows to understand, improve and optimise the outcome of the medical therapy. The main contribution of this work is the derivation of a tailored, yet expandable mathematical model, for the simulation, analysis, planning and control of radiofrequency ablation in complex situations. The dynamic model consists of partial differential equations that describe the potential and temperature distribution during intervention. To account for multipolar operation, time-dependent boundary conditions are introduced. Spatially distributed parameters, like tissue conductivity and blood perfusion, allow to describe the complex 3D environment representing diverse involved tissue types in the spine. To identify the key parameters affecting the prediction quality of the model, the influence of the parameters on the temperature distribution is investigated via a sensitivity analysis. Simulations underpin the quality of the derived model and the analysis approach. The proposed modelling and analysis schemes set the basis for intervention planning, state- and parameter estimation, and control. Copyright © 2016. Published by Elsevier Inc.

  7. Machine rates for selected forest harvesting machines

    Treesearch

    R.W. Brinker; J. Kinard; Robert Rummer; B. Lanford

    2002-01-01

    Very little new literature has been published on the subject of machine rates and machine cost analysis since 1989 when the Alabama Agricultural Experiment Station Circular 296, Machine Rates for Selected Forest Harvesting Machines, was originally published. Many machines discussed in the original publication have undergone substantial changes in various aspects, not...

  8. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  9. Fundamental studies on initiation and evolution of multi-channel discharges and their application to next generation pulsed power machines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Jens; Savage, Mark E.; Lucero, Diego Jose

    Future pulsed power systems may rely on linear transformer driver (LTD) technology. The LTD's will be the building blocks for a driver that can deliver higher current than the Z-Machine. The LTD's would require tens of thousands of low inductance ( %3C 85nH), high voltage (200 kV DC) switches with high reliability and long lifetime ( 10 4 shots). Sandia's Z-Machine employs 36 megavolt class switches that are laser triggered by a single channel discharge. This is feasible for tens of switches but the high inductance and short switch life- time associated with the single channel discharge are undesirable formore » future machines. Thus the fundamental problem is how to lower inductance and losses while increasing switch life- time and reliability. These goals can be achieved by increasing the number of current-carrying channels. The rail gap switch is ideal for this purpose. Although those switches have been extensively studied during the past decades, each effort has only characterized a particular switch. There is no comprehensive understanding of the underlying physics that would allow predictive capability for arbitrary switch geometry. We have studied rail gap switches via an extensive suite of advanced diagnostics in synergy with theoretical physics and advanced modeling capability. Design and topology of multichannel switches as they relate to discharge dynamics are investigated. This involves electrically and optically triggered rail gaps, as well as discrete multi-site switch concepts.« less

  10. Integrative relational machine-learning for understanding drug side-effect profiles.

    PubMed

    Bresso, Emmanuel; Grisoni, Renaud; Marchetti, Gino; Karaboga, Arnaud Sinan; Souchet, Michel; Devignes, Marie-Dominique; Smaïl-Tabbone, Malika

    2013-06-26

    Drug side effects represent a common reason for stopping drug development during clinical trials. Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development as well as the risk of discovering novel side effects in available drugs. Today, most investigations deal with isolated side effects and overlook possible redundancy and their frequent co-occurrence. In this work, drug annotations are collected from SIDER and DrugBank databases. Terms describing individual side effects reported in SIDER are clustered with a semantic similarity measure into term clusters (TCs). Maximal frequent itemsets are extracted from the resulting drug x TC binary table, leading to the identification of what we call side-effect profiles (SEPs). A SEP is defined as the longest combination of TCs which are shared by a significant number of drugs. Frequent SEPs are explored on the basis of integrated drug and target descriptors using two machine learning methods: decision-trees and inductive-logic programming. Although both methods yield explicit models, inductive-logic programming method performs relational learning and is able to exploit not only drug properties but also background knowledge. Learning efficiency is evaluated by cross-validation and direct testing with new molecules. Comparison of the two machine-learning methods shows that the inductive-logic-programming method displays a greater sensitivity than decision trees and successfully exploit background knowledge such as functional annotations and pathways of drug targets, thereby producing rich and expressive rules. All models and theories are available on a dedicated web site. Side effect profiles covering significant number of drugs have been extracted from a drug ×side-effect association table. Integration of background knowledge concerning both chemical and biological spaces has been combined with a relational learning method for discovering rules which explicitly

  11. Excitation-transcription coupling via calcium/calmodulin-dependent protein kinase/ERK1/2 signaling mediates the coordinate induction of VGLUT2 and Narp triggered by a prolonged increase in glutamatergic synaptic activity.

    PubMed

    Doyle, Sukhjeevan; Pyndiah, Slovénie; De Gois, Stéphanie; Erickson, Jeffrey D

    2010-05-07

    Homeostatic scaling of glutamatergic and GABAergic transmission is triggered by prolonged alterations in synaptic neuronal activity. We have previously described a presynaptic mechanism for synaptic homeostasis and plasticity that involves scaling the level of vesicular glutamate (VGLUT1) and gamma-aminobutyric acid (GABA) (VGAT) transporter biosynthesis. These molecular determinants of vesicle filling and quantal size are regulated by neuronal activity in an opposite manner and bi-directionally. Here, we report that a striking induction of VGLUT2 mRNA and synaptic protein is triggered by a prolonged increase in glutamatergic synaptic activity in mature neocortical neuronal networks in vitro together with two determinants of inhibitory synaptic strength, the neuronal activity-regulated pentraxin (Narp), and glutamate decarboxylase (GAD65). Activity-dependent induction of VGLUT2 and Narp exhibits a similar intermediate-early gene response that is blocked by actinomycin D and tetrodotoxin, by inhibitors of ionotropic glutamate receptors and L-type voltage-gated calcium channels, and is dependent on downstream signaling via calmodulin, calcium/calmodulin-dependent protein kinase (CaMK) and extracellular signal-regulated kinase 1/2 (ERK1/2). The co-induction of VGLUT2 and Narp triggered by prolonged gamma-aminobutyric acid type A receptor blockade is independent of brain-derived nerve growth factor and TrkB receptor signaling. VGLUT2 protein induction occurs on a subset of cortically derived synaptic vesicles in excitatory synapses on somata and dendritic processes of multipolar GABAergic interneurons, recognized sites for the clustering of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate glutamate receptors by Narp. We propose that VGLUT2 and Narp induction by excitation-transcription coupling leads to increased glutamatergic transmission at synapses on GABAergic inhibitory feedback neurons as part of a coordinated program of Ca(2+)-signal transcription involved

  12. Evaluation of focused multipolar stimulation for cochlear implants in acutely deafened cats

    NASA Astrophysics Data System (ADS)

    George, Shefin S.; Wise, Andrew K.; Shivdasani, Mohit N.; Shepherd, Robert K.; Fallon, James B.

    2014-12-01

    Objective. The conductive nature of the fluids and tissues of the cochlea can lead to broad activation of spiral ganglion neurons using contemporary cochlear implant stimulation configurations such as monopolar (MP) stimulation. The relatively poor spatial selectivity is thought to limit implant performance, particularly in noisy environments. Several current focusing techniques have been proposed to reduce the spread of activation with the aim towards achieving improved clinical performance. Approach. The present research evaluated the efficacy of focused multipolar (FMP) stimulation, a relatively new focusing technique in the cochlea, and compared its efficacy to both MP stimulation and tripolar (TP) stimulation. The spread of neural activity across the inferior colliculus (IC), measured by recording the spatial tuning curve, was used as a measure of spatial selectivity. Adult cats (n = 6) were acutely deafened and implanted with an intracochlear electrode array before multi-unit responses were recorded across the cochleotopic gradient of the contralateral IC. Recordings were made in response to acoustic and electrical stimulation using the MP, TP and FMP configurations. Main results. FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation. However, thresholds were significantly higher (p < 0.001) for FMP and TP stimulation compared to MP stimulation. There were no differences found in spatial selectivity and threshold between FMP and TP stimulation. Significance. The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance. However, further research will be required to demonstrate the efficacy of these modes of stimulation after longer durations of deafness.

  13. Post-fall-back evolution of multipolar magnetic fields and radio pulsar activation

    NASA Astrophysics Data System (ADS)

    Igoshev, A. P.; Elfritz, J. G.; Popov, S. B.

    2016-11-01

    It has long been unclear if the small-scale magnetic structures on the neutron star (NS) surface could survive the fall-back episode. The study of the Hall cascade by Cumming, Arras & Zweibel hinted that energy in small-scales structures should dissipate on short time-scales. Our new 2D magneto-thermal simulations suggest the opposite. For the first ˜10 kyr after the fall-back episode with accreted mass 10-3 M⊙, the observed NS magnetic field appears dipolar, which is insensitive to the initial magnetic topology. In framework of the Ruderman & Sutherland, vacuum gap model during this interval, non-thermal radiation is strongly suppressed. After this time, the initial (I.e. multipolar) structure begins to re-emerge through the NS crust. We distinguish three evolutionary epochs for the re-emergence process: the growth of internal toroidal field, the advection of buried poloidal field, and slow Ohmic diffusion. The efficiency of the first two stages can be enhanced when small-scale magnetic structure is present. The efficient re-emergence of high-order harmonics might significantly affect the curvature of the magnetospheric field lines in the emission zone. So, only after few 104 yr would be the NS starts shining as a pulsar again, which is in correspondence with radio silence of central compact objects. In addition, these results can explain the absence of good candidates for thermally emitting NSs with freshly re-emerged field among radio pulsars (), as NSs have time to cool down, and supernova remnants can already dissipate.

  14. [A new machinability test machine and the machinability of composite resins for core built-up].

    PubMed

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  15. Energy harvesting using AC machines with high effective pole count

    NASA Astrophysics Data System (ADS)

    Geiger, Richard Theodore

    In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid "stepper" machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%. At low rotor speeds, with the addition of series capacitance, the power output of the hybrid "stepper" was more than 200% that of a similarly sized PMDC brushed motor. Finally, in this thesis a hybrid lumped parameter / finite element model was used to investigate the impact of number, shape and size of the rotor and stator teeth on machine performance. A typical off-the-shelf hybrid stepper machine has significant cogging torque by design. This cogging torque is a major problem in most small energy harvesting applications. In this thesis it was shown that the cogging and ripple torque can be dramatically reduced. These findings confirm that high-pole-count topologies, and specifically the hybrid stepper configuration, are an attractive choice for energy harvesting applications.

  16. Punching influence on magnetic properties of the stator teeth of an induction motor

    NASA Astrophysics Data System (ADS)

    Kedous-Lebouc, A.; Cornut, B.; Perrier, J. C.; Manfé, Ph.; Chevalier, Th.

    2003-01-01

    In order to study the effects of punching of electrical steel sheets, a suitable geometrical structure able to characterize the stator teeth behavior of an induction motor is proposed and validated. The influence of the punching on a fully processed M330-65A is then characterized. A spectacular degradation of loss and B( H) curves is observed. This leads to a perceptible increase of the no-load machine current.

  17. Evaluation of half wave induction motor drive for use in passenger vehicles

    NASA Technical Reports Server (NTRS)

    Hoft, R. G.; Kawamura, A.; Goodarzi, A.; Yang, G. Q.; Erickson, C. L.

    1985-01-01

    Research performed at the University of Missouri-Columbia to devise and design a lower cost inverter induction motor drive for electrical propulsion of passenger vehicles is described. A two phase inverter motor system is recommended. The new design is predicted to provide comparable vehicle performance, improved reliability and a cost advantage for a high production vehicle, decreased total rating of the power semiconductor switches, and a somewhat simpler control hardware compared to the conventional three phase bridge inverter motor drive system. The major disadvantages of the two phase inverter motor drive are that it is larger and more expensive than a three phase machine, the design of snubbers for the power leakage inductances produce higher transient voltages, and the torque pulsations are relatively large because of the necessity to limit the inverter switching frequency to achieve high efficiency.

  18. Comparing statistical and machine learning classifiers: alternatives for predictive modeling in human factors research.

    PubMed

    Carnahan, Brian; Meyer, Gérard; Kuntz, Lois-Ann

    2003-01-01

    Multivariate classification models play an increasingly important role in human factors research. In the past, these models have been based primarily on discriminant analysis and logistic regression. Models developed from machine learning research offer the human factors professional a viable alternative to these traditional statistical classification methods. To illustrate this point, two machine learning approaches--genetic programming and decision tree induction--were used to construct classification models designed to predict whether or not a student truck driver would pass his or her commercial driver license (CDL) examination. The models were developed and validated using the curriculum scores and CDL exam performances of 37 student truck drivers who had completed a 320-hr driver training course. Results indicated that the machine learning classification models were superior to discriminant analysis and logistic regression in terms of predictive accuracy. Actual or potential applications of this research include the creation of models that more accurately predict human performance outcomes.

  19. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berti, Emanuele; Cardoso, Vitor; Gonzalez, Jose A.

    We study the inspiral, merger, and ringdown of unequal mass black hole binaries by analyzing a catalogue of numerical simulations for seven different values of the mass ratio (from q=M{sub 2}/M{sub 1}=1 to q=4). We compare numerical and post-Newtonian results by projecting the waveforms onto spin-weighted spherical harmonics, characterized by angular indices (l,m). We find that the post-Newtonian equations predict remarkably well the relation between the wave amplitude and the orbital frequency for each (l,m), and that the convergence of the post-Newtonian series to the numerical results is nonmonotonic. To leading order, the total energy emitted in the merger phasemore » scales like {eta}{sup 2} and the spin of the final black hole scales like {eta}, where {eta}=q/(1+q){sup 2} is the symmetric mass ratio. We study the multipolar distribution of the radiation, finding that odd-l multipoles are suppressed in the equal mass limit. Higher multipoles carry a larger fraction of the total energy as q increases. We introduce and compare three different definitions for the ringdown starting time. Applying linear-estimation methods (the so-called Prony methods) to the ringdown phase, we find resolution-dependent time variations in the fitted parameters of the final black hole. By cross correlating information from different multipoles, we show that ringdown fits can be used to obtain precise estimates of the mass and spin of the final black hole, which are in remarkable agreement with energy and angular momentum balance calculations.« less

  20. Lyapunov exponent for aging process in induction motor

    NASA Astrophysics Data System (ADS)

    Bayram, Duygu; Ünnü, Sezen Yıdırım; Şeker, Serhat

    2012-09-01

    Nonlinear systems like electrical circuits and systems, mechanics, optics and even incidents in nature may pass through various bifurcations and steady states like equilibrium point, periodic, quasi-periodic, chaotic states. Although chaotic phenomena are widely observed in physical systems, it can not be predicted because of the nature of the system. On the other hand, it is known that, chaos is strictly dependent on initial conditions of the system [1-3]. There are several methods in order to define the chaos. Phase portraits, Poincaré maps, Lyapunov Exponents are the most common techniques. Lyapunov Exponents are the theoretical indicator of the chaos, named after the Russian mathematician Aleksandr Lyapunov (1857-1918). Lyapunov Exponents stand for the average exponential divergence or convergence of nearby system states, meaning estimating the quantitive measure of the chaotic attractor. Negative numbers of the exponents stand for a stable system whereas zero stands for quasi-periodic systems. On the other hand, at least if one of the exponents is positive, this situation is an indicator of the chaos. For estimating the exponents, the system should be modeled by differential equation but even in that case mathematical calculation of Lyapunov Exponents are not very practical and evaluation of these values requires a long signal duration [4-7]. For experimental data sets, it is not always possible to acquire the differential equations. There are several different methods in literature for determining the Lyapunov Exponents of the system [4, 5]. Induction motors are the most important tools for many industrial processes because they are cheap, robust, efficient and reliable. In order to have healthy processes in industrial applications, the conditions of the machines should be monitored and the different working conditions should be addressed correctly. To the best of our knowledge, researches related to Lyapunov exponents and electrical motors are mostly

  1. State reference design and saturated control of doubly-fed induction generators under voltage dips

    NASA Astrophysics Data System (ADS)

    Tilli, Andrea; Conficoni, Christian; Hashemi, Ahmad

    2017-04-01

    In this paper, the stator/rotor currents control problem of doubly-fed induction generator under faulty line voltage is carried out. Common grid faults cause a steep decline in the line voltage profile, commonly denoted as voltage dip. This point is critical for such kind of machines, having their stator windings directly connected to the grid. In this respect, solid methodological nonlinear control theory arguments are exploited and applied to design a novel controller, whose main goal is to improve the system behaviour during voltage dips, endowing it with low voltage ride through capability, a fundamental feature required by modern Grid Codes. The proposed solution exploits both feedforward and feedback actions. The feedforward part relies on suitable reference trajectories for the system internal dynamics, which are designed to prevent large oscillations in the rotor currents and command voltages, excited by line perturbations. The feedback part uses state measurements and is designed according to Linear Matrix Inequalities (LMI) based saturated control techniques to further reduce oscillations, while explicitly accounting for the system constraints. Numerical simulations verify the benefits of the internal dynamics trajectory planning, and the saturated state feedback action, in crucially improving the Doubly-Fed Induction Machine response under severe grid faults.

  2. Inductive reasoning.

    PubMed

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets

    NASA Astrophysics Data System (ADS)

    Goryca, Zbigniew; Paduszyński, Kamil; Pakosz, Artur

    2018-03-01

    This paper presents the results of field calculations of cogging torque for a 12-pole torque motor with an 18-slot stator. A constant angular velocity magnet and the same size gap between n-1 magnets were assumed. In these conditions, the effect of change of the n-th gap between magnets on the cogging torque was tested. Due to considerable length of the machine the calculations were performed using a 2D model. The n-th gap for which the cogging torque assumed the lowest value was evaluated. The cogging torque of the machine with symmetrical magnetic circuit (the same size of gap between magnets) was compared to the one of the asymmetrical machine. With proper choice of asymmetry, the cogging torque for the machine decreased by four times.

  4. Increased Resistance to Flow and Ventilator Failure Secondary to Faulty CO2 Absorbent Insert Not Detected During Automated Anesthesia Machine Check: A Case Report.

    PubMed

    Moreno-Duarte, Ingrid; Montenegro, Julio; Balonov, Konstantin; Schumann, Roman

    2017-04-15

    Most modern anesthesia workstations provide automated checkout, which indicates the readiness of the anesthesia machine. In this case report, an anesthesia machine passed the automated machine checkout. Minutes after the induction of general anesthesia, we observed a mismatch between the selected and delivered tidal volumes in the volume auto flow mode with increased inspiratory resistance during manual ventilation. Endotracheal tube kinking, circuit obstruction, leaks, and patient-related factors were ruled out. Further investigation revealed a broken internal insert within the CO2 absorbent canister that allowed absorbent granules to cause a partial obstruction to inspiratory and expiratory flow triggering contradictory alarms. We concluded that even when the automated machine checkout indicates machine readiness, unforeseen equipment failure due to unexpected events can occur and require providers to remain vigilant.

  5. Automated Wetland Delineation from Multi-Frequency and Multi-Polarized SAR Images in High Temporal and Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Moser, L.; Schmitt, A.; Wendleder, A.

    2016-06-01

    Water scarcity is one of the main challenges posed by the changing climate. Especially in semi-arid regions where water reservoirs are filled during the very short rainy season, but have to store enough water for the extremely long dry season, the intelligent handling of water resources is vital. This study focusses on Lac Bam in Burkina Faso, which is the largest natural lake of the country and of high importance for the local inhabitants for irrigated farming, animal watering, and extraction of water for drinking and sanitation. With respect to the competition for water resources an independent area-wide monitoring system is essential for the acceptance of any decision maker. The following contribution introduces a weather and illumination independent monitoring system for the automated wetland delineation with a high temporal (about two weeks) and a high spatial sampling (about five meters). The similarities of the multispectral and multi-polarized SAR acquisitions by RADARSAT-2 and TerraSAR-X are studied as well as the differences. The results indicate that even basic approaches without pre-classification time series analysis or post-classification filtering are already enough to establish a monitoring system of prime importance for a whole region.

  6. Integrative relational machine-learning for understanding drug side-effect profiles

    PubMed Central

    2013-01-01

    Background Drug side effects represent a common reason for stopping drug development during clinical trials. Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development as well as the risk of discovering novel side effects in available drugs. Today, most investigations deal with isolated side effects and overlook possible redundancy and their frequent co-occurrence. Results In this work, drug annotations are collected from SIDER and DrugBank databases. Terms describing individual side effects reported in SIDER are clustered with a semantic similarity measure into term clusters (TCs). Maximal frequent itemsets are extracted from the resulting drug x TC binary table, leading to the identification of what we call side-effect profiles (SEPs). A SEP is defined as the longest combination of TCs which are shared by a significant number of drugs. Frequent SEPs are explored on the basis of integrated drug and target descriptors using two machine learning methods: decision-trees and inductive-logic programming. Although both methods yield explicit models, inductive-logic programming method performs relational learning and is able to exploit not only drug properties but also background knowledge. Learning efficiency is evaluated by cross-validation and direct testing with new molecules. Comparison of the two machine-learning methods shows that the inductive-logic-programming method displays a greater sensitivity than decision trees and successfully exploit background knowledge such as functional annotations and pathways of drug targets, thereby producing rich and expressive rules. All models and theories are available on a dedicated web site. Conclusions Side effect profiles covering significant number of drugs have been extracted from a drug ×side-effect association table. Integration of background knowledge concerning both chemical and biological spaces has been combined with a relational learning method for

  7. Fuzzy – PI controller to control the velocity parameter of Induction Motor

    NASA Astrophysics Data System (ADS)

    Malathy, R.; Balaji, V.

    2018-04-01

    The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.

  8. A Boltzmann machine for the organization of intelligent machines

    NASA Technical Reports Server (NTRS)

    Moed, Michael C.; Saridis, George N.

    1989-01-01

    In the present technological society, there is a major need to build machines that would execute intelligent tasks operating in uncertain environments with minimum interaction with a human operator. Although some designers have built smart robots, utilizing heuristic ideas, there is no systematic approach to design such machines in an engineering manner. Recently, cross-disciplinary research from the fields of computers, systems AI and information theory has served to set the foundations of the emerging area of the design of intelligent machines. Since 1977 Saridis has been developing an approach, defined as Hierarchical Intelligent Control, designed to organize, coordinate and execute anthropomorphic tasks by a machine with minimum interaction with a human operator. This approach utilizes analytical (probabilistic) models to describe and control the various functions of the intelligent machine structured by the intuitively defined principle of Increasing Precision with Decreasing Intelligence (IPDI) (Saridis 1979). This principle, even though resembles the managerial structure of organizational systems (Levis 1988), has been derived on an analytic basis by Saridis (1988). The purpose is to derive analytically a Boltzmann machine suitable for optimal connection of nodes in a neural net (Fahlman, Hinton, Sejnowski, 1985). Then this machine will serve to search for the optimal design of the organization level of an intelligent machine. In order to accomplish this, some mathematical theory of the intelligent machines will be first outlined. Then some definitions of the variables associated with the principle, like machine intelligence, machine knowledge, and precision will be made (Saridis, Valavanis 1988). Then a procedure to establish the Boltzmann machine on an analytic basis will be presented and illustrated by an example in designing the organization level of an Intelligent Machine. A new search technique, the Modified Genetic Algorithm, is presented and proved

  9. On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: A direct-space computational study.

    PubMed

    Michael, J Robert; Koritsanszky, Tibor

    2017-05-28

    The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.

  10. On the error in the nucleus-centered multipolar expansion of molecular electron density and its topology: A direct-space computational study

    NASA Astrophysics Data System (ADS)

    Michael, J. Robert; Koritsanszky, Tibor

    2017-05-01

    The convergence of nucleus-centered multipolar expansion of the quantum-chemical electron density (QC-ED), gradient, and Laplacian is investigated in terms of numerical radial functions derived by projecting stockholder atoms onto real spherical harmonics at each center. The partial sums of this exact one-center expansion are compared with the corresponding Hansen-Coppens pseudoatom (HC-PA) formalism [Hansen, N. K. and Coppens, P., "Testing aspherical atom refinements on small-molecule data sets," Acta Crystallogr., Sect. A 34, 909-921 (1978)] commonly utilized in experimental electron density studies. It is found that the latter model, due to its inadequate radial part, lacks pointwise convergence and fails to reproduce the local topology of the target QC-ED even at a high-order expansion. The significance of the quantitative agreement often found between HC-PA-based (quadrupolar-level) experimental and extended-basis QC-EDs can thus be challenged.

  11. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive.

    PubMed

    Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A

    2015-06-29

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.

  12. Cage-rotor induction motor inter-turn short circuit fault detection with and without saturation effect by MEC model.

    PubMed

    Naderi, Peyman

    2016-09-01

    The inter-turn short fault for the Cage-Rotor-Induction-Machine (CRIM) is studied in this paper and its local saturation is taken into account. However, in order to observe the exact behavior of machine, the Magnetic-Equivalent-Circuit (MEC) and nonlinear B-H curve are proposed to provide an insight into the machine model and saturation effect respectively. The electrical machines are generally operated near to their saturation zone due to some design necessities. Hence, when the machine is exposed to a fault such as short circuit or eccentricities, it is operated within its saturation zone and thus, time and space harmonics are integrated and as a result, current and torque harmonics are generated which the phenomenon cannot be explored when saturation is dismissed. Nonetheless, inter-turn short circuit may lead to local saturation and this occurrence is studied in this paper using MEC model. In order to achieve the mentioned objectives, two and also four-pole machines are modeled as two samples and the machines performances are analyzed in healthy and faulty cases with and without saturation effect. A novel strategy is proposed to precisely detect inter-turn short circuit fault according to the stator׳s lines current signatures and the accuracy of the proposed method is verified by experimental results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Inductive electronegativity scale. Iterative calculation of inductive partial charges.

    PubMed

    Cherkasov, Artem

    2003-01-01

    A number of novel QSAR descriptors have been introduced on the basis of the previously elaborated models for steric and inductive effects. The developed "inductive" parameters include absolute and effective electronegativity, atomic partial charges, and local and global chemical hardness and softness. Being based on traditional inductive and steric substituent constants these 3D descriptors provide a valuable insight into intramolecular steric and electronic interactions and can find broad application in structure-activity studies. Possible interpretation of physical meaning of the inductive descriptors has been suggested by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres. This approximation relates inductive chemical softness and hardness of bound atom(s) with the total area of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule. The derived full electronegativity equalization scheme allows iterative calculation of inductive partial charges on the basis of atomic electronegativities, covalent radii, and intramolecular distances. A range of inductive descriptors has been computed for a variety of organic compounds. The calculated inductive charges in the studied molecules have been validated by experimental C-1s Electron Core Binding Energies and molecular dipole moments. Several semiempirical chemical rules, such as equalized electronegativity's arithmetic mean, principle of maximum hardness, and principle of hardness borrowing could be explicitly illustrated in the framework of the developed approach.

  14. Comparaison de méthodes d'identification des paramètres d'une machine asynchrone

    NASA Astrophysics Data System (ADS)

    Bellaaj-Mrabet, N.; Jelassi, K.

    1998-07-01

    Interests, in Genetic Algorithms (G.A.) expands rapidly. This paper consists initially to apply G.A. for identifying induction motor parameters. Next, we compare the performances with classical methods like Maximum Likelihood and classical electrotechnical methods. These methods are applied on three induction motors of different powers to compare results following a set of criteria. Les algorithmes génétiques sont des méthodes adaptatives de plus en plus utilisée pour la résolution de certains problèmes d'optimisation. Le présent travail consiste d'une part, à mettre en œuvre un A.G sur des problèmes d'identification des machines électriques, et d'autre part à comparer ses performances avec les méthodes classiques tels que la méthode du maximum de vraisemblance et la méthode électrotechnique basée sur des essais à vides et en court-circuit. Ces méthodes sont appliquées sur des machines asynchrones de différentes puissances. Les résultats obtenus sont comparés selon certains critères, permettant de conclure sur la validité et la performance de chaque méthode.

  15. Support vector machine in machine condition monitoring and fault diagnosis

    NASA Astrophysics Data System (ADS)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  16. Fractography of induction-hardened steel fractured in fatigue and overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, C.G.; Laird, C.

    1997-07-01

    The fracture surfaces of induction-hardened steel specimens obtained from an auto axle were characterized, macroscopically and microscopically, after being fractured in fatigue and monotonic overload. Specimens were tested in cyclic three-point bending under load control, and the S-N curve was established for specimens that had been notched by spark machining to facilitate fractography. Scanning electron microscopy of the fractured surfaces obtained for lives spanning the range 17,000 to 418,000 cycles revealed diverse fracture morphologies, including intergranular fracture and transgranular fatigue fracture. The results are being offered to assist in the analysis of complex field failures in strongly hardened steel.

  17. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and,more » beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.« less

  18. Sensorless FOC Performance Improved with On-Line Speed and Rotor Resistance Estimator Based on an Artificial Neural Network for an Induction Motor Drive

    PubMed Central

    Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.

    2015-01-01

    Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677

  19. Induction Based on Circumscription

    NASA Astrophysics Data System (ADS)

    Saito, Haruka; Inoue, Katsumi

    We investigate induction from the viewpoint of nonmonotonic reasoning. Induction we consider in this paper is descriptive induction. Hypotheses from descriptive induction have the weak property that they only describe rules with respect to the observations and do not realize an inductive leap. In this paper, we define a new form of descriptive induction with circumscription and the idea of explanation and show two procedures for computing it. The new descriptive induction is called circumscriptive induction. By deciding the roles of predicates in circumscription, we can intentionally minimize models of a given inductive problem. By adopting the idea of explanation, we can distinguish between background knowledge and observations. Additionally, we consider the relationship between the way of choosing the roles of predicates in computing circumscription and the property of hypotheses obtained by circumscriptive induction. It is shown that hypotheses from circumscriptive induction reflect a difference between background knowledge and observations and do not realize an inductive leap. We also investigate revision of hypotheses which is as important as generation of hypotheses. In a process of hypothesis revision, a difference between previous induction and circumscriptive induction is clearly characterised.

  20. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    NASA Astrophysics Data System (ADS)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  1. 16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to south (90mm lens). Note the large segmental-arched doorway to move locomotives in and out of Machine Shop. - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  2. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    PubMed

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  3. Channel Efficiency with Security Enhancement for Remote Condition Monitoring of Multi Machine System Using Hybrid Huffman Coding

    NASA Astrophysics Data System (ADS)

    Datta, Jinia; Chowdhuri, Sumana; Bera, Jitendranath

    2016-12-01

    This paper presents a novel scheme of remote condition monitoring of multi machine system where a secured and coded data of induction machine with different parameters is communicated between a state-of-the-art dedicated hardware Units (DHU) installed at the machine terminal and a centralized PC based machine data management (MDM) software. The DHUs are built for acquisition of different parameters from the respective machines, and hence are placed at their nearby panels in order to acquire different parameters cost effectively during their running condition. The MDM software collects these data through a communication channel where all the DHUs are networked using RS485 protocol. Before transmitting, the parameter's related data is modified with the adoption of differential pulse coded modulation (DPCM) and Huffman coding technique. It is further encrypted with a private key where different keys are used for different DHUs. In this way a data security scheme is adopted during its passage through the communication channel in order to avoid any third party attack into the channel. The hybrid mode of DPCM and Huffman coding is chosen to reduce the data packet length. A MATLAB based simulation and its practical implementation using DHUs at three machine terminals (one healthy three phase, one healthy single phase and one faulty three phase machine) proves its efficacy and usefulness for condition based maintenance of multi machine system. The data at the central control room are decrypted and decoded using MDM software. In this work it is observed that Chanel efficiency with respect to different parameter measurements has been increased very much.

  4. Machine characterization based on an abstract high-level language machine

    NASA Technical Reports Server (NTRS)

    Saavedra-Barrera, Rafael H.; Smith, Alan Jay; Miya, Eugene

    1989-01-01

    Measurements are presented for a large number of machines ranging from small workstations to supercomputers. The authors combine these measurements into groups of parameters which relate to specific aspects of the machine implementation, and use these groups to provide overall machine characterizations. The authors also define the concept of pershapes, which represent the level of performance of a machine for different types of computation. A metric based on pershapes is introduced that provides a quantitative way of measuring how similar two machines are in terms of their performance distributions. The metric is related to the extent to which pairs of machines have varying relative performance levels depending on which benchmark is used.

  5. Humanizing machines: Anthropomorphization of slot machines increases gambling.

    PubMed

    Riva, Paolo; Sacchi, Simona; Brambilla, Marco

    2015-12-01

    Do people gamble more on slot machines if they think that they are playing against humanlike minds rather than mathematical algorithms? Research has shown that people have a strong cognitive tendency to imbue humanlike mental states to nonhuman entities (i.e., anthropomorphism). The present research tested whether anthropomorphizing slot machines would increase gambling. Four studies manipulated slot machine anthropomorphization and found that exposing people to an anthropomorphized description of a slot machine increased gambling behavior and reduced gambling outcomes. Such findings emerged using tasks that focused on gambling behavior (Studies 1 to 3) as well as in experimental paradigms that included gambling outcomes (Studies 2 to 4). We found that gambling outcomes decrease because participants primed with the anthropomorphic slot machine gambled more (Study 4). Furthermore, we found that high-arousal positive emotions (e.g., feeling excited) played a role in the effect of anthropomorphism on gambling behavior (Studies 3 and 4). Our research indicates that the psychological process of gambling-machine anthropomorphism can be advantageous for the gaming industry; however, this may come at great expense for gamblers' (and their families') economic resources and psychological well-being. (c) 2015 APA, all rights reserved).

  6. Applying machine learning classification techniques to automate sky object cataloguing

    NASA Astrophysics Data System (ADS)

    Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav

    1993-08-01

    We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is

  7. Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hamilton, H. B.; Strangas, E.

    1980-01-01

    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.

  8. 14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to north (90mm lens). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  9. Elective induction of labor.

    PubMed

    Moore, Lisa E; Rayburn, William F

    2006-09-01

    Induction of labor rates have more than doubled nationwide in the past 15 years. The increase in medically induced inductions was slower than the overall increase, suggesting that inductions for marginal or elective reasons rose more rapidly. Elective inductions seem to account for at least half of all inductions and 10% of all deliveries. Whether the experience of an elective induction is satisfactory to the patient, obstetrician, and intrapartum crew warrants more widespread attention. Cesarean rates are high for nulliparas undergoing an induction with an unfavorable cervix. Prospective studies are limited or nonexistent to recommend induction of labor for elective or marginal indications. Until more prospective work is performed, it will be difficult to evaluate the true impact of the elective induction of labor on population-wide cesarean delivery rates. Strategies for increased obstetrician awareness are proposed through practice guidelines and through clinical research trials.

  10. Demonstration of Inductive Flux Saving by Transient CHI on NSTX

    NASA Astrophysics Data System (ADS)

    Raman, Roger

    2010-11-01

    Experiments in NSTX have now demonstrated the saving of central solenoid flux equivalent to 200kA of toroidal plasma current after coupling plasmas produced by Transient Coaxial Helicity Injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current [R. Raman, et al., PRL 104, 095003 (2010)]. This is a record for non-inductive plasma startup, and an important step for developing the spherical torus concept. With an injector current of only 4kA and total power supply energy of only 21 kJ, CHI initiated a toroidal current of 250 kA that when coupled to 0.11 Vs of induction ramped up to 525 kA without using any auxiliary heating, whereas an otherwise identical inductive-only discharge ramped to only 325 kA. This flux saving was realized by reducing the influx of low-Z impurities during the start-up phase through the use of electrode conditioning discharges, followed by lithium evaporative coating of the plasma-facing surfaces and reducing parasitic arcs in the upper divertor region through use of additional shaping-field coils. As a result of these improvements, and for the first time in NSTX, the electron temperature during the CHI phase continually increased with input energy, indicating that the additional injected energy was contributing to heating the plasma instead of being lost through impurity line radiation. Simulations with the Tokamak Simulation Code (TSC) show that the observed scaling of CHI start-up current with toroidal field in NSTX is consistent with theory, suggesting that use of CHI on larger machines is quite attractive. These exciting results from NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks. This work supported by U.S. DOE Contracts DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08.

  11. Machine Shop Lathes.

    ERIC Educational Resources Information Center

    Dunn, James

    This guide, the second in a series of five machine shop curriculum manuals, was designed for use in machine shop courses in Oklahoma. The purpose of the manual is to equip students with basic knowledge and skills that will enable them to enter the machine trade at the machine-operator level. The curriculum is designed so that it can be used in…

  12. Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance

    NASA Astrophysics Data System (ADS)

    Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema

    2013-03-01

    We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.

  13. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms

    NASA Astrophysics Data System (ADS)

    Gangsar, Purushottam; Tiwari, Rajiv

    2017-09-01

    This paper presents an investigation of vibration and current monitoring for effective fault prediction in induction motor (IM) by using multiclass support vector machine (MSVM) algorithms. Failures of IM may occur due to propagation of a mechanical or electrical fault. Hence, for timely detection of these faults, the vibration as well as current signals was acquired after multiple experiments of varying speeds and external torques from an experimental test rig. Here, total ten different fault conditions that frequently encountered in IM (four mechanical fault, five electrical fault conditions and one no defect condition) have been considered. In the case of stator winding fault, and phase unbalance and single phasing fault, different level of severity were also considered for the prediction. In this study, the identification has been performed of the mechanical and electrical faults, individually and collectively. Fault predictions have been performed using vibration signal alone, current signal alone and vibration-current signal concurrently. The one-versus-one MSVM has been trained at various operating conditions of IM using the radial basis function (RBF) kernel and tested for same conditions, which gives the result in the form of percentage fault prediction. The prediction performance is investigated for the wide range of RBF kernel parameter, i.e. gamma, and selected the best result for one optimal value of gamma for each case. Fault predictions has been performed and investigated for the wide range of operational speeds of the IM as well as external torques on the IM.

  14. Gravitational induction

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Cherubini, Christian; Chicone, Carmen; Mashhoon, Bahram

    2008-11-01

    We study the linear post-Newtonian approximation to general relativity known as gravitoelectromagnetism (GEM); in particular, we examine the similarities and differences between GEM and electrodynamics. Notwithstanding some significant differences between them, we find that a special nonstationary metric in GEM can be employed to show explicitly that it is possible to introduce gravitational induction within GEM in close analogy with Faraday's law of induction and Lenz's law in electrodynamics. Some of the physical implications of gravitational induction are briefly discussed.

  15. Machine tool locator

    DOEpatents

    Hanlon, John A.; Gill, Timothy J.

    2001-01-01

    Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent

  16. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes.

    PubMed

    Arun Dominic, D; Chelliah, Thanga Raj

    2014-09-01

    To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Inductive reasoning 2.0.

    PubMed

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  18. Comprehensive Teacher Induction: Linking Teacher Induction to Theory

    ERIC Educational Resources Information Center

    Keilwitz, Heather A.

    2014-01-01

    Teacher retention is a wide concern in education and in response school districts throughout the United States are developing more comprehensive teacher induction programs. Components of teacher induction programs that have assisted with successful teacher development include release time for teacher observation, assignment of a knowledgeable…

  19. Machinability of nickel based alloys using electrical discharge machining process

    NASA Astrophysics Data System (ADS)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  20. Improving Machining Accuracy of CNC Machines with Innovative Design Methods

    NASA Astrophysics Data System (ADS)

    Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.

    2018-03-01

    The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.

  1. Ultra precision machining

    NASA Astrophysics Data System (ADS)

    Debra, Daniel B.; Hesselink, Lambertus; Binford, Thomas

    1990-05-01

    There are a number of fields that require or can use to advantage very high precision in machining. For example, further development of high energy lasers and x ray astronomy depend critically on the manufacture of light weight reflecting metal optical components. To fabricate these optical components with machine tools they will be made of metal with mirror quality surface finish. By mirror quality surface finish, it is meant that the dimensions tolerances on the order of 0.02 microns and surface roughness of 0.07. These accuracy targets fall in the category of ultra precision machining. They cannot be achieved by a simple extension of conventional machining processes and techniques. They require single crystal diamond tools, special attention to vibration isolation, special isolation of machine metrology, and on line correction of imperfection in the motion of the machine carriages on their way.

  2. Quantum machine learning.

    PubMed

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  3. Quantum machine learning

    NASA Astrophysics Data System (ADS)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-01

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  4. Dissociation and serenity induction.

    PubMed

    Zoellner, Lori A; Sacks, Matthew B; Foa, Edna B

    2007-09-01

    Dissociation is a common experience during or immediately after a traumatic event; yet, most of the current knowledge regarding dissociation is retrospective in nature. The aim of the present study investigated a non-pharmacological method of dissociative induction with a clinical sample. Participants with PTSD and non-trauma exposed participants were randomly assigned to receive either a dissociative induction, or a serenity induction, based on modified Velten mood induction procedures. Participants receiving the dissociative induction reported higher state-dissociation than those receiving the serenity induction. The PTSD group reported greater state dissociation than the non-trauma exposed group, regardless of induction. State dissociation was related to trait dissociation, PTSD severity, and depression. The present results provide an initial demonstration of the viability for inducing state dissociation in the laboratory with a PTSD sample.

  5. Stirling machine operating experience

    NASA Technical Reports Server (NTRS)

    Ross, Brad; Dudenhoefer, James E.

    1991-01-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that Stirling machines are capable of reliable and lengthy lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and were not expected to operate for any lengthy period of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered.

  6. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    PubMed

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. National Machine Guarding Program: Part 1. Machine safeguarding practices in small metal fabrication businesses.

    PubMed

    Parker, David L; Yamin, Samuel C; Brosseau, Lisa M; Xi, Min; Gordon, Robert; Most, Ivan G; Stanley, Rodney

    2015-11-01

    Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine-related hazards in 221 business. Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc.

  8. Three-dimensional analysis of tubular permanent magnet machines

    NASA Astrophysics Data System (ADS)

    Chai, J.; Wang, J.; Howe, D.

    2006-04-01

    This paper presents results from a three-dimensional finite element analysis of a tubular permanent magnet machine, and quantifies the influence of the laminated modules from which the stator core is assembled on the flux linkage and thrust force capability as well as on the self- and mutual inductances. The three-dimensional finite element (FE) model accounts for the nonlinear, anisotropic magnetization characteristic of the laminated stator structure, and for the voids which exist between the laminated modules. Predicted results are compared with those deduced from an axisymmetric FE model. It is shown that the emf and thrust force deduced from the three-dimensional model are significantly lower than those which are predicted from an axisymmetric field analysis, primarily as a consequence of the teeth and yoke being more highly saturated due to the presence of the voids in the laminated stator core.

  9. Evaluation of focused multipolar stimulation for cochlear implants in long-term deafened cats

    NASA Astrophysics Data System (ADS)

    George, Shefin S.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.

    2015-06-01

    Objective. Focused multipolar (FMP) stimulation has been shown to produce restricted neural activation using intracochlear stimulation in animals with a normal population of spiral ganglion neurons (SGNs). However, in a clinical setting, the widespread loss of SGNs and peripheral fibres following deafness is expected to influence the effectiveness of FMP. Approach. We compared the efficacy of FMP stimulation to both monopolar (MP) and tripolar (TP) stimulation in long-term deafened cat cochleae (n = 8). Unlike our previous study, these cochleae contained <10% of the normal SGN population adjacent to the electrode array. We also evaluated the effect of electrode position on stimulation modes by using either modiolar facing or lateral wall facing half-band electrodes. The spread of neural activity across the inferior colliculus, a major nucleus within the central auditory pathway, was used as a measure of spatial selectivity. Main results. In cochleae with significant SGN degeneration, we observed that FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation (p < 0.001). However, thresholds were significantly higher for FMP and TP stimulation compared to MP stimulation (p < 0.001). No difference between FMP and TP stimulation was found in any measures. The high threshold levels for FMP stimulation was significantly reduced without compromising spatial selectivity by varying the degree of current focusing (referred as ‘partial-FMP’ stimulation). Spatial selectivity of all stimulation modes was unaffected by the electrode position. Finally, spatial selectivity in long-term deafened cochleae was significantly less than that of cochleae with normal SGN population (George S S et al 2014 J. Neural Eng. 11 065003). Significance. The present results indicate that the greater spatial selectivity of FMP and TP stimulation over MP stimulation is maintained in cochleae with significant neural degeneration and is not adversely affected by electrode

  10. Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining

    NASA Astrophysics Data System (ADS)

    Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek

    2016-12-01

    Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.

  11. Your Sewing Machine.

    ERIC Educational Resources Information Center

    Peacock, Marion E.

    The programed instruction manual is designed to aid the student in learning the parts, uses, and operation of the sewing machine. Drawings of sewing machine parts are presented, and space is provided for the student's written responses. Following an introductory section identifying sewing machine parts, the manual deals with each part and its…

  12. Teacher Induction: A New Beginning. Papers from the National Commission on the Induction Process.

    ERIC Educational Resources Information Center

    Brooks, Douglas M., Ed.

    The following papers are included in this monograph that provides a synthesis on beginning teacher induction: (1) "Teacher Induction" (Leslie Huling-Austin); (2) "Local Induction Programs" (Ralph Kester and Mary Marockie); (3) "Statewide Teacher Induction Programs" (Parmalee Hawk and Shirley Robards); (4) "The…

  13. Machine Learning

    DTIC Science & Technology

    1990-04-01

    DTIC i.LE COPY RADC-TR-90-25 Final Technical Report April 1990 MACHINE LEARNING The MITRE Corporation Melissa P. Chase Cs) CTIC ’- CT E 71 IN 2 11990...S. FUNDING NUMBERS MACHINE LEARNING C - F19628-89-C-0001 PE - 62702F PR - MOlE S. AUTHO(S) TA - 79 Melissa P. Chase WUT - 80 S. PERFORMING...341.280.5500 pm I " Aw Sig rill Ia 2110-01 SECTION 1 INTRODUCTION 1.1 BACKGROUND Research in machine learning has taken two directions in the problem of

  14. Influence of inductive heating on microstructure and material properties in roll forming processes

    NASA Astrophysics Data System (ADS)

    Guk, Anna; Kunke, Andreas; Kräusel, Verena; Landgrebe, Dirk

    2017-10-01

    The increasing demand for sheet metal parts and profiles with enhanced mechanical properties by using high and ultra-high-strength (UHS) steels for the automotive industry must be covered by increasing flexibility of tools and machines. This can be achieved by applying innovative technologies such as roll forming with integrated inductive heating. This process is similar to indirect press hardening and can be used for the production of hardened profiles and profiles with graded properties in longitudinal and traverse direction. The advantage is that the production of hardened components takes place in a continuous process and the integration of heating and quenching units in the profiling system increases flexibility, accompanied by shortening of the entire process chain and minimizing the springback risk. The features of the mentioned process consists of the combination of inhomogeneous strain distribution over the stripe width by roll forming and inhomogeneity of microstructure by accelerated inductive heating to austenitizing temperature. Therefore, these two features have a direct influence on the mechanical properties of the material during forming and hardening. The aim of this work is the investigation of the influence of heating rates on microstructure evolution and mechanical properties to determine the process window. The results showed that heating rate should be set at 110 K/s for economic integration of inductive heating into the roll forming process.

  15. Induction heating using induction coils in series-parallel circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsen, Marc Rollo; Geren, William Preston; Miller, Robert James

    A part is inductively heated by multiple, self-regulating induction coil circuits having susceptors, coupled together in parallel and in series with an AC power supply. Each of the circuits includes a tuning capacitor that tunes the circuit to resonate at the frequency of AC power supply.

  16. Induction voidmeter

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Brewer, John

    1986-01-01

    An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge circuit, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; applying an AC excitation signal to said input branch; and detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.

  17. Induction voidmeter

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Brewer, J.

    1983-12-21

    An induction voidmeter for detecting voids in a conductive fluid may comprise: a four arm bridge circuit having two adjustable circuit elements connected as opposite arms of said bridge, an input branch, and an output branch; two induction coils, bifilarly wound together, connected as the remaining two opposing arms of said bridge circuit and positioned such that the conductive fluid passes through said coils; means for applying an AC excitation signal to said input branch; and means for detecting the output signal generated in response to said excitation signal across said output branch. The induction coils may be located outside or inside a non-magnetic pipe containing the conductive fluid.

  18. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    NASA Astrophysics Data System (ADS)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  19. National machine guarding program: Part 1. Machine safeguarding practices in small metal fabrication businesses

    PubMed Central

    Yamin, Samuel C.; Brosseau, Lisa M.; Xi, Min; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2015-01-01

    Background Metal fabrication workers experience high rates of traumatic occupational injuries. Machine operators in particular face high risks, often stemming from the absence or improper use of machine safeguarding or the failure to implement lockout procedures. Methods The National Machine Guarding Program (NMGP) was a translational research initiative implemented in conjunction with two workers' compensation insures. Insurance safety consultants trained in machine guarding used standardized checklists to conduct a baseline inspection of machine‐related hazards in 221 business. Results Safeguards at the point of operation were missing or inadequate on 33% of machines. Safeguards for other mechanical hazards were missing on 28% of machines. Older machines were both widely used and less likely than newer machines to be properly guarded. Lockout/tagout procedures were posted at only 9% of machine workstations. Conclusions The NMGP demonstrates a need for improvement in many aspects of machine safety and lockout in small metal fabrication businesses. Am. J. Ind. Med. 58:1174–1183, 2015. © 2015 The Authors. American Journal of Industrial Medicine published by Wiley Periodicals, Inc. PMID:26332060

  20. A Boltzmann machine for the organization of intelligent machines

    NASA Technical Reports Server (NTRS)

    Moed, Michael C.; Saridis, George N.

    1990-01-01

    A three-tier structure consisting of organization, coordination, and execution levels forms the architecture of an intelligent machine using the principle of increasing precision with decreasing intelligence from a hierarchically intelligent control. This system has been formulated as a probabilistic model, where uncertainty and imprecision can be expressed in terms of entropies. The optimal strategy for decision planning and task execution can be found by minimizing the total entropy in the system. The focus is on the design of the organization level as a Boltzmann machine. Since this level is responsible for planning the actions of the machine, the Boltzmann machine is reformulated to use entropy as the cost function to be minimized. Simulated annealing, expanding subinterval random search, and the genetic algorithm are presented as search techniques to efficiently find the desired action sequence and illustrated with numerical examples.

  1. Standardized Curriculum for Machine Tool Operation/Machine Shop.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…

  2. Machine Learning.

    ERIC Educational Resources Information Center

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  3. A New Apparatus for Measuring the Temperature at Machine Parts Rotating at High Speeds

    NASA Technical Reports Server (NTRS)

    Gnam, E.

    1945-01-01

    After a brief survey of the available methods for measuring the temperatures of machine parts at high speed, in particular turbine blades and rotors, an apparatus is described which is constructed on the principle of induction. Transmission of the measuring current by sliding contacts therefore is avoided. Up-to-date experiments show that it is possible to give the apparatus a high degree of sensitivity and accuracy. In comparison with sliding contact types, the present apparatus shows the important advantage that it operates for any length of time without wear, and that the contact difficulties, particularly occurring at high sliding speeds,are avoided.

  4. Machine tool task force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, G.P.

    1980-10-22

    The Machine Tool Task Force (MTTF) is a multidisciplined team of international experts, whose mission was to investigate the state of the art of machine tool technology, to identify promising future directions of that technology for both the US government and private industry, and to disseminate the findings of its research in a conference and through the publication of a final report. MTTF was a two and one-half year effort that involved the participation of 122 experts in the specialized technologies of machine tools and in the management of machine tool operations. The scope of the MTTF was limited tomore » cutting-type or material-removal-type machine tools, because they represent the major share and value of all machine tools now installed or being built. The activities of the MTTF and the technical, commercial and economic signifiance of recommended activities for improving machine tool technology are discussed. (LCL)« less

  5. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles.

    PubMed

    Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip

    2016-02-15

    We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.

  6. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...

  7. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...

  8. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...

  9. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...

  10. 15 CFR 700.31 - Metalworking machines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... machines covered by this section include: Bending and forming machines Boring machines Broaching machines... Planers and shapers Polishing, lapping, boring, and finishing machines Punching and shearing machines...

  11. Cooperating reduction machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, W.E.

    1983-11-01

    This paper presents a concept and a system architecture for the concurrent execution of program expressions of a concrete reduction language based on lamda-expressions. If formulated appropriately, these expressions are well-suited for concurrent execution, following a demand-driven model of computation. In particular, recursive program expressions with nonlinear expansion may, at run time, recursively be partitioned into a hierarchy of independent subexpressions which can be reduced by a corresponding hierarchy of virtual reduction machines. This hierarchy unfolds and collapses dynamically, with virtual machines recursively assuming the role of masters that create and eventually terminate, or synchronize with, slaves. The paper alsomore » proposes a nonhierarchically organized system of reduction machines, each featuring a stack architecture, that effectively supports the allocation of virtual machines to the real machines of the system in compliance with their hierarchical order of creation and termination. 25 references.« less

  12. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement.

    PubMed

    Zhang, Xiaodong; Zeng, Zhen; Liu, Xianlei; Fang, Fengzhou

    2015-09-21

    Freeform surface is promising to be the next generation optics, however it needs high form accuracy for excellent performance. The closed-loop of fabrication-measurement-compensation is necessary for the improvement of the form accuracy. It is difficult to do an off-machine measurement during the freeform machining because the remounting inaccuracy can result in significant form deviations. On the other side, on-machine measurement may hides the systematic errors of the machine because the measuring device is placed in situ on the machine. This study proposes a new compensation strategy based on the combination of on-machine and off-machine measurement. The freeform surface is measured in off-machine mode with nanometric accuracy, and the on-machine probe achieves accurate relative position between the workpiece and machine after remounting. The compensation cutting path is generated according to the calculated relative position and shape errors to avoid employing extra manual adjustment or highly accurate reference-feature fixture. Experimental results verified the effectiveness of the proposed method.

  13. Analysis of four dental alloys following torch/centrifugal and induction/ vacuum-pressure casting procedures.

    PubMed

    Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur

    2013-12-01

    Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (P<.001). In contrast, the technique used for casting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting

  14. Fault Tolerant State Machines

    NASA Technical Reports Server (NTRS)

    Burke, Gary R.; Taft, Stephanie

    2004-01-01

    State machines are commonly used to control sequential logic in FPGAs and ASKS. An errant state machine can cause considerable damage to the device it is controlling. For example in space applications, the FPGA might be controlling Pyros, which when fired at the wrong time will cause a mission failure. Even a well designed state machine can be subject to random errors us a result of SEUs from the radiation environment in space. There are various ways to encode the states of a state machine, and the type of encoding makes a large difference in the susceptibility of the state machine to radiation. In this paper we compare 4 methods of state machine encoding and find which method gives the best fault tolerance, as well as determining the resources needed for each method.

  15. Scheduling of hybrid types of machines with two-machine flowshop as the first type and a single machine as the second type

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Chih; Su, Ling-Huey

    2018-02-01

    This research addresses the problem of scheduling hybrid machine types, in which one type is a two-machine flowshop and another type is a single machine. A job is either processed on the two-machine flowshop or on the single machine. The objective is to determine a production schedule for all jobs so as to minimize the makespan. The problem is NP-hard since the two parallel machines problem was proved to be NP-hard. Simulated annealing algorithms are developed to solve the problem optimally. A mixed integer programming (MIP) is developed and used to evaluate the performance for two SAs. Computational experiments demonstrate the efficiency of the simulated annealing algorithms, the quality of the simulated annealing algorithms will also be reported.

  16. 14. Machine in north 1922 section of Building 59. Machine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Machine in north 1922 section of Building 59. Machine is 24' Jointer made by Oliver Machinery Co. Camera pointed E. - Puget Sound Naval Shipyard, Pattern Shop, Farragut Avenue, Bremerton, Kitsap County, WA

  17. 15. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to northeast (90mm lens). The arched cutouts in the bottom chords of the roof trusses were necessary to provide clearance for the smokestacks of steam locomotives, and also mark the location of the former inspection pit in the floor (now filled in and covered by a new concrete floor). - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV

  18. Anovulation and ovulation induction

    PubMed Central

    Katsikis, I; Kita, M; Karkanaki, A; Prapas, N; Panidis, D

    2006-01-01

    Conventional treatment of normogonadotropic anovulatory infertility is ovulation induction using the antiestrogen clomiphene citrate, followed by follicle-stimulating hormone. Multiple follicle development, associated with ovarian hyperstimulation, and multiple pregnancy remain the major complications. Cumulative singleton and multiple pregnancy rate data after different induction treatments are needed. Newer ovulation induction interventions, such as insulin-sensitizing drugs, aromatase inhibitors and laparoscopic ovarian electrocoagulation, should be compared with conventional treatments. Ovulation induction efficiency might improve if patient subgroups with altered chances for success or complications with new or conventional techniques could be identified, using multivariate prediction models based on initial screening characteristics. This would make ovulation induction more cost-effective, safe and convenient, enabling doctors to advise patients on the most effective and patient-tailored treatment strategy. PMID:20351807

  19. Brazed Diamond Micropowder Bur Fabricated by Supersonic Frequency Induction Heating for Precision Machining

    NASA Astrophysics Data System (ADS)

    Ma, Bojiang; Lou, Jianpeng; Pang, Qian

    2014-04-01

    The common brazed diamond micropowder bur fabricated in a vacuum furnace produces an even brazing alloy surface. The small brazed diamond grits show low outcropping from the brazing alloy surface, and the chip space between them is small. The bur shows a low grinding efficiency and poor heat dissipation. In this study, a brazed diamond micropowder bur was fabricated by supersonic frequency induction heating. The method afforded a fluctuant surface on the brazing alloy. The brazed diamond grits with an outcropping height distributed uniformly on the fluctuant surface. The fluctuant surface showed a certain chip space. These characteristics of the tool increased the grinding efficiency and decreased the temperature of the grinding arc area. The roughness R a of the ceramic tile surface trimmed by the tool cylinder was between 0.09 and 0.12 μm. In the first 90 min, the decrease in the weight of the ceramic tile ground by the tool cylinder was higher than that ground by the tool fabricated in a vacuum furnace. When the ceramic tile was cylindrically ground, the temperature of the grinding arc area measured using a thermocouple remained below 70 °C.

  20. Universal Parameter Measurement and Sensorless Vector Control of Induction and Permanent Magnet Synchronous Motors

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shu; Ara, Takahiro

    Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.

  1. Energy Harvesting with a Liquid-Metal Microfluidic Influence Machine

    NASA Astrophysics Data System (ADS)

    Conner, Christopher; de Visser, Tim; Loessberg, Joshua; Sherman, Sam; Smith, Andrew; Ma, Shuo; Napoli, Maria Teresa; Pennathur, Sumita; Weld, David

    2018-04-01

    We describe and demonstrate an alternative energy-harvesting technology based on a microfluidic realization of a Wimshurst influence machine. The prototype device converts the mechanical energy of a pressure-driven flow into electrical energy, using a multiphase system composed of droplets of liquid mercury surrounded by insulating oil. Electrostatic induction between adjacent metal droplets drives charge through external electrode paths, resulting in continuous charge amplification and collection. We demonstrate a power output of 4 nW from the initial prototype and present calculations suggesting that straightforward device optimization could increase the power output by more than 3 orders of magnitude. At that level, the power efficiency of this energy-harvesting mechanism, limited by viscous dissipation, could exceed 90%. The microfluidic context enables straightforward scaling and parallelization, as well as hydraulic matching to a variety of ambient mechanical energy sources, such as human locomotion.

  2. When Induction Meets Memory: Evidence for Gradual Transition from Similarity-Based to Category-Based Induction

    ERIC Educational Resources Information Center

    Fisher, Anna V.; Sloutsky, Vladimir M.

    2005-01-01

    The ability to perform induction appears early; however, underlying mechanisms remain unclear. Some argue that early induction is category based, whereas others suggest that early induction is similarity based. Category- and similarity-based induction should result in different memory traces and thus in different memory accuracy. Performing…

  3. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  4. Design and Performance Improvement of AC Machines Sharing a Common Stator

    NASA Astrophysics Data System (ADS)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be

  5. A taxonomy of inductive problems.

    PubMed

    Kemp, Charles; Jern, Alan

    2014-02-01

    Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.

  6. Application de la methode de la reponse frequentielle a l'arret "SSFR", sur une machine synchrone a poles saillants de grande puissance

    NASA Astrophysics Data System (ADS)

    Belqorchi, Abdelghafour

    Forty years after Watson and Manchur conducted the Stand-Still Frequency Response (SSFR) test on a large turbogenerator, the applicability of this technic on a powerful salient pole synchronous generator has yet to be confirmed. The scientific literature on the subject is rare and very few have attempted to compare SSFR parameter results with those deduced by classical tests. The validity of SSFR on large salient pole machines has still to be proven. The present work aims in participating to fill this knowledge gap. It can be used to build a database of measurements highly needed to draw the validity of the technic. Also, the author hopes to demonstrate the potential of SSFR model to represent the machine, not only in cases of weak disturbances but also strong ones such as instantaneous three-phase short-circuit faults. The difficulties raised by previous searchers are: The lack of accuracy in very low frequency measurements; The difficulty in rotor positioning, according to d and q axes, in case of salient pole machines; The measurement current level influence on magnetizing inductances, in axes-d and; The rotation impact on damper circuits for some rotors design. Aware of the above difficulties, the author conducted an SSFR test on a large salient pole machine (285 MVA). The generator under test has laminated non isolated rotor and an integral slot number. The damper windings in adjacent poles are connected together, via the polar core and the rotor rim. Finally, the damping circuit is unaffected by rotation. To improve the measurement accuracy, in very low frequencies, the most precise frequency response analyser available on the market was used. Besides, the frequency responses of the signals conditioning modules (i.e., isolation, amplification...) were accounted for to correct the four measured SSFR transfer functions. Immunization against noise and use of instrumentation in their optimum range, were other technics rigorously applied. Magnetizing inductances

  7. Quantification of uncertainty in machining operations for on-machine acceptance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claudet, Andre A.; Tran, Hy D.; Su, Jiann-Chemg

    2008-09-01

    Manufactured parts are designed with acceptance tolerances, i.e. deviations from ideal design conditions, due to unavoidable errors in the manufacturing process. It is necessary to measure and evaluate the manufactured part, compared to the nominal design, to determine whether the part meets design specifications. The scope of this research project is dimensional acceptance of machined parts; specifically, parts machined using numerically controlled (NC, or also CNC for Computer Numerically Controlled) machines. In the design/build/accept cycle, the designer will specify both a nominal value, and an acceptable tolerance. As part of the typical design/build/accept business practice, it is required to verifymore » that the part did meet acceptable values prior to acceptance. Manufacturing cost must include not only raw materials and added labor, but also the cost of ensuring conformance to specifications. Ensuring conformance is a substantial portion of the cost of manufacturing. In this project, the costs of measurements were approximately 50% of the cost of the machined part. In production, cost of measurement would be smaller, but still a substantial proportion of manufacturing cost. The results of this research project will point to a science-based approach to reducing the cost of ensuring conformance to specifications. The approach that we take is to determine, a priori, how well a CNC machine can manufacture a particular geometry from stock. Based on the knowledge of the manufacturing process, we are then able to decide features which need further measurements from features which can be accepted 'as is' from the CNC. By calibration of the machine tool, and establishing a machining accuracy ratio, we can validate the ability of CNC to fabricate to a particular level of tolerance. This will eliminate the costs of checking for conformance for relatively large tolerances.« less

  8. Hydraulic Fatigue-Testing Machine

    NASA Technical Reports Server (NTRS)

    Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.

    1987-01-01

    Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.

  9. Probability machines: consistent probability estimation using nonparametric learning machines.

    PubMed

    Malley, J D; Kruppa, J; Dasgupta, A; Malley, K G; Ziegler, A

    2012-01-01

    Most machine learning approaches only provide a classification for binary responses. However, probabilities are required for risk estimation using individual patient characteristics. It has been shown recently that every statistical learning machine known to be consistent for a nonparametric regression problem is a probability machine that is provably consistent for this estimation problem. The aim of this paper is to show how random forests and nearest neighbors can be used for consistent estimation of individual probabilities. Two random forest algorithms and two nearest neighbor algorithms are described in detail for estimation of individual probabilities. We discuss the consistency of random forests, nearest neighbors and other learning machines in detail. We conduct a simulation study to illustrate the validity of the methods. We exemplify the algorithms by analyzing two well-known data sets on the diagnosis of appendicitis and the diagnosis of diabetes in Pima Indians. Simulations demonstrate the validity of the method. With the real data application, we show the accuracy and practicality of this approach. We provide sample code from R packages in which the probability estimation is already available. This means that all calculations can be performed using existing software. Random forest algorithms as well as nearest neighbor approaches are valid machine learning methods for estimating individual probabilities for binary responses. Freely available implementations are available in R and may be used for applications.

  10. Inductive Reasoning and Writing

    ERIC Educational Resources Information Center

    Rooks, Clay; Boyd, Robert

    2003-01-01

    Induction, properly understood, is not merely a game, nor is it a gimmick, nor is it an artificial way of explaining an element of reasoning. Proper understanding of inductive reasoning--and the various types of reasoning that the authors term inductive--enables the student to evaluate critically other people's writing and enhances the composition…

  11. Induction heating coupler

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Copeland, Carl E. (Inventor); Swaim, Robert J. (Inventor); Coultrip, Robert H. (Inventor); Johnston, David F. (Inventor); Phillips, W. Morris (Inventor); Johnson, Samuel D. (Inventor); Dinkins, James R. (Inventor); Buckley, John D. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardely beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to magnetic flux passing between the two ends of the pole piece.

  12. Investigations on high speed machining of EN-353 steel alloy under different machining environments

    NASA Astrophysics Data System (ADS)

    Venkata Vishnu, A.; Jamaleswara Kumar, P.

    2018-03-01

    The addition of Nano Particles into conventional cutting fluids enhances its cooling capabilities; in the present paper an attempt is made by adding nano sized particles into conventional cutting fluids. Taguchi Robust Design Methodology is employed in order to study the performance characteristics of different turning parameters i.e. cutting speed, feed rate, depth of cut and type of tool under different machining environments i.e. dry machining, machining with lubricant - SAE 40 and machining with mixture of nano sized particles of Boric acid and base fluid SAE 40. A series of turning operations were performed using L27 (3)13 orthogonal array, considering high cutting speeds and the other machining parameters to measure hardness. The results are compared among the different machining environments, and it is concluded that there is considerable improvement in the machining performance using lubricant SAE 40 and mixture of SAE 40 + boric acid compared with dry machining. The ANOVA suggests that the selected parameters and the interactions are significant and cutting speed has most significant effect on hardness.

  13. First-Year Undergraduate Induction: Who Attends and How Important Is Induction for First Year Attainment?

    ERIC Educational Resources Information Center

    Murtagh, S.; Ridley, A.; Frings, D.; Kerr-Pertic, S.

    2017-01-01

    The first year of study in higher education is a time of major transition for students. While the importance of induction has been widely demonstrated, there is evidence to suggest that not all students benefit equally from participation in induction. This study examined attendance rates at induction, the relationship between induction attendance…

  14. Electric machine

    DOEpatents

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  15. ERECTING/MACHINE SHOP, CRANE ACCESS GANGWAY BETWEEN ERECTING (L) AND MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTING/MACHINE SHOP, CRANE ACCESS GANGWAY BETWEEN ERECTING (L) AND MACHINE (R) SHOPS, LOOKING NORTH. - Southern Pacific, Sacramento Shops, Erecting Shop, 111 I Street, Sacramento, Sacramento County, CA

  16. Machine Learning and Radiology

    PubMed Central

    Wang, Shijun; Summers, Ronald M.

    2012-01-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. PMID:22465077

  17. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    PubMed Central

    Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang

    2018-01-01

    Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks. PMID:29351235

  18. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  19. Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert K.; Wise, Andrew K.; Enke, Ya Lang; Carter, Paul M.; Fallon, James B.

    2017-08-01

    Objective. Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels. However, compared with conventional biphasic current pulses generated from a single current source, FMP is a complex stimulus that includes extended periods of stimulation before charge recovery is achieved, raising questions on whether chronic stimulation with this strategy is safe. The present study evaluated the long-term safety of intracochlear stimulation using FMP in a preclinical animal model of profound deafness. Approach. Six cats were bilaterally implanted with scala tympani electrode arrays two months after deafening, and received continuous unilateral FMP stimulation at levels that evoked a behavioural response for periods of up to 182 d. Electrode impedance, electrically-evoked compound action potentials (ECAPs) and auditory brainstem responses (EABRs) were monitored periodically over the course of the stimulation program from both the stimulated and contralateral control cochleae. On completion of the stimulation program cochleae were examined histologically and the electrode arrays were evaluated for evidence of platinum (Pt) corrosion. Main results. There was no significant difference in electrode impedance between control and chronically stimulated electrodes following long-term FMP stimulation. Moreover, there was no significant difference between ECAP and EABR thresholds evoked from control or stimulated cochleae at either the onset of stimulation or at completion of the stimulation program. Chronic FMP stimulation had no effect on spiral ganglion neuron (SGN) survival when compared with

  20. Technology of machine tools. Volume 4. Machine tool controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  1. Technology of machine tools. Volume 3. Machine tool mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tlusty, J.

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  2. Technology of machine tools. Volume 5. Machine tool accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hocken, R.J.

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  3. Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networksmore » and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.« less

  4. Machine vision systems using machine learning for industrial product inspection

    NASA Astrophysics Data System (ADS)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  5. Walking Machine Control Programming

    DTIC Science & Technology

    1983-08-31

    configuration is useful for two reasons: first, the machine won’t fit through the garage door unless it is in the tuck position, and second, a principal way...machine out of its garage . ’We call the garage a "laboratory" even though the shorter term is more apt.- We regularly run the machine in the parking...comes down from a high push-up. The natural position for the feet as the machine comes out of the garage is the "tuck" in which each knee is bent in as

  6. Machine learning and radiology.

    PubMed

    Wang, Shijun; Summers, Ronald M

    2012-07-01

    In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.

  7. Vane Pump Casing Machining of Dumpling Machine Based on CAD/CAM

    NASA Astrophysics Data System (ADS)

    Huang, Yusen; Li, Shilong; Li, Chengcheng; Yang, Zhen

    Automatic dumpling forming machine is also called dumpling machine, which makes dumplings through mechanical motions. This paper adopts the stuffing delivery mechanism featuring the improved and specially-designed vane pump casing, which can contribute to the formation of dumplings. Its 3D modeling in Pro/E software, machining process planning, milling path optimization, simulation based on UG and compiling post program were introduced and verified. The results indicated that adoption of CAD/CAM offers firms the potential to pursue new innovative strategies.

  8. A Simple Universal Turing Machine for the Game of Life Turing Machine

    NASA Astrophysics Data System (ADS)

    Rendell, Paul

    In this chapter we present a simple universal Turing machine which is small enough to fit into the design limits of the Turing machine build in Conway's Game of Life by the author. That limit is 8 symbols and 16 states. By way of comparison we also describe one of the smallest known universal Turing machines due to Rogozhin which has 6 symbols and 4 states.

  9. Inductive sensor performance in partial discharges and noise separation by means of spectral power ratios.

    PubMed

    Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo

    2014-02-19

    Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  10. FDT 2.0: Improving scalability of the fuzzy decision tree induction tool - integrating database storage.

    PubMed

    Durham, Erin-Elizabeth A; Yu, Xiaxia; Harrison, Robert W

    2014-12-01

    Effective machine-learning handles large datasets efficiently. One key feature of handling large data is the use of databases such as MySQL. The freeware fuzzy decision tree induction tool, FDT, is a scalable supervised-classification software tool implementing fuzzy decision trees. It is based on an optimized fuzzy ID3 (FID3) algorithm. FDT 2.0 improves upon FDT 1.0 by bridging the gap between data science and data engineering: it combines a robust decisioning tool with data retention for future decisions, so that the tool does not need to be recalibrated from scratch every time a new decision is required. In this paper we briefly review the analytical capabilities of the freeware FDT tool and its major features and functionalities; examples of large biological datasets from HIV, microRNAs and sRNAs are included. This work shows how to integrate fuzzy decision algorithms with modern database technology. In addition, we show that integrating the fuzzy decision tree induction tool with database storage allows for optimal user satisfaction in today's Data Analytics world.

  11. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios

    PubMed Central

    Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo

    2014-01-01

    Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges. PMID:24556674

  12. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos

    PubMed Central

    Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua

    2017-01-01

    Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei. PMID:28038458

  13. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos.

    PubMed

    Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua

    2017-02-14

    Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei.

  14. The Knife Machine. Module 15.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on the knife machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the knife machine (a single needle or multi-needle machine which sews and cuts at the same time). These components are provided: an introduction, directions, an objective,…

  15. Induction melter apparatus

    DOEpatents

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  16. Principles of Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Briggs*, Richard J.

    The basic concepts involved in induction accelerators are introduced in this chapter. The objective is to provide a foundation for the more detailed coverage of key technology elements and specific applications in the following chapters. A wide variety of induction accelerators are discussed in the following chapters, from the high current linear electron accelerator configurations that have been the main focus of the original developments, to circular configurations like the ion synchrotrons that are the subject of more recent research. The main focus in the present chapter is on the induction module containing the magnetic core that plays the role of a transformer in coupling the pulsed power from the modulator to the charged particle beam. This is the essential common element in all these induction accelerators, and an understanding of the basic processes involved in its operation is the main objective of this chapter. (See [1] for a useful and complementary presentation of the basic principles in induction linacs.)

  17. Investigation of Machine-ability of Inconel 800 in EDM with Coated Electrode

    NASA Astrophysics Data System (ADS)

    Karunakaran, K.; Chandrasekaran, M.

    2017-03-01

    The Inconel 800 is a high temperature application alloy which is classified as a nickel based super alloy. It has wide scope in aerospace engineering, gas Turbine etc. The machine-ability studies were found limited on this material. Hence This research focuses on machine-ability studies on EDM of Inconel 800 with Silver Coated Electrolyte Copper Electrode. The purpose of coating on electrode is to reduce tool wear. The factors pulse on Time, Pulse off Time and Peck Current were considered to observe the responses of surface roughness, material removal rate, tool wear rate. Taguchi Full Factorial Design is employed for Design the experiment. Some specific findings were reported and the percentage of contribution of each parameter was furnished

  18. Non Invasive Sensors for Monitoring the Efficiency of AC Electrical Rotating Machines

    PubMed Central

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer. PMID:22163631

  19. Non invasive sensors for monitoring the efficiency of AC electrical rotating machines.

    PubMed

    Zidat, Farid; Lecointe, Jean-Philippe; Morganti, Fabrice; Brudny, Jean-François; Jacq, Thierry; Streiff, Frédéric

    2010-01-01

    This paper presents a non invasive method for estimating the energy efficiency of induction motors used in industrial applications. This method is innovative because it is only based on the measurement of the external field emitted by the motor. The paper describes the sensors used, how they should be placed around the machine in order to decouple the external field components generated by both the air gap flux and the winding end-windings. The study emphasizes the influence of the eddy currents flowing in the yoke frame on the sensor position. A method to estimate the torque from the external field use is proposed. The measurements are transmitted by a wireless module (Zig-Bee) and they are centralized and stored on a PC computer.

  20. Induction as Knowledge Integration

    NASA Technical Reports Server (NTRS)

    Smith, Benjamin D.; Rosenbloom, Paul S.

    1996-01-01

    Two key issues for induction algorithms are the accuracy of the learned hypothesis and the computational resources consumed in inducing that hypothesis. One of the most promising ways to improve performance along both dimensions is to make use of additional knowledge. Multi-strategy learning algorithms tackle this problem by employing several strategies for handling different kinds of knowledge in different ways. However, integrating knowledge into an induction algorithm can be difficult when the new knowledge differs significantly from the knowledge the algorithm already uses. In many cases the algorithm must be rewritten. This paper presents Knowledge Integration framework for Induction (KII), a KII, that provides a uniform mechanism for integrating knowledge into induction. In theory, arbitrary knowledge can be integrated with this mechanism, but in practice the knowledge representation language determines both the knowledge that can be integrated, and the costs of integration and induction. By instantiating KII with various set representations, algorithms can be generated at different trade-off points along these dimensions. One instantiation of KII, called RS-KII, is presented that can implement hybrid induction algorithms, depending on which knowledge it utilizes. RS-KII is demonstrated to implement AQ-11, as well as a hybrid algorithm that utilizes a domain theory and noisy examples. Other algorithms are also possible.

  1. Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy.

    PubMed

    Dutra, I; Nassif, H; Page, D; Shavlik, J; Strigel, R M; Wu, Y; Elezaby, M E; Burnside, E

    2011-01-01

    In this work we show that combining physician rules and machine learned rules may improve the performance of a classifier that predicts whether a breast cancer is missed on percutaneous, image-guided breast core needle biopsy (subsequently referred to as "breast core biopsy"). Specifically, we show how advice in the form of logical rules, derived by a sub-specialty, i.e. fellowship trained breast radiologists (subsequently referred to as "our physicians") can guide the search in an inductive logic programming system, and improve the performance of a learned classifier. Our dataset of 890 consecutive benign breast core biopsy results along with corresponding mammographic findings contains 94 cases that were deemed non-definitive by a multidisciplinary panel of physicians, from which 15 were upgraded to malignant disease at surgery. Our goal is to predict upgrade prospectively and avoid surgery in women who do not have breast cancer. Our results, some of which trended toward significance, show evidence that inductive logic programming may produce better results for this task than traditional propositional algorithms with default parameters. Moreover, we show that adding knowledge from our physicians into the learning process may improve the performance of the learned classifier trained only on data.

  2. [Comparison of machinability of two types of dental machinable ceramic].

    PubMed

    Fu, Qiang; Zhao, Yunfeng; Li, Yong; Fan, Xinping; Li, Yan; Lin, Xuefeng

    2002-11-01

    In terms of the problems of now available dental machinable ceramics, a new type of calcium-mica glass-ceramic, PMC-I ceramic, was developed, and its machinability was compared with that of Vita MKII quantitatively. Moreover, the relationship between the strength and the machinability of PMC-I ceramic was studied. Samples of PMC-I ceramic were divided into four groups according to their nucleation procedures. 600-seconds drilling tests were conducted with high-speed steel tools (Phi = 2.3 mm) to measure the drilling depths of Vita MKII ceramic and PMC-I ceramic, while constant drilling speed of 600 rpm and constant axial load of 39.2 N were used. And the 3-point bending strength of the four groups of PMC-I ceramic were recorded. Drilling depth of Vita MKII was 0.71 mm, while the depths of the four groups of PMC-I ceramic were 0.88 mm, 1.40 mm, 0.40 mm and 0.90 mm, respectively. Group B of PMC-I ceramic showed the largest depth of 1.40 mm and was statistically different from other groups and Vita MKII. And the strength of the four groups of PMC-I ceramic were 137.7, 210.2, 118.0 and 106.0 MPa, respectively. The machinability of the new developed dental machinable ceramic of PMC-I could meet the need of the clinic.

  3. [Effect of external abdominal aorta compression on circulation during anesthesia induction in elderly patients].

    PubMed

    Li, Xiuman; Wang, Lixiang

    2017-07-01

    To investigate the effect of external abdominal aorta compression on circulation during anesthetic induction in elderly patients. A prospective randomized controlled trial was conducted. Patients with age of 60-75 years old, requiring a general anesthesia for non-abdominal surgery, and with II-III class of American Society of Anesthesiologists (ASA) physical status classification, and admitted to General Hospital of Chinese People's Armed Police Forces from January to April in 2017 were enrolled. They were divided into abdominal aorta pressure group and control group according to random number method, with 20 patients in each group. In both groups, anesthesia was induced with midazolam, propofol, fentanyl and cisatracurium, and was maintained with propofol, remifentanil and cisatracurium. After successful intubation, the anesthesia machine was changed into mechanical ventilation. The patients in abdominal aorta pressure group were given abdominal aorta pressure 1 minute after induction of general anesthesia with midazolam till 5 minutes after intubation. The mean arterial pressure (MAP), heart rate (HR) and blood oxygen saturation (SpO 2 ) were observed before anesthesia induction, immediately after anesthesia induction, immediately after intubation, 5 minutes and 10 minutes after intubation, respectively. The incidence of hypotension or bradycardia, and usage of ephedrine or atropine were recorded. There were no significant differences in MAP [mmHg (1 mmHg = 0.133 kPa): 83.6±4.7 vs. 82.9±4.7], HR (bpm: 67.3±5.9 vs. 65.9±5.7) and SpO 2 (0.962±0.007 vs. 0.960±0.009) before anesthesia induction between abdominal aorta pressure group and control group (all P > 0.05). Immediately after anesthesia induction, the MAP and HR in control group were significantly decreased as compared with those before anesthesia induction [MAP (mmHg): 70.0±8.7 vs. 82.9±4.7, HR (bpm): 60.7±6.7 vs. 65.9±5.7, both P < 0.05], and they were also significantly lower than those of

  4. Automatic soldering machine

    NASA Technical Reports Server (NTRS)

    Stein, J. A.

    1974-01-01

    Fully-automatic tube-joint soldering machine can be used to make leakproof joints in aluminum tubes of 3/16 to 2 in. in diameter. Machine consists of temperature-control unit, heater transformer and heater head, vibrator, and associated circuitry controls, and indicators.

  5. The Security of Machine Learning

    DTIC Science & Technology

    2008-04-24

    Machine learning has become a fundamental tool for computer security, since it can rapidly evolve to changing and complex situations. That...adaptability is also a vulnerability: attackers can exploit machine learning systems. We present a taxonomy identifying and analyzing attacks against machine ...We use our framework to survey and analyze the literature of attacks against machine learning systems. We also illustrate our taxonomy by showing

  6. A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.

    1975-01-01

    Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears.

  7. Findings from the National Machine Guarding Program–A Small Business Intervention: Machine Safety

    PubMed Central

    Yamin, Samuel C.; Xi, Min; Brosseau, Lisa M.; Gordon, Robert; Most, Ivan G.; Stanley, Rodney

    2016-01-01

    Objectives The purpose of this nationwide intervention was to improve machine safety in small metal fabrication businesses (3 – 150 employees). The failure to implement machine safety programs related to guarding and lockout/tagout (LOTO) are frequent causes of OSHA citations and may result in serious traumatic injury. Methods Insurance safety consultants conducted a standardized evaluation of machine guarding, safety programs, and LOTO. Businesses received a baseline evaluation, two intervention visits and a twelve-month follow-up evaluation. Results The intervention was completed by 160 businesses. Adding a safety committee was associated with a 10-percentage point increase in business-level machine scores (p< 0.0001) and a 33-percentage point increase in LOTO program scores (p <0.0001). Conclusions Insurance safety consultants proved effective at disseminating a machine safety and LOTO intervention via management-employee safety committees. PMID:26716850

  8. Findings From the National Machine Guarding Program-A Small Business Intervention: Machine Safety.

    PubMed

    Parker, David L; Yamin, Samuel C; Xi, Min; Brosseau, Lisa M; Gordon, Robert; Most, Ivan G; Stanley, Rodney

    2016-09-01

    The purpose of this nationwide intervention was to improve machine safety in small metal fabrication businesses (3 to 150 employees). The failure to implement machine safety programs related to guarding and lockout/tagout (LOTO) are frequent causes of Occupational Safety and Health Administration (OSHA) citations and may result in serious traumatic injury. Insurance safety consultants conducted a standardized evaluation of machine guarding, safety programs, and LOTO. Businesses received a baseline evaluation, two intervention visits, and a 12-month follow-up evaluation. The intervention was completed by 160 businesses. Adding a safety committee was associated with a 10% point increase in business-level machine scores (P < 0.0001) and a 33% point increase in LOTO program scores (P < 0.0001). Insurance safety consultants proved effective at disseminating a machine safety and LOTO intervention via management-employee safety committees.

  9. Mississippi Curriculum Framework for Machine Tool Operation/Machine Shop (Program CIP: 48.0503--Machine Shop Assistant). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for machine tool operation/machine shop I and II. Presented first are a…

  10. Machine Tool Software

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A NASA-developed software package has played a part in technical education of students who major in Mechanical Engineering Technology at William Rainey Harper College. Professor Hack has been using (APT) Automatically Programmed Tool Software since 1969 in his CAD/CAM Computer Aided Design and Manufacturing curriculum. Professor Hack teaches the use of APT programming languages for control of metal cutting machines. Machine tool instructions are geometry definitions written in APT Language to constitute a "part program." The part program is processed by the machine tool. CAD/CAM students go from writing a program to cutting steel in the course of a semester.

  11. Nanocomposites for Machining Tools

    PubMed Central

    Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-01-01

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926

  12. Progress in machine consciousness.

    PubMed

    Gamez, David

    2008-09-01

    This paper is a review of the work that has been carried out on machine consciousness. A clear overview of this diverse field is achieved by breaking machine consciousness down into four different areas, which are used to understand its aims, discuss its relationship with other subjects and outline the work that has been carried out so far. The criticisms that have been made against machine consciousness are also covered, along with its potential benefits, and the work that has been done on analysing systems for signs of consciousness. Some of the social and ethical issues raised by machine consciousness are examined at the end of the paper.

  13. Inductive Reasoning: A Training Approach

    ERIC Educational Resources Information Center

    Klauer, Karl Josef; Phye, Gary D.

    2008-01-01

    Researchers have examined inductive reasoning to identify different cognitive processes when participants deal with inductive problems. This article presents a prescriptive theory of inductive reasoning that identifies cognitive processing using a procedural strategy for making comparisons. It is hypothesized that training in the use of the…

  14. Toward Intelligent Machine Learning Algorithms

    DTIC Science & Technology

    1988-05-01

    Machine learning is recognized as a tool for improving the performance of many kinds of systems, yet most machine learning systems themselves are not...directed systems, and with the addition of a knowledge store for organizing and maintaining knowledge to assist learning, a learning machine learning (L...ML) algorithm is possible. The necessary components of L-ML systems are presented along with several case descriptions of existing machine learning systems

  15. The Hooey Machine.

    ERIC Educational Resources Information Center

    Scarnati, James T.; Tice, Craig J.

    1992-01-01

    Describes how students can make and use Hooey Machines to learn how mechanical energy can be transferred from one object to another within a system. The Hooey Machine is made using a pencil, eight thumbtacks, one pushpin, tape, scissors, graph paper, and a plastic lid. (PR)

  16. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  17. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  18. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  19. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  20. 14 CFR 27.1091 - Air induction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction. 27.1091 Section 27.1091... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Induction System § 27.1091 Air induction. (a) The air induction system for each engine must supply the air required by that engine under the operating conditions...

  1. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  2. Evaluation of machinability and flexural strength of a novel dental machinable glass-ceramic.

    PubMed

    Qin, Feng; Zheng, Shucan; Luo, Zufeng; Li, Yong; Guo, Ling; Zhao, Yunfeng; Fu, Qiang

    2009-10-01

    To evaluate the machinability and flexural strength of a novel dental machinable glass-ceramic (named PMC), and to compare the machinability property with that of Vita Mark II and human enamel. The raw batch materials were selected and mixed. Four groups of novel glass-ceramics were formed at different nucleation temperatures, and were assigned to Group 1, Group 2, Group 3 and Group 4. The machinability of the four groups of novel glass-ceramics, Vita Mark II ceramic and freshly extracted human premolars were compared by means of drilling depth measurement. A three-point bending test was used to measure the flexural strength of the novel glass-ceramics. The crystalline phases of the group with the best machinability were identified by X-ray diffraction. In terms of the drilling depth, Group 2 of the novel glass-ceramics proves to have the largest drilling depth. There was no statistical difference among Group 1, Group 4 and the natural teeth. The drilling depth of Vita MK II was statistically less than that of Group 1, Group 4 and the natural teeth. Group 3 had the least drilling depth. In respect of the flexural strength, Group 2 exhibited the maximum flexural strength; Group 1 was statistically weaker than Group 2; there was no statistical difference between Group 3 and Group 4, and they were the weakest materials. XRD of Group 2 ceramic showed that a new type of dental machinable glass-ceramic containing calcium-mica had been developed by the present study and was named PMC. PMC is promising for application as a dental machinable ceramic due to its good machinability and relatively high strength.

  3. Electrical machines with superconducting windings. Part 3: Homopolar dc machines

    NASA Astrophysics Data System (ADS)

    Kullman, D.; Henninger, P.

    1981-01-01

    The losses in rotating liquid metal contacts and the problems in including liquid metals were theoretically and experimentally studied. These machines are shown realiable. For electric ship propulsion, they are a more efficient method of power transmission than mechanical gearboxes. However, weight reduction as compared to mechanical gearboxes can hardly be achieved with machines fully shielded by magnetic iron.

  4. Numerical investigation and electro-acoustic modeling of measurement methods for the in-duct acoustical source parameters.

    PubMed

    Jang, Seung-Ho; Ih, Jeong-Guon

    2003-02-01

    It is known that the direct method yields different results from the indirect (or load) method in measuring the in-duct acoustic source parameters of fluid machines. The load method usually comes up with a negative source resistance, although a fairly accurate prediction of radiated noise can be obtained from any method. This study is focused on the effect of the time-varying nature of fluid machines on the output results of two typical measurement methods. For this purpose, a simplified fluid machine consisting of a reservoir, a valve, and an exhaust pipe is considered as representing a typical periodic, time-varying system and the measurement situations are simulated by using the method of characteristics. The equivalent circuits for such simulations are also analyzed by considering the system as having a linear time-varying source. It is found that the results from the load method are quite sensitive to the change of cylinder pressure or valve profile, in contrast to those from the direct method. In the load method, the source admittance turns out to be predominantly dependent on the valve admittance at the calculation frequency as well as the valve and load admittances at other frequencies. In the direct method, however, the source resistance is always positive and the source admittance depends mainly upon the zeroth order of valve admittance.

  5. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  6. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  7. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  8. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  9. 14 CFR 29.1091 - Air induction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 29.1091 Section 29.1091... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply the air required by that engine and...

  10. Flexible heating head for induction heating

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor)

    1993-01-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  11. Flexible heating head for induction heating

    NASA Astrophysics Data System (ADS)

    Fox, Robert L.; Johnson, Samuel D.; Coultrip, Robert H.; Phillips, W. Morris

    1993-11-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  12. Enhancing Induction Coil Reliability

    NASA Astrophysics Data System (ADS)

    Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.

    2014-12-01

    In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.

  13. Tuning the Magnetic Transport of an Induction LINAC using Emittance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houck, T L; Brown, C G; Ong, M M

    2006-08-11

    The Lawrence Livermore National Laboratory Flash X-Ray (FXR) machine is a linear induction accelerator used to produce a nominal 18 MeV, 3 kA, 65 ns pulse width electron beam for hydrodynamic radiographs. A common figure of merit for this type of radiographic machine is the x-ray dose divided by the spot area on the bremsstrahlung converter where a higher FOM is desired. Several characteristics of the beam affect the minimum attainable x-ray spot size. The most significant are emittance (chaotic transverse energy), chromatic aberration (energy variation), and beam motion (transverse instabilities and corkscrew motion). FXR is in the midst ofmore » a multi-year optimization project to reduce the spot size. This paper describes the effort to reduce beam emittance by adjusting the fields of the transport solenoids and position of the cathode. If the magnetic transport is not correct, the beam will be mismatched and undergo envelope oscillations increasing the emittance. We measure the divergence and radius of the beam in a drift section after the accelerator by imaging the optical transition radiation (OTR) and beam envelope on a foil. These measurements are used to determine an emittance. Relative changes in the emittance can be quickly estimated from the foil measurements allowing for an efficient, real-time study. Once an optimized transport field is determined, the final focus can be adjusted and the new x-ray spot measured. A description of the diagnostics and analysis is presented.« less

  14. Design Control Systems of Human Machine Interface in the NTVS-2894 Seat Grinder Machine to Increase the Productivity

    NASA Astrophysics Data System (ADS)

    Ardi, S.; Ardyansyah, D.

    2018-02-01

    In the Manufacturing of automotive spare parts, increased sales of vehicles is resulted in increased demand for production of engine valve of the customer. To meet customer demand, we carry out improvement and overhaul of the NTVS-2894 seat grinder machine on a machining line. NTVS-2894 seat grinder machine has been decreased machine productivity, the amount of trouble, and the amount of downtime. To overcome these problems on overhaul the NTVS-2984 seat grinder machine include mechanical and programs, is to do the design and manufacture of HMI (Human Machine Interface) GP-4501T program. Because of the time prior to the overhaul, NTVS-2894 seat grinder machine does not have a backup HMI (Human Machine Interface) program. The goal of the design and manufacture in this program is to improve the achievement of production, and allows an operator to operate beside it easier to troubleshoot the NTVS-2894 seat grinder machine thereby reducing downtime on the NTVS-2894 seat grinder machine. The results after the design are HMI program successfully made it back, machine productivity increased by 34.8%, the amount of trouble, and downtime decreased 40% decrease from 3,160 minutes to 1,700 minutes. The implication of our design, it could facilitate the operator in operating machine and the technician easer to maintain and do the troubleshooting the machine problems.

  15. Multiple man-machine interfaces

    NASA Technical Reports Server (NTRS)

    Stanton, L.; Cook, C. W.

    1981-01-01

    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.

  16. Safety Features in Anaesthesia Machine

    PubMed Central

    Subrahmanyam, M; Mohan, S

    2013-01-01

    Anaesthesia is one of the few sub-specialties of medicine, which has quickly adapted technology to improve patient safety. This application of technology can be seen in patient monitoring, advances in anaesthesia machines, intubating devices, ultrasound for visualisation of nerves and vessels, etc., Anaesthesia machines have come a long way in the last 100 years, the improvements being driven both by patient safety as well as functionality and economy of use. Incorporation of safety features in anaesthesia machines and ensuring that a proper check of the machine is done before use on a patient ensures patient safety. This review will trace all the present safety features in the machine and their evolution. PMID:24249880

  17. From machine learning to deep learning: progress in machine intelligence for rational drug discovery.

    PubMed

    Zhang, Lu; Tan, Jianjun; Han, Dan; Zhu, Hao

    2017-11-01

    Machine intelligence, which is normally presented as artificial intelligence, refers to the intelligence exhibited by computers. In the history of rational drug discovery, various machine intelligence approaches have been applied to guide traditional experiments, which are expensive and time-consuming. Over the past several decades, machine-learning tools, such as quantitative structure-activity relationship (QSAR) modeling, were developed that can identify potential biological active molecules from millions of candidate compounds quickly and cheaply. However, when drug discovery moved into the era of 'big' data, machine learning approaches evolved into deep learning approaches, which are a more powerful and efficient way to deal with the massive amounts of data generated from modern drug discovery approaches. Here, we summarize the history of machine learning and provide insight into recently developed deep learning approaches and their applications in rational drug discovery. We suggest that this evolution of machine intelligence now provides a guide for early-stage drug design and discovery in the current big data era. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Machine vision for digital microfluidics

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun; Lee, Jeong-Bong

    2010-01-01

    Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.

  19. Monel Machining

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Castle Industries, Inc. is a small machine shop manufacturing replacement plumbing repair parts, such as faucet, tub and ballcock seats. Therese Castley, president of Castle decided to introduce Monel because it offered a chance to improve competitiveness and expand the product line. Before expanding, Castley sought NERAC assistance on Monel technology. NERAC (New England Research Application Center) provided an information package which proved very helpful. The NASA database was included in NERAC's search and yielded a wealth of information on machining Monel.

  20. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds.

    PubMed

    Cannon, Edward O; Amini, Ata; Bender, Andreas; Sternberg, Michael J E; Muggleton, Stephen H; Glen, Robert C; Mitchell, John B O

    2007-05-01

    We investigate the classification performance of circular fingerprints in combination with the Naive Bayes Classifier (MP2D), Inductive Logic Programming (ILP) and Support Vector Inductive Logic Programming (SVILP) on a standard molecular benchmark dataset comprising 11 activity classes and about 102,000 structures. The Naive Bayes Classifier treats features independently while ILP combines structural fragments, and then creates new features with higher predictive power. SVILP is a very recently presented method which adds a support vector machine after common ILP procedures. The performance of the methods is evaluated via a number of statistical measures, namely recall, specificity, precision, F-measure, Matthews Correlation Coefficient, area under the Receiver Operating Characteristic (ROC) curve and enrichment factor (EF). According to the F-measure, which takes both recall and precision into account, SVILP is for seven out of the 11 classes the superior method. The results show that the Bayes Classifier gives the best recall performance for eight of the 11 targets, but has a much lower precision, specificity and F-measure. The SVILP model on the other hand has the highest recall for only three of the 11 classes, but generally far superior specificity and precision. To evaluate the statistical significance of the SVILP superiority, we employ McNemar's test which shows that SVILP performs significantly (p < 5%) better than both other methods for six out of 11 activity classes, while being superior with less significance for three of the remaining classes. While previously the Bayes Classifier was shown to perform very well in molecular classification studies, these results suggest that SVILP is able to extract additional knowledge from the data, thus improving classification results further.

  1. Pursuing optimal electric machines transient diagnosis: The adaptive slope transform

    NASA Astrophysics Data System (ADS)

    Pons-Llinares, Joan; Riera-Guasp, Martín; Antonino-Daviu, Jose A.; Habetler, Thomas G.

    2016-12-01

    The aim of this paper is to introduce a new linear time-frequency transform to improve the detection of fault components in electric machines transient currents. Linear transforms are analysed from the perspective of the atoms used. A criterion to select the atoms at every point of the time-frequency plane is proposed, taking into account the characteristics of the searched component at each point. This criterion leads to the definition of the Adaptive Slope Transform, which enables a complete and optimal capture of the different components evolutions in a transient current. A comparison with conventional linear transforms (Short-Time Fourier Transform and Wavelet Transform) is carried out, showing their inherent limitations. The approach is tested with laboratory and field motors, and the Lower Sideband Harmonic is captured for the first time during an induction motor startup and subsequent load oscillations, accurately tracking its evolution.

  2. Gloved Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Adams, Richard (Inventor); Hannaford, Blake (Inventor); Olowin, Aaron (Inventor)

    2015-01-01

    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.

  3. THE TEACHING MACHINE.

    ERIC Educational Resources Information Center

    KLEIN, CHARLES; WAYNE, ELLIS

    THE ROLE OF THE TEACHING MACHINE IS COMPARED WITH THE ROLE OF THE PROGRAMED TEXTBOOK. THE TEACHING MACHINE IS USED FOR INDIVIDUAL INSTRUCTION, CONTAINS AND PRESENTS PROGRAM CONTENT IN STEPS, PROVIDES A MEANS WHEREBY THE STUDENT MAY RESPOND TO THE PROGRAM, PROVIDES THE STUDENT WITH IMMEDIATE INFORMATION OF SOME KIND CONCERNING HIS RESPONSE THAT CAN…

  4. Machine Translation Project

    NASA Technical Reports Server (NTRS)

    Bajis, Katie

    1993-01-01

    The characteristics and capabilities of existing machine translation systems were examined and procurement recommendations were developed. Four systems, SYSTRAN, GLOBALINK, PC TRANSLATOR, and STYLUS, were determined to meet the NASA requirements for a machine translation system. Initially, four language pairs were selected for implementation. These are Russian-English, French-English, German-English, and Japanese-English.

  5. Structural Uncertainties in Numerical Induction Models

    DTIC Science & Technology

    2006-07-01

    divide and conquer” modelling approach. Analytical inputs are then assessments, quantitative or qualitative, of the value, performance, or some...said to be naïve because it relies heavily on the inductive method itself. Sophisticated Induction (Logical Positivism ) This form of induction...falters. Popper’s Falsification Karl Popper around 1959 introduced a variant to the above Logical Positivism , known as the inductive-hypothetico

  6. OptiCentric lathe centering machine

    NASA Astrophysics Data System (ADS)

    Buß, C.; Heinisch, J.

    2013-09-01

    High precision optics depend on precisely aligned lenses. The shift and tilt of individual lenses as well as the air gap between elements require accuracies in the single micron regime. These accuracies are hard to meet with traditional assembly methods. Instead, lathe centering can be used to machine the mount with respect to the optical axis. Using a diamond turning process, all relevant errors of single mounted lenses can be corrected in one post-machining step. Building on the OptiCentric® and OptiSurf® measurement systems, Trioptics has developed their first lathe centering machines. The machine and specific design elements of the setup will be shown. For example, the machine can be used to turn optics for i-line steppers with highest precision.

  7. Machinability of Stellite 6 hardfacing

    NASA Astrophysics Data System (ADS)

    Benghersallah, M.; Boulanouar, L.; Le Coz, G.; Devillez, A.; Dudzinski, D.

    2010-06-01

    This paper reports some experimental findings concerning the machinability at high cutting speed of nickel-base weld-deposited hardfacings for the manufacture of hot tooling. The forging work involves extreme impacts, forces, stresses and temperatures. Thus, mould dies must be extremely resistant. The aim of the project is to create a rapid prototyping process answering to forging conditions integrating a Stellite 6 hardfacing deposed PTA process. This study talks about the dry machining of the hardfacing, using a two tips machining tool and a high speed milling machine equipped by a power consumption recorder Wattpilote. The aim is to show the machinability of the hardfacing, measuring the power and the tip wear by optical microscope and white light interferometer, using different strategies and cutting conditions.

  8. 34 CFR 395.32 - Collection and distribution of vending machine income from vending machines on Federal property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Collection and distribution of vending machine income from vending machines on Federal property. 395.32 Section 395.32 Education Regulations of the Offices... Management § 395.32 Collection and distribution of vending machine income from vending machines on Federal...

  9. 34 CFR 395.32 - Collection and distribution of vending machine income from vending machines on Federal property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Collection and distribution of vending machine income from vending machines on Federal property. 395.32 Section 395.32 Education Regulations of the Offices... Management § 395.32 Collection and distribution of vending machine income from vending machines on Federal...

  10. 34 CFR 395.32 - Collection and distribution of vending machine income from vending machines on Federal property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Collection and distribution of vending machine income from vending machines on Federal property. 395.32 Section 395.32 Education Regulations of the Offices... Management § 395.32 Collection and distribution of vending machine income from vending machines on Federal...

  11. 34 CFR 395.32 - Collection and distribution of vending machine income from vending machines on Federal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Collection and distribution of vending machine income from vending machines on Federal property. 395.32 Section 395.32 Education Regulations of the Offices... Management § 395.32 Collection and distribution of vending machine income from vending machines on Federal...

  12. Machine Shop Grinding Machines.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  13. ``Diagonalization'' of a compound Atwood machine

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1987-06-01

    We consider a simple Atwood machine consisting of a massless frictionless pulley no. 0 supporting two masses m1 and m2 connected by a massless flexible string. We show that the string that supports massless pulley no. 0 ``thinks'' it is simply supporting a mass m0, with m0=4m1m2/(m1+m2). This result, together with Einstein's equivalence principle, allows us to solve easily those compound Atwood machines created by replacing one or both of m1 and m2 in machine no. 0 by an Atwood machine. We may then replacing the masses in these new machines by machines, etc. The complete solution can be written down immediately, without solving simultaneous equations. Finally we give the effective mass of an Atwood machine whose pulley has nonzero mass and moment of inertia.

  14. Anaesthesia machine: checklist, hazards, scavenging.

    PubMed

    Goneppanavar, Umesh; Prabhu, Manjunath

    2013-09-01

    From a simple pneumatic device of the early 20(th) century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered.

  15. Anaesthesia Machine: Checklist, Hazards, Scavenging

    PubMed Central

    Goneppanavar, Umesh; Prabhu, Manjunath

    2013-01-01

    From a simple pneumatic device of the early 20th century, the anaesthesia machine has evolved to incorporate various mechanical, electrical and electronic components to be more appropriately called anaesthesia workstation. Modern machines have overcome many drawbacks associated with the older machines. However, addition of several mechanical, electronic and electric components has contributed to recurrence of some of the older problems such as leak or obstruction attributable to newer gadgets and development of newer problems. No single checklist can satisfactorily test the integrity and safety of all existing anaesthesia machines due to their complex nature as well as variations in design among manufacturers. Human factors have contributed to greater complications than machine faults. Therefore, better understanding of the basics of anaesthesia machine and checking each component of the machine for proper functioning prior to use is essential to minimise these hazards. Clear documentation of regular and appropriate servicing of the anaesthesia machine, its components and their satisfactory functioning following servicing and repair is also equally important. Trace anaesthetic gases polluting the theatre atmosphere can have several adverse effects on the health of theatre personnel. Therefore, safe disposal of these gases away from the workplace with efficiently functioning scavenging system is necessary. Other ways of minimising atmospheric pollution such as gas delivery equipment with negligible leaks, low flow anaesthesia, minimal leak around the airway equipment (facemask, tracheal tube, laryngeal mask airway, etc.) more than 15 air changes/hour and total intravenous anaesthesia should also be considered. PMID:24249887

  16. Relative Performance of Hardwood Sawing Machines

    Treesearch

    Philip H. Steele; Michael W. Wade; Steven H. Bullard; Philip A. Araman

    1991-01-01

    Only limited information has been available to hardwood sawmillers on the performance of their sawing machines. This study analyzes a large database of individual machine studies to provide detailed information on 6 machine types. These machine types were band headrig, circular headrig, band linebar resaw, vertical band splitter resaw, single arbor gang resaw and...

  17. Tube Alinement for Machining

    NASA Technical Reports Server (NTRS)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  18. Induction of models under uncertainty

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter

    1986-01-01

    This paper outlines a procedure for performing induction under uncertainty. This procedure uses a probabilistic representation and uses Bayes' theorem to decide between alternative hypotheses (theories). This procedure is illustrated by a robot with no prior world experience performing induction on data it has gathered about the world. The particular inductive problem is the formation of class descriptions both for the tutored and untutored cases. The resulting class definitions are inherently probabilistic and so do not have any sharply defined membership criterion. This robot example raises some fundamental problems about induction; particularly, it is shown that inductively formed theories are not the best way to make predictions. Another difficulty is the need to provide prior probabilities for the set of possible theories. The main criterion for such priors is a pragmatic one aimed at keeping the theory structure as simple as possible, while still reflecting any structure discovered in the data.

  19. 15 CFR 5.5 - Vending machines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Vending machines. 5.5 Section 5.5... machines. (a) The income from any vending machines which are located within reasonable proximity to and are... shall be assigned to the operator of such stand. (b) If a vending machine vends articles of a type...

  20. 15 CFR 5.5 - Vending machines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Vending machines. 5.5 Section 5.5... machines. (a) The income from any vending machines which are located within reasonable proximity to and are... shall be assigned to the operator of such stand. (b) If a vending machine vends articles of a type...

  1. New laser machining processes for shape memory alloys

    NASA Astrophysics Data System (ADS)

    Haferkamp, Heinz; Paschko, Stefan; Goede, Martin

    2001-04-01

    Due to special material properties, shape memory alloys (SMA) are finding increasing attention in micro system technology. However, only a few processes are available for the machining of miniaturized SMA-components. In this connection, laser material processing offers completely new possibilities. This paper describes the actual status of two projects that are being carried out to qualify new methods to machine SMA components by means of laser radiation. Within one project, the laser material ablation process of miniaturized SMA- components using ultra-short laser pulses (pulse duration: approx. 200 fs) in comparison to conventional laser material ablation is being investigated. Especially for SMA micro- sensors and actuators, it is important to minimize the heat affected zone (HAZ) to maintain the special mechanical properties. Light-microscopic investigations of the grain texture of SMA devices processed with ultra-short laser pulses show that the HAZ can be neglected. Presently, the main goal of the project is to qualify this new processing technique for the micro-structuring of complex SMA micro devices with high precision. Within a second project, investigations are being carried out to realize the induction of the two-way memory effect (TWME) into SMA components using laser radiation. By precisely heating SMA components with laser radiation, local tensions remain near the component surface. In connection with the shape memory effect, these tensions can be used to make the components execute complicated movements. Compared to conventional training methods to induce the TWME, this procedure is faster and easier. Furthermore, higher numbers of thermal cycling are expected because of the low dislocation density in the main part of the component.

  2. Induction immunosuppressive therapies in renal transplantation.

    PubMed

    Gabardi, Steven; Martin, Spencer T; Roberts, Keri L; Grafals, Monica

    2011-02-01

    Induction immunosuppressive therapies for patients undergoing renal transplantation are reviewed. The goal of induction therapy is to prevent acute rejection during the early posttransplantation period by providing a high degree of immunosuppression at the time of transplantation. Induction therapy is often considered essential to optimize outcomes, particularly in patients at high risk for poor short-term outcomes. All of the induction immunosuppressive agents currently used are biological agents and are either monoclonal (muromonab-CD3, daclizumab, basiliximab, alemtuzumab) or polyclonal (antithymocyte globulin [equine] or antithymocyte globulin [rabbit]) antibodies. Although antithymocyte globulin (rabbit) is not labeled for induction therapy, it is used for this purpose more than any other agent. Basiliximab is not considered as potent an immunosuppressive agent but has a much more favorable adverse-effect profile compared with antithymocyte globulin (rabbit) and is most commonly used in patients at low risk for acute rejection. Rituximab is being studied for use as induction therapy but to date has not demonstrated any significant benefits over placebo. While head-to-head data are available comparing most induction agents, the final decision on the most appropriate induction therapy for a transplant recipient is highly dependent on preexisting medical conditions, donor characteristics, and the maintenance immunosuppressive regimen to be used. No standard induction immunosuppressive regimen exists for patients undergoing renal transplantation. Antithymocyte globulin (rabbit) is the most commonly used agent, whereas basiliximab appears safer. The choice of regimen depends on the preferences of clinicians and institutions.

  3. Decomposition of the compound Atwood machine

    NASA Astrophysics Data System (ADS)

    Lopes Coelho, R.

    2017-11-01

    Non-standard solving strategies for the compound Atwood machine problem have been proposed. The present strategy is based on a very simple idea. Taking an Atwood machine and replacing one of its bodies by another Atwood machine, we have a compound machine. As this operation can be repeated, we can construct any compound Atwood machine. This rule of construction is transferred to a mathematical model, whereby the equations of motion are obtained. The only difference between the machine and its model is that instead of pulleys and bodies, we have reference frames that move solidarily with these objects. This model provides us with the accelerations in the non-inertial frames of the bodies, which we will use to obtain the equations of motion. This approach to the problem will be justified by the Lagrange method and exemplified by machines with six and eight bodies.

  4. Direct reading inductance meter

    NASA Technical Reports Server (NTRS)

    Kolby, R. B. (Inventor)

    1977-01-01

    A direct reading inductance meter comprised of a crystal oscillator and an LC tuned oscillator is presented. The oscillators function respectively to generate a reference frequency, f(r), and to generate an initial frequency, f(0), which when mixed produce a difference equal to zero. Upon connecting an inductor of small unknown value in the LC circuit to change its resonant frequency to f(x), a difference frequency (f(r)-f(x)) is produced that is very nearly a linear function of the inductance of the inductor. The difference frequency is measured and displayed on a linear scale in units of inductance.

  5. Properties of inductive reasoning.

    PubMed

    Heit, E

    2000-12-01

    This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.

  6. Development of plasma chemical vaporization machining

    NASA Astrophysics Data System (ADS)

    Mori, Yuzo; Yamauchi, Kazuto; Yamamura, Kazuya; Sano, Yasuhisa

    2000-12-01

    Conventional machining processes, such as turning, grinding, or lapping are still applied for many materials including functional ones. But those processes are accompanied with the formation of a deformed layer, so that machined surfaces cannot perform their original functions. In order to avoid such points, plasma chemical vaporization machining (CVM) has been developed. Plasma CVM is a chemical machining method using neutral radicals, which are generated by the atmospheric pressure plasma. By using a rotary electrode for generation of plasma, a high density of neutral radicals was formed, and we succeeded in obtaining high removal rate of several microns to several hundred microns per minute for various functional materials such as fused silica, single crystal silicon, molybdenum, tungsten, silicon carbide, and diamond. Especially, a high removal rate equal to lapping in the mechanical machining of fused silica and silicon was realized. 1.4 nm (p-v) was obtained as a surface roughness in the case of machining a silicon wafer. The defect density of a silicon wafer surface polished by various machining method was evaluated by the surface photo voltage spectroscopy. As a result, the defect density of the surface machined by plasma CVM was under 1/100 in comparison with the surface machined by mechanical polishing and argon ion sputtering, and very low defect density which was equivalent to the chemical etched surface was realized. A numerically controlled CVM machine for x-ray mirror fabrication is detailed in the accompanying article in this issue.

  7. Workout Machine

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Orbotron is a tri-axle exercise machine patterned after a NASA training simulator for astronaut orientation in the microgravity of space. It has three orbiting rings corresponding to roll, pitch and yaw. The user is in the middle of the inner ring with the stomach remaining in the center of all axes, eliminating dizziness. Human power starts the rings spinning, unlike the NASA air-powered system. Marketed by Fantasy Factory (formerly Orbotron, Inc.), the machine can improve aerobic capacity, strength and endurance in five to seven minute workouts.

  8. An asymptotical machine

    NASA Astrophysics Data System (ADS)

    Cristallini, Achille

    2016-07-01

    A new and intriguing machine may be obtained replacing the moving pulley of a gun tackle with a fixed point in the rope. Its most important feature is the asymptotic efficiency. Here we obtain a satisfactory description of this machine by means of vector calculus and elementary trigonometry. The mathematical model has been compared with experimental data and briefly discussed.

  9. Comparison of rule induction, decision trees and formal concept analysis approaches for classification

    NASA Astrophysics Data System (ADS)

    Kotelnikov, E. V.; Milov, V. R.

    2018-05-01

    Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.

  10. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.

    PubMed

    Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David

    2010-01-01

    Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.

  11. Model-based machine learning.

    PubMed

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  12. Model-based machine learning

    PubMed Central

    Bishop, Christopher M.

    2013-01-01

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications. PMID:23277612

  13. Inductive plasmas for plasma processing

    NASA Astrophysics Data System (ADS)

    Keller, John H.

    1996-05-01

    With the need for high plasma density and low pressure in single wafer etching tools, a number of inductive etching systems have been and are being developed for commercial sale. This paper reviews some of the history of low-pressure inductive plasmas, gives features of inductive plasmas, limitations, corrections and presents uses for plasma processing. The theory for the skin depth, rf coil impedance and efficiency is also discussed.

  14. Drilling Machines: Vocational Machine Shop.

    ERIC Educational Resources Information Center

    Thomas, John C.

    The lessons and supportive information in this field tested instructional block provide a guide for teachers in developing a machine shop course of study in drilling. The document is comprised of operation sheets, information sheets, and transparency masters for 23 lessons. Each lesson plan includes a performance objective, material and tools,…

  15. MATC Machine Shop '84: Specific Skill Needs Assessment for Machine Shops in the Milwaukee Area.

    ERIC Educational Resources Information Center

    Roberts, Keith J.

    Building on previous research on the future skill needs of workers in southeastern Wisconsin, a study was conducted at Milwaukee Area Technical College (MATC) to gather information on the machine tool industry in the Milwaukee area. Interviews were conducted by MATC Machine Shop and Tool and Die faculty with representatives from 135 machine shops,…

  16. EDM machinability of SiCw/Al composites

    NASA Technical Reports Server (NTRS)

    Ramulu, M.; Taya, M.

    1989-01-01

    Machinability of high temperature composites was investigated. Target materials, 15 and 25 vol pct SiC whisker-2124 aluminum composites, were machined by electrodischarge sinker machining and diamond saw. The machined surfaces of these metal matrix composites were examined by SEM and profilometry to determine the surface finish. Microhardness measurements were also performed on the as-machined composites.

  17. Machine Learning for Medical Imaging

    PubMed Central

    Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L.

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. ©RSNA, 2017 PMID:28212054

  18. Machine Learning for Medical Imaging.

    PubMed

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy L

    2017-01-01

    Machine learning is a technique for recognizing patterns that can be applied to medical images. Although it is a powerful tool that can help in rendering medical diagnoses, it can be misapplied. Machine learning typically begins with the machine learning algorithm system computing the image features that are believed to be of importance in making the prediction or diagnosis of interest. The machine learning algorithm system then identifies the best combination of these image features for classifying the image or computing some metric for the given image region. There are several methods that can be used, each with different strengths and weaknesses. There are open-source versions of most of these machine learning methods that make them easy to try and apply to images. Several metrics for measuring the performance of an algorithm exist; however, one must be aware of the possible associated pitfalls that can result in misleading metrics. More recently, deep learning has started to be used; this method has the benefit that it does not require image feature identification and calculation as a first step; rather, features are identified as part of the learning process. Machine learning has been used in medical imaging and will have a greater influence in the future. Those working in medical imaging must be aware of how machine learning works. © RSNA, 2017.

  19. Towards a molecular logic machine

    NASA Astrophysics Data System (ADS)

    Remacle, F.; Levine, R. D.

    2001-06-01

    Finite state logic machines can be realized by pump-probe spectroscopic experiments on an isolated molecule. The most elaborate setup, a Turing machine, can be programmed to carry out a specific computation. We argue that a molecule can be similarly programmed, and provide examples using two photon spectroscopies. The states of the molecule serve as the possible states of the head of the Turing machine and the physics of the problem determines the possible instructions of the program. The tape is written in an alphabet that allows the listing of the different pump and probe signals that are applied in a given experiment. Different experiments using the same set of molecular levels correspond to different tapes that can be read and processed by the same head and program. The analogy to a Turing machine is not a mechanical one and is not completely molecular because the tape is not part of the molecular machine. We therefore also discuss molecular finite state machines, such as sequential devices, for which the tape is not part of the machine. Nonmolecular tapes allow for quite long input sequences with a rich alphabet (at the level of 7 bits) and laser pulse shaping experiments provide concrete examples. Single molecule spectroscopies show that a single molecule can be repeatedly cycled through a logical operation.

  20. Permutation parity machines for neural cryptography.

    PubMed

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  1. Permutation parity machines for neural cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyes, Oscar Mauricio; Escuela de Ingenieria Electrica, Electronica y Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga; Zimmermann, Karl-Heinz

    2010-06-15

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  2. Improving Energy Efficiency in CNC Machining

    NASA Astrophysics Data System (ADS)

    Pavanaskar, Sushrut S.

    We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process. Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance. Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -- a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.

  3. Friction-Testing Machine

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Dixon, D. S.; Shaw, R. C.

    1986-01-01

    Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.

  4. Multipurpose Prepregging Machine

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.; Wilkinson, Steven; Marchello, J. M.; Dixon, D.

    1995-01-01

    Machine designed and built for variety of uses involving coating or impregnating ("prepregging") fibers, tows, yarns, or webs or tapes made of such fibrous materials with thermoplastic or thermosetting resins. Prepreg materials produced used to make matrix/fiber composite materials. Comprises modules operated individually, sequentially, or simultaneously, depending on nature of specific prepreg material and prepregging technique used. Machine incorporates number of safety features.

  5. Machine tools and fixtures: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    As part of NASA's Technology Utilizations Program, a compilation was made of technological developments regarding machine tools, jigs, and fixtures that have been produced, modified, or adapted to meet requirements of the aerospace program. The compilation is divided into three sections that include: (1) a variety of machine tool applications that offer easier and more efficient production techniques; (2) methods, techniques, and hardware that aid in the setup, alignment, and control of machines and machine tools to further quality assurance in finished products: and (3) jigs, fixtures, and adapters that are ancillary to basic machine tools and aid in realizing their greatest potential.

  6. Comparative analysis of expert and machine-learning methods for classification of body cavity effusions in companion animals.

    PubMed

    Hotz, Christine S; Templeton, Steven J; Christopher, Mary M

    2005-03-01

    A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.

  7. Machine Learning Based Malware Detection

    DTIC Science & Technology

    2015-05-18

    A TRIDENT SCHOLAR PROJECT REPORT NO. 440 Machine Learning Based Malware Detection by Midshipman 1/C Zane A. Markel, USN...COVERED (From - To) 4. TITLE AND SUBTITLE Machine Learning Based Malware Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...suitably be projected into realistic performance. This work explores several aspects of machine learning based malware detection . First, we

  8. Maxwell's inductions from Faraday's induction law

    NASA Astrophysics Data System (ADS)

    Redžić, D. V.

    2018-03-01

    In article 598 of his Treatise on Electricity and Magnetism (Maxwell 1891 A Treatise on Electricity and Magnetism (Oxford: Clarendon)), Maxwell gives a seminal analysis of Faraday's law of electromagnetic induction. We present a detailed account of the analysis, attempting to reconstruct the missing steps, and discuss some related matters.

  9. Spatiotemporal analysis of brightness induction

    PubMed Central

    McCourt, Mark E.

    2011-01-01

    Brightness induction refers to a class of visual illusions in which the perceived intensity of a region of space is influenced by the luminance of surrounding regions. These illusions are significant because they provide insight into the neural organization of the visual system. A novel quadrature-phase motion cancelation technique was developed to measure the magnitude of the grating induction brightness illusion across a wide range of spatial frequencies, temporal frequencies and test field heights. Canceling contrast is greatest at low frequencies and declines with increasing frequency in both dimensions, and with increasing test field height. Canceling contrast scales as the product of inducing grating spatial frequency and test field height (the number of inducing grating cycles per test field height). When plotted using a spatial axis which indexes this product, the spatiotemporal induction surfaces for four test field heights can be described as four partially overlapping sections of a single larger surface. These properties of brightness induction are explained in the context of multiscale spatial filtering. The present study is the first to measure the magnitude of grating induction as a function of temporal frequency. Taken in conjunction with several other studies (Blakeslee & McCourt, 2008; Robinson & de Sa, 2008; Magnussen & Glad, 1975) the results of this study illustrate that at least one form of brightness induction is very much faster than that reported by DeValois et al. (1986) and Rossi and Paradiso (1996), and are inconsistent with the proposition that brightness induction results from a slow “filling in” process. PMID:21763339

  10. Induction: Making the Leap

    ERIC Educational Resources Information Center

    Ling, Lorraine M.

    2009-01-01

    This article provides a critical examination of a variety of approaches to induction focusing especially upon Australia and other Pacific Rim countries. The question of the purposes induction serves for graduate teachers, experienced teachers and education systems is addressed in terms of whether it is a technical exercise which preserves the…

  11. A Retrospective Appraisal of Teacher Induction

    ERIC Educational Resources Information Center

    Nasser-Abu Alhija, Fadia M.; Fresko, Barbara

    2016-01-01

    Examination of an induction program for new teachers was undertaken from the viewpoint of induction graduates three years after participation. Their retrospective perspectives were investigated as to their satisfaction with assimilation in school in the induction year, their attitudes towards organizational aspects of the program, and the…

  12. Linear induction accelerator

    DOEpatents

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  13. Abstract quantum computing machines and quantum computational logics

    NASA Astrophysics Data System (ADS)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto

    2016-06-01

    Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.

  14. Quantum-Enhanced Machine Learning

    NASA Astrophysics Data System (ADS)

    Dunjko, Vedran; Taylor, Jacob M.; Briegel, Hans J.

    2016-09-01

    The emerging field of quantum machine learning has the potential to substantially aid in the problems and scope of artificial intelligence. This is only enhanced by recent successes in the field of classical machine learning. In this work we propose an approach for the systematic treatment of machine learning, from the perspective of quantum information. Our approach is general and covers all three main branches of machine learning: supervised, unsupervised, and reinforcement learning. While quantum improvements in supervised and unsupervised learning have been reported, reinforcement learning has received much less attention. Within our approach, we tackle the problem of quantum enhancements in reinforcement learning as well, and propose a systematic scheme for providing improvements. As an example, we show that quadratic improvements in learning efficiency, and exponential improvements in performance over limited time periods, can be obtained for a broad class of learning problems.

  15. Wind-energy recovery by a static Scherbius induction generator

    NASA Astrophysics Data System (ADS)

    Smith, G. A.; Nigim, K. A.

    1981-11-01

    The paper describes a technique for controlling a doubly fed induction generator driven by a windmill, or other form of variable-speed prime mover, to provide power generation into the national grid system. The secondary circuit of the generator is supplied at a variable frequency from a current source inverter which for test purposes is rated to allow energy recovery, from a simulated windmill, from maximum speed to standstill. To overcome the stability problems normally associated with doubly fed machines a novel signal generator, which is locked in phase with the rotor EMF, controls the secondary power to provide operation over a wide range of subsynchronous and supersynchronous speeds. Consideration of power flow enables the VA rating of the secondary power source to be determined as a function of the gear ratio and online operating range of the system. A simple current source model is used to predict performance which is compared with experimental results. The results indicate a viable system, and suggestions for further work are proposed.

  16. Machine characterization and benchmark performance prediction

    NASA Technical Reports Server (NTRS)

    Saavedra-Barrera, Rafael H.

    1988-01-01

    From runs of standard benchmarks or benchmark suites, it is not possible to characterize the machine nor to predict the run time of other benchmarks which have not been run. A new approach to benchmarking and machine characterization is reported. The creation and use of a machine analyzer is described, which measures the performance of a given machine on FORTRAN source language constructs. The machine analyzer yields a set of parameters which characterize the machine and spotlight its strong and weak points. Also described is a program analyzer, which analyzes FORTRAN programs and determines the frequency of execution of each of the same set of source language operations. It is then shown that by combining a machine characterization and a program characterization, we are able to predict with good accuracy the run time of a given benchmark on a given machine. Characterizations are provided for the Cray-X-MP/48, Cyber 205, IBM 3090/200, Amdahl 5840, Convex C-1, VAX 8600, VAX 11/785, VAX 11/780, SUN 3/50, and IBM RT-PC/125, and for the following benchmark programs or suites: Los Alamos (BMK8A1), Baskett, Linpack, Livermore Loops, Madelbrot Set, NAS Kernels, Shell Sort, Smith, Whetstone and Sieve of Erathostenes.

  17. Human-machine interactions

    DOEpatents

    Forsythe, J Chris [Sandia Park, NM; Xavier, Patrick G [Albuquerque, NM; Abbott, Robert G [Albuquerque, NM; Brannon, Nathan G [Albuquerque, NM; Bernard, Michael L [Tijeras, NM; Speed, Ann E [Albuquerque, NM

    2009-04-28

    Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

  18. Machinability of hypereutectic silicon-aluminum alloys

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Akasawa, T.

    1999-08-01

    The machinability of high-silicon aluminum alloys made by a P/M process and by casting was compared. The cutting test was conducted by turning on lathes with the use of cemented carbide tools. The tool wear by machining the P/M alloy was far smaller than the tool wear by machining the cast alloy. The roughness of the machined surface of the P/M alloy is far better than that of the cast alloy, and the turning speed did not affect it greatly at higher speeds. The P/M alloy produced long chips, so the disposal can cause trouble. The size effect of silicon grains on the machinability is discussed.

  19. 14 CFR 23.1101 - Induction air preheater design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Induction air preheater design. 23.1101... Induction System § 23.1101 Induction air preheater design. Each exhaust-heated, induction air preheater must be designed and constructed to— (a) Ensure ventilation of the preheater when the induction air...

  20. 14 CFR 23.1101 - Induction air preheater design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Induction air preheater design. 23.1101... Induction System § 23.1101 Induction air preheater design. Each exhaust-heated, induction air preheater must be designed and constructed to— (a) Ensure ventilation of the preheater when the induction air...

  1. 14 CFR 23.1101 - Induction air preheater design.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction air preheater design. 23.1101... Induction System § 23.1101 Induction air preheater design. Each exhaust-heated, induction air preheater must be designed and constructed to— (a) Ensure ventilation of the preheater when the induction air...

  2. 14 CFR 23.1101 - Induction air preheater design.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction air preheater design. 23.1101... Induction System § 23.1101 Induction air preheater design. Each exhaust-heated, induction air preheater must be designed and constructed to— (a) Ensure ventilation of the preheater when the induction air...

  3. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography

    NASA Astrophysics Data System (ADS)

    Xiao, Zhili; Tan, Chao; Dong, Feng

    2017-08-01

    Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.

  4. Game-powered machine learning

    PubMed Central

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-01-01

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the “wisdom of the crowds.” Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., “funky jazz with saxophone,” “spooky electronica,” etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data. PMID:22460786

  5. Game-powered machine learning.

    PubMed

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  6. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  7. Structured Statistical Models of Inductive Reasoning

    ERIC Educational Resources Information Center

    Kemp, Charles; Tenenbaum, Joshua B.

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet…

  8. Induction Heating Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Induction heating technology, a magnetic non-deforming process, was developed by Langley researchers to join plastic and composite components in space. Under NASA license, Inductron Corporation uses the process to produce induction heating systems and equipment for numerous applications. The Torobonder, a portable system, comes with a number of interchangeable heads for aircraft repair. Other developments are the E Heating Head, the Toroid Joining Gun, and the Torobrazer. These products perform bonding applications more quickly, safely and efficiently than previous methods.

  9. MRAS state estimator for speed sensorless ISFOC induction motor drives with Luenberger load torque estimation.

    PubMed

    Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed

    2016-03-01

    This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Experimental Investigation – Magnetic Assisted Electro Discharge Machining

    NASA Astrophysics Data System (ADS)

    Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali

    2018-04-01

    Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.

  11. The relationship between reinforcement and gaming machine choice.

    PubMed

    Haw, John

    2008-03-01

    The present study assessed whether prior reinforcement experiences were related to gaming machine choice and the decision to change gaming machines during a session of gambling. Seventy undergraduate students (48 women, 22 men; mean age = 22.05 years) were presented with two visually identical simulated gaming machines in a practice phase. These simulated machines differed only in the rate of reinforcement. After the practice phase, participants were asked to choose a machine to play in the test phase and were allowed to change machines at will. Two measures of reinforcement were employed; frequency of wins and payback rate. Results indicated that neither measure of reinforcement was related to machine choice, but both were predictors of when participants changed machines. A post-hoc analysis of the 33 participants who changed machines during the test phase found a significant relationship between machine choice and prior reinforcement. For these participants, payback rate was significantly related to machine choice, unlike frequency of wins.

  12. Machine safety: proper safeguarding techniques.

    PubMed

    Martin, K J

    1992-06-01

    1. OSHA mandates certain safeguarding of machinery to prevent accidents and protect machine operators. OSHA specifies moving parts that must be guarded and sets criteria for the guards. 2. A 1989 OSHA standard for lockout/tagout requires locking the energy source during maintenance, periodically inspecting for power transmission, and training maintenance workers. 3. In an amputation emergency, first aid for cardiopulmonary resuscitation, shock, and bleeding are the first considerations. The amputated part should be wrapped in moist gauze, placed in a sealed plastic bag, and placed in a container of 50% water and 50% ice for transport. 4. The role of the occupational health nurse in machine safety is to conduct worksite analyses to identify proper safeguarding and to communicate deficiencies to appropriate personnel; to train workers in safe work practices and observe compliance in the use of machine guards; to provide care to workers injured by machines; and to reinforce safe work practices among machine operators.

  13. Mobile machine hazardous working zone warning system

    DOEpatents

    Schiffbauer, William H.; Ganoe, Carl W.

    1999-01-01

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  14. Mobile machine hazardous working zone warning system

    DOEpatents

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  15. Design synthesis and optimization of permanent magnet synchronous machines based on computationally-efficient finite element analysis

    NASA Astrophysics Data System (ADS)

    Sizov, Gennadi Y.

    In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow

  16. 380 kW synchronous machine with HTS rotor windings--development at Siemens and first test results

    NASA Astrophysics Data System (ADS)

    Nick, W.; Nerowski, G.; Neumüller, H.-W.; Frank, M.; van Hasselt, P.; Frauenhofer, J.; Steinmeyer, F.

    2002-08-01

    Applying HTS conductors in the rotor of synchronous machines allows the design of future motors or generators that are lighter, more compact and feature an improved coefficient of performance. To address these goals a project collaboration was installed within Siemens, including Automation & Drives, Large Drives as a leading supplier of electrical machines, Corporate Technology as a competence center for superconducting technology, and other partners. The main task of the project was to demonstrate the feasibility of basic concepts. The rotor was built from racetrack coils of Bi-2223 HTS tape conductor, these were assembled on a core and fixed by a bandage of glass-fibre composite. Rotor coil cooling is performed by thermal conduction, one end of the motor shaft is hollow to give access for the cooling system. Two cooling systems were designed and operated successfully: firstly an open circuit using cold gaseous helium from a storage vessel, but also a closed circuit system based on a cryogenerator. To take advantage of the increased rotor induction levels the stator winding was designed as an air gap winding. This was manufactured and fitted in a standard motor housing. After assembling of the whole system in a test facility with a DC machine load experiments have been started to prove the validity of our design, including operation with both cooling systems and driving the stator from the grid as well as by a power inverter.

  17. [Mood induction procedures: a critical review].

    PubMed

    Gilet, A-L

    2008-06-01

    For a long period in the history of psychological research, emotion and cognition have been studied independently, as if one were irrelevant to the other. The renewed interest of researchers for the study of the relations between cognition and emotion has led to the development of a range of laboratory methods for inducing temporary mood states. This paper aims to review the main mood induction procedures allowing the induction of a negative mood as well as a positive mood, developed since the pioneer study of Schachter and Singer [Psychol Rev 69 (1962) 379-399] and to account for the usefulness and problems related to the use of such techniques. The first part of this paper deals with the detailed presentation of some of the most popular mood induction procedures according to their type: simple (use of only one mood induction technique) or combined (association of two or more techniques at once). The earliest of the modern techniques is the Velten Mood Induction Procedure [Behav Res Ther 6 (1968) 473-482], which involves reading aloud sixty self-referent statements progressing from relative neutral mood to negative mood or dysphoria. Some researchers have varied the procedure slightly by changing the number of the statements [Behav Res Ther 21 (1983) 233-239, Br J Clin Psychol 21 (1982) 111-117, J Pers Soc Psychol 35 (1977) 625-636]. Various other mood induction procedures have been developed including music induction [Cogn Emotion 11 (1997) 403-432, Br J Med Psychol 55 (1982) 127-138], film clip induction [J Pers Soc Psychol 20 (1971) 37-43, Cogn Emotion 7 (1993) 171-193, Rottenberg J, Ray RR, Gross JJ. Emotion elicitation using films. In: Coan JA, Allen JJB, editors. The handbook of emotion elicitation and assessment. New York: Oxford University Press, 2007], autobiographical recall [J Clin Psychol 36 (1980) 215-226, Jallais C. Effets des humeurs positives et négatives sur les structures de connaissances de type script. Thèse de doctorat non publi

  18. On the use of L-band multipolarization airborne SAR for surveys of crops, vineyards, and orchards in a California irrigated agricultural region

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1985-01-01

    The airborne L-band synthetic aperture radar (SAR) collected multipolarization calibrated image data over an irrigated agricultural test site near Fresno, CA, on March 6, 1984. The conclusions of the study are as follows: (1) the effects of incidence angle on the measured backscattering coefficients could be removed by using a correction factor equal to the secant of the angle raised to the 1.4 power, (2) for this scene and time of year, the various polarization channels were highly correlated such that the use of more than one polarization added little to the ability of the radar to discriminate vegetation type or condition; the exception was barley which separated from vineyards only when a combination of like and cross polarization data were used (polarization was very useful for corn identification in fall crops), (3) an excellent separation between herbaceous vegetation (alfalfa, barley, and oats) or bare fields and trees in orchards existed in brightness was well correlated to alfalfa height or biomass, especially for the HH polarization combination, (5) vineyards exhibited a narrow range of brightnesses with no systematic effects of type or number of stakes nor of number of wires in the trellises nor of the size of the vines, (6) within the orchard classes, areal biomass characterized by basal area differences caused radar image brightness differences for small to medium trees but not for medium to large trees.

  19. Static air-gap eccentricity fault diagnosis using rotor slot harmonics in line neutral voltage of three-phase squirrel cage induction motor

    NASA Astrophysics Data System (ADS)

    Oumaamar, Mohamed El Kamel; Maouche, Yassine; Boucherma, Mohamed; Khezzar, Abdelmalek

    2017-02-01

    The mixed eccentricity fault detection in a squirrel cage induction motor has been thoroughly investigated. However, a few papers have been related to pure static eccentricity fault and the authors focused on the RSH harmonics presented in stator current. The main objective of this paper is to present an alternative method based on the analysis of line neutral voltage taking place between the supply and the stator neutrals in order to detect air-gap static eccentricity, and to highlight the classification of all RSH harmonics in line neutral voltage. The model of squirrel cage induction machine relies on the rotor geometry and winding layout. Such developed model is used to analyze the impact of the pure static air-gap eccentricity by predicting the related frequencies in the line neutral voltage spectrum. The results show that the line neutral voltage spectrum are more sensitive to the air-gap static eccentricity fault compared to stator current one. The theoretical analysis and simulated results are confirmed by experiments.

  20. Modeling induction heater temperature distribution in polymeric material

    NASA Astrophysics Data System (ADS)

    Sorokin, A. G.; Filimonova, O. V.

    2017-10-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. The main interesting area of the induction heating process is the efficiency of the usage of energy, choice of the plate material and different coil configurations based on application. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The paper describes how the induction heating system in plastic injection molding is designed. The use of numerical simulation in order to get the optimum design of the induction coil is shown. The purpose of this work is to consider various coil configurations used in the induction heating process, which is widely used in plastic molding. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The results of calculation are in the numerical model.

  1. Technology of machine tools. Volume 2. Machine tool systems management and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, A.R.

    1980-10-01

    The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.

  2. Self-Calibrating Surface Measuring Machine

    NASA Astrophysics Data System (ADS)

    Greenleaf, Allen H.

    1983-04-01

    A new kind of surface-measuring machine has been developed under government contract at Itek Optical Systems, a Division of Itek Corporation, to assist in the fabrication of large, highly aspheric optical elements. The machine uses four steerable distance-measuring interferometers at the corners of a tetrahedron to measure the positions of a retroreflective target placed at various locations against the surface being measured. Using four interferometers gives redundant information so that, from a set of measurement data, the dimensions of the machine as well as the coordinates of the measurement points can be determined. The machine is, therefore, self-calibrating and does not require a structure made to high accuracy. A wood-structured prototype of this machine was made whose key components are a simple form of air bearing steering mirror, a wide-angle cat's eye retroreflector used as the movable target, and tracking sensors and servos to provide automatic tracking of the cat's eye by the four laser beams. The data are taken and analyzed by computer. The output is given in terms of error relative to an equation of the desired surface. In tests of this machine, measurements of a 0.7 m diameter mirror blank have been made with an accuracy on the order of 0.2µm rms.

  3. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be of...

  4. 7 CFR 58.429 - Washing machine.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Washing machine. 58.429 Section 58.429 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....429 Washing machine. When used, the washing machine for cheese cloths and bandages shall be of...

  5. Cleaning of uranium vs machine coolant formulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristy, S.S.; Byrd, V.R.; Simandl, R.F.

    1984-10-01

    This study compares methods for cleaning uranium chips and the residues left on chips from alternate machine coolants based on propylene glycol-water mixtures with either borax, ammonium tetraborate, or triethanolamine tetraborate added as a nuclear poison. Residues left on uranium surfaces machined with perchloroethylene-mineral oil coolant and on surfaces machined with the borax-containing alternate coolant were also compared. In comparing machined surfaces, greater chlorine contamination was found on the surface of the perchloroethylene-mineral oil machined surfaces, but slightly greater oxidation was found on the surfaces machined with the alternate borax-containing coolant. Overall, the differences were small and a change tomore » the alternate coolant does not appear to constitute a significant threat to the integrity of machined uranium parts.« less

  6. Influence of cutting strains and magnetic anisotropy of electrical steel on the air gap flux distribution of an induction motor

    NASA Astrophysics Data System (ADS)

    Hribernik, Božo

    1984-02-01

    This paper describes an iterative algorithm for the simulation of various real magnetic materials in a small induction motor and their influence on the flux distribution in the air gap. Two standard materials, fully-, and semi-processed steel strips were used. The nonlinearity of the magnetization curve, the influence of cutting strains and magnetic anisotropy are also considered. All these influences bring out the facts that the uniformly rotated and sine form exitation causes a nonuniformly rotated and deformed magnetic field in the air gap of the machine and that the magnetization current is winding place dependent.

  7. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data

    PubMed Central

    Hepworth, Philip J.; Nefedov, Alexey V.; Muchnik, Ilya B.; Morgan, Kenton L.

    2012-01-01

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide. PMID:22319115

  8. Ontological modelling of knowledge management for human-machine integrated design of ultra-precision grinding machine

    NASA Astrophysics Data System (ADS)

    Hong, Haibo; Yin, Yuehong; Chen, Xing

    2016-11-01

    Despite the rapid development of computer science and information technology, an efficient human-machine integrated enterprise information system for designing complex mechatronic products is still not fully accomplished, partly because of the inharmonious communication among collaborators. Therefore, one challenge in human-machine integration is how to establish an appropriate knowledge management (KM) model to support integration and sharing of heterogeneous product knowledge. Aiming at the diversity of design knowledge, this article proposes an ontology-based model to reach an unambiguous and normative representation of knowledge. First, an ontology-based human-machine integrated design framework is described, then corresponding ontologies and sub-ontologies are established according to different purposes and scopes. Second, a similarity calculation-based ontology integration method composed of ontology mapping and ontology merging is introduced. The ontology searching-based knowledge sharing method is then developed. Finally, a case of human-machine integrated design of a large ultra-precision grinding machine is used to demonstrate the effectiveness of the method.

  9. Broiler chickens can benefit from machine learning: support vector machine analysis of observational epidemiological data.

    PubMed

    Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L

    2012-08-07

    Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.

  10. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  11. Testing Machine for Biaxial Loading

    NASA Technical Reports Server (NTRS)

    Demonet, R. J.; Reeves, R. D.

    1985-01-01

    Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.

  12. Propofol Induction's Effect on Cardiac Function

    ClinicalTrials.gov

    2015-03-31

    This Study Was Focused to Evaluate Feasibility of Doppler Tissue Monitoring During the Induction Anesthesia,; and Evaluate Routine Propofol Induction's Effect on Myocardial Tissue Motion, Using Non-invasive Doppler Tissue and 2D Speckle Tracking Imaging.; This is the First Study, to Our Knowledge, Which Has Evaluated the Possible Impact of Propofol Induction on LV Function.

  13. Inductive Communication System Design Summary

    DOT National Transportation Integrated Search

    1978-09-01

    The report documents the experience obtained during the design and development of the Inductive Communications System used in the Morgantown People Mover. The Inductive Communications System is used to provide wayside-to-vehicle and vehicle-to-waysid...

  14. Machining heavy plastic sections

    NASA Technical Reports Server (NTRS)

    Stalkup, O. M.

    1967-01-01

    Machining technique produces consistently satisfactory plane-parallel optical surfaces for pressure windows, made of plexiglass, required to support a photographic study of liquid rocket combustion processes. The surfaces are machined and polished to the required tolerances and show no degradation from stress relaxation over periods as long as 6 months.

  15. Chip breaking system for automated machine tool

    DOEpatents

    Arehart, Theodore A.; Carey, Donald O.

    1987-01-01

    The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.

  16. Video luminescent barometry - The induction period

    NASA Technical Reports Server (NTRS)

    Uibel, Rory H.; Khalil, Gamal; Gouterman, Martin; Gallery, Jean; Callis, James B.

    1993-01-01

    Video monitoring of oxygen quenching of the photoluminescence of platinum octaethylporphyrin (PtOEP) in silicone polymer resin may be used to measure pressure distribution over an airfoil. A continuous increase of the luminescence intensity of PtOEP on exposure to the exciting light is known as the induction effect. The effect of several factors on PtOEP photoluminescence and the induction effect was investigated. The experimental apparatus is described and results are presented. It was observed that the relative induction amplitude and induction time increase at higher oxygen pressure and with thicker films. These observations may be explained if the singlet oxygen produced by oxygen quenching is consumed by the polymer and is therefore unavailable for further quenching. Researchers using this method for measuring pressure distribution on airfoil surfaces should be aware of the induction effect and its implications.

  17. Hypnosis for induction of labour.

    PubMed

    Nishi, Daisuke; Shirakawa, Miyako N; Ota, Erika; Hanada, Nobutsugu; Mori, Rintaro

    2014-08-14

    Induction of labour using pharmacological and mechanical methods can increase complications. Complementary and alternative medicine methods including hypnosis may have the potential to provide a safe alternative option for the induction of labour. However, the effectiveness of hypnosis for inducing labour has not yet been fully evaluated. To assess the effect of hypnosis for induction of labour compared with no intervention or any other interventions. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2014), handsearched relevant conference proceedings, contacted key personnel and organisations in the field for published and unpublished references. All published and unpublished randomised controlled trials (RCTs) and cluster-RCTs of acceptable quality comparing hypnosis with no intervention or any other interventions, in which the primary outcome is to assess whether labour was induced. Two review authors assessed the one trial report that was identified (but was subsequently excluded). No RCTs or cluster-RCTs were identified from the search strategy. There was no evidence available from RCTs to assess the effect of hypnosis for induction of labour. Evidence from RCTs is required to evaluate the effectiveness and safety of this intervention for labour induction. As hypnosis may delay standard care (in case standard care is withheld during hypnosis), its use in induction of labour should be considered on a case-by-case basis.Future RCTs are required to examine the effectiveness and safety of hypnotic relaxation for induction of labour among pregnant women who have anxiety above a certain level. The length and timing of the intervention, as well as the staff training required, should be taken into consideration. Moreover, the views and experiences of women and staff should also be included in future RCTs.

  18. Web Mining: Machine Learning for Web Applications.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Chau, Michael

    2004-01-01

    Presents an overview of machine learning research and reviews methods used for evaluating machine learning systems. Ways that machine-learning algorithms were used in traditional information retrieval systems in the "pre-Web" era are described, and the field of Web mining and how machine learning has been used in different Web mining…

  19. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  20. 20 CFR 368.3 - Vending machines.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Vending machines. 368.3 Section 368.3 Employees' Benefits RAILROAD RETIREMENT BOARD INTERNAL ADMINISTRATION, POLICY AND PROCEDURES PROHIBITION OF CIGARETTE SALES TO MINORS § 368.3 Vending machines. The sale of tobacco products in vending machines is...

  1. 20 CFR 368.3 - Vending machines.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Vending machines. 368.3 Section 368.3 Employees' Benefits RAILROAD RETIREMENT BOARD INTERNAL ADMINISTRATION, POLICY AND PROCEDURES PROHIBITION OF CIGARETTE SALES TO MINORS § 368.3 Vending machines. The sale of tobacco products in vending machines is...

  2. 20 CFR 368.3 - Vending machines.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Vending machines. 368.3 Section 368.3 Employees' Benefits RAILROAD RETIREMENT BOARD INTERNAL ADMINISTRATION, POLICY AND PROCEDURES PROHIBITION OF CIGARETTE SALES TO MINORS § 368.3 Vending machines. The sale of tobacco products in vending machines is...

  3. 20 CFR 368.3 - Vending machines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Vending machines. 368.3 Section 368.3 Employees' Benefits RAILROAD RETIREMENT BOARD INTERNAL ADMINISTRATION, POLICY AND PROCEDURES PROHIBITION OF CIGARETTE SALES TO MINORS § 368.3 Vending machines. The sale of tobacco products in vending machines is...

  4. 20 CFR 368.3 - Vending machines.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Vending machines. 368.3 Section 368.3 Employees' Benefits RAILROAD RETIREMENT BOARD INTERNAL ADMINISTRATION, POLICY AND PROCEDURES PROHIBITION OF CIGARETTE SALES TO MINORS § 368.3 Vending machines. The sale of tobacco products in vending machines is...

  5. 48 CFR 908.7103 - Office machines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Office machines. 908.7103... PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7103 Office machines. Acquisitions of office machines by DOE offices and its authorized contractors shall be in accordance with FPMR...

  6. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  7. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  8. Cooperating with machines.

    PubMed

    Crandall, Jacob W; Oudah, Mayada; Tennom; Ishowo-Oloko, Fatimah; Abdallah, Sherief; Bonnefon, Jean-François; Cebrian, Manuel; Shariff, Azim; Goodrich, Michael A; Rahwan, Iyad

    2018-01-16

    Since Alan Turing envisioned artificial intelligence, technical progress has often been measured by the ability to defeat humans in zero-sum encounters (e.g., Chess, Poker, or Go). Less attention has been given to scenarios in which human-machine cooperation is beneficial but non-trivial, such as scenarios in which human and machine preferences are neither fully aligned nor fully in conflict. Cooperation does not require sheer computational power, but instead is facilitated by intuition, cultural norms, emotions, signals, and pre-evolved dispositions. Here, we develop an algorithm that combines a state-of-the-art reinforcement-learning algorithm with mechanisms for signaling. We show that this algorithm can cooperate with people and other algorithms at levels that rival human cooperation in a variety of two-player repeated stochastic games. These results indicate that general human-machine cooperation is achievable using a non-trivial, but ultimately simple, set of algorithmic mechanisms.

  9. Induction heating coupler and annealer

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor); Johnston, David F. (Inventor); Swaim, Robert J. (Inventor); Dinkins, James R. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having- two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardly beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to a magnetic flux passing between the two ends of the pole piece.

  10. On-Line Scheduling of Parallel Machines

    DTIC Science & Technology

    1990-11-01

    machine without losing any work; this is referred to as the preemptive model. In contrast to the nonpreemptive model which we have considered in this paper...that there exists no schedule of length d. The 2-relaxed decision procedure is as follows. Put each job into the queue of the slowest machine Mk such...in their queues . If a machine’s queue is empty it takes jobs to process from the queue of the first machine that is slower than it and that has a

  11. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  12. Diamond turning machine controller implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, themore » control computer hardware and software, are discussed in detail below.« less

  13. Effect of focusing flow on stationary spot machining properties in elastic emission machining

    PubMed Central

    2013-01-01

    Ultraprecise optical elements are applied in advanced optical apparatus. Elastic emission machining (EEM) is one of the ultraprecision machining methods used to fabricate shapes with 0.1-nm accuracy. In this study, we proposed and experimentally tested the control of the shape of a stationary spot profile by introducing a focusing-flow state between the nozzle outlet and the workpiece surface in EEM. The simulation results indicate that the focusing-flow nozzle sharpens the distribution of the velocity on the workpiece surface. The results of machining experiments verified those of the simulation. The obtained stationary spot conditions will be useful for surface processing with a high spatial resolution. PMID:23680043

  14. Deployment of an inductance-based quasi-digital sensor to detect metallic wear debris in lubricant oil of rotating machinery

    NASA Astrophysics Data System (ADS)

    Sanga, Ramesh; Srinivasan, V. S.; Sivaramakrishna, M.; Prabhakara Rao, G.

    2018-07-01

    In rotating machinery due to continuous rotational induced wear and tear, metallic debris will be produced and mixes with the in-service lubricant oil over the course of time. This debris gives the sign of potential machine failure due to the aging of critical parts like gears and bearings. The size and type of wear debris has a direct relationship with the degree of wear in the machine and gives information about the healthiness of equipment. This article presents an inductive quasi-digital sensor to detect the metallic debris, its type; size in the lubrication oil of rotating machinery. A microcontroller based low cost, low power, high resolution and high precise instrument with alarm indication and LCD is developed to detect ferrous debris of sizes from 30 µm and non-ferrous debris of 50 µm. It is thoroughly tested and calibrated with ferrous, non-ferrous debris of different sizes in the air environment. Finally, an experiment is conducted to check the performance of the instrument by circulating lubricant oil containing ferrous, non-ferrous debris through the sensor.

  15. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  16. Power training using pneumatic machines vs. plate-loaded machines to improve muscle power in older adults.

    PubMed

    Balachandran, Anoop T; Gandia, Kristine; Jacobs, Kevin A; Streiner, David L; Eltoukhy, Moataz; Signorile, Joseph F

    2017-11-01

    Power training has been shown to be more effective than conventional resistance training for improving physical function in older adults; however, most trials have used pneumatic machines during training. Considering that the general public typically has access to plate-loaded machines, the effectiveness and safety of power training using plate-loaded machines compared to pneumatic machines is an important consideration. The purpose of this investigation was to compare the effects of high-velocity training using pneumatic machines (Pn) versus standard plate-loaded machines (PL). Independently-living older adults, 60years or older were randomized into two groups: pneumatic machine (Pn, n=19) and plate-loaded machine (PL, n=17). After 12weeks of high-velocity training twice per week, groups were analyzed using an intention-to-treat approach. Primary outcomes were lower body power measured using a linear transducer and upper body power using medicine ball throw. Secondary outcomes included lower and upper body muscle muscle strength, the Physical Performance Battery (PPB), gallon jug test, the timed up-and-go test, and self-reported function using the Patient Reported Outcomes Measurement Information System (PROMIS) and an online video questionnaire. Outcome assessors were blinded to group membership. Lower body power significantly improved in both groups (Pn: 19%, PL: 31%), with no significant difference between the groups (Cohen's d=0.4, 95% CI (-1.1, 0.3)). Upper body power significantly improved only in the PL group, but showed no significant difference between the groups (Pn: 3%, PL: 6%). For balance, there was a significant difference between the groups favoring the Pn group (d=0.7, 95% CI (0.1, 1.4)); however, there were no statistically significant differences between groups for PPB, gallon jug transfer, muscle muscle strength, timed up-and-go or self-reported function. No serious adverse events were reported in either of the groups. Pneumatic and plate

  17. Induction launcher design considerations

    NASA Technical Reports Server (NTRS)

    Driga, M. D.; Weldon, W. F.

    1989-01-01

    New concepts in the design of induction accelerators and their power supplies for space and military applications are discussed. Particular attention is given to a piecewise-rising-frequency power supply in which each elementary generator (normal compulsator or rising frequency generator) has a different base frequency. A preliminary design of a coaxial induction accelerator for a hypersonic real gas facility is discussed to illustrate the concepts described.

  18. Energy Survey of Machine Tools: Separating Power Information of the Main Transmission System During Machining Process

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Liu, Fei; Hu, Shaohua; Yin, Zhenbiao

    The major power information of the main transmission system in machine tools (MTSMT) during machining process includes effective output power (i.e. cutting power), input power and power loss from the mechanical transmission system, and the main motor power loss. These information are easy to obtain in the lab but difficult to evaluate in a manufacturing process. To solve this problem, a separation method is proposed here to extract the MTSMT power information during machining process. In this method, the energy flow and the mathematical models of major power information of MTSMT during the machining process are set up first. Based on the mathematical models and the basic data tables obtained from experiments, the above mentioned power information during machining process can be separated just by measuring the real time total input power of the spindle motor. The operation program of this method is also given.

  19. Metal release from coffee machines and electric kettles.

    PubMed

    Müller, Frederic D; Hackethal, Christin; Schmidt, Roman; Kappenstein, Oliver; Pfaff, Karla; Luch, Andreas

    2015-01-01

    The release of elemental ions from 8 coffee machines and 11 electric kettles into food simulants was investigated. Three different types of coffee machines were tested: portafilter espresso machines, pod machines and capsule machines. All machines were tested subsequently on 3 days before and on 3 days after decalcification. Decalcification of the machines was performed with agents according to procedures as specified in the respective manufacturer's manuals. The electric kettles showed only a low release of the elements analysed. For the coffee machines decreasing concentrations of elements were found from the first to the last sample taken in the course of 1 day. Metal release on consecutive days showed a decreasing trend as well. After decalcification a large increase in the amounts of elements released was encountered. In addition, the different machine types investigated clearly differed in their extent of element release. By far the highest leaching, both quantitatively and qualitatively, was found for the portafilter machines. With these products releases of Pb, Ni, Mn, Cr and Zn were in the range and beyond the release limits as proposed by the Council of Europe. Therefore, a careful rinsing routine, especially after decalcification, is recommended for these machines. The comparably lower extent of release of one particular portafilter machine demonstrates that metal release at levels above the threshold that triggers health concerns are technically avoidable.

  20. Fault-Tolerant Coding for State Machines

    NASA Technical Reports Server (NTRS)

    Naegle, Stephanie Taft; Burke, Gary; Newell, Michael

    2008-01-01

    Two reliable fault-tolerant coding schemes have been proposed for state machines that are used in field-programmable gate arrays and application-specific integrated circuits to implement sequential logic functions. The schemes apply to strings of bits in state registers, which are typically implemented in practice as assemblies of flip-flop circuits. If a single-event upset (SEU, a radiation-induced change in the bit in one flip-flop) occurs in a state register, the state machine that contains the register could go into an erroneous state or could hang, by which is meant that the machine could remain in undefined states indefinitely. The proposed fault-tolerant coding schemes are intended to prevent the state machine from going into an erroneous or hang state when an SEU occurs. To ensure reliability of the state machine, the coding scheme for bits in the state register must satisfy the following criteria: 1. All possible states are defined. 2. An SEU brings the state machine to a known state. 3. There is no possibility of a hang state. 4. No false state is entered. 5. An SEU exerts no effect on the state machine. Fault-tolerant coding schemes that have been commonly used include binary encoding and "one-hot" encoding. Binary encoding is the simplest state machine encoding and satisfies criteria 1 through 3 if all possible states are defined. Binary encoding is a binary count of the state machine number in sequence; the table represents an eight-state example. In one-hot encoding, N bits are used to represent N states: All except one of the bits in a string are 0, and the position of the 1 in the string represents the state. With proper circuit design, one-hot encoding can satisfy criteria 1 through 4. Unfortunately, the requirement to use N bits to represent N states makes one-hot coding inefficient.

  1. THE FIRST BOOK OF TEACHING MACHINES.

    ERIC Educational Resources Information Center

    EPSTEIN, SAM; EPSTEIN, BERYL

    THE FIRST TEACHING MACHINE WAS INVENTED IN THE 1920'S BY SIDNEY L. PRESSEY AND THE FIRST MODERN TEACHING MACHINE WAS DEVELOPED AND POPULARIZED IN THE EARLY 1930'S BY B.F. SKINNER. TODAY BUSINESSMEN AND INDUSTRIALISTS AS WELL AS EDUCATORS HAVE FOUND TEACHING MACHINES USEFUL. ACTUALLY, TEACHING IS ACCOMPLISHED THROUGH THE PROGRAM, A CAREFULLY…

  2. Human Machine Learning Symbiosis

    ERIC Educational Resources Information Center

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  3. Contraction-Only Exercise Machine

    NASA Technical Reports Server (NTRS)

    Doerr, Donald F.; Maples, Arthur B.; Campbell, Craig M.

    1992-01-01

    Standard knee-extension machine modified so subject experiences force only when lifting leg against stack of weights. Exerts little force on leg while being lowered. Hydraulic cylinder and reservoir mounted on frame of exercise machine. Fluid flows freely from cylinder to reservoir during contraction (lifting) but in constricted fashion from reservoir to cylinder during extension (lowering).

  4. Simple Machine Junk Cars

    ERIC Educational Resources Information Center

    Herald, Christine

    2010-01-01

    During the month of May, the author's eighth-grade physical science students study the six simple machines through hands-on activities, reading assignments, videos, and notes. At the end of the month, they can easily identify the six types of simple machine: inclined plane, wheel and axle, pulley, screw, wedge, and lever. To conclude this unit,…

  5. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance

  6. Addressing uncertainty in atomistic machine learning.

    PubMed

    Peterson, Andrew A; Christensen, Rune; Khorshidi, Alireza

    2017-05-10

    Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate of the uncertainty when the width is comparable to that in the training data. Intriguingly, we also show that the uncertainty can be localized to specific atoms in the simulation, which may offer hints for the generation of training data to strategically improve the machine-learned representation.

  7. Method and system for fault accommodation of machines

    NASA Technical Reports Server (NTRS)

    Goebel, Kai Frank (Inventor); Subbu, Rajesh Venkat (Inventor); Rausch, Randal Thomas (Inventor); Frederick, Dean Kimball (Inventor)

    2011-01-01

    A method for multi-objective fault accommodation using predictive modeling is disclosed. The method includes using a simulated machine that simulates a faulted actual machine, and using a simulated controller that simulates an actual controller. A multi-objective optimization process is performed, based on specified control settings for the simulated controller and specified operational scenarios for the simulated machine controlled by the simulated controller, to generate a Pareto frontier-based solution space relating performance of the simulated machine to settings of the simulated controller, including adjustment to the operational scenarios to represent a fault condition of the simulated machine. Control settings of the actual controller are adjusted, represented by the simulated controller, for controlling the actual machine, represented by the simulated machine, in response to a fault condition of the actual machine, based on the Pareto frontier-based solution space, to maximize desirable operational conditions and minimize undesirable operational conditions while operating the actual machine in a region of the solution space defined by the Pareto frontier.

  8. Machining of Fibre Reinforced Plastic Composite Materials.

    PubMed

    Caggiano, Alessandra

    2018-03-18

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  9. Machining of Fibre Reinforced Plastic Composite Materials

    PubMed Central

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  10. Quality Induction: The Effects of Comprehensive Induction on New Teacher Retention and Job Satisfaction

    ERIC Educational Resources Information Center

    Hendricks-Harris, Mary Therese

    2012-01-01

    This investigation examined the effect of a comprehensive new teacher induction program on teacher retention and job satisfaction in one suburban school district. New teachers are retained at low rates, and districts are spending resources in an attempt to decrease this number. New teacher induction includes supports for new teachers in their…

  11. Machined electrostatic sector for mass spectrometer

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P. (Inventor)

    2001-01-01

    An electrostatic sector device for a mass spectrometer is formed from a single piece of machinable ceramic. The machined ceramic is coated with a nickel coating, and a notch is etched in the nickel coating to form two separated portions. The sector can be covered by a cover formed from a separate piece of machined ceramic.

  12. CNC water-jet machining and cutting center

    NASA Astrophysics Data System (ADS)

    Bartlett, D. C.

    1991-09-01

    Computer Numerical Control (CNC) water-jet machining was investigated to determine the potential applications and cost-effectiveness that would result by establishing this capability in the engineering shops of Allied-Signal Inc., Kansas City Division (KCD). Both conductive and nonconductive samples were machined at KCD on conventional machining equipment (a three-axis conversational programmed mill and a wire electrical discharge machine) and on two current-technology water-jet machines at outside vendors. These samples were then inspected, photographed, and evaluated. The current-technology water-jet machines were not as accurate as the conventional equipment. The resolution of the water-jet equipment was only +/- 0.005 inch, as compared to +/- 0.0002 inch for the conventional equipment. The principal use for CNC water-jet machining would be as follows: Contouring to near finished shape those items made from 300 and 400 series stainless steels, titanium, Inconel, aluminum, glass, or any material whose fabrication tolerance is less than the machine resolution of +/- 0.005 inch; and contouring to finished shape those items made from Kevlar, rubber, fiberglass, foam, aluminum, or any material whose fabrication specifications allow the use of a machine with +/- 0.005 inch tolerance. Additional applications are possible because there is minimal force generated on the material being cut and because the water-jet cuts without generating dust.

  13. Development, awareness and inductive selectivity.

    PubMed

    Hayes, Brett K; Lim, Melissa

    2013-05-01

    Two studies examined whether adults and children could learn to make context-dependent inferences about novel stimuli and the role of awareness of context cues in such learning. Participants were trained to match probes to targets on the basis of shape or color with the relevant dimension shifting according to item context. A selective induction test then examined context-dependent responding in a more complex matching task. Awareness of the role of context was assessed using a behavioral task and explicit questions. Experiment 1 showed that after training with the procedure described by Sloutsky and Fisher (2008), only a minority of adults showed evidence of context-dependent responding in the selective induction test. Experiment 2 used a modified training protocol that promoted attention to context cues. This led to reliable selective induction in a majority of adults and a sizeable proportion of 4- to 6-year-olds. Crucially, in both age groups, selective induction was dependent on awareness of context. Hence, children as young as 4 can learn to make selective inferences about novel stimuli, but only when they are aware of the relevant context cues. These results challenge previous claims that selective induction in children is the product of implicit learning.

  14. Machinability of IPS Empress 2 framework ceramic.

    PubMed

    Schmidt, C; Weigl, P

    2000-01-01

    Using ceramic materials for an automatic production of ceramic dentures by CAD/CAM is a challenge, because many technological, medical, and optical demands must be considered. The IPS Empress 2 framework ceramic meets most of them. This study shows the possibilities for machining this ceramic with economical parameters. The long life-time requirement for ceramic dentures requires a ductile machined surface to avoid the well-known subsurface damages of brittle materials caused by machining. Slow and rapid damage propagation begins at break outs and cracks, and limits life-time significantly. Therefore, ductile machined surfaces are an important demand for machine dental ceramics. The machining tests were performed with various parameters such as tool grain size and feed speed. Denture ceramics were machined by jig grinding on a 5-axis CNC milling machine (Maho HGF 500) with a high-speed spindle up to 120,000 rpm. The results of the wear test indicate low tool wear. With one tool, you can machine eight occlusal surfaces including roughing and finishing. One occlusal surface takes about 60 min machining time. Recommended parameters for roughing are middle diamond grain size (D107), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 1000 mm/min, depth of cut a(e) = 0.06 mm, width of contact a(p) = 0.8 mm, and for finishing ultra fine diamond grain size (D46), cutting speed v(c) = 4.7 m/s, feed speed v(ft) = 100 mm/min, depth of cut a(e) = 0.02 mm, width of contact a(p) = 0.8 mm. The results of the machining tests give a reference for using IPS Empress(R) 2 framework ceramic in CAD/CAM systems. Copyright 2000 John Wiley & Sons, Inc.

  15. Multicutter machining of compound parametric surfaces

    NASA Astrophysics Data System (ADS)

    Hatna, Abdelmadjid; Grieve, R. J.; Broomhead, P.

    2000-10-01

    Parametric free forms are used in industries as disparate as footwear, toys, sporting goods, ceramics, digital content creation, and conceptual design. Optimizing tool path patterns and minimizing the total machining time is a primordial issue in numerically controlled (NC) machining of free form surfaces. We demonstrate in the present work that multi-cutter machining can achieve as much as 60% reduction in total machining time for compound sculptured surfaces. The given approach is based upon the pre-processing as opposed to the usual post-processing of surfaces for the detection and removal of interference followed by precise tracking of unmachined areas.

  16. Design and analysis of a 3D-flux flux-switching permanent magnet machine with SMC cores and ferrite magnets

    NASA Astrophysics Data System (ADS)

    Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo

    2017-05-01

    Since permanent magnets (PM) are stacked between the adjacent stator teeth and there are no windings or PMs on the rotor, flux-switching permanent magnet machine (FSPMM) owns the merits of good flux concentrating and robust rotor structure. Compared with the traditional PM machines, FSPMM can provide higher torque density and better thermal dissipation ability. Combined with the soft magnetic composite (SMC) material and ferrite magnets, this paper proposes a new 3D-flux FSPMM (3DFFSPMM). The topology and operation principle are introduced. It can be found that the designed new 3DFFSPMM has many merits over than the traditional FSPMM for it can utilize the advantages of SMC material. Moreover, the PM flux of this new motor can be regulated by using the mechanical method. 3D finite element method (FEM) is used to calculate the magnetic field and parameters of the motor, such as flux density, inductance, PM flux linkage and efficiency map. The demagnetization analysis of the ferrite magnet is also addressed to ensure the safety operation of the proposed motor.

  17. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  18. High speed operation of permanent magnet machines

    NASA Astrophysics Data System (ADS)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  19. Machinability of experimental Ti-Ag alloys.

    PubMed

    Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu

    2008-03-01

    This study investigated the machinability of experimental Ti-Ag alloys (5, 10, 20, and 30 mass% Ag) as a new dental titanium alloy candidate for CAD/CAM use. The alloys were slotted with a vertical milling machine and carbide square end mills under two cutting conditions. Machinability was evaluated through cutting force using a three-component force transducer fixed on the table of the milling machine. The horizontal cutting force of the Ti-Ag alloys tended to decrease as the concentration of silver increased. Values of the component of the horizontal cutting force perpendicular to the feed direction for Ti-20% Ag and Ti-30% Ag were more than 20% lower than those for titanium under both cutting conditions. Alloying with silver significantly improved the machinability of titanium in terms of cutting force under the present cutting conditions.

  20. Semi-supervised and unsupervised extreme learning machines.

    PubMed

    Huang, Gao; Song, Shiji; Gupta, Jatinder N D; Wu, Cheng

    2014-12-01

    Extreme learning machines (ELMs) have proven to be efficient and effective learning mechanisms for pattern classification and regression. However, ELMs are primarily applied to supervised learning problems. Only a few existing research papers have used ELMs to explore unlabeled data. In this paper, we extend ELMs for both semi-supervised and unsupervised tasks based on the manifold regularization, thus greatly expanding the applicability of ELMs. The key advantages of the proposed algorithms are as follows: 1) both the semi-supervised ELM (SS-ELM) and the unsupervised ELM (US-ELM) exhibit learning capability and computational efficiency of ELMs; 2) both algorithms naturally handle multiclass classification or multicluster clustering; and 3) both algorithms are inductive and can handle unseen data at test time directly. Moreover, it is shown in this paper that all the supervised, semi-supervised, and unsupervised ELMs can actually be put into a unified framework. This provides new perspectives for understanding the mechanism of random feature mapping, which is the key concept in ELM theory. Empirical study on a wide range of data sets demonstrates that the proposed algorithms are competitive with the state-of-the-art semi-supervised or unsupervised learning algorithms in terms of accuracy and efficiency.

  1. Specimen coordinate automated measuring machine/fiducial automated measuring machine

    DOEpatents

    Hedglen, Robert E.; Jacket, Howard S.; Schwartz, Allan I.

    1991-01-01

    The Specimen coordinate Automated Measuring Machine (SCAMM) and the Fiducial Automated Measuring Machine (FAMM) is a computer controlled metrology system capable of measuring length, width, and thickness, and of locating fiducial marks. SCAMM and FAMM have many similarities in their designs, and they can be converted from one to the other without taking them out of the hot cell. Both have means for: supporting a plurality of samples and a standard; controlling the movement of the samples in the +/- X and Y directions; determining the coordinates of the sample; compensating for temperature effects; and verifying the accuracy of the measurements and repeating as necessary. SCAMM and FAMM are designed to be used in hot cells.

  2. Machine compliance in compression tests

    NASA Astrophysics Data System (ADS)

    Sousa, Pedro; Ivens, Jan; Lomov, Stepan V.

    2018-05-01

    The compression behavior of a material cannot be accurately determined if the machine compliance is not accounted prior to the measurements. This work discusses the machine compliance during a compressibility test with fiberglass fabrics. The thickness variation was measured during loading and unloading cycles with a relaxation stage of 30 minutes between them. The measurements were performed using an indirect technique based on the comparison between the displacement at a free compression cycle and the displacement with a sample. Relating to the free test, it has been noticed the nonexistence of machine relaxation during relaxation stage. Considering relaxation or not, the characteristic curves for a free compression cycle can be overlapped precisely in the majority of the points. For the compression test with sample, it was noticed a non-physical decrease of about 30 µm during the relaxation stage, what can be explained by the greater fabric relaxation in relation to the machine relaxation. Beyond the technique normally used, another technique was used which allows a constant thickness during relaxation. Within this second method, machine displacement with sample is simply subtracted to the machine displacement without sample being imposed as constant. If imposed as a constant it will remain constant during relaxation stage and it will suddenly decrease after relaxation. If constantly calculated it will decrease gradually during relaxation stage. Independently of the technique used the final result will remain unchanged. The uncertainty introduced by this imprecision is about ±15 µm.

  3. Risk estimation using probability machines.

    PubMed

    Dasgupta, Abhijit; Szymczak, Silke; Moore, Jason H; Bailey-Wilson, Joan E; Malley, James D

    2014-03-01

    Logistic regression has been the de facto, and often the only, model used in the description and analysis of relationships between a binary outcome and observed features. It is widely used to obtain the conditional probabilities of the outcome given predictors, as well as predictor effect size estimates using conditional odds ratios. We show how statistical learning machines for binary outcomes, provably consistent for the nonparametric regression problem, can be used to provide both consistent conditional probability estimation and conditional effect size estimates. Effect size estimates from learning machines leverage our understanding of counterfactual arguments central to the interpretation of such estimates. We show that, if the data generating model is logistic, we can recover accurate probability predictions and effect size estimates with nearly the same efficiency as a correct logistic model, both for main effects and interactions. We also propose a method using learning machines to scan for possible interaction effects quickly and efficiently. Simulations using random forest probability machines are presented. The models we propose make no assumptions about the data structure, and capture the patterns in the data by just specifying the predictors involved and not any particular model structure. So they do not run the same risks of model mis-specification and the resultant estimation biases as a logistic model. This methodology, which we call a "risk machine", will share properties from the statistical machine that it is derived from.

  4. Operating an induction melter apparatus

    DOEpatents

    Roach, Jay A.; Richardson, John G.; Raivo, Brian D.; Soelberg, Nicholas R.

    2006-01-31

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  5. Mechanical design of walking machines.

    PubMed

    Arikawa, Keisuke; Hirose, Shigeo

    2007-01-15

    The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.

  6. Two frameworks for integrating knowledge in induction

    NASA Technical Reports Server (NTRS)

    Rosenbloom, Paul S.; Hirsh, Haym; Cohen, William W.; Smith, Benjamin D.

    1994-01-01

    The use of knowledge in inductive learning is critical for improving the quality of the concept definitions generated, reducing the number of examples required in order to learn effective concept definitions, and reducing the computation needed to find good concept definitions. Relevant knowledge may come in many forms (such as examples, descriptions, advice, and constraints) and from many sources (such as books, teachers, databases, and scientific instruments). How to extract the relevant knowledge from this plethora of possibilities, and then to integrate it together so as to appropriately affect the induction process is perhaps the key issue at this point in inductive learning. Here the focus is on the integration part of this problem; that is, how induction algorithms can, and do, utilize a range of extracted knowledge. Preliminary work on a transformational framework for defining knowledge-intensive inductive algorithms out of relatively knowledge-free algorithms is described, as is a more tentative problems-space framework that attempts to cover all induction algorithms within a single general approach. These frameworks help to organize what is known about current knowledge-intensive induction algorithms, and to point towards new algorithms.

  7. Intelligible machine learning with malibu.

    PubMed

    Langlois, Robert E; Lu, Hui

    2008-01-01

    malibu is an open-source machine learning work-bench developed in C/C++ for high-performance real-world applications, namely bioinformatics and medical informatics. It leverages third-party machine learning implementations for more robust bug-free software. This workbench handles several well-studied supervised machine learning problems including classification, regression, importance-weighted classification and multiple-instance learning. The malibu interface was designed to create reproducible experiments ideally run in a remote and/or command line environment. The software can be found at: http://proteomics.bioengr. uic.edu/malibu/index.html.

  8. Monitoring transients in low inductance circuits

    DOEpatents

    Guilford, R.P.; Rosborough, J.R.

    1985-10-21

    The instant invention relates to methods of and apparatus for monitoring transients in low inductance circuits and to a probe utilized to practice said method and apparatus. More particularly, the instant invention relates to methods of and apparatus for monitoring low inductance circuits, wherein the low inductance circuits include a pair of flat cable transmission lines. The instant invention is further directed to a probe for use in monitoring pairs of flat cable transmission lines.

  9. Sampling Assumptions in Inductive Generalization

    ERIC Educational Resources Information Center

    Navarro, Daniel J.; Dry, Matthew J.; Lee, Michael D.

    2012-01-01

    Inductive generalization, where people go beyond the data provided, is a basic cognitive capability, and it underpins theoretical accounts of learning, categorization, and decision making. To complete the inductive leap needed for generalization, people must make a key "sampling" assumption about how the available data were generated.…

  10. From Inductive Reasoning to Proof

    ERIC Educational Resources Information Center

    Yopp, David A.

    2009-01-01

    Mathematical proof is an expression of deductive reasoning (drawing conclusions from previous assertions). However, it is often inductive reasoning (conclusions drawn on the basis of examples) that helps learners form their deductive arguments, or proof. In addition, not all inductive arguments generate more formal arguments. This article draws a…

  11. Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions.

    PubMed

    Yahia, K; Cardoso, A J M; Ghoggal, A; Zouzou, S E

    2014-03-01

    Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Managing virtual machines with Vac and Vcycle

    NASA Astrophysics Data System (ADS)

    McNab, A.; Love, P.; MacMahon, E.

    2015-12-01

    We compare the Vac and Vcycle virtual machine lifecycle managers and our experiences in providing production job execution services for ATLAS, CMS, LHCb, and the GridPP VO at sites in the UK, France and at CERN. In both the Vac and Vcycle systems, the virtual machines are created outside of the experiment's job submission and pilot framework. In the case of Vac, a daemon runs on each physical host which manages a pool of virtual machines on that host, and a peer-to-peer UDP protocol is used to achieve the desired target shares between experiments across the site. In the case of Vcycle, a daemon manages a pool of virtual machines on an Infrastructure-as-a-Service cloud system such as OpenStack, and has within itself enough information to create the types of virtual machines to achieve the desired target shares. Both systems allow unused shares for one experiment to temporarily taken up by other experiements with work to be done. The virtual machine lifecycle is managed with a minimum of information, gathered from the virtual machine creation mechanism (such as libvirt or OpenStack) and using the proposed Machine/Job Features API from WLCG. We demonstrate that the same virtual machine designs can be used to run production jobs on Vac and Vcycle/OpenStack sites for ATLAS, CMS, LHCb, and GridPP, and that these technologies allow sites to be operated in a reliable and robust way.

  13. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  14. Prospective Internally Controlled Blind Reviewed Clinical Evaluation of Cryolipolysis Combined With Multipolar Radiofrequency andVaripulseTechnology for Enhanced Subject Results in Circumferential Fat Reduction and Skin Laxity of the Flanks.

    PubMed

    Few, Julius; Gold, Michael; Sadick, Neil

    2016-11-01

    Increasing demand for non-invasive skin tightening and body contouring procedures has led to several technological in- novations in energy-based devices such as ultrasound, radiofrequency and cryolipolysis. An emerging trend in the eld is to evaluate whether combination therapies for skin laxity/body contouring using energy-based devices can deliver superior clinical results and patient satisfaction. As such, the objective of this prospective, internal-controlled, blind clinical study was to assess the safety and efficacy of cryolipolysis followed by multipolar radiofrequency with pulsed electromagnetic elds (PEMF) and adjustable pulsed suction for the treatment of skin laxity in the flanks. Ten subjects with focal adiposities in the anks were enrolled in the study. All subjects received one session of cryolipolysis treatment and after randomization received two sessions of radiofrequency with PEMF (spaced two weeks apart), followed by another two sessions of radiofrequency with PEMF and adjustable pulsed suction (spaced two weeks apart). Clinical photography was used to monitor the subject's results at baseline, one week, three, and six months post treatment. Blinded reviewers and the treating inves- tigator assessed the clinical outcomes using the Global Aesthetic Improvement (GAI) scale. Side effects were recorded at every visit and patient satisfaction was noted at the one week, three and six-month follow-up using a 5-scale subject satisfaction assessment questionnaire. Analysis of the blinded investigator ratings demonstrated statistical significant enhanced skin laxity mean improvement of 1 grade on the GAI scale in subject treated with the combination treatment (cryolipolysis+RF/PEMF/suction) compared with the cryolipolysis treatment alone. The unblinded investigator GAI ratings also showed enhanced (20%) mean improvement of laxity in the combination treated subjects versus those receiving cryolipolysis alone. Over half of the participants reported

  15. Improvement of automatic fish feeder machine design

    NASA Astrophysics Data System (ADS)

    Chui Wei, How; Salleh, S. M.; Ezree, Abdullah Mohd; Zaman, I.; Hatta, M. H.; Zain, B. A. Md; Mahzan, S.; Rahman, M. N. A.; Mahmud, W. A. W.

    2017-10-01

    Nation Plan of action for management of fishing is target to achieve an efficient, equitable and transparent management of fishing capacity in marine capture fisheries by 2018. However, several factors influence the fishery production and efficiency of marine system such as automatic fish feeder machine could be taken in consideration. Two latest fish feeder machines have been chosen as the reference for this study. Based on the observation, it has found that the both machine was made with heavy structure, low water and temperature resistance materials. This research’s objective is to develop the automatic feeder machine to increase the efficiency of fish feeding. The experiment has conducted to testing the new design of machine. The new machine with maximum storage of 5 kg and functioning with two DC motors. This machine able to distribute 500 grams of pellets within 90 seconds and longest distance of 4.7 meter. The higher speed could reduce time needed and increase the distance as well. The minimum speed range for both motor is 110 and 120 with same full speed range of 255.

  16. Gram staining with an automatic machine.

    PubMed

    Felek, S; Arslan, A

    1999-01-01

    This study was undertaken to develop a new Gram-staining machine controlled by a micro-controller and to investigate the quality of slides that were stained in the machine. The machine was designed and produced by the authors. It uses standard 220 V AC. Staining, washing, and drying periods are controlled by a timer built in the micro-controller. A software was made that contains a certain algorithm and time intervals for the staining mode. One-hundred and forty smears were prepared from Escherichia coli, Staphylococcus aureus, Neisseria sp., blood culture, trypticase soy broth, direct pus and sputum smears for comparison studies. Half of the slides in each group were stained with the machine, the other half by hand and then examined by four different microbiologists. Machine-stained slides had a higher clarity and less debris than the hand-stained slides (p < 0.05). In hand-stained slides, some Gram-positive organisms showed poor Gram-positive staining features (p < 0.05). In conclusion, we suggest that Gram staining with the automatic machine increases the staining quality and helps to decrease the work load in a busy diagnostic laboratory.

  17. Adaptive machine and its thermodynamic costs

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Wang, Q. A.

    2013-03-01

    We study the minimal thermodynamically consistent model for an adaptive machine that transfers particles from a higher chemical potential reservoir to a lower one. This model describes essentials of the inhomogeneous catalysis. It is supposed to function with the maximal current under uncertain chemical potentials: if they change, the machine tunes its own structure fitting it to the maximal current under new conditions. This adaptation is possible under two limitations: (i) The degree of freedom that controls the machine's structure has to have a stored energy (described via a negative temperature). The origin of this result is traced back to the Le Chatelier principle. (ii) The machine has to malfunction at a constant environment due to structural fluctuations, whose relative magnitude is controlled solely by the stored energy. We argue that several features of the adaptive machine are similar to those of living organisms (energy storage, aging).

  18. High-Strength Undiffused Brushless (HSUB) Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, John S; Tolbert, Leon M; Lee, Seong T

    2007-01-01

    This paper introduces a new high-strength undiffused brushless machine that transfers the stationary excitation magnetomotive force to the rotor without any brushes. For a conventional permanent magnet (PM) machine, the air gap flux density cannot be enhanced effectively but can be weakened. In the new machine, both the stationary excitation coil and the PM in the rotor produce an enhanced air gap flux. The PM in the rotor prevents magnetic flux diffusion between the poles and guides the reluctance flux path. The pole flux density in the air gap can be much higher than what the PM alone can produce.more » A high-strength machine is thus obtained. The air gap flux density can be weakened through the stationary excitation winding. This type of machine is particularly suitable for electric and hybrid-electric vehicle applications. Patents of this new technology are either granted or pending.« less

  19. Uses of the Westrup brush machine

    Treesearch

    Jill Barbour

    2002-01-01

    The Westrup brush machine can be used as the first step in the conditioning process of seeds. Even though there are various sizes of the machine, only the laboratory model (LA-H) is described. The machine is designed to separate seed from pods or flowers, dewing tree seed, remove appendages or hairs from seed, split twin seed, de-lint cotton seed, scarify hard coated...

  20. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    PubMed

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.