Science.gov

Sample records for multiquantum giant vortex

  1. Electronic structure of multiquantum giant vortex states in mesoscopic superconducting disks

    PubMed Central

    Tanaka, Kaori; Robel, István; Jankó, Boldizsár

    2002-01-01

    We report self-consistent calculations of the microscopic electronic structure of the so-called giant vortex states. These multiquantum vortex states, detected by recent magnetization measurements on submicron disks, are qualitatively different from the Abrikosov vortices in the bulk. We find that, in addition to multiple branches of bound states in the core region, the local tunneling density of states exhibits Tomasch oscillations caused by the single-particle interference arising from quantum confinement. These features should be directly observable by scanning tunneling spectroscopy. PMID:16578872

  2. Giant vortex state in mesoscopic superconductors

    NASA Astrophysics Data System (ADS)

    Cobacy García, Luis; Giraldo, Jairo

    2005-08-01

    Using the self-consistent solution of the nonlinear Ginzburg-Landau equations, the superconducting state of a type II mesoscopic cylinder and of an infinite thin sheet with a circular hole (antidot), in the presence of an homogeneous magnetic field is studied. Close to the third critical field, the magnetic field penetrates the sample in the form of a vortex around the axis of the cylinder or of the antidot. This result has been found previously by other authors. The vortex, called a giant vortex, can carry several flux quanta. The giant vortex is persistent when the state is metastable and evolves to the so called paramagnetic Meissner effect (PME) within the cylinder. The behaviour of this effect as a function of the Ginzburg-Landau (GL) parameter is studied and the results are discussed. Gibbs free energy, order parameter and magnetic induccion as a function of the applied field and of the GL parameter are also studied.

  3. Giant moving vortex mass in thick magnetic nanodots

    PubMed Central

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-01-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430

  4. Giant moving vortex mass in thick magnetic nanodots

    NASA Astrophysics Data System (ADS)

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-09-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  5. The paramagnetic Meissner effect resulting from the persistence of the giant vortex state

    SciTech Connect

    Moshchalkov, V.V.; Bruyndoncx, V.; Qiu, X.G.

    1996-11-01

    The paramagnetic Meissner effect (PME), recently observed in high-T{sub c} materials and also in Nb, can be successfully explained by the persistence of the giant vortex state with the fixed orbital quantum number L. This state is formed in superconductors in the field cooled regime at the third critical field. The self-consistent numerical solution of the Ginzburg-Landau equations clearly shows that the compression of the flux trapped inside the giant vortex state results in the PME. The PME is suppressed, and the normal diamagnetic response is recovered, by increasing the applied field.

  6. Solitons and Vortex Lattices in the Gross–Pitaevskii Equation with Spin–Orbit Coupling under Rotation

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Umeda, Kanji

    2016-06-01

    The Gross-Pitaevskii equation for two-component rotating Bose-Einstein condensates with the Rashba-type spin-orbit (SO) coupling is studied with numerical simulations and variational analyses. A multiquantum vortex state becomes a ground state in a harmonic potential when mutual interaction is absent. When the attractive interaction is strong, the multiquantum vortex state exhibits modulational instability in the azimuthal direction, and a soliton-like state appears. When the repulsive interaction is strong, a vortex lattice state with a multiquantum vortex at the center is created. We find that the vortex lattice state is approximated at a linear combination of multiquantum vortex states.

  7. Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices

    SciTech Connect

    Correggi, Michele; Pinsker, Florian; Rougerie, Nicolas; Yngvason, Jakob

    2011-11-15

    We study a superfluid in a rotating anharmonic trap and explicate a rigorous proof of a transition from a vortex lattice to a giant vortex state as the rotation is increased beyond a limiting speed determined by the interaction strength. The transition is characterized by the disappearance of the vortices from the annulus where the bulk of the superfluid is concentrated due to centrifugal forces while a macroscopic phase circulation remains. The analysis is carried out within two-dimensional Gross-Pitaevskii theory at large coupling constant and reveals significant differences between ''soft'' anharmonic traps (like a quartic plus quadratic trapping potential) and traps with a fixed boundary: in the latter case the transition takes place in a parameter regime where the size of vortices is very small relative to the width of the annulus, whereas in soft traps the vortex lattice persists until the width of the annulus becomes comparable to the vortex cores. Moreover, the density profile in the annulus where the bulk is concentrated is, in the soft case, approximately Gaussian with long tails and not of the Thomas-Fermi type like in a trap with a fixed boundary.

  8. Haze and clouds properties of Saturn's 2011 giant vortex retrieved from Cassini VIMS-V data.

    NASA Astrophysics Data System (ADS)

    Oliva, F.; Adriani, A.; Moriconi, M. L.; Liberti, G. L.; d'Aversa, E.

    2014-04-01

    This work is focused on the retrieval of the microphysical and geometrical properties of the clouds and hazes overlying the giant vortex observed in 2011 at Saturn, by the Visual and Infrared Mapping Spectrometer (VIMS) on board of Cassini. The retrieval algorithm is based on the optimal estimation technique [15] and takes advantage of a forward radiative transfer model developed by adapting the LibRadtran code [13] to the atmosphere of Saturn. For each of the retrieved parameters - that are effective radii, top pressures and total number densities for each considered deck - a 2D spatial map has been produced.

  9. Polar vortex formation in giant-planet atmospheres due to moist convection

    NASA Astrophysics Data System (ADS)

    O'Neill, Morgan E.; Emanuel, Kerry A.; Flierl, Glenn R.

    2015-07-01

    A strong cyclonic vortex has been observed on each of Saturn’s poles, coincident with a local maximum in observed tropospheric temperature. Neptune also exhibits a relatively warm, although much more transient, region on its south pole. Whether similar features exist on Jupiter will be resolved by the 2016 Juno mission. Energetic, small-scale storm-like features that originate from the water-cloud level or lower have been observed on each of the giant planets and attributed to moist convection, suggesting that these storms play a significant role in global heat transfer from the hot interior to space. Nevertheless, the creation and maintenance of Saturn’s polar vortices, and their presence or absence on the other giant planets, are not understood. Here we use simulations with a shallow-water model to show that storm generation, driven by moist convection, can create a strong polar cyclone throughout the depth of a planet’s troposphere. We find that the type of shallow polar flow that occurs on a giant planet can be described by the size ratio of small eddies to the planetary radius and the energy density of its atmosphere due to latent heating from moist convection. We suggest that the observed difference in these parameters between Saturn and Jupiter may preclude a Jovian polar cyclone.

  10. Clouds and hazes vertical structure mapping of Saturn 2011 - 2012 giant vortex by means of Cassini VIMS data analysis.

    NASA Astrophysics Data System (ADS)

    Oliva, F.; Adriani, A.; Moriconi, M. L.; Liberti, G. L.; D'Aversa, E.

    On December 2010 a giant storm erupted in Saturn's North hemisphere. A giant vortex formed in the storm wake and persisted after the principal outburst exhausted on July 2011. The vortex had been imaged several times by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini probe starting from May 2011 and it was still present in observations recorded on June 2013. In this work we have analyzed the vortex data recorded by the visual channel of the spectrometer (VIMS-V) in August 2011 and January 2012. An inverse model, based on the Bayesian approach and using the Gauss-Newton iterative method to minimize the cost function, has been developed to analyze those data. The model takes advantage of the results of a supporting forward radiative transfer model which relies on the assumptions of plane parallel atmosphere, multiple scattering, Mie theory to compute particles single scattering properties, and molecular scattering adapted to Saturn's atmosphere. Applying the inverse model we could retrieve the microphysical and geometrical properties of the clouds and hazes overlying the vortex and produce spatial maps for each retrieved parameter. Thanks to this study, the vertical structure of the hazes in this region has been quantitatively addressed for the first time. The comparative analysis of the results from the two observations seems to suggest that in 6 months the atmospheric dynamics, responsible for the formation and subsistence of the vortex, is weakening and the atmosphere is returning to a more stationary state. In addition, we suggest a correction for the imaginary part of the refractive index of the tropopause haze. This new value, that allows a better convergence between observed and simulated spectra, does not yet identify a composition of the haze and further investigation is needed to understand the real nature of the need for such a modification.

  11. Vertical structure mapping of Saturn's 2011 giant vortex by means of Cassini VIMS-V data analysis.

    NASA Astrophysics Data System (ADS)

    Oliva, Fabrizio; Adriani, Alberto; Moriconi, Maria Luisa; D'Aversa, Emiliano; Liberti, Gian Luigi

    On December 2010 a giant storm erupted in Saturn's North springtime hemisphere. A giant vortex formed in the storm wake and persisted after the principal outburst exhausted on July 2011. The vortex had been imaged several times by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini probe, starting from May 2011, and it was still present in the December 2012 observations In this work we have analyzed the data recorded by the visual channel of the spectrometer (VIMS-V). VIMS-V operates in the spectral range 350 - 1050 nm with a nominal spectral resolution of 7.3 nm and a nominal angular resolution of 500 μrad. Spectral data have been first analyzed by a forward radiative transfer model based on the LibRadtran code, then an inverse model has used to retrieve microphysical and geometrical properties of the clouds overlying the vortex. The forward model relies on the assumptions of a plane parallel atmosphere, multiple scattering, the Mie theory to compute single scattering properties and the molecular scattering adapted to Saturn’s atmosphere. The inverse code is based on the optimal estimation technique, it is robust and capable to handle several free parameters at a time. The best fits to the observed radiance spectra are obtained by means of a least square analysis, in which the cost function is minimized taking advantage of the Gauss-Newton method. Applying this procedure, we produced spatial maps for each of the free parameters, including: effective radii for the particles size distributions of each cloud or aerosol deck; total number densities of the particles; and top pressures of each deck. In this work we focused on the data retrieved by VIMS on August 2011. We plan to extend the analysis on data retrieved months later, to map the evolution the parameters undergo in time. The analysis extension to the range 1.0-5.0 micron, covered by the infrared channel of VIMS (VIMS-IR) is also planned.

  12. Ramsey patterns for multiquantum transitions in fountain experiments

    SciTech Connect

    McColm, D. |

    1996-12-01

    Ramsey patterns for radio-frequency multiquantum transitions among Zeeman levels of the ground state of thallium, cesium, and francium have been calculated. The narrowing of these patterns observed earlier by Gould is predicted to occur only when both static electric and magnetic fields are present. {copyright} {ital 1996 The American Physical Society.}

  13. Analysis of energy states in modulation doped multiquantum well heterostructures

    NASA Technical Reports Server (NTRS)

    Ji, G.; Henderson, T.; Peng, C. K.; Huang, D.; Morkoc, H.

    1990-01-01

    A precise and effective numerical procedure to model the band diagram of modulation doped multiquantum well heterostructures is presented. This method is based on a self-consistent iterative solution of the Schroedinger equation and the Poisson equation. It can be used rather easily in any arbitrary modulation-doped structure. In addition to confined energy subbands, the unconfined states can be calculated as well. Examples on realistic device structures are given to demonstrate capabilities of this procedure. The numerical results are in good agreement with experiments. With the aid of this method the transitions involving both the confined and unconfined conduction subbands in a modulation doped AlGaAs/GaAs superlattice, and in a strained layer InGaAs/GaAs superlattice are identified. These results represent the first observation of unconfined transitions in modulation doped multiquantum well structures.

  14. Field effects on the vortex states in spin-orbit coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Xu, Liang-Liang; Liu, Yong-Kai; Feng, Shiping; Yang, Shi-Jie

    2016-06-01

    Multi-quantum vortices can be created in the ground state of rotating Bose-Einstein condensates with spin-orbit couplings. We investigate the effects of external fields, either a longitudinal field or a transverse field, on the vortex states. We reveal that both fields can effectively reduce the number of vortices. In the latter case we further find that the condensate density packets are pushed away in the horizontal direction and the vortices finally disappear to form a plane wave phase.

  15. Giant increase of critical current density and vortex pinning in Mn doped K{sub x}Fe{sub 2−y}Se{sub 2} single crystals

    SciTech Connect

    Li, Mingtao; Zhang, Jincang; Chen, La; You, Wen-Long; Ge, Junyi

    2014-11-10

    We report a comparative study of the critical current density (J{sub c}) and vortex pinning among pure and Mn doped K{sub x}Fe{sub 2−y}Se{sub 2} single crystals. It is found that the J{sub c} values can be greatly improved by Mn doping and post-quenching treatment when comparing to pristine pure sample. In contrast to pure samples, an anomalous second magnetization peak (SMP) effect is observed in both 1% and 2% Mn doped samples at T = 3 K for H∥ab but not for H∥c. Referring to Dew-Hughes and Kramer's model, we performed scaling analyses of the vortex pinning force density vs magnetic field in 1% Mn doped and quenched pristine crystals. The results show that the normal point defects are the dominant pinning sources, which probably originate from the variations of intercalated K atoms. We propose that the large nonsuperconducting K-Mn-Se inclusions may contribute to the partial normal surface pinning and give rise to the anomalous SMP effect for H∥ab in Mn doped crystals. These results may facilitate further understanding of the superconductivity and vortex pinning in intercalated iron-selenides superconductors.

  16. Vortex anomaly in low-dimensional fermionic condensates: Quantum confinement breaks chirality

    NASA Astrophysics Data System (ADS)

    Chen, Yajiang; Shanenko, A. A.; Peeters, F. M.

    2014-02-01

    Chiral fermions are responsible for low-temperature properties of vortices in fermionic condensates, both superconducting (charged) and superfluid (neutral). One of the most striking consequences of this fact is that the core of a single-quantum vortex collapses at low temperatures, T →0 (i.e., the Kramer-Pesch effect for superconductors), due to the presence of chiral quasiparticles in the vortex-core region. We show that the situation changes drastically for fermionic condensates confined in quasi-one-dimensional and quasi-two-dimensional geometries. Here quantum confinement breaks the chirality of in-core fermions. As a result, instead of the ultimate shrinking, the core of a single-quantum vortex extends at low temperatures, and the condensate profile surprisingly mimics the multiquantum vortex behavior. Our findings are relevant for nanoscale superconductors, such as recent metallic nanoislands on silicon, and also for ultracold superfluid Fermi gases in cigar-shaped and pancake-shaped atomic traps.

  17. Vulcanized vortex

    SciTech Connect

    Cho, Inyong; Lee, Youngone

    2009-01-15

    We investigate vortex configurations with the 'vulcanization' term inspired by the renormalization of {phi}{sub *}{sup 4} theory in the canonical {theta}-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  18. Vulcanized vortex

    NASA Astrophysics Data System (ADS)

    Cho, Inyong; Lee, Youngone

    2009-01-01

    We investigate vortex configurations with the “vulcanization” term inspired by the renormalization of ϕ⋆4 theory in the canonical θ-deformed noncommutativity. We focus on the classical limit of the theory described by a single parameter which is the ratio of the vulcanization and the noncommutativity parameters. We perform numerical calculations and find that nontopological vortex solutions exist as well as Q-ball type solutions, but topological vortex solutions are not admitted.

  19. Smell sensing and visualizing based on multi-quantum wells spatial light modulator

    NASA Astrophysics Data System (ADS)

    Tian, Fengchun; Zhao, Zhenzhen; Jia, Pengfei; Liao, Hailin; Chen, Danyu; Liu, Shouqiong

    2014-09-01

    For the existing drawbacks of traditional detecting methods which use gratings or prisms to detect light intensity distribution at each wavelength of polychromatic light, a novel method based on multi-quantum wells spatial light modulator (MQWs-SLM) has been proposed in this paper. In the proposed method, MQWs-SLM serves as a distribution features detector of the signal light. It is on the basis of quantum-confine Stark effect (QCSE) that the vertical applied voltage can change the absorption features of exciton in multi-quantum wells, and further change the distribution features of the readout polychromatic light of MQWs-SLM. It can be not only an universal detecting method, but also especially recommended to use in the Electronic nose system for features detecting of signal light so as to realize smell sensing and visualizing. The feasibility of the proposed method has been confirmed by mathematical modeling and analysis, simulation experiments and research status analysis.

  20. Decay of multispin multiquantum coherent states in the NMR of a solid

    SciTech Connect

    Zobov, V. E.; Lundin, A. A.

    2011-03-15

    A model based on the Anderson adiabatic approximation, which is widely used for describing various aspects of dynamic phenomena in conventional radiospectroscopy, is proposed for describing the decay of multispin multiquantum coherent states in a solid. The coherent state relaxation function is represented by the product of two functions corresponding to spin precession in a two-component local field with a correlated and an uncorrelated component. Theoretical results of this study explain the experimental data reported in a number of publications and are in good agreement with these data.

  1. Vortex methods and vortex statistics

    SciTech Connect

    Chorin, A.J.

    1993-05-01

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well as in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (``blobs``) and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ``blob`` methods provide the most promising path to the understanding of these phenomena.

  2. Multiquantum EPR spectroscopy of spin-labeled arrestin K267C at 35 GHz.

    PubMed

    Klug, Candice S; Camenisch, Theodore G; Hubbell, Wayne L; Hyde, James S

    2005-05-01

    Three- and five-quantum absorption and dispersion multiquantum electron paramagnetic resonance spectra of a spin-labeled protein have been obtained for the first time at Q-band (35 GHz). Spectra of arrestin spin-labeled at site 267 were recorded at room temperature as a function of microwave power. The separation of irradiating microwave frequencies, Deltaf, was 10 kHz, and a newly-designed multiquantum Q-band electron paramagnetic resonance bridge was utilized, operating in a superheterodyne detection mode. The sample volume was 30 nL using a 3-loop-2-gap resonator. Most spectra were obtained at a 300 microM concentration in single, 2-min scans, but spectra were also successfully obtained at 30 microM, corresponding to one picomole of protein. Enhanced sensitivity to T(1) and T(2) was evident in the spectra, and linewidths varied considerably across the spectra. The pure absorption displays are beneficial relative to field modulation methods for spectral characterization. The presence of two states of the nitroxide spin-label with different relaxation times is evident, particularly in the dispersion spectra, which are expected to exhibit enhanced sensitivity to lineshape variation relative to absorption. Feasibility has been established for the use of this technique for site-directed spin-labeling studies of biologically relevant samples, particularly the study of protein structure and dynamics. PMID:15749769

  3. Arctic Vortex

    Atmospheric Science Data Center

    2013-06-26

    ... within the cloud layer downwind of the obstacle. These turbulence patterns are known as von Karman vortex streets. In these images ... was the first to derive the conditions under which these turbulence patterns occur. von Karman was a professor of aeronautics at the ...

  4. Vortex Transmutation

    SciTech Connect

    Ferrando, Albert; Garcia-March, Miguel-Angel

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a 'transmutation pass rule' determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  5. Type I/type II band alignment transition in strained PbSe /PbEuSeTe multiquantum wells

    NASA Astrophysics Data System (ADS)

    Simma, M.; Fromherz, T.; Bauer, G.; Springholz, G.

    2009-11-01

    Investigation of the optical transitions in tensily strained PbSe /PbEuSeTe multiquantum wells by differential transmission spectroscopy reveals a type I/type II band alignment transition due to strain-induced lowering of the band edge energies of the quantum wells. From the measured shifts of the optical transitions the optical deformation potentials of PbSe are obtained. This is crucial for realistic modeling of the electronic properties of strained PbSe heterostructures.

  6. Investigation of temperature-dependent photoluminescence in multi-quantum wells

    PubMed Central

    Fang, Yutao; Wang, Lu; Sun, Qingling; Lu, Taiping; Deng, Zhen; Ma, Ziguang; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Zhou, Junming; Chen, Hong

    2015-01-01

    Photoluminescence (PL) is a nondestructive and powerful method to investigate carrier recombination and transport characteristics in semiconductor materials. In this study, the temperature dependences of photoluminescence of GaAs-AlxGa1-xAs multi-quantum wells samples with and without p-n junction were measured under both resonant and non-resonant excitation modes. An obvious increase of photoluminescence(PL) intensity as the rising of temperature in low temperature range (T < 50 K), is observed only for GaAs-AlxGa1-xAs quantum wells sample with p-n junction under non-resonant excitation. The origin of the anomalous increase of integrated PL intensity proved to be associated with the enhancement of carrier drifting because of the increase of carrier mobility in the temperature range from 15 K to 100 K. For non-resonant excitation, carriers supplied from the barriers will influence the temperature dependence of integrated PL intensity of quantum wells, which makes the traditional methods to acquire photoluminescence characters from the temperature dependence of integrated PL intensity unavailable. For resonant excitation, carriers are generated only in the wells and the temperature dependence of integrated PL intensity is very suitable to analysis the photoluminescence characters of quantum wells. PMID:26228734

  7. Radiation response of multi-quantum well solar cells: Electron-beam-induced current analysis

    SciTech Connect

    Maximenko, S. I. Scheiman, D. A.; Jenkins, P. P.; Walters, R. J.; Lumb, M. P.; Hoheisel, R.; Gonzalez, M.; Messenger, S. R.; Tibbits, T. N. D.; Imaizumi, M.; Ohshima, T.; Sato, S. I.

    2015-12-28

    Solar cells utilizing multi-quantum well (MQW) structures are considered promising candidate materials for space applications. An open question is how well these structures can resist the impact of particle irradiation. The aim of this work is to provide feedback about the radiation response of In{sub 0.01}Ga{sub 0.99}As solar cells grown on Ge with MQWs incorporated within the i-region of the device. In particular, the local electronic transport properties of the MQW i-regions of solar cells subjected to electron and proton irradiation were evaluated experimentally using the electron beam induced current (EBIC) technique. The change in carrier collection distribution across the MQW i-region was analyzed using a 2D EBIC diffusion model in conjunction with numerical modeling of the electrical field distribution. Both experimental and simulated findings show carrier removal and type conversion from n- to p-type in MQW i-region at a displacement damage dose as low as ∼6.06–9.88 × 10{sup 9} MeV/g. This leads to a redistribution of the electric field and significant degradation in charge carrier collection.

  8. Vortex Flow Aerodynamics, volume 1

    SciTech Connect

    Campbell, J.F.; Osborn, R.F.; Foughner, J.T. Jr.

    1986-07-01

    Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

  9. Vortex Flow Aerodynamics, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. F. (Editor); Osborn, R. F. (Editor); Foughner, J. T., Jr. (Editor)

    1986-01-01

    Vortex modeling techniques and experimental studies of research configurations utilizing vortex flows are discussed. Also discussed are vortex flap investigations using generic and airplane research models and vortex flap theoretical analysis and design studies.

  10. Room temperature observation of photocurrent dependence on applied bias in Si{sub 1-x}Ge{sub x}/Si multiquantum wells

    SciTech Connect

    Chowdhury, A.A.; Rashed, M.M.; Maziar, C.M.

    1993-07-01

    We report the observation of the dependence of photocurrent on applied bias in Si{sub 1-x}Ge{sub x}/Si multiquantum wells at room temperature. The photocurrents were measured on reverse biased p-i-n diodes containing an intrinsic region comprised of Si{sub 1-x}Ge{sub x}/Si multiquantum wells. These Si{sub 1-x}Ge{sub x}/Si multiquantum. wells were grown by the remote plasma enhanced chemical vapor deposition method. Using the technique employed by Park et al. to analyze similar experimental observations at lower temperature (77 K), we have estimated the absorption edges from the photocurrents and showed a large transition energy shift under electric field. The observed shape of the absorption coefficient as a function of the photon energy differs from that observed previously at lower temperature. 21 refs., 5 figs.

  11. Design of monocrystalline Si/SiGe multi-quantum well microbolometer detector for infrared imaging systems

    NASA Astrophysics Data System (ADS)

    Shafique, Atia; Durmaz, Emre C.; Cetindogan, Barbaros; Yazici, Melik; Kaynak, Mehmet; Kaynak, Canan B.; Gurbuz, Yasar

    2016-05-01

    This paper presents the design, modelling and simulation results of silicon/silicon-germanium (Si/SiGe) multi-quantum well based bolometer detector for uncooled infrared imaging system. The microbolometer is designed to detect light in the long wave length infrared (LWIR) range from 8 to 14 μm with pixel size of 25 x 25 μm. The design optimization strategy leads to achieve the temperature coefficient of resistance (TCR) 4.5%/K with maximum germanium (Ge) concentration of 50%. The design of microbolometer entirely relies on standard CMOS and MEMS processes which makes it suitable candidate for commercial infrared imaging systems.

  12. Influence of growth temperature on AlGaN multiquantum well point defect incorporation and photoluminescence efficiency

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Allerman, A. A.; Henry, T. A.; Crawford, M. H.

    2011-04-01

    The dependence of (Al)GaN/AlGaN multiquantum well (MQWs) optical efficiency and defect incorporation on the growth temperature (Tg) of the optically active region was investigated. Marked increase in MQW photoluminescence (PL) intensity was observed for increasing Tg. Correspondingly, increasing Tg also significantly reduced point defect incorporation under QW growth conditions, as determined by deep level optical spectroscopy. It is suggested that enhanced MQW PL with increasing Tg resulted from improved nonradiative lifetime through reduced nonradiative defect density in the MQW region.

  13. Effect of potential barrier height on the carrier transport in InGaAs/GaAsP multi-quantum wells and photoelectric properties of laser diode.

    PubMed

    Dong, Hailiang; Sun, Jing; Ma, Shufang; Liang, Jian; Lu, Taiping; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe

    2016-03-01

    The growth and strain-compensation behaviour of InGaAs/GaAsP multi-quantum wells, which were fabricated by metal-organic chemical vapor deposition, have been studied towards the application of these quantum wells in high-power laser diodes. The effect of the height of the potential barrier on the confined level of carrier transport was studied by incorporating different levels of phosphorus content into the GaAsP barrier. The crystal quality and interface roughness of the InGaAs/GaAsP multi-quantum wells with different phosphorus contents were evaluated by high resolution X-ray diffraction and in situ optical surface reflectivity measurements during the growth. The surface morphology and roughness were characterized by atomic force microscopy, which indicates the variation law of surface roughness, terrace width and uniformity with increasing phosphorus content, owing to strain accumulation. Moreover, the defect generation and structural disorder of the multi-quantum wells were investigated by Raman spectroscopy. The optical properties of the multi-quantum wells were characterized by photoluminescence, which shows that the spectral intensity increases as the phosphorus content increases. The results suggest that more electrons are well bound in InGaAs because of the high potential barrier. Finally, the mechanism of the effect of the height of the potential barrier on laser performance was proposed on the basis of simulation calculations and experimental results. PMID:26879291

  14. Propeller tip vortex interactions

    NASA Technical Reports Server (NTRS)

    Johnston, Robert T.; Sullivan, John P.

    1990-01-01

    Propeller wakes interacting with aircraft aerodynamic surfaces are a source of noise and vibration. For this reason, flow visualization work on the motion of the helical tip vortex over a wing and through the second stage of a counterrotation propeller (CRP) has been pursued. Initially, work was done on the motion of a propeller helix as it passes over the center of a 9.0 aspect ratio wing. The propeller tip vortex experiences significant spanwise displacements when passing across a lifting wing. A stationary propeller blade or stator was installed behind the rotating propeller to model the blade vortex interaction in a CRP. The resulting vortex interaction was found to depend on the relative vortex strengths and vortex sign.

  15. Carrier dynamics in Ga(NAsP)/Si multi-quantum well heterostructures with varying well thickness

    NASA Astrophysics Data System (ADS)

    Shakfa, M. K.; Woscholski, R.; Gies, S.; Wegele, T.; Wiemer, M.; Ludewig, P.; Jandieri, K.; Baranovskii, S. D.; Stolz, W.; Volz, K.; Heimbrodt, W.; Koch, M.

    2016-05-01

    Time-resolved photoluminescence (TR-PL) measurements have been performed in Ga(NAsP)/(BGa)(AsP) multi-quantum well heterostructures (MQWHs) with different well thicknesses. The studied structures have been pseudomorphically grown on Si substrates by metal organic vapor phase epitaxy (MOVPE) with an N content of about 7%. Experimental results reveal a shortening in the PL decay time with increasing QW thickness, meanwhile, accompanied by a decrease in the PL intensity. We attribute this behavior to an increasing non-radiative recombination rate for broader QWs which arises from an increasing number of defects in the QW material. The emission-energy distribution of the PL decay time is studied at various temperatures. The PL decay time strongly depends on the emission energy at low temperatures and becomes emission-energy-independent close to room temperature. This is discussed in terms of the carrier localization in the studied structures.

  16. Observation of weak carrier localization in green emitting InGaN/GaN multi-quantum well structure

    SciTech Connect

    Mohanta, Antaryami; Wang, Shiang-Fu; Jang, Der-Jun; Young, Tai-Fa; Yeh, Ping-Hung; Ling, Dah-Chin; Lee, Meng-En

    2015-04-14

    Green emitting InGaN/GaN multi-quantum well samples were investigated using transmission electron microscopy, photoluminescence (PL), and time-resolved photoluminescence (TRPL) spectroscopy. Weak carrier localization with characteristic energy of ∼12 meV due to an inhomogeneous distribution of In in the InGaN quantum (QW) layer is observed. The temperature dependence of the PL peak energy exhibits S-shape phenomenon and is comparatively discussed within the framework of the Varshni's empirical formula. The full width at half maximum of the PL emission band shows an increasing-decreasing-increasing behavior with increasing temperature arising from the localized states caused by potential fluctuations. The radiative life time, τ{sub r}, extracted from the TRPL profile shows ∼T{sup 3/2} dependence on temperature above 200 K, which confirms the absence of the effect of carrier localization at room temperature.

  17. Observation of weak carrier localization in green emitting InGaN/GaN multi-quantum well structure

    NASA Astrophysics Data System (ADS)

    Chao, Wen-Ching; Mohanta, Antaryami; Yen, Tsu-Chiang; Chen, Wei-Sheng; Jang, Der-Jun

    Green emitting InGaN/GaN multi-quantum well samples were investigated using photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectroscopy. Weak carrier localization with characteristic energy of ~12 meV due to an inhomogeneous distribution of In in the InGaN quantum well (QW) layer is observed. The temperature dependence of the PL peak energy exhibits S-shape phenomenon and is comparatively discussed within the framework of the Varshni's empirical formula. The full width at half maximum (FWHM) of the PL emission band shows an increasing-decreasing-increasing behavior with increasing temperature arising from the localized states caused by potential fluctuations. The radiative life time, τr, extracted from the TRPL profile shows ~T 3 / 2 dependence on temperature above 200 K, which confirms the absence of the effect of carrier localization at room temperature.

  18. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    SciTech Connect

    Ciurea, Magdalena Lidia Lazanu, Sorina

    2014-10-06

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.

  19. Current-driven vortex formation in a magnetic multilayer ring

    NASA Astrophysics Data System (ADS)

    Nam, Chunghee; Ng, B. G.; Castaño, F. J.; Mascaro, M. D.; Ross, C. A.

    2009-02-01

    Current-driven domain wall (DW) motion has been studied in the NiFe layer of a Co/Cu/NiFe thin film ring using giant-magnetoresistance measurements in a four-point contact geometry. The NiFe layer is initially in an onion state configuration with two 180° DWs. An electric current drives the walls around the ring so that they annihilate and the NiFe layer forms a DW-free vortex state. The direction of motion of the two DWs is determined by the current polarity, enabling the vortex chirality to be selected.

  20. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  1. Scientist Examines Tornado Vortex

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this Quick Time movie, a scientist examines what appears to be a tornado vortex (blue) coming out of a thunderstorm. The scientist uses 3D glasses to be able to see in 3 dimensions the different flows going out into the vortex. Earth science and weather studies are an important ongoing function of NASA and its affiliates.

  2. Electrostatically Enhanced Vortex Separator

    NASA Technical Reports Server (NTRS)

    Collins, Earl R.

    1993-01-01

    Proposed device removes fine particles from high-pressure exhaust gas of chemical reactor. Negatively charged sectors on rotating disks in vortex generator attracts positively charged particles from main stream of exhaust gas. Electrostatic charge enhances particle-separating action of vortex. Gas without particles released to atmosphere.

  3. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  4. Vortex cutting in superconductors

    NASA Astrophysics Data System (ADS)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  5. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  6. Growing vortex patches

    NASA Astrophysics Data System (ADS)

    Crowdy, Darren; Marshall, Jonathan

    2004-08-01

    This paper demonstrates that two well-known equilibrium solutions of the Euler equations—the corotating point vortex pair and the Rankine vortex—are connected by a continuous branch of exact solutions. The central idea is to "grow" new vortex patches at two stagnation points that exist in the frame of reference of the corotating point vortex pair. This is done by generalizing a mathematical technique for constructing vortex equilibria first presented by Crowdy [D. G. Crowdy, "A class of exact multipolar vortices," Phys. Fluids 11, 2556 (1999)]. The solutions exhibit several interesting features, including the merging of two separate vortex patches via the development of touching cusps. Numerical contour dynamics methods are used to verify the mathematical solutions and reveal them to be robust structures. The general issue of how simple vortex equilibria can be continued continuously to more complicated ones with very different vortical topologies is discussed. The solutions are examples of exact solutions of the Euler equations involving multiple interacting vortex patches.

  7. Hairpin Vortex Regeneration Threshold

    NASA Astrophysics Data System (ADS)

    Sabatino, Daniel; Maharjan, Rijan

    2015-11-01

    A free surface water channel is used to study hairpin vortex formation created by fluid injection through a narrow slot into a laminar boundary layer. Particle image velocimetry is used to calculate the circulation of the primary hairpin vortex head which is found to monotonically decrease in strength with downstream distance. When a secondary hairpin vortex is formed upstream of the primary vortex, the circulation strength of the head is comparable to the strength of the primary head at the time of regeneration. However, the legs of the primary vortex strengthen up to the moment the secondary hairpin is generated. Although the peak circulation in the legs is not directly correlated to the strength of the original elongated ring vortex, when the circulation is scaled with the injection momentum ratio it is linearly related to scaled injection time. It is proposed that the injection momentum ratio and nondimensionalized injection time based on the wall normal penetration time can be used to identify threshold conditions which produce a secondary vortex. Supported by the National Science Foundation under Grant CBET- 1040236.

  8. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  9. Giant Axonal Neuropathy

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Giant Axonal Neuropathy Information Page Table of Contents (click to jump ... done? Clinical Trials Organizations What is Giant Axonal Neuropathy? Giant axonal neuropathy (GAN) is a rare inherited ...

  10. NASA wake vortex research

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

    1993-01-01

    NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

  11. Vortex-Surface Collisions^

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.

    1998-11-01

    The interaction of vortices with solid surfaces occurs in many different situations including, but not limited to tornadoes, propeller wakes, flows over swept wings and missile forebodies, turbomachinery flows, blade-vortex interactions and tip vortex-surface interactions on helicopters. Often, parts of a system must operate within such flows and thus encounter these vortices. In the present paper we discuss the nature of a particular subset of interactions called ``collisions''. A ``collision'' is characterized by the fact that the core of the vortex is permanently altered; usually the core is locally destroyed. The focus is on fully three-dimensional collisions although two-dimensional collisions are discussed as well. Examples of collisions in helicopter aerodynamics and turbomachinery flows are discussed and the dynamics of the vortex core during a collision process are illustrated for a 90^o collision. ^Supported by the US Army Research Office

  12. Segmented vortex flaps

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1983-01-01

    Segmented vortex flaps were suggested as a means of delaying the vortex spill-over causing thrust loss over the outboard region of single-panel flaps. Also proposed was hinge-line setback for exploiting leading-edge suction in conjunction with vortex flaps to improve the overall thrust per unit flap area. These two concepts in combination were tested on a 60-deg cropped delta wing model. Significant improvement in flap efficiency was indicated by a reduction of the flap/wing area from 11.4% of single-panel flap to 6.3% of a two segment delta flap design, with no lift/drag penalty at lift coefficients between 0.5 and 0.7. The more efficient vortex flap arrangement of this study should benefit the performance attainable with flaps of given area on wings of moderate leading-edge sweep.

  13. Vortex flow hysteresis

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1986-01-01

    An experimental study was conducted to quantify the hysteresis associated with various vortex flow transition points and to determine the effect of planform geometry. The transition points observed consisted of the appearance (or disappearance) of trailing edge vortex burst and the transition to (or from) flat plate or totally separated flows. Flow visualization with smoke injected into the vortices was used to identify the transitions on a series of semi-span models tested in a low speed tunnel. The planforms tested included simple deltas (55 deg to 80 deg sweep), cranked wings with varying tip panel sweep and dihedral, and a straked wing. High speed movies at 1000 frames per second were made of the vortex flow visualization in order to better understand the dynamics of vortex flow, burst and transition.

  14. Magnetic vortex oscillators

    NASA Astrophysics Data System (ADS)

    Hrkac, Gino; Keatley, Paul S.; Bryan, Matthew T.; Butler, Keith

    2015-11-01

    The magnetic vortex has sparked the interest of the academic and industrial communities over the last few decades. From their discovery in the 1970s for bubble memory devices to their modern application as radio frequency oscillators, magnetic vortices have been adopted to modern telecommunication and sensor applications. Basic properties of vortex structures in the static and dynamic regime, from a theoretical and experimental point of view, are presented as well as their application in spin torque driven nano-pillar and magnetic tunnel junction devices. Single vortex excitations and phase locking phenomena of coupled oscillators are discussed with an outlook of vortex oscillators in magnetic hybrid structures with imprinted domain confinement and dynamic encryption devices.

  15. Vortex diode jet

    SciTech Connect

    Houck, E.D.

    1994-05-17

    A fluid transfer system is described that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other. 10 figures.

  16. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  17. Behavior of Vortex Systems

    NASA Technical Reports Server (NTRS)

    Betz, A

    1933-01-01

    Progressive application of the Kutta-Joukowsky theorem to the relationship between airfoil lift and circulation affords a number of formulas concerning the conduct of vortex systems. The application of this line of reasoning to several problems of airfoil theory yields an insight into many hitherto little observed relations. This report is confined to plane flow, hence all vortex filaments are straight and mutually parallel (perpendicular to the plane of flow).

  18. Buoyant Norbury's vortex rings

    NASA Astrophysics Data System (ADS)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder

    2014-11-01

    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  19. Electrical and optical study of an indium gallium arsenide/gallium arsenide multi-quantum well structure for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    An, Sangwoo

    2000-08-01

    InGaAs is a III-V material system that has recently attracted a lot of interest for possible optoelectronic applications. When grown over a GaAs substrate, it provides an example of a strained-layer system, due to the lattice mismatch of the layers. As long as the strained layers are grown shorter than a critical thickness, the material is pseudomorphic and presents no catastrophic degrading. Thus, it can be used for different devices, such as lasers, detectors, switches, and spatial light modulators. In this work a low-dimensional structure, composed of different stacks of InGaAs quantum wells embedded in a matrix of GaAs barriers, is investigated. This work addresses a number of important issues involving material properties and basic physical effects. In addition it discloses the concept of an improved, multicolor, spatial light modulator. Material information about InGaAs is abundant but not exhaustive as for the GaAs system. We have performed an in-depth spectroscopic study of a complex structure, composed of serially grown stacks of stepped quantum wells, where it is possible, in principle, to observe large Stark shifts. In this sample we have studied the formation of electrical high and low-field domains along the multi-quantum well region with a number of spectroscopic techniques. Electrical and optical measurements have been performed and have given an extensive characterization of the sample. Experimental results closely match theoretical calculations performed under the effective mass approximation. Excitonic peaks at room temperatures have been clearly resolved, a first for InGaAs stepped quantum well samples. Formation and expansion of electric field domains along the shallow multi-quantum well region have been recorded. For the first time an observation of the interplay of high field domains involving shallow quantum well levels and resonances in the continuum, have been observed. New techniques to probe such high field domains have been developed

  20. In-plane electrical transport in n-type selectively doped GaSb/AlGaSb multiquantum wells

    NASA Astrophysics Data System (ADS)

    Ghezzi, C.; Cioce, B.; Magnanini, R.; Parisini, A.

    2001-11-01

    Results are reported regarding in-plane electrical transport in n-type selectively doped GaSb/AlGaSb multiquantum wells. In the samples, which were grown by molecular beam epitaxy, only the central regions of the Al0.40Ga0.60Sb barriers were Te doped. Low-field, low-temperature Hall measurements in the dark demonstrated the presence in the GaSb wells of a degenerate electron gas with nonzero occupancy only for the lowest miniband. A positive persistent photoconductivity effect, related to the DX character of the Te impurity, was also observed. This behavior enabled the μ electron mobility to be measured at T=10 K as a function of the nS sheet carrier density. Since the experimental data were consistent with a dominant role of the interface roughness scattering in the limiting of μ, the height, Δ, and the lateral size, Λ, of the interface roughness were determined from the analysis of the μ=μ(nS) dependence. Acceptable values of Δ were obtained, consistent with results of structural investigations in single quantum well samples of GaSb/Al0.40Ga0.60Sb [E. Kh. Mukhamedzhanov, C. Bocchi, S. Franchi, A. Baraldi, R. Magnanini, and L. Nasi, J. Appl. Phys. 87, 4234 (2000)].

  1. Controlled manipulation of elastomers with radiation: Insights from multiquantum nuclear-magnetic-resonance data and mechanical measurements

    SciTech Connect

    Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; Maxwell, R. S.

    2011-03-15

    Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation, thermal, and electrical barriers. External factors such as mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a materials science point of view it is highly desirable to understand, affect, and manipulate such property changes in a controlled manner. Unfortunately, that has not yet been possible due to the lack of experimental characterization of such networks under controlled environments. In this work we expose a known rubber material to controlled dosages of {gamma} radiation and utilize a newly developed multiquantum nuclear-magnetic-resonance technique to characterize the MWD as a function of radiation. We show that such data along with mechanical stress-strain measurements are amenable to accurate analysis by simple network models and yield important insights into radiation-induced molecular-level processes.

  2. Influence of pressure on the properties of GaN/AlN multi-quantum wells - Ab initio study

    NASA Astrophysics Data System (ADS)

    Strak, Pawel; Sakowski, Konrad; Kaminska, Agata; Krukowski, Stanislaw

    2016-06-01

    Pressure dependence of physical properties of GaN/AlN multi-quantum wells (MQWs) was investigated using ab intio calculations. The influence of pressure was divided into two main contributions: pressure affecting the properties of GaN and AlN bulk semiconductors and an influence on systems of polar quantum wells deposited on various substrates. An influence of hydrostatic, uniaxial, and tetragonal strain on the crystallographic structure, polarization (piezoelectricity), and the bandgap of the bulk systems is assessed using ab initio calculations. It was shown that when a partial relaxation of the structure is assumed, the tetragonal strain may explain an experimentally observed reduction of pressure coefficients for polar GaN/AlN MQWs. The MQWs were also simulated directly using density functional theory (DFT) calculations. A comparison of these two approaches confirmed that nonlinear effects induced by the tetragonal strain related to lattice mismatch between the substrates and the polar MQWs systems are responsible for a drastic decrease of the pressure coefficients of photoluminescence (PL) energy experimentally observed in polar GaN/AlGaN MQWs.

  3. Enhanced Light Emission due to Formation of Semi-polar InGaN/GaN Multi-quantum Wells.

    PubMed

    Zhao, Wan-Ru; Weng, Guo-En; Wang, Jian-Yu; Zhang, Jiang-Yong; Liang, Hong-Wei; Sekiguchi, Takashi; Zhang, Bao-Ping

    2015-12-01

    InGaN/GaN multi-quantum wells (MQWs) are grown on (0001) sapphire substrates by metal organic chemical vapor deposition (MOCVD) with special growth parameters to form V-shaped pits simultaneously. Measurements by atomic force microscopy (AFM) and transmission electron microscopy (TEM) demonstrate the formation of MQWs on both (0001) and ([Formula: see text]) side surface of the V-shaped pits. The latter is known to be a semi-polar surface. Optical characterizations together with theoretical calculation enable us to identify the optical transitions from these MQWs. The layer thickness on ([Formula: see text]) surface is smaller than that on (0001) surface, and the energy level in the ([Formula: see text]) semi-polar quantum well (QW) is higher than in the (0001) QW. As the sample temperature is increased from 15 K, the integrated cathodoluminescence (CL) intensity of (0001) MQWs increases first and then decreases while that of the ([Formula: see text]) MQWs decreases monotonically. The integrated photoluminescence (PL) intensity of (0001) MQWs increases significantly from 15 to 70 K. These results are explained by carrier injection from ([Formula: see text]) to (0001) MQWs due to thermal excitation. It is therefore concluded that the emission efficiency of (0001) MQWs at high temperatures can be greatly improved due to the formation of semi-polar MQWs. PMID:26625883

  4. A relativistic spherical vortex

    PubMed Central

    Pekeris, C. L.

    1976-01-01

    This investigation is concerned with stationary relativistic flows of an inviscid and incompressible fluid. In choosing a density-pressure relation to represent relativistic “incompressibility,” it is found that a fluid in which the velocity of sound equals the velocity of light is to be preferred for reasons of mathematical simplicity. In the case of axially symmetric flows, the velocity field can be derived from a stream function obeying a partial differential equation which is nonlinear. A transformation of variables is found which makes the relativistic differential equation linear. An exact solution is obtained for the case of a vortex confined to a stationary sphere. One can make all three of the components of velocity vanish on the surface of the sphere, as in the nonrelativistic Hicks spherical vortex. In the case of an isolated vortex on whose surface the pressure is made to vanish, it is found that the pressure at the center of the sphere becomes negative, as in the nonrelativistic case. A solution is also obtained for a relativistic vortex advancing in a fluid. The sphere is distorted into an oblate spheroid. The maximum possible velocity of advance of the vortex is (2/3) c. PMID:16578745

  5. Vortex Apparatus and Demonstrations

    NASA Astrophysics Data System (ADS)

    Shakerin, Said

    2010-05-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies.2-5 In this paper, we focus on a particular vortex known as bathtub vortex (BTV). It occurs when water is drained from a hole at the bottom of a container such as a bathtub or a sink under the action of gravity. The vortex has a funnel shape with a central air core, resembling a tornado. We have designed a portable apparatus to demonstrate bathtub vortex on a continual basis. The apparatus consists of a clear cylinder supported by a frame over a water reservoir and a submersible pump. Young and old have been equally amazed by watching the demonstrations at various public presentations held at the University of the Pacific recently. With material cost of less than 100, the apparatus can be easily fabricated and used at other universities. With a short set-up time, it is an ideal device for promoting science to the general public, and it can be used to enhance lectures in physics courses as well.

  6. Vortex soliton motion and steering

    NASA Astrophysics Data System (ADS)

    Christou, Jason; Tikhonenko, Vladimir; Kivshar, Yuri S.; Luther-Davies, Barry

    1996-10-01

    Experimental demonstration of the steering of an optical vortex soliton by the superposition of a weak coherent background field is presented. A model to account for vortex motion is derived, and its validity is verified experimentally and numerically.

  7. Aircraft vortex marking program

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1979-01-01

    A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

  8. Vortex Characterization for Engineering Applications

    SciTech Connect

    Jankun-Kelly, M; Thompson, D S; Jiang, M; Shannahan, B; Machiraju, R

    2008-01-30

    Realistic engineering simulation data often have features that are not optimally resolved due to practical limitations on mesh resolution. To be useful to application engineers, vortex characterization techniques must be sufficiently robust to handle realistic data with complex vortex topologies. In this paper, we present enhancements to the vortex topology identification component of an existing vortex characterization algorithm. The modified techniques are demonstrated by application to three realistic data sets that illustrate the strengths and weaknesses of our approach.

  9. Reconnection of superfluid vortex bundles.

    PubMed

    Alamri, Sultan Z; Youd, Anthony J; Barenghi, Carlo F

    2008-11-21

    Using the vortex filament model and the Gross-Pitaevskii nonlinear Schroedinger equation, we show that bundles of quantized vortex lines in He II are structurally robust and can reconnect with each other maintaining their identity. We discuss vortex stretching in superfluid turbulence and show that, during the bundle reconnection process, kelvin waves of large amplitude are generated, in agreement with the finding that helicity is produced by nearly singular vortex interactions in classical Euler flows. PMID:19113421

  10. Quasi-steady vortices in protoplanetary disks. I. From dwarfs to giants

    NASA Astrophysics Data System (ADS)

    Surville, Clément; Barge, Pierre

    2015-07-01

    Aims: We determine the size, structure, and evolution of persistent vortices in 2D and inviscid Keplerian flows. Methods: A Gaussian model of the vortices is built and compared with numerical solutions issued from non-linear hydrodynamical simulations. Test vortices are also produced using a fiducial method based on the Rossby wave instability to help explore the vortex parameters. Numerical simulations are performed using a second order finite volume method. We assume a perfect-gas law and a non-homentropic adiabatic flow. Results: The new model nicely fits the numerical vortex solution. In the vortex centre it is consistent with existing models, whereas in the outer regions it enables the vortex to be connected with the background flow. Two families of vortices can be distinguished following the importance of the compressional effects. The model also permitted a new class of vortices to be discovered corresponding to huge perturbations of pressure and density and whose radial sizes are significantly larger than the disk scale height, in contrast with the standard way to define the maximum vortex size. Conclusions: Our Gaussian model of the vortex solutions of the 2D Euler's equations is a useful tool for studying vortex properties. Among the large number of vortex solutions, the possible existence of giant vortices could open interesting perspectives in planetary formation, particularly during the building stage of the giant gas planets.

  11. Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

  12. Vortex pairs on surfaces

    SciTech Connect

    Koiller, Jair

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  13. Giant Magnons Meet Giant Gravitons

    SciTech Connect

    Hofman, Diego M.

    2008-07-28

    We study the worldsheet reflection matrix of a string attached to a D-brane in AdS{sub 5}xS{sup 5}. The D-brane corresponds to a maximal giant graviton that wraps an S{sup 3} inside S{sup 5}. In the gauge theory, the open string is described by a spin chain with boundaries. We focus on open strings with a large SO(6) charge and define an asymptotic boundary reflection matrix. Using the symmetries of the problem, we review the computation of the boundary reflection matrix, up to a phase. We also discuss weak and strong coupling computations where we obtain the overall phase factor and test our exact results.

  14. Melting of Vortex Lattice in Bose-Einstein Condensate in Presence of Disorder

    NASA Astrophysics Data System (ADS)

    Dey, Bishwajyoti

    We study the vortex lattice dynamics in Bose-Einstein condensate (BEC) in presence of single impurity as well as random impurities or disorder. The single impurity is modeled by a Gaussian function while disorder is introduced in the system by a uniform random potential. Such potentials can be created experimentally by lasers. We solve the time-dependent Gross-Pitaevskii equation in two-dimensions using split-step Crank-Nicolson method. We first show that a single vortex can be pinned by an impurity. We then show that even a single impurity can distort the vortex lattice. For sufficiently strong impurity potential, the vortex lattice gets pinned to the impurity. We also show that a new type of giant hole with hidden vortices inside it can be created in the vortex lattice by a cluster of impurities. In presence of random impurity potential or disorder, the vortices get pinned at random positions leading to melting of the vortex lattice. We further show that the vortex lattice melting can also be induced by the pseudorandom potential generated by the superposition of two optical lattices. The absence of long-range order in the melted vortex lattice is demonstrated from the structure factor profile and the histogram of the distance between each pair of vortices. I would like to thank DST, India and BCUD SPPU, for financial assisance through research grants.

  15. Enhanced giant magnetoimpedance in heterogeneous nanobrush

    PubMed Central

    2012-01-01

    A highly sensitive and large working range giant magnetoimpedance (GMI) effect is found in the novel nanostructure: nanobrush. The nanostructure is composed of a soft magnetic nanofilm and a nanowire array, respectively fabricated by RF magnetron sputtering and electrochemical deposition. The optimal GMI ratio of nanobrush is promoted to more than 250%, higher than the pure FeNi film and some sandwich structures at low frequency. The design of this structure is based on the vortex distribution of magnetic moments in thin film, and it can be induced by the exchange coupling effect between the interfaces of nanobrush. PMID:22963551

  16. A critical factor affecting on the performance of blue-violet InGaN multiquantum well laser diodes: Nonradiative centers

    NASA Astrophysics Data System (ADS)

    Shin, D. M.; Park, J.; Nguyen, D. H.; Jang, Y. D.; Yee, K. J.; Lee, D.; Choi, Y. H.; Jung, S. K.; Noh, M. S.

    2010-08-01

    Carrier lifetime at room temperature (RT) was measured for blue-violet emitting InGaN multiquantum wells as a function of excitation intensity. The carrier lifetime of a p/n-doped waveguide sample (PNLD) was longer than those of undoped or n-doped waveguide samples. For PNLD, the long decay component became dominant at moderate excitation, in contrast to the others for which the fast decaying component remained dominant. The lifetime behavior of PNLD, in conjunction with its strong photoluminescence intensity, originates from the reduction of nonradiative centers. We conclude that the defect density is an important determinant of the RT performance of blue-violet laser diodes.

  17. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  18. Vortex Apparatus and Demonstrations

    ERIC Educational Resources Information Center

    Shakerin, Said

    2010-01-01

    Vortex flow, from millimeter to kilometer in scale, is important in many scientific and technological areas. Examples are seen in water strider locomotion, from industrial pipe flow (wastewater treatment) to air traffic control (safe distance between aircrafts on a runway ready for takeoff) to atmospheric studies. In this paper, we focus on a…

  19. Behavior of Vortex Systems

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1979-01-01

    Application of the Kutta-Joukowski theorem to the relationship between airfoil lift and circulation is described. A number of formulas concerning the conduct of vortex systems derived from the theorem are presented. The application of this line of reasoning to several problems of airfoil theory and the observed relations are discussed.

  20. Viscous vortex flows

    NASA Technical Reports Server (NTRS)

    Weston, R. P.; Chamberlain, J. P.; Liu, C. H.; Hartwich, Peter-Michael

    1986-01-01

    Several computational studies are currently being pursued that focus on various aspects of representing the entire lifetime of the viscous trailing vortex wakes generated by an aircraft. The formulation and subsequent near-wing development of the leading-edge vortices formed by a delta wing are being calculated at modest Reynolds numbers using a three-dimensional, time-dependent Navier-Stokes code. Another computational code was developed to focus on the roll-up, trajectory, and mutual interaction of trailing vortices further downstream from the wing using a two-dimensional, time-dependent, Navier-Stokes algorithm. To investigate the effect of a cross-wind ground shear flow on the drift and decay of the far-field trailing vortices, a code was developed that employs Euler equations along with matched asymptotic solutions for the decaying vortex filaments. And finally, to simulate the conditions far down stream after the onset of the Crow instability in the vortex wake, a full three-dimensional, time-dependent Navier-Stokes code was developed to study the behavior of interacting vortex rings.

  1. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  2. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept

  3. Control of submersible vortex flows

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Donaldson, C. D.

    1990-01-01

    Vortex flows produced by submersibles typically unfavorably influence key figures of merit such as acoustic and nonacoustic stealth, control effectiveness/maneuverability, and propulsor efficiency/body drag. Sources of such organized, primarily longitudinal, vorticity include the basic body (nose and sides) and appendages (both base/intersection and tip regions) such as the fairwater, dive planes, rear control surfaces, and propulsor stators/tips. Two fundamentally different vortex control approaches are available: (1) deintensification of the amplitude and/or organization of the vortex during its initiation process; and (2) downstream vortex disablement. Vortex control techniques applicable to the initiation region (deintensification approach) include transverse pressure gradient minimization via altered body cross section, appendage dillets, fillets, and sweep, and various appendage tip and spanload treatment along with the use of active controls to minimize control surface size and motions. Vortex disablement can be accomplished either via use of control vortices (which can also be used to steer the vortices off-board), direct unwinding, inducement of vortex bursting, or segmentation/tailoring for enhanced dissipation. Submersible-applicable vortex control technology is also included derived from various aeronautical applications such as mitigation of the wing wake vortex hazard and flight aircraft maneuverability at high angle of attack as well as the status of vortex effects upon, and mitigation of, nonlinear control forces on submersibles. Specific suggestions for submersible-applicable vortex control techniques are presented.

  4. Rotor-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1983-01-01

    A theoretical and experimental study was conducted to develop a validated first principles analysis for predicting noise generated by helicopter main-rotor shed vortices interacting with the tail rotor. The generalized prediction procedure requires a knowledge of the incident vortex velocity field, rotor geometry, and rotor operating conditions. The analysis includes compressibility effects, chordwise and spanwise noncompactness, and treats oblique intersections with the blade planform. Assessment of the theory involved conducting a model rotor experiment which isolated the blade-vortex interaction noise from other rotor noise mechanisms. An isolated tip vortex, generated by an upstream semispan airfoil, was convected into the model tail rotor. Acoustic spectra, pressure signatures, and directivity were measured. Since assessment of the acoustic prediction required a knowledge of the vortex properties, blade-vortes intersection angle, intersection station, vortex stength, and vortex core radius were documented. Ingestion of the vortex by the rotor was experimentally observed to generate harmonic noise and impulsive waveforms.

  5. Giant Cell Arteritis

    MedlinePlus

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  6. Evolution of a curved vortex filament into a vortex ring

    NASA Technical Reports Server (NTRS)

    Moin, P.; Leonard, A.; Kim, J.

    1985-01-01

    The deformation of a hairpin-shaped vortex filament under self-induction and in the presence of shear is studied numerically using the Biot-Savart law. It is shown that the tip region of an elongated hairpin vortex evolves into a vortex ring and that the presence of mean shear impedes the process. Evolution of a finite-thickness vortex sheet under self-induction is also investigated using the Navier-Stokes equations. The layer evolves into a hairpin vortex which in turn produces a vortex ring of high Reynolds stress content. These results indicate a mechanism for the generation of ring vortices in turbulent shear flows, and a link between the experimental and numerical observation of hairpin vortices and the observation of ring vortices in the outer regions of turbulent boundary layers.

  7. Evolution of a curved vortex filament into a vortex ring

    NASA Technical Reports Server (NTRS)

    Moin, P.; Leonard, A.; Kim, J.

    1986-01-01

    The deformation of a hairpin-shaped vortex filament under self-induction and in the presence of shear is studied numerically using the Biot-Savart law. It is shown that the tip region of an elongated hairpin vortex evolves into a vortex ring and that the presence of mean shear impedes the process. Evolution of a finite-thickness vortex sheet under self-induction is also investigated using the Navier-Stokes equations. The layer evolves into a hairpin vortex which in turn produces a vortex ring of high Reynolds stress content. These results indicate a mechanism for the generation of ring vortices in turbulent shear flows, and a link between the experimental and numerical observation of hairpin vortices and the observation of ring vortices in the outer regions of turbulent boundary layers.

  8. Vortex equations: Singularities, numerical solution, and axisymmetric vortex breakdown

    NASA Technical Reports Server (NTRS)

    Bossel, H. H.

    1972-01-01

    A method of weighted residuals for the computation of rotationally symmetric quasi-cylindrical viscous incompressible vortex flow is presented and used to compute a wide variety of vortex flows. The method approximates the axial velocity and circulation profiles by series of exponentials having (N + 1) and N free parameters, respectively. Formal integration results in a set of (2N + 1) ordinary differential equations for the free parameters. The governing equations are shown to have an infinite number of discrete singularities corresponding to critical values of the swirl parameters. The computations point to the controlling influence of the inner core flow on vortex behavior. They also confirm the existence of two particular critical swirl parameter values: one separates vortex flow which decays smoothly from vortex flow which eventually breaks down, and the second is the first singularity of the quasi-cylindrical system, at which point physical vortex breakdown is thought to occur.

  9. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2012-10-01

    The 2009 impact on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010 impact flash detections and lightcurve measurements}.We propose a Target of Opportunity program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  10. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2014-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution (enabling the 2009 impact debris field detection) and rapid frame rates (enabling the 2010/2012 impact flash detections and lightcurve measurements).We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere (10^20 J).HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing (not achievable from the ground) is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  11. Giant impacts on giant planets

    NASA Astrophysics Data System (ADS)

    de Pater, Imke

    2013-10-01

    The 2009 impact and recent superbolides on Jupiter caught the world by surprise and cast doubt on impactor flux estimates for the outer solar system. Enhanced amateur planetary imaging techniques yield both high spatial resolution {enabling the 2009 impact debris field detection} and rapid frame rates {enabling the 2010/2012 impact flash detections and lightcurve measurements}.We propose a ToO program to image future impacts on Jupiter and Saturn. To remove the possibility of impact cloud non-detections, the program will be triggered only if an existing impact debris field is seen, an object on a collision course with Jupiter or Saturn is discovered, or an impact light curve is measured with an estimated total energy large enough to generate an impact cloud in a giant planet atmosphere {10^20 J}.HST provides the only way to image these events in the ultraviolet, providing information on aerosol altitudes and on smaller particles that are less visible to ground-based infrared observations. High-resolution imaging with proper timing {not achievable from the ground} is required to measure precisely both the velocity fields of impact sites and the optical spectrum of impact debris. HST observations of past impacts on Jupiter have also served both as cornerstones of science investigations at other wavelengths and as vehicles for effective public outreach.Large outer solar system impacts are governed by the same physics as in the terrestrial events that dominate the impact threat to humans. Studying the behavior of impactors of various sizes and compositions, as they enter the atmosphere at varying angles and speeds, will better quantify terrestrial impact hazards.

  12. Two new vortex liquids

    NASA Astrophysics Data System (ADS)

    Anderson, Philip W.

    2007-03-01

    In 1967, Reatto and Chester proposed that solid helium-4 might exhibit superfluidity, and in 1970, Leggett suggested what was thought to be a definitive experimental test: to find non-classical rotational inertia in a toroidal sample. More than three decades later, the observation by Kim and Chan of exactly that effect generated great interest and has been repeated and confirmed by a number of groups. However, many attempts to find actual superflow in truly solid samples have failed. Here, I draw an analogy with a second example of anomalous response to vorticity in a dissipative fluid, the vortex liquid phase in the pseudogap region of high-temperature superconductors, and propose that the solid helium experiments have been mischaracterized: what is observed is not supersolidity but an incompressible vortex liquid. This state is distinct from a conventional liquid in that its properties are dominated by conserved supercurrents flowing around a thermally fluctuating tangle of vortices.

  13. Polar vortex dynamics

    NASA Technical Reports Server (NTRS)

    Mcintyre, Michael

    1988-01-01

    Recent work with high resolution, one-layer numerical models of fluid flows resembling those in the real stratosphere has suggested that: (1) the interiors of strong cyclonic vortices like the Antarctic polar vortex may be almost completely isolated laterally from their surroundings - perhaps even completely isolated, under some circumstances; (2) by contrast, material near the edge of such and isolated region can easily be eroded (or mixed one-sidedly) into the surrounding region; and (3) the erosion characteristically produces extremely steep gradients in isentropic distributions of potential vorticity (PV) and of other tracers, possibly down to horizontal length scales of a few kilometers only. Such length scales may occur both at the edge of the main polar vortex and in smaller features outside it, such as thin filamentary structures, produced by the erosion process.

  14. Vortex perturbation dynamics

    NASA Technical Reports Server (NTRS)

    Criminale, W. O.; Lasseigne, D. G.; Jackson, T. L.

    1995-01-01

    An initial value approach is used to examine the dynamics of perturbations introduced into a vortex under strain. Both the basic vortex considered and the perturbations are taken as fully three-dimensional. An explicit solution for the time evolution of the vorticity perturbations is given for arbitrary initial vorticity. Analytical solutions for the resulting velocity components are found when the initial vorticity is assumed to be localized. For more general initial vorticity distributions, the velocity components are determined numerically. It is found that the variation in the radial direction of the initial vorticity disturbance is the most important factor influencing the qualitative behavior of the solutions. Transient growth in the magnitude of the velocity components is found to be directly attributable to the compactness of the initial vorticity.

  15. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  16. Delta Wing Vortex Breakdown Suppression by Vortex Core Oscillation

    NASA Astrophysics Data System (ADS)

    Cain, Charles

    2000-11-01

    The flow over a delta wing is characterized by two counter-rotating vortices that can undergo a sudden radial expansion at high angles of attack known as vortex breakdown. Downstream of this breakdown is a region of organized unsteady flow that can cause tail buffeting and structural fatigue, especially on twin-tailed aircraft. The recent self-induction theory of vortex breakdown points to the "pile-up" of vorticity due to the linear addition of vorticity in the spiraling shear layer that surrounds the vortex core as a principal cause of vortex breakdown (Kurosaka 1998). Based on that theory, this research attempts to relieve vorticity pile-up by altering the straight-line path of the vortex core and preventing the linear addition of vorticity. This is accomplished by applying a combination of periodic blowing and suction with low mass and momentum flux. The blowing and suction are directed normal to the low-pressure surface and supplied from ports under the vortex core which are near the forward tip of the delta wing. This oscillating input causes the vortex core to transition into a spiral formation downstream of the input ports. Initial results indicate that this change in the vortex core path may prevent vortex breakdown over the surface of the delta wing.

  17. Correcting vortex splitting in higher order vortex beams.

    PubMed

    Neo, Richard; Tan, Shiaw Juen; Zambrana-Puyalto, Xavier; Leon-Saval, Sergio; Bland-Hawthorn, Joss; Molina-Terriza, Gabriel

    2014-04-21

    We demonstrate a general method for the first order compensation of singularity splitting in a vortex beam at a single plane. By superimposing multiple forked holograms on the SLM used to generate the vortex beam, we are able to compensate vortex splitting and generate beams with desired phase singularities of order ℓ = 0, 1, 2, and 3 in one plane. We then extend this method by application of a radial phase, in order to simultaneously compensate the observed vortex splitting at two planes (near and far field) for an ℓ = 2 beam. PMID:24787874

  18. The vortex flap

    NASA Astrophysics Data System (ADS)

    Buerge, Brandon T.

    The Vortex Flap is a new type of mechanically driven high-lift device consisting of a rotating cylinder placed underneath and near the trailing edge of an airfoil. Wind tunnel tests were designed and conducted in the Washington University Low-Speed Wind Tunnel. Wind tunnel tests indicate that the Vortex Flap produces notable lift coefficient increments and increases maximum lift coefficients, particularly for the low Reynolds number range tested. The best configurations of the configurations investigated (not necessarily optimal) produce lift increments of 300-900% at low-to-moderate angles of attack, and increase the maximum lift coefficient on the order of 200%. The large lift increments found, particularly at low angles of attack, underscore the ability to drive the airfoil to high lift coefficients even at low angles of attack, a potentially useful characteristic for certain flight maneuvers. Regions of fairly high L/D (on the order of 10) as well as low L/D performance were identified. The nondimensional cylinder rotation speed was found to be the most important experimental parameter. Methods for correcting wind tunnel data were developed and outlined, and a Response Surface Method was applied to the corrected data for ease of interpretation. Performance comparisons between the Vortex Flap and other trailing-edge high-lift devices are included. To demonstrate the potential of the device, a Navy mission specification for a VTOL ship-borne UAV, currently filled by a rotary-wing aircraft, is analyzed using a hypothetical fixed wing aircraft and the Vortex Flap. It is demonstrated that, under certain reasonable wind-over-deck conditions, such an aircraft could hypothetically fill a VTOL mission.

  19. Confined Vortex Scrubber

    SciTech Connect

    Not Available

    1990-02-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards. This is to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber. This is the first quarterly technical progress report under this contract. Accordingly, a summary of the cleanup concept and the structure of the program is given here.

  20. Confined vortex scrubber

    SciTech Connect

    Not Available

    1990-07-01

    The program objective is to demonstrate efficient removal of fine particulates to sufficiently low levels to meet proposed small scale coal combustor emission standards using a cleanup technology appropriate to small scale coal combustors. This to be accomplished using a novel particulate removal device, the Confined Vortex Scrubber (CVS), which consists of a cylindrical vortex chamber with tangential flue gas inlets. The clean gas exit is via vortex finder outlets, one at either end of the tube. Liquid is introduced into the chamber and is confined within the vortex chamber by the centrifugal force generated by the gas flow itself. This confined liquid forms a layer through which the flue gas is then forced to bubble, producing a strong gas/liquid interaction, high inertial separation forces and efficient particulate cleanup. During this quarter a comprehensive series of cleanup experiments have been made for three CVS configurations. The first CVS configuration tested gave very efficient fine particulate removal at the design air mass flow rate (1 MM BUT/hr combustor exhaust flow), but had over 20{double prime}WC pressure drop. The first CVS configuration was then re-designed to produce the same very efficient particulate collection performance at a lower pressure drop. The current CVS configuration produces 99.4 percent cleanup of ultra-fine fly ash at the design air mass flow at a pressure drop of 12 {double prime}WC with a liquid/air flow ratio of 0.31/m{sup 3}. Unlike venturi scrubbers, the collection performance of the CVS is insensitive to dust loading and to liquid/air flow ratio.

  1. Application of a discretized vortex impulse framework to fish maneuvering

    NASA Astrophysics Data System (ADS)

    Mendelson, Leah; Techet, Alexandra

    2015-11-01

    In studies of biological propulsion, metrics for quantitative analysis of the vortex wake, including circulation, impulse, and their time derivatives, are a valuable indicator of performance. To better utilize volumetric PIV data in this type of analysis, a discretized method of deriving vortex impulse relying only on velocity data is developed. The impulse formulation is based on the geometry and distribution of circulation along the vortex core line, which can be detected using critical points in the velocity field. This analysis method is then applied to time-resolved velocity data of a turning giant danio (Devario aequipinnatus) and a jumping archer fish (Toxotes microlepis) obtained using Synthetic Aperture PIV (SAPIV). In the case of the danio, the vortex force vector derived from the impulse derivative shows good agreement with the kinematics of the fish tail during the turning maneuver. With the archer fish, the model is used to explore the relationship between the number of tail beats prior to the jump and the jump height.

  2. Aeroacoustics of viscous vortex reconnection

    NASA Astrophysics Data System (ADS)

    Paredes, Pedro; Nichols, Joseph W.; Duraisamy, Karthik; Hussain, Fazle

    2011-11-01

    Reconnection of two anti-parallel vortex tubes is studied by direct numerical simulations and large-eddy simulations of the incompressible Navier-Stokes equations over a wide range (2000-50,000) of the vortex Reynolds number (Re). A detailed investigation of the flow dynamics is performed and at high Re, multiple reconnections are observed as the newly formed ``bridges'' interact by self and mutual induction. To investigate acoustics produced by the recoil action of the vortex threads, Möhring's theory of vortex sound is applied to the flow field and evaluated at varying far-field locations. The acoustic solver is verified against calculations of laminar vortex ring collision. For anti-parallel vortex reconnection, the resulting far-field spectra are shown to be grid converged at low-to-mid frequencies. To assess the relevance to fully turbulent jet noise, the dependence of reconnection upon Reynolds number is investigated.

  3. High sensitivity vortex shedding flowmeter

    SciTech Connect

    Lew, H.S.

    1989-12-05

    This patent describes an apparatus for measuring fluid flows. It comprises: a flowmeter body including a flow passage; a vortex generator of an elongated cylindrical shape disposed across a cross section of the flow passage, wherein at lest one extremity of the vortex generator is secured to the flowmeter body; a transducer contained in a container vessel secured to the flowmeter body, wherein the transducer is pressed onto a thin wall of the container vessel; and a flexible coupling connecting the thin wall of the container vessel to a deflective portion of the vortex generating, wherein the flexible coupling enhances relative deflection between the vortex generator and the container vessel. Wherein fluctuating fluid dynamic forces resulting from vortices shed from the vortex generator and experienced by vortex generator generate fluctuating electrical signals from the transducer as a measure of fluid flow through the flow passage.

  4. Vortex reconnection in superfluid helium

    SciTech Connect

    Koplik, J. ); Levine, H. )

    1993-08-30

    A useful physical model for superfluid turbulence considers the flow to consist of a dense tangle of vortex lines which evolve and interact. It has been suggested that these vortex lines can dynamically reconnect upon close approach. Here, we consider the nonlinear Schroedinger equation model of superfluid quantum mechanics, and use numerical simulation to study this topology changing core-scale process. Our results support the idea that vortex reconnection will occur whenever filaments come within a few core lengths of one another.

  5. Interferometric optical vortex array generator.

    PubMed

    Vyas, Sunil; Senthilkumaran, P

    2007-05-20

    Two new interferometric configurations for optical vortex array generation are presented. These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs. PMID:17514234

  6. Interferometric optical vortex array generator

    SciTech Connect

    Vyas, Sunil; Senthilkumaran, P

    2007-05-20

    Two new interferometric configurations for optical vortex array generation are presented.These interferometers are different from the conventional interferometers in that they are capable of producing a large number of isolated zeros of intensity, and all of them contain optical vortices. Simulation and theory for optical vortex array generation using three-plane-wave interference is presented. The vortex dipole array produced this way is noninteracting, as there are no attraction or repulsion forces between them, leading to annihilation or creation of vortex pairs.

  7. Vortex reconnection in a swirling flow

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2016-04-01

    Processes of vortex reconnection on a helical vortex, which is formed in a swirling flow in a conical diffuser, have been studied experimentally. It has been shown that reconnection can result in the formation of both an isolated vortex ring and a vortex ring linked with the main helical vortex. A number of features of vortex reconnection, including the effects of asymmetry, generation of Kelvin waves, and formation of various bridges, have been described.

  8. Vortex-Vortex Interactions Behind an Oscillating Plate

    NASA Astrophysics Data System (ADS)

    Unal, M. F.; Rockwell, D.

    1996-11-01

    A blunt-based flat plate in a uniform stream is subjected to periodic pitching oscillations at multiples of the natural shedding frequency over a range of dime nsionless amplitudes. The near wake is characterized by dye and hydrogen bubble visualization. At low amplitudes of oscillation, the nature of the vortex-vortex interaction in the near-wake is such that, irrespective of oscillation frequency , the downstream wake remarkably recovers to the classical vortex street. For hi gh amplitudes, at frequencies higher than the natural shedding frequency, the vo rtex street gives way to complex vortex configurations. These features are relat ed to several interesting phenomena in the base region, including pronounced she dding of vorticity from the base and existence of a very small-scale vortex stre et along the plane of symmetry.

  9. Downhole vortex generator

    SciTech Connect

    Hoyatdavoudi, A.; Adams, L. M.

    1985-04-23

    A drilling sub is provided in a drill string above a drill bit. The drilling sub includes a nozzle oriented to eject drilling fluid from said drill string into an annulus between the drill string and a well bore hole at an elevation above the drill bit with a horizontal velocity component tangential to said annulus to thereby impart a swirling motion to drilling fluid in the annulus. This creates a vortex extending down to the drill bit to enhance the cleaning of cuttings from the bore hole and to reduce a pressure differential thereby increasing a penetration rate of the drill bit.

  10. On vortex bursting

    NASA Technical Reports Server (NTRS)

    Werle, H.

    1984-01-01

    Vortex bursting is studied by means of visualization. The physical behavior of the phenomenon is emphasized, and its similarity with boundary layer separation or wake bursting becomes apparent. The essential influence of an increasing pressure gradient on the initiation, the position and the type of bursting is clearly confirmed. The evolution of the phenomena as a function of several parameters is analyzed in the case of delta wings, alone or installed on aircraft models, and compared with the results of similar wind tunnel or flight tests.

  11. Magnetic vortex filament flows

    SciTech Connect

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-08-15

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those.

  12. The Acoustically Driven Vortex Cannon

    ERIC Educational Resources Information Center

    Perry, Spencer B.; Gee, Kent L.

    2014-01-01

    Vortex cannons have been used by physics teachers for years, mostly to teach the continuity principle. In its simplest form, a vortex cannon is an empty coffee can with a hole cut in the bottom and the lid replaced. More elaborate models can be purchased through various scientific suppliers under names such as "Air Cannon" and…

  13. Underwing compression vortex attenuation device

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr. (Inventor)

    1993-01-01

    A vortex attenuation device is presented which dissipates a lift-induced vortex generated by a lifting aircraft wing. The device consists of a positive pressure gradient producing means in the form of a compression panel attached to the lower surface of the wing and facing perpendicular to the airflow across the wing. The panel is located between the midpoint of the local wing cord and the trailing edge in the chord-wise direction and at a point which is approximately 55 percent of the wing span as measured from the fuselage center line in the spanwise direction. When deployed in flight, this panel produces a positive pressure gradient aligned with the final roll-up of the total vortex system which interrupts the axial flow in the vortex core and causes the vortex to collapse.

  14. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  15. Lift enhancement by trapped vortex

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    1992-01-01

    The viewgraphs and discussion of lift enhancement by trapped vortex are provided. Efforts are continuously being made to find simple ways to convert wings of aircraft from an efficient cruise configuration to one that develops the high lift needed during landing and takeoff. The high-lift configurations studied here consist of conventional airfoils with a trapped vortex over the upper surface. The vortex is trapped by one or two vertical fences that serve as barriers to the oncoming stream and as reflection planes for the vortex and the sink that form a separation bubble on top of the airfoil. Since the full three-dimensional unsteady flow problem over the wing of an aircraft is so complicated that it is hard to get an understanding of the principles that govern the vortex trapping process, the analysis is restricted here to the flow field illustrated in the first slide. It is assumed that the flow field between the two end plates approximates a streamwise strip of the flow over a wing. The flow between the endplates and about the airfoil consists of a spanwise vortex located between the suction orifices in the endplates. The spanwise fence or spoiler located near the nose of the airfoil serves to form a separated flow region and a shear layer. The vorticity in the shear layer is concentrated into the vortex by withdrawal of fluid at the suction orifices. As the strength of the vortex increases with time, it eventually dominates the flow in the separated region so that a shear or vertical layer is no longer shed from the tip of the fence. At that point, the vortex strength is fixed and its location is such that all of the velocity contributions at its center sum to zero thereby making it an equilibrium point for the vortex. The results of a theoretical analysis of such an idealized flow field are described.

  16. Vortex safety in aviation

    NASA Astrophysics Data System (ADS)

    Turchak, L. I.

    2012-10-01

    The objective is the general review of impact of aircraft wake vortices on the follower aircraft encountering the wake. Currently, the presence of wake vortices past aircraft limits the airspace capacity and flight safety level for aircraft of different purposes. However, wake vortex nature and evolution have not been studied in full measure. A mathematical model simulating the process of near wake generation past bodies of different shapes, as well as the wake evolution after rolling-up into wake vortices (far wake) is developed. The processes are suggested to be modeled by means of the Method of Discrete Vortices. Far wake evolution is determined by its complex interaction with the atmosphere and ground boundary layer. The main factors that are supposed to take into account are: wind and ambient turbulence 3Ddistributions, temperature stratification of the atmosphere, wind shear, as well as some others which effects will be manifested as considerable during the investigation. The ground boundary layer effects on wake vortex evolution are substantial at low flight altitudes and are determined through the boundary layer separation.

  17. Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Maines, Brant H.; Arndt, Roger E. A.

    2000-11-01

    Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research

  18. Analytical solutions for rotating vortex arrays involving multiple vortex patches

    NASA Astrophysics Data System (ADS)

    Crowdy, Darren; Marshall, Jonathan

    2005-01-01

    A continous two-parameter family of analytical solutions to the Euler equations are presented representing a class of steadily rotating vortex arrays involving N+1 interacting vortex patches where N ≥ 3 is an integer. The solutions consist of a central vortex patch surrounded by an N-fold symmetric alternating array of satellite point vortices and vortex patches. One of the parameters governs the size of the central patch, the other governs the size of the N satellite patches. In the limit where the areas of the satellite vortex patches tend to zero, the solutions degenerate to the exact solutions of Crowdy (J. Fluid Mech. vol. 469, 2002, p. 209). Limiting states are found in which cusps form only on the central patch, only on the satellite patches, or simultaneously on both central and satellite patches. Contour dynamics simulations are used to check the mathematical solutions and test their robustness. The linear stability of a class of "point-vortex models" (in which the patches are replaced by point vortices) are also studied in order to examine the stability of the distributed-vorticity configurations to pure-displacement modes. On the other hand, a desingularization of all point vortices to Rankine vortices leads to a class of "quasi-equilibria" consisting purely of interacting vortex patches close to hydrodynamic equilibrium.

  19. Effect of strain-polarization fields on optical transitions in AlGaN/GaN multi-quantum well structures

    NASA Astrophysics Data System (ADS)

    Kladko, V.; Kuchuk, A.; Naumov, A.; Safriuk, N.; Kolomys, O.; Kryvyi, S.; Stanchu, H.; Belyaev, A.; Strelchuk, V.; Yavich, B.; Mazur, Yu. I.; Ware, M. E.; Salamo, G. J.

    2016-02-01

    The influence of strain and barrier/well thickness ratio on recombination processes in multi-quantum well (MQW) Al0.1Ga0.9N/GaN structures was investigated using X-ray diffraction and Raman and photoluminescence spectroscopies. The deformation state of the wells and barriers was determined. In addition, the value of the polarization fields, the density of polarization charges, and the positions of energy levels for optical transitions within the quantum wells were calculated. It was established that compressive strain in the buffer layer as well as in the layers of the MQWs with respect to the buffer layer lead to the piezoelectric fields having equal sign in the well and the barrier. As a result, the recombination of donor-acceptor pairs dominates over transitions between electron and hole states in the quantum well.

  20. Optical and structural characteristics of high indium content InGaN/GaN multi-quantum wells with varying GaN cap layer thickness

    SciTech Connect

    Yang, J.; Zhao, D. G. Jiang, D. S.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Le, L. C.; Li, X. J.; He, X. G.; Liu, J. P.; Yang, H.; Zhang, Y. T.; Du, G. T.

    2015-02-07

    The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) with different thicknesses of low temperature grown GaN cap layers are investigated. It is found that the MQW emission energy red-shifts and the peak intensity decreases with increasing GaN cap layer thickness, which may be partly caused by increased floating indium atoms accumulated at quantum well (QW) surface. They will result in the increased interface roughness, higher defect density, and even lead to a thermal degradation of QW layers. An extra growth interruption introduced before the growth of GaN cap layer can help with evaporating the floating indium atoms, and therefore is an effective method to improve the optical properties of high indium content InGaN/GaN MQWs.

  1. Composition and Interface Analysis of InGaN/GaN Multiquantum-Wells on GaN Substrates Using Atom Probe Tomography

    SciTech Connect

    Liu, Fang; Huang, Li; Davis, Robert F.; Porter, Lisa M.; Schreiber, Daniel K.; Kuchibhatla, S. V. N. T.; Shutthanandan, V.; Thevuthasan, Suntharampillai; Preble, Edward; Paskova, Tanya; Evans, K. R.

    2014-09-04

    In0.20Ga0.80N/GaN multi-quantum wells grown on [0001]-oriented GaN substrates with and without an InGaN buffer layer were characterized using three-dimensional atom probe tomography. In all samples, the upper interfaces of the QWs were slightly more diffuse than the lower interfaces. The buffer layers did not affect the roughness of the interfaces within the quantum well structure, a result attributed to planarization of the surface of the 1st GaN barrier layer which had an average root-mean-square roughness of 0.177 nm. The In and Ga distributions within the MQWs followed the expected distributions for a random alloy with no indications of In clustering.

  2. Investigating the origin of efficiency droop by profiling the voltage across the multi-quantum well of an operating light-emitting diode

    NASA Astrophysics Data System (ADS)

    Kim, Taewoong; Seong, Tae-Yeon; Kwon, Ohmyoung

    2016-06-01

    Efficiency droop is a phenomenon in which the efficiency of a light-emitting diode (LED) decreases with the increase in current density. To analyze efficiency droop, direct experimental observations on the energy conversion occurring inside the LED is required. Here, we present the measured voltage profiles on the cross section of an operating LED and analyze them with the cross-sectional temperature profiles obtained in a previous study under the same operation conditions. The measured voltage profiles suggest that with increases in the injection current density, electron depletion shifts from the multi-quantum well through an electron blocking layer to the p-GaN region. This is because electron leakage increases with increases in current density.

  3. Mid-infrared electro-luminescence and absorption from AlGaN/GaN-based multi-quantum well inter-subband structures

    SciTech Connect

    Hofstetter, Daniel; Bour, David P.; Kirste, Lutz

    2014-06-16

    We present electro-modulated absorption and electro-luminescence measurements on chirped AlGaN/GaN-based multi-quantum well inter-subband structures grown by metal-organic vapour phase epitaxy. The absorption signal is a TM-polarized, 70 meV wide feature centred at 230 meV. At medium injection current, a 58 meV wide luminescence peak corresponding to an inter-subband transition at 1450 cm{sup −1} (180 meV) is observed. Under high injection current, we measured a 4 meV wide structure peaking at 92.5 meV in the luminescence spectrum. The energy location of this peak is exactly at the longitudinal optical phonon of GaN.

  4. The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Langenderfer, Lynn S.; Jardon, Rebecca D.; Cutlip, Hansford H.; Kazerooni, Alexander C.; Thweatt, Amber L.; Lester, Joseph L.; Bernal, Luis P.

    1995-01-01

    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.

  5. The constant-V vortex

    NASA Astrophysics Data System (ADS)

    Faller, Alan J.

    2001-05-01

    It has been found that the generation of swirl by a continuous rotary oscillation of a right-circular cylinder partially filled with water can leave a vortex with a radially constant tangential velocity, V, i.e. [partial partial differential]V/[partial partial differential]r = 0, excepting a small central core and the sidewall boundary layer. This vortex maintains [partial partial differential]V/[partial partial differential]r = 0 during viscous decay by the turbulent bottom boundary layer, a fact that suggests that [partial partial differential]V/[partial partial differential]r = 0 is a stable condition for a decaying vortex.

  6. Numerical study of vortex reconnection

    SciTech Connect

    Ashurst, W.T.; Meiron, D.I.

    1987-04-20

    With a Biot-Savart model of vortex filaments to provide initial conditions, a finite difference scheme for the incompressible Navier-Stokes equation is used in the region of closest approach of two vortex rings. In the Navier-Stokes solution, we see that the low pressure which develops between the interacting vorticity regions causes the distortion of the initially circular vortex cross section and forces the rearrangement of vorticity on a convective time scale which is much faster than that estimated from viscous transport.

  7. Josephson-vortex Cherenkov radiation

    SciTech Connect

    Mints, R.G.; Snapiro, I.B.

    1995-10-01

    We predict the Josephson-vortex Cherenkov radiation of an electromagnetic wave. We treat a long one-dimensional Josephson junction. We consider the wavelength of the radiated electromagnetic wave to be much less than the Josephson penetration depth. We use for calculations the nonlocal Josephson electrodynamics. We find the expression for the radiated power and for the radiation friction force acting on a Josephson vortex and arising due to the Cherenkov radiation. We calculate the relation between the density of the bias current and the Josephson vortex velocity.

  8. Bathtub vortex induced by instability.

    PubMed

    Mizushima, Jiro; Abe, Kazuki; Yokoyama, Naoto

    2014-10-01

    The driving mechanism and the swirl direction of the bathtub vortex are investigated by the linear stability analysis of the no-vortex flow as well as numerical simulations. We find that only systems having plane symmetries with respect to vertical planes deserve research for the swirl direction. The bathtub vortex appearing in a vessel with a rectangular cross section having a drain hole at the center of the bottom is proved to be induced by instability when the flow rate exceeds a threshold. The Coriolis force is capable of determining the swirl direction to be cyclonic. PMID:25375427

  9. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  10. Holographic Vortex Coronagraph

    NASA Technical Reports Server (NTRS)

    Palacios, David

    2010-01-01

    A holographic vortex coronagraph (HVC) has been proposed as an improvement over conventional coronagraphs for use in high-contrast astronomical imaging for detecting planets, dust disks, and other broadband light scatterers in the vicinities of stars other than the Sun. Because such light scatterers are so faint relative to their parent stars, in order to be able to detect them, it is necessary to effect ultra-high-contrast (typically by a factor of the order of 1010) suppression of broadband light from the stars. Unfortunately, the performances of conventional coronagraphs are limited by low throughput, dispersion, and difficulty of satisfying challenging manufacturing requirements. The HVC concept offers the potential to overcome these limitations.

  11. Peripheral giant cell granuloma.

    PubMed

    Adlakha, V K; Chandna, P; Rehani, U; Rana, V; Malik, P

    2010-01-01

    Peripheral giant cell granuloma is a benign reactive lesion of gingiva. It manifests as a firm, soft, bright nodule or as a sessile or pedunculate mass. This article reports the management of peripheral giant cell granuloma in a 12-year-old boy by surgical excision. PMID:21273719

  12. Dynamic signatures of driven vortex motion.

    SciTech Connect

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  13. Vortex dynamics in anisotropic traps

    SciTech Connect

    McEndoo, S.; Busch, Th.

    2010-07-15

    We investigate the dynamics of linear vortex lattices in anisotropic traps in two dimensions and show that the interplay between the rotation and the anisotropy leads to a rich but highly regular dynamics.

  14. Discrete vortex representation of magnetohydrodynamics

    SciTech Connect

    Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.

    1993-02-01

    We present an alternative approach to statistical analysis of an intermittent ideal MHD fluid in two dimensions, based on the hydrodynamical discrete vortex model applied to the Elsasser variables. The model contains negative temperature states which predict the formation of magnetic islands, but also includes a natural limit under which the equilibrium states revert to the familiar twin-vortex states predicted by hydrodynamical turbulence theories. Numerical dynamical calculations yield equilibrium spectra in agreement with the theoretical predictions.

  15. New omega vortex identification method

    NASA Astrophysics Data System (ADS)

    Liu, ChaoQun; Wang, YiQian; Yang, Yong; Duan, ZhiWei

    2016-08-01

    A new vortex identification criterion called Ω-method is proposed based on the ideas that vorticity overtakes deformation in vortex. The comparison with other vortex identification methods like Q-criterion and λ 2-method is conducted and the advantages of the new method can be summarized as follows: (1) the method is able to capture vortex well and very easy to perform; (2) the physical meaning of Ω is clear while the interpretations of iso-surface values of Q and λ 2 chosen to visualize vortices are obscure; (3) being different from Q and λ 2 iso-surface visualization which requires wildly various thresholds to capture the vortex structure properly, Ω is pretty universal and does not need much adjustment in different cases and the iso-surfaces of Ω=0.52 can always capture the vortices properly in all the cases at different time steps, which we investigated; (4) both strong and weak vortices can be captured well simultaneously while improper Q and λ 2 threshold may lead to strong vortex capture while weak vortices are lost or weak vortices are captured but strong vortices are smeared; (5) Ω=0.52 is a quantity to approximately define the vortex boundary. Note that, to calculate Ω, the length and velocity must be used in the non-dimensional form. From our direct numerical simulation, it is found that the vorticity direction is very different from the vortex rotation direction in general 3-D vortical flow, the Helmholtz velocity decomposition is reviewed and vorticity is proposed to be further decomposed to vortical vorticity and non-vortical vorticity.

  16. Instability of spiral convective vortex

    NASA Astrophysics Data System (ADS)

    Evgrafova, Anna; Andrey, Sukhanovsky; Elena, Popova

    2014-05-01

    Formation of large-scale vortices in atmosphere is one of the interesting problems of geophysical fluid dynamics. Tropical cyclones are examples of atmospheric spiral vortices for which convection plays an important role in their formation and evolution. Our study is focused on intensive cyclonic vortex produced by heating in the central part of the rotating layer. The previous studies made by Bogatyrev et al, showed that structure of such vortex is very similar to the structure of tropical cyclones. Qualitative observations described in (Bogatyrev, 2009) showed that the evolution of large-scale vortex in extreme regimes can be very complicated. Our main goal is the study of evolution of convective cyclonic vortex at high values of Grasshof number by PIV system. Experimental setup is a rotating cylindrical tank of fluid (radius 150 mm, depth 30 mm, free upper surface). Velocity fields for different values of heat flux were obtained and temporal and spatial structure of intensive convective vortex were studied in details. With the use of PIV data vorticity fields were reconstructed in different horizontal cross-sections. Physical interpretation of mechanisms that lead to the crucial change in the vortex structure with the growth of heat rate is described. Financial support from program of UD RAS, the International Research Group Program supported by Perm region Government is gratefully acknowledged.

  17. VORTEX MIGRATION IN PROTOPLANETARY DISKS

    SciTech Connect

    Paardekooper, Sijme-Jan; Lesur, Geoffroy; Papaloizou, John C. B.

    2010-12-10

    We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulting spiral wave pattern is reminiscent of an embedded planet. There are two main causes for asymmetries in these wakes: geometrical effects tend to favor the outer wave, while a radial vortensity gradient leads to an asymmetric vortex core, which favors the wave at the side that has the lowest density. In the case of asymmetric waves, which we always find except for a disk of constant pressure, there is a net exchange of angular momentum between the vortex and the surrounding disk, which leads to orbital migration of the vortex. Numerical hydrodynamical simulations show that this migration can be very rapid, on a timescale of a few thousand orbits, for vortices with a size comparable to the scale height of the disk. We discuss the possible effects of vortex migration on planet formation scenarios.

  18. Unstable giant gravitons

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Smolic, Jelena; Smolic, Milena

    2006-03-15

    We find giant graviton solutions in Frolov's three parameter generalization of the Lunin-Maldacena background. The background we study has {gamma}-tilde{sub 1}=0 and {gamma}-tilde{sub 2}={gamma}-tilde{sub 3}={gamma}-tilde. This class of backgrounds provides a nonsupersymmetric example of the gauge theory/gravity correspondence that can be tested quantitatively, as recently shown by Frolov, Roiban, and Tseytlin. The giant graviton solutions we find have a greater energy than the point gravitons, making them unstable states. Despite this, we find striking quantitative agreement between the gauge theory and gravity descriptions of open strings attached to the giant.

  19. Forebody vortex control

    NASA Astrophysics Data System (ADS)

    Malcolm, Gerald N.

    Because conventional fighter aircraft control surfaces (e.g. rudder) become ineffective at high angles of attack, alternate means of providing aerodynamic control are being explored. A prime potential source for improved control power is the vortex flowfield existing on typical fighter aircraft forebodies. Several techniques to manipulate the forebody vortices to produce controlled forces and moments at high angles of attack have been investigated by a number of researchers in the past few years. This paper reviews some of the reported research results and discusses the merits of several methods applied directly to the forebody, including: (1) movable strakes, (2) blowing surface jets, (3) blowing and suction through surface slots, (4) suction through surface holes, and (5) miniaturized rotatable tip strakes. All of these were found to be effective over a varying range of angles of attack and sideslip. Most of the methods work on the basis of boundary layer separation control. The presence of closely spaced forebody vortices enhances the effectiveness since controlling the separation controls the vortices which, in turn, creates large changes in the forebody forces. Regardless of which method is employed, the maximum effectiveness is realized if it is applied near the forebody tip. The advantage of one method over another will depend on the configuration and specific performance requirements.

  20. Regimes of flow past a vortex generator

    NASA Astrophysics Data System (ADS)

    Velte, C. M.; Okulov, V. L.; Naumov, I. V.

    2012-04-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator.

  1. Giant Subclavian Artery Aneurysm.

    PubMed

    Counts, Sarah; Zeeshan, Ahmad; Elefteriades, John

    2016-06-01

    We report the case of a 37-year-old construction executive presenting with chest pain, shortness of breath, and dizziness on exertion secondary to a giant left subclavian artery aneurysm and aortic valvular disease. PMID:27231430

  2. Giant distal humeral geode.

    PubMed

    Maher, M M; Kennedy, J; Hynes, D; Murray, J G; O'Connell, D

    2000-03-01

    We describe the imaging features of a giant geode of the distal humerus in a patient with rheumatoid arthritis, which presented initially as a pathological fracture. The value of magnetic resonance imaging in establishing this diagnosis is emphasized. PMID:10794554

  3. The Giant Cell.

    ERIC Educational Resources Information Center

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  4. The Next Giant Step

    NASA Video Gallery

    Artist Robert McCall painted "The Next Giant Step" in 1979 to commemorate the heroism and courage of spaceflight pioneers. Located in the lobby of Johnson's building 2, the mural depicts America's ...

  5. Geometries of Karman Vortex Street

    NASA Astrophysics Data System (ADS)

    Roushan, Pedram; Wu, X. L.

    2004-03-01

    The Bénard-von Kármán vortex street is studied in a flowing soap film channel. The two-dimensional fluid flow in the film allows stable vortex streets to be generated and investigated over a broad range of Reynolds numbers, 10vortex street is analyzed for different diameter rods, which span more than two orders of magnitude in their diameters. The parameters that characterize the envelop of the vortex street, such as the growth rate and the saturation amplitude, are measured for different Reynolds numbers. It is found that all of the curves representing the envelope can be collapsed onto a single master curve, suggesting that the shape of Karman vortex streets is universal, independent of Re. We construct a simple model that takes into account the energy transfer into vortices by periodic oscillations of transverse velocity fluctuations beneath the rod. This simple model not only explains the near wake shape of the street, but also allows other useful information such as the kinetic energy injected into the fluid and the drag coefficient CD to be extracted.

  6. Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2003-01-01

    A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

  7. Vortex Formation in Shallow Flows

    NASA Astrophysics Data System (ADS)

    Rockwell, Donald

    2006-11-01

    Vortical structures having a scale much larger than the depth of the flow, which arise in bluff body wakes, jets, and mixing layers generated in shallow layers, show distinctive features due to the influence of bed friction. Cinema techniques of high-image-density particle image velocimetry are employed to characterize quasi-two-dimensional and three-dimensional aspects of the vortex development in terms of: patterns of vorticity; flow topology involving definition of critical points; and global spectral and cross-spectral analyses, based on simultaneous time records at thousands of grid points of the cinema imaging. Taken together, these representations lead to an understanding of the relationship between coherent vortex development and unsteadiness along the bed and, furthermore, provide a basis for exploration of concepts generic to separated shear layers in shallow flows. These concepts include: suppression of a primary mode of vortex formation due to bed friction and emergence of another mode; resonant coupling between a gravity wave of the shallow layer and vortex formation, leading to large-scale vortices; and passive and active (open loop) control, which can either retard or enhance the onset of vortex formation. These studies suggest opportunities for further investigation on both experimental and numerical fronts. Collaboration with Haojun Fu, Alis Ekmekci, Jung-Chang Lin, and Muammer Ozgoren is gratefully acknowledged.

  8. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  9. GREEN'S FUNCTIONS OF VORTEX OPERATORS

    SciTech Connect

    Polchinski, Joseph

    1980-08-01

    We study the Euclidean Green's functions of the 't Hooft vortex operator, primarily for Abelian gauge theories. The operator is written in terms of elementary fields, with emphasis on a form in which it appears as the exponential of a surface integral, We explore the requirement that the Green's functions depend only on the boundary of this surface, The Dirac veto problem appears in a new guise, We present a two dimensional ''solvable model" of a Dirac string, which suggests a new solution of the veto problem. The renormalization of the Green's functions of the Abelian Wilson loop and Abelian vortex operator is studied with the aid of the operator product expansion. In each case. an overall multiplication of the operator makes all Green's functions finite; a surprising cancellation of divergences occurs with the vortex operator. We present a brief discussion of the relation between the nature of the vacuum and the cluster properties of the Green's functions of the Wilson and vortex operators. for a general gauge theory. The surface-like cluster property of the vortex operator in an Abelian Higgs theory is explored in more detail.

  10. Vortex waves in sunspots

    NASA Astrophysics Data System (ADS)

    López Ariste, A.; Centeno, R.; Khomenko, E.

    2016-06-01

    Context. Waves in the magnetized solar atmosphere are one of the favourite means of transferring and depositing energy into the solar corona. The study of waves brings information not just on the dynamics of the magnetized plasma, but also on the possible ways in which the corona is heated. Aims: The identification and analysis of the phase singularities or dislocations provide us with a complementary approach to the magnetoacoustic and Aflvén waves propagating in the solar atmosphere. They allow us to identify individual wave modes, shedding light on the probability of excitation or the nature of the triggering mechanism. Methods: We use a time series of Doppler shifts measured in two spectral lines, filtered around the three-minute period region. The data show a propagating magnetoacoustic slow mode with several dislocations and, in particular, a vortex line. We study under what conditions the different wave modes propagating in the umbra can generate the observed dislocations. Results: The observed dislocations can be fully interpreted as a sequence of sausage and kink modes excited sequentially on average during 15 min. Kink and sausage modes appear to be excited independently and sequentially. The transition from one to the other lasts less than three minutes. During the transition we observe and model the appearance of superoscillations inducing large phase gradients and phase mixing. Conclusions: The analysis of the observed wave dislocations leads us to the identification of the propagating wave modes in umbrae. The identification in the data of superoscillatory regions during the transition from one mode to the other may be an important indicator of the location of wave dissipation.

  11. Calculation of asymmetric vortex separation on cones and tangent ogives based on a discrete vortex model

    NASA Technical Reports Server (NTRS)

    Chin, Suei; Lan, C. Edward; Gainer, Thomas G.

    1989-01-01

    The boundary value problem for vortex separation at zero sideslip on cones and tangent ogives is set up by means of a discrete vortex model. The nonlinear algebraic equations for the boundary value problem admit multiple, physically feasible solutions, including the symmetric and asymmetric vortex solutions. Multiple solutions are proposed as an alternative explanation of the existence of asymmetric vortex separation at zero sideslip.

  12. Analysis and control of asymmetric vortex flows and supersonic vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1991-01-01

    Topics relative to the analysis and control of asymmetric vortex flow and supersonic vortex breakdown are discussed. Specific topics include the computation of compressible, quasi-axisymmetric slender vortex flow and breakdown; supersonic quasi-axisymmetric vortex breakdown; and three-dimensional Navier-Stokes asymmetric solutions for cones and cone-cylinder configurations.

  13. Chirality induced tilted-hill giant Nernst signal.

    PubMed

    Kotetes, P; Varelogiannis, G

    2010-03-12

    We reveal a novel source of a giant Nernst response exhibiting strong nonlinear temperature and magnetic field dependence, including the mysterious tilted-hill temperature profile observed in a pleiad of materials. The phenomenon results directly from the formation of a chiral ground state, e.g., a chiral d-density wave, which is compatible with the eventual observation of diamagnetism and is distinctly different from the usual quasiparticle and vortex Nernst mechanisms. Our picture provides a unified understanding of the anomalous thermoelectricity observed in materials as diverse as the hole-doped cuprates and heavy-fermion compounds like URu(2)Si(2). PMID:20366442

  14. Ground vortex flow field investigation

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Delfrate, John H.; Eshleman, James E.

    1988-01-01

    Flow field investigations were conducted at the NASA Ames-Dryden Flow Visualization Facility (water tunnel) to investigate the ground effect produced by the impingement of jets from aircraft nozzles on a ground board in a STOL operation. Effects on the overall flow field with both a stationary and a moving ground board were photographed and compared with similar data found in other references. Nozzle jet impingement angles, nozzle and inlet interaction, side-by-side nozzles, nozzles in tandem, and nozzles and inlets mounted on a flat plate model were investigated. Results show that the wall jet that generates the ground effect is unsteady and the boundary between the ground vortex flow field and the free-stream flow is unsteady. Additionally, the forward projection of the ground vortex flow field with a moving ground board is one-third less than that measured over a fixed ground board. Results also showed that inlets did not alter the ground vortex flow field.

  15. Magnetic Vortex Based Transistor Operations

    PubMed Central

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  16. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.

  17. Vortex breakdown incipience: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Berger, Stanley A.; Erlebacher, Gordon

    1992-01-01

    The sensitivity of the onset and the location of vortex breakdowns in concentrated vortex cores, and the pronounced tendency of the breakdowns to migrate upstream have been characteristic observations of experimental investigations; they have also been features of numerical simulations and led to questions about the validity of these simulations. This behavior seems to be inconsistent with the strong time-like axial evolution of the flow, as expressed explicitly, for example, by the quasi-cylindrical approximate equations for this flow. An order-of-magnitude analysis of the equations of motion near breakdown leads to a modified set of governing equations, analysis of which demonstrates that the interplay between radial inertial, pressure, and viscous forces gives an elliptic character to these concentrated swirling flows. Analytical, asymptotic, and numerical solutions of a simplified non-linear equation are presented; these qualitatively exhibit the features of vortex onset and location noted above.

  18. Cutting of bent vortex lines

    SciTech Connect

    Wagenleithner, P.

    1982-07-01

    One of the major problems in the application of type II superconductors is the appearance of resistivity in case where a current-carrying specimen is in a longitudinal magnetic field. This is explained by the onset of flux-line cutting events, followed by cross-joining of the line parts. The calculation given here shows the amount of repulsive force and energy between two curved vortex lines and examines the general stability of the vortex-vortex system. First, the actual interaction potential between curved vortices is computed. It includes all electromagnetic and core overlap terms of interactions and self-interaction, and allows computation of the system energy under all curved vortex-line configurations. A computer program is used to find the form of lowest free energy. To do this, special trial functions are established to describe the three-dimensional form of the vortex-vortex system. In these functions parameters determine the qualitative and quantitative form. The asymptotic boundary conditions are built into the nature of the trial functions. The computer program now minimizes the free energy with respect to these parameters. The resulting repulsive energy and force are more than ten times less than the known results for straight flux lines, especially for small asymptotic cutting angles. There is no sharp maximum in the plot of repulsive force versus flux-line separation. A remarkable results is the loss of general stability below a separation distance of several London penetration depths, depending on the cutting angle and the Ginzburg-Landau parameter. The explanation lies in the local attraction of central sections of the vortices as a result of configurational adaption. This explains the onset of resistance at small currents and small magnetic fields.

  19. Giant pulsar glitches and the inertia of neutron star crusts

    NASA Astrophysics Data System (ADS)

    Delsate, T.; Chamel, N.; Gürlebeck, N.; Fantina, A. F.; Pearson, J. M.; Ducoin, C.

    2016-07-01

    Giant pulsar frequency glitches as detected in the emblematic Vela pulsar have long been thought to be the manifestation of a neutron superfluid permeating the inner crust of a neutron star. However, this superfluid has been recently found to be entrained by the crust, and as a consequence it does not carry enough angular momentum to explain giant glitches. The extent to which pulsar-timing observations can be reconciled with the standard vortex-mediated glitch theory is studied considering the current uncertainties on dense-matter properties. To this end, the crustal moment of inertia of glitching pulsars is calculated employing a series of different unified dense-matter equations of state.

  20. Coulombic contribution and fat center vortex model

    SciTech Connect

    Rafibakhsh, Shahnoosh; Deldar, Sedigheh

    2007-02-27

    The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.

  1. Optical and crystal quality improvement in green emitting InxGa1-xN multi-quantum wells through optimization of MOCVD growth

    NASA Astrophysics Data System (ADS)

    Berkman, Erkan A.; Lee, Soo Min; Ramos, Frank; Tucker, Eric; Arif, Ronald A.; Armour, Eric A.; Papasouliotis, George D.

    2016-02-01

    We report on green-emitting In0.18Ga0.82N/GaN multi-quantum well (MQW) structures over a variety of metalorganic chemical vapor deposition (MOCVD) growth conditions to examine the morphology, optical quality, and micron-scale emission properties. The MOCVD growth parameter space was analyzed utilizing two orthogonal metrics which allows comparing and optimizing growth conditions over a wide range of process parameters: effective gas speed, S*, and effective V/III ratio, V/III*. Optimized growth conditions with high V/III, low gas speed, and slow growth rates resulted in improved crystal quality, PL emission efficiency, and micron-scale wavelength uniformity. One of the main challenges in green MQWs with high Indium content is the formation of Indium inclusion type defects due to the large lattice mismatch combined with the miscibility gap between GaN and InN. An effective way of eliminating Indium inclusions was demonstrated by introducing a small fraction of H2 (2.7%) in the gas composition during the growth of high temperature GaN quantum barriers. In addition, the positive effects of employing an InGaN/GaN superlattice (SL) underlayer to crystal quality and micron-scale emission uniformity was demonstrated, which is of special interest for applications such as micro-LEDs.

  2. Combined electrical and resonant optical excitation characterization of multi-quantum well InGaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Presa, S.; Maaskant, P. P.; Kappers, M. J.; Humphreys, C. J.; Corbett, B.

    2016-07-01

    We present a comprehensive study of the emission spectra and electrical characteristics of InGaN/GaN multi-quantum well light-emitting diode (LED) structures under resonant optical pumping and varying electrical bias. A 5 quantum well LED with a thin well (1.5 nm) and a relatively thick barrier (6.6 nm) shows strong bias-dependent properties in the emission spectra, poor photovoltaic carrier escape under forward bias and an increase in effective resistance when compared with a 10 quantum well LED with a thin (4 nm) barrier. These properties are due to a strong piezoelectric field in the well and associated reduced field in the thicker barrier. We compare the voltage ideality factors for the LEDs under electrical injection, light emission with current, photovoltaic mode (PV) and photoluminescence (PL) emission. The PV and PL methods provide similar values for the ideality which are lower than for the resistance-limited electrical method. Under optical pumping the presence of an n-type InGaN underlayer in a commercial LED sample is shown to act as a second photovoltaic source reducing the photovoltage and the extracted ideality factor to less than 1. The use of photovoltaic measurements together with bias-dependent spectrally resolved luminescence is a powerful method to provide valuable insights into the dynamics of GaN LEDs.

  3. Deep-level Transient Spectroscopy of GaAs/AlGaAs Multi-Quantum Wells Grown on (100) and (311)B GaAs Substrates

    PubMed Central

    2010-01-01

    Si-doped GaAs/AlGaAs multi-quantum wells structures grown by molecular beam epitaxy on (100) and (311)B GaAs substrates have been studied by using conventional deep-level transient spectroscopy (DLTS) and high-resolution Laplace DLTS techniques. One dominant electron-emitting level is observed in the quantum wells structure grown on (100) plane whose activation energy varies from 0.47 to 1.3 eV as junction electric field varies from zero field (edge of the depletion region) to 4.7 × 106 V/m. Two defect states with activation energies of 0.24 and 0.80 eV are detected in the structures grown on (311)B plane. The Ec-0.24 eV trap shows that its capture cross-section is strongly temperature dependent, whilst the other two traps show no such dependence. The value of the capture barrier energy of the trap at Ec-0.24 eV is 0.39 eV. PMID:21170404

  4. Blue and Green light InGaN/GaN Multiquantum-Well grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Hsuan; Lo, Ikai; Shih, Cheng-Hung; Pang, Wen-Yuan; Tsai, Cheng-Da; Lin, Yu-Chiao

    2013-03-01

    High-efficiency red, green and blue light-emitting diodes (LEDs) can be used in the construction of full color display. We have grown green and blue light InGaN/GaN multiquantum-well (MQW) thin film on sapphire substrate with GaN buffer by using plasma-assisted molecular beam epitaxy. The optical properties of the samples were analyzed by photoluminescence measurement in room temperature. Under constant nitrogen flux condition, we obtained the blue and green emitting bands from different samples by modified the Indium and Gallium flux ratio in MQW. In high nitrogen flux condition, the wavelength shifts to 560nm, which provides an effective way to reach high Indium incorporation LED. In order to improve the quality, we can control the growth temperature and InGaN/GaN thickness. There are more than five order satellite peaks in Double Crystal X-ray Diffraction data. Smooth surface morphology has been verified in our samples by scanning electron microscope. This project is supported by National science council of Taiwan (NSC 101-2112-M-110-006-MY3).

  5. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required. PMID:27447507

  6. Generation of Nonlinear Vortex Precursors

    NASA Astrophysics Data System (ADS)

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  7. Vortex ice in nanostructured superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, Andras J

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  8. Evolution of a plasma vortex in air

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle.

  9. Liquid/Gas Vortex Separator

    NASA Technical Reports Server (NTRS)

    Morris, B. G.

    1986-01-01

    Liquid/gas separator vents gas from tank of liquid that contains gas randomly distributed in bubbles. Centrifugal force separates liquid and gas, forcing liquid out of vortex tube through venturi tube. Gas vented through exhaust port. When liquid detected in vent tube, exhaust port closed, and liquid/gas mixture in vent tube drawn back into tank through venturi.

  10. The 1987 Ground Vortex Workshop

    NASA Technical Reports Server (NTRS)

    Margason, Richard J. (Editor)

    1988-01-01

    The purpose of this workshop was to discuss the current understanding of the ground vortex phenomena and their effects on aircraft, and to establish directions for further research on advanced, high-performance aircraft designs, particularly those concepts utilizing powered-lift systems; e.g., V/STOL. ASTOVL, and STOL aircraft.

  11. Perturbative theory for Brownian vortexes

    NASA Astrophysics Data System (ADS)

    Moyses, Henrique W.; Bauer, Ross O.; Grosberg, Alexander Y.; Grier, David G.

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers.

  12. Perturbative theory for Brownian vortexes.

    PubMed

    Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers. PMID:26172698

  13. Rossby solitary vortices, on giant planets and in the laboratory.

    PubMed

    Nezlin, Mikhail V.

    1994-06-01

    This is a review of laboratory experiments with a layer of shallow water having a free surface and rotating together with a vessel of parabolic form. Such a (rather original) setup has allowed one to create Rossby solitary vortex for the first time. The latter is an anticyclonic Rossby vortex not subjected to dispersive spread owing to its compensation by the nonlinearity of KdV type. By its structural, collisional, and other properties, including clear-cut cyclonic-anticyclonic asymmetry, it may be considered as a physical prototype of the large-scale long-lived anticyclonic Rossby vortices like the Great Red Spot of Jupiter or the Great Dark Spot of Neptune (this remarkable vortex was discovered by the spacecraft Voyager-2 during its farewell to the Solar System) and other vortices dominating in the atmospheres of giant planets and created by the unstable zonal flows. It has been shown that the vortex under study is a long-lived entity provided it satisfies "antitwisting condition," i.e., it has rather large amplitude (at which it rotates more quickly than it propagates and thereby carries the trapped fluid). In this case, it is not subjected to the "twisting" deformation and may be ascribed by the generalized Charney-Obukhov equation for Rossby vortices on shallow water with a free surface. The results of creating the vortex under consideration by the different methods have been compared with the results obtained by other authors in the experiments on shear-flow generation of Rossby vortices. PMID:12780099

  14. The dynamics of vortex streets in channels

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2015-07-01

    We develop a model to numerically study the dynamics of vortex streets in channel flows. Previous work has studied the vortex wakes of specific vortex generators. Here, we study a wide range of vortex wakes including regular and reverse von Kármán streets with various strengths, geometries, and Reynolds numbers (Re) by applying a smoothed von Kármán street as an inflow condition. We find that the spatial structure of the inflow vortex street is maintained for the reverse von Kármán street and altered for the regular street. For regular streets, we identify a transition to asymmetric dynamics which happens when Re increases, or vortices are stronger, or vortex streets are compressed horizontally or extended vertically. We also determine the effects of these parameters on vortex street inversion.

  15. An Innocent Giant

    PubMed Central

    Solanki, Lakhan Singh; Dhingra, Mandeep; Raghubanshi, Gunjan; Thami, Gurvinder Pal

    2014-01-01

    A cutaneous horn (cornu cutaneum) is a protrusion from the skin composed of a cornified material. It may be associated with a benign, premalignant, or malignant lesion at the base, masking numerous dermatoses. In a 24-year-old female, a giant cutaneous horn arising from a seborrheic keratosis located on the leg is presented. This case has been reported to emphasize that a giant cutaneous horn may also occur in young patients, even in photoprotected areas, and are not always associated with malignancy. PMID:25484426

  16. Giant perigenital seborrheic keratosis.

    PubMed

    Bandyopadhyay, Debabrata; Saha, Abanti; Mishra, Vivek

    2015-01-01

    Seborrheic keratosis (SK) is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a 59-year-old man. PMID:25657917

  17. Giant perigenital seborrheic keratosis

    PubMed Central

    Bandyopadhyay, Debabrata; Saha, Abanti; Mishra, Vivek

    2015-01-01

    Seborrheic keratosis (SK) is a very common benign epidermal proliferation that is prevalent in all races. Most commonly occurring on the trunk, face, scalp, and the extremities, they can occur anywhere on the body except the palms and soles. The most common appearance is that of a very superficial verrucous plaque which appears to be stuck on the surface. Giant lesions are very rare, and their location on the genital area is rarer still. We report here a case of multiple giant SK lesions in a 59-year-old man. PMID:25657917

  18. Rotor blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Yu, Yung H.

    2000-02-01

    Blade-vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade control techniques. The important parameters to control rotor blade-vortex interaction noise and vibration have been identified: blade tip vortex structures and its trajectory, blade aeroelastic deformation, and airloads. Several blade tip design concepts have been investigated for diffusing tip vortices and also for reducing noise. However, these tip shapes have not been able to substantially reduce blade-vortex interaction noise without degradation of rotor performance. Meanwhile, blade root control techniques, such as higher-harmonic pitch control (HHC) and individual blade control (IBC) concepts, have been extensively investigated for noise and vibration reduction. The HHC technique has proved the substantial blade-vortex interaction noise reduction, up to 6 dB, while vibration and low-frequency noise have been increased. Tests with IBC techniques have shown the simultaneous reduction of rotor noise and vibratory loads with 2/rev pitch control inputs. Recently, active blade control concepts with smart structures have been investigated with the emphasis on active blade twist and trailing edge flap. Smart structures technologies are very promising, but further advancements are needed to meet all the requirements of rotorcraft applications in frequency, force, and displacement.

  19. Transformation of the vortex beam in the optical vortex scanning microscope

    NASA Astrophysics Data System (ADS)

    Płociniczak, Łukasz; Popiołek-Masajada, Agnieszka; Szatkowski, Mateusz; Wojnowski, Dariusz

    2016-07-01

    We investigate the microscopic system in which the Gaussian beam with embedded optical vortex is used. The optical vortex is introduced by vortex lens. The vortex lens shift induces a precise nanometer shift of the embedded vortices inside the focused spot. The analytical formula for the complex amplitude of the focused spot with off-axis vortex was calculated, to our knowledge, for the first time. This solution is an important step in the development of the optical vortex scanning microscope. Experimental results are also presented that demonstrate the behavior of such a beam in an experimental setup.

  20. Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street

    NASA Astrophysics Data System (ADS)

    Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang

    1992-03-01

    The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.

  1. Shock/vortex interaction and vortex-breakdown modes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Kandil, H. A.; Liu, C. H.

    1992-01-01

    Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.

  2. Electroluminescence of Giant Stretchability.

    PubMed

    Yang, Can Hui; Chen, Baohong; Zhou, Jinxiong; Chen, Yong Mei; Suo, Zhigang

    2016-06-01

    A new type of electroluminescent device achieves giant stretchability by integrating electronic and ionic components. The device uses phosphor powders as electroluminescent materials, and hydrogels as stretchable and transparent ionic conductors. Subject to cyclic voltage, the phosphor powders luminesce, but the ionic conductors do not electrolyze. The device produces constant luminance when stretched up to an area strain of 1500%. PMID:26610277

  3. A giant ureteric calculus

    PubMed Central

    Rathod, Rajiv; Bansal, Prashant; Gutta, Srinivas

    2013-01-01

    Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved. PMID:24082453

  4. Giant urethral calculus

    PubMed Central

    Kotkar, Kunal; Thakkar, Ravi; Songra, MC

    2011-01-01

    Primary urethral calculus is rarely seen and is usually encountered in men with urethral stricture or diverticulum. We present a case of giant urethral calculus secondary to a urethral stricture in a man. The patient was treated with calculus extraction with end to end urethroplasty. PMID:24950400

  5. Juvenile giant fibroadenoma

    PubMed Central

    Yagnik, Vipul D.

    2011-01-01

    Fibroadenomas are benign solid tumor associated with aberration of normal lobular development. Juvenile giant fibroadenoma is usually single and >5 cm in size /or >500 gms in weight. Important differential diagnoses are: phyllodes tumor and juvenile gigantomastia. Simple excision is the treatment of choice. PMID:24765310

  6. A giant ureteric calculus.

    PubMed

    Rathod, Rajiv; Bansal, Prashant; Gutta, Srinivas

    2013-07-01

    Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved. PMID:24082453

  7. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  8. Widnall instabilities in vortex pairs

    NASA Astrophysics Data System (ADS)

    Sipp, Denis; Jacquin, Laurent

    2003-07-01

    In this article we analyze the cooperative three-dimensional short-wave instabilities developing on concentrated vortex dipoles that have been obtained by means of two-dimensional direct numerical simulations. These dipoles are characterized by their aspect ratio a/b where a is the radius of the vortices based on the polar moments of vorticity and b is the separation between the vortex centroids. In the inviscid case, we show that the selection of the antisymmetric eigenmode smoothly increases with a/b: for a/b=0.208, the amplification rate of the antisymmetric eigenmode is only 1.4% larger than the amplification rate of the symmetric eigenmode. When a/b=0.288, this difference increases up to 7%. The results of the normal mode analysis may be compared to those of an asymptotic stability analysis of a Lamb-Oseen vortex subjected to a weak straining field, following Moore and Saffman [Proc. R. Soc. London, Ser. A 346, 413 (1975)]. This theory shows that the instability may occur whenever two Kelvin waves exist with the same frequency ω, the same axial wavenumber k and with azimuthal wavenumbers m and m+2. Contrary to the case of a Rankine vortex [Tsai and Widnall, J. Fluid Mech. 73, 721 (1976)], the presence of critical layers in a Lamb-Oseen vortex prevents a large number of possible resonances. For example, resonances between m=-2 and m=0 modes lead to damped modes. The only resonances that occur are related to the stationary (ω=0) bending waves (m=±1) obtained for specific values of the axial wavenumber. All these predictions are found to be in good agreement with the results obtained by the stability analysis of the considered vortex pairs. At last, we present a nonautonomous amplitude equation which takes into account all effects of viscosity, i.e., the viscous damping of the amplification rate of the perturbation but also the increase of the dipole aspect ratio a/b due to the viscous diffusion of the basic flowfield. The low-Reynolds number experiment of

  9. Vortex depinning in Josephson-junction arrays

    NASA Astrophysics Data System (ADS)

    Dang, E. K. F.; Györffy, B. L.

    1993-02-01

    On the basis of a simple model we study the supercurrent-carrying capacity of a planar array of Josephson junctions. In particular we investigate the zero-temperature vortex-depinning current iBc, which is the largest supercurrent in an array containing one extra vortex on top of the ground-state vortex superlattice induced by an external magnetic field f. In the zero-field, f=0, case our results support the tilted-sinusoidal vortex-potential description of previous workers. However, in the fully frustrated, f=1/2 case, a more careful interpretation is required. We find that on the application of a transport current, the resulting vortex motion is not that of the extra vortex moving over a rigid field-induced vortex background. Rather, a vortex belonging to the checkerboard ground-state pattern first crosses over a junction into a neighboring ``empty'' plaquette. Then, the ``extra'' vortex moves to take its place. Our interpretation is based on a linear stability analysis, with the onset of vortex motion being associated with the vanishing of one eigenvalue of the stability matrix. Further applications of the method are suggested.

  10. Optical rankine vortex and anomalous circulation of light.

    PubMed

    Swartzlander, Grover A; Hernandez-Aranda, Raul I

    2007-10-19

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer. PMID:17995253

  11. Optical Rankine Vortex and Anomalous Circulation of Light

    SciTech Connect

    Swartzlander, Grover A. Jr.; Hernandez-Aranda, Raul I.

    2007-10-19

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer.

  12. Optical Rankine Vortex and Anomalous Circulation of Light

    NASA Astrophysics Data System (ADS)

    Swartzlander, Grover A., Jr.; Hernandez-Aranda, Raul I.

    2007-10-01

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer.

  13. Perturbations of vortex ring pairs

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.; Horn, Bart; Parikh, Sarthak

    2016-02-01

    We study pairs of coaxial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  14. Divergence of optical vortex beams.

    PubMed

    Reddy, Salla Gangi; Permangatt, Chithrabhanu; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-08-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analyzed by using the width [w(z)] of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane (z=0) as defined in [Opt. Lett.39, 4364 (2014)10.1364/OL.39.004364OPLEDP0146-9592]. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance (z), and found that it varies with the order in the same way as that of the inner and outer radii at z=0. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication. PMID:26368081

  15. Drag of buoyant vortex rings.

    PubMed

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers. PMID:26565349

  16. Drag of buoyant vortex rings

    NASA Astrophysics Data System (ADS)

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.

  17. Fractionalized gapless quantum vortex liquids

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Senthil, T.

    2015-05-01

    The standard theoretical approach to gapless spin liquid phases of two-dimensional frustrated quantum antiferromagnets invokes the concept of fermionic slave particles into which the spin fractionalizes. As an alternate we explore different kinds of gapless spin liquid phases in frustrated quantum magnets with X Y anisotropy where the vortex of the spin fractionalizes into gapless itinerant fermions. The resulting gapless fractionalized vortex liquid phases are studied within a slave particle framework that is dual to the usual one. We demonstrate the stability of some such phases and describe their properties. We give an explicit construction in an X Y -spin-1 system on triangular lattice, and interpret it as a critical phase in the vicinity of spin-nematic states.

  18. Wake Vortex Algorithm Scoring Results

    NASA Technical Reports Server (NTRS)

    Robins, R. E.; Delisi, D. P.; Hinton, David (Technical Monitor)

    2002-01-01

    This report compares the performance of two models of trailing vortex evolution for which interaction with the ground is not a significant factor. One model uses eddy dissipation rate (EDR) and the other uses the kinetic energy of turbulence fluctuations (TKE) to represent the effect of turbulence. In other respects, the models are nearly identical. The models are evaluated by comparing their predictions of circulation decay, vertical descent, and lateral transport to observations for over four hundred cases from Memphis and Dallas/Fort Worth International Airports. These observations were obtained during deployments in support of NASA's Aircraft Vortex Spacing System (AVOSS). The results of the comparisons show that the EDR model usually performs slightly better than the TKE model.

  19. The effect of self-gravity on vortex instabilities in disc-planet interactions

    NASA Astrophysics Data System (ADS)

    Lin, Min-Kai; Papaloizou, John C. B.

    2011-08-01

    We study the effect of disc self-gravity on instabilities associated with gaps opened by a giant Saturn mass planet in a protoplanetary disc that lead to the formation of vortices. We also study the non-linear evolution of the vortices when this kind of instability occurs in a self-gravitating disc as well as the potential effect on type III planetary migration due to angular momentum exchange via co-orbital flows. It is shown analytically and is confirmed through linear calculations that vortex-forming modes with low azimuthal mode number, m, are stabilized by the effect of self-gravity if the background structure is assumed fixed. However, the disc’s self-gravity also affects the background gap surface density profile in a way that destabilizes modes with high m. Linear calculations show that the combined effect of self-gravity through its effect on the background structure and its direct effect on the linear modes shifts the most rapidly growing vortex mode to higher m. Hydrodynamic simulations of gaps opened by a Saturn mass planet show more vortices develop with increasing disc mass and therefore importance of self-gravity. For sufficiently large disc mass the vortex instability is suppressed, consistent with analytical expectations. In this case a new global instability develops instead. In the non-linear regime, we found that vortex merging is in general increasingly delayed as the disc mass increases and in some cases multiple vortices persist until the end of simulations. For massive discs in which the vortices merge, the post-merger vortex is localized in azimuth and has similar structure to a Kida-like vortex. This is unlike the case without self-gravity where vortices merge to form a larger vortex extended in azimuth. In order to study the properties of the vortex systems without the influence of the planet, we also performed a series of supplementary simulations of co-orbital Kida-like vortices. We found that self-gravity enables Kida-like vortices

  20. Prediction and Control of Vortex Dominated and Vortex-wake Flows

    NASA Technical Reports Server (NTRS)

    Kandil, Osama

    1996-01-01

    This report describes the activities and accomplishments under this research grant, including a list of publications and dissertations, produced in the field of prediction and control of vortex dominated and vortex wake flows.

  1. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented in an elementary fashion and includes the relationship with traditional point-vortex studies, the convergence to smooth solutions of the Euler equations, and the essential differences between two- and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. The overlap with the excellent review articles available is kept to a minimum and more emphasis is placed on the area of expertise, namely two-dimensional flows around bluff bodies. When solid walls are present, complete mathematical models are not available and a more heuristic attitude must be adopted. The imposition of inviscid and viscous boundary conditions without conformal mappings or image vortices and the creation of vorticity along solid walls are examined in detail. Methods for boundary-layer treatment and the question of the Kutta condition are discussed. Practical aspects and tips helpful in creating a method that really works are explained. The topics include the robustness of the method and the assessment of accuracy, vortex-core profiles, timemarching schemes, numerical dissipation, and efficient programming. Calculations of flows past streamlined or bluff bodies are used as examples when appropriate.

  2. Birth and evolution of an optical vortex

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Sponselli, Anna; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-07-01

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  3. Birth and evolution of an optical vortex.

    PubMed

    Vallone, Giuseppe; Sponselli, Anna; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-07-25

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core. PMID:27464091

  4. Linear stability of a vortex ring revisited

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide; Hattori, Yuji

    We revisit the stability of an elliptically strained vortex and a thin axisymmetric vortex ring, embedded in an inviscid incompressible fluid, to three-dimensional disturbances of infinitesimal amplitude. The results of Tsai & Widnall (1976) for an elliptically strained vortex are simplified by providing an explicit expression for the disturbance flow field. A direct relation is established with the elliptical instability. For Kelvin's vortex ring, the primary perturbation to the Rankine vortex is a dipole field. We show that the dipole field causes a parametric resonance instability between axisymmetric and bending waves at intersection points of the dispersion curves. It is found that the dipole effect predominates over the straining effect for a very thin core. The mechanism is attributable to stretching of the disturbance vortex lines in the toroidal direction.

  5. Vortex Breakdown-Aircraft Tail Interaction

    NASA Astrophysics Data System (ADS)

    Kim, Younjong; Rockwell, Donald

    2003-11-01

    The interaction of vortex breakdown with the tail of an aircraft can lead to severe unsteady loading and vibration. A technique of high-image-density particle image velocimetry is employed to characterize the instantaneous and averaged structure of a broken-down vortex with a generic tail configuration. Interaction of the primary (incident) vortex with the tail results in formation of a relatively large-scale cluster of secondary vorticity. The coexistence of these primary and secondary vortical structures is intimately associated with the unsteadiness of the vortex system, and thereby the near-surface fluctuations associated with buffet loading. Instantaneous and averaged representations of the vortex-tail interaction provide insight into the complex physics. Furthermore, a low order POD model is employed to characterize the most energetic modes of the vortex-tail interaction.

  6. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  7. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  8. Experiments on shock/vortex interactions

    NASA Technical Reports Server (NTRS)

    Cattafesta, L. N., III; Settles, G. S.

    1992-01-01

    The interaction between a shock wave and a supersonic streamwise vortex is a fundamental fluid-dynamics problem with numerous practical applications. This paper describes an experimental study of this phenomenon. In particular, supersonic streamwise vortices of varying strength and Mach number were generated and measured using five-hole and total-temperature probes. In addition, the interactions between a vortex and either an oblique or a normal shock wave were visualized using schlieren and planar-laser-scattering techniques. The mean-flow measurements show both similarities and differences between the supersonic streamwise vortex and its incompressible counterpart, while the flow-visualization results show that the shock/vortex interaction is always unsteady and that, under certain conditions, the vortex can burst. The conditions necessary for supersonic vortex breakdown are presented.

  9. Optimal propulsive efficiency of vortex enhanced propulsion

    NASA Astrophysics Data System (ADS)

    Whittlesey, Robert; Dabiri, John

    2013-11-01

    The formation of coherent vortex rings in the jet wake of a vehicle has been shown to increase the propulsive efficiency of self-propelled vehicles. However, the effect of varying vortex ring formation characteristics has not been explored for vehicles at Reynolds numbers comparable to autonomous or manned submersible vehicles. In this work, we considered a range of vortex ring formation characteristics and found a peak in the propulsive efficiency where the vortex rings generated are coincident with the onset of vortex ring pinch off. This peak corresponds to a 22% increase in the propulsive efficiency for the vortex-enhanced wake compared to a steady jet. We gratefully acknowledge the support of the Office of Naval Research Grants N000140810918 and N000141010137.

  10. Optical vortex dynamics induced by vortex lens shift—optical system error analysis

    NASA Astrophysics Data System (ADS)

    Masajada, J.; Augustyniak, I.; Popiołek-Masajada, A.

    2013-04-01

    Optical vortices can be used in scanning microscopy. A sample can be scanned just by moving a vortex lens, introducing an optical vortex into a Gaussian beam. This technique seems to be cheap, precise and stable. In this paper the influence of various factors on this scanning technique has been investigated numerically, experimentally and analytically (when possible). Our results show that vortex scanning can be affected by Gaussian beam astigmatism. Other factors (such as optical vortex asymmetry) play a negligible role.

  11. Vortex patterns in a mesoscopic superconducting rod with a magnetic dot

    NASA Astrophysics Data System (ADS)

    Doria, Mauro M.; de C. Romaguera, Antonio R.; Peeters, F. M.

    2010-03-01

    We study a mesoscopic superconducting rod with a magnetic dot on its top having its moment oriented along the axis of symmetry. We study the dependence of the vortex pattern with the height and find that for very short and very long rods, the vortex pattern acquires a simple structure, consisting of giant and of multivortex states, respectively. In the long limit, the most stable configuration consists of two vortices, that reach the lateral surface of the rod diametrically opposed. The long rod shows reentrant behavior within some range of its radius and of the dot’s magnetic moment. Our results are obtained within the Ginzburg-Landau approach in the limit of no magnetic shielding.

  12. On the structure of the turbulent vortex

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1985-01-01

    The trailing vortex generated by a lifting surface, the structure of its turbulent core and the influence of axial flow within the vortex on its initial persistence and on its subsequent decay are described. Similarity solutions of the turbulent diffusion equation are given in closed form and results are expressed in sufficiently simple terms that the influence of the lifting surface parameters on the length of persistence and the rate of decay of the vortex can be evaluated.

  13. The structure of a moving vortex lattice

    SciTech Connect

    Braun, D.W.; Crabtree, G.W.; Kaper, H.G.; Leaf, G.K.; Levine, D.M.; Vinokur, V.M.; Koshelev, A.E.

    1995-11-01

    Numerical solutions of the time-dependent Ginzburg-Landau equations show a new mechanism for plastic motion of a driven vortex lattice in a clean superconductor. The mechanism, which involves the creation of a defect superstructure, is intrinsic to the moving vortex lattice and is independent of bulk pinning. Other structural features found in the solutions include a reorientation of the vortex lattice and a gradual healing of lattice defects under the influence of a transport current.

  14. Contributions to theory of vortex breakdown

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.; Uberoi, M. S.

    A study is made of vortex breakdown in stratified flows, and it is found that a positive stratification in the vortex where the density is increasing away from the axis, postpones the vortex breakdown and vice versa. This is apparent due to the density increasing in a direction opposite to that of an effective gravity which would correspond to a topheavy arrangement under gravity. It is also shown that a wavemotion promotes the possibility of axisymmetric flow downstream of the transaction.

  15. An investigation of counterrotating tip vortex interaction

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Uenishi, K.; Gliebe, P. R.

    1989-01-01

    A tip vortex interaction model originally developed for compressors has been extended and adapted for use with counterrotating open rotors. Comparison of available acoustic data with predictions (made with and without the tip vortex model included) illustrate the importance of this interaction effect. This report documents the analytical modeling, a limited experimental verification, and certain key parametric studies pertaining to the tip vortex as a noise source mechanism for the unsteady loading noise of counterrotating properllers.

  16. Vortex knot cascade in polynomial skein relations

    NASA Astrophysics Data System (ADS)

    Ricca, Renzo L.

    2016-06-01

    The process of vortex cascade through continuous reduction of topological complexity by stepwise unlinking, that has been observed experimentally in the production of vortex knots (Kleckner & Irvine, 2013), is shown to be reproduced in the branching of the skein relations of knot polynomials (Liu & Ricca, 2015) used to identify topological complexity of vortex systems. This observation can be usefully exploited for predictions of energy-complexity estimates for fluid flows.

  17. Optical vortex arrays from smectic liquid crystals.

    PubMed

    Son, Baeksik; Kim, Sejeong; Kim, Yun Ho; Käläntär, K; Kim, Hwi-Min; Jeong, Hyeon-Su; Choi, Siyoung Q; Shin, Jonghwa; Jung, Hee-Tae; Lee, Yong-Hee

    2014-02-24

    We demonstrate large-area, closely-packed optical vortex arrays using self-assembled defects in smectic liquid crystals. Self-assembled smectic liquid crystals in a three-dimensional torus structure are called focal conic domains. Each FCD, having a micro-scale feature size, produces an optical vortex with consistent topological charge of 2. The spiral profile in the interferometry confirms the formation of an optical vortex, which is predicted by Jones matrix calculations. PMID:24663788

  18. Mechanics of viscous vortex reconnection

    NASA Astrophysics Data System (ADS)

    Hussain, Fazle; Duraisamy, Karthik

    2011-02-01

    This work is motivated by our long-standing claim that reconnection of coherent structures is the dominant mechanism of jet noise generation and plays a key role in both energy cascade and fine-scale mixing in fluid turbulence [F. Hussain, Phys. Fluids 26, 2816 (1983); J. Fluid Mech. 173, 303 (1986)]. To shed further light on the mechanism involved and quantify its features, the reconnection of two antiparallel vortex tubes is studied by direct numerical simulation of the incompressible Navier-Stokes equations over a wide range (250-9000) of the vortex Reynolds number, Re (=circulation/viscosity) at much higher resolutions than have been attempted. Unlike magnetic or superfluid reconnections, viscous reconnection is never complete, leaving behind a part of the initial tubes as threads, which then undergo successive reconnections (our cascade and mixing scenarios) as the newly formed bridges recoil from each other by self-advection. We find that the time tR for orthogonal transfer of circulation scales as tR≈Re-3/4. The shortest distance d between the tube centroids scales as d ≈a[Re(t0-t)]3/4 before reconnection (collision) and as d ≈b[Re(t -t0)]2 after reconnection (repulsion), where t0 is the instant of smallest separation between vortex centroids. We find that b is a constant, thus suggesting self-similarity, but a is dependent on Re. Bridge repulsion is faster than collision and is more autonomous as local induction predominates, and, given the associated acceleration of vorticity, is potentially a source of intense sound generation. At the higher Re studied, the tails of the colliding threads are compressed into a planar jet with multiple vortex pairs. For Re>6000, there is an avalanche of smaller scales during the reconnection, the rate of small scale generation and the spectral content (in vorticity, transfer function and dissipation spectra) being quite consistent with the structures visualized by the λ2 criterion. The maximum rate of vortex

  19. Spin transport in tilted electron vortex beams

    NASA Astrophysics Data System (ADS)

    Basu, Banasri; Chowdhury, Debashree

    2014-12-01

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  20. Vortex lattice of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Dzedolik, Igor V.; Lapayeva, Svetlana; Pereskokov, Vladislav

    2016-07-01

    We theoretically investigate the formation of a plasmon polariton vortex lattice on a metal surface following the interference of surface plasmon polaritons (SPPs). The plasmon polariton vortex lattice is formed by the interference of the SPP transverse-magnetic mode (TM-mode) and electric mode (E-mode) in the presence of the inhomogeneity with a curvilinear boundary on the surface of the metal layer. The SPP vortex lattice can be controlled by changing the configuration of the boundary. Weak nonlinearity of the metal permittivity does not change the interference pattern, but it increases the propagation length of the SPPs and, therefore, the area of the vortex lattice too.

  1. Vortex induced strain effects in anisotropic superconductors

    SciTech Connect

    Miranovic, P.; Dobrosavljevic-Grujic, L.; Kogan, V.G.

    1996-12-31

    Strain in a superconductor, produced by the normal vortex core, can affect both static and dynamic properties of vortices. It causes an additional vortex-vortex interaction which is long-ranged ({approximately} 1/r{sup 2}) as compared with finite but much stronger London interaction in the fields far below H{sub c2}. The energy of this magneto-elastic interaction is calculated within London model. The role of strain effects in forming vortex lattice structure is demonstrated for YBa{sub 2}Cu{sub 3}O{sub 7}.

  2. Leapfrogging of multiple coaxial viscous vortex rings

    SciTech Connect

    Cheng, M. Lou, J.; Lim, T. T.

    2015-03-15

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior.

  3. Vortex Ring Interaction with Multiple Permeable Screens

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa N.; Krueger, Paul S.

    2008-11-01

    Previous experiments on the interaction of a vortex ring impinging on single thin permeable screen demonstrated the formation of secondary vortices and a transmitted vortex ring. The present work concerns experimental investigation of the interaction of a vortex ring with multiple permeable screens. Vortex rings are formed by piston-cylinder type vortex ring generator and impinge on an array of parallel, transparent screens. The screens have an open ratio of 84% and the spacing between screens is variable. The vortex rings were formed with an approximate jet Reynolds number of 1300 and a piston stroke-to-jet diameter ratio (L/D) of approximately 4. Dye visualization of the vortex rings shows that they break into multiple vortices after impinging on first screen The vortices subsequently disintegrate, but the total distance required for disintegration is relatively unaffected by the number of screens through with the vortices pass due to the regular structure of the screens. It is also observed that the location of the initial vortex ring axis relative to the screen rods has a significant effect on the vortex breakup and disintegration process.

  4. Vortex simulation of an inviscid shear layer

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1982-01-01

    The accuracy of the vortex-blob method was tested by simulating a free-shear-layer instability, Kirchhoff's elliptical vortex, and a circular vortex. The main numerical parameters in the vortex-blob method are the density of the vortices, and the distribution of vorticity within each vortex core. The growth rate of a periodic unstable mode of the shear layer was calculated numerically and compared with the exact result. The error is only a few percent for about 10 rows of vortex blobs. The error is reduced by decreasing the spacing between vortices and, correspondingly, the core size. In the simulation of the motion of the elliptical vortex, the rotation of the boundary, without change of shape, and the circular particle paths of the vortical fluid were well simulated. For the circular vortex, optimum sets of parameters were obtained by comparing them with the exact velocity. The results are consistent with convergence theories of the vortex-blob method. In particular, second-order convergence is observed with a Gaussian core from velocity calculation.

  5. Flow visualizations of perpendicular blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Rife, Michael C.; Davenport, William J.

    1992-01-01

    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.

  6. The permeability of the Antarctic vortex edge

    NASA Technical Reports Server (NTRS)

    Chen, Ping

    1994-01-01

    Mixing and cross-vortex mass transport along isentropic surfaces in the lower stratosphere are investigated with a 'contour advection' technique and a semi-Lagrangian transport model for the Antarctic winter of 1993 using analyzed winds from the United Kingdom Meteorological Office data assimilation system. Results from the 'contour advection' technique show that at the vortex edge there exists a potential vorticity (PV) contour that has the smallest lengthening rate. This PV contour is referred to as the 'line of separation' because it essentially separates the inner and outer vortex. The average e-folding time for the lengthening of the 'line of separation' increases monotonically with altitude, ranging from about 7 days on the 350 K isentropic surface to about 105 days on the 500 K isentropic surface. The results also suggest the existence of a transition layer around the 400 K isentropic surface, above which the vortex is nearly completely isolated from the midlatitudes and below which the vortex is less isolated. Results from a semi-Lagrangian transport model with an idealized tracer initially inside the inner vortex show that at 425 K and above virtually no tracer is transported out of the vortex during a 40-day integration starting from July 21, 1993. At 400 K and below a small amount of the tracer is transported out of the vortex while the bulk of the tracer remains confined within the inner vortex.

  7. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  8. A giant vesical calculus.

    PubMed

    Rahman, M; Uddin, A; Das, G C; Akanda, N I

    2007-07-01

    Massive or giant vesical calculus is a rare entity in the recent urological practice. Males are affected more than the females. Vesical calculi are usually secondary to bladder outlet obstruction. These patients present with recurrent urinary tract infection, haematuria or with retention of urine. We report a young male patient who presented with defaecatory problems along with other urinary symptoms. The patient having an average built, non diabetic but hypertensive. The stone could be palpated by physical examination. His urea levels were within normal limits but urine examination shows infection. USG reveals bilateral hydronephrosis with multiple stones in both kidneys along with a giant vesical calculus. After controlling urinary infection and hypertention he underwent an open cystolithotomy. During operation digital rectal help was needed to remove the stone as it was adherent with bladder mucosa. Post operative period was uneventful. His urinary output was quite normal and had no defaecatory problems. Patient left the hospital 10 days after operation. PMID:17917633

  9. Giant cell arteritis

    PubMed Central

    Calvo-Romero, J

    2003-01-01

    Giant cell arteritis (GCA), temporal arteritis or Horton's arteritis, is a systemic vasculitis which involves large and medium sized vessels, especially the extracranial branches of the carotid arteries, in persons usually older than 50 years. Permanent visual loss, ischaemic strokes, and thoracic and abdominal aortic aneurysms are feared complications of GCA. The treatment consists of high dose steroids. Mortality, with a correct treatment, in patients with GCA seems to be similar that of controls. PMID:13679546

  10. Giant dedifferentiated retroperitoneal liposarcoma.

    PubMed

    Dominguez, Elias; Lopez de Cenarruzabeitia, Iñigo; Martinez, Manuel; Rueda, J C; Lede, A; Barreiro, Erica; Diz, Susana

    2008-01-01

    Liposarcoma tumors only represent 0.1% of all cancers, but they are the more common of retroperitoneal sarcomas. It has a great tendency for local recurrence, mainly the dedifferentiated variety, but its complete resection can provide a 5-year survival of 70%. In this report, we present a case of a giant dedifferentiated retroperitoneal liposarcoma that did not affect any neighboring organ and that was successfully treated by means of complete surgical resection. PMID:19731863

  11. Ice Giant Exploration

    NASA Astrophysics Data System (ADS)

    Rymer, A. M.; Arridge, C. S.; Masters, A.; Turtle, E. P.; Simon, A. A.; Hofstadter, M. D.; Turrini, D.; Politi, R.

    2015-12-01

    The Ice Giants in our solar system, Uranus and Neptune, are fundamentally different from their Gas Giant siblings Jupiter and Saturn, from the different proportions of rock and ice to the configuration of their planetary magnetic fields. Kepler space telescope discoveries of exo-planets indicate that planets of this type are among the most ubiquitous universally and therefore a future mission to explore the nature of the Ice Giants in our own solar system will provide insights into the nature of extra-solar system objects in general. Uranus has the smallest self- luminosity of all the planets, potentially related to catastrophic events early in the planet's history, which also may explain Uranus' large obliquity. Uranus' atmosphere is subject to extreme seasonal forcing making it unique in the Solar System. Neptune is also unique in a number of ways, notably its large moon Triton which is likely a captured Kuiper Belt Object and one of only two moons in the solar system with a robustly collisional atmosphere. Similar to Uranus, the angle between the solar wind and the magnetic dipole axis is subject to large-amplitude variations on both diurnal and seasonal timescales, but peculiarly it has one of the quietest magnetospheres of the solar system, at least according to Voyager 2, the only spacecraft to encounter Neptune to date. A comprehensive mission, as advocated in the Decadal Survey, would provide enormous science return but is also challenging and expensive. In this presentation we will discuss mission scenarios and suggest how collaboration between disciplines and internationally can help us to pursue a mission that includes Ice Giant exploration.

  12. Giant thymic carcinoid.

    PubMed

    John, L C; Hornick, P; Lang, S; Wallis, J; Edmondson, S J

    1991-05-01

    Thymic carcinoid is a rare tumour. It may present with ectopic endocrine secretion or with symptoms of compression as a result of its size. A case is reported which presented with symptoms of compression where the size of the tumour was uniquely large such as to warrant the term giant thymic carcinoid. The typical histological features are described, together with its possible origin and its likely prognosis. PMID:1852667

  13. Giant rodlike reversed micelles

    SciTech Connect

    Yu, Z.J.; Neuman, R.D. )

    1994-05-04

    Herein we report that sodium bis(2-ethylhexyl)phosphate, which is similar in structure to the classical surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT), forms very large rodlike reversed micelles and that their size can be even much larger if water is removed from the apolar solution. We further suggest that long-range electrostatic interactions are the primary driving force for the formation of giant reversed micelles. 19 refs., 3 figs.

  14. Red giants seismology

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Samadi, R.; Belkacem, K.

    2013-11-01

    The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.

  15. Giant radio pulses

    NASA Astrophysics Data System (ADS)

    Kondratiev, Vladislav

    Rotation-powered radio pulsars exhibit a remarkably diverse spectrum of variability with characteristic time scales from days and even years (intermittent pulsars) to minutes-seconds (nulling) and (sub-)microseconds. The latter time scales are associated with the phenomenon of giant pulses (GPs) and micropulses. The story of GPs started in 1968, when Staelin and Reifenstein discovered the Crab pulsar through its spectacularly bright radio pulses. To date, only seven pulsars out of more than 2200 are known to show GP emission, namely the pulsars B0531+21, B1937+21, B0540-69, B1821-24, B1957+20, J0218+4232, and B1820-30A. Giant pulses are characterized by large energies (more than ten times of the energy of the average pulse), short durations, power-law energy distribution, specific rotational phase of occurrence, high degree of polarization, and accompanying high-energy radiation. Large energies of GPs and coincidence of their phase of occurrence with peaks of high-energy profiles hint at the same mechanism of radio GP and high-energy emission. The correlation of Crab pulsar GPs with optical, X-ray and gamma-ray photons was studied for the past 20 years, with only radio/optical link confirmed so far. In my talk I will present the summary of the observational evidence of radio GPs and give an overview of theoretical advances on giant-pulse emission mechanism.

  16. Unusual Giant Prostatic Urethral Calculus

    PubMed Central

    Bello, A.; Maitama, H. Y.; Mbibu, N. H.; Kalayi, G. D.; Ahmed, A.

    2010-01-01

    Giant vesico-prostatic urethral calculus is uncommon. Urethral stones rarely form primarily in the urethra, and they are usually associated with urethral strictures, posterior urethral valve or diverticula. We report a case of a 32-year-old man with giant vesico-prostatic (collar-stud) urethral stone presenting with sepsis and bladder outlet obstruction. The clinical presentation, management, and outcome of the giant prostatic urethral calculus are reviewed. PMID:22091328

  17. Investigation of the Vortex Tab. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoffler, K. D.

    1985-01-01

    An investigation was made into the drag reduction capability of vortex tabs on delta wing vortex flaps. The vortex tab is an up-deflected leading edge portion of the vortex flap. Tab deflection augments vortex suction on the flap, thus improving its thrust, but the tab itself is drag producing. Whether a net improvement in the drag reduction can be obtained with vortex tabs, in comparison with plane vortex flaps of the same total area, was the objective of this investigation. Wind tunnel tests were conducted on two models, and analytical studies were performed on one of them using a free vortex sheet theory.

  18. Intelligent and mass vortex flowmeters

    SciTech Connect

    Ribolini, E.

    1996-02-01

    In nature, Karman vortices are quite common. For instance, they happen when an airstream flows past a mountain, house, pole, tower, or skyscraper, or, more simply, when it blows among branches of a tree. The typical spiral shape of these swirls is invisible because there is no tracing element, such as the clouds in the satellite photo. Also, the observation point is rarely above or below the plane of these classic spiral shapes. Or you can watch the alternating whirlpool train that a river or stream makes behind bridge piers. Regular Karman vortices form downstream of a bluff body along two distinct wakes: the vortices of one wake rotate clockwise, those of the other rotate counterclockwise. Close to the bluff body, the wake distance is always constant and depends on bluff body shape and dimensions. The distance between two adjacent vortices is also constant and independent of fluid parameters such as velocity, pressure, density, and temperature. Vortices interact with their surrounding space by stimulating or choking every other nearby swirl on the verge of birth and development. Two Karman vortices cannot be generated simultaneously, but only one at a time, alternately on the left and right side of the bluff body. The process works just like a fluidic flip-flop. This natural phenomenon can be created artificially by placing a trapezoidal, or similarly symmetrical, bar across the diameter of a pipe section. Parallelism of the internal walls of the pipe and the corners of the trapezoidal bar ensure stability of the separation point of the boundary layer. Consequently, the separation point of each vortex with respect to the bar remains stable and the vortex train is regular. If the fluid speed doubles, creation of swirls doubles while the small volume encompassed by each vortex remains constant. So, by counting the number of swirls passing a fixed point during a defined time interval, one can compute the total passed fluid volume. 3 figs.

  19. Vortex metrology using Fourier analysis techniques: vortex networks correlation fringes.

    PubMed

    Angel-Toro, Luciano; Sierra-Sosa, Daniel; Tebaldi, Myrian; Bolognini, Néstor

    2012-10-20

    In this work, we introduce an alternative method of analysis in vortex metrology based on the application of the Fourier optics techniques. The first part of the procedure is conducted as is usual in vortex metrology for uniform in-plane displacement determination. On the basis of two recorded intensity speckled distributions, corresponding to two states of a diffuser coherently illuminated, we numerically generate an analytical signal from each recorded intensity pattern by using a version of the Riesz integral transform. Then, from each analytical signal, a two-dimensional pseudophase map is generated in which the vortices are located and characterized in terms of their topological charges and their core's structural properties. The second part of the procedure allows obtaining Young's interference fringes when Fourier transforming the light passing through a diffracting mask with multiple apertures at the locations of the homologous vortices. In fact, we use the Fourier transform as a mathematical operation to compute the far-field diffraction intensity pattern corresponding to the multiaperture set. Each aperture from the set is associated with a rectangular hole that coincides both in shape and size with a pixel from recorded images. We show that the fringe analysis can be conducted as in speckle photography in an extended range of displacement measurements. Effects related with speckled decorrelation are also considered. Our experimental results agree with those of speckle photography in the range in which both techniques are applicable. PMID:23089799

  20. Pinch-off of axisymmetric vortex pairs in the limit of vanishing vortex line curvature

    NASA Astrophysics Data System (ADS)

    Sadri, V.; Krueger, P. S.

    2016-07-01

    Pinch-off of axisymmetric vortex pairs generated by flow between concentric cylinders with radial separation ΔR was studied numerically and compared with planar vortex dipole behavior. The axisymmetric case approaches planar vortex dipole behavior in the limit of vanishing ΔR. The flow was simulated at a jet Reynolds number of 1000 (based on ΔR and the jet velocity), jet pulse length-to-gap ratio ( /L Δ R ) in the range 10-20, and gap-to-outer radius ratio ( /Δ R R o ) in the range 0.01-0.1. Contrary to investigations of strictly planar flows, vortex pinch-off was observed for all gap sizes investigated. This difference was attributed to the less constrained geometry considered, suggesting that even very small amounts of vortex line curvature and/or vortex stretching may disrupt the absence of pinch-off observed in strictly planar vortex dipoles.

  1. Hybrid vortex method for lifting surfaces with free-vortex flow

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.; Chu, L.-C.; Yates, E. C., Jr.

    1980-01-01

    A Nonlinear Hybrid Vortex method (NHV-method) has been developed for predicting the aerodynamic characteristics of wings exhibiting leading- and side-edge separations. This method alleviates the drawbacks of the Nonlinear Discrete Vortex method (NDV-method, also known as the multiple line vortex method.) The NHV-method combines continuous-vorticity and vortex-line representations of the wing and its separated free shear layers. Continuous vorticity is used in the near-field calculations, while discrete vortex-lines are used in the far-field calculations. The wing and its free shear layers are divided into quadrilateral vortex panels having second-order vorticity distributions. The aerodynamic boundary conditions and continuity of the vorticity distributions are satisfied at certain nodal points on the vortex panels. An iterative technique is used to satisfy these conditions in order to obtain the vorticity distribution and the wake shape. Distributed and total aerodynamic loads are then calculated.

  2. The effect of tip vortex structure on helicopter noise due to blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Wolf, T. L.; Widnall, S. E.

    1978-01-01

    A potential cause of helicopter impulsive noise, commonly called blade slap, is the unsteady lift fluctuation on a rotor blade due to interaction with the vortex trailed from another blade. The relationship between vortex structure and the intensity of the acoustic signal is investigated. The analysis is based on a theoretical model for blade/vortex interaction. Unsteady lift on the blades due to blade/vortex interaction is calculated using linear unsteady aerodynamic theory, and expressions are derived for the directivity, frequency spectrum, and transient signal of the radiated noise. An inviscid rollup model is used to calculate the velocity profile in the trailing vortex from the spanwise distribution of blade tip loading. A few cases of tip loading are investigated, and numerical results are presented for the unsteady lift and acoustic signal due to blade/vortex interaction. The intensity of the acoustic signal is shown to be quite sensitive to changes in tip vortex structure.

  3. Reconnection of colliding vortex rings.

    PubMed

    Chatelain, Philippe; Kivotides, Demosthenes; Leonard, Anthony

    2003-02-01

    We investigate numerically the Navier-Stokes dynamics of reconnecting vortex rings at small Reynolds number for a variety of configurations. We find that reconnections are dissipative due to the smoothing of vorticity gradients at reconnection kinks and to the formation of secondary structures of stretched antiparallel vorticity which transfer kinetic energy to small scales where it is subsequently dissipated efficiently. In addition, the relaxation of the reconnection kinks excites Kelvin waves which due to strong damping are of low wave number and affect directly only large scale properties of the flow. PMID:12633362

  4. Downhole vortex generator and method

    SciTech Connect

    Hayatdavoudi, A.; Adams, L.M.

    1984-03-13

    A drilling sub is provided in a drill string above a drill bit. The drilling sub includes a nozzle oriented to eject drilling fluid from said drill string into an annulus between the drill string and a well borehole at an elevation above the drill bit with a horizontal velocity component tangential to said annulus to thereby impart a swirling motion to drilling fluid in the annulus. This creates a vortex extending down to the drill bit to enhance the cleaning of cuttings from the borehole and to reduce a pressure differential thereby increasing a penetration rate of the drill bit.

  5. Untying vortex knots in fluids and superfluids

    NASA Astrophysics Data System (ADS)

    Kleckner, Dustin; Scheeler, Martin; Kedia, Hridesh; Irvine, William T. M.

    Recent work has demonstrated that vortex knots appear to always untie in fluids and superfluids. Should we expect the same behavior from these two very different systems? I will discuss this unknotting behavior, both quantitatively - through helicity - and qualitatively through the geometry and topology of the vortex lines as they evolve.

  6. An investigation of the vortex method

    SciTech Connect

    Pryor, D.W. Jr.

    1994-05-01

    The vortex method is a numerical scheme for solving the vorticity transport equation. Chorin introduced modern vortex methods. The vortex method is a Lagrangian, grid free method which has less intrinsic diffusion than many grid schemes. It is adaptive in the sense that elements are needed only where the vorticity is non-zero. Our description of vortex methods begins with the point vortex method of Rosenhead for two dimensional inviscid flow, and builds upon it to eventually cover the case of three dimensional slightly viscous flow with boundaries. This section gives an introduction to the fundamentals of the vortex method. This is done in order to give a basic impression of the previous work and its line of development, as well as develop some notation and concepts which will be used later. The purpose here is not to give a full review of vortex methods or the contributions made by all the researchers in the field. Please refer to the excellent review papers in Sethian and Gustafson, chapters 1 Sethian, 2 Hald, 3 Sethian, 8 Chorin provide a solid introduction to vortex methods, including convergence theory, application in two dimensions and connection to statistical mechanics and polymers. Much of the information in this review is taken from those chapters, Chorin and Marsden and Batchelor, the chapters are also useful for their extensive bibliographies.

  7. Vortex avalanches in a type II superconductor

    SciTech Connect

    Behnia, K.; Capan, C.; Mailly, D.; Etienne, B.

    1999-12-01

    The authors report on a study of the spatiotemporal variation of magnetic induction in a superconducting niobium sample during a slow sweep of external magnetic field. A sizable fraction of the increase in the local vortex population occurs in abrupt jumps. They compare the size distribution of these avalanches with the predictions of self-organized-criticality models for vortex dynamics.

  8. Numerical simulation of interacting vortex tubes

    SciTech Connect

    Pumir, A.; Kerr, R.M.

    1987-04-20

    The structure of the cores of interacting vortex tubes in three-dimensional incompressible hydrodynamics has been simulated by a pseudospectral method. A fast reconnection is observed for Reynolds numbers of order 1 000. At higher Reynolds numbers, the core tends to flatten, suggesting the formation of vortex ribbons.

  9. Underwing Compression Vortex-Attenuation Device

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr.

    1994-01-01

    Underwing compression vortex-attenuation device designed to provide method for attenuating lift-induced vortex generated by wings of airplane. Includes compression panel attached to lower surface of wing, facing perpendicular to streamwise airflow. Concept effective on all types of aircraft. Causes increase in wing lift rather than reduction when deployed. Device of interest to aircraft designers and enhances air safety in general.

  10. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.