Science.gov

Sample records for multirresistencia drogas mdr1

  1. Canine mdr1 gene mutation in Japan.

    PubMed

    Kawabata, Akiko; Momoi, Yasuyuki; Inoue-Murayama, Miho; Iwasaki, Toshiroh

    2005-11-01

    Frequency of the 4-bp deletion mutant in canine mdr1 gene was examined in 193 dogs of eight breeds in Japan. The mutant allele was found in Collies, Australian Shepherds, and Shetland Sheepdogs, where its respective frequencies were 58.3%, 33.3%, and 1.2%. The MDR1 protein was detected on peripheral blood mononuclear cells (PBMC) from a MDR1/MDR1 dog, but not on PBMC from a mdr1-1Delta/mdr1-1Delta Collie. Rhodamine 123 was extruded from MDR1/MDR1 lymphocytes. That excretion was inhibited by a MDR1 inhibitor, verapamil. On the other hand, Rh123 excretion was not observed from lymphocytes derived from a mdr1-1Delta/mdr1-1Delta Collie. These results indicated that the mutant mdr1 allele also existed in Collie-breed dogs in Japan at high rates and that mdr1-1Delta /mdr1-1Delta dogs have no functional MDR1. PMID:16327220

  2. [Vinca alkaloid and MDR1].

    PubMed

    Takigawa, Nagio; Tanimoto, Mitsune

    2008-07-01

    Vinca alkaloids inhibit microtubule formation by binding to tubulin. There are four clinically available vinca alkaloids including vincristine, vinblastine, vindesine, and vinorelbine. P-glycoprotein(P-gp)is the one of the efflux adenosine triphosphate(ATP)-binding cassette family transporters and is the encoded product of MDR1 gene. P-gp is overexpressed not only in tumor cells resistant to multiple anticancer agents but also found in normal cells such as liver, gastrointestinal tract and kidney, working as a biological defense mechanism. Single nucleotide polymorphisms for MDR1 in exon 12(1236), exon 21(2677), and exon 26(3435)have been well studied. Although C1236T and C3435T do not change the amino acid, G2677T and G2677A result in amino acid substitution of Ala893Ser and Ala893Thr, respectively. In the use of haplotypes to predict vincristine pharmacokinetics, the correlation between the haplotypes and the elimination half-life was reported. Many studies of the relationship between polymorphism/haplotype for MDR1 and pharmacodynamics including efficacy and toxicity of chemotherapy have been explored. PMID:18633246

  3. Treatment of MDR1 Mutant Dogs with Macrocyclic Lactones

    PubMed Central

    Geyer, Joachim; Janko, Christina

    2012-01-01

    P-glycoprotein, encoded by the multidrug resistance gene MDR1, is an ATP-driven drug efflux pump which is highly expressed at the blood-brain barrier of vertebrates. Drug efflux of macrocyclic lactones by P-glycoprotein is highly relevant for the therapeutic safety of macrocyclic lactones, as thereby GABA-gated chloride channels, which are confined to the central nervous system in vertebrates, are protected from high drug concentrations that otherwise would induce neurological toxicity. A 4-bp deletion mutation exists in the MDR1 gene of many dog breeds such as the Collie and the Australian Shepherd, which results in the expression of a non-functional P-glycoprotein and is associated with multiple drug sensitivity. Accordingly, dogs with homozygous MDR1 mutation are in general prone to neurotoxicity by macrocyclic lactones due to their increased brain penetration. Nevertheless, treatment of these dogs with macrocyclic lactones does not inevitably result in neurological symptoms, since, the safety of treatment highly depends on the treatment indication, dosage, route of application, and the individual compound used as outlined in this review. Whereas all available macrocyclic lactones can safely be administered to MDR1 mutant dogs at doses usually used for heartworm prevention, these dogs will experience neurological toxicity following a high dose regimen which is common for mange treatment in dogs. Here, we review and discuss the neurotoxicological potential of different macrocyclic lactones as well as their treatment options in MDR1 mutant dogs. PMID:22039792

  4. Etoposide enhances antitumor efficacy of MDR1-driven oncolytic adenovirus through autoupregulation of the MDR1 promoter activity.

    PubMed

    Su, Bing-Hua; Shieh, Gia-Shing; Tseng, Yau-Lin; Shiau, Ai-Li; Wu, Chao-Liang

    2015-11-10

    Conditionally replicating adenoviruses (CRAds), or oncolytic adenoviruses, such as E1B55K-deleted adenovirus, are attractive anticancer agents. However, the therapeutic efficacy of E1B55K-deleted adenovirus for refractory solid tumors has been limited. Environmental stress conditions may induce nuclear accumulation of YB-1, which occurs in multidrug-resistant and adenovirus-infected cancer cells. Overexpression and nuclear localization of YB-1 are associated with poor prognosis and tumor recurrence in various cancers. Nuclear YB-1 transactivates the multidrug resistance 1 (MDR1) genes through the Y-box. Here, we developed a novel E1B55K-deleted adenovirus driven by the MDR1 promoter, designed Ad5GS3. We tested the feasibility of using YB-1 to transcriptionally regulate Ad5GS3 replication in cancer cells and thereby to enhance antitumor efficacy. We evaluated synergistic antitumor effects of oncolytic virotherapy in combination with chemotherapy. Our results show that adenovirus E1A induced E2F-1 activity to augment YB-1 expression, which shut down host protein synthesis in cancer cells during adenovirus replication. In cancer cells infected with Ad5WS1, an E1B55K-deleted adenovirus driven by the E1 promoter, E1A enhanced YB-1 expression, and then further phosphorylated Akt, which, in turn, triggered nuclear translocation of YB-1. Ad5GS3 in combination with chemotherapeutic agents facilitated nuclear localization of YB-1 and, in turn, upregulated the MDR1 promoter activity and enhanced Ad5GS3 replication in cancer cells. Thus, E1A, YB-1, and the MDR1 promoter form a positive feedback loop to promote Ad5GS3 replication in cancer cells, and this regulation can be further augmented when chemotherapeutic agents are added. In the in vivo study, Ad5GS3 in combination with etoposide synergistically suppressed tumor growth and prolonged survival in NOD/SCID mice bearing human lung tumor xenografts. More importantly, Ad5GS3 exerted potent oncolytic activity against clinical

  5. The importance of MDR1 gene polymorphisms for tacrolimus dosage.

    PubMed

    Kravljaca, Milica; Perovic, Vladimir; Pravica, Vera; Brkovic, Voin; Milinkovic, Marija; Lausevic, Mirjana; Naumovic, Radomir

    2016-02-15

    Polymorphisms of the multi drug resistance (MDR1) gene cause variability in P-glycoprotein mediated metabolism of tacrolimus. The aim of this study was to examine the relationship between MDR1 gene single nucleotide polymorphisms (SNPs) and their haplotypes with dosage of tacrolimus in kidney transplant recipients who were cytochrome (CYP) 3A5*3 homozygotes. This study included 91 kidney transplant recipients followed two years after transplantation. Detection and analysis of MDR1 gene polymorphisms in positions C1236T, G2677T/A and C3435T were performed using PCR method. Patients with variant alleles for SNPs G2677T/A and C3435T required higher doses of tacrolimus and had a lower level/dose (L/D) ratio than patients with wild alleles or heterozygotes. That difference was the most obvious for SNP G2677T/A where TT homozygotes required significantly higher doses of tacrolimus during whole follow-up. Their L/D was significantly lower in the first month after transplantation. Recipients with CTT/TTT haplotype also had lower L/D than those with CGC/TTT and CGC/CGC, significantly in the 10th and 20th days after transplantation respectively (p<0.05). Our results demonstrate that TT homozygotes at positions G2677T/A and C3435T required a higher tacrolimus dose than those with wild alleles or heterozygotes. It may be helpful in the prevention of tacrolimus nephrotoxicity early after transplantation. PMID:26705892

  6. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction

    SciTech Connect

    Noonan, K.E.; Beck, C.; Holzmayer, T.A.; Chin, J.E.; Roninson, I.B. ); Wunder, J.S.; Andrulis, I.L. ); Gazdar, A.F. ); Willman, C.L.; Griffith, B. ); Von Hoff, D.D. )

    1990-09-01

    The resistance of tumor cells ot chemotheraprutic drugs is a major obstacle to successful cancer chemotherapy. In human cells, expression of the MDR1 gene, encoding a transmembrane efflux pump (P-glycoprotein), leads to decreased intracellular accumulation and resistance to a variety of lipophilic drugs (multidrug resistance; MDR). The levels of MDR in cell lines selected in bitro have been shown to correlate with the steady-state levels of MDR1 mRNA and P-glycoprotein. In cells with a severalfold increase in cellular drug resistance, MDR1 expression levels are close to the limits of detection by conventional assays. MDR1 expression has been frequently observed in human tumors after chemotherapy and in some but not all types of clinically refactory tumors untreated with chemotherapeutic drugs. The authors have devised a highly sensitive, specific, and quantitative protocol for measuring the levels of MDR1 mRNA in clincal samples, based on the polymerase chain reaction. They have used this assay to measure MDR1 gene expression in MDR cell lines and >300 normal tissues, tumor-derived cell lines, and clinical specimens of untreated tumors of the types in which MDR1 expression was rarely observed by standard assays. Low levels of MDR1 expression were found by polymerase chain reaction in most solid tumors and leukemias tested. The frequency of samples without detectable MDR1 expression varied among different types of tumors; MDR1-negative samples were ost common among tumor types known to be relatively responsive to chemotherapy.

  7. Trps1 is associated with the multidrug resistance of osteosarcoma by regulating MDR1 gene expression.

    PubMed

    Jia, Ming; Hu, Jing; Li, Weiwei; Su, Peng; Zhang, Hui; Zhang, Xiaofang; Zhou, Gengyin

    2014-03-01

    Multidrug resistance (MDR) is a significant clinical problem in the chemotherapy of osteosarcoma and has been linked to the cellular expression of several multidrug-efflux transporters such as MDR1/P-gp. Our inhibition of the transcription factor Trps1 led to repression of MDR1/P-gp while its overexpression resulted in upregulation of MDR1/P-gp. Flow cytometric analysis suggested Trps1 increased the release of several anti-cancer drugs, thus decreasing their accumulation. Immunohistochemical analysis of clinical samples indicated that the expression of Trps1 directly correlated with MDR1/P-gp. Trps1 inhibited TGFbeta-1 and directly bound to the MDR1 promoter. Our data demonstrate a role for Trps1 in the regulation of MDR1 expression in osteosarcoma. PMID:24491996

  8. MDR1 mediated chemoresistance: BMI1 and TIP60 in action.

    PubMed

    Banerjee Mustafi, Soumyajit; Chakraborty, Prabir Kumar; Naz, Sarwat; Dwivedi, Shailendra Kumar Dhar; Street, Mark; Basak, Rumki; Yang, Da; Ding, Kai; Mukherjee, Priyabrata; Bhattacharya, Resham

    2016-08-01

    Chemotherapy-induced emergence of drug resistant cells is frequently observed and is exemplified by the expression of family of drug resistance proteins including, multidrug resistance protein 1 (MDR1). However, a concise mechanism for chemotherapy-induced MDR1 expression is unclear. Mechanistically, mutational selection, epigenetic alteration, activation of the Wnt pathway or impaired p53 function have been implicated. The present study describes that the surviving fraction of cisplatin resistant cells co- upregulate MDR1, BMI1 and acetyl transferase activity of TIP60. Using complementary gain and loss of function approaches, we demonstrate that the expression of MDR1 is positively regulated by BMI1, a stem-cell factor classically known as a transcriptional repressor. Our study establishes a functional interaction between TIP60 and BMI-1 resulting in upregulation of MDR1 expression. Chromatin immunoprecipitation (ChIP) assays further establish that the proximal MDR1 promoter responds to cisplatin in a BMI1 dependent manner. BMI1 interacts with a cluster of E-box elements on the MDR1 promoter and recruits TIP60 resulting in acetylation of histone H2A and H3. Collectively, our data establish a hitherto unknown liaison among MDR1, BMI1 and TIP60 and provide mechanistic insights into cisplatin-induced MDR1 expression resulting in acquired cross-resistance against paclitaxel, doxorubicin and likely other drugs. In conclusion, our results advocate utilizing anti-BMI1 strategies to alleviate acquired resistance to chemotherapy. PMID:27295567

  9. MDR-1 gene C/T polymorphism in COPD: data from Aegean part of Turkey

    PubMed Central

    Toru, Ümran; Ayada, Ceylan; Genç, Osman; Turgut, Sebahat; Turgut, Günfer; Bulut, İsmet

    2014-01-01

    Objective: Genetic factors, in addition to oxidative stress factors, have been implicated in the development of chronic obstructive pulmonary disease (COPD). Multi-drug resistant-1 (MDR-1) is a gene located on chromosome 7 and the products of this gene protect lung tissue from oxidative stress. We searched the frequency of MDR-1 gene C/T polymorphism in patients with COPD and aimed to explain the association between MDR-1 gene and COPD development. Methods: 47 patients with COPD and 64 healthy control participants were placed in this study. DNAs were extracted from blood samples and MDR-1 amplification of DNA was performed using polymerase chain reaction and enzyme digestion techniques. Results: The frequencies of MDR-1 genotypes were found 17.0% for CC, 51.1% for CT and 31.9% for TT in the COPD group and 39.1% for CC, 53.1% for CT and 7.8% for TT in the control group. The distribution of MDR-1 gene C alleles were found 32.3% in COPD group and 67.7% in control group; T alleles were found 55.1% in COPD group and 44.9% in control group. There was statistically significant difference between the groups for genotype and allele frequency of MDR-1 gene (P = 0.001). Conclusion: TT genotype of MDR-1 gene was significantly more frequent in COPD patients. MDR-1 gene C/T polymorphism may play a role in COPD development. PMID:25419400

  10. Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon

    NASA Astrophysics Data System (ADS)

    Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing

    2016-03-01

    MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.

  11. Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR 1 protein.

    PubMed

    Fritz, F; Howard, E M; Hoffman, M M; Roepe, P D

    1999-03-30

    Recently [Hoffman, M. M., and Roepe, P. D. (1997) Biochemistry 36, 11153-11168] we presented evidence for a novel Na+- and Cl--dependent H+ transport process in LR73/hu MDR 1 CHO transfectants that likely explains pHi, volume, and membrane potential changes in eukaryotic cells overexpressing the hu MDR 1 protein. To further explore this process, we have overexpressed human MDR 1 protein in yeast strain 9.3 following a combination of approaches used previously [Kuchler, K., and Thorner, J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 2302-2306; Ruetz, S., et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 11588-11592]. Thus, a truncated hu MDR 1 cDNA was cloned behind a tandem array of sterile 6 (Ste6) and alchohol dehydrogenase (Adh) promoters to create the yeast expression vector pFF1. Valinomycin resistance of intact cells and Western blot analysis with purified yeast plasma membranes confirmed the overexpression of full length, functional, and properly localized hu MDR 1 protein in independently isolated 9.3/pFF1 colonies. Interestingly, relative valinomycin resistance and growth of the 9.3/hu MDR 1 strains are found to strongly depend on the ionic composition of the growth medium. Atomic absorption reveals significant differences in intracellular K+ for 9.3/hu MDR 1 versus control yeast. Transport assays using [3H]tetraphenylphosphonium ([3H]TPP+) reveal perturbations in membrane potential for 9.3/hu MDR 1 yeast that are stimulated by KCl and alkaline pHex. ATPase activity of purified plasma membrane fractions from yeast strains and LR73/hu MDR 1 CHO transfectants constructed previously [Hoffman, M. M., et al. (1996) J. Gen. Physiol. 108, 295-313] was compared. MDR 1 ATPase activity exhibits a higher pH optimum and different salt dependencies, relative to yeast H+ ATPase. Inside-out plasma membrane vesicles (ISOV) fabricated from 9.3/hu MDR 1 and control strains were analyzed for formation of H+ gradients +/- verapamil. Similar pharmacologic profiles are found for

  12. Effect of MDR1 gene polymorphisms on mortality in paraquat intoxicated patients.

    PubMed

    Kim, Hak Jae; Kim, Hyung-Ki; Kwon, Jun-Tack; Lee, Sun-Hyo; El Park, Sam; Gil, Hyo-Wook; Song, Ho-Yeon; Hong, Sae-Yong

    2016-01-01

    Paraquat is a fatal herbicide following acute exposure. Previous studies have suggested that multidrug resistance protein 1 (MDR1) might help remove paraquat from the lungs and the kidney. MDR1 single-nucleotide polymorphisms (SNPs) are involved in the pharmacokinetics of many drugs. The purpose of this study was to determine whether MDR1 SNPs were associated with the mortality in paraquat intoxicated patients. We recruited 109 patients admitted with acute paraquat poisoning. They were genotyped for C1236T, G2677T/A, and C3435T single-nucleotide polymorphisms (SNPs) of MDR1 gene. Their effects on mortality of paraquat intoxicated patients were evaluated. Overall mortality rate was 66.1%. Regarding the C1236T of the MDR1 gene polymorphism, 21 (19.3%) had the wild type MDR1 while 88 (80.7%) had homozygous mutation. Regarding the C3435T MDR1 gene polymorphism, 37(33.9%) patients had the wild type, 23 (21.1%) had heterozygous mutation, and 49 (45.0%) had homozygous mutation. Regarding the G2677T/A MDR1 gene polymorphism, 38 (34.9%) patients had the wild type, 57 (52.3%) had heterozygous mutation, and 14 (12.8%) had homozygous mutation. None of the individual mutations or combination of mutations (two or three) of MDR1 SNP genotypes altered the morality rate. The mortality rate was not significantly different among SNP groups of patients with <4.0 μg/mL paraquat. In conclusion, MDR1 SNPs have no effect on the mortality rate of paraquat intoxicated patients. PMID:27545861

  13. Effect of MDR1 gene polymorphisms on mortality in paraquat intoxicated patients

    PubMed Central

    Kim, Hak Jae; Kim, Hyung-Ki; Kwon, Jun-Tack; Lee, Sun-hyo; el Park, Sam; Gil, Hyo-Wook; Song, Ho-yeon; Hong, Sae-yong

    2016-01-01

    Paraquat is a fatal herbicide following acute exposure. Previous studies have suggested that multidrug resistance protein 1 (MDR1) might help remove paraquat from the lungs and the kidney. MDR1 single-nucleotide polymorphisms (SNPs) are involved in the pharmacokinetics of many drugs. The purpose of this study was to determine whether MDR1 SNPs were associated with the mortality in paraquat intoxicated patients. We recruited 109 patients admitted with acute paraquat poisoning. They were genotyped for C1236T, G2677T/A, and C3435T single-nucleotide polymorphisms (SNPs) of MDR1 gene. Their effects on mortality of paraquat intoxicated patients were evaluated. Overall mortality rate was 66.1%. Regarding the C1236T of the MDR1 gene polymorphism, 21 (19.3%) had the wild type MDR1 while 88 (80.7%) had homozygous mutation. Regarding the C3435T MDR1 gene polymorphism, 37(33.9%) patients had the wild type, 23 (21.1%) had heterozygous mutation, and 49 (45.0%) had homozygous mutation. Regarding the G2677T/A MDR1 gene polymorphism, 38 (34.9%) patients had the wild type, 57 (52.3%) had heterozygous mutation, and 14 (12.8%) had homozygous mutation. None of the individual mutations or combination of mutations (two or three) of MDR1 SNP genotypes altered the morality rate. The mortality rate was not significantly different among SNP groups of patients with <4.0 μg/mL paraquat. In conclusion, MDR1 SNPs have no effect on the mortality rate of paraquat intoxicated patients. PMID:27545861

  14. Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells

    SciTech Connect

    Yu, S.-T.; Chen, T.-M.; Tseng, S.-Y.; Chen, Y.-H. . E-mail: tcyhchen@ntu.edu.tw

    2007-06-22

    Development of agents to overcome multidrug resistance (MDR) is important in cancer chemotherapy. Up to date, few chemicals have been reported to down-regulate MDR1 gene expression. We evaluated the effect of tryptanthrin on P-glycoprotein (P-gp)-mediated MDR in a breast cancer cell line MCF-7. Tryptanthrin could depress overexpression of MDR1 gene. We observed reduction of P-gp protein in parallel with decreases in mRNA in MCF-7/adr cells treated with tryptanthrin. Tryptanthrin suppressed the activity of MDR1 gene promoter. Tryptanthrin also enhanced interaction of the nuclear proteins with the negatively regulatory CAAT region of MDR1 gene promoter in MCF-7/adr. It might result in suppression of MDR1 gene. In addition, tryptanthrin decreased the amount of mutant p53 protein with decreasing mutant p53 protein stability. It might contribute to negative regulation of MDR1 gene. In conclusion, tryptanthrin exhibited MDR reversing effect by down-regulation of MDR1 gene and might be a new adjuvant agent for chemotherapy.

  15. Structural and functional analysis of the mouse mdr1b gene promoter.

    PubMed

    Cohen, D; Piekarz, R L; Hsu, S I; DePinho, R A; Carrasco, N; Horwitz, S B

    1991-02-01

    The overproduction of P-glycoprotein, an integral membrane protein thought to function as a drug efflux pump, is the hallmark of the multidrug resistance phenotype. In murine multidrug resistant J774.2 cell lines, distinct mdr genes, mdr1a and mdr1b, encode unique P-glycoprotein isoforms. To examine the transcriptional regulation of the mdr1b gene, its promoter was isolated and characterized. The transcription initiation site was mapped by primer extension, and the 5'-flanking region was sequenced. Several potential regulatory elements were identified in this region. A transient expression vector was constructed by fusion of 540 base pairs of 5'-flanking sequence and part of the first untranslated exon to the chloramphenicol acetyltransferase (CAT) gene. When transfected into monkey kidney COS-1, rat pituitary GH3 or T47D human breast cells, the mdr1b 5'-flanking sequences were capable of driving CAT expression. Transient transfection studies using deletion subclones of the mdr1b-CAT construct were done to locate potential cis-acting sequences. The studies indicate the presence of cis-acting elements in the 5'-flanking region of the mdr1b gene. The implications of these findings for expression and regulation of the mdr1b gene are discussed. PMID:1671222

  16. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo

    SciTech Connect

    Wang, Lijuan; Wang, Changyuan; Peng, Jinyong; Liu, Qi; Meng, Qiang; Sun, Huijun; Huo, Xiaokui; and others

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vitro. • Dioscin did not increase MTX-induced gastrointestinal mucosal toxicity.

  17. Orally administered extract from Prunella vulgaris attenuates spontaneous colitis in mdr1a-/- mice

    PubMed Central

    Haarberg, Kelley MK; Wymore Brand, Meghan J; Overstreet, Anne-Marie C; Hauck, Catherine C; Murphy, Patricia A; Hostetter, Jesse M; Ramer-Tait, Amanda E; Wannemuehler, Michael J

    2015-01-01

    AIM: To investigate the ability of a Prunella vulgaris (P. vulgaris) ethanolic extract to attenuate spontaneous typhlocolitis in mdr1a-/- mice. METHODS: Vehicle (5% ethanol) or P. vulgaris ethanolic extract (2.4 mg/d) were administered daily by oral gavage to mdr1a-/- or wild type FVBWT mice from 6 wk of age up to 20 wk of age. Clinical signs of disease were noted by monitoring weight loss. Mice experiencing weight loss in excess of 15% were removed from the study. At the time mice were removed from the study, blood and colon tissue were collected for analyses that included histological evaluation of lesions, inflammatory cytokine levels, and myeloperoxidase activity. RESULTS: Administration of P. vulgaris extracts to mdr1a-/- mice delayed onset of colitis and reduced severity of mucosal inflammation when compared to vehicle-treated mdr1a-/- mice. Oral administration of the P. vulgaris extract resulted in reduced (P < 0.05) serum levels of IL-10 (4.6 ± 2 vs 19.4 ± 4), CXCL9 (1319.0 ± 277 vs 3901.0 ± 858), and TNFα (9.9 ± 3 vs 14.8 ± 1) as well as reduced gene expression by more than two-fold for Ccl2, Ccl20, Cxcl1, Cxcl9, IL-1α, Mmp10, VCAM-1, ICAM, IL-2, and TNFα in the colonic mucosa of mdr1a-/- mice compared to vehicle-treated mdr1a-/- mice. Histologically, several microscopic parameters were reduced (P < 0.05) in P. vulgaris-treated mdr1a-/- mice, as was myeloperoxidase activity in the colon (2.49 ± 0.16 vs 3.36 ± 0.06, P < 0.05). The numbers of CD4+ T cells (2031.9 ± 412.1 vs 5054.5 ± 809.5) and germinal center B cells (2749.6 ± 473.7 vs 4934.0 ± 645.9) observed in the cecal tonsils of P. vulgaris-treated mdr1a-/- were significantly reduced (P < 0.05) from vehicle-treated mdr1a-/- mice. Vehicle-treated mdr1a-/- mice were found to produce serum antibodies to antigens derived from members of the intestinal microbiota, indicative of severe colitis and a loss of adaptive tolerance to the members of the microbiota. These serum antibodies were greatly

  18. Safety of fluralaner, a novel systemic antiparasitic drug, in MDR1(-/-) Collies after oral administration

    PubMed Central

    2014-01-01

    Background Fluralaner is a novel systemic ectoparasiticide for dogs providing long-acting flea- and tick-control after a single oral dose. This study investigated the safety of oral administration of fluralaner at 3 times the highest expected clinical dose to Multi Drug Resistance Protein 1 (MDR1(-/-)) gene defect Collies. Methods Sixteen Collies homozygous for the MDR1 deletion mutation were included in the study. Eight Collies received fluralaner chewable tablets once at a dose of 168 mg/kg; eight sham dosed Collies served as controls. All Collies were clinically observed until 28 days following treatment. Results No adverse events were observed subsequent to fluralaner treatment of MDR1(-/-) Collies at three times the highest expected clinical dose. Conclusions Fluralaner chewable tablets are well tolerated in MDR1(-/-) Collies following oral administration. PMID:24602342

  19. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo.

    PubMed

    Wang, Lijuan; Wang, Changyuan; Peng, Jinyong; Liu, Qi; Meng, Qiang; Sun, Huijun; Huo, Xiaokui; Sun, Pengyuan; Yang, Xiaobo; Zhen, Yuhong; Liu, Kexin

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. PMID:24680847

  20. MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer.

    PubMed

    Fung, King Leung; Pan, James; Ohnuma, Shinobu; Lund, Paul E; Pixley, Jessica N; Kimchi-Sarfaty, Chava; Ambudkar, Suresh V; Gottesman, Michael M

    2014-01-15

    The drug efflux function of P-glycoprotein (P-gp) encoded by MDR1 can be influenced by genetic polymorphisms, including two synonymous changes in the coding region of MDR1. Here we report that the conformation of P-gp and its drug efflux activity can be altered by synonymous polymorphisms in stable epithelial monolayers expressing P-gp. Several cell lines with similar MDR1 DNA copy number were developed and termed LLC-MDR1-WT (expresses wild-type P-gp), LLC-MDR1-3H (expresses common haplotype P-gp), and LLC-MDR1-3HA (a mutant that carries a different valine codon in position 3435). These cell lines express similar levels of recombinant mRNA and protein. P-gp in each case is localized on the apical surface of polarized cells. However, the haplotype and its mutant P-gps fold differently from the wild-type, as determined by UIC2 antibody shift assays and limited proteolysis assays. Surface biotinylation experiments suggest that the non-wild-type P-gps have longer recycling times. Drug transport assays show that wild-type and haplotype P-gp respond differently to P-gp inhibitors that block efflux of rhodamine 123 or mitoxantrone. In addition, cytotoxicity assays show that the LLC-MDR1-3H cells are more resistant to mitoxantrone than the LLC-MDR1-WT cells after being treated with a P-gp inhibitor. Expression of polymorphic P-gp, however, does not affect the host cell's morphology, growth rate, or monolayer formation. Also, ATPase activity assays indicate that neither basal nor drug-stimulated ATPase activities are affected in the variant P-gps. Taken together, our findings indicate that "silent" polymorphisms significantly change P-gp function, which would be expected to affect interindividual drug disposition and response. PMID:24305879

  1. Relationship between the expression of MDR1 in hepatocellular cancer and its biological behaviors

    PubMed Central

    Gao, Bo; Yang, Feng-Mei; Yu, Zong-Tao; Li, Rui; Xie, Fei; Chen, Jie; Luo, Hai-Jun; Zhang, Ji-Cai

    2015-01-01

    Objective: By the detection of HBV infection, AFP and AST, the targets of biological behavior and the gene expression of multi-drug resistance gene 1 (MDR1) in hepatocellular carcinoma (HCC), we investigate characteristics of the expression of MDR1 in HCC and its relationship with HCC biological behavior. Methods: Using real-time fluorescence quantitative PCR (FQ-PCR) to detect the expressions of MDR1 in 102 samples of HCC tissue and 20 samples of non-cancerous tissue, we analyze the relationship between expressions of MDR1 and biological characteristics of HCC. Results: The expression of MDR1 in HCC is 0.55±0.27, and in normal liver tissues is 0.23±0.10, respectively. The expression in HCC is higher than it in normal liver tissue, the difference is statistically significant (P<0.05) and the difference between the expression and the HCC envelopes is statistically significant, and the expression increases along with the increase of Edmondson classification (P<0.05). HBV infection, AFP positive, the rise of AST, all these factors have positive correlations with the expression (r=0.463, 0.473, 0.299). In MDR1 expressions of HCC patients, the survival curve of the negative is higher than that of the positive, but the difference is not statistically significant. Conclusion: There are drug resistance phenomena in HCC, MDR1 expression may play an important role in primary HCC drug resistance. HBV infection can be detected as a reference indicator of HCC chemotherapy resistance, plasma levels of AFP, AST can be used as a reference index change dynamic monitoring of MDR1 expression. PMID:26261589

  2. Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor.

    PubMed Central

    Raggers, R J; Vogels, I; van Meer, G

    2001-01-01

    The human multidrug-resistance (MDR1) P-glycoprotein (Pgp) is an ATP-binding-cassette transporter (ABCB1) that is ubiquitously expressed. Often its concentration is high in the plasma membrane of cancer cells, where it causes multidrug resistance by pumping lipophilic drugs out of the cell. In addition, MDR1 Pgp can transport analogues of membrane lipids with shortened acyl chains across the plasma membrane. We studied a role for MDR1 Pgp in transport to the cell surface of the signal-transduction molecule platelet-activating factor (PAF). PAF is the natural short-chain phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine. [(14)C]PAF synthesized intracellularly from exogenous alkylacetylglycerol and [(14)C]choline became accessible to albumin in the extracellular medium of pig kidney epithelial LLC-PK1 cells in the absence of vesicular transport. Its translocation across the apical membrane was greatly stimulated by the expression of MDR1 Pgp, and inhibited by the MDR1 inhibitors PSC833 and cyclosporin A. Basolateral translocation was not stimulated by expression of the basolateral drug transporter MRP1 (ABCC1). It was insensitive to the MRP1 inhibitor indomethacin and to depletion of GSH which is required for MRP1 activity. While efficient transport of PAF across the apical plasma membrane may be physiologically relevant in MDR1-expressing epithelia, PAF secretion in multidrug-resistant tumours may stimulate angiogenesis and thereby tumour growth. PMID:11463358

  3. A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function

    PubMed Central

    Fung, King Leung; Gottesman, Michael M.

    2009-01-01

    The MDR1 (ABCB1) gene encodes a membrane-bound transporter that actively effluxes a wide range of compounds from cells. The overexpression of MDR1 by multidrug-resistant cancer cells is a serious impediment to chemotherapy. MDR1 is expressed in various tissues to protect them from the adverse effect of toxins. The pharmacokinetics of drugs that are also MDR1 substrates also influence disease outcome and treatment efficacy. Although MDR1 is a well conserved gene, there is increasing evidence that its polymorphisms affect substrate specificity. Three single nucleotide polymorphisms (SNPs) occur frequently and have strong linkage, creating a common haplotype at positions 1236C>T (G412G), 2677G>T (A893S) and 3435C>T (I1145I). The frequency of the synonymous 3435C>T polymorphism has been shown to vary significantly according to ethnicity. Existing literature suggests that the haplotype plays a role in response to drugs and disease susceptibility. This review summarizes recent findings on the 3435C>T polymorphism of MDR1 and the haplotype to which it belongs. A possible molecular mechanism of action by ribosome stalling that can change protein structure and function by altering protein folding is discussed. PMID:19285158

  4. Validation of a P-Glycoprotein (P-gp) Humanized Mouse Model by Integrating Selective Absolute Quantification of Human MDR1, Mouse Mdr1a and Mdr1b Protein Expressions with In Vivo Functional Analysis for Blood-Brain Barrier Transport

    PubMed Central

    Sadiq, Muhammad Waqas; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Hammarlund-Udenaes, Margareta

    2015-01-01

    It is essential to establish a useful validation method for newly generated humanized mouse models. The novel approach of combining our established species-specific protein quantification method combined with in vivo functional studies is evaluated to validate a humanized mouse model of P-gp/MDR1 efflux transporter. The P-gp substrates digoxin, verapamil and docetaxel were administered to male FVB Mdr1a/1b(+/+) (FVB WT), FVB Mdr1a/1b(-/-) (Mdr1a/1b(-/-)), C57BL/6 Mdr1a/1b(+/+) (C57BL/6 WT) and humanized C57BL (hMDR1) mice. Brain-to-plasma total concentration ratios (Kp) were measured. Quantitative targeted absolute proteomic (QTAP) analysis was used to selectively quantify the protein expression levels of hMDR1, Mdr1a and Mdr1b in the isolated brain capillaries. The protein expressions of other transporters, receptors and claudin-5 were also quantified. The Kp for digoxin, verapamil, and docetaxel were 20, 30 and 4 times higher in the Mdr1a/1b(-/-) mice than in the FVB WT controls, as expected. The Kp for digoxin, verapamil and docetaxel were 2, 16 and 2-times higher in the hMDR1 compared to the C57BL/6 WT mice. The hMDR1 mice had 63- and 9.1-fold lower expressions of the hMDR1 and Mdr1a proteins than the corresponding expression of Mdr1a in C57BL/6 WT mice, respectively. The protein expression levels of other molecules were almost consistent between C57BL/6 WT and hMDR1 mice. The P-gp function at the BBB in the hMDR1 mice was smaller than that in WT mice due to lower protein expression levels of hMDR1 and Mdr1a. The combination of QTAP and in vivo functional analyses was successfully applied to validate the humanized animal model and evaluates its suitability for further studies. PMID:25932627

  5. Inhibition of MDR1 gene expression by antimessenger oligonucleotides lowers multiple drug resistance.

    PubMed

    Quattrone, A; Papucci, L; Morganti, M; Coronnello, M; Mini, E; Mazzei, T; Colonna, F P; Garbesi, A; Capaccioli, S

    1994-01-01

    The multiple drug resistance of neoplastic cells is mediated by overexpression of the human MDR1 gene, which encodes the transmembrane efflux pump P-glycoprotein. In both cell lines and human tumors the MDR phenotype closely correlates with MDR1 mRNA and P-glycoprotein levels. Reversion of the MDR phenotype was attempted in human colorectal adenocarcinoma doxorubicin (Dx)-resistant cells (Lo Vo/Dx) by long-term administration of an equimolecular mixture of three unmodified ODNs (18mer) targeted to adjacent binding sites of the MDR1 mRNA and carried by a synthetic cationic lipid (DOTAP). Three different experimental parameters were used to evaluate the antimessenger agent's effectiveness in comparison with a random sequence ODN: the level of cell resistance to Dx; the level of P-glycoprotein (determined by flow cytometry); the level of MDR1 mRNA (determined by quantitative RT-PCR). Experimental data indicate that the level of both the MDR1 mRNA and the P-glycoprotein is reduced by approximately 50% by treatment of Lo Vo/Dx cells with a 10 microM total concentration of the aODN mixture every 24 h for 15 days. In agreement with these findings, sensitivity to Dx of the antimessenger agent-treated Lo Vo/Dx cells was almost doubled in comparison with random sequence ODN-treated controls. PMID:7865906

  6. Breed distribution of the nt230(del4) MDR1 mutation in dogs.

    PubMed

    Gramer, Irina; Leidolf, Regina; Döring, Barbara; Klintzsch, Stefanie; Krämer, Eva-Maria; Yalcin, Ebru; Petzinger, Ernst; Geyer, Joachim

    2011-07-01

    A 4-bp deletion mutation associated with multiple drug sensitivity exists in the canine multidrug resistance (MDR1) gene. This mutation has been detected in more than 10 purebred dog breeds as well as in mixed breed dogs. To evaluate the breed distribution of this mutation in Germany, 7378 dogs were screened, including 6999 purebred and 379 mixed breed dogs. The study included dog breeds that show close genetic relationship or share breeding history with one of the predisposed breeds but in which the occurrence of the MDR1 mutation has not been reported. The breeds comprised Bearded Collies, Anatolian Shepherd Dog, Greyhound, Belgian Tervuren, Kelpie, Borzoi, Australian Cattle Dog and the Irish Wolfhound. The MDR1 mutation was not detected is any of these breeds, although it was found as expected in the Collie, Longhaired Whippet, Shetland Sheepdog, Miniature Australian Shepherd, Australian Shepherd, Wäller, White Swiss Shepherd, Old English Sheepdog and Border Collie with varying allelic frequencies for the mutant MDR1 allele of 59%, 45%, 30%, 24%, 22%, 17%, 14%, 4% and 1%, respectively. Allelic frequencies of 8% and 2% were determined in herding breed mixes and unclassified mixed breeds, respectively. Because of its widespread breed distribution and occurrence in many mixed breed dogs, it is difficult for veterinarians and dog owners to recognise whether MDR1-related drug sensitivity is relevant for an individual animal. This study provides a comprehensive overview of all affected dog breeds and many dog breeds that are probably unaffected on the basis of ∼15,000 worldwide MDR1 genotyping data. PMID:20655253

  7. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1

    PubMed Central

    FAN, HAONING; SHAO, MENG; HUANG, SHAOHUI; LIU, YING; LIU, JIE; WANG, ZHIYUAN; DIAO, JIANXIN; LIU, YUANLIANG; TONG, LI; FAN, QIN

    2016-01-01

    Curcumin (Cur) exhibits radiosensitization effects to a variety of malignant tumors. The present study investigates the radiosensitizing effect of Cur on nasopharyngeal carcinoma (NPC) cells and whether its mechanism is associated with microRNA-593 (miR-593) and multidrug resistance gene 1 (MDR1). A clonogenic assay was performed to measure the radiosensitizing effect. The expression of miR-593 and MDR1 was analyzed by quantitative polymerase chain reaction (qPCR) or western blot assay. A transplanted tumor model was established to identify the radiosensitizing effect in vivo. A luciferase-based reporter was constructed to evaluate the effect of direct binding of miR-593 to the putative target site on the 3′ UTR of MDR1. The clonogenic assay showed that Cur enhanced the radiosensitivity of cells. Cur (100 mg/kg) combined with 4 Gy irradiation inhibited the growth of a transplanted tumor model in vivo, resulting in the higher inhibition ratio compared with the radiotherapy-alone group. These results demonstrated that Cur had a radiosensitizing effect on NPC cells in vivo and in vitro; Cur-mediated upregulation of miR-593 resulted in reduced MDR1 expression, which may promote radiosensitivity of NPC cells. PMID:27313684

  8. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR

    PubMed Central

    Pondugula, Satyanarayana R.; Flannery, Patrick C.; Abbott, Kodye L.; Coleman, Elaine S.; Mani, Sridhar; Samuel, Temesgen; Xie, Wen

    2015-01-01

    Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3′-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively. PMID:25542144

  9. Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1)

    PubMed Central

    Yang, Tao; Kong, Bin; Kuang, Yongqin; Cheng, Lin; Gu, Jianwen; Zhang, Junhai; Shu, Haifeng; Yu, Sixun; Yang, Xiaokun; Cheng, Jingming; Huang, Haidong

    2015-01-01

    Objective: To observe the interventional effects of emodin in epileptic rats and elucidate its possible mechanism of action. Methods: Thirty-six female Wistar rats were randomly divided into normal control group, model group (intraperitoneal injection of kainic acid) and emodin group (intraperitoneal injection of kainic acid + emodin intervention). The rat epilepsy model was confirmed by behavioral tests and electroencephalography. The protein levels of P-glycoprotein and N-methyl-D-aspartate (NMDA) receptor in cerebral vascular tissue were analyzed by western blotting, and mRNA levels of multidrug resistance gene 1 (MDR1) and cyclooxygenase-2 (COX-2) were analyzed by real-time PCR. COX-2 and P-glycoprotein levels in the brains were detected by immunohistochemical assay. Results: The seizures were relieved in emodin group. Laser scanning confocal microscopy showed P-glycoprotein fluorescence increased significantly after seizures, indicating that epilepsy can induce overexpression of P-glycoprotein. Compared with control group, protein levels of P-glycoprotein and NMDA receptor in cerebral vascular tissue were significantly higher in model group, and mRNA levels of MDR1 and COX-2 were also significantly increased. Compared with model group, P-glycoprotein and NMDA receptor levels in cerebral vascular tissue were significantly decreased in emodin group (P < 0.05), and the levels of MDR1 and COX-2 were down-regulated (P < 0.05). In the rat brain, seizures could significantly increase COX-2 and P-glycoprotein levels, while emodin intervention was able to significantly reduce the levels of both. Discussion: These findings suggest that epileptic seizures are tightly associated with up-regulated MDR1 gene, and emodin shows good antagonistic effects on epileptic rats, possibly through inhibition of MDR1 gene and its associated genes. PMID:26045880

  10. MDR1 Polymorphisms and Idiopathic Nephrotic Syndrome in Slovak Children: Preliminary Results

    PubMed Central

    Cizmarikova, Martina; Podracka, Ludmila; Klimcakova, Lucia; Habalova, Viera; Boor, Andrej; Mojzis, Jan; Mirossay, Ladislav

    2015-01-01

    Background The role of the multidrug resistance-1 (MDR1 or ABCB1) gene polymorphisms 1236T>C, 2677T>G, and 3435T>C was studied in relation to susceptibility, demographics, and pathological characteristics, as well as their role in the therapeutic response (TR) to prednisone treatment in children with idiopathic nephrotic syndrome (INS). Material/Methods The polymorphisms were analyzed using the polymerase chain reaction-restriction fragment length polymorphism method in 46 children with INS and in 100 healthy controls. Different genetic models (codominant, dominant, recessive, and overdominant) were used for testing of associations between polymorphisms and phenotypes. Results Statistical analysis showed a significantly increased chance of TR in children carrying 3435TC genotype (OR=5.13, 95% CI=1.18–22.25; overdominant model). Moreover, INS patients under 6 years of age had significantly decreased frequencies of MDR1 1236CC (7.7% vs. 35%, p=0.029) or 2677GG (3.8% vs. 30.0%, p=0.033) genotypes. We also observed that patients with minimal change in disease and patients under 6 years of age at the onset of INS were initial responders more frequently when compared with children with focal segmental glomerulosclerosis and patients ≥6 years old at the onset (p=0.0001, p=0.027, respectively). Conclusions These data suggest that prednisone TR may be influenced by histology, age at the onset of INS, and MDR1 3435T>C polymorphism. The MDR1 1236T>C and 2677T>G polymorphisms were significantly associated with age at onset. Larger multicenter studies and studies across other ethnic groups are needed to elucidate the contradictory implications of MDR1 polymorphisms with INS in children. PMID:25559283

  11. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1.

    PubMed

    Sampath, J; Sun, D; Kidd, V J; Grenet, J; Gandhi, A; Shapiro, L H; Wang, Q; Zambetti, G P; Schuetz, J D

    2001-10-19

    The most frequently expressed drug resistance genes, MDR1 and MRP1, occur in human tumors with mutant p53. However, it was unknown if mutant p53 transcriptionally regulated both MDR1 and MRP1. We demonstrated that mutant p53 did not activate either the MRP1 promoter or the endogenous gene. In contrast, mutant p53 strongly up-regulated the MDR1 promoter and expression of the endogenous MDR1 gene. Notably, cells that expressed either a transcriptionally inactive mutant p53 or the empty vector showed no endogenous MDR1 up-regulation. Transcriptional activation of the MDR1 promoter by mutant p53 required an Ets binding site, and mutant p53 and Ets-1 synergistically activated MDR1 transcription. Biochemical analysis revealed that Ets-1 interacted exclusively with mutant p53s in vivo but not with wild-type p53. These findings are the first to demonstrate the induction of endogenous MDR1 by mutant p53 and provide insight into the mechanism. PMID:11483599

  12. Nanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer

    PubMed Central

    Nourbakhsh, Mahnaz; Jaafari, Mahmoud Reza; Lage, Hermann; Abnous, Khalil; mosaffa, Fatemeh; Badiee, Ali; Behravan, Javad

    2015-01-01

    Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on target cells. We investigated a special class of PEGylated lipid-based nanoparticles (NP), named nanolipoparticles (NLPs), for siRNA-mediated P-gp downregulation. Materials and Methods: NLPs were prepared based on low detergent dialysis method. After characterization, we evaluated the effect of NLPs on siRNA delivery, and P-gp downregulation compared to oligofectamine™ (OFA) in vitro and in vivo. Results: Our results showed a significant decrease in P-gp expression and subsequent enhancement of chemosensitivity to doxorubicin in vitro. Although the effectiveness of NLPs for in vitro siRNA delivery compared to OFA was limited, the results of in vivo studies showed noticeable effectiveness of NLPs for systemic siRNA delivery. siRNA delivery using NLPs could downregulate MDR1 in tumor cells more than 80%, while OFA had a reverse effect on MDR1 expression in vivo. Conclusion: The results indicated that the prepared NLPs could be suitable siRNA delivery systems for tumor therapy. PMID:26019802

  13. Use of polymerase chain reaction in the quantitation of mdr-1 gene expression

    SciTech Connect

    Murphy, L.D.; Herzog, C.E.; Rudick, J.B.; Fojo, A.T.; Bates, S.E. )

    1990-11-01

    The ability of the polymerase chain reaction (PCR) to quantitate expression of mRNA was examined in the present study. The model chosen was expression of the multidrug resistance gene mdr-1/Pgp in two colon carcinoma cell lines which express mdr-1/Pgp at levels comparable to those found in many clinical samples. PCR was utilized to evaluate differences in mdr-1/Pgp expression in the two cell lines after modulation by sodium butyrate. Thus, comparisons were made across a range of mdr-1/Pgp expression as well as comparisons of small differences. The PCR was found to be both sensitive and quantitative. Accurate quantitation requires demonstration of an exponential range which varies among samples. The exponential range can be determined by carrying out the PCR for a fixed number of cycles on serial dilutions of the RNA reverse transcription product, or by performing the reaction with a varying number of cycles on a fixed quantity of cDNA. By quantitation of the difference in PCR product derived from a given amount of RNA from the sodium butyrate treated and untreated cells, the difference in mRNA expression between samples can be determined. Normalization of the results can be achieved by independent amplification of a control gene, such as {beta}{sub 2}-microglobulin, when the latter is also evaluated in the exponential range. Simultaneous amplification of the control and target genes results in lower levels of PCR products due to competition, which varies from sample to sample. The PCR is thus a labor-intensive but sensitive method of quantitating gene expression in small samples of RNA.

  14. Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1

    PubMed Central

    Dreiseitel, A; Oosterhuis, B; Vukman, KV; Schreier, P; Oehme, A; Locher, S; Hajak, G; Sand, PG

    2009-01-01

    Background and purpose: Dietary anthocyanins hold great promise in the prevention of chronic disease but factors affecting their bioavailability remain poorly defined. Specifically, the role played by transport mechanisms at the intestinal and blood–brain barriers (BBB) is currently unknown. Experimental approach: In the present study, 16 anthocyanins and anthocyanidins were exposed to the human efflux transporters multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), using dye efflux, ATPase and, for BCRP, vesicular transport assays. Key results: All test compounds interacted with the BCRP transporter in vitro. Of these, seven emerged as potential BCRP substrates (malvidin, petunidin, malvidin-3-galactoside, malvidin-3,5-diglucoside, cyanidin-3-galactoside, peonidin-3-glucoside, cyanidin-3-glucoside) and 12 as potential inhibitors of BCRP (cyanidin, peonidin, cyanidin-3,5-diglucoside, malvidin, pelargonidin, delphinidin, petunidin, delphinidin-3-glucoside, cyanidin-3-rutinoside, malvidin-3-glucoside, pelargonidin-3,5-diglucoside, malvidin-3-galactoside). Malvidin, malvidin-3-galactoside and petunidin exhibited bimodal activities serving as BCRP substrates at low concentrations and, at higher concentrations, as BCRP inhibitors. Effects on MDR1, in contrast, were weak. Only aglycones exerted mild inhibitory activity. Conclusions and implications: Although the anthocyanidins under study may alter pharmacokinetics of drugs that are BCRP substrates, they are less likely to interfere with activities of MDR1 substrates. The present data suggest that several anthocyanins and anthocyanidins may be actively transported out of intestinal tissues and endothelia, limiting their bioavailability in plasma and brain. PMID:19922539

  15. MDR1 gene expression enhances long-term engraftibility of cultured bone marrow cells

    SciTech Connect

    Rentala, Satyanarayana; Sagar Balla, Murali Mohan; Khurana, Satish; Mukhopadhyay, Asok . E-mail: asok@nii.res.in

    2005-09-30

    Primitive hematopoietic stem cells are responsible for long-term engraftment in irradiated host. Here, we report that multi-drug resistance 1 (mdr1) gene expressing primitive hematopoietic cells were multiplied in ex vivo culture, with the support of extracellular matrix components and cytokines. About 20-fold expansion of total nucleated cells was achieved in a 10-day culture. Lin{sup -}Sca-1{sup +} and long-term culture-initiating cells were increased by 54- and 26-fold, respectively. Expanded cells were long-term multi-lineage engraftible in sub-lethally irradiated mice. Donor-derived peripheral blood chimerism was significantly higher (73.2 {+-} 9.1%, p < 0.01) in expanded cells than in normal and 5-flurouracil-treated bone marrow cells. Most interestingly, the expression of mdr1 gene was significantly enhanced in cultured cells than in other two sources of donor cells. The mdr1 gene was functional since expanded cells effluxed Hoechst 33342 and Rh123 dyes. These results suggest that primitive engraftible stem cells can be expanded in the presence of suitable microenvironments.

  16. CTLA-4 and MDR1 polymorphisms increase the risk for ulcerative colitis: A meta-analysis

    PubMed Central

    Zhao, Jia-Jun; Wang, Di; Yao, Hui; Sun, Da-Wei; Li, Hong-Yu

    2015-01-01

    AIM: To evaluate the correlations between cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and multi-drug resistance 1 (MDR1) genes polymorphisms with ulcerative colitis (UC) risk. METHODS: PubMed, EMBASE, Web of Science, Cochrane Library, CBM databases, Springerlink, Wiley, EBSCO, Ovid, Wanfang database, VIP database, China National Knowledge Infrastructure, and Weipu Journal databases were exhaustively searched using combinations of keywords relating to CTLA-4, MDR1 and UC. The published studies were filtered using our stringent inclusion and exclusion criteria, the quality assessment for each eligible study was conducted using Critical Appraisal Skill Program and the resultant high-quality data from final selected studies were analyzed using Comprehensive Meta-analysis 2.0 (CMA 2.0) software. The correlations between SNPs of CTLA-4 gene, MDR1 gene and the risk of UC were evaluated by OR at 95%CI. Z test was carried out to evaluate the significance of overall effect values. Cochran’s Q-statistic and I2 tests were applied to quantify heterogeneity among studies. Funnel plots, classic fail-safe N and Egger’s linear regression test were inspected for indication of publication bias. RESULTS: A total of 107 studies were initially retrieved and 12 studies were eventually selected for meta-analysis. These 12 case-control studies involved 1860 UC patients and 2663 healthy controls. Our major result revealed that single nucleotide polymorphisms (SNPs) of CTLA-4 gene rs3087243 G > A and rs231775 G > A may increase the risk of UC (rs3087243 G > A: allele model: OR = 1.365, 95%CI: 1.023-1.822, P = 0.035; dominant model: OR = 1.569, 95%CI: 1.269-1.940, P < 0.001; rs231775 G > A: allele model: OR = 1.583, 95%CI: = 1.306-1.918, P < 0.001; dominant model: OR = 1.805, 95%CI: 1.393-2.340, P < 0.001). In addition, based on our result, SNPs of MDR1 gene rs1045642 C > T might also confer a significant increases for the risk of UC (allele model: OR = 1.389, 95%CI: 1

  17. Multidrug resistance of DNA-mediated transformants is linked to transfer of the human mdr1 gene.

    PubMed Central

    Shen, D W; Fojo, A; Roninson, I B; Chin, J E; Soffir, R; Pastan, I; Gottesman, M M

    1986-01-01

    Mouse NIH 3T3 cells were transformed to multidrug resistance with high-molecular-weight DNA from multidrug-resistant human KB carcinoma cells. The patterns of cross resistance to colchicine, vinblastine, and doxorubicin hydrochloride (Adriamycin; Adria Laboratories Inc.) of the human donor cell line and mouse recipients were similar. The multidrug-resistant human donor cell line contains amplified sequences of the mdr1 gene which are expressed at high levels. Both primary and secondary NIH 3T3 transformants contained and expressed these amplified human mdr1 sequences. Amplification and expression of the human mdr1 sequences and amplification of cotransferred human Alu sequences in the mouse cells correlated with the degree of multidrug resistance. These data suggest that the mdr1 gene is likely to be responsible for multidrug resistance in cultured cells. Images PMID:3796599

  18. Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of MDR1

    PubMed Central

    Boyerinas, Benjamin; Park, Sun-Mi; Murmann, Andrea E.; Gwin, Katja; Montag, Anton G.; Zillardt, Marion R.; Hua, You-Jia; Lengyel, Ernst; Peter, Marcus E.

    2011-01-01

    Summary Ovarian cancer patients frequently develop resistance to chemotherapy regiments utilizing Taxol and carboplatin. One of the resistance factors that protects cancer cells from Taxol-based therapy is multi-drug resistance 1 (MDR1). micro(mi)RNAs are small noncoding RNAs that negatively regulate protein expression. Members of the let-7 family of miRNAs are downregulated in many human cancers, and low let-7 expression has been correlated with resistance to microtubule targeting drugs (Taxanes), although little is known that would explain this activity. We now provide evidence that, while let-7 is not a universal sensitizer of cancer cells to Taxanes, it affects acquired resistance of cells to this class of drugs by targeting IMP-1, resulting in de-stabilization of the mRNA of MDR1. Introducing let-7g into ADR-RES cells expressing both IMP-1 and MDR1 reduced expression of both proteins rendering the cells more sensitive to treatment with either Taxol or vinblastine without affecting the sensitivity of the cells to carboplatin, a non-MDR1 substrate. This effect could be reversed by reintroducing IMP-1 into let-7g high/MDR1 low cells causing MDR1 to again become stabilized. Consistently, many relapsed ovarian cancer patients tested before and after chemotherapy were found to downregulate let-7 and to co-upregulate IMP-1 and MDR1, and the increase in the expression levels of both proteins after chemotherapy negatively correlated with disease-free time before recurrence. Our data point at IMP-1 and MDR1 as indicators for response to therapy, and at IMP-1 as a novel therapeutic target for overcoming multidrug resistance of ovarian cancer. PMID:21618519

  19. Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers.

    PubMed

    Brayden, David J; Griffin, Joanna

    2008-01-01

    Fluxes of the anti-parasitic agents, [(3)H]-ivermectin, [(3)H]-selamectin and [(3)H]-moxidectin were studied across non-transfected and transfected canine kidney epithelial monolayers, MDCK II/wt, MDCK II-MDR1, MDCK II-MRP1 and MDCK II-MRP2. All four lines surprisingly expressed significant levels of P-glycoprotein (P-gp), coded for by MDR1, but MDCK II-MDR1 expressed increased levels compared to the other lines. MDCK II-MRP1 and MDCK II-MRP2 expressed increased levels of MRP1 and MRP2 respectively. Fluxes of [(3)H]-ivermectin, [(3)H]-selamectin, [(3)H]-moxidectin, and the P-gp substrates, rhodamine-123 and DiOC(2), were polarized in the basolateral-to-apical (secretory) direction across the four lines. Selected MRP inhibitors used in relevant pharmacological concentrations did not block the secretory fluxes of either [(3)H]-ivermectin or [(3)H]-selamectin in either the non-transfected or MRP-transfected lines. In contrast, secretory fluxes of ivermectin and selamectin were inhibited in all four lines by the P-gp inhibitor, verapamil. These data confirm that ivermectin and selamectin are substrates for P-gp in four additional cell lines, but suggest that they are not significant substrates for MRP1 or MRP2 where there is background expression of P-gp. Since this pattern of expression also pertains on the blood-brain barrier, it is unlikely that MRP1 and MRP2 play a significant role in ivermectin and selamectin blood: brain distribution in vivo. PMID:17578674

  20. MDR1/ABCB1 gene polymorphisms in patients with chronic myeloid leukemia

    PubMed Central

    Lardo, Mabel; Castro, Marcelo; Moiraghi, Beatriz; Rojas, Francisca; Borda, Natalia; Rey, Jorge A

    2015-01-01

    Background Tyrosine kinase inhibitors (TKIs) are the recommended treatment for patients with chronic myeloid leukemia (CML). The MDR1/ABCB1 gene plays a role in resistance to a wide spectrum of drugs, including TKIs. However, the association of MDR1/ABCB1 gene polymorphisms (SNPs) such as C1236T, G2677T/A, and C3435T with the clinical therapeutic evolution of CML has been poorly studied. We investigated these gene polymorphisms in CML-patients treated with imatinib, nilotinib and/or dasatinib. Methods ABCB1-SNPs were studied in 22 CML-patients in the chronic phase (CP) and 2 CML-patients in blast crisis (BC), all of whom were treated with TKIs, and compared with 25 healthy controls using nested-PCR and sequencing techniques. Results Seventeen different haplotypes were identified: 7 only in controls, 6 only in CML-patients, and the remaining 4 in both groups. The distribution ratios of homozygous TT-variants present on each exon between controls and CML-patients were 2.9 for exon 12, and 0.32 for the other 2 exons. Heterozygous T-variants were observed in all controls (100%) and 75% of CML-patients. Wt-haplotype (CC-GG-CC) was observed in 6 CML-patients (25%). In this wt-group, two were treated with nilotinib and reached a major molecular response. The remaining 4 cases had either a minimal or null molecular response, or developed bone marrow aplasia. Conclusion Our results suggest that SNPs of the MDR1/ABCB1 gene could help to characterize the prognosis and the clinical-therapeutic evolution of CML-patients treated with TKIs. Wt-haplotype could be associated with a higher risk of developing CML, and a worse clinical-therapeutic evolution. PMID:26457282

  1. The multidrug resistance (mdr1) gene product functions as an ATP channel.

    PubMed Central

    Abraham, E H; Prat, A G; Gerweck, L; Seneveratne, T; Arceci, R J; Kramer, R; Guidotti, G; Cantiello, H F

    1993-01-01

    The multidrug resistance (mdr1) gene product, P-glycoprotein, is responsible for the ATP-dependent extrusion of a variety of compounds, including chemotherapeutic drugs, from cells. The data presented here show that cells with increased levels of the P-glycoprotein release ATP to the medium in proportion to the concentration of the protein in their plasma membrane. Furthermore, measurements of whole-cell and single-channel currents with patch-clamp electrodes indicate that the P-glycoprotein serves as an ATP-conducting channel in the plasma membrane. These findings suggest an unusual role for the P-glycoprotein. PMID:7678345

  2. Influence of MDR1 methylation on the curative effect of interventional embolism chemotherapy for cervical cancer

    PubMed Central

    Huang, Zhi; Zhang, Shuai; Shen, Yaping; Liu, Weixin; Long, Jipu; Zhou, Shi

    2016-01-01

    Background Multi-drug resistance (MDR) is the main cause of tumor failure to chemotherapy. This study aims to explore the influence of MDR1 methylation on curative effect of interventional embolism chemotherapy for cervical cancer. Methods Sixty-seven patients with cervical cancer receiving embolism chemotherapy were selected, and 45 normal cervical tissues were included as a control. Immunohistochemistry was used to detect the level of P-glycoprotein (P-gp) in cervical cancer, and to make an analysis compared with normal tissues. The methylation status of the MDR1 gene promoter region 16 CpG units was analyzed by using kilobase-specific cracking and matrix-assisted laser desorption ionization time of flight mass spectrometry. Results The results indicated that the positive expression rates of P-gp were 0% (0/45) in normal cervical tissue, and 61.19% (41/67) and 77.61% (52/67) before and after interventional embolism chemotherapy in cervical cancer tissues, respectively. There were significant differences compared with normal cervical tissues (χ2=4.2523, 0.0392). The positive expression rate of P-gp before chemotherapy was negatively correlated with efficacy of chemotherapy (r=−0.340, P=0.005). Methylation rate of 13 CpG units in normal tissues was significantly greater than cervical tissues (P<0.05). In cervical cancer tissue, methylation rate of six CpG units before interventional embolism chemotherapy was higher than after chemotherapy, but that of one CpG unit was lower than after chemotherapy (P<0.05). The methylation rate of one CpG unit with effective chemotherapy before chemotherapy was significantly higher than ineffective chemotherapy (P<0.05), and the other CpG units were similar (P>0.05). Conclusion P-gp expression level coded by MDR1, methylation status of partial MDR1 gene promoter regions CpG island, is closely related to the efficacy of interventional embolism chemotherapy for cervical cancer before the operation. PMID:26929635

  3. Physiological oxygen tensions modulate expression of the mdr1b multidrug-resistance gene in primary rat hepatocyte cultures.

    PubMed Central

    Hirsch-Ernst, K I; Kietzmann, T; Ziemann, C; Jungermann, K; Kahl, G F

    2000-01-01

    P-Glycoprotein transporters encoded by mdr1 (multidrug resistance) genes mediate extrusion of an array of lipophilic xenobiotics from the cell. In rat liver, mdr transcripts have been shown to be expressed mainly in hepatocytes of the periportal region. Since gradients in oxygen tension (pO(2)) may contribute towards zonated gene expression, the influence of arterial and venous pO(2) on mRNA expression of the mdr1b isoform was examined in primary rat hepatocytes cultured for up to 3 days. Maximal mdr1b mRNA levels (100%) were observed under arterial pO(2) after 72 h, whereas less than half-maximal mRNA levels (40%) were attained under venous pO(2). Accordingly, expression of mdr protein and extrusion of the mdr1 substrate rhodamine 123 were maximal under arterial pO(2) and reduced under venous pO(2). Oxygen-dependent modulation of mdr1b mRNA expression was prevented by actinomycin D, indicating transcriptional regulation. Inhibition of haem synthesis by 25 microM CoCl(2) blocked mdr1b mRNA expression under both oxygen tensions, whereas 80 microM desferrioxamine abolished modulation by O(2). Haem (10 microM) increased mdr1b mRNA levels under arterial and venous pO(2). In hepatocytes treated with 50 microM H(2)O(2), mdr1b mRNA expression was elevated by about 1.6-fold at venous pO(2) and 1.5-fold at arterial pO(2). These results support the conclusion that haem proteins are crucial for modulation of mdr1b mRNA expression by O(2) in hepatocyte cultures and that reactive oxygen species may participate in O(2)-dependent signal transduction. Furthermore, the present study suggests that oxygen might be a critical modulator for zonated secretion of mdr1 substrates into the bile. PMID:10947958

  4. The involvement of a LINE-1 element in a DNA rearrangement upstream of the mdr1a gene in a taxol multidrug-resistant murine cell line.

    PubMed

    Cohen, D; Higman, S M; Hsu, S I; Horwitz, S B

    1992-10-01

    Two closely related but functionally distinct P-glycoprotein isoforms are encoded by the murine multidrug-resistance genes mdr1a and mdr1b. In a series of independently selected multidrug-resistant (MDR) J774.2 cell lines, mdr gene amplification and/or overexpression and overproduction of either the mdr1a or mdr1b products, or both gene products, correlates with the MDR phenotype. To investigate the possibility that mutations in the promoter regions of the mdr1a or mdr1b genes could influence their differential expression, mdr promoter-specific probes were used to detect and map potential structural alterations. An unusual structural rearrangement was found in the 5'-region of the amplified mdr1a allele in J7.T1, a cell line selected with taxol. To characterize this rearrangement, the regulatory regions of the mdr1a and mdr1b genes were analyzed. Whereas no gross structural alterations were detected by Southern blot hybridization using the mdr1b promoter probe, a novel amplified EcoRI fragment was detected by the mdr1a promoter probe. To determine the precise nature of this mutation, an mdr1a 5'-genomic clone was isolated from J7.T1 cells. Sequence analysis revealed an unusual DNA rearrangement consisting of the mdr1b gene, from its fourth intron toward its 3'-end, upstream of an intact mdr1a promoter on the amplified allele. We propose that this event occurred by an unequal sister chromatid exchange that was mediated by LINE-1 repetitive elements. PMID:1356977

  5. Indirubin derivatives alter DNA binding activity of the transcription factor NF-Y and inhibit MDR1 gene promoter.

    PubMed

    Tanaka, Toru; Ohashi, Sachiyo; Saito, Hiroaki; Higuchi, Takashi; Tabata, Keiichi; Kosuge, Yasuhiro; Suzuki, Takashi; Miyairi, Shinichi; Kobayashi, Shunsuke

    2014-10-15

    Indirubin derivatives exert antitumor activity. However, their effects on the expression of multidrug resistance gene 1 (MDR1) have not been investigated. Here we found three derivatives that inhibit the MDR1 gene promoter. To investigate the effects of indirubins on the DNA binding of NF-Y, a major MDR1 gene transcription factor that recognizes an inverted CCAAT element in the promoter, gel mobility shift assay was performed using the element as a probe with nuclear extracts from NG108-15, MCF7, HepG2, C2C12, and SK-N-SH cells. Among 17 compounds, 5-methoxyindirubin inhibited the DNA binding of NF-Y significantly, whereas indirubin-3'-oxime and 7-methoxyindirubin 3'-oxime increased the binding considerably. After evaluating a suitable concentration of each compound for transcription analysis using living tumor cells, we performed a reporter gene assay using a reporter DNA plasmid containing EGFP cDNA fused to the MDR1 gene promoter region. Indirubin-3'-oxime exerted a significant inhibitory effect on the MDR1 promoter activity in MCF7 and HepG2 cells, and 5-methoxyindirubin inhibited the activity only in MCF7 cells; 7-methoxyindirubin 3'-oxime suppressed the activity in all of the cell lines. We further confirmed that the compounds reduced endogenous MDR1 transcription without any inhibitory effect on NF-Y expression. Moreover, each compound increased the doxorubicin sensitivity of MCF7 cells. These results indicate that each indirubin derivative acts on the DNA binding of NF-Y and represses the MDR1 gene promoter with tumor cell-type specificity. PMID:25066113

  6. Role of hypoxia-inducible factor-{alpha} in hepatitis-B-virus X protein-mediated MDR1 activation

    SciTech Connect

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2007-06-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and induced the nuclear translocation of C/EBP{beta}. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1{alpha} siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1{alpha} activation, and suggest HIF-1{alpha} for the therapeutic target of HBV-mediated chemoresistance.

  7. HIF-1α/MDR1 pathway confers chemoresistance to cisplatin in bladder cancer.

    PubMed

    Sun, Yi; Guan, Zhenfeng; Liang, Liang; Cheng, Yongyi; Zhou, Jiancheng; Li, Jing; Xu, Yonggang

    2016-03-01

    Bladder cancer (BCa) is the 9th most common malignant tumor and the 13th leading cause of death due to cancer. The development of surgery and target drugs bring new challenges for the traditional concept for BCa therapy, and chemotherapy is still the final option for many BCa patients, and cisplatin-containing regimen the most effective one. However, the ubiquitous application of cisplatin-containing regimen in BCa results in the cisplatin-resistance, in addition, the cisplatin‑resistant BCa manifests enhanced malignant behavior, the mechanism of which is unclear. In the present study, we used BCa cell lines to to clarify this point. BCa cell lines T24/J82 were pretreated with cisplatin >3 months to construct stable cisplatin-resistant cell lines (tagged T24Cis-R and J82Cis-R), which manifested as enhanced capacity of proliferation and malignant behavior in vivo and in vitro, accompanied by cisplatin, and even doxorubicin resistance. The following mechanism dissection revealed that prolonged treatment time of T24/J82 cells led to elevated expression of HIF-1α, which targeted the increased expression of MDR1 on the one hand, and contributed to BCa cell proliferation, migration/invasion on the other hand. Finally, IHC staining of human BCa tissue supported our conclusion that the expression of HIF-1α and MDR1 was higher in chemoresistant tissue vs. chemosensitive tissue. Our results provided a new view of HIF-1α in chemotherapy. PMID:26717965

  8. Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance

    PubMed Central

    Yu, Xiwei; Yang, Guang; Shi, Yijie; Su, Chang; Liu, Ming; Feng, Bo; Zhao, Liang

    2015-01-01

    Nowadays, multidrug resistance and side effects of drugs limit the effectiveness of chemotherapies in clinics. P-glycoprotein (P-gp) (MDR1), as a member of the ATP-binding cassette family, acts on transporting drugs into cell plasma across the membrane of cancer cells and leads to the occurrence of multidrug resistance, thus resulting in the failure of chemotherapy in cancer. The main aims of this research were to design a nanodelivery system for accomplishing the effective co-delivery of gene and antitumor drug and overcoming multidrug resistance effect. In this study, shMDR1 and gefitinib-encapsulating chitosan nanoparticles with sustained release, small particle size, and high encapsulation efficiency were prepared. The serum stability, protection from nuclease, and transfection efficiency of gene in vitro were investigated. The effects of co-delivery of shMDR1 and gefitinib in nanoparticles on reversing multidrug resistance were also evaluated by investigating the cytotoxicity, cellular uptake mechanism, and cell apoptosis on established gefitinib-resistant cells. The results demonstrated that chitosan nanoparticles entrapping gefitinib and shMDR1 had the potential to overcome the multidrug resistance and improve cancer treatment efficacy, especially toward resistant cells. PMID:26648717

  9. Single nucleotide polymorphisms of multidrug resistance gene 1 (MDR1) and risk of chronic myeloid leukemia.

    PubMed

    Yaya, Kassogue; Hind, Dehbi; Meryem, Quachouh; Asma, Quessar; Said, Benchekroun; Sellama, Nadifi

    2014-11-01

    Multidrug resistance gene 1 (MDR1) is known for its involvement in the detoxification through the active transport of toxic compounds from diverse origins outside the cells. These compounds could cause injury to cell DNA, which might lead in cancer like chronic myeloid leukemia (CML). Individual inherited genetic differences related to polymorphism in detoxification enzymes could be an important factor not only in carcinogen metabolism but also in susceptibility of cancer. The present study aimed to investigate the association of three single nucleotide polymorphisms (SNPs) of the MDR1 gene in the susceptibility of CML. We successively have determined the genotype profiles of 1236 C>T (exon 12); 2677 G>T (exon 21), and 3435 C>T (exon 26) SNPs by PCR-RFLP in 89 patients and 99 unrelated healthy controls. Logistic regression was used to assess the effect of each SNP on the development of CML. Interestingly, in exon 12, the 1236 TT was significantly associated with the susceptibility of CML when compared to the wild type 1236 CC (OR 2.7; 95% CI 1-7.32, p = 0.041). Additionally, the recessive model 1236 TT vs. 1236 CC/CT showed a risk of 3.3 fold (p = 0.011) with CML. In exon 26, the 3435 CT genotype was associated with a reduced risk of CML (OR 0.5; 95% CI 0.3-1, p = 0.042). In exon 21, the 2677 GT genotype seems to have a protective effect (OR 0.6; 95% CI 0.32-1.1, p = 0.074). Diplolotypes analysis has demonstrated no effect in susceptibility of CML, but 1236 CT/3435 CC and 1236 CC/2677 GT were associated with a protective effect. The haplotypes analysis showed no particular trend (global association p = 0.33). Our findings demonstrate that 1236 TT in exon 12 might contribute in the susceptibility of CML, while the 3435 CT in exon 26 as well as 1236 CT/3435 CC and 1236 CC/2677 GT combinations might be protective factors. PMID:25087925

  10. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  11. Involvement of V-Ets erythroblastosis virus E26 oncogene homolog 2 in regulation of transcription activity of MDR1 gene.

    PubMed

    Wang, Jian; Zeng, Xiaoqing; Luo, Tiancheng; Jin, Wei; Chen, Shiyao

    2012-09-01

    Over-expression of MDR1 confers multidrug resistance (MDR) in cancers and remains a major cause for the failure of chemotherapy. In the present study, we found that V-Ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) could activate MDR1 transcription and P-glycoprotein (P-gp) expression in SGC7901 cells. Knockdown of ETS2 attenuated MDR1 transcription and P-gp expression, and increased the sensitivity of MDR cancer cells to cytotoxic drugs that were transported by P-gp in SGC7901/VCR cells. ETS2 could bind to the ETS2 sites on the MDR1 promoter and activate its transcription. The regulation of MDR1 expression by ETS2 may provide potential ways to overcome MDR in cancer treatment. PMID:22819965

  12. Multi-drug resistance gene (MDR-1) and risk of brain metastasis in epithelial ovarian, fallopian tube, and peritoneal cancer

    PubMed Central

    Matsuo, Koji; Eno, Michele L.; Ahn, Edward H.; Shahzad, Mian M.K.; Im, Dwight D.; Rosenshein, Neil B.; Sood, Anil K.

    2011-01-01

    Background To evaluate risk factors that predict brain metastasis in epithelial ovarian, fallopian tube, and peritoneal cancer. Methods All patients with FIGO stage I to IV who underwent initial cytoreductive surgery between January 1995 and January 2009 were evaluated. The tumor samples were evaluated for 7 markers including multi-drug resistance gene (MDR-1), DNA aneuploidity and S-phase fraction, human epidermal growth factor receptor 2, estrogen receptor, progesterone receptor, p53 mutation, epidermal growth factor receptor, and CD31. Biomarker expression was evaluated as a predictor of hematogenous metastasis to the following locations: (i) liver and spleen, (ii) lung, and (iii) brain. Results There were 309 cases identified during the period. Of those, five (1.6%, 95%CI 0.2-3.0%) women developed brain metastasis. Time to onset of brain metastasis was significantly longer than for other recurrent sites (median time to recurrence after initial cytoreduction, brain vs lung vs liver, 21.4 vs 12.6 vs 11.0 months, p<0.05). Significantly increased expression of MDR-1 was seen in tumors from women who developed brain metastasis (brain vs non-brain sites, 80% vs 4.2-24.3%, p=0.004). In multivariate analysis, MDR-1 was the only significant variable associated with the risk of brain metastasis. MDR-1 expression predicted brain metastasis (Receiver-operator-characteristic curve analysis, AUC 0.808, p=0.018), and with a 10% positive expression of MDR-1 as the cutoff value, sensitivity, specificity, positive predictive value, negative predictive value, accuracy of prediction of brain metastasis were 80%, 86.1%, 15.4%, 99.3%, and 85.9%, respectively (odds ratio 24.7, 95%CI 2.64-232, p=0.002). Conclusions Increased expression of MDR-1 in the tumor tissue obtained at initial cytoreduction is associated with increased risk of developing brain metastases in women with epithelial ovarian, fallopian tube, or peritoneal cancer. PMID:20921883

  13. Expression and significance of hypoxia-inducible factor-1α and MDR1/P-glycoprotein in laryngeal carcinoma tissue and hypoxic Hep-2 cells

    PubMed Central

    XIE, JIN; LI, DA-WEI; CHEN, XIN-WEI; WANG, FEI; DONG, PIN

    2013-01-01

    The present study aimed to evaluate the expression of hypoxia-inducible factor-1α (HIF-1α) and MDR1/P-glycoprotein (P-gp) in human laryngeal squamous cell carcinoma (LSCC) tissues, and also to investigate the regulation of MDR1 gene expression by HIF-1α in Hep-2 cells under hypoxic conditions. The expression of HIF-1α and MDR1/P-gp in human LSCC tissues was examined using immunohistochemistry. The HIF-1α and MDR1 gene expression in the Hep-2 cells was detected using real-time quantitative reverse transcription (QRT)-PCR and western blot analysis under normoxic and hypoxic conditions. In hypoxia, HIF-1α expression was inhibited by RNA interference. HIF-1α and MDR1/P-gp expression was high in the LSCC tissues and was associated with the clinical stage and lymph node metastasis (P<0.05). HIF-1α expression was positively correlated with MDR1/P-gp expression (P<0.01). In the Hep-2 cells, HIF-1α and MDR1/P-gp expression significantly increased in response to hypoxia. The inhibition of HIF-1α expression synergistically downregulated the expression of the MDR1 gene in hypoxic Hep-2 cells. HIF-1α expression is positively correlated with MDR1/P-gp expression in LSCC, and the two proteins may be able to serve as potential biomarkers for predicting the malignant progression and metastasis of LSCC. HIF-1α may be critical for the upregulation of MDR1 gene expression induced by hypoxia in Hep-2 cells. PMID:23946810

  14. Preferential cytotoxicity of bortezomib toward highly malignant human liposarcoma cells via suppression of MDR1 expression and function

    SciTech Connect

    Hu, Yamei; Wang, Lingxian; Wang, Lu; Wu, Xuefeng; Wu, Xudong; Gu, Yanhong; Shu, Yongqian; Sun, Yang; Shen, Yan; Xu, Qiang

    2015-02-15

    Liposarcoma is the most common soft tissue sarcoma with a high risk of relapse. Few therapeutic options are available for the aggressive local or metastatic disease. Here, we report that the clinically used proteasome inhibitor bortezomib exhibits significantly stronger cytotoxicity toward highly malignant human liposarcoma SW872-S cells compared with its parental SW872 cells, which is accompanied by enhanced activation of apoptotic signaling both in vitro and in vivo. Treatment of cells with Jun-N-terminal kinase (JNK) inhibitor SP60015 or the translation inhibitor cycloheximide ameliorated this enhanced apoptosis. Bortezomib inhibited MDR1 expression and function more effectively in SW872-S cells than in SW872 cells, indicating that the increased cytotoxicity relies on the degree of proteasome inhibition. Furthermore, the pharmacological or genetic inhibition of sarco/endoplasmic reticulum calcium-ATPase (SERCA) 2, which is highly expressed in SW872-S cells, resulted in partial reversal of cell growth inhibition and increase of MDR1 expression in bortezomib-treated SW872-S cells. These results show that bortezomib exhibits preferential cytotoxicity toward SW872-S cells possibly via highly expressed SERCA2-associated MDR1 suppression and suggest that bortezomib may serve as a potent agent for treating advanced liposarcoma. - Highlights: • We compare the cytotoxicity of different drugs between SW872-S and SW872 cells. • Highly malignant liposarcoma cells SW872-S show hypersensitivity to bortezomib. • Apoptotic signaling is robustly enhanced in bortezomib-treated SW872-S cells. • Bortezomib has strong suppression on MDR1 expression and function in SW872-S cells. • Inhibition of SERCA2 protects SW872-S cells from bortezomib.

  15. Association between MDR1 gene polymorphisms and Parkinson's disease in Asian and Caucasian populations: a meta-analysis.

    PubMed

    Ahmed, Shiek S S J; Husain, R S Akram; Kumar, Suresh; Ramakrishnan, V

    2016-09-15

    Parkinson's disease (PD) is a complex neurodegenerative disease, its etiology is largely unknown. Studies demonstrate the association of genetic and environment factors in causing neuronal degeneration. Reports suggest that the multi-drug resistance gene (MDR1) plays a vital role in preventing the toxic substance in entering the brain, which is associated with PD. However, the association between the MDR1 polymorphisms (C1236T and C3435T) and its susceptibility to PD is inconclusive. Meta analysis was carried by retrieving literatures from databases to search the case-control studies on the associations between the MRD1 polymorphisms and PD. The pooled odds ratios (ORs) and its 95% confidence intervals (CIs) were calculated using fixed and random model to determine the association between the polymorphisms and PD susceptibility. Significant association was noticed for C1236T polymorphism and PD risk in the recessive model OR=0.80, 95% CI=0.66-0.97. Further, ethnicity based analysis showed significant association for C1236T in allelic model of Asian population and also in the recessive models of both Asian and Caucasian populations. However, insignificant associations were noticed for C3435T in all the four models. Overall, the analysis suggested that MDR1 C1236T polymorphism substantially contribute to Parkinson's disease in the recessive genetic model. PMID:27538645

  16. Association of MDR1, CYP2D6, and CYP2C19 gene polymorphisms with prophylactic migraine treatment response.

    PubMed

    Atasayar, Gulfer; Eryilmaz, Isil Ezgi; Karli, Necdet; Egeli, Unal; Zarifoglu, Mehmet; Cecener, Gulsah; Taskapilioglu, Ozlem; Tunca, Berrin; Yildirim, Oznur; Ak, Secil; Tezcan, Gulcin; Can, Fatma Ezgi

    2016-07-15

    Prophylactic therapy response varies in migraine patients. The present study investigated the relationship between the resistance to the drugs commonly used in prophylactic therapy and the possible polymorphic variants of proteins involved in the metabolism of these drugs. Migraine patients with the MDR1 3435TT genotype exhibited a better treatment response to topiramate than migraine patients with the CC and CT genotypes (p=0.020). The MDR1 C3435T polymorphism was also found to be a higher risk factor for topiramate treatment failure in a comparison of the number of days with migraine (β2=1.152, p=0.015). However, there was no significant relationship between the treatment response to topiramate and either the CYP2D6 or CYP2C19 polymorphism, and there were no significant correlations between the treatment responses to amitriptyline, propranolol, and valproic acid and the MDR1, CYP2D6 and CYP2C19 gene polymorphisms. This is the first study to investigate the effect of the polymorphic variants on prophylactic therapy response in migraine patients. PMID:27288795

  17. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies

    PubMed Central

    Veiga, M. Isabel; Dhingra, Satish K.; Henrich, Philipp P.; Straimer, Judith; Gnädig, Nina; Uhlemann, Anne-Catrin; Martin, Rowena E.; Lehane, Adele M.; Fidock, David A.

    2016-01-01

    Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes. PMID:27189525

  18. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies.

    PubMed

    Veiga, M Isabel; Dhingra, Satish K; Henrich, Philipp P; Straimer, Judith; Gnädig, Nina; Uhlemann, Anne-Catrin; Martin, Rowena E; Lehane, Adele M; Fidock, David A

    2016-01-01

    Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes. PMID:27189525

  19. Sinomenine Sensitizes Multidrug-Resistant Colon Cancer Cells (Caco-2) to Doxorubicin by Downregulation of MDR-1 Expression

    PubMed Central

    Liu, Zhen; Duan, Zhi-Jun; Chang, Jiu-Yang; Zhang, Zhi-feng; Chu, Rui; Li, Yu-Ling; Dai, Ke-Hang; Mo, Guang-quan; Chang, Qing-Yong

    2014-01-01

    Chemoresistance in multidrug-resistant (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene, is a major obstacle to successful chemotherapy for colorectal cancer. Previous studies have indicated that sinomenine can enhance the absorption of various P-gp substrates. In the present study, we investigated the effect of sinomenine on the chemoresistance in colon cancer cells and explored the underlying mechanism. We developed multidrug-resistant Caco-2 (MDR-Caco-2) cells by exposure of Caco-2 cells to increasing concentrations of doxorubicin. We identified overexpression of COX-2 and MDR-1 genes as well as activation of the NF-κB signal pathway in MDR-Caco-2 cells. Importantly, we found that sinomenine enhances the sensitivity of MDR-Caco-2 cells towards doxorubicin by downregulating MDR-1 and COX-2 expression through inhibition of the NF-κB signaling pathway. These findings provide a new potential strategy for the reversal of P-gp-mediated anticancer drug resistance. PMID:24901713

  20. Effects of acid and lactone forms of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on the induction of MDR1 expression and function in LS180 cells.

    PubMed

    Yamasaki, Daisuke; Nakamura, Tsutomu; Okamura, Noboru; Kokudai, Makiko; Inui, Naoki; Takeuchi, Kazuhiko; Watanabe, Hiroshi; Hirai, Midori; Okumura, Katsuhiko; Sakaeda, Toshiyuki

    2009-05-12

    In the present study, the ability of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), also known as statins, to regulate the gene expression and function of multidrug resistance protein 1 (MDR1/P-glycoprotein) and differences between their acid and lactone forms were examined in human intestinal epithelial LS180 cells. Some statins had the potential to induce the expression of mRNAs for MDR1 and/or CYP3A in either form. The change in the mRNA expression of MDR1 was accompanied by a change in the CsA-dependent intracellular accumulation of rhodamine 123. Simvastatin lactone, but not the acid form, exhibited a strong inductive effect on the mRNA expression of MDR1 and CYP3A in a dose-dependent manner. Sulforaphane significantly suppressed the expression of MDR1 and CYP3A mRNAs induced by atorvastatin lactone, lovastatin acid, and lovastatin lactone, comparable to the control level, and moderately inhibited that by cerivastatin acid, fluvastatin acid and simvastatin lactone. In the case of pitavastatin acid, sulforaphane had no significant effect on the expression of MDR1 mRNA.These results suggested that some statins could induce MDR1 and CYP3A gene expression and these inductive effects differed between the lactone and active hydroxy acid forms, and that PXR-mediated regulation was rarely associated with the mRNA inducibility by pitavastatin acid, unlike that by other statins. PMID:19429419

  1. Functional Characterization of Sodium-dependent Multivitamin Transporter (SMVT) in MDCK-MDR1 cells and its Utilization as a Target for Drug Delivery

    PubMed Central

    Luo, Shuanghui; Kansara, Viral S.; Zhu, Xiaodong; Pal, Dhananjay; Mitra, Ashim. K.

    2008-01-01

    The objective of this research is to characterize a sodium-dependent multivitamin transporter (SMVT) in MDCK-MDR1 cells (Madin-Darby canine kidney cells transfected with the human MDR1 gene) and to investigate the feasibility of utilizing MDCK-MDR1 cell line as an in vitro model to study the permeability of biotin-conjugated prodrugs of anti-HIV protease inhibitors. Mechanism of [3H] biotin uptake and transport was delineated. Transepithelial permeability of the biotin conjugated prodrug i.e. biotin-saquinavir was also studied. Reverse transcription-polymerase chain reaction (RT-PCR) was carried out to confirm the existence of SMVT in MDCK-MDR1 cells. Biotin uptake was Na+, pH, and temperature dependent, but energyindependent. Transepithelial transport studies of biotin-saquinavir in MDCK-MDR1, wild type MDCK, and Caco-2 cells revealed that permeability of biotin-saquinavir was similar in all three cell lines. A band of SMVT mRNA at 862 bp was identified by RT-PCR. A sodium-dependent multivitamin transporter, SMVT, responsible for biotin uptake and transport, was identified and functionally characterized in MDCK-MDR1 cells. Therefore, MDCK-MDR1 cell line may be utilized as an in vitro model to study the permeability of biotin conjugated prodrugs such as HIV protease inhibitors. PMID:16749865

  2. Enhanced efflux of (/sup 3/H)vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdr1 gene

    SciTech Connect

    Hammond, J.R.; Johnstone, R.M.; Gros, P.

    1989-07-15

    Multidrug-resistant Chinese hamster ovary cell clones stably transfected with, and overexpressing, the mouse mdr1 complementary DNA clone along with drug-sensitive Chinese hamster ovary control cells were characterized for their capacities to accumulate and retain (/sup 3/H)vinblastine. Multidrug-resistant mdr1 transfectants show a 3-4-fold decrease in (/sup 3/H)vinblastine accumulation, compared to their drug-sensitive counterparts. After ATP depletion, this difference in (/sup 3/H)vinblastine accumulation between mdr1 transfectants and control cells effectively disappears. This ATP-dependent decreased drug accumulation is paralleled in mdr1 transfectants by an enhanced capacity of these cells to extrude the drug in an ATP-dependent manner. In medium containing glucose and glutamine, the mdr1 transfectants release preloaded drug at a rate five times that of control, drug-sensitive cells. In ATP-depleted control and mdr1-transfected cells, there is little difference in the rate or extent of (/sup 3/H)vinblastine release. The observation that the mdr1 transfectants show a decreased (/sup 3/H)vinblastine accumulation and an increased vinblastine release, both of which are abolished when cellular ATP levels are reduced, provides a direct demonstration that the product of the transfected mdr1 gene is responsible for a mechanism controlling cellular drug levels in an ATP-dependent manner. However, attempts to establish competition for (/sup 3/H)vinblastine transport by vincristine, daunomycin, and actinomycin D were only partly successful in mdr1 transfectants.

  3. Reversal of multidrug resistance in breast cancer MCF-7/ADR cells by h-R3-siMDR1-PAMAM complexes.

    PubMed

    Li, Jun; Liu, Jing; Guo, Nana; Zhang, Xiaoning

    2016-09-10

    Multidrug resistance (MDR) among breast cancer cells is the paramount obstacle for the successful chemotherapy. In this study, anti-EGFR antibody h-R3 was designed to self-assembled h-R3-siRNA-PAMAM-complexes (HSPCs) via electrostatic interactions for siRNA delivery. The physicochemical characterization, cell uptake, MDR1 silencing efficiency, cell migration, cell growth and cell apoptosis were investigated. The HSPCs presented lower cytotoxicity, higher cellular uptake and enhanced endosomal escape ability. Also, HSPCs encapsulating siMDR1 knockdowned 99.4% MDR1 gene with up to ∼6 times of enhancement compared to naked siMDR1, increased the doxorubicin accumulation, down-regulated P-glycoprotein (P-gp) expression and suppressed cellular migration in breast cancer MCF-7/ADR cells. Moreover, the combination of anticancer drug paclitaxel (PTX) and siMDR1 loaded HSPCs showed synergistic effect on overcoming MDR, which inhibited cell growth and induced cell apoptosis. This h-R3-mediated siMDR1 delivery system could be a promising vector for effective siRNA therapy of drug resistant breast cancer. PMID:27444552

  4. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers.

    PubMed

    Eastman, Richard T; Khine, Pwint; Huang, Ruili; Thomas, Craig J; Su, Xin-Zhuan

    2016-01-01

    Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca(2+) and Na(+) channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs. PMID:27147113

  5. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers

    PubMed Central

    Eastman, Richard T.; Khine, Pwint; Huang, Ruili; Thomas, Craig J.; Su, Xin-zhuan

    2016-01-01

    Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca2+ and Na+ channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs. PMID:27147113

  6. New invMED1 element cis-activates human multidrug-related MDR1 and MVP genes, involving the LRP130 protein.

    PubMed

    Labialle, Stéphane; Dayan, Guila; Gayet, Landry; Rigal, Dominique; Gambrelle, Joël; Baggetto, Loris G

    2004-01-01

    The MDR1 gene is a key component of the cytotoxic defense network and its overexpression results in the multidrug resistance (MDR) phenotype. However, the molecular mechanisms that regulate the MDR1 gene and coordinate multiple MDR-related genes expression are poorly understood. In a previous study, we identified a new 12 bp cis-activating region in the 5'-flanking region of the human MDR1 gene, which we called inverted MED1. In the present study, we characterized the precise binding element, which we named invMED1, and revealed the presence of the LRP130 protein as the nuclear factor. Its binding intensity increases with the endogenous MDR1 geneexpression and with the MDR level of CEM leukemia cells. Interestingly, the LRP130 level did not vary with the chemoresistance level. We observed the involvement of LRP130 in the transcriptional activity of the MDR1 gene promoter, and moreover, in that of the MDR-related, invMED1-containing, MVP gene promoter. We used siRNAs and transcriptional decoys in two unrelated human cancer cell lines to show the role of the invMED1/LRP130 couple in both MDR1 and MVP endogenous genes activities. We showed that invMED1 was localized in the -105/-100 and -148/-143 regions of the MDR1 and MVP gene promoters, respectively. In addition, since the invMED1 sequence is primarily located in the -160/-100 bp region of mammalian MDR-related genes, our results present the invMED1/LRP130 couple as a potential central regulator of the transcription of these genes. PMID:15272088

  7. Rational Mutational Analysis of a Multidrug MFS Transporter CaMdr1p of Candida albicans by Employing a Membrane Environment Based Computational Approach

    PubMed Central

    Kaushiki, Ajeeta; Pasrija, Ritu; Lynn, Andrew M.; Prasad, Rajendra

    2009-01-01

    CaMdr1p is a multidrug MFS transporter of pathogenic Candida albicans. An over-expression of the gene encoding this protein is linked to clinically encountered azole resistance. In-depth knowledge of the structure and function of CaMdr1p is necessary for an effective design of modulators or inhibitors of this efflux transporter. Towards this goal, in this study, we have employed a membrane environment based computational approach to predict the functionally critical residues of CaMdr1p. For this, information theoretic scores which are variants of Relative Entropy (Modified Relative Entropy REM) were calculated from Multiple Sequence Alignment (MSA) by separately considering distinct physico-chemical properties of transmembrane (TM) and inter-TM regions. The residues of CaMdr1p with high REM which were predicted to be significantly important were subjected to site-directed mutational analysis. Interestingly, heterologous host Saccharomyces cerevisiae, over-expressing these mutant variants of CaMdr1p wherein these high REM residues were replaced by either alanine or leucine, demonstrated increased susceptibility to tested drugs. The hypersensitivity to drugs was supported by abrogated substrate efflux mediated by mutant variant proteins and was not attributed to their poor expression or surface localization. Additionally, by employing a distance plot from a 3D deduced model of CaMdr1p, we could also predict the role of these functionally critical residues in maintaining apparent inter-helical interactions to provide the desired fold for the proper functioning of CaMdr1p. Residues predicted to be critical for function across the family were also found to be vital from other previously published studies, implying its wider application to other membrane protein families. PMID:20041202

  8. Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer

    PubMed Central

    Yang, Xiaoqian; Iyer, Arun K.; Singh, Amit; Milane, Lara; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2014-01-01

    Purpose Approaches for the synthesis of biomaterials to facilitate the delivery of “biologics” is a major area of research in cancer therapy. Here we designed and characterized a hyaluronic acid (HA) based self-assembling nanoparticles that can target CD44 receptors overexpressed on multidrug resistance (MDR) ovarian cancer. The nanoparticle system is composed of HA-poly(ethyleneimine)/HA-poly(ethylene glycol) (HA-PEI/HA-PEG) designed to deliver MDR1 siRNA for the treatment of MDR in an ovarian cancer model. Methods HA-PEI/HA-PEG nanoparticles were synthesized and characterized, then the cellular uptake and knockdown efficiency of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles was further determined. A human xenograft MDR ovarian cancer model was established to evaluate the effects of the combination of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles and paclitaxel on MDR tumor growth. Results Our results demonstrated that HA-PEI/HA-PEG nanoparticles successfully targeted CD44 and delivered MDR1 siRNA into OVCAR8TR (established paclitaxel resistant) tumors. Additionally, HA-PEI/HA-PEG nanoparticles loaded with MDR1 siRNA efficiently down-regulated the expression of MDR1 and P-glycoprotein (Pgp), inhibited the functional activity of Pgp, and subsequently increased cell sensitivity to paclitaxel. HA-PEI/HA-PEG/MDR1 siRNA nanoparticle therapy followed by paclitaxel treatment inhibited tumor growth in MDR ovarian cancer mouse models. Conclusions These findings suggest that this CD44 targeted HA-PEI/HA-PEG nanoparticle platform may be a clinicaly relevant gene delivery system for systemic siRNA-based anticancer therapeutics for the treatment of MDR cancers. PMID:25515492

  9. Inhibition of ABCB1 (MDR1) Expression by an siRNA Nanoparticulate Delivery System to Overcome Drug Resistance in Osteosarcoma

    PubMed Central

    Ryu, Keinosuke; Choy, Edwin; Hornicek, Francis J.; Mankin, Henry; Milane, Lara; Amiji, Mansoor M.; Duan, Zhenfeng

    2010-01-01

    Background The use of neo-adjuvant chemotherapy in treating osteosarcoma has improved patients' average 5 year survival rate from 20% to 70% in the past 30 years. However, for patients who progress after chemotherapy, its effectiveness diminishes due to the emergence of multi-drug resistance (MDR) after prolonged therapy. Methodology/Principal Findings In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure resulting from MDR, we designed and evaluated a novel drug delivery system for MDR1 siRNA delivery. Novel biocompatible, lipid-modified dextran-based polymeric nanoparticles were used as the platform for MDR1 siRNA delivery; and the efficacy of combination therapy with this system was evaluated. In this study, multi-drug resistant osteosarcoma cell lines (KHOSR2 and U-2OSR2) were treated with the MDR1 siRNA nanocarriers and MDR1 protein (P-gp) expression, drug retention, and immunofluoresence were analyzed. Combination therapy of the MDR1 siRNA loaded nanocarriers with increasing concentrations of doxorubicin was also analyzed. We observed that MDR1 siRNA loaded dextran nanoparticles efficiently suppresses P-gp expression in the drug resistant osteosarcoma cell lines. The results also demonstrated that this approach may be capable of reversing drug resistance by increasing the amount of drug accumulation in MDR cell lines. Conclusions/Significance Lipid-modified dextran-based polymeric nanoparticles are a promising platform for siRNA delivery. Nanocarriers loaded with MDR1 siRNA are a potential treatment strategy for reversing MDR in osteosarcoma. PMID:20520719

  10. Genetic Polymorphisms of Multidrug Resistance Gene-1 (MDR1/ABCB1) and Glutathione S-Transferase Gene and the Risk of Inflammatory Bowel Disease among Moroccan Patients.

    PubMed

    Senhaji, Nezha; Kassogue, Yaya; Fahimi, Mina; Serbati, Nadia; Badre, Wafaa; Nadifi, Sellama

    2015-01-01

    Inflammatory bowel diseases (IBD) are multifactorial disorders resulting from environmental and genetic factors. Polymorphisms in MDR1 and GSTs genes might explain individual differences in susceptibility to IBD. We carried out a case-control study to examine the association of MDR1 (C1236T and C3435T), GSTT1, and GSTM1 polymorphisms with the risk of IBD. Subjects were genotyped using PCR-RFLP for MDR1 gene and multiplex PCR for GSTT1 and GSTM1. Meta-analysis was performed to test the association of variant allele carriage with IBD risk. We report that GSTT1 null genotype is significantly associated with the risk of CD (OR: 2.5, CI: 1.2-5, P = 0.013) and UC (OR: 3.5, CI: 1.5-8.5, P = 0.004) and can influence Crohn's disease behavior. The interaction between GSTT1 and GSTM1 genes showed that the combined null genotypes were associated with the risk of UC (OR: 3.1, CI: 1.1-9, P = 0.049). Furthermore, when compared to combined 1236CC/CT genotypes, the 1236TT genotype of MDR1 gene was associated with the risk of UC (OR: 3.7, CI: 1.3-10.7, P = 0.03). Meta-analysis demonstrated significantly higher frequencies of 3435T carriage in IBD patients. Our results show that GSTT1 null and MDR1 polymorphisms could play a role in susceptibility to IBD. PMID:26604430

  11. A combined omics approach to evaluate the effects of dietary curcumin on colon inflammation in the Mdr1a(-/-) mouse model of inflammatory bowel disease.

    PubMed

    Cooney, Janine M; Barnett, Matthew P G; Dommels, Yvonne E M; Brewster, Diane; Butts, Christine A; McNabb, Warren C; Laing, William A; Roy, Nicole C

    2016-01-01

    The aim of this study was to provide insight into how curcumin reduces colon inflammation in the Mdr1a(-/-) mouse model of human inflammatory bowel disease using a combined transcriptomics and proteomics approach. Mdr1a(-/-) and FVB control mice were randomly assigned to an AIN-76A (control) diet or AIN-76A+0.2% curcumin. At 21 or 24weeks of age, colonic histological injury score (HIS) was determined, colon mRNA transcript levels were assessed using microarrays and colon protein expression was measured using 2D gel electrophoresis and LCMS protein identification. Colonic HIS of Mdr1a(-/-) mice fed the AIN-76A diet was higher (P<.001) than FVB mice fed the same diet; the curcumin-supplemented diet reduced colonic HIS (P<.05) in Mdr1a(-/-) mice. Microarray and proteomics analyses combined with new data analysis tools, such as the Ingenuity Pathways Analysis regulator effects analysis, showed that curcumin's antiinflammatory activity in Mdr1a(-/-) mouse colon may be mediated by activation of α-catenin, which has not previously been reported. We also show evidence to support curcumin's action via multiple molecular pathways including reduced immune response, increased xenobiotic metabolism, resolution of inflammation through decreased neutrophil migration and increased barrier remodeling. Key transcription factors and other regulatory molecules (ERK, FN1, TNFSF12 and PI3K complex) activated in inflammation were down-regulated by dietary intervention with curcumin. PMID:26437580

  12. Multidrug resistance after retroviral transfer of the human MDR1 gene correlates with P-glycoprotein density in the plasma membrane and is not affected by cytotoxic selection.

    PubMed Central

    Choi, K; Frommel, T O; Stern, R K; Perez, C F; Kriegler, M; Tsuruo, T; Roninson, I B

    1991-01-01

    Multidrug resistance (MDR) in mammalian cells is associated with the expression of the MDR1 gene encoding P-glycoprotein (P-gp), an and active efflux pump for various lipophilic compounds. MDR transfectants can be isolated after MDR1 gene transfer and selection with cytotoxic drugs; low levels of drug resistance have also been observed in unselected NIH 3T3 mouse cells after retrovirus-mediated transfer of mouse mdr1 cDNA. MDR cell lines possess multiple phenotypic changes, suggesting that P-gp function could be complemented by some additional mechanisms associated with cytotoxic selection. To determine whether cytotoxic selection contributes to the MDR phenotype of MDR1-expressing cells, NIH 3T3 cells infected with a recombinant retrovirus carrying the human MDR1 gene were selected by two different procedures: (i) noncytotoxic selection for increased P-gp expression on the cell surface by multiple rounds of immunofluorescence labeling and flow sorting or (ii) one or more steps of selection with a cytotoxic drug. The levels of MDR in both types of infectants showed an excellent correlation with the P-gp density in the plasma membrane, expressed as immunoreactivity with a P-gp-specific antibody normalized by reactivity with an antibody against an unrelated antigen. Cytotoxic selection conferred no additional increase in resistance relative to P-gp density. These results indicate that P-gp density in the plasma membrane may be sufficient to determine the level of MDR. Images PMID:1678523

  13. Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica

    PubMed Central

    Shitan, Nobukazu; Bazin, Ingrid; Dan, Kazuyuki; Obata, Kazuaki; Kigawa, Koji; Ueda, Kazumitsu; Sato, Fumihiko; Forestier, Cyrille; Yazaki, Kazufumi

    2003-01-01

    Alkaloids comprise one of the largest groups of plant secondary metabolites. Berberine, a benzylisoquinoline alkaloid, is preferentially accumulated in the rhizome of Coptis japonica, a ranunculaceous plant, whereas gene expression for berberine biosynthetic enzymes has been observed specifically in root tissues, which suggests that berberine synthesized in the root is transported to the rhizome, where there is high accumulation. We recently isolated a cDNA encoding a multidrug-resistance protein (MDR)-type ATP-binding cassette (ABC) transporter (Cjmdr1) from berberine-producing cultured C. japonica cells, which is highly expressed in the rhizome. Functional analysis of Cjmdr1 by using a Xenopus oocyte expression system showed that CjMDR1 transported berberine in an inward direction, resulting in a higher accumulation of berberine in Cjmdr1-injected oocytes than in the control. Typical inhibitors of ABC proteins, such as vanadate, nifedipine, and glibenclamide, as well as ATP depletion, clearly inhibited this CjMDR1-dependent berberine uptake, suggesting that CjMDR1 functioned as an ABC transporter. Conventional membrane separation methods showed that CjMDR1 was localized in the plasma membrane of C. japonica cells. In situ hybridization indicated that Cjmdr1 mRNA was expressed preferentially in xylem tissues of the rhizome. These findings strongly suggest that CjMDR1 is involved in the translocation of berberine from the root to the rhizome. PMID:12524452

  14. The effect of resveratrol on the expression of MDR1 gene in leukemic lymphoblast’s of acute lymphoblastic leukemia patients

    PubMed Central

    Hosein poor Feyzi, Abbas Ali; Farshdousti Hagh, Majid; Ebadi, Tohid; Shams Asanjan, Karim; Movasagpoor Akbari, Aliakbar; Talebi, Mehdi; Emadi, Behzad

    2015-01-01

    Background: Chemotherapy plays a very important role in the treatment of leukemia but the resistance properties of the lymphoblasts limit the effect of chemotherapy. One of the main mechanisms of resistance to chemotherapy is the increased expression of MDR1 gene. The aim of this study was to explore the effect of resveratrol on the expression of MDR1 gene in leukemic lymphoblast of new cases of acute lymphoblastic leukemia (ALL) patients in vitro. Methods: Separation of lymphoblasts of 5 new case ALL patients from peripheral blood was performed by ficoll density gradient centrifugation. Lymphoblasts were cultured in RPMI 1640 medium. Lymphoblasts were treated with 50µmol/L resveratrol for 48 h. Total RNA was extracted with guanidine isothiocyanate. RNA was converted to cDNA. Real time PCR was used to detect mRNA expression of MDR1. Results: The results of gene detection showed that the expression of MDR1 did not change significantly in the patients however, in one patient expression of MDR1 increased upon treatment with resveratrol. Conclusion: The results of this study did not support resveratrol as a compound to reverse multidrug resistance in leukemic lymphoblasts. PMID:26221511

  15. Optimized Ultrasound Conditions for Enhanced Sensitivity of Molecular Beacons in the Detection of MDR1 mRNA in Living Cells.

    PubMed

    Zhou, Qiumei; Ma, Yi; Wang, Zhaohui; Wang, Ke; Liu, Ruonan; Han, Zhihao; Zhang, Min; Li, Siwen; Gu, Yueqing

    2016-03-01

    P-glycoprotein (P-gp), aprognostic indicator for chemotherapy failure, is encoded by multidrug resistance gene (MDR1). MDR1 mRNA expression could serve as a guidance for personalized medicine. However, the traditional PCR process for mRNA measurement is complicated and cannot realize the real-time detection of mRNA in living single cells. In this work, optimized gold nanoparticle-based molecular beacons were employed to determine MDR1 mRNA levels in living cancer cells. To improve detection sensitivity, ultrasound (US) irradiation was applied to facilitate and enhance cellular uptake of hairpin DNA-coated gold nanoparticle (hDAuNP). The US conditions including irradiation power, exposure time, duty cycle, and incubation time were optimized. The slight difference in MDR1 expression manipulated by siRNA silence could be recognized by US assisted hDAuNP beacons; a 10-fold increase of detection sensitivity was achieved compared with the nonultrasound assistance. Meanwhile, the detection cycle could be shortened from 12 to 2 h. Furthermore, this hDAuNP beacon can serve as an antisense agent to down-regulate P-gp expression and to reverse drug resistance of MCF-7/Adr cells to doxorubicin. Our results demonstrated that the MDR1 hDAuNP beacon assisted by US irradiation had great potential to predict chemotherapy sensitivity and to overcome multidrug resistance in cancer cells and was thus a promising tool for individualized medicine. PMID:26821347

  16. Plasmodium yoelii: identification and partial characterization of an MDR1 gene in an artemisinin-resistant line.

    PubMed

    Ferrer-Rodríguez, Iván; Pérez-Rosado, José; Gervais, Gary W; Peters, Wallace; Robinson, Brian L; Serrano, Adelfa E

    2004-02-01

    The molecular mechanisms by which the malarial parasite has managed to develop resistance to many antimalarial drugs remain to be completely elucidated. Mutations in the pfmdr1 gene of Plasmodium falciparum, as well as an increase in pfmdr1 copy number, have been associated with resistance to the quinoline-containing antimalarial drugs. We investigated the mechanisms of drug resistance in Plasmodium using a collection of P. yoelii lines with different drug resistance profiles. The mdr1 gene of P. yoelii (pymdr1) was identified and characterized. A 2- to 3-fold increase in the pymdr1 gene copy number was observed in the P. yoelii ART line (artemisinin resistant) when compared with the NS parental line. The pymdr1 gene was mapped to a chromosome of 2.1 Mb in all lines analyzed. Reverse transcriptase-polymerase chain reaction and Western blot experiments confirmed the expression of the gene at the RNA and protein levels. PMID:15040683

  17. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  18. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    PubMed Central

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  19. Effect of the MDR1 C3435T variant and P-glycoprotein induction on dicloxacillin pharmacokinetics.

    PubMed

    Putnam, Wendy S; Woo, Jonathan M; Huang, Yong; Benet, Leslie Z

    2005-04-01

    This study investigated 2 hypotheses about genotype-phenotype relationships for the efflux transporter, P-glycoprotein: (1) the presence of a synonymous C3435T variant in exon 26 of the MDR1 gene correlates to higher plasma concentrations of a P-glycoprotein substrate, dicloxacillin, and (2) the effects of genotypic differences decrease under conditions of P-glycoprotein induction by rifampin. Eighteen healthy volunteers received two 1-g doses of dicloxacillin, one on the 1st study day and the other on the 11th day of rifampin dosing (600 mg daily). Dicloxacillin and its 5-hydroxymethyl metabolite were analyzed using liquid chromatography/tandem mass spectrometry. Mean dicloxacillin C(max) measurements were 30.5 +/- 13.5, 33.3 +/- 4.7, and 31.1 +/- 12.8 mug/mL in individuals with the CC, CT, and TT genotype at position 3435 in exon 26 of the MDR1 gene. Following rifampin dosing, the mean dicloxacillin C(max) across genotypes decreased from 31.4 +/- 10.8 to 22.9 +/- 7.0 microg/mL (P < .05), whereas the mean oral clearance increased from 235 +/- 82 to 297 +/- 71 mL/min (P < .001), and the mean absorption time increased from 0.71 +/- 0.55 to 1.34 +/- 0.77 h (P < .05). Rifampin treatment increased the formation clearance, C(max), and AUC of the 5-hydroxymethyl metabolite by 135%, 119%, and 59%, respectively. The C3435T variant had no effect on dicloxacillin pharmacokinetics. The data suggested that rifampin induced intestinal P-glycoprotein and increased dicloxacillin metabolism. PMID:15778422

  20. Activation of STAT5 confers imatinib resistance on leukemic cells through the transcription of TERT and MDR1.

    PubMed

    Yamada, Osamu; Ozaki, Kohji; Furukawa, Thoru; Machida, Mitsuyo; Wang, Yan-Hua; Motoji, Toshiko; Mitsuishi, Tsuyoshi; Akiyama, Masaharu; Yamada, Hisashi; Kawauchi, Kiyotaka; Matsuoka, Rumiko

    2011-07-01

    We used two imatinib resistant cell lines, K562-ADM cells, which over-express P-glycoprotein (a product of the ABCB1 gene, more commonly known as MDR1), and K562-hTERT cells, which over-express the telomerase reverse transcriptase (TERT), as models to show that the acquisition of multidrug resistance in CML is associated with the enhanced phosphorylation of signal transducer and activator of transcription 5 (STAT5). The induction of P-glycoprotein expression that occurred in response to adriamycin treatment was accompanied by increased phosphorylation of BCR-ABL and STAT5, as well as increased telomerase protein expression. Intriguingly, a ChIP assay using an anti-STAT5 antibody revealed direct binding of STAT5 to the promoter regions of both the human TERT gene and the MDR1 gene in K562-ADM cells. Conversely, silencing of endogenous STAT5 expression by siRNA significantly reduced both the expression of P-glycoprotein and telomerase activity and resulted in the recovery of the imatinib sensitivity of K562-ADM cells. These findings indicate a critical role for STAT5 in the induction of P-glycoprotein and in the modulation of telomerase activity in drug-resistant CML cells. Furthermore, primary leukemic cells obtained from patients in blast crisis showed increased levels of phospho-STAT5, P-glycoprotein and telomerase. In contrast, none of these proteins were detectable in the cells obtained from patients in the chronic phase. Together, these findings indicate a novel mechanism that contributes toward multidrug resistance involving STAT5 as a sensor for cytotoxic drugs in CML patients. PMID:21356308

  1. CYP3A5*3 and MDR1 C3435T are influencing factors of inter-subject variability in rupatadine pharmacokinetics in healthy Chinese volunteers.

    PubMed

    Xiong, Yuqing; Yuan, Zhao; Yang, Jingzhi; Xia, Chunhua; Li, Xinhua; Huang, Shibo; Zhang, Hong; Liu, Mingyi

    2016-04-01

    Rupatadine (RUP) is an oral antihistamine and platelet-activating factor antagonist and is shown as the substrate of CYP3A5 and P-gp. The significant interindividual differences of CYP3A5 and P-gp often cause bioavailability differences of some clinical drugs. The present study is aimed to evaluate the effect of genetic polymorphisms of CYP3A5 and MDR1 on RUP pharmacokinetics in healthy male Chinese volunteer subjects. Blood samples were collected from 36 subjects before and after a single, oral RUP 10 mg dose. A PCR-RFLP assay was used to genotype CYP3A5*3 and assess MDR1 C3435T variation. A validated LC-MS/MS method quantified plasma RUP concentration. The relationship between RUP plasma concentration, pharmacokinetic parameters, and polymorphic alleles (CYP3A5 and MDR1) were assessed. Plasma RUP concentrations were lower for CYP3A5*1/*1 carriers than for CYP3A5*3/*3 and CYP3A5*1/*3 carriers. Mean C(max), AUC(0-t) and AUC(0-∞) were significantly lower, and the CLz and Vd were significantly higher in the CYP3A5 wild-type group, than in the CYP3A5 mutated group. MDR1 CT and MDR1 TT carriers had lower plasma RUP concentrations than MDR1 CC carriers. The mean C(max), AUC(0-t), AUC(0-∞) and T max were significantly lower in the TT group than in the CC and CT groups. The mean CLz was higher in the TT group than in the CC and CT groups, but not significantly. These results suggest that CYP3A5 and MDR1 may play a key role in the variability of RUP metabolism and transport, respectively. CYP3A5 and MDR1 polymorphisms may be the main explanation for the differences observed in RUP pharmacokinetics, and therefore may provide a rationale for safe and effective clinical use of RUP. Our research lays down a solid theory foundation to guide the safe and effective clinical use of RUP and a route to achieve individualized therapy. PMID:25427746

  2. Breed distribution and history of canine mdr1-1Δ, a pharmacogenetic mutation that marks the emergence of breeds from the collie lineage

    PubMed Central

    Neff, Mark W.; Robertson, Kathryn R.; Wong, Aaron K.; Safra, Noa; Broman, Karl W.; Slatkin, Montgomery; Mealey, Katrina L.; Pedersen, Niels C.

    2004-01-01

    A mutation in the canine multidrug resistance gene, MDR1, has previously been associated with drug sensitivities in two breeds from the collie lineage. We exploited breed phylogeny and reports of drug sensitivity to survey other purebred populations that might be genetically at risk. We found that the same allele, mdr1-1Δ, segregated in seven additional breeds, including two sighthounds that were not expected to share collie ancestry. A mutant haplotype that was conserved among affected breeds indicated that the allele was identical by descent. Based on breed histories and the extent of linkage disequilibrium, we conclude that all dogs carrying mdr1-1Δ are descendants of a dog that lived in Great Britain before the genetic isolation of breeds by registry (ca. 1873). The breed distribution and frequency of mdr1-1Δ have applications in veterinary medicine and selective breeding, whereas the allele's history recounts the emergence of formally recognized breeds from an admixed population of working sheepdogs. PMID:15289602

  3. The importance of G2677T/A and C3435T polymorphisms of the MDR1 gene in the aetiology of colorectal cancer

    PubMed Central

    Stańko, Grzegorz; Kamiński, Marek; Seremak-Mrozikiewicz, Agnieszka; Kosiński, Bogusław; Bartkowiak-Wieczorek, Joanna; Kotrych, Daniel; Czerny, Bogusław

    2015-01-01

    Introduction Colorectal cancer (CRC) is the most common cancer among patients, and its aetiology is still not precisely known. It is believed that 15–30% of colorectal cancers are genetically determined. P-glycoprotein (P-gp) encoded by the MDR1 gene in normal conditions plays an important role in the action of colon epithelial cells. However, the MDR1 polymorphism influences the P-gp expression and can weaken its effect against xenobiotics (procarcinogens) and increase the frequency of CRC. Aim To evaluate the correlation between the MDR1 C3435T and G2677T/A polymorphisms and the risk of colorectal cancer. Material and methods The study group with colorectal cancer included 47 women and 60 men while the control group consisted of 110 healthy patients. The diagnosis in patients suffering from CRC was confirmed by histopathological report. Genetic analysis was performed using PCR-RFLP method. Results We showed only a correlation between the frequency of CT and TT genotypes of C3435T polymorphism and the risk of colorectal cancer in younger age. There was no correlation between the C3435T and G2677T/A polymorphisms of the MDR1 gene and other clinical parameters. Conclusions Our findings suggest that T allele carriers of C3435T polymorphism have an increased risk of CRC. However, further studies are needed on a much larger number of patients and genes associated with metabolism and transport of xenobiotics including procarcinogens. PMID:27110309

  4. [Expression of the MDR1 gene in five human cell lines of medullary thyroid cancer and reversion of the resistance to doxorubicine by ciclosporin A and verapamil].

    PubMed

    Massart, C; Gibassier, J; Lucas, C; Pourquier, P; Robert, J

    1996-01-01

    Medullary thyroid carcinoma (MTC) is frequently resistant to chemotherapy. Multidrug resistance (MDR) is one of the involved mechanisms. In this work we have studied the MDR1 gene expression in five MTC human cell lines that we have isolated and we have compared this expression to that of normal thyroid tissue. We have also tried to reverse the resistance to doxorubicin with verapamil (VRP) and ciclosporin A (CSA). MDR1 ARNm expression was studied and quantified by polymerase chain reaction (PCR) in normal and pathological thyroid tissues. The doxorubicin-induced cytotoxicity was evaluated with the 3,-4,5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) test, the neutral red (NR) uptake and with total glutathione (GSH) or intracellular lactate dehydrogenase (LDH) measurements. We found an increase of MDR1 ARNm in MTC as compared with normal tissues. Doxorubicin was cytotoxic after a 48-h coincubation with the cells. Three microM CSA and 10 microM VRP reversed the doxorubicin resistance only after a 48-h coincubation, generally followed with a 24 h-post-incubation. In these conditions, the GSH levels were decreased only by VRP in all the five cell lines. In conclusion, a chemoresistance related to the MDR1 gene overexpression was found in the five human MTC lines tested. VRP and CSA reversed the resistance to doxorubicin in all the MTC cell lines tested. PMID:8672855

  5. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells.

    PubMed Central

    Pastan, I; Gottesman, M M; Ueda, K; Lovelace, E; Rutherford, A V; Willingham, M C

    1988-01-01

    A full-length cDNA for the human multidrug resistance gene 1 (MDR1) has been inserted into a retroviral vector containing a murine Harvey sarcoma virus from which the viral oncogene was deleted. Ecotropic and amphotropic virus was produced after transfection of this vector into psi-2 and PA-12 packaging cell lines. This virus conferred the full phenotype of multidrug resistance on mouse and human cell lines. Viral titers of up to 2 X 10(5) drug-resistant colonies per ml were observed. Infected cells became resistant to colchicine, vinblastine, doxorubicin, VP16 (etoposide), and puromycin, but not cisplatin, indicating that the presence of the human MDR1 gene is sufficient to cause multidrug resistance. When the dog kidney cell line MDCK was infected with the MDR1 virus, P-glycoprotein was expressed in a polarized manner on the upper surface of the cells, showing that the cloned cDNA also encodes information for polarized expression of P-glycoprotein. The MDR1 virus should be useful for introducing this drug resistance gene into a variety of cell types for biological experiments in vitro and in vivo. Images PMID:2898143

  6. Cystic fibrosis-type mutational analysis in the ATP-binding cassette transporter signature of human P-glycoprotein MDR1.

    PubMed

    Hoof, T; Demmer, A; Hadam, M R; Riordan, J R; Tümmler, B

    1994-08-12

    Members of the ATP-binding cassette transporter superfamily such as the P-glycoproteins (MDR) and the cystic fibrosis transmembrane conductance regulator (CFTR) share conserved sequence motifs in their nucleotide binding fold that are the major targets for CFTR mutations in patients with cystic fibrosis. Cystic fibrosis-type mutations were introduced at analogous positions into the human MDR1 gene. Heterologous expression of wild-type or mutated MDR1 revealed similar mRNA transcript levels in Chinese hamster ovary K1 recipients, but the subsequent processing was defective for all mutations that give rise to severe cystic fibrosis in the case of CFTR. Functional multidrug transporter MDR1, however, was obtained when amino acid substitutions were introduced into a less conserved position of the ATP-binding cassette transporter signature (codon 536 in MDR1). The profile of cross-resistance and chemosensitization was modulated in these codon 536 variants, which suggests that this region is involved in the drug transport function of P-glycoprotein. PMID:7914197

  7. Expression of a full-length cDNA for the human MDR1 gene confers resistance to colchicine, doxorubicin, and vinblastine

    SciTech Connect

    Ueda, K.; Cardarelli, C.; Gottesman, M.M.; Pastan, I.

    1987-05-01

    Intrinsic and acquired multidrug resistance (MDR) is an important problem in cancer therapy. MDR in human KB carcinoma cells selected for resistance to colchicine, vinblastine, or doxorubicin (former generic name adriamycin) is associated with overexpression of the MDR1 gene, which encodes P-glycoprotein. The authors previously have isolated an overlapping set of cDNA clones for the human MDR1 gene from multidrug-resistant KB cells. Here they report the construction of a full-length cDNA for the human MDR1 gene and show that this reconstructed cDNA, when inserted into a retroviral expression vector containing the long terminal repeats of Moloney leukemia virus or Harvey sarcoma virus, functions in mouse NIH 3T3 and human KB cells to confer the complete multidrug-resistance phenotype. These results suggest that the human MDR1 gene may be used as a positive selectable marker to introduce genes into human cells and to transform human cells to multidrug resistance without introducing nonhuman antigens.

  8. Polymorphism of ABCB1/MDR1 C3435T in Children and Adolescents with Partial Epilepsy is due to Different Criteria for Drug Resistance – Preliminary Results

    PubMed Central

    Emich-Widera, Ewa; Likus, Wirginia; Kazek, Beata; Sieroń, Aleksander L.; Urbanek, Ksymena

    2014-01-01

    Background The diagnosis of “drug resistance” in epilepsy can be defined and interpreted in various ways. This may be due to discrepant definitions of drug resistance to pharmacotherapy. The aim of our study was to investigate the relationship between C3435T polymorphism of the MDR1 gene and drug resistance in epilepsy with the consideration of 4 different criteria for qualification to groups sensitive and resistant to applied pharmacotherapy. Material/Methods Evaluation of C3435T polymorphism of MDR1/ABCB1 gene was conducted on a group of 82 white children and young adolescents up to 18 years old. While qualifying the patients to the group of sensitive or drug resistant, the following 4 definitions of drug resistance were applied: the ILAE’s, Appleton’s, Siddiqui’s, and Berg’s. Results A detailed analysis of genotypes of the MDR1 gene did not show any significant discrepancies between the groups of patients resistant and sensitive to antiepileptic drugs (AEDs) in 4 consecutive comparisons taking into consideration various criteria of sensitivity and resistance to pharmacotherapy. Conclusions The obtained results clearly confirm the lack of a connection between the occurrence of drug-resistant epilepsy and C435T polymorphism of the MDR1 gene irrespective of the definition of drug resistance applied to the patient. PMID:25223475

  9. RNA helicase A in the MEF1 transcription factor complex up-regulates the MDR1 gene in multidrug-resistant cancer cells.

    PubMed

    Zhong, Xiaoling; Safa, Ahmad R

    2004-04-23

    RNA helicase A (RHA) is a member of the DEAD/H family of RNA helicases and unwinds duplex RNA and DNA. Recent studies have shown that RHA regulates the activity of gene promoters. However, little information is available about the in vivo relevance of RHA in the regulation of natural genes. We previously characterized a nuclear protein (MEF1) that binds to the proximal promoter of the multidrug resistance gene (MDR1) and up-regulates the promoter activity. In the present study, we isolated and identified RHA as a component of the MEF1 complex by using DNA-affinity chromatography and mass spectrometry. The antibody against RHA specifically disrupted the complex formation in electrophoretic mobility shift assay, confirming the identity of RHA. Western blotting showed that RHA in drug-resistant cells had a higher molecular weight than that in drug-sensitive cells. Similar results were obtained when FLAG-tagged RHA was overexpressed in these cells. This size difference probably reflects posttranslational modification(s) of RHA in drug-resistant cells. Chromatin immunoprecipitation revealed that RHA occupies the MDR1 promoter in vivo. Overexpression of RHA enhanced expression of the MDR1 promoter/reporter construct and endogenous P-glycoprotein (P-gp), the MDR1 gene product, and increased drug resistance of drug-resistant cells but not the drug-sensitive counterpart. Introduction of short interfering RNA targeting the RHA gene sequence selectively knocked-down RHA expression and concomitantly reduced P-gp level. Thus, our study demonstrates, for the first time, the involvement of RHA in up-regulation of the MDR1 gene. Interactions of RHA with other protein factors in the MEF1 complex bound to the promoter element may contribute to P-gp overexpression and multidrug resistance phenotype in drug-resistant cancer cells. PMID:14769796

  10. Genetic Polymorphisms of Multidrug Resistance Gene-1 (MDR1/ABCB1) and Glutathione S-Transferase Gene and the Risk of Inflammatory Bowel Disease among Moroccan Patients

    PubMed Central

    Senhaji, Nezha; Kassogue, Yaya; Fahimi, Mina; Serbati, Nadia; Badre, Wafaa; Nadifi, Sellama

    2015-01-01

    Inflammatory bowel diseases (IBD) are multifactorial disorders resulting from environmental and genetic factors. Polymorphisms in MDR1 and GSTs genes might explain individual differences in susceptibility to IBD. We carried out a case-control study to examine the association of MDR1 (C1236T and C3435T), GSTT1, and GSTM1 polymorphisms with the risk of IBD. Subjects were genotyped using PCR-RFLP for MDR1 gene and multiplex PCR for GSTT1 and GSTM1. Meta-analysis was performed to test the association of variant allele carriage with IBD risk. We report that GSTT1 null genotype is significantly associated with the risk of CD (OR: 2.5, CI: 1.2–5, P = 0.013) and UC (OR: 3.5, CI: 1.5–8.5, P = 0.004) and can influence Crohn's disease behavior. The interaction between GSTT1 and GSTM1 genes showed that the combined null genotypes were associated with the risk of UC (OR: 3.1, CI: 1.1–9, P = 0.049). Furthermore, when compared to combined 1236CC/CT genotypes, the 1236TT genotype of MDR1 gene was associated with the risk of UC (OR: 3.7, CI: 1.3–10.7, P = 0.03). Meta-analysis demonstrated significantly higher frequencies of 3435T carriage in IBD patients. Our results show that GSTT1 null and MDR1 polymorphisms could play a role in susceptibility to IBD. PMID:26604430

  11. Interaction of anthelmintic drugs with P-glycoprotein in recombinant LLC-PK1-mdr1a cells.

    PubMed

    Dupuy, Jacques; Alvinerie, Michel; Ménez, Cecile; Lespine, Anne

    2010-08-01

    Given the widespread use of formulations combining anthelmintics which are possible P-glycoprotein interfering agents, the understanding of drug interactions with efflux ABC transporters is of concern for improving anthelmintic control. We determined the ability of 14 anthelmintics from different classes to interact with abcb1a (mdr1a, P-glycoprotein, Pgp) by following the intracellular accumulation of rhodamine 123 (Rho 123), a fluorescent Pgp substrate, in LLC-PK1 cells overexpressing Pgp. The cytotoxicity of the compounds that are able to interfere with Pgp activity was evaluated in cells overexpressing Pgp and compared with parental cells using the MTS viability assay. Among all the anthelmintics used, ivermectin (IVM), triclabendazole (TCZ), triclabendazole sulfoxide (TCZ-SO), closantel (CLOS) and rafoxanide (RAF) increased the intracellular Rho 123 in Pgp overexpressing cells, while triclabendazole sulfone, albendazole, mebendazole, oxfendazole, thiabendazole, nitroxynil, levamisole, praziquantel and clorsulon failed to have any effect. The concentration needed to reach the maximal Rho 123 accumulation (E(max)) was obtained with 10 microM for IVM, 80 microM for CLOS, 40 microM for TCZ and TCZ-SO, and 80 microM for RAF. We showed that for these five drugs parental cell line was more sensitive to drug toxicity compared with Pgp recombinant cell line. Such in vitro approach constitutes a powerful tool to predict Pgp-drug interactions when formulations combining several anthelmintics are administered and may contribute to the required optimization of efficacy of anthelmintics. PMID:20513441

  12. UV-triggered Affinity Capture Identifies Interactions between the Plasmodium falciparum Multidrug Resistance Protein 1 (PfMDR1) and Antimalarial Agents in Live Parasitized Cells*

    PubMed Central

    Brunner, Ralf; Ng, Caroline L.; Aissaoui, Hamed; Akabas, Myles H.; Boss, Christoph; Brun, Reto; Callaghan, Paul S.; Corminboeuf, Olivier; Fidock, David A.; Frame, Ithiel J.; Heidmann, Bibia; Le Bihan, Amélie; Jenö, Paul; Mattheis, Corinna; Moes, Suzette; Müller, Ingrid B.; Paguio, Michelle; Roepe, Paul D.; Siegrist, Romain; Voss, Till; Welford, Richard W. D.; Wittlin, Sergio; Binkert, Christoph

    2013-01-01

    A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615. PMID:23754276

  13. Analysis of the mdr-1 gene in patients co-infected with Onchocerca volvulus and Loa loa who experienced a post-ivermectin serious adverse event.

    PubMed

    Bourguinat, Catherine; Kamgno, Joseph; Boussinesq, Michel; Mackenzie, Charles D; Prichard, Roger K; Geary, Timothy G

    2010-07-01

    Ivermectin (IVM) is exceptionally safe in humans, and is used for mass treatment of onchocerciasis and lymphatic filariasis. However, cases of encephalopathy, sometimes fatal, have been reported in a small number of individuals who harbored large numbers of Loa loa microfilariae (mf). A loss-of-function mutation in the mdr-1 gene in some dog breeds and in mice leads to accumulation of the drug in the brain, causing coma and death. This hypothesis was tested in four individuals from Cameroon who experienced a post-IVM serious adverse event (SAE) and in nine non-SAE matched controls. No loss-of-function mutation was detected in mdr-1 in any subject. However, haplotypes, associated with altered drug disposition, were present as homozygotes in two of the SAE patients (50%), but absent as homozygotes in the controls (0%). An association of high Loa mf load and a genetic predisposition to altered IVM distribution could be involved in IVM SAEs. PMID:20595473

  14. Human Helicase RECQL4 Drives Cisplatin Resistance in Gastric Cancer by Activating an AKT-YB1-MDR1 Signaling Pathway.

    PubMed

    Mo, Dongliang; Fang, Hongbo; Niu, Kaifeng; Liu, Jing; Wu, Meng; Li, Shiyou; Zhu, Tienian; Aleskandarany, Mohammed A; Arora, Arvind; Lobo, Dileep N; Madhusudan, Srinivasan; Balajee, Adayabalam S; Chi, Zhenfen; Zhao, Yongliang

    2016-05-15

    Elevation of the DNA-unwinding helicase RECQL4, which participates in various DNA repair pathways, has been suggested to contribute to the pathogenicity of various human cancers, including gastric cancer. In this study, we addressed the prognostic and chemotherapeutic significance of RECQL4 in human gastric cancer, which has yet to be determined. We observed significant increases in RECQL4 mRNA or protein in >70% of three independent sets of human gastric cancer specimens examined, relative to normal gastric tissues. Strikingly, high RECQL4 expression in primary tumors correlated well with poor survival and gastric cancer lines with high RECQL4 expression displayed increased resistance to cisplatin treatment. Mechanistic investigations revealed a novel role for RECQL4 in transcriptional regulation of the multidrug resistance gene MDR1, through a physical interaction with the transcription factor YB1. Notably, ectopic expression of RECQL4 in cisplatin-sensitive gastric cancer cells with low endogenous RECQL4 was sufficient to render them resistant to cisplatin, in a manner associated with YB1 elevation and MDR1 activation. Conversely, RECQL4 silencing in cisplatin-resistant gastric cancer cells with high endogenous RECQL4 suppressed YB1 phosphorylation, reduced MDR1 expression, and resensitized cells to cisplatin. In establishing RECQL4 as a critical mediator of cisplatin resistance in gastric cancer cells, our findings provide a therapeutic rationale to target RECQL4 or the downstream AKT-YB1-MDR1 axis to improve gastric cancer treatment. Cancer Res; 76(10); 3057-66. ©2016 AACR. PMID:27013200

  15. Efficient Trafficking of MDR1/P-Glycoprotein to Apical Canalicular Plasma Membranes in HepG2 Cells Requires PKA-RIIα Anchoring and Glucosylceramide

    PubMed Central

    Wojtal, Kacper A.; de Vries, Erik; Hoekstra, Dick

    2006-01-01

    In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIα from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and 5′NT, to newly formed apical surfaces. In addition, the direct trafficking of de novo synthesized glycosphingolipid analogues from the Golgi apparatus to the apical surface is inhibited. Instead, newly synthesized glucosylceramide analogues are rerouted to the basolateral surface via a vesicular pathway, from where they are subsequently endocytosed and delivered to the apical surface via transcytosis. Treatment of HepG2 cells with the glucosylceramide synthase inhibitor PDMP delays the appearance of MDR1, but not MRP2, DPP IV, and 5′NT at newly formed apical surfaces, implicating glucosylceramide synthesis as an important parameter for the efficient Golgi-to-apical surface transport of MDR1. Neither PKA-RIIα displacement nor PDMP inhibited (cAMP-stimulated) apical plasma membrane biogenesis per se, suggesting that other cAMP effectors may play a role in canalicular development. Taken together, our data implicate the involvement of PKA-RIIα anchoring in the efficient direct apical targeting of distinct proteins and glycosphingolipids to newly formed apical plasma membrane domains and suggest that rerouting of Golgi-derived glycosphingolipids may underlie the delayed Golgi-to-apical surface transport of MDR1. PMID:16723498

  16. Inhibitory effects of neochamaejasmin B on P-glycoprotein in MDCK-hMDR1 cells and molecular docking of NCB binding in P-glycoprotein.

    PubMed

    Pan, Lanying; Hu, Haihong; Wang, Xiangjun; Yu, Lushan; Jiang, Huidi; Chen, Jianzhong; Lou, Yan; Zeng, Su

    2015-01-01

    Stellera chamaejasme L. (Thymelaeaceae) is widely distributed in Mongolia, Tibet and the northern parts of China. Its roots are commonly used as "Langdu", which is embodied in the Pharmacopoeia of the P.R. China (2010) as a toxic Traditional Chinese Medicine. It is claimed to have antivirus, antitumor and antibacterial properties in China and other Asian countries. Studies were carried out to characterize the inhibition of neochamaejasmin B (NCB) on P-glycoprotein (P-gp, ABCB1, MDR1). Rhodamine-123 (R-123) transport and accumulation studies were performed in MDCK-hMDR1 cells. ABCB1 (MDR1) mRNA gene expression and P-gp protein expression were analyzed. Binding selectivity studies based on molecular docking were explored. R-123 transport and accumulation studies in MDCK-hMDR1 cells indicated that NCB inhibited the P-gp-mediated efflux in a concentration-dependent manner. RT-PCR and Western blot demonstrated that the P-gp expression was suppressed by NCB. To investigate the inhibition type of NCB on P-gp, Ki and Ki' values were determined by double-reciprocal plots in R-123 accumulation studies. Since Ki was greater than Ki', the inhibition of NCB on P-gp was likely a mixed type of competitive and non-competitive inhibition. The results were confirmed by molecular docking in our current work. The docking data indicated that NCB had higher affinity to P-gp than to Lig1 ((S)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one). PMID:25679052

  17. Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1

    PubMed Central

    Wang, Changyuan; Huo, Xiaokui; Wang, Lijuan; Meng, Qiang; Liu, Zhihao; Liu, Qi; Sun, Huijun; Sun, Pengyuan; Peng, Jinyong; Liu, Kexin

    2016-01-01

    The purpose of present study was to investigate the effect of dioscin on activity of adriamycin (ADR) in ADR-sensitive (MCF-7) and ADR-resistant (MCF-7/ADR) human breast cancer cells and to clarify the molecular mechanisms involved. Antiproliferation effect of ADR was enhanced by dioscin in MCF-7 and MCF-7/ADR cells. Dioscin significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in MCF-7/ADR cells. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Moreover, dioscin induced the formation of vacuoles in the cytoplasm and protein level of LC3-II in MCF-7 and MCF-7/ADR cells. Autophagy inhibitor 3-MA abolished the effect of dioscin on ADR cytotoxicity. Dioscin inhibited phosphorylation of PI3K and Akt, resulting in upregulation of LC3-II expression. In conclusion, dioscin increased ADR chemosensitivity by down-regulating MDR1 expression through NF-κB signaling inhibition in MCF-7/ADR cells. Autophagy was induced by dioscin to ameliorate the cytotoxicity of ADR via inhibition of the PI3K/AKT pathways in MCF-7 and MCF-7/ADR cells. These findings provide evidence in support of further investigation into the clinical application of dioscin as a chemotherapy adjuvant. PMID:27329817

  18. Experimental Evolution of Resistance to Artemisinin Combination Therapy Results in Amplification of the mdr1 Gene in a Rodent Malaria Parasite

    PubMed Central

    Rodrigues, Louise A.; Henriques, Gisela; Borges, Sofia T.; Hunt, Paul; Sanchez, Cecília P.; Martinelli, Axel; Cravo, Pedro

    2010-01-01

    Background Lacking suitable alternatives, the control of malaria increasingly depends upon Artemisinin Combination Treatments (ACT): resistance to these drugs would therefore be disastrous. For ACTs, the biology of resistance to the individual components has been investigated, but experimentally induced resistance to component drugs in combination has not been generated. Methodology/Principal Findings We have used the rodent malaria parasite Plasmodium chabaudi to select in vivo resistance to the artesunate (ATN) + mefloquine (MF) version of ACT, through prolonged exposure of parasites to both drugs over many generations. The selection procedure was carried out over twenty-seven consecutive sub-inoculations under increasing ATN + MF doses, after which a genetically stable resistant parasite, AS-ATNMF1, was cloned. AS-ATNMF1 showed increased resistance to ATN + MF treatment and to artesunate or mefloquine administered separately. Investigation of candidate genes revealed an mdr1 duplication in the resistant parasites and increased levels of mdr1 transcripts and protein. There were no point mutations in the atpase6 or ubp1genes. Conclusion Resistance to ACTs may evolve even when the two drugs within the combination are taken simultaneously and amplification of the mdr1 gene may contribute to this phenotype. However, we propose that other gene(s), as yet unidentified, are likely to be involved. PMID:20657645

  19. Evaluation of mRNA Expression Levels of cyp51A and mdr1, Candidate Genes for Voriconazole Resistance in Aspergillus flavus

    PubMed Central

    Fattahi, Azam; Zaini, Farideh; Kordbacheh, Parivash; Rezaie, Sasan; Safara, Mahin; Fateh, Roohollah; Farahyar, Shirin; Kanani, Ali; Heidari, Mansour

    2015-01-01

    Background: Voriconazole Resistance (VRC-R) in Aspergillus flavus isolates impacts the management of aspergillosis, since azoles are the first choice for prophylaxis and therapy. However, to the best of our knowledge, the mechanisms underlying voriconazole resistance are poorly understood. Objectives: The present study was designed to evaluate mRNA expression levels of cyp51A and mdr1 genes in voriconazole resistant A. flavus by a Real-Time Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) technique. Materials and Methods: Five A. flavus isolates with resistance to VRC were examined by a RT-PCR approach. Results: Four out of five isolates revealed cyp51A and mdr1 mRNA overexpression. Interestingly, the isolate, which was negative for cyp51A and mdr1 mRNA expression showed a high voriconazole Minimum Inhibitory Concentration (MIC). Furthermore, a computational-based analysis predicted that voriconazole resistance could be mediated through cooperation with a network protein interaction. Conclusions: Our experimental and in silico findings may provide new insight in the complex molecular pathways of drug resistance and also could assist design an efficient therapeutic strategy for aspergillosis treatment. PMID:26865941

  20. Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1.

    PubMed

    Wang, Changyuan; Huo, Xiaokui; Wang, Lijuan; Meng, Qiang; Liu, Zhihao; Liu, Qi; Sun, Huijun; Sun, Pengyuan; Peng, Jinyong; Liu, Kexin

    2016-01-01

    The purpose of present study was to investigate the effect of dioscin on activity of adriamycin (ADR) in ADR-sensitive (MCF-7) and ADR-resistant (MCF-7/ADR) human breast cancer cells and to clarify the molecular mechanisms involved. Antiproliferation effect of ADR was enhanced by dioscin in MCF-7 and MCF-7/ADR cells. Dioscin significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in MCF-7/ADR cells. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Moreover, dioscin induced the formation of vacuoles in the cytoplasm and protein level of LC3-II in MCF-7 and MCF-7/ADR cells. Autophagy inhibitor 3-MA abolished the effect of dioscin on ADR cytotoxicity. Dioscin inhibited phosphorylation of PI3K and Akt, resulting in upregulation of LC3-II expression. In conclusion, dioscin increased ADR chemosensitivity by down-regulating MDR1 expression through NF-κB signaling inhibition in MCF-7/ADR cells. Autophagy was induced by dioscin to ameliorate the cytotoxicity of ADR via inhibition of the PI3K/AKT pathways in MCF-7 and MCF-7/ADR cells. These findings provide evidence in support of further investigation into the clinical application of dioscin as a chemotherapy adjuvant. PMID:27329817

  1. Kinetic analysis of human and canine P-glycoprotein-mediated drug transport in MDR1-MDCK cell model: approaches to reduce false-negative substrate classification.

    PubMed

    Li, Jibin; Wang, Ying; Hidalgo, Ismael J

    2013-09-01

    Madin-Darby canine kidney (MDCK) cells transfected with the multidrug resistance 1 (MDR1) gene, MDR1-MDCK, are widely used as an in vitro model to classify compounds as human P-glycoprotein (hPgp) substrates or nonsubstrates. Because MDCK cells express endogenous canine Pgp (cPgp), which is prone to downregulation after transfection with hPgp, this situation could lead to false-negative classification of hPgp substrates. The aim of this study was to investigate factors that influence hPgp substrate classification in MDR1-MDCK model and to seek ways to reduce false classification. Three-compartment models were used to derive flux equations describing the drug transport processes; factors influencing hPgp substrate classification were evaluated by simulations. Pgp functionality was assessed by determining the bidirectional permeability of a series of test compounds. Expressions of hPgp and cPgp were measured by quantitative polymerase chain reaction (qPCR). Kinetic model analysis revealed that the current net flux ratio calculation for hPgp substrate classification is influenced by endogenous cPgp expression as well as hPgp-cPgp expression ratio; the effect was more pronounced in low hPgp-cPgp region and diminished in high ratio region. On the basis of kinetic considerations, this study provides a rational experimental approach and appropriate mathematical corrections to minimize the potential occurrence of false-negative classification of new molecular entities. PMID:23558561

  2. Design of a hairpin polyamide, ZT65B, for targeting the inverted CCAAT box (ICB) site in the multidrug resistant (MDR1) gene.

    PubMed

    Buchmueller, Karen L; Taherbhai, Zarmeen; Howard, Cameron M; Bailey, Suzanna L; Nguyen, Binh; O'Hare, Caroline; Hochhauser, Daniel; Hartley, John A; Wilson, W David; Lee, Moses

    2005-12-01

    A novel hairpin polyamide, ZT65B, containing a 3-methylpicolinate moiety was designed to target the inverted CCAAT box (ICB) of the human multidrug resistance 1 gene (MDR1) promoter. Binding of nuclear factor-Y (NF-Y) to the ICB site upregulates MDR1 gene expression and is, therefore, a good target for anticancer therapeutic agents. However, it is important to distinguish amongst different promoter ICB sites so that only specific genes will be affected. All ICB sites have the same sequence but they differ in the sequence of the flanking base pairs, which can be exploited in the design of sequence-specific polyamides. To test this hypothesis, ten ICB-containing DNA hairpins were designed with different flanking base pairs; the sequences ICBa and ICBb were similar to the 3'-ICB site of MDR1 (TGGCT). Thermal-denaturation studies showed that ZT65B effectively targeted ICBa and ICBb (DeltaTM=6.5 and 7.0 degrees C) in preference to the other DNA hairpins (<3.5 degrees C), with the exception of ICBc (5.0 degrees C). DNase I-footprinting assays were carried out with the topoisomerase IIalpha-promoter sequence, which contains five ICB sites; of these, ICB1 and ICB5 are similar to the ICB site of MDR1. ZT65B was found to selectively bind ICB1 and ICB5; footprints were not observed with ICB2, ICB3, or ICB4. A strong, positive induced ligand band at 325 nm in CD studies confirmed that ZT65B binds in the DNA minor groove. The selectivity of ZT65B binding to hairpins that contained the MDR1 ICB site compared to one that did not (ICBd) was confirmed by surface-plasmon studies, and equilibrium constants of 5x10(6)-1x10(7) and 4.6x10(5) M-1 were obtained with ICB1, ICB5,and ICB2 respectively. ZT65B and the previously published JH37 (J. A. Henry, et al. Biochemistry 2004, 43, 12 249-12 257) serve as prototypes for the design of novel polyamides. These can be used to specifically target the subset of ubiquitous gene elements known as ICBs, and thereby affect the expression of one or

  3. Regulation of expression and activity of multidrug resistance proteins MRP2 and MDR1 by estrogenic compounds in Caco-2 cells. Role in prevention of xenobiotic-induced cytotoxicity.

    PubMed

    Arias, Agostina; Rigalli, Juan Pablo; Villanueva, Silvina S M; Ruiz, María L; Luquita, Marcelo G; Perdomo, Virginia G; Vore, Mary; Catania, Viviana A; Mottino, Aldo D

    2014-06-01

    ABC transporters including MRP2, MDR1 and BCRP play a major role in tissue defense. Epidemiological and experimental studies suggest a cytoprotective role of estrogens in intestine, though the mechanism remains poorly understood. We evaluated whether pharmacologic concentrations of ethynylestradiol (EE, 0.05pM to 5nM), or concentrations of genistein (GNT) associated with soy ingestion (0.1-10μM), affect the expression and activity of multidrug resistance proteins MRP2, MDR1 and BCRP using Caco-2 cells, an in vitro model of intestinal epithelium. We found that incubation with 5pM EE and 1μM GNT for 48h increased expression and activity of both MRP2 and MDR1. Estrogens did not affect expression of BCRP protein at any concentration studied. Irrespective of the estrogen tested, up-regulation of MDR1 and MRP2 protein was accompanied by increased levels of MDR1 mRNA, whereas MRP2 mRNA remained unchanged. Cytotoxicity assays demonstrated association of MRP2 and MDR1 up-regulation with increased resistance to cell death induced by 1-chloro-2,4-dinitrobenzene, an MRP2 substrate precursor, and by paraquat, an MDR1 substrate. Experiments using an estrogen receptor (ER) antagonist implicate ER participation in MRP2 and MDR1 regulation. GNT but not EE increased the expression of ERβ, the most abundant form in human intestine and in Caco-2 cells, which could lead in turn to increased sensitivity to estrogens. We conclude that specific concentrations of estrogens can confer resistance against cytotoxicity in Caco-2 cells, due in part to positive modulation of ABC transporters involved in extrusion of their toxic substrates. Although extrapolation of these results to the in vivo situation must be cautiously done, the data could explain tentatively the cytoprotective role of estrogens against chemical injury in intestine. PMID:24685904

  4. Decreased expression of nucleophosmin/B23 increases drug sensitivity of adriamycin-resistant Molt-4 leukemia cells through mdr-1 regulation and Akt/mTOR signaling.

    PubMed

    Wang, Lingyan; Chen, Buyuan; Lin, Minhui; Cao, Yanqin; Chen, Yingyu; Chen, Xinji; Liu, Tingbo; Hu, Jianda

    2015-03-01

    Nucleophosmin/B23 (NPM) is a nuclear protein with prosurvival and ribosomal RNA processing functions. However, the potential role of NPM involved in drug-resistance in leukemia has not been investigated clearly. In this study, we generated an adriamycin (ADM)-resistant lymphoblastic cell line Molt-4/ADR (MAR) by stepwise induction. Cell proliferation, sensitivity to chemotherapy agents and expressions of drug resistance related molecules were assessed. The IC50 of Molt-4 cells were 0.58±0.11μmol/L and MAR cells were 22.56±1.94μmol/L, meaning MAR cells were 38.63 fold resistant to Molt-4 cells. Furthermore, MAR cells gained an expression of mdr-1 (P-gp) and a higher expression of NPM compared to Molt-4 cells. Knockdown of NPM by RNA interference (RNAi) suppressed the viability of both Molt-4 and MAR cells. After NPM RNAi, the IC50 of MAR and Molt-4 cells were 3.83±0.38μmol/L and 0.19±0.02μmol/L respectively. Both of them revealed an increase of drug sensitivity with down-regulation of mdr-1 and Akt/mTOR signaling. Knockdown of mdr-1 could also reverse the drug resistance, with no change in NPM expression. It could be concluded that knockdown of NPM reversed the drug resistance by down-regulating P-gp and Akt/mTOR signal pathway, indicating that NPM may serve as a potential modulator in drug resistance. PMID:25457413

  5. Relative Neurotoxicity of Ivermectin and Moxidectin in Mdr1ab (−/−) Mice and Effects on Mammalian GABA(A) Channel Activity

    PubMed Central

    Ménez, Cécile; Sutra, Jean-François; Prichard, Roger; Lespine, Anne

    2012-01-01

    The anthelmintics ivermectin (IVM) and moxidectin (MOX) display differences in toxicity in several host species. Entrance into the brain is restricted by the P-glycoprotein (P-gp) efflux transporter, while toxicity is mediated through the brain GABA(A) receptors. This study compared the toxicity of IVM and MOX in vivo and their interaction with GABA(A) receptors in vitro. Drug toxicity was assessed in Mdr1ab(−/−) mice P-gp-deficient after subcutaneous administration of increasing doses (0.11–2.0 and 0.23–12.9 µmol/kg for IVM and MOX in P-gp-deficient mice and half lethal doses (LD50) in wild-type mice). Survival was evaluated over 14-days. In Mdr1ab(−/−) mice, LD50 was 0.46 and 2.3 µmol/kg for IVM and MOX, respectively, demonstrating that MOX was less toxic than IVM. In P-gp-deficient mice, MOX had a lower brain-to-plasma concentration ratio and entered into the brain more slowly than IVM. The brain sublethal drug concentrations determined after administration of doses close to LD50 were, in Mdr1ab(−/−) and wild-type mice, respectively, 270 and 210 pmol/g for IVM and 830 and 740–1380 pmol/g for MOX, indicating that higher brain concentrations are required for MOX toxicity than IVM. In rat α1β2γ2 GABA channels expressed in Xenopus oocytes, IVM and MOX were both allosteric activators of the GABA-induced response. The Hill coefficient was 1.52±0.45 for IVM and 0.34±0.56 for MOX (p<0.001), while the maximum potentiation caused by IVM and MOX relative to GABA alone was 413.7±66.1 and 257.4±40.6%, respectively (p<0.05), showing that IVM causes a greater potentiation of GABA action on this receptor. Differences in the accumulation of IVM and MOX in the brain and in the interaction of IVM and MOX with GABA(A) receptors account for differences in neurotoxicity seen in intact and Mdr1-deficient animals. These differences in neurotoxicity of IVM and MOX are important in considering their use in humans. PMID:23133688

  6. Rapid genotyping assays for the 4-base pair deletion of canine MDR1/ABCB1 gene and low frequency of the mutant allele in Border Collie dogs.

    PubMed

    Mizukami, Keijiro; Chang, Hye-Sook; Yabuki, Akira; Kawamichi, Takuji; Hossain, Mohammad A; Rahman, Mohammad M; Uddin, Mohammad M; Yamato, Osamu

    2012-01-01

    P-glycoprotein, encoded by the MDR1 or ABCB1 gene, is an integral component of the blood-brain barrier as an efflux pump for xenobiotics crucial in limiting drug uptake into the central nervous system. Dogs homozygous for a 4-base pair deletion of the canine MDR1 gene show altered expression or function of P-glycoprotein, resulting in neurotoxicosis after administration of the substrate drugs. In the present study, the usefulness of microchip electrophoresis for genotyping assays detecting this deletion mutation was evaluated. Mutagenically separated polymerase chain reaction (MS-PCR) and real-time PCR assays were newly developed and evaluated. Furthermore, a genotyping survey was carried out in a population of Border Collies dogs in Japan to determine the allele frequency in this breed. Microchip electrophoresis showed advantages in detection sensitivity and time saving over other modes of electrophoresis. The MS-PCR assay clearly discriminated all genotypes. Real-time PCR assay was most suitable for a large-scale survey due to its high throughput and rapidity. The genotyping survey demonstrated that the carrier and mutant allele frequencies were 0.49% and 0.25%, respectively, suggesting that the mutant allele frequency in Border Collies is markedly low compared to that in the susceptible dog breeds such as rough and smooth Collies. PMID:22362942

  7. Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen.

    PubMed Central

    Alvarez, M; Paull, K; Monks, A; Hose, C; Lee, J S; Weinstein, J; Grever, M; Bates, S; Fojo, T

    1995-01-01

    Identifying new chemotherapeutic agents and characterizing mechanisms of resistance may improve cancer treatment. The Anticancer Drug Screen of the National Cancer Institute uses 60 cell lines to identify new agents. Expression of mdr-1/P-glycoprotein was measured by quantitative PCR. Expression was detected in 39 cell lines; the highest levels were in renal and colon carcinomas. Expression was also detected in all melanomas and central nervous system tumors, but in only one ovarian carcinoma and one leukemia cell line. Using a modified version of the COMPARE program, a high correlation was found between expression of mdr-1 and cellular resistance to a large number of compounds. Evidence that these compounds are P-glycoprotein substrates includes: (a) enhancement of cytotoxicity by verapamil; (b) demonstration of cross-resistance in a multidrug-resistant cell line, (c) ability to antagonize P-glycoprotein, increasing vinblastine accumulation by decreasing efflux; and (d) inhibition of photoaffinity labeling by azidopine. Identification of many heretofore unrecognized compounds as substrates indicates that P-glycoprotein has a broader substrate specificity than previously recognized. This study confirms the validity of this novel approach and provides the basis for similar studies examining a diverse group of gene products, including other resistance mechanisms, putative drug targets, and genes involved in the cell cycle and apoptosis. Images PMID:7738186

  8. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  9. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface–functionalized nanoparticles

    PubMed Central

    Xiao, Bo; Zhang, Mingzhen; Viennois, Emilie; Zhang, Yuchen; Wei, Na; Baker, Mark T.; Jung, Yunjin; Merlin, Didier

    2015-01-01

    Nanomedicine options for colon cancer therapy have been limited by the lack of suitable carriers capable of delivering sufficient drug into tumors to cause lethal toxicity. To circumvent this limitation, we fabricated a camptothecin (CPT)-loaded poly(lactic-co-glycolic acid) nanoparticle (NP) with dual-surface functionalization—Pluronic F127 and chitosan—for inhibiting multi-drug resistant gene 1 (MDR1) expression and enhancing tumor uptake. The resultant spherical NPs-P/C had a desirable particle size (~268 nm), slightly positive zeta-potential, and the ability to efficiently down-regulate the expression of MDR1. In vitro cytotoxicity tests revealed that the 24 and 48 h IC50 values of NPs-P/C1 were 2.03 and 0.67 µM, respectively, which were much lower than those for free CPT and other NPs. Interestingly, NPs-P/C1 showed the highest cellular uptake efficiency (approximately 85.5%) among the different drug formulations. Most importantly, treatment of colon tumor-bearing mice with various drug formulations confirmed that the introduction of Pluronic F127 and chitosan to the NP surface significantly enhanced the therapeutic efficacy of CPT, induced tumor cell apoptosis, and reduced systemic toxicity. Collectively, these findings suggest that our one-step–fabricated, dual-surface–functionalized NPs may hold promise as a readily scalable and effective drug carrier with clinical potential in colon cancer therapy. PMID:25701040

  10. C1236T polymorphism in MDR1 gene correlates with therapeutic response to imatinib mesylate in Indian patients with chronic myeloid leukaemia.

    PubMed

    Chhikara, Sunita; Sazawal, Sudha; Mishra, Pravas; Chaubey, Rekha; Mahapatra, Manoranjan; Saxena, Renu

    2015-01-01

    Patients with chronic myeloid leukaemia show an excellent response to treatment with imatinib. However, in some patients, the disease is resistant to imatinib. This resistance may be related to the presence of genetic variations on the drug's pharmacokinetics and metabolism. We therefore studied three polymorphisms (C1236T, G2677T and C3435T) in the human multidrug-resistance gene (MDR1) in 86 patients with chronic myeloid leukaemia treated with imatinib. Imatinib resistance was more frequent in patients with TT genotype at locus 1236 than in those with CT/CC genotypes (p=0.003). For the other two loci (G2677T and C3435T), resistance was seen to be higher for TT genotype when compared to GG/GT and CT/CC but it was not statistically significant (p=0.13 and p=0.099). In conclusion, determination of C1236T MDR1 genotype may help to predict response to imatinib therapy in patients with chronic myeloid leukaemia. PMID:27294449

  11. Casein Kinase 2 (CK2)-mediated Phosphorylation of Hsp90β as a Novel Mechanism of Rifampin-induced MDR1 Expression*

    PubMed Central

    Kim, So Won; Hasanuzzaman, Md.; Cho, Munju; Heo, Ye Rang; Ryu, Min-Jung; Ha, Na-Young; Park, Hyun June; Park, Hyung-Yeon; Shin, Jae-Gook

    2015-01-01

    The P-glycoprotein (P-gp) encoded by the MDR1 gene is a drug-exporting transporter located in the cellular membrane. P-gp induction is regarded as one of the main mechanisms underlying drug-induced resistance. Although there is great interest in the regulation of P-gp expression, little is known about its underlying regulatory mechanisms. In this study, we demonstrate that casein kinase 2 (CK2)-mediated phosphorylation of heat shock protein 90β (Hsp90β) and subsequent stabilization of PXR is a key mechanism in the regulation of MDR1 expression. Furthermore, we show that CK2 is directly activated by rifampin. Upon exposure to rifampin, CK2 catalyzes the phosphorylation of Hsp90β at the Ser-225/254 residues. Phosphorylated Hsp90β then interacts with PXR, causing a subsequent increase in its stability, leading to the induction of P-gp expression. In addition, inhibition of CK2 and Hsp90β enhances the down-regulation of PXR and P-gp expression. The results of this study may facilitate the development of new strategies to prevent multidrug resistance and provide a plausible mechanism for acquired drug resistance by CK2-mediated regulation of P-gp expression. PMID:25995454

  12. Dioscin restores the activity of the anticancer agent adriamycin in multidrug-resistant human leukemia K562/adriamycin cells by down-regulating MDR1 via a mechanism involving NF-κB signaling inhibition.

    PubMed

    Wang, Lijuan; Meng, Qiang; Wang, Changyuan; Liu, Qi; Peng, Jinyong; Huo, Xiaokui; Sun, Huijun; Ma, Xiaochi; Liu, Kexin

    2013-05-24

    The purpose of this study was to investigate the ameliorating effect of dioscin (1) on multidrug resistance (MDR) in adriamycin (ADR)-resistant erythroleukemic cells (K562/adriamycin, K562/ADR) and to clarify the molecular mechanisms involved. High levels of multidrug resistance 1 (MDR1) mRNA and protein and reduced ADR retention were found in K562/ADR cells compared with parental cells (K562). Dioscin (1), a constituent of plants in the genus Discorea, significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in K562/ADR cells. MDR1 mRNA and protein suppression resulted in the subsequent recovery of intracellular drug accumulation. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by 1. Dioscin (1) reversed ADR-induced MDR by down-regulating MDR1 expression by a mechanism that involves the inhibition of the NF-κB signaling pathway. These findings provide evidence to support the further investigation of the clinical application of dioscin (1) as a chemotherapy adjuvant. PMID:23621869

  13. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    PubMed

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  14. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  15. In Vivo Quantification of 5-HT2A Brain Receptors in Mdr1a KO Rats with 123I-R91150 Single-Photon Emission Computed Tomography.

    PubMed

    Dumas, Noé; Moulin-Sallanon, Marcelle; Fender, Pascal; Tournier, Benjamin B; Ginovart, Nathalie; Charnay, Yves; Millet, Philippe

    2015-01-01

    Our goal was to identify suitable image quantification methods to image 5-hydroxytryptamine2A (5-HT2A) receptors in vivo in Mdr1a knockout (KO) rats (i.e., P-glycoprotein KO) using 123I-R91150 single-photon emission computed tomography (SPECT). The 123I-R91150 binding parameters estimated with different reference tissue models (simplified reference tissue model [SRTM], Logan reference tissue model, and tissue ratio [TR] method) were compared to the estimates obtained with a comprehensive three-tissue/seven-parameter (3T/7k)-based model. The SRTM and Logan reference tissue model estimates of 5-HT2A receptor (5-HT2AR) nondisplaceable binding potential (BPND) correlated well with the absolute receptor density measured with the 3T/7k gold standard (r > .89). Quantification of 5-HT2AR using the Logan reference tissue model required at least 90 minutes of scanning, whereas the SRTM required at least 110 minutes. The TR method estimates were also highly correlated to the 5-HT2AR density (r > .91) and only required a single 20-minute scan between 100 and 120 minutes postinjection. However, a systematic overestimation of the BPND values was observed. The Logan reference tissue method is more convenient than the SRTM for the quantification of 5-HT2AR in Mdr1a KO rats using 123I-R91150 SPECT. The TR method is an interesting and simple alternative, despite its bias, as it still provides a valid index of 5-HT2AR density. PMID:26105563

  16. Inhibition of mTORC2 Induces Cell-Cycle Arrest and Enhances the Cytotoxicity of Doxorubicin by Suppressing MDR1 Expression in HCC Cells.

    PubMed

    Chen, Bryan Wei; Chen, Wei; Liang, Hui; Liu, Hao; Liang, Chao; Zhi, Xiao; Hu, Li-Qiang; Yu, Xia-Zhen; Wei, Tao; Ma, Tao; Xue, Fei; Zheng, Lei; Zhao, Bin; Feng, Xin-Hua; Bai, Xue-Li; Liang, Ting-Bo

    2015-08-01

    mTOR is aberrantly activated in hepatocellular carcinoma (HCC) and plays pivotal roles in tumorigenesis and chemoresistance. Rapamycin has been reported to exert antitumor activity in HCC and sensitizes HCC cells to cytotoxic agents. However, due to feedback activation of AKT after mTOR complex 1 (mTORC1) inhibition, simultaneous targeting of mTORC1/2 may be more effective. In this study, we examined the interaction between the dual mTORC1/2 inhibitor OSI-027 and doxorubicin in vitro and in vivo. OSI-027 was found to reduce phosphorylation of both mTORC1 and mTORC2 substrates, including 4E-BP1, p70S6K, and AKT (Ser473), and inhibit HCC cell proliferation. Similar to OSI-027 treatment, knockdown of mTORC2 induced G0-G1 phase cell-cycle arrest. In contrast, rapamycin or knockdown of mTORC1 increased phosphorylation of AKT (Ser473), yet had little antiproliferative effect. Notably, OSI-027 synergized with doxorubicin for the antiproliferative efficacy in a manner dependent of MDR1 expression in HCC cells. The synergistic antitumor effect of OSI-027 and doxorubicin was also observed in a HCC xenograft mouse model. Moreover, AKT was required for OSI-027-induced cell-cycle arrest and downregulation of MDR1. Our findings provide a rationale for dual mTORC1/mTORC2 inhibitors, such as OSI-027, as monotherapy or in combination with cytotoxic agents to treat HCC. Mol Cancer Ther; 14(8); 1805-15. ©2015 AACR. PMID:26026051

  17. Co-Silencing of PKM-2 and MDR-1 Sensitizes Multidrug Resistant Ovarian Cancer Cells to Paclitaxel in a Murine Model of Ovarian Cancer

    PubMed Central

    Talekar, Meghna; Ouyang, Qijun; Goldberg, Michael S.; Amiji, Mansoor M.

    2015-01-01

    Tumor multidrug resistance (MDR) is a serious clinical challenge that significantly limits the effectiveness of cytotoxic chemotherapy. As such, complementary therapeutic strategies are being explored to prevent relapse. The altered metabolic state of cancer cells, which perform aerobic glycolysis, represents an interesting target that can enable discrimination between healthy cells and cancer cells. We hypothesized that co-silencing of genes responsible for aerobic glycolysis and for MDR would have synergistic antitumor effect. In the current study, siRNA duplexes against pyruvate kinase M2 (siPKM-2) and multidrug resistance gene-1 (siMDR-1) were encapsulated in hyaluronic acid (HA)-based self-assembling nanoparticles. The particles were characterized for morphology, size, charge, encapsulation efficiency and transfection efficiency. In vivo studies included biodistribution assessment, gene knockdown confirmation, therapeutic efficacy, and safety analysis. The benefit of active targeting of cancer cells was confirmed by modifying the particles’ surface with a peptide targeted to epidermal growth factor receptor (EGFR), which is overexpressed on the membranes of the SKOV-3 cancer cells. To augment the studies involving transplantation of a PTX-resistant cell line, an in vivo paclitaxel (PTX) resistance model was developed by injecting repeated doses of PTX following tumor inoculation. The nanoparticles accumulated significantly in the tumors, hindering tumor volume doubling time (p<0.05) upon combination therapy in both the wild type (2-fold) and resistant (8-fold) xenograft models. Whereas previous studies indicated that silencing of MDR-1 alone sensitized MDR ovarian cancer to PTX only modestly, these data suggest that concurrent silencing of PKM-2 improves the efficacy of PTX against MDR ovarian cancer. PMID:25964202

  18. Suppression of MAPK Signaling and Reversal of mTOR-Dependent MDR1-Associated Multidrug Resistance by 21α-Methylmelianodiol in Lung Cancer Cells

    PubMed Central

    Aldonza, Mark Borris Docdoc; Hong, Ji-Young; Bae, Song Yi; Song, Jayoung; Kim, Won Kyung; Oh, Jedo; Shin, Yoonho; Lee, Seung Ho; Lee, Sang Kook

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide and remains the most prevalent. Interplay between PI3K/AMPK/AKT and MAPK pathways is a crucial effector in lung cancer growth and progression. These signals transduction protein kinases serve as good therapeutic targets for non-small cell lung cancer (NSCLC) which comprises up to 90% of lung cancers. Here, we described whether 21α-Methylmelianodiol (21α-MMD), an active triterpenoid derivative of Poncirus trifoliate, can display anticancer properties by regulating these signals and modulate the occurrence of multidrug resistance in NSCLC cells. We found that 21α-MMD inhibited the growth and colony formation of lung cancer cells without affecting the normal lung cell phenotype. 21α-MMD also abrogated the metastatic activity of lung cancer cells through the inhibition of cell migration and invasion, and induced G0/G1 cell cycle arrest with increased intracellular ROS generation and loss of mitochondrial membrane integrity. 21α-MMD regulated the expressions of PI3K/AKT/AMPK and MAPK signaling which drove us to further evaluate its activity on multidrug resistance (MDR) in lung cancer cells by specifying on P-glycoprotein (P-gp)/MDR1-association. Employing the established paclitaxel-resistant A549 cells (A549-PacR), we further found that 21α-MMD induced a MDR reversal activity through the inhibition of P-gp/MDR1 expressions, function, and transcription with regained paclitaxel sensitivity which might dependently correlate to the regulation of PI3K/mTOR signaling pathway. Taken together, these findings demonstrate, for the first time, the mechanistic evaluation in vitro of 21α-MMD displaying growth-inhibiting potential with influence on MDR reversal in human lung cancer cells. PMID:26098947

  19. Correlation of polymorphism C3435T of the MDR-1 gene and the response of primary chemotherapy in women with locally advanced breast cancer.

    PubMed

    Rodrigues, F F O; Santos, R E; Melo, M B; Silva, M A L G; Oliveira, A L; Rozenowicz, R L; Ulson, L B; Aoki, T

    2008-01-01

    Primary chemotherapy is a useful strategy for the treatment of locally advanced breast cancer and therefore allows in vivo evaluation of the action of cytotoxic drugs and the possibility of accomplishing conservative breast surgeries, as well as the early treatment of metastasis. Mechanisms of resistance to the drugs include the action of protein associated with the efflux of drugs from the intracellular environment hindering their activity; one of the most studied proteins is P-glycoprotein codified by the MDR-1 gene. The presence of polymorphisms can determine different physiological actions of these proteins, intervening with the response of the drug's action. We evaluated the presence of single nucleotide polymorphism (SNP) C3435T of the MDR-1 gene and its correlation with the response to primary chemotherapy using the RECIST criteria. Forty-one Brazilian women with stages II and III breast cancer using the PCR-RFLP analysis were evaluated. Thirty-three patients with the SNP genotype (TT and CT) and eight patients with the wild genotype (CC) were found; there was no statistically significant correlation between the diverse genotypes and the clinical and pathological responses according to the Cramer correlation coefficient (V = 0.14). The parameters: nuclear and histological degree, and estrogens, progesterone and c-erb B2 receptors did not demonstrate a statistical correlation with the SNP C3435T. Patients with complete pathological response (12.5%) showed only the polymorphic genotype and not the wild genotype. The characteristics of miscegenation in our population could explain the absence of the characterization of a sub-group of individuals where the presence of the polymorphic genotype influenced the response to the primary chemotherapy. PMID:18393221

  20. Mitochondrial genome depletion dysregulates bile acid- and paracetamol-induced expression of the transporters Mdr1, Mrp1 and Mrp4 in liver cells

    PubMed Central

    Perez, MJ; Gonzalez-Sanchez, E; Gonzalez-Loyola, A; Gonzalez-Buitrago, JM; Marin, JJG

    2011-01-01

    BACKGROUND AND PURPOSE Mitochondria are involved in the toxicity of several compounds, retro-control of gene expression and apoptosis activation. The effect of mitochondrial genome (mtDNA) depletion on changes in ABC transporter protein expression in response to bile acids and paracetamol was investigated. EXPERIMENTAL APPROACH Hepa 1-6 mouse hepatoma cells with 70% decrease in 16S/18S rRNA ratio (Rho cells) were obtained by long-term treatment with ethidium bromide. KEY RESULTS Spontaneous apoptosis and reactive oxygen species (ROS) generation were decreased in Rho cells. Following glycochenodeoxycholic acid (GCDCA) or paracetamol, Rho cells generated less ROS and were more resistant to cell death. Apoptosis induced by GCDCA and Fas was also reduced. The basal expression of Mdr1 was significantly enhanced, but this was not further stimulated by GCDCA or paracetamol, as observed in wild-type (WT) cells. Basal expression of Mrp1 and Mrp4 was similar in WT and Rho cells, whereas they were up-regulated only in WT cells after GCDCA or paracetamol, along with the transcription factors Shp and Nrf2, but not Fxr or Pxr. Increased expression of Nrf2 was accompanied by its enhanced nuclear translocation. Glycoursodeoxycholic acid failed to cause any of the effects observed for GCDCA or paracetamol. CONCLUSIONS AND IMPLICATIONS The Nrf2-mediated pathway is partly independent of ROS production. Nuclear translocation of Nrf2 is insufficient to up-regulate Mdr1, Mrp1 and Mrp4, which requires the participation of other regulatory element(s) whose activation in response to GCDCA and paracetamol is impaired in Rho cells and hence probably sensitive to ROS. PMID:21175587

  1. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1.

    PubMed

    Sengupta, S; Mantha, A K; Mitra, S; Bhakat, K K

    2011-01-27

    The overexpression of human apurinic/apyrimidinic (AP) endonuclease 1 (APE1/Ref-1), a key enzyme in the DNA base excision repair (BER) pathway, is often associated with tumor cell resistance to various anticancer drugs. In this study, we examined the molecular basis of transcriptional regulatory (nonrepair) function of APE1 in promoting resistance to certain types of drugs. We have recently shown that APE1 stably interacts with Y-box-binding protein 1 (YB-1), and acts as its coactivator for the expression of multidrug resistance gene MDR1, thereby causing drug resistance. In this study, we show, to the best of our knowledge, for the first time that APE1 is stably associated with the basic transcription factor RNA polymerase II (RNA pol II) and the coactivator p300 on the endogenous MDR1 promoter. The depletion of APE1 significantly reduces YB-1-p300 recruitment to the promoter, resulting in reduced RNA pol II loading. Drug-induced APE1 acetylation, which is mediated by p300, enhances formation of acetylated APE1 (AcAPE1)-YB-1-p300 complex on the MDR1 promoter. Enhanced recruitment of this complex increases MDR1 promoter-dependent luciferase activity and its endogenous expression. Using APE1-downregulated cells and cells overexpressing wild-type APE1 or its nonacetylable mutant, we have demonstrated that the loss of APE1's acetylation impaired MDR1 activation and sensitizes the cells to cisplatin or etoposide. We have thus established the basis for APE1's acetylation-dependent regulatory function in inducing MDR1-mediated drug resistance. PMID:20856196

  2. The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

    PubMed Central

    Andersen, Vibeke; Agerstjerne, Lene; Jensen, Dorte; Østergaard, Mette; Sæbø, Mona; Hamfjord, Julian; Kure, Elin; Vogel, Ulla

    2009-01-01

    Background Smoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(MDR1/ABCB1) gene encodes the transport protein P-glycoprotein (a phase III xenobiotic transporter). P-glycoprotein is present in the intestinal mucosal lining and restricts absorption of certain carcinogens, among these polycyclic aromatic hydrocarbons. Moreover, P-glycoprotein transports various endogenous substrates such as cytokines and chemokines involved in inflammation, and may thereby affect the risk of malignity. Hence, genetic variations that modify the function of P-glycoprotein may be associated with the risk of colorectal cancer (CRC). We have previously found an association between the MDR1 intron 3 G-rs3789243-A polymorphism and the risk of CRC in a Danish study population. The aim of this study was to investigate if this MDR1 polymorphism was associated with risk of colorectal adenoma (CA) and CRC in the Norwegian population. Methods Using a case-control design, the association between the MDR1 intron 3 G-rs3789243-A polymorphism and the risk of colorectal carcinomas and adenomas in the Norwegian population was assessed in 167 carcinomas, 990 adenomas, and 400 controls. Genotypes were determined by allelic discrimination. Odds ratio (OR) and 95 confidence interval (95% CI) were estimated by binary logistic regression. Results No association was found between the MDR1 polymorphism (G-rs3789243-A) and colorectal adenomas or cancer. Carriers of the variant allele of MDR1 intron 3 had odds ratios (95% CI) of 0.97 (0.72–1.29) for developing adenomas, and 0.70 (0.41–1.21) for colorectal cancer, respectively, compared to homozygous wild type carriers. Conclusion The MDR1 intron 3 (G-rs3789243-A) polymorphism was not associated with a risk of colorectal adenomas or carcinomas in the present Norwegian study group. Thus, this

  3. Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers

    PubMed Central

    Melchior, Donald L.; Sharom, Frances J.; Evers, Raymond; Wright, George E.; Chu, Joseph W.K.; Wright, Stephen E.; Chu, Xiaoyan; Yabut, Jocelyn

    2012-01-01

    Introduction P-Glycoprotein (ABCB1, MDR1) is a multidrug efflux pump that is a member of the ATP-binding cassette (ABC) superfamily. Many drugs in common clinical use are either substrates or inhibitors of this transporter. Quantitative details of P-glycoprotein inhibition by pharmaceutical agents are essential for assessment of their pharmacokinetic behavior and prevention of negative patient reactions. Cell-based systems have been widely used for determination of drug interactions with P-glycoprotein, but they suffer from several disadvantages, and results are often widely variable between laboratories. We aimed to demonstrate that a novel liposomal system employing contemporary biochemical methodologies could measure the ability of clinically used drugs to inhibit the P-glycoprotein pump. To accomplish this we compared results with those of cell-based approaches. Methods Purified transport-competent hamster Abcb1a P-glycoprotein was reconstituted into a unilamellar liposomal system, Fluorosome-trans-pgp, whose aqueous interior contains fluorescent drug sensors. This provides a well-defined system for measuring P-glycoprotein transport inhibition by test drugs in real time using rapid fluorescence-based technology. Results Inhibition of ATP-driven transport by Fluorosome-trans-pgp employed a panel of 46 representative drugs. Resulting IC50 values correlated well (r2 = 0.80) with Kd values for drug binding to purified P-glycoprotein. They also showed a similar trend to transport inhibition data obtained using LLC-MDR1 cell monolayers. Fluorosome-trans-pgp IC50 values were in agreement with published results of digoxin drug-drug interaction studies in humans. Discussion This novel approach using a liposomal system and fluorescence-based technology is shown to be suitable to study whether marketed drugs and drug candidates are P-glycoprotein inhibitors. The assay is rapid, allowing a 7-point IC50 determination in <6 minutes, and requires minimal quantities of test

  4. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers.

    PubMed

    Ho, Norman F H; Nielsen, James; Peterson, Michelle; Burton, Philip S

    2016-02-01

    An approach to characterizing P-glycoprotein (Pgp) interaction potential for sparingly water-soluble compounds was developed using bidirectional transport kinetics in MDR1-MDCK cell monolayers. Paclitaxel, solubilized in a dilute polysorbate 80 (PS80) micellar solution, was used as a practical example. Although the passage of paclitaxel across the cell monolayer was initially governed by the thermodynamic activity of the micelle-solubilized drug solution, Pgp inhibition was sustained by the thermodynamic activity (i.e., critical micelle concentration) of the PS80 micellar solution bathing the apical (ap) membrane. The mechanistic understanding of the experimental strategies and treatment of data was supported by a biophysical model expressed in the form of transport events occurring at the ap and basolateral (bl) membranes in series whereas the vectorial directions of the transcellular kinetics were accommodated. The derived equations permitted the stepwise quantitative delineation of the Pgp efflux activity (inhibited and uninhibited by PS80) and the passive permeability coefficient of the ap membrane, the passive permeability at the bl membrane and, finally, the distinct coupling of these with efflux pump activity to identify the rate-determining steps and mechanisms. The Jmax/KM(∗) for paclitaxel was in the order of 10(-4) cm/s and the ap- and bl-membrane passive permeability coefficients were asymmetric, with bl-membrane permeability significantly greater than ap. PMID:26869435

  5. Analysis of genotype and haplotype effects of ABCB1 (MDR1) polymorphisms in the risk of medically refractory epilepsy in an Indian population.

    PubMed

    Vahab, Saadi Abdul; Sen, Supratim; Ravindran, Nivedita; Mony, Sridevi; Mathew, Anila; Vijayan, Neetha; Nayak, Geetha; Bhaskaranand, Nalini; Banerjee, Moinak; Satyamoorthy, Kapaettu

    2009-01-01

    The transmembrane P-glycoprotein that functions as a drug-efflux transporter coded by ATP-binding cassette, subfamily B, member 1/Multidrug Resistance 1 (ABCB1/MDR1) gene is considered relevant to drug absorption and elimination, with access to the central nervous system. Effects of three ABCB1 single nucleotide polymorphisms (SNPs) in genotypic and haplotypic combination have been evaluated in a south Indian population for risk of pediatric medically refractory epilepsy. The study included age and sex matched medically refractory (N=113) cases and drug responsive epilepsy patients (N=129) as controls, belonging to the same ethnic population recruited from a tertiary referral centre, of Karnataka, Southern India. The genotype frequencies of SNPs c.1236C>T, c.2677G>T/A, and c.3435C>T were determined from genomic DNA of the cases and controls by PCR- RFLP and confirmatory DNA sequencing. 256 normal population samples of the same ethnicity were genotyped for the three loci to check for population stratification. Results indicate that there was no statistically significant difference between allele and genotype frequencies of refractory and drug responsive epilepsy patients. The predicted haplotype frequencies of the three polymorphisms did not show significant difference between cases and controls. The results confirm earlier observations on absence of association of ABCB1 polymorphisms with medically refractory epilepsy. PMID:19571437

  6. Cosilencing of PKM-2 and MDR-1 Sensitizes Multidrug-Resistant Ovarian Cancer Cells to Paclitaxel in a Murine Model of Ovarian Cancer.

    PubMed

    Talekar, Meghna; Ouyang, Qijun; Goldberg, Michael S; Amiji, Mansoor M

    2015-07-01

    Tumor multidrug resistance (MDR) is a serious clinical challenge that significantly limits the effectiveness of cytotoxic chemotherapy. As such, complementary therapeutic strategies are being explored to prevent relapse. The altered metabolic state of cancer cells, which perform aerobic glycolysis, represents an interesting target that can enable discrimination between healthy cells and cancer cells. We hypothesized that cosilencing of genes responsible for aerobic glycolysis and for MDR would have synergistic antitumor effect. In this study, siRNA duplexes against pyruvate kinase M2 and multidrug resistance gene-1 were encapsulated in hyaluronic acid-based self-assembling nanoparticles. The particles were characterized for morphology, size, charge, encapsulation efficiency, and transfection efficiency. In vivo studies included biodistribution assessment, gene knockdown confirmation, therapeutic efficacy, and safety analysis. The benefit of active targeting of cancer cells was confirmed by modifying the particles' surface with a peptide targeted to epidermal growth factor receptor, which is overexpressed on the membranes of the SKOV-3 cancer cells. To augment the studies involving transplantation of a paclitaxel-resistant cell line, an in vivo paclitaxel resistance model was developed by injecting repeated doses of paclitaxel following tumor inoculation. The nanoparticles accumulated significantly in the tumors, hindering tumor volume doubling time (P < 0.05) upon combination therapy in both the wild-type (2-fold) and resistant (8-fold) xenograft models. Although previous studies indicated that silencing of MDR-1 alone sensitized MDR ovarian cancer to paclitaxel only modestly, these data suggest that concurrent silencing of PKM-2 improves the efficacy of paclitaxel against MDR ovarian cancer. PMID:25964202

  7. RscA, a member of the MDR1 family of transporters, is repressed by CovR and required for growth of Streptococcus pyogenes under heat stress.

    PubMed

    Dalton, Tracy L; Collins, Julie T; Barnett, Timothy C; Scott, June R

    2006-01-01

    The ability of Streptococcus pyogenes (group A streptococcus [GAS]) to respond to changes in environmental conditions is essential for this gram-positive organism to successfully cause disease in its human host. The two-component system CovRS controls expression of about 15% of the GAS genome either directly or indirectly. In most operons studied, CovR acts as a repressor. We previously linked CovRS to the GAS stress response by showing that the sensor kinase CovS is required to inactivate the response regulator CovR so that GAS can grow under conditions of heat, acid, and salt stress. Here, we sought to identify CovR-repressed genes that are required for growth under stress. To do this, global transcription profiles were analyzed by microarrays following exposure to increased temperature (40 degrees C) and decreased pH (pH 6.0). The CovR regulon in an M type 6 strain of GAS was also examined by global transcriptional analysis. We identified a gene, rscA (regulated by stress and Cov), whose transcription was confirmed to be repressed by CovR and activated by heat and acid. RscA is a member of the MDR1 family of ABC transporters, and we found that it is required for growth of GAS at 40 degrees C but not at pH 6.0. Thus, for GAS to grow at 40 degrees C, CovR repression must be alleviated so that rscA can be transcribed to allow the production of this potential exporter. Possible explanations for the thermoprotective role of RscA in this pathogen are discussed. PMID:16352823

  8. The Roles of Variants in Human Multidrug Resistance (MDR1) Gene and Their Haplotypes on Antiepileptic Drugs Response: A Meta-Analysis of 57 Studies

    PubMed Central

    Chang, Cheng; Wu, Minghua; Xu, Yun; Jiang, Yajun

    2015-01-01

    Objective Previous studies reported the associations between the ATP-binding cassette sub-family B member 1 (ABCB1, also known as MDR1) polymorphisms and their haplotypes with risk of response to antiepileptic drugs in epilepsy, however, the results were inconclusive. Methods The Pubmed, Embase, Web of Science, CNKI and Chinese Biomedicine databases were searched up to July 15, 2014. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a fixed-effects or random-effects model based on heterogeneity tests. Meta-regression and Galbraith plot analysis were carried out to explore the possible heterogeneity. Results A total of 57 studies involving 12407 patients (6083 drug-resistant and 6324 drug-responsive patients with epilepsy) were included in the pooled-analysis. For all three polymorphisms (C3435T, G2677T/A, and C1236T), we observed a wide spectrum of minor allele frequencies across different ethnicities. A significantly decreased risk of AEDs resistance was observed in Caucasian patients with T allele of C3435T variant, which was still significant after adjusted by multiple testing corrections (T vs C: OR=0.83, 95%CI=0.71-0.96, p=0.01). However, no significant association was observed between the other two variants and AEDs resistance. Of their haplotypes in ABCB1 gene (all studies were in Indians and Asians), no significant association was observed with AEDs resistance. Moreover, sensitivity and Cumulative analysis showed that the results of this meta-analysis were stable. Conclusion In summary, this meta-analysis demonstrated that effect of C3435T variant on risk of AEDs resistance was ethnicity-dependent, which was significant in Caucasians. Additionally, further studies in different ethnic groups are warranted to clarify possible roles of haplotypes in ABCB1 gene in AEDs resistance, especially in Caucasians. PMID:25816099

  9. Interrogation of multidrug resistance (MDR1) P-glycoprotein (ABCB1) expression in human pancreatic carcinoma cells: correlation of 99mTc-Sestamibi uptake with western blot analysis.

    PubMed

    Harpstrite, Scott E; Gu, Hannah; Natarajan, Radhika; Sharma, Vijay

    2014-10-01

    Histopathological studies indicate that ∼63% of pancreatic tumors express multidrug resistance (MDR1) P-glycoprotein (Pgp) and its polymorphic variants. However, Pgp expression detected at the mRNA or protein level does not always correlate with functional transport activity. Because Pgp transport activity is affected by specific mutations and the phosphorylation state of the protein, altered or less active forms of Pgp may also be detected by PCR or immunohistochemistry, which do not accurately reflect the status of tumor cell resistance. To interrogate the status of the functional expression of MDR1 Pgp in MiaPaCa-2 and PANC-1 cells, cellular transport studies using Tc-Sestamibi were performed and correlated with western blot analysis. Biochemical transport assays in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells, human epidermal carcinoma drug-sensitive KB-3-1 cells, and human breast carcinoma MCF-7 cells (negative controls), and human epidermal carcinoma drug-resistant KB-8-5 cells, human breast carcinoma stably transfected with Pgp MCF-7/MDR1Pgp cells, and liver carcinoma HepG2 cells (positive controls) were performed. Protein levels were determined using a monoclonal antibody C219. Tc-Sestamibi demonstrates accumulation in human pancreatic carcinoma MiaPaCa-2 and PANC-1 cells. Uptake profiles are not affected by treatment with LY335979, a Pgp inhibitor, and correlate with western blot analysis. These cellular transport studies indicate an absence of Pgp at a functional level in MiaPaCa-2 and PANC-1 cells. Because major pancreatic tumors originate from the pancreatic duct and Tc-Sestamibi undergoes a dominant hepatobiliary mode of excretion, it would not be a sensitive probe for imaging pancreatic adenocarcinomas. Following interrogation of the functional status of Pgp in other pancreatic carcinoma cells, chemotherapeutic drugs that are also MDR1 substrates could offer alternative therapeutics for treating pancreatic adenocarcinomas. PMID:25036383

  10. Forced expression of heat shock protein 27 (Hsp27) reverses P-glycoprotein (ABCB1)-mediated drug efflux and MDR1 gene expression in Adriamycin-resistant human breast cancer cells.

    PubMed

    Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J; Ilangovan, Govindasamy

    2011-09-23

    Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G(2)/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer. PMID:21784846

  11. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    PubMed Central

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1 monolayers with a permeability of 5.7 × 10−5 cm sec−1 compared to an apical to basolateral permeability of 1.3 × 10−5 cm sec-1. The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6–1.6. The presence of telmisartan, however, only caused a slight reduction in P-gp-mediated verapamil transport to an efflux ratio of 3.4. Overall, the results of the present in vitro approach indicate, that clinical use of telmisartan as a P-gp inhibitor may not be an effective strategy for increasing brain uptake of verapamil by co-administration with telmisartan. PMID:26171231

  12. Elucidation of Transport Mechanism of Paeoniflorin and the Influence of Ligustilide, Senkyunolide I and Senkyunolide A on Paeoniflorin Transport through Mdck-Mdr1 Cells as Blood-Brain Barrier in Vitro Model.

    PubMed

    Hu, Peng-Yi; Liu, Dan; Zheng, Qin; Wu, Qing; Tang, Yu; Yang, Ming

    2016-01-01

    The objectives of the present investigation were to: (1) elucidate the transport mechanism of paeoniflorin (PF) across MDCK-MDR1 monolayers; and (2) evaluate the effect of ligustilide (LIG), senkyunolide I (SENI) and senkyunolide A (SENA) on the transport of PF through blood-brain barrier so as to explore the enhancement mechanism. Transport studies of PF were performed in both directions, from apical to basolateral side (A→B) and from basolateral to apical sides (B→A). Drug concentrations were analyzed by LC-MS/MS. PF showed relatively poor absorption in MDCK-MDR1 cells, apparent permeability coefficients (Papp) ranging from 0.587 × 10(-6) to 0.705 × 10(-6) cm/s. In vitro experiments showed that the transport of PF in both directions was concentration dependent and not saturable. The B→A/A→B permeability ER of PF was more than 2 in the MDCK-MDR1 cells, which indicated that the transport mechanism of PF might be passive diffusion as the dominating process with the active transportation mediated mechanism involved. The increased Papp of PF in A→B direction by EDTA-Na₂ suggested that PF was absorbed via the paracellular route. The P-gp inhibitor verapamil could significantly increase the transport of PF in A→B direction, and ER decreased from 2.210 to 0.690, which indicated that PF was P-gp substance. The transport of PF in A→B direction significantly increased when co-administrated with increasing concentrations of LIG, SENI and SENA. An increased cellular accumulation of Rho 123 and Western blot analysis indicated that LIG, SENI and SENA had increased the transport of PF in the BBB models attribute to down-regulate P-gp expression. A decrease in transepithelial electrical resistance (TEER) during the permeation experiment can be explained by the modulation and opening of the tight junctions caused by the permeation enhancer LIG, SENI and SENA. PMID:26950101

  13. High frequency of a single nucleotide substitution (c.-6-180T>G) of the canine MDR1/ABCB1 gene associated with phenobarbital-resistant idiopathic epilepsy in Border Collie dogs.

    PubMed

    Mizukami, Keijiro; Yabuki, Akira; Chang, Hye-Sook; Uddin, Mohammad Mejbah; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Kohyama, Moeko; Yamato, Osamu

    2013-01-01

    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies. PMID:24302812

  14. Determination of loperamide in mdr1a/1b knock-out mouse brain tissue using matrix-assisted laser desorption/ionization mass spectrometry and comparison with quantitative electrospray-triple quadrupole mass spectrometry analysis.

    PubMed

    Shin, Young G; Dong, Teresa; Chou, Bilin; Menghrajani, Kapil

    2011-11-01

    Recently matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) imaging has been used to analyze small molecule pharmaceutical compounds directly on tissue sections to determine spatial distribution within target tissue and organs. The data presented to date usually indicate relative amounts of drug within the tissue. The determination of absolute amounts is still done using tissue homogenization followed by traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, the quantitative determination of loperamide, an antidiarrheal agent and a P-glycoprotein substrate, in mdr1a/1b (-/-) mouse brain tissue sections using MALDI MS on a quadrupole time-of-flight mass spectrometry is described. 5 mg/mL α-cyano-4-hydroxycinnamic acid in 50% acetonitrile with 0.1% trifluoroacetic acid and 0.5 μM reserpine was used as the MALDI matrix. The calibration curve constructed by the peak intensities of standard samples from MALDI MS was linear from 0.025 to 0.5 μM with r² = 0.9989. The accuracy of calibration curve standards was 78.3-105.9% and the percent deviation was less than 25%. Comparison between direct MALDI tissue analysis and conventional tissue analysis using homogenization followed by electrospray LC-MS/MS was also explored. PMID:22139698

  15. Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections

    PubMed Central

    2012-01-01

    Background Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. Methods Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. Results Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 – 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 – 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 – 11.6) versus 16.3 (10.7 – 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. Conclusions These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed. PMID:22540925

  16. [The Arabic influence in the "Colóquios dos simples e drogas da India" of Garcia da Orta].

    PubMed

    Ricordel, Joëlle

    2015-09-01

    The "Colóquios dos simples e drogas he cousas medicinais de Índia" (Conversations on the simples, drugs and medicinal substances of India) (1563) of Garcia da Orta is a botanical and pharmacognosy book. The author is a Portuguese physician who studied in the Spanish universities and practiced medicine mainly in India. He studies in short chapters presented in the form of dialogues about sixty simples. Sources to which he refers are indicative of a "classical" training, but also the mark of a curious and open mind to different cultures. The Arabic sources are numerous and mainly concern the identification of substances by abundant synonyms of their names in foreign languages and different medicinal uses that may have been done by the ancient physicians. However, Da Orta is critical with respect to these sources, seeking contradictions and differences of opinion among authors. He confronts them with the oral information collected thanks to a wide network of contacts. PMID:26529894

  17. Pincharse sin infectarse: estrategias para prevenir la infección por el VIH y el VHC entre usuarios de drogas inyectables

    PubMed Central

    MATEU-GELABERT, P.; FRIEDMAN, S.; SANDOVAL, M.

    2011-01-01

    Resumen Objetivo Desde principios de los noventa, en la ciudad de Nueva York se han implementado con éxito programas para reducir la incidencia del virus de la inmunodeficiencia humana (VIH) y, en menor medida, del virus de la hepatitis C (VHC). A pesar de ello, aproximadamente el 70% de los usuario de drogas inyectables (UDI) están infectados por el VHC. Queremos investigar cómo el 30% restante se las ha arreglado para no infectarse. El Staying safe (nombre original del estudio) explora los comportamientos y mecanismos que ayudan a evitar la infección por el VHC y el VIH a largo plazo. Material y métodos Hemos utilizado el concepto de «desviación positiva» aplicado en otros campos de salud pública. Estudiamos las estrategias, prácticas y tácticas de prevención de aquellos UDI que, viviendo en contextos de alta prevalencia, se mantienen sin infectar por VIH y el VHC, a pesar de haberse inyectado heroína durante años. Los resultados preliminares presentados en este artículo incluyen el análisis de las entrevistas realizadas a 25 UDI (17 doble negativos, 3 doble positivos y 5 con infección por el VHC y sin infección por el VIH). Se usaron entrevistas semiestructuradas que exploraban con detalle la historia de vida de los sujetos, incluyendo su consumo de drogas, redes sociales, contacto con instituciones, relaciones sexuales y estrategias de protección y vigilancia. Resultados La intencionalidad es importante para no infectarse, especialmente durante períodos de involución (períodos donde hay un deterioro económico y/o social que llevan al que se inyecta a situaciones de mayor riesgo). Presentamos tres dimensiones independientes de intencionalidad que conllevan comportamientos que pueden ayudar a prevenir la infección: a) evitar «el mono» (síntomas de abstención) asegurando el acceso a la droga; b) «llevarlo bien» para no convertirse en un junkie y así evitar la «muerte social» y la falta de acceso a los recursos, y c) seguir sin

  18. Multiple Origins of Mutations in the mdr1 Gene—A Putative Marker of Chloroquine Resistance in P. vivax

    PubMed Central

    Schousboe, Mette L.; Ranjitkar, Samir; Rajakaruna, Rupika S.; Amerasinghe, Priyanie H.; Morales, Francisco; Pearce, Richard; Ord, Rosalyn; Leslie, Toby; Rowland, Mark; Gadalla, Nahla B.; Konradsen, Flemming; Bygbjerg, Ib C.; Roper, Cally; Alifrangis, Michael

    2015-01-01

    Background Chloroquine combined with primaquine has been the recommended antimalarial treatment of Plasmodium vivax malaria infections for six decades but the efficacy of this treatment regimen is threatened by chloroquine resistance (CQR). Single nucleotide polymorphisms (SNPs) in the multidrug resistance gene, Pvmdr1 are putative determinants of CQR but the extent of their emergence at population level remains to be explored. Objective In this study we describe the prevalence of SNPs in the Pvmdr1 among samples collected in seven P. vivax endemic countries and we looked for molecular evidence of drug selection by characterising polymorphism at microsatellite (MS) loci flanking the Pvmdr1 gene. Methods We examined the prevalence of SNPs in the Pvmdr1 gene among 267 samples collected from Pakistan, Afghanistan, Sri Lanka, Nepal, Sudan, São Tomé and Ecuador. We measured and diversity in four microsatellite (MS) markers flanking the Pvmdr1 gene to look evidence of selection on mutant alleles. Results SNP polymorphism in the Pvmdr1 gene was largely confined to codons T958M, Y976F and F1076L. Only 2.4% of samples were wildtype at all three codons (TYF, n = 5), 13.3% (n = 28) of the samples were single mutant MYF, 63.0% of samples (n = 133) were double mutant MYL, and 21.3% (n = 45) were triple mutant MFL. Clear geographic differences in the prevalence of these Pvmdr mutation combinations were observed. Significant linkage disequilibrium (LD) between Pvmdr1 and MS alleles was found in populations sampled in Ecuador, Nepal and Sri Lanka, while significant LD between Pvmdr1 and the combined 4 MS locus haplotype was only seen in Ecuador and Sri Lanka. When combining the 5 loci, high level diversity, measured as expected heterozygosity (He), was seen in the complete sample set (He = 0.99), while He estimates for individual loci ranged from 0.00–0.93. Although Pvmdr1 haplotypes were not consistently associated with specific flanking MS alleles, there was significant differentiation between geographic sites which could indicate directional selection through local drug pressure. Conclusions Our observations suggest that Pvmdr1 mutations emerged independently on multiple occasions even within the same population. In Sri Lanka population analysis at multiple sites showed evidence of local selection and geographical dispersal of Pvmdr1 mutations between sites. PMID:26539821

  19. TOXICOKINETICS OF BDE 47 IN FEMALE MICE: EFFECTS OF DOSE, ROUTE OF EXPOSURE, AND MDR1 TRANSPORTER

    EPA Science Inventory

    Introduction
    2,2',4,4'-Tetrabromodiphenyl ether (BDE 47) is a polybrominated diphenyl ether (PBDE) congener used in a class of brominated flame retardants (BFRs) commonly used in a variety of highly flammable consumer goods. Concern for the effects of PBDEs has increased sign...

  20. Metalloprobes: Fluorescence imaging of multidrug resistance (MDR1) P-Glycoprotein (Pgp)-mediated functional transport activity in cellulo.

    PubMed

    Sundaram, G S M; Sharma, Monica; Kaganov, Daniel; Cho, Junsang; Harpstrite, Scott E; Sharma, Vijay

    2016-06-01

    Radiolabeled metalloprobes offer sensitive tools for evaluating quantitative accumulation of chemical entities within pooled cell populations. Although beneficial in translational nuclear imaging, this method precludes interrogation of effects resulting from variations at a single cell level, within the same segment of cell population. Compared with radiotracer bioassays, fluorescence imaging offers a cost-efficient technique to assess accumulation of metalloprobes at a single cell level, and determine their intracellular localization under live cell conditions. To evaluate, whether or not radiotracer assay and fluorescence imaging provide complementary information on utility of metalloprobes to assess functional expression of P-glycoprotein (Pgp) on plasma membrane of tumor cells, imaging studies of fluorescent cationic Ga(III)-ENBDMPI (bis(3-ethoxy-2-hydroxy-benzylidene)-N,N'-bis(2,2-dimethyl-3-amino-propyl)ethylenediamine) and its neutral counterpart Zn(II)-ENBDMPI are performed. While the uptake profiles of the cationic metalloprobe are inversely proportional to expression of Pgp in tumor cells, the accumulation profiles of the neutral Zn(II)-ENBDMPI in non-MDR and MDR cells are not significantly impacted. The cationic Ga(III)-ENBDMPI maps with Mito-Tracker Red, thereby confirming localization within mitochondria of non-MDR (Pgp-) cells. Depolarization of both plasmalemmal and mitochondrial potentials decreased retention of the cationic Ga(III)-ENBDMPI within the mitochondria. Additionally, LY335979, an antagonist-induced accumulation of the cationic Ga(III) metalloprobe in MDR (Pgp+) cells indicated specificity of the agent. Compared with traits of Ga(III)-ENBDMPI as a Pgp recognized substrate, Zn(II)-ENBDMPI demonstrated uptake in both MDR and non-MDR cells thus indicating the significance of overall molecular charge in mediating Pgp recognition profiles. Combined data indicate that live cell imaging can offer a cost-effective methodology for monitoring functional Pgp expression. PMID:27031494

  1. Geographical Distribution of MDR1 Expression in Leishmania Isolates, from Greece and Cyprus, Measured by the Rhodamine-123 Efflux Potential of the Isolates, Using Flow Cytometry.

    PubMed

    Tsirigotakis, Nikolaos; Christodoulou, Vasiliki; Ntais, Pantelis; Mazeris, Apostolos; Koutala, Eleni; Messaritakis, Ippokratis; Antoniou, Maria

    2016-05-01

    Leishmaniasis, a neglected vector-borne disease caused by the protozoan parasite Leishmania, is encountered in 98 countries causing serious concerns to public health. The most alarming is the development of parasite drug resistance, a phenomenon increasingly encountered in the field rendering chemotherapy ineffective. Although resistance to drugs is a complex phenomenon, the rate of efflux of the fluorescent dye Rhodamine-123 from the parasite body, using flow cytometry, is an indication of the isolate's ability to efflux the drug, thus avoiding death. The rate of efflux measured 275 Leishmania strains, isolated from patients and dogs from Greece and Cyprus, was measured and mapped to study the geographical distribution of the multidrug resistance (MDR) gene expression as an indication of the drug resistance of the parasite. The map showed that out of the seven prefectures, where dogs presented high efflux rates, five also had patients with high efflux rates. In one, out of the 59 prefectures studied, the highest number of isolates with efflux slope α > 1, in both human and dog isolates, was found; a fact which may suggest that spread of drug resistance is taking place. The virulence of the Leishmania strains, assessed after infecting human macrophages of the THP-1 cell line, fluctuated from 1% to 59.3% with only 2.5% of the isolates showing infectivity > 50%. The most virulent strains were isolated from Attica and Crete. PMID:27001764

  2. Effects of cytochrome P450 3A (CYP3A) and the drug transporters P-glycoprotein (MDR1/ABCB1) and MRP2 (ABCC2) on the pharmacokinetics of lopinavir

    PubMed Central

    van Waterschoot, RAB; ter Heine, R; Wagenaar, E; van der Kruijssen, CMM; Rooswinkel, RW; Huitema, ADR; Beijnen, JH; Schinkel, AH

    2010-01-01

    Background and purpose: Lopinavir is extensively metabolized by cytochrome P450 3A (CYP3A) and is considered to be a substrate for the drug transporters ABCB1 (P-glycoprotein) and ABCC2 (MRP2). Here, we have assessed the individual and combined effects of CYP3A, ABCB1 and ABCC2 on the pharmacokinetics of lopinavir and the relative importance of intestinal and hepatic metabolism. We also evaluated whether ritonavir increases lopinavir oral bioavailability by inhibition of CYP3A, ABCB1 and/or ABCC2. Experimental approach: Lopinavir transport was measured in Madin-Darby canine kidney cells expressing ABCB1 or ABCC2. Oral lopinavir kinetics (+/− ritonavir) was studied in mice with genetic deletions of Cyp3a, Abcb1a/b and/or Abcc2, or in transgenic mice expressing human CYP3A4 exclusively in the liver and/or intestine. Key results: Lopinavir was transported by ABCB1 but not by ABCC2 in vitro. Lopinavir area under the plasma concentration – time curve (AUC)oral was increased in Abcb1a/b−/− mice (approximately ninefold vs. wild-type) but not in Abcc2−/− mice. Increased lopinavir AUCoral (>2000-fold) was observed in cytochrome P450 3A knockout (Cyp3a−/−) mice compared with wild-type mice. No difference in AUCoral between Cyp3a−/− and Cyp3a/Abcb1a/b/Abcc2−/− mice was observed. CYP3A4 activity in intestine or liver, separately, reduced lopinavir AUCoral (>100-fold), compared with Cyp3a−/− mice. Ritonavir markedly increased lopinavir AUCoral in all CYP3A-containing mouse strains. Conclusions and implications: CYP3A was the major determinant of lopinavir pharmacokinetics, far more than Abcb1a/b. Both intestinal and hepatic CYP3A activity contributed importantly to low oral bioavailability of lopinavir. Ritonavir increased lopinavir bioavailability primarily by inhibiting CYP3A. Effects of Abcb1a/b were only detectable in the presence of CYP3A, suggesting saturation of Abcb1a/b in the absence of CYP3A activity. PMID:20590614

  3. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model.

    PubMed

    Doran, Angela; Obach, R Scott; Smith, Bill J; Hosea, Natilie A; Becker, Stacey; Callegari, Ernesto; Chen, Cuiping; Chen, Xi; Choo, Edna; Cianfrogna, Julie; Cox, Loretta M; Gibbs, John P; Gibbs, Megan A; Hatch, Heather; Hop, Cornelis E C A; Kasman, Ilana N; Laperle, Jennifer; Liu, Jianhua; Liu, Xingrong; Logman, Michael; Maclin, Debra; Nedza, Frank M; Nelson, Frederick; Olson, Emily; Rahematpura, Sandhya; Raunig, David; Rogers, Sabrinia; Schmidt, Kari; Spracklin, Douglas K; Szewc, Mark; Troutman, Matthew; Tseng, Elaine; Tu, Meihua; Van Deusen, Jeffrey W; Venkatakrishnan, Karthik; Walens, Gary; Wang, Ellen Q; Wong, Diane; Yasgar, Adam S; Zhang, Chenghong

    2005-01-01

    Thirty-two structurally diverse drugs used for the treatment of various conditions of the central nervous system (CNS), along with two active metabolites, and eight non-CNS drugs were measured in brain, plasma, and cerebrospinal fluid in the P-glycoprotein (P-gp) knockout mouse model after subcutaneous administration, and the data were compared with corresponding data obtained in wild-type mice. Total brain-to-plasma (B/P) ratios for the CNS agents ranged from 0.060 to 24. Of the 34 CNS-active agents, only 7 demonstrated B/P area under the plasma concentration curve ratios between P-gp knockout and wild-type mice that did not differ significantly from unity. Most of the remaining drugs demonstrated 1.1- to 2.6-fold greater B/P ratios in P-gp knockout mice versus wild-type mice. Three, risperidone, its active metabolite 9-hydroxyrisperidone, and metoclopramide, showed marked differences in B/P ratios between knockout and wild-type mice (6.6- to 17-fold). Differences in B/P ratios and cerebrospinal fluid/plasma ratios between wild-type and knockout animals were correlated. Through the use of this model, it appears that most CNS-active agents demonstrate at least some P-gp-mediated transport that can affect brain concentrations. However, the impact for the majority of agents is probably minor. The example of risperidone illustrates that even good P-gp substrates can still be clinically useful CNS-active agents. However, for such agents, unbound plasma concentrations may need to be greater than values projected using receptor affinity data to achieve adequate receptor occupancy for effect. PMID:15502009

  4. Timosaponin A-III reverses multi-drug resistance in human chronic myelogenous leukemia K562/ADM cells via downregulation of MDR1 and MRP1 expression by inhibiting PI3K/Akt signaling pathway.

    PubMed

    Chen, Jie-Ru; Jia, Xiu-Hong; Wang, Hong; Yi, Ying-Jie; Wang, Jian-Yong; Li, You-Jie

    2016-05-01

    One of the major causes of failure in chemotherapy for patients with human chronic myelogenous leukemia (CML) is the acquisition of multidrug resistance (MDR). MDR is often associated with the overexpression of drug efflux transporters of the ATP-binding cassette (ABC) protein family. Timosaponin A-III (TAIII), a saponin isolated from the rhizome of Anemarrhena asphodeloides, has previously demonstrated the ability to suppress certain human tumor processes and the potential to be developed as an anticancer agent. Nevertheless, the ability of TAIII to reverse MDR has not yet been explored. In this study, the adriamycin (ADM) resistance reversal effect of TAIII in human CML K562/ADM cells and the underlying mechanism was investigated. The Cell Counting Kit-8 (CCK-8) assay showed that TAIII had a reversal effect on the drug resistance of K562/ADM cells. Flow cytometry assay showed increased intracellular accumulation of ADM after cells were pretreated with TAIII, and the changes in the accumulation of rhodamine-123 (Rho-123) and 5(6)-carboxyfluorescein diacetate (CFDA) dye in K562/ADM cells were determined to be similar to the changes of intracellular accumulation of ADM. After pretreatment of cells with TAIII, the decreasing expression of P-gp and MRP1 mRNA was examined by reverse transcription polymerase chain reaction (RT-PCR). Western blotting showed TAIII inhibiting P-gp and MRP1 expression depended on the PI3K/Akt signaling pathway by decreasing the activity of p-Akt. Moreover, wortmannin an inhibitor of PI3K/Akt signaling pathway has a strong inhibitory effect on the expression of p-Akt, P-gp and MRP1. Besides, the combined treatment with TAIII did not have an affect on wortmannin downregulation of p-Akt, P-gp and MRP1. Taken together, our findings demonstrate, for the first time, that TAIII induced MDR reversal through inhibition of P-gp and MRP1 expression and function with regained adriamycin sensitivity which might mainly correlate to the regulation of PI3K/Akt signaling pathway. PMID:26984633

  5. Escuelas sin Drogas. Como Actuar. Edicion 1992. (Schools without Drugs. What Works. 1992 Edition).

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    Across the United States, schools and communities have found ways to turn the tide in the battle against drugs. This guidebook describes the methods they have used and the actions they have taken. The first section, "Children and Drugs" outlines the nature and extent of the drug problem and summarizes the latest research on the effects of drugs on…

  6. Inmunoterapias para las adicciones a las drogas Immunotherapies for Drug Addictions

    PubMed Central

    Montoya, Iván D.

    2008-01-01

    Immunotherapies in the form of vaccines (active immunization) or monoclonal antibodies (passive immunization) appear safe and a promising treatment approaches for some substance-related disorders. The mechanism of action of the antibody therapy is by preventing the rapid entry of drugs of abuse into the central nervous system. In theory, immunotherapies could have several clinical applications. Monoclonal antibodies may be useful to treat drug overdoses and prevent the neurotoxic effects of drugs by blocking the access of drugs to the brain. Vaccines may help to prevent the development of addiction, initiate drug abstinence in those already addicted to drugs, or prevent drug use relapse by reducing the pharmacological effects and rewarding properties of the drugs of abuse on the brain. Passive immunization with monoclonal antibodies has been investigated for cocaine, methamphetamine, nicotine, and phencyclidine (PCP). Active immunization with vaccines has been studied for cocaine, heroin, methamphetamine, and nicotine. These immunotherapies seem promising therapeutic tools and are at different stages in their development before they can be approved by regulatory agencies for the treatment of substance-related disorders. The purpose of this article is to review the current immunotherapy approaches with emphasis on the risks and benefits for the treatment of these disorders. PMID:18551223

  7. Creciendo Sin Drogas: Guia de Prevencion para Padres (Growing Up Drug-Free: A Parent's Guide to Prevention).

    ERIC Educational Resources Information Center

    Office of Elementary and Secondary Education (ED), Washington, DC. Safe and Drug Free Schools Program.

    This publication is part of the Department of Education's ongoing effort to provide information to emerging populations in their native language on how to create and maintain drug-free and safe schools across the nation. Throughout the publication are personal stories and artwork of elementary and secondary school students that promote the message…

  8. Regulation of multidrug resistance 1 expression by CDX2 in ovarian mucinous adenocarcinoma.

    PubMed

    Koh, Iemasa; Hinoi, Takao; Sentani, Kazuhiro; Hirata, Eiji; Nosaka, Suguru; Niitsu, Hiroaki; Miguchi, Masashi; Adachi, Tomohiro; Yasui, Wataru; Ohdan, Hideki; Kudo, Yoshiki

    2016-07-01

    Epithelial ovarian cancer is an aggressive gynecological malignancy with a high mortality rate. Resistance against chemotherapeutic agents often develops in ovarian cancer patients, contributing to high recurrence rates. The multidrug resistance 1 (MDR1/ABCB1) gene encodes P-glycoprotein, which affects the pharmacokinetic properties of anticancer agents. We previously reported that the Caudal-related homeobox transcription factor CDX2 transcriptionally regulates MDR1 expression in colorectal cancer. CDX2 is a factor that influences cancer cell differentiation, malignancy, and cancer progression. We hypothesized that profiling of CDX2 and MDR1 expression could be an effective strategy for predicting anticancer drug resistance. We studied the expression of these factors in clinical samples from ovarian cancer patients. We found that endogenous MDR1 expression was positively associated with CDX2 expression in ovarian mucinous adenocarcinoma. Using ovarian mucinous adenocarcinoma cell lines, we also observed decreased MDR1 expression following inhibition of CDX2 by RNA interference. In addition, CDX2 overexpression in MN-1 cells, which display low endogenous CDX2, resulted in upregulation of MDR1 expression. CDX2 induced MDR1-dependent resistance to vincristine and paclitaxel, which was reversed by treatment with the MDR1-specific inhibitor verapamil. Our findings show that CDX2 promotes upregulation of MDR1 expression, leading to drug resistance in ovarian mucinous adenocarcinoma. Therefore, our study demonstrates the potential of novel chemotherapy regimens based on CDX2 status and MDR1 expression in ovarian mucinous adenocarcinoma. PMID:27060927

  9. A cis-active regulatory gene in the mouse: direct demonstration of cis-active control of the rate of enzyme subunit synthesis

    SciTech Connect

    Bernstine, E.G.; Koh, C.

    1980-07-01

    Mouse mitochondrial malic enzyme (L-malate:NADP/sup +/ oxidoreductase (oxaloacetate-decarboxylating), EC1.1.1.40) is a tetrameric protein. Two alleles of the structural gene (Mod-2) are known which code for electrophoretically distinct enzyme subunits: Mod-2/sup a/ and Mod-2/sup b/. A regulatory gene (Mdr-1), closely linked to Mod-2 on chromosome 7, determines the rate of mitochondrial malic enzyme synthesis in brain. Two alleles of Mdr-1 are known: Mdr-1/sup a/ (high activity) and Mdr-1/sup b/ (low activity). By pulse-labeling with (/sup 35/S)methionine, immune precipitation, and isoelectric focusing under dissociating conditions, we have measured the relative rates of synthesis of the two types of enzyme subunit in animals of genotypes Mdr-1/sup a/ Mod-2/sup a//Mdr-1/sup a/ Mod-2/sup b/ and Mdr-1/sup a/ Mod-2/sup a//Mdr-1/sup b/ Mod-2/sup b/. The results show that in the former animals both types of subunit are made at an identical rate, whereas in the latter animals the Mod-2/sup a/ gene product is synthesized at a rate 2.2 times that of the Mod-2/sup b/-coded subunit. Thus we have unambiguously demonstrated that Mdr-1 is cis-active in its control of the expression of the Mod-2 structural gene.

  10. Targeting glucosylceramide synthase induction of cell surface globotriaosylceramide (Gb3) in acquired cisplatin-resistance of lung cancer and malignant pleural mesothelioma cells

    SciTech Connect

    Tyler, Andreas; Johansson, Anders; Karlsson, Terese; Gudey, Shyam Kumar; Brännström, Thomas; Grankvist, Kjell; Behnam-Motlagh, Parviz

    2015-08-01

    Background: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expression of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. Methods: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72 h on expression and cisplatin cytotoxicity was tested. Results: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. Conclusions: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin

  11. Role of P-glycoprotein in mediating rivastigmine effect on amyloid-β brain load and related pathology in Alzheimer's disease mouse model.

    PubMed

    Mohamed, Loqman A; Keller, Jeffrey N; Kaddoumi, Amal

    2016-04-01

    Recently, we showed that rivastigmine decreased amyloid-β (Aβ) brain load in aged rats by enhancing its clearance across the blood-brain barrier (BBB) via upregulation of P-glycoprotein (P-gp) and low-density lipoprotein receptor-related protein 1 (LRP1). Here, we extend our previous work to clarify P-gp role in mediating rivastigmine effect on Aβ brain levels and neuroprotection in a mouse model of Alzheimer's disease (AD) that expresses different levels of P-gp. APPSWE mice were bred with mdr1a/b knockout mice to produce littermates that were divided into three groups; APP(+)/mdr1(+/+), APP(+)/mdr1(+/-) and APP(+)/mdr1(-/-). Animals received rivastigmine treatment (0.3mg/kg/day) or vehicle for 8weeks using Alzet osmotic mini-pumps. ELISA analysis of brain homogenates for Aβ showed rivastigmine treatment to significantly decrease Aβ brain load in APP(+)/mdr1(+/+) by 25% and in APP(+)/mdr1(+/-) mice by 21% compared to their vehicle treated littermates, but not in APP(+)/mdr1(-/-) mice. In addition, rivastigmine reduced GFAP immunostaining of astrocytes by 50% and IL-1β brain level by 43% in APP(+)/mdr1(+/+) mice, however its effect was less pronounced in P-gp knockout mice. Moreover, rivastigmine demonstrated a P-gp expression dependent neuroprotective effect that was highest in APP(+)/mdr1(+/+)>APP(+)/mdr1(+/-)>APP(+)/mdr1(-/-) as determined by expression of synaptic markers PSD-95 and SNAP-25 using Western blot analysis. Collectively, our results suggest that P-gp plays important role in mediating rivastigmine non-cholinergic beneficial effects, including Aβ brain load reduction, neuroprotective and anti-inflammatory effects in the AD mouse models. PMID:26780497

  12. Role of xenobiotic efflux transporters in resistance to vincristine.

    PubMed

    Huang, Rong S; Murry, Daryl J; Foster, David R

    2008-02-01

    This study characterized interactions between efflux transporters (P-glycoprotein (MDR1) and multidrug resistance associated proteins (MRPs1-3)) and vincristine (VCR), using cell lines with differential transporter expression, and studied effects of P-glycoprotein inhibition on VCR transport and toxicity. Caco2 (express MDR1, MRPs 1-3), LS174T (express MDR1, MRPs 1, 3), and A549 (express MRPs 1-3) cells were used. To study VCR transport (effective permeability, P(eff)), VCR (1-500 nM) was added to the donor chambers of permeable supports containing Caco2 monolayers, and receiving chamber concentrations were measured. Cytotoxicity experiments were conducted with escalating concentrations of VCR in all cell lines. To determine the contribution of MDR1, experiments were also conducted with LY335979, a specific MDR1 inhibitor. VCR P(eff) was 2 x 10(-6)cm/s in Caco2 cells. LY335979 increased P(eff) in a dose dependent manner (up to 7-fold with 1 microM LY335979) in Caco2 cells. Caco2 and LS174T cell viability decreased significantly when co-incubated with both VCR and LY335979 (1 microM) (P<0.05), however this was not observed in A549 cells. In summary, MDR1 plays an important role in VCR efflux; MDR1 inhibition increased VCR P(eff) in Caco2 cells, and increased VCR cytotoxicity in Caco2 and LS174T cells (both express MDR1), but not A549 cells (minimal MDR1 expression). Inhibition of MDR1 may be a viable strategy to overcome VCR resistance in tumors expressing MDR1, however the presence of other efflux transporters should also be considered, as this will influence the success of such strategies. PMID:17583464

  13. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine

    PubMed Central

    Sparreboom, Alex; van Asperen, Judith; Mayer, Ulrich; Schinkel, Alfred H.; Smit, Johan W.; Meijer, Dirk K. F.; Borst, Piet; Nooijen, Willem J.; Beijnen, Jos H.; van Tellingen, Olaf

    1997-01-01

    In mice, the mdr1a and mdr1b genes encode drug-transporting proteins that can cause multidrug resistance in tumor cells by lowering intracellular drug levels. These P-glycoproteins are also found in various normal tissues such as the intestine. Because mdr1b P-glycoprotein is not detectable in the intestine, mice with a homozygously disrupted mdr1a gene [mdr1a(−/−) mice] do not contain functional P-glycoprotein in this organ. We have used these mdr1a(−/−) mice to study the effect of gut P-glycoprotein on the pharmacokinetics of paclitaxel. The area under the plasma concentration-time curves was 2- and 6-fold higher in mdr1a(−/−) mice than in wild-type (wt) mice after i.v. and oral drug administration, respectively. Consequently, the oral bioavailability in mice receiving 10 mg paclitaxel per kg body weight increased from only 11% in wt mice to 35% in mdr1a(−/−) mice. The cumulative fecal excretion (0–96 hr) was markedly reduced from 40% (after i.v. administration) and 87% (after oral administration) of the administered dose in wt mice to below 3% in mdr1a(−/−) mice. Biliary excretion was not significantly different in wt and mdr1a(−/−) mice. Interestingly, after i.v. drug administration of paclitaxel (10 mg/kg) to mice with a cannulated gall bladder, 11% of the dose was recovered within 90 min in the intestinal contents of wt mice vs. <3% in mdr1a(−/−) mice. We conclude that P-glycoprotein limits the oral uptake of paclitaxel and mediates direct excretion of the drug from the systemic circulation into the intestinal lumen. PMID:9050899

  14. Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine.

    PubMed

    Akazawa, Takanori; Uchida, Yasuo; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2016-07-01

    The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al. within 2.1-fold difference. Thus, intestinal mdr1a function can be reconstructed by our pharmacoproteomic modeling approach. Furthermore, we evaluated regional differences in protein expression levels of mouse intestinal transporters. Sixteen (mdr1a, mrp4, bcrp, abcg5, abcg8, glut1, 4f2hc, sglt1, lat2, pept1, mct1, slc22a18, ostβ, villin1, Na(+)/K(+)-ATPase, γ-gtp) out of 46 target molecules were detected by employing our established quantitative targeted absolute proteomics technique. The protein expression amounts of mdr1a and bcrp increased progressively from duodenum to ileum. Sglt1, lat2, and 4f2hc were highly expressed in jejunum and ileum. Mct1 and ostβ were highly expressed in ileum. The quantitative expression profiles established here should be helpful to understand and predict intestinal transporter functions. PMID:27276518

  15. Tips for Parents on Keeping Children Drug Free = Consejos para Los Padres Sobre Como Mantener a Los Hijos Libres de La Droga.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC. Office of Intergovernmental and Interagency Affairs.

    Research shows that recent trends in youth drug use have stabilized; however, the rates of use remain at high levels. It has been shown that the earlier drug use is initiated, the more likely a person is to develop drug problems later in life. Youth substance abuse may lead to many other problems that affect not only the child, but also the…

  16. Previniendo el Uso de Drogas entre Ninos y Adolescentes: Una Guia Basada en Investigaciones (Preventing Drug Use among Children and Adolescents: A Research-Based Guide).

    ERIC Educational Resources Information Center

    Sloboda, Zili; David, Susan L.

    This question and answer guide provides an overview of the research on the origins and pathways of drug abuse, the basic principles derived from effective drug abuse prevention research, and the application of research results to the prevention of drug use among young people. The basic principles derived from drug abuse prevention research are…

  17. Multidrug Resistance 1 Gene Variants, Pesticide Exposure, and Increased Risk of DNA Damage

    PubMed Central

    Chen, Chun-Chieh; Huang, Chun-Huang; Wu, Man-Tzu Marcie; Chou, Chia-Hsuan; Huang, Chia-Chen; Tseng, Tzu-Yen; Chang, Fang-Yu; Li, Ying-Ti; Tsai, Chun-Cheng; Wang, Tsung-Shing

    2014-01-01

    The P-glycoprotein, encoded by the multidrug resistance (MDR)1 gene, extrudes fat-soluble compounds to the extracellular environment. However, the DNA damage of pesticides in subjects with genetic variation in MDR1 has not been investigated. In this study, the comet assay was applied to examine the extent of DNA damage in the peripheral blood of 195 fruit growers who had been exposed to pesticides and 141 unexposed controls. The MDR1 polymorphisms were identified. Questionnaires were administered to obtain demographic data and occupational history. Results showed subjects experiencing high (2.14 μm/cell, P < 0.01) or low pesticide exposure (2.18 μm/cell, P < 0.01) had a significantly greater DNA tail moment than controls (1.28 μm/cell). Compared to the MDR1 T-129C (rs3213619) TC/CC carriers, the TT carriers had increased DNA tail moment in controls (1.30 versus 1.12 μm/cell, P < 0.01). Similar results were observed in the high and low pesticide-exposed groups. Combined analysis revealed that pesticide-exposed fruit growers with MDR1 -129 TT genotype had the greatest DNA damage in the subjects with the combinations of pesticide exposure and MDR1 -129 genotypes. In conclusion, pesticide exposed individuals with susceptible MDR1 -129 genotypes may experience increased risk of DNA damage. PMID:24791009

  18. Identification of galectin-1 as a novel mediator for chemoresistance in chronic myeloid leukemia cells.

    PubMed

    Luo, Wu; Song, Li; Chen, Xi-Lei; Zeng, Xiang-Feng; Wu, Jian-Zhang; Zhu, Cai-Rong; Huang, Tao; Tan, Xiang-Peng; Lin, Xiao-Mian; Yang, Qi; Wang, Ji-Zhong; Li, Xiao-Kun; Wu, Xiao-Ping

    2016-05-01

    Multidrug resistance protein-1 (MDR1) has been proven to be associated with the development of chemoresistance to imatinib (Glivec, STI571) which displays high efficacy in treatment of BCR-ABL-positive chronic myelogenous leukemia (CML). However, the possible mechanisms of MDR1 modulation in the process of the resistance development remain to be defined. Herein, galectin-1 was identified as a candidate modulator of MDR1 by proteomic analysis of a model system of leukemia cell lines with a gradual increase of MDR1 expression and drug resistance. Coincidently, alteration of galectin-1 expression triggers the change of MDR1 expression as well as the resistance to the cytotoxic drugs, suggesting that augment of MDR1 expression engages in galectin-1-mediated chemoresistance. Moreover, we provided the first data showing that NF-κB translocation induced by P38 MAPK activation was responsible for the modulation effect of galectin-1 on MDR1 in the chronic myelogenous leukemia cells. Galectin-1 might be considered as a novel target for combined modality therapy for enhancing the efficacy of CML treatment with imatinib. PMID:27050374

  19. Fitness and Competitive Ability of Botrytis cinerea Isolates with Resistance to Multiple Chemical Classes of Fungicides.

    PubMed

    Chen, S N; Luo, C X; Hu, M J; Schnabel, G

    2016-09-01

    Resistance to multiple chemical classes of fungicides in Botrytis cinerea isolates from eastern United States strawberry fields is common and strategies to control them are needed. In this study, we compared fitness and competitive ability of eight sensitive isolates (S), eight isolates resistant to five or six chemical classes of fungicides but not to phenylpyrroles (5CCR), and eight isolates resistant to six or seven chemical classes including phenylpyrroles (6CCR/MDR1h). The latter included the MDR1h phenotype due to overexpression of atrB based on Δ497V/L in mrr1. The 6CCR/MDR1h isolates grew more slowly at 4°C on potato dextrose agar, and both 5CCR and 6CCR/MDR1h isolates were hypersensitive to osmotic stress compared with S isolates. In contrast, no differences were found in oxidative sensitivity, aggressiveness, and spore production in vivo, and sclerotia production and viability in vitro. In competition experiments, the 5CCR and 6CCR/MDR1h isolates were both outcompeted by S isolates and 6CCR/MDR1h isolates were outcompeted by 5CCR isolates in the absence of fungicide pressure. Under selective pressure of a fludioxonil/pyraclostrobin rotation, the 6CCR/MDR1h isolates dominated after coinoculation with 5CCR and S isolates. The competitive disadvantage of 5CCR and especially 6CCR/MDR1h isolates suggest that, in the absence of fungicide selection pressure, S isolates may reduce inoculum potential of multifungicide-resistant isolates under field conditions. PMID:27161219

  20. Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies.

    PubMed

    Amiri-Kordestani, Laleh; Basseville, Agnes; Kurdziel, Karen; Fojo, Antonio Tito; Bates, Susan E

    2012-01-01

    This special issue of Drug Resistance Updates is dedicated to multidrug resistance protein 1 (MDR-1), 35 years after its discovery. While enormous progress has been made and our understanding of drug resistance has become more sophisticated and nuanced, after 35 years the role of MDR-1 in clinical oncology remains a work in progress. Despite clear in vitro evidence that P-glycoprotein (Pgp), encoded by MDR-1, is able to dramatically reduce drug concentrations in cultured cells, and that drug accumulation can be increased by small molecule inhibitors, clinical trials testing this paradigm have mostly failed. Some have argued that it is no longer worthy of study. However, repeated analyses have demonstrated MDR-1 expression in a tumor is a poor prognostic indicator leading some to conclude MDR-1 is a marker of a more aggressive phenotype, rather than a mechanism of drug resistance. In this review we will re-evaluate the MDR-1 story in light of our new understanding of molecular targeted therapy, using breast and lung cancer as examples. In the end we will reconcile the data available and the knowledge gained in support of a thesis that we understand far more than we realize, and that we can use this knowledge to improve future therapies. PMID:22464282

  1. Deactivation of Signal Transducer and Activator of Transcription 3 Reverses Chemotherapeutics Resistance of Leukemia Cells via Down-Regulating P-gp

    PubMed Central

    Zhang, Xulong; Xiao, Weihua; Wang, Lihua; Tian, Zhigang; Zhang, Jian

    2011-01-01

    Multidrug resistance (MDR) caused by overexpression of p-glycoprotein is a major obstacle in chemotherapy of malignant cancer, which usually is characterized by constitutive activation of signal transducer and activator of transcription 3 (STAT3), but their relation between MDR and STAT3 remains unclear. Here, we showed that STAT3 was overexpressed and highly activated in adriamycin-resistant K562/A02 cells compared with its parental K562 cells. Blockade of activation of STAT3 by STAT3 decoy oligodeoxynucleotide (ODN) promoted the accumulation and increased their sensitivity to adriamycin by down-regulating transcription of mdr1 and expression of P-gp, which were further confirmed by using STAT3-specific inhibitor JSI-124. Inhibition of STAT3 could also decrease mdr1 promoter mediated luciferase expression by using mdr1 promoter luciferase reporter construct. Otherwise, activation of STAT3 by STAT3C improved mdr1 transcription and P-gp expression. The ChIP results demonstrated that STAT3 could bind to the potential promoter region of mdr1, and STAT3 decoy depressed the binding. Further mutation assay show +64∼+72 region could be the STAT3 binding site. Our data demonstrate a role of STAT3 in regulation of mdr1 gene expression in myeloid leukemia and suggest that STAT3 may be a promising therapeutic target for overcoming MDR resistance in myeloid leukemia. PMID:21677772

  2. Differential overexpression of three mdr gene family members in multidrug-resistant J774.2 mouse cells. Evidence that distinct P-glycoprotein precursors are encoded by unique mdr genes.

    PubMed

    Hsu, S I; Lothstein, L; Horwitz, S B

    1989-07-15

    A hallmark of the multidrug-resistant phenotype is the overproduction of a family of 130-180-kDa integral membrane phosphoglycoproteins collectively called P-glycoprotein. Gene-specific hybridization probes were derived from three classes of mouse P-glycoprotein cDNAs. These probes revealed the differential amplification and/or transcriptional activation of three distinct but closely related mdr genes (mdr1a, mdr1b, and mdr2) in independently selected multidrug-resistant J774.2 mouse cell lines. Overexpression of mdr1a and mdr1b was found to correlate, in general, with the differential overproduction of either a 120- or 125-kDa P-glycoprotein precursor, respectively. This same correlation was observed in a single cell line during the course of stepwise selection for resistance to vinblastine in which a switch in gene expression from mdr1b to mdr1a resulted in a switch from the 125- to 120-kDa P-glycoprotein precursor. These findings suggest that differential overexpression of distinct mdr genes which encode unique P-glycoprotein isoforms is a possible mechanism for generating diversity in the multidrug-resistant phenotype. PMID:2473069

  3. P-glycoprotein is a major determinant of norbuprenorphine brain exposure and antinociception.

    PubMed

    Brown, Sarah M; Campbell, Scott D; Crafford, Amanda; Regina, Karen J; Holtzman, Michael J; Kharasch, Evan D

    2012-10-01

    Norbuprenorphine is a major metabolite of buprenorphine and potent agonist of μ, δ, and κ opioid receptors. Compared with buprenorphine, norbuprenorphine causes minimal antinociception but greater respiratory depression. It is unknown whether the limited antinociception is caused by low efficacy or limited brain exposure. Norbuprenorphine is an in vitro substrate of the efflux transporter P-glycoprotein (Mdr1), but the role of P-glycoprotein in norbuprenorphine transport in vivo is unknown. This investigation tested the hypothesis that limited norbuprenorphine antinociception results from P-glycoprotein-mediated efflux and limited brain access. Human P-glycoprotein-mediated transport in vitro of buprenorphine, norbuprenorphine, and their respective glucuronide conjugates was assessed by using transfected cells. P-glycoprotein-mediated norbuprenorphine transport and consequences in vivo were assessed by using mdr1a(+/+) and mdr1a(-/-) mice. Antinociception was determined by hot-water tail-flick assay, and respiratory effects were determined by unrestrained whole-body plethysmography. Brain and plasma norbuprenorphine and norbuprenorphine-3-glucuronide were quantified by mass spectrometry. In vitro, the net P-glycoprotein-mediated efflux ratio for norbuprenorphine was nine, indicating significant efflux. In contrast, the efflux ratio for buprenorphine and the two glucuronide conjugates was unity, indicating absent transport. The norbuprenorphine brain/plasma concentration ratio was significantly greater in mdr1a(-/-) than mdr1a(+/+) mice. The magnitude and duration of norbuprenorphine antinociception were significantly increased in mdr1a(-/-) compared with mdr1a(+/+) mice, whereas the reduction in respiratory rate was similar. Results show that norbuprenorphine is an in vitro and in vivo substrate of P-glycoprotein. P-glycoprotein-mediated efflux influences brain access and antinociceptive, but not the respiratory, effects of norbuprenorphine. PMID:22739506

  4. P-Glycoprotein Is a Major Determinant of Norbuprenorphine Brain Exposure and Antinociception

    PubMed Central

    Brown, Sarah M.; Campbell, Scott D.; Crafford, Amanda; Regina, Karen J.; Holtzman, Michael J.

    2012-01-01

    Norbuprenorphine is a major metabolite of buprenorphine and potent agonist of μ, δ, and κ opioid receptors. Compared with buprenorphine, norbuprenorphine causes minimal antinociception but greater respiratory depression. It is unknown whether the limited antinociception is caused by low efficacy or limited brain exposure. Norbuprenorphine is an in vitro substrate of the efflux transporter P-glycoprotein (Mdr1), but the role of P-glycoprotein in norbuprenorphine transport in vivo is unknown. This investigation tested the hypothesis that limited norbuprenorphine antinociception results from P-glycoprotein-mediated efflux and limited brain access. Human P-glycoprotein-mediated transport in vitro of buprenorphine, norbuprenorphine, and their respective glucuronide conjugates was assessed by using transfected cells. P-glycoprotein-mediated norbuprenorphine transport and consequences in vivo were assessed by using mdr1a(+/+) and mdr1a(−/−) mice. Antinociception was determined by hot-water tail-flick assay, and respiratory effects were determined by unrestrained whole-body plethysmography. Brain and plasma norbuprenorphine and norbuprenorphine-3-glucuronide were quantified by mass spectrometry. In vitro, the net P-glycoprotein-mediated efflux ratio for norbuprenorphine was nine, indicating significant efflux. In contrast, the efflux ratio for buprenorphine and the two glucuronide conjugates was unity, indicating absent transport. The norbuprenorphine brain/plasma concentration ratio was significantly greater in mdr1a(−/−) than mdr1a(+/+) mice. The magnitude and duration of norbuprenorphine antinociception were significantly increased in mdr1a(−/−) compared with mdr1a(+/+) mice, whereas the reduction in respiratory rate was similar. Results show that norbuprenorphine is an in vitro and in vivo substrate of P-glycoprotein. P-glycoprotein-mediated efflux influences brain access and antinociceptive, but not the respiratory, effects of norbuprenorphine. PMID

  5. Turning Awareness into Action: What Your Community Can Do about Drug Use in America = De La Toma de Conciencia a la Accion: Que Puede Hacer la Comunidad Respecto al Consumo de Drogas en America.

    ERIC Educational Resources Information Center

    Alcohol, Drug Abuse, and Mental Health Administration (DHHS/PHS), Rockville, MD. Office for Substance Abuse Prevention.

    This booklet gives examples of successful community drug abuse prevention programs, as well as guidelines for finding out more about a community's prevention needs and taking action. The first section discusses taking action against drug abuse. It presents examples which illustrate the different approaches communities have taken. Ten steps to help…

  6. Positive Prevention: Successful Approaches To Preventing Youthful Drug and Alcohol Use [and] La Prevencion Positiva: Metodos que han tenido exito en la prevencion del uso de drogas y alcohol entre la juventud.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    The United States has the highest rate of youthful drug abuse of any industrialized country in the world. There is a growing awareness that drug and alcohol use are closely connected to other problems such as teenage suicide, adolescent pregnancy, traffic fatalities, juvenile delinquency, poor school performance, runaways, and dropouts. Youthful…

  7. Characterization of multidrug transporter-mediated efflux of avermectins in human and mouse neuroblastoma cell lines.

    PubMed

    Dalzell, Abigail M; Mistry, Pratibha; Wright, Jayne; Williams, Faith M; Brown, Colin D A

    2015-06-15

    ABC transporters play an important role in the disposition of avermectins in several animal species. In this study the interactions of three key avermectins, abamectin, emamectin and ivermectin, with human and mouse homologues of MDR1 (ABCB1/Abcb1a) and MRP (ABCC/Abcc), transporters endogenously expressed by human SH-SY5Y and mouse N2a neuroblastoma cells were investigated. In both cell lines, retention of the fluorescent dye H33342 was found to be significantly increased in the presence of avermectins and cyclosporin A. These effects were shown to be unresponsive to the BCRP inhibitor Ko-143 and therefore MDR1/Mdr1-dependent. Avermectins inhibited MDR1/Mdr1a-mediated H33342 dye efflux, with apparent Ki values of 0.24±0.08 and 0.18±0.02μM (ivermectin); 0.60±0.07 and 0.56±0.02μM (emamectin) and 0.95±0.08 and 0.77±0.25μM (abamectin) in SH-SY5Y and N2a cells, respectively. There were some apparent affinity differences for MDR1 and Mdr1a within each cell line (affinity for ivermectin>emamectin≥abamectin, P<0.05 by One-Way ANOVA), but importantly, the Ki values for individual avermectins for human MDR1 or mouse Mdr1a were not significantly different. MK571-sensitive retention of GSMF confirmed the expression of MRP/Mrp efflux transporters in both cell lines. Avermectins inhibited MRP/Mrp-mediated dye efflux with IC50 values of 1.58±0.51 and 1.94±0.72μM (ivermectin); 1.87±0.57 and 2.74±1.01μM (emamectin) and 2.25±0.01 and 1.68±0.63μM (abamectin) in SH-SY5Y and N2a cells, respectively. There were no significant differences in IC50 values between individual avermectins or between human MRP and mouse Mrp. Kinetic data for endogenous human MDR1/MRP isoforms in SH-SY5Y cells and mouse Mdr1a/b/Mrp isoforms in N2a cells are comparable for the selected avermectins. All are effluxed at concentrations well above 0.05-0.1μM ivermectin detected in plasma (Ottesen and Campbell, 1994; Ottesen and Campbell, 1994) This is an important finding in the light of

  8. Compartment-specific roles of ABC transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid

    PubMed Central

    Shen, Jun; Carcaboso, Angel M.; Hubbard, K. Elaine; Tagen, Michael; Wynn, Henry G.; Panetta, John C.; Waters, Christopher M.; Elmeliegy, Mohamed A.; Stewart, Clinton F.

    2009-01-01

    Topotecan is a substrate of the ABC transporters P-glycoprotein (P-gp/MDR1) and breast cancer resistance protein (BCRP). To define the role of these transporters in topotecan penetration into the ventricular cerebrospinal fluid (vCSF) and brain parenchymal extracellular fluid (ECF) compartments we performed intracerebral microdialysis on transporter-deficient mice after an intravenous dose of topotecan (4 mg/kg). vCSF penetration of unbound topotecan lactone was measured as the ratio of vCSF-to-plasma area under the concentration-time curves (AUCs). The mean (±SD) ratios for wild-type, Mdr1a/b−/−, Bcrp1−/− and Mdr1a/b−/−Bcrp1−/− mice were 3.07±0.09, 2.57±0.17, 1.63±0.12 and 0.86±0.05, respectively. In contrast, the ECF-to-plasma ratios for wild-type, Bcrp1−/− and Mdr1a/b−/−Bcrp1−/− mice were 0.36±0.06, 0.42±0.06 and 0.88±0.07. Topotecan lactone was below detectable limits in the ECF of Mdr1a/b−/−mice. When gefitinib (200 mg/kg) was pre-administered to inhibit Bcrp1 and P-gp, the vCSF-to-plasma ratio decreased to 1.29±0.09 in wild-type mice and increased to 1.13±0.13 in Mdr1a/b−/−Bcrp1−/− mice, whereas the ECF-to-plasma ratio increased to 0.74±0.14 in wild-type and 1.07±0.03 in Mdr1a/b−/−Bcrp1−/− mice. Preferential active transport of topotecan lactone over topotecan carboxylate was shown in vivo by vCSF lactone-to-carboxylate AUC ratios for wild-type, Mdr1a/b−/−, Bcrp1−/− and Mdr1a/b−/−Bcrp1−/− mice of 5.69±0.83, 3.85±0.64, 3.61±0.46 and 0.78±0.19. Our results suggest that Bcrp1 and P-gp transport topotecan into vCSF and out of brain parenchyma through the blood-brain barrier. These findings may help to improve pharmacological strategies to treat brain tumors. PMID:19567673

  9. Synthesis, activity and pharmacophore development for isatin-β-thiosemicarbazones with selective activity towards multidrug resistant cellsa

    PubMed Central

    Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.

    2009-01-01

    We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-β-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322

  10. Inhibition of pregnane X receptor pathway contributes to the cell growth inhibition and apoptosis of anticancer agents in ovarian cancer cells.

    PubMed

    Masuyama, Hisashi; Nakamura, Keiichiro; Nobumoto, Etsuko; Hiramatsu, Yuji

    2016-09-01

    Epithelial ovarian cancer remains the most devastating gynecologic cancer with drug resistance and rapid recurrence. Pregnane X receptor (PXR) is a nuclear receptor that affects drug metabolism/efflux and drug-drug interaction through control of multiple drug resistance 1 (MDR1), which implies a major role in multidrug resistance, and other genes. We examined whether the inhibition of PXR-mediated pathway using siRNA interference and an antagonist for PXR could influence the paclitaxel and cisplatin cytotoxicity in ovarian cancer cells. PXR agonists, phthalate and pregnenolone had significant positive effects on cytochrome P450 (CYP) 3A4 expression and PXR-mediated transcription through the CYP3A4 promoter, whereas MDR1 expression and PXR-mediated transcription though the MDR1 promoter were significantly increased in the presence of paclitaxel or cisplatin. Downregulation of PXR suppressed the augmented MDR1 expression and PXR-mediated transcription by PXR ligands, and significantly enhanced cell growth inhibition and apoptosis in the presence of paclitaxel or cisplatin. Additionally, ketoconazole, a PXR antagonist, suppressed the augmented MDR1 expression and PXR-mediated transactivation by paclitaxel and cisplatin, and enhanced cell growth inhibition and apoptosis in their presence. In conclusion, inhibition of PXR-mediated pathways could be a novel means of augmenting sensitivity, or overcoming resistance to anticancer agents for ovarian cancer. PMID:27572875

  11. Expression of a multidrug-resistance gene in human tumors and tissues

    SciTech Connect

    Fojo, A.T.; Ueda, K.; Slamon, D.J.; Poplack, D.G.; Gottesman, M.M.; Pastan, I.

    1987-01-01

    The identification and cloning of a segment of a human multidrug resistance gene (mdr1) was reported recently. To examine, the molecular basis of one type of multidrug resistance, the authors have prepared RNA from human tumors and normal tissues and measured their content of mdr1 RNA. They find that the mdr1 gene is expressed at a very high level in the adrenal gland; at a high level in the kidney; at intermediate levels in the lung, liver, lower jejunum, colon, and rectum; and at low levels in many other tissues. The mdr1 gene is also expressed in several human tumors, including many but not all tumors derived from the adrenal gland and the colon. In addition, increased expression was detected in a few tumors at the time of relapse following initial chemotherapy. Although controlled clinical studies will be required, the results suggest that measurement of mdr1 RNA may prove to be a valuable tool in the design of chemotherapy protocols.

  12. Multidrug resistance protein 1 reduces the aggregation of mutant huntingtin in neuronal cells derived from the Huntington's disease R6/2 model.

    PubMed

    Im, Wooseok; Ban, Jae-Jun; Chung, Jin-Young; Lee, Soon-Tae; Chu, Kon; Kim, Manho

    2015-01-01

    Mutant huntingtin (mHtt) aggregation in the nucleus is the most readily apparent phenotype and cause of neuronal death in Huntington's disease (HD). Inhibiting mHtt aggregation reduces cell death in the brain and is thus a promising therapeutic approach. The results of the present study demonstrated that mHtt aggregation in the nucleus was altered by the activity of multidrug resistance protein 1 (MDR1), which was experimentally modulated by verapamil, siRNA and an expression vector. MDR1 detoxifies drugs and metabolites through its excretory functions in the membrane compartment, thereby protecting cells against death or senescence. When they were treated with verapamil, R6/2 mice showed a progressive decline in rotarod performance and increased mHtt aggregation in the brain. Using neuronal stem cells from R6/2 mice, we developed an in vitro HD model to test mHtt accumulation in the nuclei of neurons. When MDR1 activity in cells was decreased by verapamil or siRNA, mHtt aggregation in the nuclei increased, whereas the induction of MDR1 resulted in a decrease in mHtt aggregation. Thus, our data provide evidence that MDR1 plays an important role in the clearance of mHtt aggregation and may thus be a potential target for improving the survival of neurons in Huntington's disease. PMID:26586297

  13. Constitutive expression of multidrug resistance in human colorectal tumours and cell lines.

    PubMed Central

    Kramer, R.; Weber, T. K.; Morse, B.; Arceci, R.; Staniunas, R.; Steele, G.; Summerhayes, I. C.

    1993-01-01

    In this study we report detection of mdr1 gene expression in the liver metastases of 7/11 patients with colon carcinoma and characterise the MDR phenotype associated with a panel of 19 human colon carcinoma cell lines. Within this panel, mdr1 mRNA biosynthesis and surface localisation of Pgp were assessed with respect to MDR functionality where the cell lines are representative of different clinical stages of tumour progression, metastatic potential and differentiation. The data indicates that constitutive levels of mdr1 mRNA/Pgp expression may not necessarily result in the functional expression of the MDR phenotype. While low levels of mdr1 mRNA/Pgp were detected in 5/8 well differentiated colon cell lines, only 2/8 were functionally MDR. In contrast, 10/11 moderate and poorly differentiated lines expressed mdr1 mRNA/Pgp and of these, 9/11 were functionally MDR. The phosphorylation status of the mature 170 kD P-glycoprotein and the surface localisation of this glycoprotein showed the strongest correlation with functionality. Analysis of cell lines for cross-resistance and chemosensitivity profiles against a battery of chemotherapeutic drugs suggests multiple mechanisms, in addition to Pgp, contribute to the overall resistance of colorectal cancer. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8098614

  14. Functional expression of murine multidrug resistance in Xenopus laevis oocytes

    SciTech Connect

    Castillo, G.; Vera, J.C.; Rosen, O.M. ); Yang, Chiaping Huang; Horwitz, S.B. )

    1990-06-01

    The development of multidrug resistance (MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here the authors report the functional expression of a member of the murine MDR family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of ({sup 3}H)vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.

  15. Biophysical characterization of MDR breast cancer cell lines reveals the cytoplasm is critical in determining drug sensitivity.

    PubMed

    Coley, Helen M; Labeed, Fatima H; Thomas, Hilary; Hughes, Michael P

    2007-04-01

    Dielectrophoresis (DEP) was used to examine a panel of MCF-7 cell lines comprising parental MCF-7 cells and MDR derivatives: MCF-7TaxR (paclitaxel-resistant, P-glycoprotein (P-gp) positive), MCF-7DoxR (doxorubicin-resistant MRP2 positive) plus MCF-7MDR1 (MDR1 transfected, P-gp positive). MCF-7DoxR and MCF-7MDR1 were broadly cross-resistant to natural product anticancer agents, whereas MCF-7TaxR cells were not, contrary to P-gp expression. Whilst DEP revealed modest membrane changes in MDR sub-lines, we saw significant changes in their cytoplasmic conductivity: MCF-7TaxRMDR1MDR1 showed an increase. Thus, altered membrane potential is associated with an MDR phenotype, but in a complex manner. DEP data suggest a model whereby relative increases in cytoplasmic conductivity are correlated with MDR, whilst relative decreases equate with a sensitised phenotype e.g. MCF-7TaxR. Moreover, extent of anthracycline accumulation was inversely related to cytoplasmic conductivity. These data are representative of a model where drug sensitivity is associated with low ionic conductance (reduced cellular trafficking and ion transport) and substantial anthracycline accumulation. For classical MDR i.e. MCF-7MDR1, we saw the reverse picture. Thus, the drug resistance phenotypes of this panel of MCF-7 lines can be delineated by assessment of cytoplasmic biophysical properties using DEP. PMID:17270349

  16. Determination of Vitamin D Serum Levels and Status of the C3435T Polymorphism of Multidrug Resistance 1 Gene in Southeastern Iranian Patients with Ulcerative Colitis

    PubMed Central

    Mohammadi, Mojgan; Zahedi, Mohammad Javad; Nikpoor, Amin Reza; Nazem, Mehdi; Khazaeli, Payam; Hayatbakhsh, Mohammad Mahdi

    2015-01-01

    BACKGROUND Ulcerative colitis (UC) is a multi-factorial autoimmune disease. P-glycoprotein is encoded by the multidrug resistance 1 (MDR1) gene. The C3435T polymorphism in the MDR1 gene is correlated with low P-glycoprotein expression. Additionally, vitamin D has regulatory effects on the immune system. The aim of our study was to determine the association between the C3435T MDR1 polymorphism and UC and to detect the vitamin D serum levels in patients with UC. METHODS One hundred healthy controls and 85 patients with UC were evaluated. Polymerase chain reaction-restriction fragment length polymorphism (PCRRFLP) was used to detect the C3435T MDR1 polymorphisms. Serum levels of vitamin D were measured by Enzyme-linked immunosorbent assay (ELISA). The research was performed in Kerman, Iran, from 2011 to 2013. RESULTS We could not find any association between the C3435T MDR1 polymorphism and susceptibility to UC. There was a significant decrease in serum levels of vitamin D in patients with UC compared with healthy controls (p<0.001). CONCLUSION Controversies regarding the association between the C3435T MDR1 polymorphism with UC have been reported in different populations. The difference between our results and others may be attributed to the heterogeneity of the Iranian population and the sample size. Additionally, our data indicated that UC might be correlated with vitamin D insufficiency. Therefore, the administration of vitamin D might be suggested as a valuable treatment for patients with UC. PMID:26609354

  17. Mechanisms of resistance to etoposide and teniposide in acquired resistant human colon and lung carcinoma cell lines.

    PubMed

    Long, B H; Wang, L; Lorico, A; Wang, R C; Brattain, M G; Casazza, A M

    1991-10-01

    Stable acquired resistance to etoposide (VP-16) or teniposide (VM-26) in HCT116 human colon carcinoma cells and A549 human lung adenocarcinoma cells, was previously obtained by weekly 1-h exposures to either drug (B. H. Long, Natl. Cancer Inst. Monogr., 4: 123-127, 1987). The purpose of this study was to identify possible mechanisms of resistance present in these cells by using human mdr1 and topoisomerase II DNA probes, antibodies to these gene products, and P4 phage unknotting assay for topoisomerase II activities. HCT116(VP)35 cells were 9-, 7-, and 6-fold resistant to VP-16, VM-26, and Adriamycin, respectively, and showed no cross-resistance to colchicine and actinomycin D. These cells had no differences in mdr1 gene, mdr1 mRNA, or P-glycoprotein levels but displayed decreased levels of topoisomerase II mRNA and enzyme activity without any alteration of drug sensitivity displayed by the enzyme. HCT116(VM)34 cells were 5-, 7-, and 21-fold resistant to VP-16, VM-26, and Adriamycin; were cross-resistant to colchicine (7-fold) and actinomycin D (18-fold); and possessed a 9-fold increase in mdr1 mRNA and increased P-glycoprotein without evidence of mdr1 gene amplification. No alterations in topoisomerase II gene or mRNA levels, enzyme activity, or drug sensitivity were observed. A549(VP)28 and A549(VM)28 cells were 8-fold resistant to VP-16 and VM-26 and 3-fold resistant to Adriamycin. Both lines were not cross-resistant to colchicine or actinomycin D but were hypersensitive to cis-platinum. No alterations in mdr1 gene, mdr1 mRNA, or P-glycoprotein levels, but lower topoisomerase II mRNA levels and decreased enzyme activities, were observed. Of the four acquired resistant cell lines, resistance is likely related to elevated mdr1 expression in one line and to decreased topoisomerase II expression in the other three lines. PMID:1717144

  18. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    PubMed Central

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  19. Roles of P-glycoprotein and multidrug resistance protein in transporting para-aminosalicylic acid and its N-acetylated metabolite in mice brain

    PubMed Central

    Hong, Lan; Xu, Cong; O'Neal, Stefanie; Bi, Hui-chang; Huang, Min; Zheng, Wei; Zeng, Su

    2014-01-01

    Aim: Para-aminosalicylic acid (PAS) is effective in the treatment of manganism-induced neurotoxicity (manganism). In this study we investigated the roles of P-glycoprotein (MDR1a) and multidrug resistance protein (MRP) in transporting PAS and its N-acetylated metabolite AcPAS through blood-brain barrier. Methods: MDR1a-null or wild-type mice were intravenously injected with PAS (200 mg/kg). Thirty minutes after the injection, blood samples and brains were collected, and the concentrations of PAS and AcPAS in brain capillaries and parenchyma were measured using HPLC. Both MDCK-MDR1 and MDCK-MRP1 cells that overexpressed P-gp and MRP1, respectively, were used in two-chamber Transwell transport studies in vitro. Results: After injection of PAS, the brain concentration of PAS was substantially higher in MDR1a-null mice than in wild-type mice, but the brain concentration of AcPAS had no significant difference between MDR1a-null mice and wild-type mice. Concomitant injection of PAS with the MRP-specific inhibitor MK-571 (50 mg/kg) further increased the brain concentration of PAS in MDR1a-null mice, and increased the brain concentration of AcPAS in both MDR1a-null mice and wild-type mice. Two-chamber Transwell studies with MDCK-MDR1 cells demonstrated that PAS was not only a substrate but also a competitive inhibitor of P-gp, while AcPAS was not a substrate of P-gp. Two-chamber Transwell studies with the MDCK-MRP1 cells showed that MRP1 had the ability to transport both PAS and AcPAS across the BBB. Conclusion: P-gp plays a major role in the efflux of PAS from brain parenchyma into blood in mice, while MRP1 is involved in both PAS and AcPAS transport in the brain. PMID:25418377

  20. In vitro interactions with repeated grapefruit juice administration--to peel or not to peel?

    PubMed

    Brill, Shlomo; Zimmermann, Christian; Berger, Karin; Drewe, Juergen; Gutmann, Heike

    2009-03-01

    Interactions of acutely administered grapefruit juice (GFJ) with cytochrome P450 isoform 3A4 (CYP3A4) and P-glycoprotein (Pgp) function are well established. In this study, we investigated in vitro the effect of repeated administration of GFJ and its major constituents (the flavonoid naringin, its aglycone naringenin and the furanocoumarin bergamottin) on mRNA expression of MDR1 and CYP3A4 in LS180 cells. Since the bergamottin content is higher in the peel than in the fruit, we compared GFJ containing peel (GFJP+) with juice without any peel extract (GFJP-). GFJP- (1%) showed no significant effect on MDR1 and CYP3A4 mRNA expression, whereas 1% GFJP+ increased expression of MDR1 3.7-fold (P<0.01) and CYP3A4 2.3-fold (P<0.05). Of the tested constituents, only 10 microM bergamottin and 200 microM naringenin induced MDR1 mRNA levels 2.9- and 4.0-fold, respectively (P<0.01 for both), and CYP3A4 mRNA levels 3.2- and 15.6-fold (P<0.01 for both), respectively. Western blot analysis and rhodamine 123 uptake experiments partly confirmed these findings on the protein and the functional level. In summary, GFJ containing no peel extract may have a lower potential for interactions with CYP3A4 or P-glycoprotein. PMID:19148864

  1. Rhodamine Inhibitors of P-glycoprotein: An Amide/Thioamide “Switch” for ATPase Activity

    PubMed Central

    Gannon, Michael K.; Holt, Jason J.; Bennett, Stephanie M.; Wetzel, Bryan R.; Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.; Sawada, Geri A.; Higgins, J. William; Tombline, Gregory; Raub, Thomas J.; Detty, Michael R.

    2012-01-01

    We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His10, for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave KM of 0.087 μM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC50’s of ~2 μM in MDCKII-MDR1 cells. PMID:19402665

  2. Verapamil and Rifampin Effect on P-Glycoprotein Expression in Hepatocellular Carcinoma

    PubMed Central

    Jalali, Amir; Ghasemian, Sepideh; Najafzadeh, Hossein; Galehdari, Hamid; Seifi, Masoud Reza; Zangene, Fateme; Dehdardargahi, Shaiesteh

    2014-01-01

    Background: High expression of p-glycoprotein (P-gp) has been associated with a poor prognosis in patients with hepatocellular carcinoma (HCC). It is likely that P-gp overexpression is responsible for multidrug resistance in HCC. Objectives: The aim of this study was to elucidate the effect of potent carcinogen nitrosamine with and without verapamil and rifampin drugs on P-gp expression at the mRNA level in HCC. Materials and Methods: Four groups of rats (n = 5) were selected with different treatments and one group as control. mRNA concentration changes were monitored using quantitative PCR (QPCR). Results: A significant difference was found between verapamil treated group and the control regarding the mRNA level. The mdr1a mRNA was significantly decreased in the verapamil group (P ≤ 0.001). Rifampin administrated group had a decreased level of the mdr1a mRNA compared to the control group (P ≤ 0.006). No significant changes were observed in HCC induced rats regarding the mdr1a mRNA level when treated with verapamil and rifampin. An enhanced expression of the mdr1a gene was found In the HCC induced animals when treated with drugs. Conclusions: Verapamil and rifampin were found specific and effective against P-gp expression in HCC. In conclusion, treatment efficacy of most anticancer drugs is increased in combination with verapamil and rifampin against most advanced HCC. PMID:25625052

  3. Intestinal and Blood-Brain Barrier Permeability of Ginkgolides and Bilobalide: In Vitro and In Vivo Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study intestinal and blood brain barrier (BBB) transport of ginkgolides A, B, C, J and bilobalide, isolated from Ginkgo biloba (Family-Ginkgoaceae), was evaluated in Caco-2 and MDR1-MDCK cell monolayer models. Transepithelial transport was examined for 2 hours in both absorptive and secretor...

  4. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    EPA Science Inventory

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  5. Combination of different molecular mechanisms leading to fluconazole resistance in a Candida lusitaniae clinical isolate.

    PubMed

    Reboutier, David; Piednoël, Mathieu; Boisnard, Stéphanie; Conti, Audrey; Chevalier, Virginie; Florent, Martine; Gibot-Leclerc, Stéphanie; Da Silva, Bruno; Chastin, Christiane; Fallague, Karim; Favel, Anne; Noël, Thierry; Ruprich-Robert, Gwenaël; Chapeland-Leclerc, Florence; Papon, Nicolas

    2009-02-01

    We report on the underlying molecular mechanisms likely responsible for the high-level fluconazole resistance in a Candida lusitaniae clinical isolate. Fluconazole resistance correlated with overexpression of ERG11 and of several efflux pump genes, in particular, the orthologs of the Candida albicans MDR1, PDR16, CDR1, CDR2, and YOR1. PMID:19070454

  6. Single Nucleotide Polymorphisms in Pediatric Idiopathic Nephrotic Syndrome

    PubMed Central

    Suvanto, Maija; Jahnukainen, Timo; Kestilä, Marjo; Jalanko, Hannu

    2016-01-01

    Polymorphic variants in several molecules involved in the glomerular function and drug metabolism have been implicated in the pathophysiology of pediatric idiopathic nephrotic syndrome (INS), but the results remain inconsistent. We analyzed the association of eleven allelic variants in eight genes (angiopoietin-like 4 (ANGPTL4), glypican 5 (GPC5), interleukin-13 (IL-13), macrophage migration inhibitory factor (MIF), neural nitric oxide synthetase (nNOS), multidrug resistance-1 (MDR1), glucocorticoid-induced transcript-1 (GLCCI1), and nuclear receptor subfamily-3 (NR3C1)) in 100 INS patients followed up till adulthood. We genotyped variants using PCR and direct sequencing and evaluated estimated haplotypes of MDR1 variants. The analysis revealed few differences in SNP genotype frequencies between patients and controls, or in clinical parameters among the patients. Genotype distribution of MDR1 SNPs rs1236, rs2677, and rs3435 showed significant (p < 0.05) association with different medication regimes (glucocorticoids only versus glucocorticoids plus additional immunosuppressives). Some marginal association was detected between ANGPTL4, GPC5, GLCCI1, and NR3C1 variants and different medication regimes, number of relapses, and age of onset. Conclusion. While MDR1 variant genotype distribution associated with different medication regimes, the other analyzed gene variants showed only little or marginal clinical relevance in INS. PMID:27247801

  7. A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1

    PubMed Central

    Patel, Saumya K.; Prasanth Kumar, Sivakumar; Highland, Hyacinth N.; Jasrai, Yogesh T.; Pandya, Himanshu A.; Desai, Ketaki R.

    2013-01-01

    The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism. PMID:25937947

  8. Transgenic Mice that Express the Human Multidrug-Resistance Gene in Bone Marrow Enable a Rapid Identification of Agents that Reverse Drug Resistance

    NASA Astrophysics Data System (ADS)

    Mickisch, Gerald H.; Merlino, Glenn T.; Galski, Hanan; Gottesman, Michael M.; Pastan, Ira

    1991-01-01

    The development of preclinical models for the rapid testing of agents that circumvent multidrug resistance in cancer is a high priority of research on drug resistance. A common form of multidrug resistance in human cancer results from expression of the MDR1 gene, which encodes a M_r 170,000 glycoprotein that functions as a plasma membrane energy-dependent multidrug efflux pump. We have engineered transgenic mice that express this multidrug transporter in their bone marrow and demonstrated that these animals are resistant to leukopenia by a panel of anticancer drugs including anthracyclines, vinca alkaloids, etoposide, taxol, and actinomycin D. Differential leukocyte counts indicate that both neutrophils and lymphocytes are protected. Drugs such as cisplatin, methotrexate, and 5-fluorouracil, which are not handled by the multidrug transporter, produce bone marrow suppression in both normal and transgenic mice. The resistance conferred by the MDR1 gene can be circumvented in a dose-dependent manner by simultaneous administration of agents previously shown to be inhibitors of the multidrug transporter in vitro, including verapamil isomers, quinidine, and quinine. Verapamil and quinine, both at levels suitable for human trials that produced only partial sensitization of the MDR1-transgenic mice, were fully sensitizing when used in combination. We conclude that MDR1-transgenic mice provide a rapid and reliable system to determine the bioactivity of agents that reverse multidrug resistance in animals.

  9. P-glycoprotein ABCB1: a major player in drug handling by mammals.

    PubMed

    Borst, Piet; Schinkel, Alfred H

    2013-10-01

    Mammalian P-glycoproteins are active drug efflux transporters located in the plasma membrane. In the early nineties, we generated knockouts of the three P-glycoprotein genes of mice, the Mdr1a, Mdr1b, and Mdr2 P-glycoproteins, now known as Abcb1a, Abcb1b, and Abcb4, respectively. In the JCI papers that are the subject of this Hindsight, we showed that loss of Mdr1a (Abcb1a) had a profound effect on the tissue distribution and especially the brain accumulation of a range of drugs frequently used in humans, including dexamethasone, digoxin, cyclosporin A, ondansetron, domperidone, and loperamide. All drugs were shown to be excellent substrates of the murine ABCB1A P-glycoprotein and its human counterpart, the MDR1 P-glycoprotein, ABCB1. We found that the ability of ABCB1 to prevent accumulation of some drugs in the brain is a prerequisite for their clinical use, as absence of the transporter led to severe toxicity or undesired CNS pharmacodynamic effects. Subsequent work has fully confirmed the profound effect of the drug-transporting ABCB1 P-glycoprotein on the pharmacokinetics of drugs in humans. In fact, every new drug is now screened for transport by ABCB1, as this limits oral availability and penetration into sanctuaries protected by ABCB1, such as the brain. PMID:24084745

  10. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  11. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp, MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  12. A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1.

    PubMed

    Patel, Saumya K; George, Linz-Buoy; Prasanth Kumar, Sivakumar; Highland, Hyacinth N; Jasrai, Yogesh T; Pandya, Himanshu A; Desai, Ketaki R

    2013-01-01

    The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism. PMID:25937947

  13. Rapid Quantification of Drug Resistance Gene Expression in Candida albicans by Reverse Transcriptase LightCycler PCR and Fluorescent Probe Hybridization

    PubMed Central

    Frade, Joao P.; Warnock, David W.; Arthington-Skaggs, Beth A.

    2004-01-01

    We developed a rapid, sensitive, and reproducible assay to quantify Candida albicans ACT1, CDR1, CDR2, ERG11, and MDR1 mRNA using a two-step reverse transcription and LightCycler real-time PCR (RT-LightCycler PCR) method with sequence-specific hybridization probes. We compared RT-LightCycler PCR with Northern hybridization for quantitative analysis of gene expression in isolates with various fluconazole susceptibilities. Specificity of each LightCycler PCR was verified by LightCycler melting curve analysis and agarose gel electrophoresis of amplified products. Correlation of quantification results between RT-LightCycler PCR and Northern hybridization yielded correlation coefficients of ≥0.91 for all genes except MDR1 (0.74). In this case, reduced correlation was due to the inability of Northern hybridization to accurately quantify the high MDR1 expression in a susceptible dose-dependent isolate which was shown by RT-LightCycler PCR to overexpress MDR1 >200-fold relative to the other isolates tested. In four isolates, low levels of CDR2 mRNA were detected by RT-LightCycler PCR but were undetectable by Northern hybridization. mRNA quantification by RT-LightCycler PCR correlates with Northern hybridization and offers additional advantages, including increased sensitivity and speed of analysis, along with lower RNA concentration requirements and an increased dynamic range of signal detection. PMID:15131174

  14. A New Endogenous Overexpression System of Multidrug Transporters of Candida albicans Suitable for Structural and Functional Studies

    PubMed Central

    Banerjee, Atanu; Khandelwal, Nitesh K.; Sanglard, Dominique; Prasad, Rajendra

    2016-01-01

    Fungal pathogens have a robust array of multidrug transporters which aid in active expulsion of drugs and xenobiotics to help them evade toxic effects of drugs. Thus, these transporters impose a major impediment to effective chemotherapy. Although the Saccharomyces cerevisiae strain AD1-8u− has catered well to the need of an overexpression system to study drug transport by multidrug transporters of Candida albicans, artifacts associated with a heterologous system could not be excluded. To avoid the issue, we exploited a azole-resistant clinical isolate of C. albicans to develop a new system devoid of three major multidrug transporters (Cdr1p, Cdr2p, and Mdr1p) for the overexpression of multidrug transporters under native hyperactive CDR1 promoter due to gain of function (GOF) mutation in TAC1. The study deals with overexpression and functional characterization of representatives of two major classes of multidrug transporters, Cdr1p and Mdr1p, to prove the functionality of this newly developed endogenous expression system. Expression of native Cdr1 and Mdr1 protein in C. albicans cells was confirmed by confocal microscopy and immunodetection and resulted in increased resistance to the putative substrates as compared to control. The system was further validated by overexpressing a few key mutant variants of Cdr1p and Mdr1p. Together, our data confirms the utility of new endogenous overexpression system which is devoid of artifactual factors as most suited for functional characterization of multidrug transporter proteins of C. albicans. PMID:26973635

  15. Cell differentiation and the multiple drug resistance phenotype in human erythroleukemic cells.

    PubMed

    Carrett-Dias, Michele; Almeida, Leda Karine; Pereira, Juliano Lacava; Almeida, Daniela Volcan; Filgueira, Daza Moraes Vaz Batista; Marins, Luis Fernando; Votto, Ana Paula de Souza; Trindade, Gilma Santos

    2016-03-01

    The gene expression of Oct-4, a transcription factor and hematopoietic stem cell marker, is higher in Lucena lines, which is MDR, and the gene Alox-5 has also been implicated in the differentiation of some cell lines. The aim of this study was to compare the response to PMA-induced differentiation in MDR and non-MDR cells. We observed the differentiation to megakaryocytes in the K562 cell line, which is non-MDR. The expression of Alox-5 and Nanog genes was downregulated and that of Mdr-1 was upregulated in K562 cells. The Lucena cell line contained a higher number of megakaryocytes than the non-MDR, but this number was not altered by PMA, as well as Mdr-1 gene expression. However, Alox-5 expression was downregulated. Alox-5, Mdr-1, Nanog, Oct-4 and Sox-2 basal expression was also evaluated in the K562, Lucena and FEPS (also MDR) cell lines. The transcription factors gene expression was similar in MDR cell lines. The expression of Alox-5 was higher in the non-MDR cell line, while FEPS had the lowest expression of this gene. The opposite pattern was observed for Mdr-1 gene expression. These results suggest that the Alox-5 gene might play a role in the differentiation of these cell lines. PMID:26852002

  16. Gray Mold Populations in German Strawberry Fields Are Resistant to Multiple Fungicides and Dominated by a Novel Clade Closely Related to Botrytis cinerea

    PubMed Central

    Leroch, Michaela; Plesken, Cecilia; Weber, Roland W. S.; Kauff, Frank; Scalliet, Gabriel

    2013-01-01

    The gray mold fungus Botrytis cinerea is a major threat to fruit and vegetable production. Strawberry fields usually receive several fungicide treatments against Botrytis per season. Gray mold isolates from several German strawberry-growing regions were analyzed to determine their sensitivity against botryticides. Fungicide resistance was commonly observed, with many isolates possessing resistance to multiple (up to six) fungicides. A stronger variant of the previously described multidrug resistance (MDR) phenotype MDR1, called MDR1h, was found to be widely distributed, conferring increased partial resistance to two important botryticides, cyprodinil and fludioxonil. A 3-bp deletion mutation in a transcription factor-encoding gene, mrr1, was found to be correlated with MDR1h. All MDR1h isolates and the majority of isolates with resistance to multiple fungicides were found to be genetically distinct. Multiple-gene sequencing confirmed that they belong to a novel clade, called Botrytis group S, which is closely related to B. cinerea and the host-specific species B. fabae. Isolates of Botrytis group S genotypes were found to be widespread in all German strawberry-growing regions but almost absent from vineyards. Our data indicate a clear subdivision of gray mold populations, which are differentially distributed according to their host preference and adaptation to chemical treatments. PMID:23087030

  17. Temporal expression of transporters and receptors in a rat primary co-culture blood-brain barrier model.

    PubMed

    Liu, Houfu; Li, Yang; Lu, Sijie; Wu, Yiwen; Sahi, Jasminder

    2014-10-01

    1. The more relevant primary co-cultures of brain microvessel endothelial cells and astrocytes (BMEC) are less utilized for screening of potential CNS uptake when compared to intestinal and renal cell lines. 2. In this study, we characterized the temporal mRNA expression of major CNS transporters and receptors, including the transporter regulators Pxr, Ahr and Car in a rat BMEC co-cultured model. Permeability was compared with the Madin-Darby canine kidney (MDCKII)-MDR1 cell line and rat brain in situ perfusion model. 3. Our data demonstrated differential changes in expression of individual transporters and receptors over the culture period. Expression of ATP-binding cassette transporters was better retained than that of solute carrier transporters. The insulin receptor (IR) was best maintained among investigated receptors. AhR demonstrated high mRNA expression in rat brain capillaries and expression was better retained than Pxr or Car in culture. Mdr1b expression was up-regulated during primary culture, albeit Mdr1a mRNA levels were much higher. P-gp and Bcrp-1 were highly expressed and functional in this in vitro system. 4. Permeability measurements with 18 CNS marketed drugs demonstrated weak correlation between rBMEC model and rat in situ permeability and moderate correlation with MDCKII-MDR1 cells. 5. We have provided appropriate methodologies, as well as detailed and quantitative characterization data to facilitate improved understanding and rational use of this in vitro rat BBB model. PMID:24827375

  18. Reversal effect of Dioscin on multidrug resistance in human hepatoma HepG2/adriamycin cells.

    PubMed

    Sun, Bu Tong; Zheng, Li Hua; Bao, Yong Li; Yu, Chun Lei; Wu, Yin; Meng, Xiang Ying; Li, Yu Xin

    2011-03-01

    Multidrug resistance is a serious obstacle encountered in cancer treatment. Since drug resistance in human cancer is mainly associated with overexpression of the multidrug resistance gene 1 (MDR1), the promoter of the human MDR1 gene may be a target for multidrug resistance reversion drug screening. In the present study, HEK293T cells were transfected with pGL3 reporter plasmids containing the 2kb of MDR1 promoter, and the transfected cells were used as models to screen for candidate multidrug resistance inhibitors from over 300 purified naturally occurring compounds extracted from plants and animals. Dioscin was found to have an inhibiting effect on MDR1 promoter activity. The resistant HepG2 cell line (HepG2/adriamycin) was used to validate the activity of multidrug resistance reversal by Dioscin. Results showed that Dioscin could decrease the resistance degree of HepG2/adriamycin cells, and significantly inhibit P-glycoprotein expression, as well as increase the accumulation of adriamycin in HepG2/adriamycin cells as measured by Flow Cytometric analysis. These results suggest that Dioscin is a potent multidrug resistance reversal agent and may be a potential adjunctive agent for tumor chemotherapy. PMID:21195709

  19. Comparison of the expression and function of ATP binding cassette transporters in Caco-2 and T84 cells on stimulation by selected endogenous compounds and xenobiotics.

    PubMed

    Naruhashi, Kazumasa; Kurahashi, Yuko; Fujita, Yukari; Kawakita, Eri; Yamasaki, Yuna; Hattori, Kana; Nishimura, Asako; Shibata, Nobuhito

    2011-01-01

    Caco-2 and T84 cells are intestinal epithelial model cells. Caco-2 cells are more commonly used in drug transport studies, whereas only a few studies have used T84 cells, and the two cell lines have not been compared. We cultured Caco-2 and T84 cells on plastic dishes or polycarbonate Transwell filters and compared the expression and function of ATP binding cassette (ABC) transporters, including multidrug resistance protein (MDR) 1 and multidrug resistance-associated protein (MRP) 2 and MRP3, in response to various compounds. Overall, the pattern of change in transporter mRNA expression in response to compounds was very similar regardless of culture conditions (plastic dish or polycarbonate filter) and cell line (Caco-2 or T84), and changes in MDR1 function was accompanied by expression changes. The cells cultured on Transwell filters were more sensitive to the tested compounds, regardless of the cell line. On comparing the two cell lines, the intrinsic function of MDR1 was stronger in Caco-2 cells, while sensitivity to the tested compounds was more prominent in T84 cells. These results suggest that Caco-2 cells are more suitable for identifying whether MDR1 mediates drug transport, while T84 cells are more useful for assessing the induction capacity of compounds. PMID:21127384

  20. Cloning and regulation of the rat mdr2 gene.

    PubMed Central

    Brown, P C; Thorgeirsson, S S; Silverman, J A

    1993-01-01

    We have cloned the complete cDNA encoding the rat mdr2 gene by a combination of library screening and the polymerase chain reaction. The sequence of rat mdr2 cDNA is highly similar to other members of the mdr gene family but the initiation of transcription, tissue distribution and regulation of expression of rat mdr2 diverge from the other isoforms. Primer extension analysis showed rat mdr2 mRNA to have a major transcription start point at -277 and a minor one at approximately -518. We constructed gene specific probes for rat mdr2 and mdr1b and compared the expression patterns of these two genes. The highest expression of mdr2 mRNA was in the muscle, heart, liver and spleen. Both mdr2 and 1b mRNA levels were elevated in the livers of rats treated with CCl4 or following partial hepatectomies although the time course of induction of each gene differed. Mdr1b increased by 12 to 24 hours while mdr2 did not increase until 48 hours. Treatment of isolated hepatocytes or RC3 cells with cycloheximide did not effect mdr2 mRNA. In contrast, mdr1b expression was increased. These data suggest that rat mdr2, unlike mdr1b, is not regulated by a negative trans-acting protein factor. Images PMID:8103593

  1. Independent Emergence of Resistance to Seven Chemical Classes of Fungicides in Botrytis cinerea.

    PubMed

    Fernández-Ortuño, Dolores; Grabke, Anja; Li, Xingpeng; Schnabel, Guido

    2015-04-01

    Gray mold, caused by the fungal pathogen Botrytis cinerea, is one of the most destructive diseases of small fruit crops and control is largely dependent on the application of fungicides. As part of a region-wide resistance-monitoring program that investigated 1,890 B. cinerea isolates from 189 fields in 10 states of the United States, we identified seven isolates (0.4%) from five locations in four different states with unprecedented resistance to all seven Fungicide Resistance Action Committee (FRAC) codes with single-site modes of action including FRAC 1, 2, 7, 9, 11, 12, and 17 registered in the United States for gray mold control. Resistance to thiophanate-methyl, iprodione, boscalid, pyraclostrobin, and fenhexamid was based on target gene mutations that conferred E198A and F200Y in β-tubulin, I365N/S in Bos1, H272R/Y in SdhB, G143A in Cytb, and T63I and F412S in Erg27. Isolates were grouped into MDR1 and MDR1h phenotypes based on sensitivity to fludioxonil and variations in transcription factor mrr1. MDR1h isolates had a previously described 3-bp deletion at position 497 in mrr1. Expression of ABC transporter atrB was increased in MDR1 isolates but highest in MDR1h isolates. None of the isolates with seven single resistances (SR) had identical nucleotide variations in target genes, indicating that they emerged independently. Multifungicide resistance phenotypes did not exhibit significant fitness penalties for the parameters used in this study, but MDR1h isolates produced more sclerotia at low temperatures and exhibited increased sensitivity to salt stress. In this study we show that current resistance management strategies have not been able to prevent the geographically independent development of resistance to all seven site-specific fungicides currently registered for gray mold control in the United States and document the presence of MDR1h in North America. PMID:25317841

  2. Synthesis and structure-activity evaluation of isatin-β-thiosemicarbazones with improved selective activity towards multidrug-resistant cells expressing P-glycoproteina

    PubMed Central

    Hall, Matthew D.; Brimacombe, Kyle R.; Varonka, Matthew S.; Pluchino, Kristen M.; Monda, Julie K.; Li, Jiayang; Walsh, Martin J.; Boxer, Matthew B.; Warren, Timothy H.; Fales, Henry M.; Gottesman, Michael M.

    2011-01-01

    Cancer multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters presents a significant unresolved clinical challenge. One strategy to resolve MDR is to develop compounds that selectively kill cells over-expressing the efflux transporter P-glycoprotein (MDR1, P-gp, ABCB1). We have previously reported structure-activity studies based around the lead compound NSC73306 (1, 1-isatin-4-(4′-methoxyphenyl)-3-thiosemicarbazone, 4.3-fold selective). Here we sought to extend this work on MDR1-selective analogs by establishing whether 1 showed ‘robust’ activity against a range of cell lines expressing P-gp. We further aimed to synthesize and test analogs with varied substitution at the N4-position, and substitution around the N4-phenyl ring of isatin-β-thiosemicarbazones (IBTs), to identify compounds with increased MDR1-selectivity. Compound 1 demonstrated MDR1-selectivity against all P-gp-expressing cell lines examined. This selectivity was reversed by inhibitors of P-gp ATPase activity. Structural variation at the 4′-phenyl position of 1 yielded compounds of greater MDR1-selectivity. Two of these analogs, 1-isatin-4-(4′-nitrophenyl)-3-thiosemicarbazone (22, 8.3-fold selective) and 1-isatin-4-(4′-tert-butyl phenyl)-3-thiosemicarbazone (32, 14.8-fold selective), were selected for further testing, and were found to retain the activity profile of 1. These compounds are the most active IBTs identified to date. PMID:21721528

  3. Molecular Mechanisms of Fluconazole Resistance in Candida parapsilosis Isolates from a U.S. Surveillance System

    PubMed Central

    Grossman, Nina T.; Pham, Cau D.; Cleveland, Angela A.

    2014-01-01

    Candida parapsilosis is the second or third most common cause of candidemia in many countries. The Infectious Diseases Society of America recommends fluconazole as the primary therapy for C. parapsilosis candidemia. Although the rate of fluconazole resistance among C. parapsilosis isolates is low in most U.S. institutions, the resistance rate can be as high as 7.5%. This study was designed to assess the mechanisms of fluconazole resistance in 706 incident bloodstream isolates from U.S. hospitals. We sequenced the ERG11 and MRR1 genes of 122 C. parapsilosis isolates with resistant (30 isolates; 4.2%), susceptible dose-dependent (37 isolates; 5.2%), and susceptible (55 isolates) fluconazole MIC values and used real-time PCR of RNA from 17 isolates to investigate the regulation of MDR1. By comparing these isolates to fully fluconazole-susceptible isolates, we detected at least two mechanisms of fluconazole resistance: an amino acid substitution in the 14-α-demethylase gene ERG11 and overexpression of the efflux pump MDR1, possibly due to point mutations in the MRR1 transcription factor that regulates MDR1. The ERG11 single nucleotide polymorphism (SNP) was found in 57% of the fluconazole-resistant isolates and in no susceptible isolates. The MRR1 SNPs were more difficult to characterize, as not all resulted in overexpression of MDR1 and not all MDR1 overexpression was associated with an SNP in MRR1. Further work to characterize the MRR1 SNPs and search for overexpression of other efflux pumps is needed. PMID:25451046

  4. ABC- and SLC-Transporters in Murine and Bovine Mammary Epithelium--Effects of Prochloraz.

    PubMed

    Yagdiran, Yagmur; Oskarsson, Agneta; Knight, Christopher H; Tallkvist, Jonas

    2016-01-01

    Some chemicals are ligands to efflux transporters which may result in high concentrations in milk. Limited knowledge is available on the influence of maternal exposure to chemicals on the expression and function of transporters in the lactating mammary gland. We determined gene expression of ABC and SLC transporters in murine mammary tissue of different gestation and lactation stages, in murine mammary cells (HC11) featuring resting and secreting phenotypes and in bovine mammary tissue and cells (BME-UV). Effects on transporter expression and function of the imidazole fungicide prochloraz, previously reported to influence BCRP in mammary cells, was investigated on transporter expression and function in the two cell lines. Transporters studied were BCRP, MDR1, MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1. Gene expressions of BCRP and OCT1 in murine mammary glands were increased during gestation and lactation, whereas MDR1, MRP1, OATP1A5 and OCTN1 were decreased, compared to expressions in virgins. All transporters measured in mammary glands of mice were detected in bovine mammary tissue and in HC11 cells, while only MDR1 and MRP1 were detected in BME-UV cells. Prochloraz treatment induced MDR1 gene and protein expression in both differentiated HC11 and BME-UV cells and increased protein function in HC11 cells, resulting in decreased accumulation of the MDR1 substrate digoxin. In conclusion, our results demonstrate that murine (HC11) and bovine (BME-UV) mammary epithelial cells can be applied to characterize expression and function of transporters as well as effects of contaminants on the mammary transporters. An altered expression, induced by a drug or toxic chemical, on any of the transporters expressed in the mammary epithelial cells during lactation may modulate the well-balanced composition of nutrients and/or secretion of contaminants in milk with potential adverse effects on breast-fed infants and dairy consumers. PMID:27028005

  5. Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin

    PubMed Central

    Laughney, Ashley M.; Kim, Eunha; Sprachman, Melissa M.; Miller, Miles A.; Kohler, Rainer H.; Yang, Katy S.; Orth, James D.; Mitchison, Timothy J.; Weissleder, Ralph

    2015-01-01

    Eribulin mesylate was developed as a potent microtubule-targeting cytotoxic agent to treat taxane-resistant cancers, but recent clinical trials have shown that it eventually fails in many patient sub-populations for unclear reasons. To investigate its resistance mechanisms, we developed a fluorescent analog of eribulin with pharmacokinetic (PK) properties and cytotoxic activity across a human cell line panel that are sufficiently similar to the parent drug to study its cellular PK and tissue distribution. Using intravital imaging and automated tracking of cellular dynamics, we found that resistance to eribulin and the fluorescent analog depended directly on the multidrug resistance protein 1 (MDR1). Intravital imaging allowed for real-time analysis of in vivo pharmacokinetics in tumors that were engineered to be spatially heterogeneous for taxane resistance, whereby an MDR1-mApple fusion protein distinguished resistant cells fluorescently. In vivo, MDR1-mediated drug efflux and the three-dimensional tumor vascular architecture were discovered to be critical determinants of drug accumulation in tumor cells. We furthermore show that standard intravenous administration of a third-generation MDR1 inhibitor, HM30181, failed to rescue drug accumulation; however, the same MDR1 inhibitor encapsulated within a nanoparticle delivery system reversed the multidrug-resistant phenotype and potentiated the eribulin effect in vitro and in vivo in mice. Our work demonstrates that in vivo assessment of cellular PK of an anticancer drug is a powerful strategy for elucidating mechanisms of drug resistance in heterogeneous tumors and evaluating strategies to overcome this resistance. PMID:25378644

  6. ABC- and SLC-Transporters in Murine and Bovine Mammary Epithelium - Effects of Prochloraz

    PubMed Central

    Yagdiran, Yagmur; Oskarsson, Agneta; Knight, Christopher H.; Tallkvist, Jonas

    2016-01-01

    Some chemicals are ligands to efflux transporters which may result in high concentrations in milk. Limited knowledge is available on the influence of maternal exposure to chemicals on the expression and function of transporters in the lactating mammary gland. We determined gene expression of ABC and SLC transporters in murine mammary tissue of different gestation and lactation stages, in murine mammary cells (HC11) featuring resting and secreting phenotypes and in bovine mammary tissue and cells (BME-UV). Effects on transporter expression and function of the imidazole fungicide prochloraz, previously reported to influence BCRP in mammary cells, was investigated on transporter expression and function in the two cell lines. Transporters studied were BCRP, MDR1, MRP1, OATP1A5/OATP1A2, OCTN1 and OCT1. Gene expressions of BCRP and OCT1 in murine mammary glands were increased during gestation and lactation, whereas MDR1, MRP1, OATP1A5 and OCTN1 were decreased, compared to expressions in virgins. All transporters measured in mammary glands of mice were detected in bovine mammary tissue and in HC11 cells, while only MDR1 and MRP1 were detected in BME-UV cells. Prochloraz treatment induced MDR1 gene and protein expression in both differentiated HC11 and BME-UV cells and increased protein function in HC11 cells, resulting in decreased accumulation of the MDR1 substrate digoxin. In conclusion, our results demonstrate that murine (HC11) and bovine (BME-UV) mammary epithelial cells can be applied to characterize expression and function of transporters as well as effects of contaminants on the mammary transporters. An altered expression, induced by a drug or toxic chemical, on any of the transporters expressed in the mammary epithelial cells during lactation may modulate the well-balanced composition of nutrients and/or secretion of contaminants in milk with potential adverse effects on breast-fed infants and dairy consumers. PMID:27028005

  7. Analysis of gene mutations involved in chloroquine resistance in Plasmodium falciparum parasites isolated from patients in the southwest of Saudi Arabia

    PubMed Central

    Bin Dajem, Saad M.; Al-Qahtani, Ahmed

    2010-01-01

    BACKGROUND AND OBJECTIVES: Chloroquine has been the drug of choice for the treatment of malaria for many decades. We aimed to examine the molecular basis of chloroquine resistance among Plasmodium falciparum isolates from the southwestern region of Saudi Arabia by analyzing the K76T and N86Y mutations in the PfCRT and PfMDR1 genes, respectively. PATIENTS AND METHODS: P falciparum-infected blood spot samples (n=121) were collected on filter papers. DNA was extracted and fragments from the above genes were amplified using nested PCR. The amplicons were digested by ApoI enzyme and sequenced. RESULTS: Of the 121 samples, 95 and 112 samples could be amplified for PfCRT K76T and PfMDR1 N86Y mutations, respectively. All of the samples amplified for the PfCRT K76T mutation were undigestible by ApoI, suggesting the presence of the K76T mutation. For the PfMDR1 N86Y mutation, 65/109 samples (59.6%) were digestible when treated with ApoI in a pattern, suggestive of the presence of the investigated wild allele (N86). However, 44/109 samples (40.4%) were digestible by ApoI, suggesting the presence of the mutated allele (Y) at position 86. DNA sequencing confirmed these results. CONCLUSION: Surprisingly, all isolates exhibited the mutated allele at codon 76 (K76T) of PfCRT. However, the mutated mutant allele at codon 86 (N86Y) of PfMDR1 was found in 40.4% of the samples studied. To our knowledge, this is the first study that has investigated the existence of the mutation in the PfMDR1 gene in the country. This study will contribute to the development of new strategies for therapeutic intervention against malaria in Saudi Arabia. PMID:20427933

  8. A model of secreting murine mammary epithelial HC11 cells comprising endogenous Bcrp/Abcg2 expression and function.

    PubMed

    Tallkvist, Jonas; Yagdiran, Yagmur; Danielsson, Louise; Oskarsson, Agneta

    2015-04-01

    Breast cancer resistance protein (Bcrp/Abcg2) and multidrug transporter 1 (Mdr1/Abcb1) are efflux proteins located in the apical membrane of mammary epithelial cells (MEC). Bcrp is induced in MEC during gestation and lactation, while Mdr1 is down-regulated during lactation. Numerous drugs and toxic compounds are known to be actively secreted into milk by Bcrp, but most chemicals have not been investigated in this respect, emphasizing the need for functional Bcrp studies in an established cell line with secreting mammary epithelial cells. The present study was undertaken to examine expressions of Bcrp and Mdr1 in mammary epithelial HC11 cells, derived from a mid-gestational murine mammary gland. In addition, Bcrp function was assessed by transport experiments with mitoxantrone (MX) in undifferentiated HC11 cells, in HC11 cells subjected to Bcrp RNA interference (RNAi), as well as in HC11 cells stimulated to differentiate by treatment with lactogenic hormones. Differentiated HC11 cells organized into alveolar-resembling structures and gene expression of the major milk protein β-casein was induced, whereas undifferentiated cells formed monolayers with lower β-casein expression. Bcrp and Mdr1 gene and protein were expressed in both undifferentiated and differentiated HC11 cells. Differentiation of HC11 cells resulted in increased Bcrp protein expression, while Mdr1 gene and protein expressions were reduced. The Bcrp inhibitor elacridar (GF120918) reduced secretion and increased accumulation of MX in both undifferentiated and differentiated HC11 cells. Silencing of the Bcrp gene caused an increased accumulation of MX. The results indicate that the HC11 cell model provides a promising tool to investigate transport of potential Bcrp substrates in mammary epithelial cells. PMID:25791223

  9. Absence of P-glycoprotein transport in the pharmacokinetics and toxicity of the herbicide paraquat.

    PubMed

    Lacher, Sarah E; Gremaud, Julia N; Skagen, Kasse; Steed, Emily; Dalton, Rachel; Sugden, Kent D; Cardozo-Pelaez, Fernando; Sherwin, Catherine M T; Woodahl, Erica L

    2014-02-01

    Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and

  10. Interactions of attention-deficit/hyperactivity disorder therapeutic agents with the efflux transporter P-glycoprotein

    PubMed Central

    Zhu, Hao-Jie; Wang, Jun-Sheng; Donovan, Jennifer L.; Jiang, Yan; Gibson, Bryan B.; DeVane, C. Lindsay; Markowitz, John S.

    2009-01-01

    The objective of this study was to assess the potential interactions of the drug transporter P-glycoprotein with attention-deficit/hyperactivity disorder (ADHD) therapeutic agents atomoxetine — and the individual isomers of methylphenidate, amphetamine, and modafinil utilizing established in vitro assay. An initial ATPase assay indicated that both d- and l-methylphenidate have weak affinity for P-glycoprotein. The intracellular accumulation of P-glycoprotein substrates doxorubicin and rhodamine123 in the P-glycoprotein overexpressing cell line LLC-PK1/MDR1 was determined to evaluate potential inhibitory effects on P-glycoprotein. The results demonstrated that all compounds, except both modafinil isomers, significantly increased doxorubicin and rhodamine123 accumulation in LLC-PK1/MDR1 cells at higher concentrations. To investigate the P-glycoprotein substrate properties, the intracellular concentrations of the tested compounds in LLC-PK1/MDR1 and P-glycoprotein negative LLC-PK1 cells were measured in the presence and absence of the P-glycoprotein inhibitor PSC833. The results indicate that the accumulation of d-methylphenidate in LLC-PK1 cells was 32.0% higher than in LLC-PK1/MDR1 cells. Additionally, coadministration of PSC833 leads to 52.9% and 45.6% increases in d-modafinil and l-modafinil accumulation, respectively, in LLC-PK1/MDR1 cells. Further studies demonstrated that l-modafinil transport across LLC-PK1/MDR1 cell monolayers in the basolateral-to-apical (B–A) direction was significantly higher than in the apical-to-basolateral (A–B) direction. PSC833 treatment significantly decreased the transport of l-modafinil in B–A direction. In conclusion, our results suggest that all tested agents with the exception of modafinil isomers are relatively weak P-glycoprotein inhibitors. Furthermore, P-glycoprotein may play a minor role in the transport of d-methylphenidate, d-modafinil, and l-modafinil. PMID:17963743

  11. Absence of P-Glycoprotein Transport in the Pharmacokinetics and Toxicity of the Herbicide Paraquat

    PubMed Central

    Lacher, Sarah E.; Gremaud, Julia N.; Skagen, Kasse; Steed, Emily; Dalton, Rachel; Sugden, Kent D.; Cardozo-Pelaez, Fernando; Sherwin, Catherine M. T.

    2014-01-01

    Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a−/−/mdr1b−/−) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil—37.0 [95% confidence interval (CI): 33.2–41.4], 46.2 (42.5–50.2), and 34.1 µM (31.2–37.2)—respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a−/−/mdr1b−/− mice: clearances of 0.47 [95% confidence interval (CI): 0.42–0.52] and 0.78 l/h (0.58–0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50–2.04) and 3.36 liters (2.39–4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a−/−/mdr1b−/− mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between

  12. Targeting SVCT for enhanced drug absorption: Synthesis and in vitro evaluation of a novel vitamin C conjugated prodrug of saquinavir

    PubMed Central

    Luo, Shuanghui; Wang, Zhiying; Patel, Mitesh; Khurana, Varun; Zhu, Xiaodong; Pal, Dhananjay; Mitra, Ashim. K.

    2015-01-01

    In order to improve oral absorption, a novel prodrug of saquinavir (Saq), ascorbyl-succinic-saquinavir (AA-Su-Saq) targeting sodium dependent vitamin C transporter (SVCT) was synthesized and evaluated. Aqueous solubility, stability and cytotoxicity were determined. Affinity of AA-Su-Saq towards effluxpump P-glycoprotein (P-gp) and recognition of AA-Su-Saq by SVCT were studied. Transepithelial permeability across polarized MDCK-MDR1 and Caco-2 cells were determined. Metabolic stability of AA-Su-Saq in rat liver microsomes was investigated. AA-Su-Saq appears to be fairly stable in both DPBS and Caco-2 cells with half lives of 9.65 and 5.73 h, respectively. Uptake of [3H]Saquinavir accelerated by 2.7 and 1.9 fold in the presence of 50 μM Saq and AA-Su-Saq in MDCK-MDR1 cells. Cellular accumulation of [14C]AA diminished by about 50–70% relative to control in the presence of 200 μM AA-Su-Saq in MDCK-MDR1 and Caco-2 cells. Uptake of AA-Su-Saq was lowered by 27% and 34% in the presence of 5 mM AA in MDCK-MDR1 and Caco-2 cells, respectively. Absorptive permeability of AA-Su-Saq was elevated about 4-5 fold and efflux index reduced by about 13-15 fold across the polarized MDCK-MDR1 and Caco-2 cells. Absorptive permeability of AA-Su-Saq decreased 44% in the presence of 5 mM AA across MDCK-MDR1 cells. AA-Su-Saq was devoid of cytotoxicity over the concentration range studied. AA-Su-Saq significantly enhanced the metabolic stability but lowered the affinity towards CYP3A4. In conclusion, prodrug modification of Saq through conjugation to AA via a linker significantly raised the absorptive permeability and metabolic stability. Such modification also caused significant evading of P-gp mediated efflux and CYP3A4 mediated metabolism. SVCT targeted prodrug approach can be an attractive strategy to enhance the oral absorption and systemic bioavailability of anti-HIV protease inhibitors. PMID:21571053

  13. (R)-[11C]verapamil is selectively transported by murine and human P-glycoprotein at the blood–brain barrier, and not by MRP1 and BCRP

    PubMed Central

    Römermann, Kerstin; Wanek, Thomas; Bankstahl, Marion; Bankstahl, Jens P.; Fedrowitz, Maren; Müller, Markus; Löscher, Wolfgang; Kuntner, Claudia; Langer, Oliver

    2013-01-01

    Introduction Positron emission tomography (PET) with [11C]verapamil, either in racemic form or in form of the (R)-enantiomer, has been used to measure the functional activity of the adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (Pgp) at the blood–brain barrier (BBB). There is some evidence in literature that verapamil inhibits two other ABC transporters expressed at the BBB, i.e. multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP). However, previous data were obtained with micromolar concentrations of verapamil and do not necessarily reflect the transporter selectivity of verapamil at nanomolar concentrations, which are relevant for PET experiments. The aim of this study was to assess the selectivity of verapamil, in nanomolar concentrations, for Pgp over MRP1 and BCRP. Methods Concentration equilibrium transport assays were performed with [3H]verapamil (5 nM) in cell lines expressing murine or human Pgp, human MRP1, and murine Bcrp1 or human BCRP. Paired PET scans were performed with (R)-[11C]verapamil in female FVB/N (wild-type), Mrp1(−/−), Mdr1a/b(−/−), Bcrp1(−/−) and Mdr1a/b(−/−)Bcrp1(−/−) mice, before and after Pgp inhibition with 15 mg/kg tariquidar. Results In vitro transport experiments exclusively showed directed transport of [3H]verapamil in Mdr1a- and MDR1-overexpressing cells which could be inhibited by tariquidar (0.5 μM). In PET scans acquired before tariquidar administration, brain-to-blood ratio (Kb,brain) of (R)-[11C]verapamil was low in wild-type (1.3 ± 0.1), Mrp1(−/−) (1.4 ± 0.1) and Bcrp1(−/−) mice (1.8 ± 0.1) and high in Mdr1a/b(−/−) (6.9 ± 0.8) and Mdr1a/b(−/−)Bcrp1(−/−) mice (7.9 ± 0.5). In PET scans after tariquidar administration, Kb,brain was significantly increased in Pgp-expressing mice (wild-type: 5.0 ± 0.3-fold, Mrp1(−/−): 3.2 ± 0.6-fold, Bcrp1(−/−): 4.3 ± 0.1-fold) but not in Pgp knockout mice (Mdr1a

  14. Biochemical and genetic characterization of the multidrug resistance phenotype in murine macrophage-like J774.2 cells.

    PubMed

    Kirschner, L S; Greenberger, L M; Hsu, S I; Yang, C P; Cohen, D; Piekarz, R L; Castillo, G; Han, E K; Yu, L J; Horwitz, S B

    1992-01-01

    The development of multidrug resistance (MDR) in malignant tumors is a major obstacle to the treatment of many cancers. MDR sublines have been derived from the J774.2 mouse macrophage-like cell line and utilized to characterize the phenotype at the biochemical and genetic level. Two isoforms of the drug resistance-associated P-glycoprotein are present and distinguishable both electrophoretically and pharmacologically. Genetic analysis has revealed the presence of a three-member gene family; expression of two of these genes, mdr1a and mdr1b, is associated with MDR whereas the expression of the third, mdr2, is not. Studies of these three genes have revealed similarities and differences in the manner in which they are regulated at the transcriptional level, and have suggested that post-transcriptional effects may also be important. PMID:1346495

  15. 75 FR 21153 - Unblocking of Specially Designated Nationals and Blocked Persons Pursuant to Executive Order 12978

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...) (``IEEPA''), issued Executive Order 12978 (60 FR 54579, October 24, 1995) (the ``Order''). In the Order.... 41703406 (Colombia); Passport 41703406 (Colombia) (individual) . 7. NAVARRO REYES, Fernando, c/o DROGAS...

  16. Aliskiren toxicity in juvenile rats is determined by ontogenic regulation of intestinal P-glycoprotein expression

    SciTech Connect

    Hoffmann, Peter; Beckman, David; McLean, Lee Anne; Yan, Jing-He

    2014-02-15

    Juvenile rat toxicity studies with the direct renin inhibitor aliskiren were initiated to support treatment in the pediatric population. In Study 1, aliskiren was administered orally to juvenile rats at doses of 0, 30, 100 or 300 mg/kg/day with repeated dosing from postpartum day (PPD) 8 to PPD 35/36. In-life, clinical pathology, anatomic pathology, and toxicokinetics evaluations were performed. In Study 2, single oral doses of aliskiren (0, 100 or 300 mg/kg) were given to 14-, 21-, 24-, 28-, 31- or 36-day-old rats; in-life data and toxicokinetics were evaluated. Study 3 was a single dose (3 mg/kg i.v.) pharmacokinetic study in juvenile rats on PPD 8, 14, 21 and 28. In Study 4, naïve rats were used to investigate ontogenic changes of the multidrug-resistant protein 1 (MDR1) and the organic anion transporting polypeptide (OATP) mRNA in several organs. Oral administration of aliskiren at 100 and 300 mg/kg caused unexpected mortality and severe morbidity in 8-day-old rats. Aliskiren plasma and tissue concentrations were increased in rats aged 21 days and younger. Expression of MDR1 and OATP mRNA in the intestine, liver and brain was significantly lower in very young rats. In conclusion, severe toxicity and increased exposure in very young rats after oral administration of aliskiren are considered to be the result of immature drug transporter systems. Immaturity of MDR1 in enterocytes appears to be the most important mechanism responsible for the high exposure. - Highlights: • Aliskiren was orally administered to juvenile rats. • Unexpected severe toxicity and acute mortality occurred in rats aged 8 days. • Toxicity was associated with increased aliskiren plasma and tissue exposure. • Developmental changes of exposure correlated with ontogeny of transporters. • Immaturity of MDR1 in enterocytes causes increased exposure in very young rats.

  17. [Cytological Study in vitro on Co-delivery of siRNA and Paclitaxel within Solid Lipid Nanoparticles to Overcome Multidrug Resistance in Tumors].

    PubMed

    Huang, Rui; Yao, Xinyu; Chen, Yuan; Sun, Xun; Lin, Yunzhu

    2016-02-01

    Multidrug resistance (MDR) remains the major obstacle to the success of clinical cancer chemotherapy. P-glycoprotein (P-gp), encoded by the MDR1, is an important part with complex mechanisms associated with the MDR. In order to overcome the MDR of tumors, we in the present experimental design incorporated small interfering RNA (siRNA) targeting MDR1 gene and anticancer drug paclitaxel (PTX) into the solid lipid nanoparticles (SLNs) to achieve the combinational therapeutic effects of genetherapy and chemotherapy. In this study, siRNA-PTX-SLNs were successfully prepared. The cytotoxicity of blank SLNs and siRNA-PTX-SLNs in MCF-7 cells and MCF-7/ADR cells were detected by MTT; and the uptake efficiency of PTX in MCF-7/ADR cells were detected via HPLC method; quantitative real-time PCR and flow cytometry were performed to investigate the silencing effect of siRNA-PTX- SLNs on MDR1 gene in MCF-7/ADR cells. The results showed that PTX loaded SLNs could significantly inhibit the growth of tumor cells, and more importantly, the MDR tumor cells treated with siRNA-PTX-SLNs showed the lowest viability. HPLC study showed that SLNs could enhance the cellular uptake for PTX. Meanwhile, siRNA delivered by SLNs significantly decreased the P-gp expression in MDR tumor cells, thus increased the cellular accumulation of rhodamine123 as a P-gp substrate. In conclusion, the MDR1 gene could be silenced by siRNA-PTX-SLNs, which could promote the growth inhibition efficiency of PTX on tumor cells, leading to synergetic effect on MDR tumor therapy. PMID:27382749

  18. Synthesis and in vivo evaluation of the putative breast cancer resistance protein inhibitor [11C]methyl 4-((4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl)phenyl)amino-carbonyl)-2-(quinoline-2-carbonylamino)benzoate

    PubMed Central

    Mairinger, Severin; Langer, Oliver; Kuntner, Claudia; Wanek, Thomas; Bankstahl, Jens P.; Bankstahl, Marion; Stanek, Johann; Dörner, Bernd; Bauer, Florian; Baumgartner, Christoph; Löscher, Wolfgang; Erker, Thomas; Müller, Markus

    2013-01-01

    Introduction The multidrug efflux transporter breast cancer resistance protein (BCRP) is highly expressed in the blood-brain barrier (BBB), where it limits brain entry of a broad range of endogenous and exogenous substrates. Methyl 4-((4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl)phenyl)amino-carbonyl)-2-(quinoline-2-carbonylamino)benzoate (1) is a recently discovered BCRP-selective inhibitor, which is structurally derived from the potent P-glycoprotein (P-gp) inhibitor tariquidar. The aim of this study was to develop a new PET tracer based on 1 to map BCRP expression levels in vivo. Methods 1 was labelled with 11C in its methyl ester function by reaction of the corresponding carboxylic acid 2 with [11C]methyl triflate. PET imaging of [11C]-1 was performed in wild-type, Mdr1a/b(−/−), Bcrp1(−/−) and Mdr1a/b(−/−)Bcrp1(−/−) mice (n=3 per mouse type) and radiotracer metabolism was assessed in plasma and brain. Results Brain-to-plasma ratios of unchanged [11C]-1 were 4.8- and 10.3-fold higher in Mdr1a/b(−/−) and in Mdr1a/b(−/−)Bcrp1(−/−) mice, respectively, as compared to wild-type animals, but only modestly increased in Bcrp1(−/−) mice. [11C]-1 was rapidly metabolized in vivo giving rise to a polar radiometabolite which was taken up into brain tissue. Conclusion Our data suggest that [11C]-1 preferably interacts with P-gp rather than BCRP at the murine BBB which questions its reported in vitro BCRP selectivity. Consequently, [11C]-1 appears to be unsuitable as a PET tracer to map cerebral BCRP expression. PMID:20610168

  19. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    SciTech Connect

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  20. Inflammatory Regulation of ATP Binding Cassette Efflux Transporter Expression and Function in Microglia

    PubMed Central

    Gibson, Christopher J.; Hossain, Muhammad M.; Richardson, Jason R.

    2012-01-01

    ATP-binding cassette (ABC) efflux transporters, including multidrug resistance protein 1 (Mdr1), breast cancer resistance protein (Bcrp), and multidrug resistance-associated proteins (Mrps) extrude chemicals from the brain. Although ABC transporters are critical for blood-brain barrier integrity, less attention has been placed on the regulation of these proteins in brain parenchymal cells such as microglia. Prior studies demonstrate that inflammation after lipopolysaccharide (LPS) treatment alters transporter expression in the livers of mice. Here, we sought to determine the effects of inflammation on the expression and function of transporters in microglia. To test this, the expression and function of ABC efflux transport proteins were quantified in mouse BV-2 microglial cells in response to activation with LPS. Intracellular retention of fluorescent rhodamine 123, Hoechst 33342, and calcein acetoxymethyl ester was increased in LPS-treated microglia, suggesting that the functions of Mdr1, Bcrp, and Mrps were decreased, respectively. LPS reduced Mdr1, Bcrp, and Mrp4 mRNA and protein expression between 40 and 70%. Conversely, LPS increased expression of Mrp1 and Mrp5 mRNA and protein. Immunofluorescent staining confirmed reduced Bcrp and Mrp4 and elevated Mrp1 and Mrp5 protein in activated microglia. Pharmacological inhibition of nuclear factor κB (NF-κB) transcriptional signaling attenuated down-regulation of Mdr1a mRNA and potentiated up-regulation of Mrp5 mRNA in LPS-treated cells. Together, these data suggest that LPS stimulates microglia and impairs efflux of prototypical ABC transporter substrates by altering mRNA and protein expression, in part through NF-κB signaling. Decreased transporter efflux function in microglia may lead to the retention of toxic chemicals and aberrant cell-cell communication during neuroinflammation. PMID:22942241

  1. The antiepileptic drug mephobarbital is not transported by P-glycoprotein or multidrug resistance protein 1 at the blood-brain barrier: a positron emission tomography study

    PubMed Central

    Mairinger, Severin; Bankstahl, Jens P.; Kuntner, Claudia; Römermann, Kerstin; Bankstahl, Marion; Wanek, Thomas; Stanek, Johann; Löscher, Wolfgang; Müller, Markus; Erker, Thomas; Langer, Oliver

    2013-01-01

    Summary Aim of this study was to determine whether the carbon-11-labelled antiepileptic drug [11C]mephobarbital is a substrate of P-glycoprotein (Pgp) and can be used to assess Pgp function at the blood-brain barrier (BBB) with positron emission tomography (PET). We performed paired PET scans in rats, wild-type (FVB) and Mdr1a/b(−/−) mice, before and after intravenous administration of the Pgp inhibitor tariquidar (15 mg/kg). Brain-to-blood AUC0-60 ratios in rats and brain AUC0-60 values of [11C]mephobarbital in wild-type and Mdr1a/b(−/−) mice were similar in scan 1 and scan 2, respectively, suggesting that in vivo brain distribution of [11C]mephobarbital is not influenced by Pgp efflux. Absence of Pgp transport was confirmed in vitro by performing concentration equilibrium transport assay in cell lines transfected with MDR1 or Mdr1a. PET experiments in wild-type mice, with and without pretreatment with the multidrug resistance protein (MRP) inhibitor MK571 (20 mg/kg), and in Mrp1(−/−) mice suggested that [11C]mephobarbital is also not transported by MRPs at the murine BBB, which was also supported by in vitro transport experiments using human MRP1-transfected cells. Our results are surprising as phenobarbital, the N-desmethyl derivative of mephobarbital, has been shown to be a substrate of Pgp, which suggests that N-methylation abolishes Pgp affinity of barbiturates. PMID:22342565

  2. Nuclear receptor and target gene mRNA abundance in duodenum and colon of dogs with chronic enteropathies.

    PubMed

    Greger, D L; Gropp, F; Morel, C; Sauter, S; Blum, J W

    2006-11-01

    Nuclear receptors (NR), such as constitutive androstane receptor (CAR), pregnane X receptor (PXR) and peroxisome proliferator-associated receptors alpha and gamma (PPARalpha, PPARgamma) are mediators of inflammation and may be involved in inflammatory bowel disease (IBD) and food responsive diarrhea (FRD) of dogs. The present study compared mRNA abundance of NR and NR target genes [multi drug-resistance gene-1 (MDR1), multiple drug-resistance-associated proteins (MRD2, MRD3), cytochrome P450 (CYP3A12), phenol-sulfating phenol sulfotransferase (SULT1A1) and glutathione-S-transferase (GST A3-3)] in biopsies obtained from duodenum and colon of dogs with IBD and FRD and healthy control dogs (CON; n=7 per group). Upon first presentation of dogs, mRNA levels of PPARalpha, PPARgamma, CAR, PXR and RXRalpha in duodenum as well as PPARgamma, CAR, PXR and RXRalpha in colon were not different among groups (P>0.10). Although mRNA abundance of PPARalpha in colon of dogs with FRD was similar in both IBD and CON (P>0.10), PPARalpha mRNA abundance was higher in IBD than CON (P<0.05). Levels of mRNA of MDR1 in duodenum were higher in FRD than IBD (P<0.05) or CON (P<0.001). Compared with CON, abundances of mRNA for MRP2, CYP3A12 and SULT1A1 were higher in both FRD and IBD than CON (P<0.05). Differences in mRNA levels of PPARalpha and MRP2 in colon and MDR1, MRP2, CYP3A12 and SULT1A1 in duodenum may be indicative for enteropathy in FRD and (or) IBD dogs relative to healthy dogs. More importantly, increased expression of MDR1 in FRD relative to IBD in duodenum may be a useful diagnostic marker to distinguish dogs with FRD from dogs with IBD. PMID:16446074

  3. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    PubMed

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria. PMID:20937780

  4. Induction of Candida albicans drug resistance genes by hybrid zinc cluster transcription factors.

    PubMed

    Schneider, Sabrina; Morschhäuser, Joachim

    2015-01-01

    The pathogenic yeast Candida albicans can develop resistance to azole antifungal drugs by overexpressing ERG11, which encodes the drug target, or the multidrug efflux pumps MDR1 and CDR1/CDR2. The constitutive upregulation of these genes is usually caused by gain-of-function mutations in the zinc cluster transcription factors Upc2, Mrr1, and Tac1, respectively. These transcription factors are also required for the induction of their target genes in drug-susceptible strains in the presence of specific stimuli. By swapping the DNA-binding domains of Mrr1, Tac1, and Upc2 we investigated if the hybrid transcription factors could activate their new target genes in response to the same signals. When Tac1 was targeted to the MDR1 and ERG11 promoters, the expression of these genes became inducible by fluphenazine. Similarly, MDR1 and CDR2 were strongly upregulated by fluconazole when Upc2 was fused to the DNA-binding domains of Mrr1 and Tac1, respectively. In contrast, Mrr1 was unable to promote gene expression in response to benomyl when it was targeted to the CDR2 and ERG11 promoters instead of the MDR1 promoter. These results suggest that Tac1 and Upc2 themselves are activated by the inducers fluphenazine and fluconazole, respectively, whereas benomyl does not activate Mrr1 itself but a coregulatory factor that is present at the promoters of Mrr1 target genes. Strains in which the expression levels of Mrr1 and Tac1 target genes were controlled by Upc2 exhibited increased fluconazole resistance, demonstrating that the ability to efficiently upregulate the expression of efflux pumps in the presence of the drug results in enhanced intrinsic fluconazole resistance. PMID:25385116

  5. Induction of Candida albicans Drug Resistance Genes by Hybrid Zinc Cluster Transcription Factors

    PubMed Central

    Schneider, Sabrina

    2014-01-01

    The pathogenic yeast Candida albicans can develop resistance to azole antifungal drugs by overexpressing ERG11, which encodes the drug target, or the multidrug efflux pumps MDR1 and CDR1/CDR2. The constitutive upregulation of these genes is usually caused by gain-of-function mutations in the zinc cluster transcription factors Upc2, Mrr1, and Tac1, respectively. These transcription factors are also required for the induction of their target genes in drug-susceptible strains in the presence of specific stimuli. By swapping the DNA-binding domains of Mrr1, Tac1, and Upc2 we investigated if the hybrid transcription factors could activate their new target genes in response to the same signals. When Tac1 was targeted to the MDR1 and ERG11 promoters, the expression of these genes became inducible by fluphenazine. Similarly, MDR1 and CDR2 were strongly upregulated by fluconazole when Upc2 was fused to the DNA-binding domains of Mrr1 and Tac1, respectively. In contrast, Mrr1 was unable to promote gene expression in response to benomyl when it was targeted to the CDR2 and ERG11 promoters instead of the MDR1 promoter. These results suggest that Tac1 and Upc2 themselves are activated by the inducers fluphenazine and fluconazole, respectively, whereas benomyl does not activate Mrr1 itself but a coregulatory factor that is present at the promoters of Mrr1 target genes. Strains in which the expression levels of Mrr1 and Tac1 target genes were controlled by Upc2 exhibited increased fluconazole resistance, demonstrating that the ability to efficiently upregulate the expression of efflux pumps in the presence of the drug results in enhanced intrinsic fluconazole resistance. PMID:25385116

  6. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans.

    PubMed

    Sasse, Christoph; Schillig, Rebecca; Dierolf, Franziska; Weyler, Michael; Schneider, Sabrina; Mogavero, Selene; Rogers, P David; Morschhäuser, Joachim

    2011-01-01

    The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis, by the overexpression of genes encoding multidrug efflux pumps or ergosterol biosynthesis enzymes. Zinc cluster transcription factors play a central role in the transcriptional regulation of drug resistance. Mrr1 regulates the expression of the major facilitator MDR1, Tac1 controls the expression of the ABC transporters CDR1 and CDR2, and Upc2 regulates ergosterol biosynthesis (ERG) genes. Gain-of-function mutations in these transcription factors result in constitutive overexpression of their target genes and are responsible for fluconazole resistance in many clinical C. albicans isolates. The transcription factor Ndt80 contributes to the drug-induced upregulation of CDR1 and ERG genes and also binds to the MDR1 and CDR2 promoters, suggesting that it is an important component of all major transcriptional mechanisms of fluconazole resistance. However, we found that Ndt80 is not required for the induction of MDR1 and CDR2 expression by inducing chemicals. CDR2 was even partially derepressed in ndt80Δ mutants, indicating that Ndt80 is a repressor of CDR2 expression. Hyperactive forms of Mrr1, Tac1, and Upc2 promoted overexpression of MDR1, CDR1/CDR2, and ERG11, respectively, with the same efficiency in the presence and absence of Ndt80. Mrr1- and Tac1-mediated fluconazole resistance was even slightly enhanced in ndt80Δ mutants compared to wild-type cells. These results demonstrate that Ndt80 is dispensable for the constitutive overexpression of Mrr1, Tac1, and Upc2 target genes and the increased fluconazole resistance of strains that have acquired activating mutations in these transcription factors. PMID:21980509

  7. Resistance Mechanisms and Clinical Features of Fluconazole-Nonsusceptible Candida tropicalis Isolates Compared with Fluconazole-Less-Susceptible Isolates.

    PubMed

    Choi, Min Ji; Won, Eun Jeong; Shin, Jong Hee; Kim, Soo Hyun; Lee, Wee-Gyo; Kim, Mi-Na; Lee, Kyungwon; Shin, Myung Geun; Suh, Soon Pal; Ryang, Dong Wook; Im, Young Jun

    2016-06-01

    We investigated the azole resistance mechanisms and clinical features of fluconazole-nonsusceptible (FNS) isolates of Candida tropicalis recovered from Korean surveillance cultures in comparison with fluconazole-less-susceptible (FLS) isolates. Thirty-five clinical isolates of C. tropicalis, comprising 9 FNS (fluconazole MIC, 4 to 64 μg/ml), 12 FLS (MIC, 1 to 2 μg/ml), and 14 control (MIC, 0.125 to 0.5 μg/ml) isolates, were assessed. CDR1, MDR1, and ERG11 expression was quantified, and the ERG11 and UPC2 genes were sequenced. Clinical features of 16 patients with FNS or FLS bloodstream isolates were analyzed. Both FNS and FLS isolates had >10-fold higher mean expression levels of CDR1, MDR1, and ERG11 genes than control isolates (P values of <0.02 for all). When FNS and FLS isolates were compared, FNS isolates had 3.4-fold higher mean ERG11 expression levels than FLS isolates (P = 0.004), but there were no differences in those of CDR1 or MDR1 Of all 35 isolates, 4 (2 FNS and 2 FLS) and 28 (8 FNS, 11 FLS, and 9 control) isolates exhibited amino acid substitutions in Erg11p and Upc2p, respectively. Both FNS and FLS bloodstream isolates were associated with azole therapeutic failure (3/4 versus 4/7) or uncleared fungemia (4/6 versus 4/10), but FNS isolates were identified more frequently from patients with previous azole exposure (6/6 versus 3/10; P = 0.011) and immunosuppression (6/6 versus 3/10; P = 0.011). These results reveal that the majority of FNS C. tropicalis isolates show overexpression of CDR1, MDR1, and ERG11 genes, and fungemia develops after azole exposure in patients with immunosuppression. PMID:27044550

  8. Ontogeny of Human Hepatic and Intestinal Transporter Gene Expression during Childhood: Age Matters

    PubMed Central

    Mooij, Miriam G.; Schwarz, Ute I.; de Koning, Barbara A. E.; Leeder, J. Steven; Gaedigk, Roger; Samsom, Janneke N.; Spaans, Edwin; van Goudoever, Johannes B.; Tibboel, Dick; Kim, Richard B.

    2014-01-01

    Many drugs prescribed to children are drug transporter substrates. Drug transporters are membrane-bound proteins that mediate the cellular uptake or efflux of drugs and are important to drug absorption and elimination. Very limited data are available on the effect of age on transporter expression. Our study assessed age-related gene expression of hepatic and intestinal drug transporters. Multidrug resistance protein 2 (MRP2), organic anion transporting polypeptide 1B1 (OATP1B1), and OATP1B3 expression was determined in postmortem liver samples (fetal n = 6, neonatal n = 19, infant n = 7, child n = 2, adult n = 11) and multidrug resistance 1 (MDR1) expression in 61 pediatric liver samples. Intestinal expression of MDR1, MRP2, and OATP2B1 was determined in surgical small bowel samples (neonates n = 15, infants n = 3, adults n = 14). Using real-time reverse-transcription polymerase chain reaction, we measured fetal and pediatric gene expression relative to 18S rRNA (liver) and villin (intestines), and we compared it with adults using the 2−∆∆Ct method. Hepatic expression of MRP2, OATP1B1, and OATP1B3 in all pediatric age groups was significantly lower than in adults. Hepatic MDR1 mRNA expression in fetuses, neonates, and infants was significantly lower than in adults. Neonatal intestinal expressions of MDR1 and MRP2 were comparable to those in adults. Intestinal OATP2B1 expression in neonates was significantly higher than in adults. We provide new data that show organ- and transporter-dependent differences in hepatic and intestinal drug transporter expression in an age-dependent fashion. This suggests that substrate drug absorption mediated by these transporters may be subject to age-related variation in a transporter dependent pattern. PMID:24829289

  9. [Ivermectin use in tropical medicine].

    PubMed

    Dupouy-Camet, J; Yera, H; Tourte-Schaefer, C

    2003-12-01

    Ivermectin is a major breakthrough for the treatment of onchocerciasis, strongyloidosis, scabies and cutaneous larva migrans. Combined with albendazole, ivermectin is highly efficient for treating lymphatic filariasis and intestinal worms. Ivermectin shows very few side-effects but its use in children below 5 and during pregnancy is discussed. Ivermectin tolerance could be related to mdr1 gene expression. Additional studies are needed to assess its efficiency for pediculosis. PMID:15022779

  10. What kinds of substrates show P-glycoprotein-dependent intestinal absorption? Comparison of verapamil with vinblastine.

    PubMed

    Ogihara, Takuo; Kamiya, Masatsugu; Ozawa, Makoto; Fujita, Takuya; Yamamoto, Akira; Yamashita, Shinji; Ohnishi, Shuhei; Isomura, Yasuo

    2006-06-01

    The influence of P-glycoprotein (P-gp) on intestinal absorption of drugs was investigated by comparison of the uptakes of two P-gp substrates, verapamil and vinblastine, using intestinal segments of wild-type and mdr1a/1b gene-deficient (mdr1a/1b(-/-)) mice, and Caco-2 cells. When [(3)H]vinblastine was injected into intestinal segments of wild-type mice, vinblastine was absorbed from duodenum and ileum, but not from jejunum. This difference among intestinal regions could not be explained by segmental differences of mdr1a mRNA expression. In Caco-2 cells, it was found that vinblastine had a high value of efflux/influx ratio (an index of affinity for P-gp) of 12.1, and a low permeability of less than 1 x 10(-6) cm/sec. The corresponding values for verapamil were 4.9 and 10.6 x 10(-6) cm/sec, respectively. After oral administration of [(3)H]vinblastine to mice, the maximum concentration (C(max)) and the area under the plasma concentration time-curve from time 0 to 24 hr (AUC(0-24 hr)) for mdr1a/1b(-/-) mice were 1.5 times greater than those for wild-type mice, while these parameters were not significantly different between the two strains in the case of [(3)H]verapamil. Therefore, P-gp substrates may be classified into at least two types, i.e., verapamil-type, for which the intestinal absorption is unaffected by P-gp, and vinblastine-type, for which the intestinal absorption is influenced by P-gp. Vinblastine-type P-gp substrates, with low permeability and high affinity for P-gp, would be unfavorable candidates for oral drugs. PMID:16858128

  11. Regulatory mechanism of ZNF139 in multi-drug resistance of gastric cancer cells.

    PubMed

    Li, Yong; Tan, Bi-bo; Zhao, Qun; Fan, Li-qiao; Liu, Yü; Wang, Dong

    2014-06-01

    Our previous study found increased zinc finger protein 139 (ZNF139) expression in gastric cancer (GC) cells. Purpose of the study is to further clarify the role and mechanism of ZNF139 in multi-drug resistance (MDR) of GC cells. MTT assay, RT-PCR, Western blotting were employed to detect susceptibility of GC cells to chemotherapeutic agents (5-FU, L-OHP) in vitro, and expressions of ZNF139 and MDR associated genes MDR1/P-gp, MRP1, Bcl-2, Bax were also detected. siRNA specific to ZNF139 was transfected into MKN28 cells, then chemosensitivity of GC cells as well as changes of ZNF139 and MDR associated genes were detected. It's found the inhibition rate of 5-FU, L-OHP to well-differentiated GC tissues and cell line was lower than that in the poorly differentiated tissues and cell line; expressions of ZNF139 and MDR1/P-gp, MRP1 and Bcl-2 in well-differentiated GC tissues and cell line MKN28 were higher, while Bax expression was lower. After ZNF139-siRNA was transfected into MKN28, ZNF139 expression in GC cells was inhibited by 90%; inhibition rate of 5-FU, L-OHP to tumor cells increased, and expressions of MDR1/P-gp, MRP1 and Bcl-2 were down-regulated, while Bax was up-regulated. ZNF139 was involved in GC MDR by promoting expressions of MDR1/P-gp, MRP1 and Bcl-2 and inhibiting Bax simultaneously. PMID:24515389

  12. Effect of gene polymorphisms on the levels of calcineurin inhibitors in Indian renal transplant recipients.

    PubMed

    Ashavaid, T; Raje, H; Shalia, K; Shah, B

    2010-07-01

    The outcome of renal transplantation is improved by cyclosporine and tacrolimus. However, its success is limited by drug-induced nephrotoxicity. Therefore, monitoring their levels is important. These levels are influenced mainly by CYP3A4, CYP3A5 and MDR- 1 genes. These levels also affect target molecules of CNIs, mainly IL-2. Inter-individual differences in these levels have been attributed to SNPs in these genes and hence study of these SNPs assumes significance. So far no study has been carried out on Indian renal transplant recipients covering the SNPs of the genes involved in metabolism, efflux and drug target of CNIs, hence the data is lacking for Indian population. The aim is to study A-392G SNP of CYP3A4, A6986G SNP of CYP3A5, C3435T SNP of MDR-1 and T-330G SNP of IL-2 genes and correlate with CNI blood levels. Hundred healthy subjects and 100 consecutive renal transplant recipients; 56 on CsA and 44 on tacrolimus were genotyped by PCR followed by restriction enzyme assay for mentioned SNPs. No significant difference was observed between level/dose (L/D) ratio of CNIs and CYP3A4 and IL-2 SNPs. However, median L/D ratio for tacrolimus was significantly higher in subjects with CYP3A5*3/*3 (n = 24) (P = 0.011) and MDR- 1 3435TT (n = 18) (P = 0.0122). The findings from this study show that homozygous mutant patients for CYP3A5 and MDR-1 gene SNPs could be managed with lower tacrolimus dose to avoid nephrotoxicity. PMID:21072155

  13. Effect of gene polymorphisms on the levels of calcineurin inhibitors in Indian renal transplant recipients

    PubMed Central

    Ashavaid, T.; Raje, H.; Shalia, K.; Shah, B.

    2010-01-01

    The outcome of renal transplantation is improved by cyclosporine and tacrolimus. However, its success is limited by drug-induced nephrotoxicity. Therefore, monitoring their levels is important. These levels are influenced mainly by CYP3A4, CYP3A5 and MDR- 1 genes. These levels also affect target molecules of CNIs, mainly IL-2. Inter-individual differences in these levels have been attributed to SNPs in these genes and hence study of these SNPs assumes significance. So far no study has been carried out on Indian renal transplant recipients covering the SNPs of the genes involved in metabolism, efflux and drug target of CNIs, hence the data is lacking for Indian population. The aim is to study A-392G SNP of CYP3A4, A6986G SNP of CYP3A5, C3435T SNP of MDR-1 and T-330G SNP of IL-2 genes and correlate with CNI blood levels. Hundred healthy subjects and 100 consecutive renal transplant recipients; 56 on CsA and 44 on tacrolimus were genotyped by PCR followed by restriction enzyme assay for mentioned SNPs. No significant difference was observed between level/dose (L/D) ratio of CNIs and CYP3A4 and IL-2 SNPs. However, median L/D ratio for tacrolimus was significantly higher in subjects with CYP3A5*3/*3 (n = 24) (P = 0.011) and MDR- 1 3435TT (n = 18) (P = 0.0122). The findings from this study show that homozygous mutant patients for CYP3A5 and MDR-1 gene SNPs could be managed with lower tacrolimus dose to avoid nephrotoxicity. PMID:21072155

  14. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein.

    PubMed

    Evans, David C; O'Connor, Desmond; Lake, Brian G; Evers, Raymond; Allen, Christopher; Hargreaves, Richard

    2003-07-01

    "Reaction phenotyping" studies were performed with eletriptan (ETT) to determine its propensity to interact with coadministered medications. Its ability to serve as a substrate for human P-glycoprotein (P-gp) was also investigated since a central mechanism of action has been proposed for this "triptan" class of drug. In studies with a characterized bank of human liver microsome preparations, a good correlation (r2 = 0.932) was obtained between formation of N-desmethyl eletriptan (DETT) and CYP3A4-catalyzed testosterone 6 beta-hydroxylation. DETT was selected to be monitored in our studies since it represents a significant ETT metabolite in humans, circulating at concentrations 10 to 20% of those observed for parent drug. ETT was metabolized to DETT by recombinant CYP2D6 (rCYP2D6) and rCYP3A4, and to a lesser extent by rCYP2C9 and rCYP2C19. The metabolism of ETT to DETT in human liver microsomes was markedly inhibited by troleandomycin, erythromycin, miconazole, and an inhibitory antibody to CYP3A4, but not by inhibitors of other major P450 enzymes. ETT had little inhibitory effect on any of the P450 enzymes investigated. ETT was determined to be a good substrate for human P-gp in vitro. In bidirectional transport studies across LLC-MDR1 and LLC-Mdr1a cell monolayers, ETT had a BA/AB transport ratio in the range 9 to 11. This finding had significance in vivo since brain exposure to ETT was reduced 40-fold in Mdr1a+/+ relative to Mdr1a-/- mice. ETT metabolism to DETT is therefore catalyzed primarily by CYP3A4, and plasma concentrations are expected to be increased when coadministered with inhibitors of CYP3A4 and P-gp activity. PMID:12814962

  15. Effects of genetic factors on the pharmacokinetics and pharmacodynamics of amlodipine in primary hypertensive patients

    PubMed Central

    GUO, CHENGXIAN; PEI, QI; TAN, HONGYI; HUANG, ZHIJUN; YUAN, HONG; YANG, GUOPING

    2015-01-01

    The aim of the present study was to explore the effects of common genetic polymorphisms of cytochrome P450 (CYP)3A4, CYP3A5, cytochrome P450 oxidoreductase (POR) and multidrug resistance protein 1 (MDR1) on the pharmacokinetics and pharmacodynamics of amlodipine in primary hypertensive patients. The mild-to-moderate essential hypertension patients were recruited to complete the genotyping of CYP3A4, CYP3A5, POR and MDR1 by sequencing. After a 1-week placebo washout period, the subjects received 5 mg oral amlodipine daily for 4 weeks. Serial blood samples were collected prior to the last dosing, and 2, 6 and 24 h post-dosing. Blood pressures were measured prior and subsequent to dosing, and the demographical data were also collected. The blood samples were collected for laboratory testing. The plasma concentrations of amlodipine were determined by high-performance liquid chromatography/tandem mass spectrometry. A total of 60 patients, including 31 males and 29 females, completed the 4-week treatment. The plasma concentration of amlodipine in females at each time point was significantly higher compared to males (P<0.05). However, no significant gender differences existed in antihypertensive efficacy. The genetic polymorphisms of MDR1 C3435T had a certain impact on the plasma concentration of amlodipine, but did not affect its antihypertensive efficacy (P>0.05). The genetic polymorphisms of CYP3A4*1G, CYP3A5*3 and POR A503V showed no impact on plasma concentration and efficacy of amlodipine (P>0.05). Gender and MDR1 gene polymorphism may affect the plasma concentration of amlodipine in hypertensive patients. However, there was no impact on the efficacy of amlodipine. PMID:26075072

  16. Cytotoxicity against human leukemic cell lines, and the activity on the expression of resistance genes of flavonoids from Platanus orientalis.

    PubMed

    Mitrocotsa, D; Bosch, S; Mitaku, S; Dimas, C; Skaltsounis, A L; Harvala, C; Briand, G; Roussakis, C

    1999-01-01

    The cytotoxic activity of three flavonoids, belonging to the kaempherol series, was evaluated against 15 human leukemic cell lines. Flavonoids bearing acyl substituants, 2 and 3, were found to be the most active compounds. A further compound, 1, was examined for its ability to modulate the expression of MDR-1 and GST-pi resistance genes and compounds 2 and 3 for their effect on the uptake of [3H]-thymidine as a marker of DNA synthesis. PMID:10470152

  17. Mapping of a rat multidrug resistance gene by fluorescence in situ hybridization

    SciTech Connect

    Popescu, N.C.; Silverman, J.A.; Thorgeirsson, S.S. )

    1993-01-01

    A cDNA clone encoding the rat mdr1b (Pgy2) gene was recently isolated and characterized. This gene has a high degree of sequence identity with other Pgy genes, particularly the mouse Pgy2 gene. By means of in situ fluorescence hybridization, the rat Pgy gene was localized on chromosome 4 band q12. This regional mapping will facilitate the identification of synteny groups on rat, mouse, and human genomes and chromosomal rearrangements during mammalian evolution. 17 refs., 2 figs.

  18. Evaluation of hydro-alcoholic extract of Eclipta alba for its multidrug resistance reversal potential: an in vitro study.

    PubMed

    Chaudhary, Harshita; Jena, Prasant Kumar; Seshadri, Sriram

    2013-01-01

    The development of multidrug resistance (MDR) causes problems in the chemotherapy of human cancer. The present study was designed to evaluate and establish the role of Eclipta alba as MDR reversal agent using multidrug resistant hepatocellular carcinoma cell line (DR-HepG2). To develop DR-HepG2, hepatocellular carcinoma cell line (HepG2) was transfected with 2-Acetylaminofluorene (AAF) and Aflatoxin B1 (AFB). Cytotoxic effects of the Eclipta alba hydroalcoholic extract (EAE) and standard anti-ancer drug Doxorubicin (DOX) were determined in DR-HepG2 and the parental cells HepG2 using MTT assay. The expression level of MDR1 gene and P-glycoprotein (P-gp) level was analyzed by RT-PCR and western blotting. From the present investigation, it was found that EAE (10 and 20 μg/ml) could significantly inhibit cell proliferation in DR-HepG2 whereas DOX (0.5 μg/ml) could not because of enhancement effect of MDR1/P-gp. This study demonstrated for the first time the antiproliferative activities of EAE in multidrug resistant DR-HepG2 cells. The findings revealed that Eclipta alba components are effective inhibitors of MDR1/P-gp. PMID:23859045

  19. Heat Shock-Independent Induction of Multidrug Resistance by Heat Shock Factor 1†

    PubMed Central

    Tchénio, Thierry; Havard, Marilyne; Martinez, Luis A.; Dautry, François

    2006-01-01

    The screening of two different retroviral cDNA expression libraries to select genes that confer constitutive doxorubicin resistance has in both cases resulted in the isolation of the heat shock factor 1 (HSF1) transcription factor. We show that HSF1 induces a multidrug resistance phenotype that occurs in the absence of heat shock or cellular stress and is mediated at least in part through the constitutive activation of the multidrug resistance gene 1 (MDR-1). This drug resistance phenotype does not correlate with an increased expression of heat shock-responsive genes (heat shock protein genes, or HSPs). In addition, HSF1 mutants lacking HSP gene activation are also capable of conferring multidrug resistance, and only hypophosphorylated HSF1 complexes accumulate in transduced cells. Our results indicate that HSF1 can activate MDR-1 expression in a stress-independent manner that differs from the canonical heat shock-activated mechanism involved in HSP induction. We further provide evidence that the induction of MDR-1 expression occurs at a posttranscriptional level, revealing a novel undocumented role for hypophosphorylated HSF1 in posttranscriptional gene regulation. PMID:16382149

  20. Cholesterol signaling at the endoplasmic reticulum occurs in npc1(-/-) but not in npc1(-/-), LDLR(-/-) mice.

    PubMed

    Erickson, R P; Kiela, M; Garver, W S; Krishnan, K; Heidenreich, R A

    2001-06-01

    It remains controversial whether deficiency of the Niemann-Pick C1 (npc1) protein results in altered cholesterol signaling at the endoplasmic reticulum (ER). In this report, we have measured the processed, nuclear form of sterol regulatory element binding protein (SREBP)-1 in livers of npc1 wild-type, heterozygous, and homozygous deficient mice, alone, and in combination with deficiencies of the low density lipoprotein receptor (LDLR) or the multiple drug resistant (mdr)1a, P-glycoprotein. Cleavage of SREBPs to activated forms normally occurs when the ER is deficient in cholesterol. A large decrease in processed SREBP-1 was evident in fasted npc1(-/-) mice and npc1(-/-), mdr1a(-/-) mice, with no decrease evident in npc1(-/-), LDLR(-/-) mice. These results suggest that the increase in cellular cholesterol which occurs in npc1(-/-) and in npc1(-/-), mdr1a(-/-) mice includes the sites responsible for cholesterol signaling, while the similar increase in cholesterol found in npc1(-/-), LDLR(-/-) mice does not. PMID:11394880

  1. Property-based design of a glucosylceramide synthase inhibitor that reduces glucosylceramide in the brain[S

    PubMed Central

    Larsen, Scott D.; Wilson, Michael W.; Abe, Akira; Shu, Liming; George, Christopher H.; Kirchhoff, Paul; Showalter, H. D. Hollis; Xiang, Jianming; Keep, Richard F.; Shayman, James A.

    2012-01-01

    Synthesis inhibition is the basis for the treatment of type 1 Gaucher disease by the glucosylceramide synthase (GCS) inhibitor eliglustat tartrate. However, the extended use of eliglustat and related compounds for the treatment of glycosphingolipid storage diseases with CNS manifestations is limited by the lack of brain penetration of this drug. Property modeling around the D-threo-1-phenyl-2-decanoylamino-3-morpholino-propanol (PDMP) pharmacophore was employed in a search for compounds of comparable activity against the GCS but lacking P-glycoprotein (MDR1) recognition. Modifications of the carboxamide N-acyl group were made to lower total polar surface area and rotatable bond number. Compounds were screened for inhibition of GCS in crude enzyme and whole cell assays and for MDR1 substrate recognition. One analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (CCG-203586), was identified that inhibited GCS at low nanomolar concentrations with little to no apparent recognition by MDR1. Intraperitoneal administration of this compound to mice for 3 days resulted in a significant dose dependent decrease in brain glucosylceramide content, an effect not seen in mice dosed in parallel with eliglustat tartrate. PMID:22058426

  2. The multidrug resistance and cystic fibrosis genes have complementary patterns of epithelial expression.

    PubMed Central

    Trezise, A E; Romano, P R; Gill, D R; Hyde, S C; Sepúlveda, F V; Buchwald, M; Higgins, C F

    1992-01-01

    The cystic fibrosis gene product, CFTR, and the multidrug resistance P-glycoprotein (encoded by the MDR1 gene) are structurally related proteins and both are associated with epithelial chloride channel activities. We have compared their cell-specific expression in the rat by in situ hybridization. In all tissues examined the two genes were found to have complementary patterns of expression, demonstrating exquisite regulation in both cell-specific and temporal fashions. Additionally, a switch in expression from one gene to the other was observed in certain tissues. For example, expression in the intestine switches from CFTR to MDR1 as the cells migrate across the crypt-villus boundary. A switch from CFTR to MDR1 expression was also observed in the uterine epithelium upon pregnancy. These data suggest that CFTR and P-glycoprotein serve analogous roles in epithelial cells and provide additional evidence that P-glycoprotein has a physiological role in regulating epithelial cell volume. The patterns of expression suggest that the regulation of these two genes is coordinately controlled. Images PMID:1385112

  3. Overcoming doxorubicin resistance of cancer cells by Cas9-mediated gene disruption

    PubMed Central

    Ha, Jong Seong; Byun, Juyoung; Ahn, Dae-Ro

    2016-01-01

    In this study, Cas9 system was employed to down-regulate mdr1 gene for overcoming multidrug resistance of cancer cells. Disruption of the MDR1 gene was achieved by delivery of the Cas9-sgRNA plasmid or the Cas9-sgRNA ribonucleoprotein complex using a conventional gene transfection agent and protein transduction domain (PTD). Doxorubicin showed considerable cytotoxicity to the drug-resistant breast cancer cells pre-treated with the RNA-guided endonuclease (RGEN) systems, whereas virtually non-toxic to the untreated cells. The potency of drug was enhanced in the cells treated with the protein-RNA complex as well as in those treated with plasmids, suggesting that mutation of the mdr1 gene by intracellular delivery of Cas9-sgRNA complex using proper protein delivery platforms could recover the drug susceptibility. Therefore, Cas9-mediated disruption of the drug resistance-related gene can be considered as a promising way to overcome multidrug resistance in cancer cells. PMID:26961701

  4. miR-200c/Bmi1 axis and epithelial–mesenchymal transition contribute to acquired resistance to BRAF inhibitor treatment

    PubMed Central

    Liu, Shujing; Tetzlaff, Michael T.; Wang, Tao; Yang, Ruifeng; Xie, Lin; Zhang, Gao; Krepler, Clemens; Xiao, Min; Beqiri, Marilda; Xu, Wei; Karakousis, Giorgos; Schuchter, Lynn; Amaravadi, Ravi K.; Xu, Weiting; Wei, Zhi; Herlyn, Meenhard; Yao, Yuan; Zhang, Litao; Wang, Yingjie; Zhang, Lin; Xu, Xiaowei

    2015-01-01

    Summary Resistance to BRAF inhibitors (BRAFi) is one of the major challenges for targeted therapies for BRAF-mutant melanomas. However, little is known about the role of microRNAs in conferring BRAFi resistance. Herein, we demonstrate that miR-200c expression is significantly reduced whereas miR-200c target genes including Bmi1, Zeb2, Tubb3, ABCG5, and MDR1 are significantly increased in melanomas that acquired BRAFi resistance compared to pretreatment tumor biopsies. Similar changes were observed in BRAFi-resistant melanoma cell lines. Overexpression of miR-200c or knock-down of Bmi1 in resistant melanoma cells restores their sensitivities to BRAFi, leading to deactivation of the PI3K/AKT and MAPK signaling cascades, and acquisition of epithelial– mesenchymal transition-like phenotypes, including upregulation of E-cadherin, downregulation of N-cadherin, and ABCG5 and MDR1 expression. Conversely, knock-down of miR-200c or overexpression of Bmi1 in BRAFi-sensitive melanoma cells activates the PI3K/AKT and MAPK pathways, upregulates N-cadherin, ABCG5, and MDR1 expression, and downregulates E-cadherin expression, leading to BRAFi resistance. Together, our data identify miR-200c as a critical signaling node in BRAFi-resistant melanomas impacting the MAPK and PI3K/AKT pathways, suggesting miR-200c as a potential therapeutic target for overcoming acquired BRAFi resistance. PMID:25903073

  5. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    PubMed Central

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien; Schuetz, Erin G.; Chen, Taosheng

    2013-01-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotics detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet-drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that cautions should be taken for PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. PMID:23707768

  6. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway.

    PubMed

    Wang, Wenjuan; Zou, Liping; Zhou, Danmei; Zhou, Zhongwen; Tang, Feng; Xu, Zude; Liu, Xiuping

    2016-09-01

    Multidrug resistant (MDR) cancer cells overexpressing P-glycoprotein (P-gp) exhibit enhanced invasive/metastatic ability as compared with the sensitive cells. We aimed to clarify the mechanism underlying this observation and found that during the development of drug resistance to adriamycin in MCF7 cells, the elevated expression of UCH-L1 coincides with the up-regulation of MDR1, CD147, MMP2, and MMP9 as well as increased cellular migration/invasion. Overexpression of UCH-L1 in MCF7 cells up-regulated MDR1, CD147, MMP2, and MMP9, which conferred MDR and promoted migration/invasion. On the other hand, silencing of UCH-L1 in MCF7/Adr cells led to the opposite effect. Immunohistochemistry in 203 breast cancer samples revealed that UCH-L1 expression is positively correlated with P-gp, CD147, MMP2, and MMP9 expression and standard tumor spread indicators. Kaplan-Meier survival analysis indicated a correlation between UCH-L1 expression and shorter recurrent and survival times. Moreover, UCH-L1-overexpressing clones treated with U0126 (an Erk1/2-specific inhibitor) significantly decreased the expression of MDR1, CD147, MMP2, and MMP9. These data indicate that UCH-L1 may assume a dual role, because it had intrinsic stimulatory effects on tumor migration/invasion and increased MDR. © 2015 Wiley Periodicals, Inc. PMID:26293643

  7. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging.

    PubMed

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-01-01

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization-MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research. PMID:27026287

  8. CCR9 Antagonists in the Treatment of Ulcerative Colitis

    PubMed Central

    Bekker, Pirow; Ebsworth, Karen; Walters, Matthew J.; Berahovich, Robert D.; Ertl, Linda S.; Charvat, Trevor T.; Punna, Sreenivas; Powers, Jay P.; Campbell, James J.; Sullivan, Timothy J.; Jaen, Juan C.; Schall, Thomas J.

    2015-01-01

    While it has long been established that the chemokine receptor CCR9 and its ligand CCL25 are essential for the movement of leukocytes into the small intestine and the development of small-intestinal inflammation, the role of this chemokine-receptor pair in colonic inflammation is not clear. Toward this end, we compared colonic CCL25 protein levels in healthy individuals to those in patients with ulcerative colitis. In addition, we determined the effect of CCR9 pharmacological inhibition in the mdr1a−/− mouse model of ulcerative colitis. Colon samples from patients with ulcerative colitis had significantly higher levels of CCL25 protein compared to healthy controls, a finding mirrored in the mdr1a−/− mice. In the mdr1a−/− mice, CCR9 antagonists significantly decreased the extent of wasting and colonic remodeling and reduced the levels of inflammatory cytokines in the colon. These findings indicate that the CCR9:CCL25 pair plays a causative role in ulcerative colitis and suggest that CCR9 antagonists will provide a therapeutic benefit in patients with colonic inflammation. PMID:26457007

  9. Differential effects of the organochlorine pesticide DDT and its metabolite p,p'-DDE on p-glycoprotein activity and expression

    SciTech Connect

    Shabbir, Arsalan; DiStasio, Susan; Zhao, Jingbo; Cardozo, Christopher P.; Wolff, Mary S.; Caplan, Avrom J. . E-mail: avrom.caplan@mssm.edu

    2005-03-01

    1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is an organochlorine pesticide. Its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethene (p,p'-DDE) is a persistent environmental contaminant and both compounds accumulate in animals. Because multidrug resistance transporters, such as p-glycoprotein, function as a defense against xenobiotic exposure, we analyzed the ability of DDT and p,p'-DDE to act as efflux modulators. Using a competitive intact cell assay based on the efflux of the fluorescent dye rhodamine 123, we found that DDT, but not p,p'-DDE, stimulated dye retention. Subsequent studies using verapamil as competitor suggested that DDT is a weak p-glycoprotein inhibitor. Further studies addressed the ability of DDT and p,p'-DDE to induce MDR1, the gene encoding p-glycoprotein. In HepG2 cells, we found that both compounds induced MDR1 by twofold to threefold. Similar results were observed in mouse liver after a single dose of p,p'-DDE, although some gender-specific induction differences were noted. By contrast, p,p'-DDE failed to induce MDR1 in HeLa cells, indicating some cell-specific effects for induction. Further expression studies demonstrated increased levels of the endoplasmic reticulum molecular chaperone, Bip, in response to DDT, but not p,p'-DDE. These results suggest that DDT, but not p,p'-DDE, induces an endoplasmic reticulum stress response.

  10. Integrative Cloning, Expression, and Stability of the cryIA(c) Gene from Bacillus thuringiensis subsp. kurstaki in a Recombinant Strain of Clavibacter xyli subsp. cynodontis

    PubMed Central

    Lampel, Jay S.; Canter, Gayle L.; Dimock, Michael B.; Kelly, Jeffrey L.; Anderson, James J.; Uratani, Brenda B.; Foulke, James S.; Turner, John T.

    1994-01-01

    A bacterial endophyte was engineered for insecticidal activity against the European corn borer. The cryIA(c) gene from Bacillus thuringiensis subsp. kurstaki was introduced into the chromosome of Clavibacter xyli subsp. cynodontis by using an integrative plasmid vector. The integration vectors pCG740 and pCG741 included the replicon pGEM5Zf(+), which is maintained in Escherichia coli but not in C. xyli subsp. cynodontis; tetM as a marker for selection in C. xyli subsp. cynodontis; and a chromosomal fragment of C. xyli subsp. cynodontis to allow for homologous recombination between the vector and the bacterial chromosome. Insertion of vector DNA into the chromosome was demonstrated by DNA hybridization. Recombinant strains MDR1.583 and MDR1.586 containing the cryIA(c) gene were shown to produce the 133,000-kDa protoxin and several smaller immunoreactive proteins. Both strains were equally toxic to insect larvae in bioassays. Significant insecticidal activity was demonstrated in planta. The cryIA(c) gene and the tetM gene introduced into strain MDR1.586 were shown to be deleted from some cells, thereby giving rise to a noninsecticidal segregant population. In DNA hybridization experiments and insect bioassays, these segregants were indistinguishable from the wild-type strain. Overall, these results demonstrate the plausibility of genetically engineered bacterial endophytes for insect control. Images PMID:16349179

  11. Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance

    SciTech Connect

    Mickisch, G.H.; Merlino, G.T.; Galski, H.; Gottesman, M.M.; Pastan, I. )

    1991-01-15

    The development of preclinical models for the rapid testing of agents that circumvent multidrug resistance in cancer is a high priority of research on drug resistance. A common form of multidrug resistance in human cancer results from expression of the MDR1 gene, which encodes a M{sub r} 170,000 glycoprotein that functions as a plasma membrane energy-dependent multidrug efflux pump. The authors have engineered transgenic mice that express this multidrug transporter in their bone marrow and demonstrated that these animals are resistant to leukopenia by a panel of anticancer drugs including anthracyclines, vinca alkaloids, etoposide, taxol, and actinomycin D. Differential leukocyte counts indicate that both neutrophils and lympohcytes are pretected. Drugs such as cisplatin, methotrexate, and 5-fluorouracil, which are not handled by the multidrug transporter, produce bone marrow suppression in both normal and transgenic mice. The resistance conferred by the MDR1 gene can be circumvented in a dose-dependent manner by simultaneous administration of agents previously shown to be inhibitors of the multidrug transporter in vitro, including verapamil isomers, quinidine, and quinine. They conclude that MDR1-transgenic mice provide a rapid and reliable system to determine the bioactivity of agents that reverse multidrug resistance in animals.

  12. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging

    PubMed Central

    Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu

    2016-01-01

    In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization–MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research. PMID:27026287

  13. Overcoming Multidrug Resistance in Candida albicans: Macrocyclic Diterpenes from Euphorbia Species as Potent Inhibitors of Drug Efflux Pumps.

    PubMed

    Nim, Shweta; Mónico, Andreia; Rawal, Manpreet Kaur; Duarte, Noélia; Prasad, Rajendra; Di Pietro, Attilio; Ferreira, Maria-José U

    2016-08-01

    Thirteen macrocyclic diterpenes (1-13) of the jatrophane and lathyrane types, either isolated from Euphorbia species or obtained by chemical derivatization, were evaluated for their ability to inhibit the drug efflux activity of Candida albicans CaCdr1p and CaMdr1p multidrug transporters overexpressed in a Saccharomyces cerevisiae strain. Their inhibitory potential was assessed through a functional assay of Nile Red accumulation monitored by flow cytometry. A chemosensitization assay, using the checkerboard method, was also performed with the active compounds in order to evaluate their type of interaction with fluconazole.In the transport assay, most compounds were found to inhibit both transporters, most likely as non-substrates, as shown by relative resistance indices close to unity. In contrast, the jatrophanes euphopubescenol (10) and euphomelliferene A (11) were selective for CaMdr1p and CaCdr1p, respectively. Moreover, when used in combination with fluconazole, compounds 12 and 13 displayed strong synergistic interactions (FICI = 0.071) against the yeast strain overexpressing CaMdr1p, decreasing the MIC80 of the antifungal agent 13-fold. Both compounds were also able to reduce the effective concentration of this antifungal agent by 4- to 8-fold against an azole-resistant clinical isolate of C. albicans (F5). PMID:27145238

  14. CRISPR-Cas9-modified pfmdr1 protects Plasmodium falciparum asexual blood stages and gametocytes against a class of piperazine-containing compounds but potentiates artemisinin-based combination therapy partner drugs.

    PubMed

    Ng, Caroline L; Siciliano, Giulia; Lee, Marcus C S; de Almeida, Mariana J; Corey, Victoria C; Bopp, Selina E; Bertuccini, Lucia; Wittlin, Sergio; Kasdin, Rachel G; Le Bihan, Amélie; Clozel, Martine; Winzeler, Elizabeth A; Alano, Pietro; Fidock, David A

    2016-08-01

    Emerging resistance to first-line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine-containing compound ACT-451840 exhibits single-digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro-derived ACT-451840-resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane-bound ATP-binding cassette transporter known to alter P. falciparum susceptibility to multiple first-line antimalarials. CRISPR-Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT-451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9-introduced pfmdr1 mutations also acquired ACT-451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease-relieving and transmission-blocking antimalarials. PMID:27073104

  15. Screening for impact of popular herbs improving mental abilities on the transcriptional level of brain transporters.

    PubMed

    Mrozikiewicz, Przemyslaw M; Bogacz, Anna; Bartkowiak-Wieczorek, Joanna; Kujawski, Radoslaw; Mikolajczak, Przemyslaw L; Ozarowski, Marcin; Czerny, Boguslaw; Mrozikiewicz-Rakowska, Beata; Grzeskowiak, Edmund

    2014-06-01

    There are a number of compounds that can modify the activity of ABC (ATP-binding cassette) and SLC (solute carrier) transporters in the blood-brain barrier (BBB). The aim of this study was to investigate the effect of natural and synthetic substances on the expression level of genes encoding transporters present in the BBB (mdr1a, mdr1b, mrp1, mrp2, oatp1a4, oatp1a5 and oatp1c1). Our results showed that verapamil caused the greatest reduction in the mRNA level while other synthetic (piracetam, phenobarbital) and natural (codeine, cyclosporine A, quercetin) substances showed a selective inhibitory effect. Further, the extract from the roots of Panax ginseng C. A. Meyer exhibited a decrease of transcription against selected transporters whereas the extract from Ginkgo biloba L. leaves resulted in an increase of the expression level of tested genes, except for mrp2. Extract from the aerial parts of Hypericum perforatum L. was the only one to cause an increased mRNA level for mdr1 and oatp1c1. These findings suggest that herbs can play an important role in overcoming the BBB and multidrug resistance to pharmacotherapy of brain cancer and mental disorders, based on the activity of selected drug-metabolizing enzymes and transporters located in the BBB. PMID:24914722

  16. A robust and versatile signal-on fluorescence sensing strategy based on SYBR Green I dye and graphene oxide

    PubMed Central

    Qiu, Huazhang; Wu, Namei; Zheng, Yanjie; Chen, Min; Weng, Shaohuang; Chen, Yuanzhong; Lin, Xinhua

    2015-01-01

    A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg2+) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. PMID:25565810

  17. Toxicity induced by emodin on zebrafish embryos.

    PubMed

    He, Qiuxia; Liu, Kechun; Wang, Sifeng; Hou, Hairong; Yuan, Yanqiang; Wang, Ximin

    2012-04-01

    Emodin, a widely available herbal remedy, has a variety of pharmacological actions and valuable clinical applications. The potential effect of emodin on zebrafish (Danio rerio) embryos was evaluated. Zebrafish embryos were incubated with 0.1-2 μg/mL of emodin from 7 hours to 6 days postfertilization (dpf). Emodin, at concentrations of 0.25 μg/mL and above, negatively affected embryo survival and hatching success. Emodin induced a large suite of abnormalities on zebrafish embryos, such as edema, crooked trunk, and abnormal morphogenesis. To elucidate the mechanism of action, the transcript levels of drug-metabolism genes (CYP3A) and a multiple drug-resistance gene (MDR1) were detected by reverse-transcript polymerase chain reaction. Embryos showed increases in mRNA accumulation of CYP3A and MDR1. The above-described results indicated that emodin impaired zebrafish embryo development and some organ morphogenesis, and CYP3A and MDR1 were involved in the process. These findings suggest that emodin was toxic to zebrafish lavae at relatively low concentrations. PMID:21834668

  18. Multidrug resistance 1 gene polymorphism in amlodipine-induced gingival enlargement.

    PubMed

    Naik, Kumaraswamy Naik Lambani Rama; Jhajharia, Kapil; Chaudhary, Roopam; Tatikonda, Aravind; Dhaliwal, Aprinderpal Singh; Kaur, Rose Kanwaljeet

    2015-01-01

    Gingival enlargement comprises any clinical condition in which an increase in the size of the gingiva is observed. It is a side effect associated with some distinct classes of drugs, such as anticonvulsants, immunosuppressant, and calcium channel blockers. Among calcium channel blockers, nifedipine causes gingival enlargement in about 10% of patients, whereas the incidence of amlodipine, a third-generation calcium channel blocker, induced gingival enlargement is very limited. Because the calcium antagonists, albeit to a variable degree, act as inhibitors of P-glycoprotein (P-gp), the gene product of multidrug resistance 1 (MDR1), and inflammation may modify P-gp expression. We hereby, report a case of amlodipine-induced gingival enlargement with MDR1 3435C/T polymorphism, associated with inflammatory changes due to plaque accumulation, in a 50-year-old hypertensive male patient. The genotype obtained for the polymorphism was a heteromutant genotype, thus supporting the contention that the MDR1 polymorphism may alter the inflammatory response to the drug. PMID:26015682

  19. Gestational and pregnane X receptor-mediated regulation of placental ATP-binding cassette drug transporters in mice.

    PubMed

    Gahir, Sarabjit S; Piquette-Miller, Micheline

    2011-03-01

    The ATP-binding cassette (ABC) drug transporters in the placenta are involved in controlling the exchange of endogenous and exogenous moieties. Pregnane X receptor (PXR) is a nuclear receptor that regulates the hepatic expression of several key ABC transporters, but it is unclear whether PXR is involved in the regulation of these transporters in the placenta. This study explores the role of PXR in the regulation of placental drug transporters. The placental mRNA expression of Mdr1a, Bcrp, and Mrp1, 2, and 3 was examined in PXR knockout (-/-), heterozygote (+/-), and wild-type (+/+) mice by quantitative PCR. The impact of PXR activation was examined in pregnant pregnane-16α-carbonitrile (PCN)-treated mice. Compared with that in controls, the basal expression of Mdr1a, Bcrp, Mrp1, and Mrp2 was significantly higher in (+/-) and (-/-) mice. Alterations in the expression of mdr1a, bcrp, and mrp1, 2, and 3 between gestational day (GD) 10 and GD 17 was dissimilar between (+/+) and (-/-) mice. Although PCN treatment induced maternal and fetal hepatic expression of Cyp3a11; placental expression of transporters were not significantly changed. Overall, our results suggest a repressive role of PXR in the basal expression of several placental transporters and a tissue-specific induction of these target genes after PXR activation. PMID:21127142

  20. Clitocine Reversal of P-Glycoprotein Associated Multi-Drug Resistance through Down-Regulation of Transcription Factor NF-κB in R-HepG2 Cell Line

    PubMed Central

    Sun, Jianguo; Yeung, Chilam Au; Co, Ngai Na; Tsang, Tsun Yee; Yau, Esmond; Luo, Kewang; Wu, Ping; Wa, Judy Chan Yuet; Fung, Kwok-Pui; Kwok, Tim-Tak; Liu, Feiyan

    2012-01-01

    Multidrug resistance(MDR)is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1) gene encodes the plasma membrane P-glycoprotein (P-gp) that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5′-serial truncation analysis of the MDR1 promoter defined a region from position −450 to −193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-κB binding site in the defined region and overexpression of NF-κB p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-κB p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-κB p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-κB activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-κB. PMID:22927901

  1. Psoralen reverses the P-glycoprotein-mediated multidrug resistance in human breast cancer MCF-7/ADR cells.

    PubMed

    Jiang, Jingru; Wang, Xiaohong; Cheng, Kai; Zhao, Wanzhong; Hua, Yitong; Xu, Chengfeng; Yang, Zhenlin

    2016-06-01

    The resistance of cancer to chemotherapeutic agents is a major obstacle during chemotherapy. Clinical multidrug resistance (MDR) is commonly mediated by membrane drug efflux pumps, including ATP‑binding cassette subfamily B member 1, also termed P-glycoprotein (P-gp). P-gp is a membrane transporter encoded by the MDR1 gene. The current study aimed to investigate the impact of psoralen on the expression and function of P‑gp. The 10% inhibitory concentration (IC10) of psoralen, and its capacity to reduce MDR in adriamycin (ADR)‑resistant MCF‑7/ADR cells were determined using MTT assay. The ability of psoralen to modulate the transport activity of P‑gp in MCF‑7/ADR cells was evaluated by measuring the accumulation and efflux of rhodamine 123 (Rh 123) and adriamycin with flow cytometry. The present study evaluated the mRNA level of MDR1 in MCF‑7 and MCF‑7/ADR cells treated with psoralen using reverse transcription-quantitative polymerase chain reaction. The protein expression level of P‑gp was examined by western blot analysis. The current study demonstrated that the IC10 of psoralen in MCF‑7/ADR cells was 8 µg/ml. At 8 µg/ml, psoralen reduced MDR and the sensitivity of the MCF‑7/ADR cells to ADR compared with untreated cells. Additionally, psoralen significantly increased the intracellular accumulation of ADR and Rh 123. However, the IC10 of psoralen did not affect the protein expression levels of P‑gp or mRNA levels of MDR1 (P>0.05). Psoralen reduces MDR by inhibiting the efflux function of P‑gp, which may be important for increasing the efficiency of chemotherapy and improving the clinical protocols aiming to reverse P-gp-mediated MDR. PMID:27082231

  2. Involvement of c-Jun N-terminal kinase in reversal of multidrug resistance of human leukemia cells in hypoxia by 5-bromotetrandrine.

    PubMed

    Zhang, Wei; Chen, Bao-an; Jin, Jun-fei; He, You-ji; Niu, Yi-qi

    2013-11-01

    5-Bromotetrandrine (BrTet), a candidate multidrug resistance (MDR) modulator, is a potential compound for use in cancer therapy when combined with anticancer agents such as daunorubicin (DNR) and paclitaxel. The purposeof this study was to investigate the mechanism of reversal of P-glycoprotein (P-gp)-mediated MDR by BrTet and the involvement of the c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway in both adriamycin-sensitive K562 and adriamycin-resistant K562 (KA) leukemia cells in hypoxia. The combination of BrTet and DNR decreased both phosphorylated JNK1/2 and MDR1/P-gp levels under hypoxic conditions. Furthermore, a pharmacological inhibitor of JNK, SP600125, or small interfering RNA (siRNA) oligonucleotides to both JNK1 and JNK2 reversed BrTet- or DNR-induced JNK phosphorylation and MDR1/P-gp levels. We further demonstrated that the decreased JNK phosphorylation and MDR1/P-gp levels were associated with a significant increase in intracellular accumulation of DNR, which dramatically enhanced the sensitivity of drug-resistant KA cells to DNR, and led to cellular apoptosis through activation of the caspase-3 pathway. It is concluded that using BrTet in combination with other chemotherapeutic agents and pharmacological inhibitors of JNK can abrogate the P-gp-induced MDR in adriamycin-resistant K562 cells, which has potential clinical relevance in cancer therapy for chemotherapeutic-resistant human leukemia. PMID:23418897

  3. Influence of Verapamil and Cyclosporin A on bile acid metabolism and transport in rat liver slices.

    PubMed

    Barth, Astrid; Braun, Jerome; Müller, Dieter

    2006-08-01

    Verapamil (V) is a specific inhibitor of the P-glycoprotein (mdr1) in the hepatocyte canalicular membrane. Cyclosporin A (CsA) as an essential immunosuppressive drug has potentially cholestatic adverse effects on the liver, but increases the expression of mdr1. In precision-cut liver slices from 34- to 40-day-old male Wistar rats 26 individual free and conjugated bile acids (BAs) as markers of hepatic transport and synthesis function were analysed after 4 h incubation with V (100 microM) or CsA (5 microM) in Krebs-Henseleit buffer. Some slices were loaded with cholic acid (CA 5 microM) or tauro-ursodeoxycholic acid (T-UDCA 5 microM) to investigate the V and CsA effects under conditions of BA supplementation. BAs were determined in tissue and medium by HPLC with postcolumn derivatisation and fluorescence detection. V and CsA, influencing different targets in BA transport, enhanced slice concentrations of T- and glyco- (G-) conjugated CA only when exogenous CA was given additionally. This BA accumulation in tissue is more reflected at decreased medium concentrations of these BAs after V and CsA incubations. Both V and CsA also inhibited CA uptake into the slices. The acidic chenodeoxycholic acid (CDCA) synthesis pathway is disturbed: T- and G-CDCA concentrations are diminished in slices and medium after V and CsA incubations. T-UDCA plus V or CsA enhanced not only its own slice concentration but also the concentration of the trihydroxylated tauro-muricholic acid (T-beta-MCA), reflecting the conversion of the accumulated dihydroxylated T-UDCA into the T-beta-MCA. The similar effects of V and CsA on BA transport and metabolism can be explained by mdr1 mediated disturbances of cellular ATP transport rather than by inhibition of individual BA transporters. PMID:16793245

  4. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.

    PubMed

    Watamoto, T; Samaranayake, L P; Egusa, H; Yatani, H; Seneviratne, C J

    2011-09-01

    Biofilm formation is a major virulence attribute of Candida albicans and is directly associated with therapeutic failure. One method by which Candida acquires antifungal resistance is the expression of drug-resistance genes. This study aimed to evaluate the transcriptional regulation of several genes associated with antifungal resistance of C. albicans under planktonic, recently adhered and biofilm growth modes and in C. albicans biofilms in response to antifungal agents. Initially, the antifungal susceptibility of C. albicans cultures in different growth modes was evaluated by standard antifungal susceptibility testing. Next, to assess CDR1, CDR2, MDR1, ERG11, FKS1 and PIL1 expression, RNA was harvested from cells in each growth mode, and from biofilms after drug treatment, and subjected to quantitative real-time RT-PCR (qRT-PCR). Biofilm C. albicans was more resistant to antifungals than recently adhered cells and stationary-phase planktonic cultures. Transcriptional expression of CDR1, CDR2, MDR1, ERG11 and FKS1 was lower in recently adhered C. albicans than in the stationary-phase planktonic cultures. In contrast, PIL1 levels were significantly increased in recently adhered and biofilm modes of growth. The expression of MDR1 in biofilms greatly increased on challenge with amphotericin B but not with the other drugs tested (P<0.01). ERG11 was significantly upregulated by ketoconazole (P<0.01). Caspofungin and amphotericin B significantly upregulated FKS1 expression, whereas they significantly downregulated PIL1 expression (P<0.01). These results indicate that the expression of drug-resistance genes is associated with higher drug resistance of Candida biofilms, and lay a foundation for future large-scale genome-wide expression analysis. PMID:21474609

  5. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms.

    PubMed

    Sanglard, Dominique; Coste, Alix T

    2016-01-01

    Isavuconazole is a novel, broad-spectrum, antifungal azole. In order to evaluate its interactions with known azole resistance mechanisms, isavuconazole susceptibility among different yeast models and clinical isolates expressing characterized azole resistance mechanisms was tested and compared to those of fluconazole, itraconazole, posaconazole, and voriconazole. Saccharomyces cerevisiae expressing the Candida albicans and C. glabrata ATP binding cassette (ABC) transporters (CDR1, CDR2, and CgCDR1), major facilitator (MDR1), and lanosterol 14-α-sterol-demethylase (ERG11) alleles with mutations were used. In addition, pairs of C. albicans and C. glabrata strains from matched clinical isolates with known azole resistance mechanisms were investigated. The expression of ABC transporters increased all azole MICs, suggesting that all azoles tested were substrates of ABC transporters. The expression of MDR1 did not increase posaconazole, itraconazole, and isavuconazole MICs. Relative increases of azole MICs (from 4- to 32-fold) were observed for fluconazole, voriconazole, and isavuconazole when at least two mutations were present in the same ERG11 allele. Upon MIC testing of azoles with clinical C. albicans and C. glabrata isolates with known resistance mechanisms, the MIC90s of C. albicans for fluconazole, voriconazole, itraconazole, posaconazole, and isavuconazole were 128, 2, 1, 0.5, and 2 μg/ml, respectively, while in C. glabrata they were 128, 2, 4, 4, and 16 μg/ml, respectively. In conclusion, the effects of azole resistance mechanisms on isavuconazole did not differ significantly from those of other azoles. Resistance mechanisms in yeasts involving ABC transporters and ERG11 decreased the activity of isavuconazole, while MDR1 had limited effect. PMID:26482310

  6. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells.

    PubMed

    Kang, Jianqin; Zhao, Guohong; Lin, Tao; Tang, Shanhong; Xu, Guanghui; Hu, Sijun; Bi, Qian; Guo, Changcun; Sun, Li; Han, Shuang; Xu, Qian; Nie, Yongzhan; Wang, Biaoluo; Liang, Shuhui; Ding, Jie; Wu, Kaichun

    2013-10-10

    Multidrug resistance (MDR) remains a significant challenge to the clinical treatment of gastric cancer (GC). In the present study, using a phage display approach combined with MTT assays, we screened a specific peptide GMBP1 (Gastric cancer MDR cell-specific binding peptide), ETAPLSTMLSPY, which could bind to the surface of GC MDR cells specifically and reverse their MDR phenotypes. Immunocytochemical staining showed that the potential receptor of GMBP1 was located at the membrane and cytoplasm of MDR cells. In vitro and in vivo drug sensitivity assays, FACS analysis and Western blotting confirmed that GMBP1 was able to re-sensitize MDR cells to chemical drugs. Western blotting and proteomic approaches were used to screen the receptor of GMBP1, and GRP78, a MDR-related protein, was identified as a receptor of GMBP1. This result was further supported by immunofluoresence microscopy and Western blot. Additionally, Western blotting demonstrated that pre-incubation of GMBP1 in MDR cells greatly diminished MDR1, Bcl-2 and GRP78 expression but increased the expression of Bax, whereas downregulation of GRP78, function as a receptor and directly target for GMBP1, only inhibited MDR1 expression. Our findings suggest that GMBP1 could re-sensitize GC MDR cells to a variety of chemotherapeutic agents and this role might be mediated partly through down-regulating GRP78 expression and then inhibiting MDR1 expression. These findings indicate that peptide GMBP1 likely recognizes a novel GRP78 receptor and mediates cellular activities associated with the MDR phenotype, which provides new insight into research on the management of MDR in gastric cancer cells. PMID:23792224

  7. Overexpression of survivin via activation of ERK1/2, Akt, and NF-κB plays a central role in vincristine resistance in multiple myeloma cells.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Ogawa, Naoki; Sakamoto, Kotaro; Shimaoka, Hirotaka; Fujita, Arisa; Itoh, Tatsuki; Imano, Motohiro; Ishizaka, Toshihiko; Satou, Takao; Nishida, Shozo

    2015-04-01

    The acquisition of anti-cancer drug resistance is a major limitation of chemotherapy for multiple myeloma (MM) and it is thus important to identify the mechanisms by which MM cells develop such drug resistance. In a previous study, we showed that multidrug resistance (MDR) involves the overexpression of MDR1 and survivin in vincristine-resistant RPMI8226/VCR cells. However, the underlying mechanism of MDR remains unclear. In this study, we investigated the mechanism of MDR in RPMI8226/VCR cells, and found that RPMI8226/VCR cells exhibit increased levels of activated ERK1/2, Akt, and NF-κB, while the levels of activated mTOR, p38MAPK, and JNK do not differ between RPMI8226/VCR cells and their vincristine-susceptible counterparts. In addition, the inhibition of ERK1/2, Akt, or NF-κB by inhibitors reversed the drug-resistance of RPMI8226/VCR cells via the suppression of survivin expression, but did not affect MDR1 expression; RNA silencing of survivin expression completely reversed vincristine resistance, while MDR1 silencing only weakly suppressed vincristine resistance in RPMI8226/VCR cells. These results indicate that enhanced survivin expression via the activation of ERK1/2, Akt, and NF-κB plays a critical role in vincristine resistance in RPMI8226/VCR cells. Our findings suggest that ERK1/2, Akt, and NF-κB inhibitors are potentially useful as anti-MDR agents for the treatment of vincristine-resistant MM. PMID:25726084

  8. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2.

    PubMed

    Rahgozar, Soheila; Moafi, Alireza; Abedi, Marjan; Entezar-E-Ghaem, Mansureh; Moshtaghian, Jamal; Ghaedi, Kamran; Esmaeili, Abolghasem; Montazeri, Fatemeh

    2014-01-01

    Multidrug resistance (MDR) is an important cause of treatment failure in acute lymphoblastic leukemia (ALL). The ABC family of membrane transporters is proposed, albeit with controversy, to be involved in this process. The present study aims to investigate the mRNA expression profile of several genes of this family, including ABCA2, ABCA3, ABCB1/MDR1, MRP1/ABCC1, MRP3/ABCC3, ABCG2/BCRP, and the intracellular transporter MVP/LRP, in childhood ALL, and to evaluate their association with response to therapy. Some genes in the present research are being studied for the first time in Iran. Using quantitative real-time PCR, we evaluated 27 children with ALL at diagnosis and 15 children with normal bone marrow. The status of response to therapy was assessed one year after the onset of therapy through investigating the IgH/TCRγ gene rearrangements. Our findings indicate a considerable and direct relationship between mRNA expression levels of ABCA2, ABCA3, MDR1, and MRP1 genes and positive minimal residual disease (MRD) measured after one year of treatment. Statistical analysis revealed that expression of these genes higher than the cutoff point will raise the risk of MRD by 15-, 6.25-, 12-, and 9-fold, respectively. No relationship was found between of MVP/LRP, MRP3 and ABCG2 genes expression and ALL prognoses. Considering the direct and significant relationship between the increased expression of ABCA2, ABCA3, MDR1, and MRP1 genes and positive risk of MRD in children with ALL, evaluating the expression profile of these genes on diagnosis may identify high risk individuals and help plan a more efficient treatment strategy. PMID:24145140

  9. Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance.

    PubMed

    Danza, Katia; Silvestris, Nicola; Simone, Giovanni; Signorile, Michele; Saragoni, Luca; Brunetti, Oronzo; Monti, Manlio; Mazzotta, Annalisa; De Summa, Simona; Mangia, Anita; Tommasi, Stefania

    2016-04-01

    Despite the search for new therapeutic strategies for gastric cancer (GC), there is much evidence of progression due to resistance to chemotherapy. Multidrug resistance (MDR) is the ability of cancer cells to survive after exposure to chemotherapeutic agents. The involvement of miRNAs in the development of MDR has been well described but miRNAs able to modulate the sensitivity to chemotherapy by regulating hypoxia signaling pathways have not yet been fully addressed in GC. Our aim was to analyze miR-20b, miR-27a and miR-181a expression with respect to (epirubicin/oxaliplatin/capecitabine (EOX)) chemotherapy regimen in a set of GC patients, in order to investigate whether miRNAs deregulation may influence GC MDR also via hypoxia signaling modulation. Cancer biopsy were obtained from 21 untreated HER2 negative advanced GC patients, retrospectively analyzed. All patients received a first-line chemotherapy (EOX) regimen. MirWalk database was used to identify miR-27a, miR-181a and miR-20b target genes. The expression of miRNAs and of HIPK2, HIF1A and MDR1 genes were detected by real-time PCR. HIPK2 localization was assessed by immunohistochemistry. Our data showed the down-regulation of miR-20b, miR-27a, miR-181a concomitantly to higher levels of MDR1, HIF1A and HIPK2 genes in GC patients with a progressive disease respect to those with a disease control rate. Moreover, immunohistochemistry assay highlighted a higher cytoplasmic HIPK2 staining, suggesting a different role for it. We showed that aberrant expression of miR-20b, miR27a and miR-181a was associated with chemotherapeutic response in GC through HIF1A, MDR1 and HIPK2 genes modulation, suggesting a possible novel therapeutic strategy. PMID:26793992

  10. Vitamin E in human health and disease.

    PubMed

    Clarke, Michael W; Burnett, John R; Croft, Kevin D

    2008-01-01

    Vitamin E in nature is comprised of a family of tocopherols and tocotrienols. The most studied of these is alpha-tocopherol (alpha-TOH), because this form is retained within the body, and vitamin E deficiency is corrected with this supplement. alpha-TOH is a lipid-soluble antioxidant required for the preservation of cell membranes, and it potentially acts as a defense against oxidative stress. Many studies have investigated the metabolism, transport, and efficacy alpha-TOH in the prevention of sequelae associated with cardiovascular disease (CVD). Supplementation with vitamin E is considered to provide health benefits against CVD through its antioxidant activity, the prevention of lipoprotein oxidation, and the inhibition of platelet aggregation. However, the results from large prospective, randomized, placebo-controlled clinical trials with alpha-TOH have been largely negative. A recent meta-analysis suggests that alpha-TOH supplements may actually increase all-cause mortality; however, the mechanism for this increased risk is unknown. In vitro studies performed in human cell cultures and animal models suggest that vitamin E might increase the hepatic production of cytochrome P450s and MDR1. Induction of CYP3A4 or MDR1 by vitamin E could potentially lower the efficacy of any drug metabolized by CYP3A4 or MDR1. Other possibilities include an adverse effect of alpha-TOH on blood pressure in high-risk populations. Because of the wide popularity and use of vitamin E supplements, further research into potential adverse effects is clearly warranted. PMID:18712629

  11. Oral Serum-Derived Bovine Immunoglobulin/Protein Isolate Has Immunomodulatory Effects on the Colon of Mice that Spontaneously Develop Colitis.

    PubMed

    Pérez-Bosque, Anna; Miró, Lluïsa; Maijó, Mònica; Polo, Javier; Campbell, Joy M; Russell, Louis; Crenshaw, Joe D; Weaver, Eric; Moretó, Miquel

    2016-01-01

    Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT). Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI) ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT) mice and mice lacking the mdr1a gene (KO) were fed diets supplemented with either SBI (2% w/w) or milk proteins (Control diet), from day 21 (weaning) until day 56. Leucocytes in mesenteric lymph nodes (MLN) and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05). The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05) and SBI supplementation reduced this variable (p < 0.05). The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05). In the colon of KO mice, there was an increased production of mucosal pro-inflammatory cytokines such as IL-2 (2-fold), IL-6 (26-fold) and IL-17 (19-fold), and of chemokines MIP-1β (4.5-fold) and MCP-1 (7.2-fold). These effects were significantly prevented by SBI (p < 0.05). SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis. PMID:27139220

  12. Amplification of the murine mdr2 gene and a reconsideration of the structure of the murine mdr gene locus.

    PubMed

    Kirschner, L S

    1995-01-01

    A common feature of cells selected in vitro for the multidrug resistance (MDR) phenotype is the amplification and concomitant overexpression of the mdr genes. In murine macrophage-like J774.2-derived MDR cell lines, there is a good correlation between levels of amplification and expression for the mdr1b gene, but not for the other two gene family members, mdr1a and mdr2. To understand this phenomenon better, a study of the amplification and expression of the mdr2 gene was undertaken. Southern blotting of genomic DNAs from a series of six MDR cell lines revealed that five of these lines had 5'-end amplification of mdr2, whereas only three contained 3'-end amplification. The analysis also suggested the involvement of a recombination hot-spot in this phenomenon. Despite the observation that the ratio between the number of copies of the 5' and 3' ends of the gene differs among cell lines, the ratio of 5' to 3' end transcription of mdr2 was approximately 1 in all cell lines. An analysis of promoter methylation in MDR cell lines demonstrated that this mechanism may play a role in regulating the transcription of mdr2, but not of mdr1b. Long-range mapping of the mdr locus in parental and amplified cell lines suggested that the three mdr genes are oriented in the same direction, and also revealed the presence of a number of rearrangement events. Models for the murine mdr gene locus in wild-type cells and in a cell line containing a rearrangement are presented. PMID:7832992

  13. Interspecies variability in expression of hepatobiliary transporters across human, dog, monkey, and rat as determined by quantitative proteomics.

    PubMed

    Wang, Li; Prasad, Bhagwat; Salphati, Laurent; Chu, Xiaoyan; Gupta, Anshul; Hop, Cornelis E C A; Evers, Raymond; Unadkat, Jashvant D

    2015-03-01

    We quantified, by liquid chromatography tandem mass spectrometry, transporter protein expression of BSEP, MATE1, MRP3, MRP4, NTCP, and OCT1 in our human liver bank (n = 55) and determined the relationship between protein expression and sex, age and genotype. These data complement our previous work in the same liver bank where we quantified the protein expression of OATPs, BCRP, MDR1, and MRP2. In addition, we quantified and compared the interspecies differences in expression of the hepatobiliary transporters, corresponding to the above human transporters, in liver tissue and hepatocytes of male beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Wistar rats. In all the species, the sinusoidal OATPs/Oatps were the most abundant hepatic transporters. However, there were notable interspecies differences in the relative abundance of the remaining transporters. For example, the next most abundant transporter in humans and monkeys was OCT1/Oct1, whereas it was Mrp2 and Ntcp in dogs/Wistar rats and Sprague-Dawley rats, respectively. In contrast, the protein expression of the efflux transporters BCRP/Bcrp, MDR1/Mdr1, MRP3/Mrp3, MRP4/Mrp4, and MATE1/Mate1 was much lower across all the species. For most transporters, the expression in the liver tissues was comparable to that in the unplated cryopreserved hepatocytes. These data on human liver transporter protein expression complete the picture of the expression of major human hepatobiliary transporters important in drug disposition and toxicity. In addition, the data on expression of the corresponding hepatobiliary transporters in preclinical species will be helpful in interpreting and extrapolating pharmacokinetic, pharmacological, and toxicological results from preclinical studies to humans. PMID:25534768

  14. Oral Serum-Derived Bovine Immunoglobulin/Protein Isolate Has Immunomodulatory Effects on the Colon of Mice that Spontaneously Develop Colitis

    PubMed Central

    Maijó, Mònica; Polo, Javier; Campbell, Joy M.; Russell, Louis; Crenshaw, Joe D.; Weaver, Eric; Moretó, Miquel

    2016-01-01

    Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT). Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI) ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT) mice and mice lacking the mdr1a gene (KO) were fed diets supplemented with either SBI (2% w/w) or milk proteins (Control diet), from day 21 (weaning) until day 56. Leucocytes in mesenteric lymph nodes (MLN) and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05). The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05) and SBI supplementation reduced this variable (p < 0.05). The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05). In the colon of KO mice, there was an increased production of mucosal pro-inflammatory cytokines such as IL-2 (2-fold), IL-6 (26-fold) and IL-17 (19-fold), and of chemokines MIP-1β (4.5-fold) and MCP-1 (7.2-fold). These effects were significantly prevented by SBI (p < 0.05). SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis. PMID:27139220

  15. Multimodal transfer of MDR by exosomes in human osteosarcoma.

    PubMed

    Torreggiani, Elena; Roncuzzi, Laura; Perut, Francesca; Zini, Nicoletta; Baldini, Nicola

    2016-07-01

    Exosomes are extracellular vesicles released by both normal and tumour cells which are involved in a new intercellular communication pathway by delivering cargo (e.g., proteins, microRNAs, mRNAs) to recipient cells. Tumour-derived exosomes have been shown to play critical roles in different stages of tumour growth and progression. In this study, we investigated the potential role of exosomes to transfer the multidrug resistance (MDR) phenotype in human osteosarcoma cells. Exosomes were isolated by differential centrifugation of culture media from multidrug resistant human osteosarcoma MG-63DXR30 (Exo/DXR) and MG-63 parental cells (Exo/S). Exosome purity was examined by transmission electron microscopy and confirmed by immunoblot analysis for the expression of specific exosomal markers. Our data showed that exosomes derived from doxorubicin-resistant osteosarcoma cells could be taken up into secondary cells and induce a doxorubicin-resistant phenotype. The incubation of osteosarcoma cells with Exo/DXR decreased the sensitivity of parental cells to doxorubicin, while exposure with Exo/S was ineffective. In addition, we demonstrated that Exo/DXR expressed higher levels of MDR-1 mRNA and P-glycoprotein compared to Exo/S (p=0.03). Interestingly, both MDR-1 mRNA and P-gp increased in MG-63 cells after incubation with Exo/DXR, suggesting this as the main mechanism of exosome-mediated transfer of drug resistance. Our findings suggest that multidrug resistant osteosarcoma cells are able to spread their ability to resist the effects of doxorubicin treatment on sensitive cells by transferring exosomes carrying MDR-1 mRNA and its product P-glycoprotein. PMID:27176642

  16. Selective inhibition of human cytochrome P450 3A4 by N-[2(R)-hydroxy-1(S)-indanyl]-5-[2(S)-(1, 1-dimethylethylaminocarbonyl)-4-[(furo[2, 3-b]pyridin-5-yl)methyl]piperazin-1-yl]-4(S)-hydroxy-2(R)-phenylmethy lpentanamide and P-glycoprotein by valspodar in gene transfectant systems.

    PubMed

    Kawahara, I; Kato, Y; Suzuki, H; Achira, M; Ito, K; Crespi, C L; Sugiyama, Y

    2000-10-01

    Our previous report showed that L754.394 and valspodar (PSC833) are potent inhibitors of midazolam hydroxylation in human jejunum microsomes and vectorial transport of vinblastine in Caco-2 cells, respectively. In the present study, to directly examine the interactions of these compounds as well as other substrates with CYP3A4 and P-glycoprotein (P-gp), we performed in vitro inhibition studies using recombinant CYP3A4-expressed microsomes and an MDR1-transfected cell line, LLC-MDR1, respectively. In CYP3A4-expressed microsomes, both L754.394 and ketoconazole, at a concentration less than 0.5 microM, are the most potent inhibitors of the formation of 1'-hydroxymidazolam, a major metabolite of midazolam formed by CYP3A4. The greatest inhibitory effect on the transcellular transport of digoxin in LLC-MDR1 cells was observed in the presence of valspodar (<0.1 microM), followed by verapamil. From a comparison of the IC(50) values, it was shown that L754.394 and valspodar exhibited the highest selectivity for CYP3A4 and P-gp, respectively. To demonstrate such specificity, both midazolam hydroxylation and digoxin transport were observed in CYP3A4 transfected Caco-2 cells, which coexpress both P-gp and CYP3A4, in the presence or absence of L754.394 (0.5 microM) and valspodar (1.0 microM). L754.394 almost completely inhibited midazolam hydroxylation, but not digoxin transport, whereas almost complete inhibition of digoxin transport was observed in the presence of valspodar, but inhibition of the hydroxylation was minimal. Thus, the present study has demonstrated that L754.394 has a specific inhibitory effect on CYP3A4, whereas valspodar is specific for P-gp. PMID:10997946

  17. Zinc finger nuclease-mediated gene knockout results in loss of transport activity for P-glycoprotein, BCRP, and MRP2 in Caco-2 cells.

    PubMed

    Sampson, Kathleen E; Brinker, Amanda; Pratt, Jennifer; Venkatraman, Neetu; Xiao, Yongling; Blasberg, Jim; Steiner, Toni; Bourner, Maureen; Thompson, David C

    2015-02-01

    Membrane transporters P-glycoprotein [P-gp; multidrug resistance 1 (MDR1)], multidrug resistance-associated protein (MRP) 2, and breast cancer resistance protein (BCRP) affect drug absorption and disposition and can also mediate drug-drug interactions leading to safety/toxicity concerns in the clinic. Challenges arise with interpreting cell-based transporter assays when substrates or inhibitors affect more than one actively expressed transporter and when endogenous or residual transporter activity remains following overexpression or knockdown of a given transporter. The objective of this study was to selectively knock out three drug efflux transporter genes (MDR1, MRP2, and BCRP), both individually as well as in combination, in a subclone of Caco-2 cells (C2BBe1) using zinc finger nuclease technology. The wild-type parent and knockout cell lines were tested for transporter function in Transwell bidirectional assays using probe substrates at 5 or 10 μM for 2 hours at 37°C. P-gp substrates digoxin and erythromycin, BCRP substrates estrone 3-sulfate and nitrofurantoin, and MRP2 substrate 5-(and-6)-carboxy-2',7'-dichlorofluorescein each showed a loss of asymmetric transport in the MDR1, BCRP, and MRP2 knockout cell lines, respectively. Furthermore, transporter interactions were deduced for cimetidine, ranitidine, fexofenadine, and colchicine. Compared with the knockout cell lines, standard transporter inhibitors showed substrate-specific variation in reducing the efflux ratios of the test compounds. These data confirm the generation of a panel of stable Caco-2 cell lines with single or double knockout of human efflux transporter genes and a complete loss of specific transport activity. These cell lines may prove useful in clarifying complex drug-transporter interactions without some of the limitations of current chemical or genetic knockdown approaches. PMID:25388687

  18. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms

    PubMed Central

    Coste, Alix T.

    2015-01-01

    Isavuconazole is a novel, broad-spectrum, antifungal azole. In order to evaluate its interactions with known azole resistance mechanisms, isavuconazole susceptibility among different yeast models and clinical isolates expressing characterized azole resistance mechanisms was tested and compared to those of fluconazole, itraconazole, posaconazole, and voriconazole. Saccharomyces cerevisiae expressing the Candida albicans and C. glabrata ATP binding cassette (ABC) transporters (CDR1, CDR2, and CgCDR1), major facilitator (MDR1), and lanosterol 14-α-sterol-demethylase (ERG11) alleles with mutations were used. In addition, pairs of C. albicans and C. glabrata strains from matched clinical isolates with known azole resistance mechanisms were investigated. The expression of ABC transporters increased all azole MICs, suggesting that all azoles tested were substrates of ABC transporters. The expression of MDR1 did not increase posaconazole, itraconazole, and isavuconazole MICs. Relative increases of azole MICs (from 4- to 32-fold) were observed for fluconazole, voriconazole, and isavuconazole when at least two mutations were present in the same ERG11 allele. Upon MIC testing of azoles with clinical C. albicans and C. glabrata isolates with known resistance mechanisms, the MIC90s of C. albicans for fluconazole, voriconazole, itraconazole, posaconazole, and isavuconazole were 128, 2, 1, 0.5, and 2 μg/ml, respectively, while in C. glabrata they were 128, 2, 4, 4, and 16 μg/ml, respectively. In conclusion, the effects of azole resistance mechanisms on isavuconazole did not differ significantly from those of other azoles. Resistance mechanisms in yeasts involving ABC transporters and ERG11 decreased the activity of isavuconazole, while MDR1 had limited effect. PMID:26482310

  19. High expression of miR-9 in CD133+ glioblastoma cells in chemoresistance to temozolomide

    PubMed Central

    Munoz, Jessian L.; Rodriguez-Cruz, Vivian; Rameshwar, Pranela

    2016-01-01

    Glioblastoma Multiforme (GBM), a uniformly lethal stage IV astrocytoma, is currently treated with a combination of surgical and radiation therapy as well as Temozolomide (TMZ) chemotherapy. Resistance to TMZ is rapidly acquired by GBM cells and overcoming this resistance has been an area of signi?cant research. GBM 'cancer stem cells' (CSC) also known as 'cancer initiating cells' are often positively selected by CD133 expression and TMZ resistance. In this project, we selected GBM CSC from two cell lines based on CD133 expression. CD133+ and CD133− GBM cells showed comparable cell cycle status. The expression of genes within the Sonic Hedgehog Signaling pathway, PTCH1 (SHH receptor/basal signaling repressor) and Gli1 (effector transcription factor) were increased. The recent literature indicated a decreased in PTCH expression by miRNA and this was independent of SHH expression. We analyzed 5 potential PTCH-targeting miRNA and identi?ed an increase in miRNA-9-2. The CD133+ cells showed an increase in the Multiple Drug Resistance 1 gene (MDR1). Knockdown of Gli1 and MDR1 with siRNA enhanced TMZ induced cell death. Taken together, these studies show CD133+ GBM CSCs expressed greater levels of miR-9 and activation of the SHH/PTCH1/MDR1 axis. This axis has been shown to impart TMZ resistance. In the case of the CD133+ cells, the resistance is not acquires but seems to be inherent. Identi?cation of this pathway as well as the identi?cation of miR-9 may allow for the development of miRNA-targeted approach to Cancer Stem Cell therapy in GBM. PMID:27347493

  20. MiR-130a and MiR-374a Function as Novel Regulators of Cisplatin Resistance in Human Ovarian Cancer A2780 Cells

    PubMed Central

    Wang, Hongjing; Yi, Tao; Jia, Xibiao; Chen, Cen; Xu, Pan

    2015-01-01

    Chemoresistance remains a major obstacle to effective treatment in patients with ovarian cancer, and recently increasing evidences suggest that miRNAs are involved in drug-resistance. In this study, we investigated the role of miRNAs in regulating cisplatin resistance in ovarian cancer cell line and analyzed their possible mechanisms. We profiled miRNAs differentially expressed in cisplatin-resistant human ovarian cancer cell line A2780/DDP compared with parental A2780 cells using microarray. Four abnormally expressed miRNAs were selected (miR-146a,-130a, -374a and miR-182) for further studies. Their expression were verified by qRT-PCR. MiRNA mimics or inhibitor were transfected into A2780 and A2780/DDP cells and then drug sensitivity was analyzed by MTS array. RT-PCR and Western blot were carried out to examine the alteration of MDR1, PTEN gene expression. A total of 32 miRNAs were found to be differentially expressed in A2780/DDP cells. Among them, miR-146a was down-regulated and miR-130a,-374a,-182 were upregulated in A2780/DDP cells, which was verified by RT-PCR. MiR-130a and miR-374a mimics decreased the sensitivity of A2780 cells to cisplatin, reversely, their inhibitors could resensitize A2780/DDP cells. Furthermore, overexpression of miR-130a could increase the MDR1 mRNA and P-gp levels in A2780 and A2780/DDP cells, whereas knockdown of miR-130a could inhibit MDR1 gene expression and upregulate the PTEN protein expression .In a conclusion, the deregulation of miR-374a and miR-130a may be involved in the development and regulation of cisplatin resistance in ovarian cancer cells. This role of miR-130a may be achieved by regulating the MDR1 and PTEN gene expression. PMID:26043084

  1. Differential effect of P-gp and MRP2 on cellular translocation of gemifloxacin

    PubMed Central

    Vadlapatla, Ramya Krishna; Vadlapudi, Aswani Dutt; Kwatra, Deep; Pal, Dhananjay; Mitra, Ashim K.

    2011-01-01

    Fluoroquinolones are broad spectrum antibiotics widely indicated in the treatment of both human and animal diseases. The primary objective of this study was to assess short and long term affinity of gemifloxacin towards efflux transporters (P-gp, MRP2) and nuclear hormone receptor (PXR). Uptake and dose dependent inhibition studies were performed with [14C] erythromycin (0.25μCi/ml) on MDCKII-MDR1 and MDCKII-MRP2 cells. Cellular accumulation of calcein-AM was further determined to confirm the affinity of gemifloxacin towards P-gp and MRP2. Transport studies were conducted to determine bi-directional permeability and to assess efflux ratio of gemifloxacin. LS-180 cells were treated with three different concentrations of gemifloxacin for 72hrs and real-time PCR analysis was performed to study the quantitative gene expression levels of PXR, MDR1 and MRP2. Further, [14C] erythromycin uptake was also performed on LS-180 treated cells to better delineate the functional activity of efflux transporters. Results from our study suggest that gemifloxacin may be a substrate of both the efflux transporters studied. This compound inhibited both P-gp and MRP2 mediated efflux of [14C] erythromycin in a dose dependent manner with IC50 values of 123 ± 2μM and 16 ± 2μM, respectively. The efflux ratio of [14C] erythromycin lowered from 3.56 to 1.63 on MDCKII-MDR1 cells and 4.93 to 1.26 on MDCKII-MRP2 cells. This significant reduction in efflux ratio further confirmed the substrate specificity of gemifloxacin towards P-gp and MRP2. Long term exposure significantly induced the expression of PXR (18 fold), MDR1 (6 fold) and MRP2 (6 fold). A decrease (20%) in [14C] erythromycin uptake further confirmed the elevated functional activity of P-gp and MRP2. In conclusion, our studies demonstrated that gemifloxacin is effluxed by both P-gp and MRP2. Long term exposure induced their gene expression and functional activity. This substrate specificity of gemifloxacin towards these efflux

  2. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    SciTech Connect

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  3. Five-year tracking of Plasmodium falciparum allele frequencies in a holoendemic area with indistinct seasonal transitions

    PubMed Central

    Akala, Hoseah M; Achieng, Angela O; Eyase, Fredrick L; Juma, Dennis W; Ingasia, Luiser; Cheruiyot, Agnes C; Okello, Charles; Omariba, Duke; Owiti, Eunice A; Muriuki, Catherine; Yeda, Redemptah; Andagalu, Ben; Johnson, Jacob D; Kamau, Edwin

    2014-01-01

    Background The renewed malaria eradication efforts require an understanding of the seasonal patterns of frequency of polymorphic variants in order to focus limited funds productively. Although cross-sectional studies in holoendemic areas spanning a single year could be useful in describing parasite genotype status at a given point, such information is inadequate in describing temporal trends in genotype polymorphisms. For Plasmodium falciparum isolates from Kisumu District Hospital, Plasmodium falciparum chloroquine-resistance transporter gene (Pfcrt-K76T) and P. falciparum multidrug resistance gene 1 (PfMDR1-N86Y), were analyzed for polymorphisms and parasitemia changes in the 53 months from March 2008 to August 2012. Observations were compared with prevailing climatic factors, including humidity, rainfall, and temperature. Methods Parasitemia (the percentage of infected red blood cells per total red blood cells) was established by microscopy for P. falciparum malaria-positive samples. P. falciparum DNA was extracted from whole blood using a Qiagen DNA Blood Mini Kit. Single nucleotide polymorphism identification at positions Pfcrt-K76T and PfMDR1-N86Y was performed using real-time polymerase chain reaction and/or sequencing. Data on climatic variables were obtained from http://www.tutiempo.net/en/. Results A total of 895 field isolates from 2008 (n=169), 2009 (n=161), 2010 (n=216), 2011 (n=223), and 2012 (n=126) showed large variations in monthly frequency of PfMDR1-N86Y and Pfcrt-K76T as the mutant genotypes decreased from 68.4%±15% and 38.1%±13% to 29.8%±18% and 13.3%±9%, respectively. The mean percentage of parasitemia was 2.61%±1.01% (coefficient of variation 115.86%; n=895). There was no correlation between genotype or parasitemia and climatic factors. Conclusion This study shows variability in the frequency of Pfcrt-K76T and PfMDR1-N86Y polymorphisms during the study period, bringing into focus the role of cross-sectional studies in describing temporal

  4. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins.

    PubMed

    Reinhard, Friedrich B M; Eberhard, Dirk; Werner, Thilo; Franken, Holger; Childs, Dorothee; Doce, Carola; Savitski, Maria Fälth; Huber, Wolfgang; Bantscheff, Marcus; Savitski, Mikhail M; Drewes, Gerard

    2015-12-01

    We extended thermal proteome profiling to detect transmembrane protein-small molecule interactions in cultured human cells. When we assessed the effects of detergents on ATP-binding profiles, we observed shifts in denaturation temperature for ATP-binding transmembrane proteins. We also observed cellular thermal shifts in pervanadate-induced T cell-receptor signaling, delineating the membrane target CD45 and components of the downstream pathway, and with drugs affecting the transmembrane transporters ATP1A1 and MDR1. PMID:26524241

  5. Influence of combinations of digitonin with selected phenolics, terpenoids, and alkaloids on the expression and activity of P-glycoprotein in leukaemia and colon cancer cells.

    PubMed

    Eid, Safaa Yehia; El-Readi, Mahmoud Zaki; Eldin, Essam Eldin Mohamed Nour; Fatani, Sameer Hassan; Wink, Michael

    2013-12-15

    P-glycoprotein (P-gp or MDR1) is an ATP-binding cassette (ABC) transporter. It is involved in the efflux of several anticancer drugs, which leads to chemotherapy failure and multidrug resistance (MDR) in cancer cells. Representative secondary metabolites (SM) including phenolics (EGCG and thymol), terpenoids (menthol, aromadendrene, β-sitosterol-O-glucoside, and β-carotene), and alkaloids (glaucine, harmine, and sanguinarine) were evaluated as potential P-gp inhibitors (transporter activity and expression level) in P-gp expressing Caco-2 and CEM/ADR5000 cancer cell lines. Selected SM increased the accumulation of the rhodamine 123 (Rho123) and calcein-AM (CAM) in a dose dependent manner in Caco-2 cells, indicating that they act as competitive inhibitors of P-gp. Non-toxic concentrations of β-carotene (40μM) and sanguinarine (1μM) significantly inhibited Rho123 and CAM efflux in CEM/ADR5000 cells by 222.42% and 259.25% and by 244.02% and 290.16%, respectively relative to verapamil (100%). Combination of the saponin digitonin (5μM), which also inhibits P-gp, with SM significantly enhanced the inhibition of P-gp activity. The results were correlated with the data obtained from a quantitative analysis of MDR1 expression. Both compounds significantly decreased mRNA levels of the MDR1 gene to 48% (p<0.01) and 46% (p<0.01) in Caco-2, and to 61% (p<0.05) and 1% (p<0.001) in CEM/ADR5000 cells, respectively as compared to the untreated control (100%). Combinations of digitonin with SM resulted in a significant down-regulation of MDR1. Our findings provide evidence that the selected SM interfere directly and/or indirectly with P-gp function. Combinations of different P-gp substrates, such as digitonin alone and together with the set of SM, can mediate MDR reversal in cancer cells. PMID:23999162

  6. Pharmacokinetic Compatibility of Ginsenosides and Schisandra Lignans in Shengmai-san: From the Perspective of P-Glycoprotein

    PubMed Central

    Liang, Yan; Zhou, Yuanyuan; Zhang, Jingwei; Rao, Tai; Zhou, Lijun; Xing, Rong; Wang, Qian; Fu, Hanxu; Hao, Kun; Xie, Lin; Wang, Guangji

    2014-01-01

    Background Phytochemical-mediated alterations in P-glycoprotein (P-gp) activity may result in herb-drug interactions by altering drug pharmacokinetics. Shengmai-san, a traditional Chinese herbal medicine composed by Panax Ginseng, Ophiopogon Japonicus, and Schisandra Chinensis, is routinely being used for treating various coronary heart diseases. In our previous studies, Schisandra Lignans Extract (SLE) was proved as a strong P-gp inhibitor, and herein, the compatibility of Shengmai-san was studied by investigating the influence of SLE on the pharmacokinetics of the ginsenosides from the perspective of P-gp. Methodology Pharmacokinetic experiments were firstly performed based on in vitro uptake, efflux and transport experiments in Caco-2, LLC-PK1 wild-type and MDR1-overexpressing L-MDR1 cells. During the whole experiment, digoxin, a classical P-gp substrate, was used as a positive control drug to verify the cells used are the valid models. Meanwhile, the effects of SLE on the pharmacokinetics of ginsenosides were further investigated in rats after single-dose and multi-dose of SLE. Results and Conclusions The efflux ratios of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 were found more than 3.5 in L-MDR1 cells and can be decreased significantly by verapamil (a classical P-gp inhibitor). Contrarily, the efflux ratios of other ginsenosides (Rh1, F1, Re, and Rg1) were lower than 2.0 and not affected by verapamil. Then, the effects of SLE on the uptake and transport of ginsenosides were investigated, and SLE was found can significantly enhance the uptake and inhibit the efflux ratio of ginsenoside Rb2, Rc, Rg2, Rg3, Rd and Rb1 in Caco-2 and L-MDR1 cells. Besides, In vivo experiments showed that single-dose and multi-dose of SLE at 500 mg/kg could increase the area under the plasma concentration time curve of Rb2, Rc and Rd significantly without affecting terminal elimination half-time. In conclusion, SLE could enhance the exposure of ginsenosides Rb2, Rc, Rg2, Rg3, Rd and

  7. Multidrug resistance P-glycoprotein dampens SR-BI cholesteryl ester uptake from high density lipoproteins in human leukemia cells

    PubMed Central

    Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Collu, Maria; Angius, Fabrizio; Batetta, Barbara

    2016-01-01

    Tumor cells are characterised by a high content of cholesterol esters (CEs), while tumor-bearing patients show low levels of high-density lipoproteins (HDLs). The origin and significance of high CE levels in cancer cell biology has not been completely clarified. Recent evidence that lymphoblastic cells selectively acquire exogenous CE from HDL via the scavenger receptor SR-BI has drawn attention to the additional membrane proteins involved in this pathway. P-glycopotein-MDR1 (P-gp) is a product of the MDR1 gene and confers resistance to antitumor drugs. Its possible role in plasma membrane cholesterol trafficking and CE metabolism has been suggested. In the present study this aspect was investigated in a lymphoblastic cell line selected for MDR1 resistance. CEM were made resistant by stepwise exposure to low (LR) and high (HR) doses of vincristine (VCR). P-gp activity (3H-vinblastine), CE content, CE and triglycerides (TG) synthesis (14C-oleate), neutral lipids and Dil-HDL uptake (fluorescence), SR-BI, ABCA1 and P-gp protein expression (western blotting) were determined. To better evaluate the relationship between CE metabolism and P-gp activity, the ACAT inhibitor Sandoz-58035 and the P-gp inhibitors progesterone, cyclosporine and verapamil were used. CE content and synthesis were similar in the parental and resistant cells. However, in the latter population, SR-BI protein expression increased, whereas CE-HDL uptake decreased. These changes correlated with the degree of VCR-resistance. As well as reverting MDR1-resistance, the inhibitors of P-gp activity induced the CE-HDL/SR-BI pathway by reactivating membrane cholesterol trafficking. Indeed, CE-HDL uptake, SRBI expression and CE content increased, whereas there was a decrease in cholesterol esterification. These results demonstrated that P-gp overexpression impairs anticancer drug uptake as well as the SR-BI mediated selective CE-HDL uptake. This suggests that these membrane proteins act in an opposite manner on

  8. Antiproliferative amaryllidaceae alkaloids isolated from the bulbs of Sprekelia formosissima and Hymenocallis x festalis.

    PubMed

    Hohmann, Judit; Forgo, Peter; Molnár, Joseph; Wolfard, Krisztina; Molnár, Annamária; Thalhammer, Theresia; Máthé, Imre; Sharples, Derek

    2002-05-01

    Seven alkaloids were isolated from Sprekelia formosissima, and five from Hymenocallis x festalis. Tazettine, lycorine, haemanthidine and haemanthamine were evaluated for antiproliferative and multidrug resistance (mdr) reversing activity on mouse lymphoma cells. Lycorine, haemanthidine and haemanthamine displayed pronounced cell growth inhibitory activities against both drug-sensitive and drug-resistant cell lines, but did not significantly inhibit mdr-1 p-glycoprotein. Thus, the tested alkaloids are apparently not substrates for the mdr efflux pump. Assays for interactions with DNA and RNA revealed that the antiproliferative effects of lycorine and haemanthamine result from their complex formation with RNA. PMID:12058326

  9. Probenecid Sensitizes Neuroblastoma Cancer Stem Cells to Cisplatin.

    PubMed

    Campos-Arroyo, Denise; Maldonado, Vilma; Bahena, Ivan; Quintanar, Valeria; Patiño, Nelly; Carlos Martinez-Lazcano, Juan; Melendez-Zajgla, Jorge

    2016-03-15

    We used both in vitro cultures of neuroblastoma cell lines and nude-mice xenotransplants to explore the effects of co-administration of cisplatin and probenecid. Probenecid sensitized neuroblastoma cells, including tumor cells with stem features, to the effects of cisplatin, both in vitro and in vivo. This effect was mediated by an increase in the apoptotic cell death and a concomitant decrease in cell proliferation. This effect is accompanied by modulation of the mRNA and protein of the drug efflux transporters MDR1, MRP2, and BCRP. The co-administration of probenecid with cisplatin should be explored as a possible therapeutic strategy. PMID:26963048

  10. Multidrug resistance P-glycoprotein dampens SR-BI cholesteryl ester uptake from high density lipoproteins in human leukemia cells.

    PubMed

    Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Collu, Maria; Angius, Fabrizio; Batetta, Barbara

    2016-01-01

    Tumor cells are characterised by a high content of cholesterol esters (CEs), while tumor-bearing patients show low levels of high-density lipoproteins (HDLs). The origin and significance of high CE levels in cancer cell biology has not been completely clarified. Recent evidence that lymphoblastic cells selectively acquire exogenous CE from HDL via the scavenger receptor SR-BI has drawn attention to the additional membrane proteins involved in this pathway. P-glycopotein-MDR1 (P-gp) is a product of the MDR1 gene and confers resistance to antitumor drugs. Its possible role in plasma membrane cholesterol trafficking and CE metabolism has been suggested. In the present study this aspect was investigated in a lymphoblastic cell line selected for MDR1 resistance. CEM were made resistant by stepwise exposure to low (LR) and high (HR) doses of vincristine (VCR). P-gp activity ((3)H-vinblastine), CE content, CE and triglycerides (TG) synthesis ((14)C-oleate), neutral lipids and Dil-HDL uptake (fluorescence), SR-BI, ABCA1 and P-gp protein expression (western blotting) were determined. To better evaluate the relationship between CE metabolism and P-gp activity, the ACAT inhibitor Sandoz-58035 and the P-gp inhibitors progesterone, cyclosporine and verapamil were used. CE content and synthesis were similar in the parental and resistant cells. However, in the latter population, SR-BI protein expression increased, whereas CE-HDL uptake decreased. These changes correlated with the degree of VCR-resistance. As well as reverting MDR1-resistance, the inhibitors of P-gp activity induced the CE-HDL/SR-BI pathway by reactivating membrane cholesterol trafficking. Indeed, CE-HDL uptake, SRBI expression and CE content increased, whereas there was a decrease in cholesterol esterification. These results demonstrated that P-gp overexpression impairs anticancer drug uptake as well as the SR-BI mediated selective CE-HDL uptake. This suggests that these membrane proteins act in an opposite

  11. The cytological manifestation of gene amplification in multidrug-resistant mouse leukemia P388 sublines is correlated with amplicon content

    SciTech Connect

    Il`inskaya, G.V.; Kopnin, B.P.; Demidova, N.S.

    1995-10-01

    Previously, we showed that development of multidrug resistance (MDR) in mouse P388 leukemia cells is often associated with the appearance of newly-formed chromosomelike structures that contain amplified copies of the mdr1 gene. In the present study, we compared amplicon content in P388 sublines showing different types of these structures. A strong correlation between the formation of specific acentric markers consisting of two identical arms and the absence of the sorcin gene coamplification was found. In all the sublines containing other types of chromosomelike structures, the sorcin gene is coamplified. 9 refs., 2 figs., 1 tab.

  12. MPT0B169, a novel tubulin inhibitor, induces apoptosis in taxol-resistant acute myeloid leukemia cells through mitochondrial dysfunction and Mcl-1 downregulation.

    PubMed

    Wang, Che-Chuan; Liu, Hsinjin Eugene; Lee, Yueh-Lun; Huang, Yu-Wen; Chen, Yi-Ju; Liou, Jing-Ping; Huang, Huei-Mei

    2016-05-01

    Acute myeloid leukemia (AML) is a hematological malignant disorder. AML cells are not susceptible to chemotherapeutic drugs because of their multidrug resistance (MDR). Antitubulin agents are currently employed in cancer treatments; however, drug resistance results in treatment failures because of MDR1 expressing cancer cells. We previously synthesized a new tubulin inhibitor, 2-dimethylamino-N-[1-(4-methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-acetamide (MPT0B169), which inhibits AML cell proliferation by arresting cell cycle at the G2/M phase. In this study, we explored the effect of MPT0B169 on apoptosis in AML HL60 and NB4 cells and MDR1-mediated taxol-resistant HL60/TaxR cells and the underlying mechanism. MPT0B169 induced concentration- and time-dependent apoptosis in these cancer cells, as observed through annexin V/propidium iodide double staining and flow cytometry. Furthermore, DNA fragmentation analysis confirmed MPT0B169-induced apoptosis. MPT0B169 induced a loss of mitochondrial membrane potential, release of cytochrome c into the cytosol, cleavage and activation of caspase-9 and caspase-3, and consequently cleavage of poly (ADP ribose) polymerase. Western blot analysis showed that MPT0B169 markedly reduced Mcl-1 (an antiapoptotic protein) levels; however, it caused no changes in Bcl-2 or BAX (a proapoptotic protein). Knockdown of Mcl-1 using small interfering RNA (siRNA) slightly induced growth inhibition and apoptosis in the HL60 and HL60/TaxR cells. Further investigation revealed that Mcl-1 siRNA enhanced the sensitivity of HL60 and HL60/TaxR cells to MPT0B169-induced growth inhibition and apoptosis. Together, these results demonstrated that MPT0B169-induced apoptosis in nonresistant and MDR1-mediated taxol-resistant AML cells through Mcl-1 downregulation and a mitochondria-mediated pathway. MPT0B169 can overcome MDR1-mediated drug resistance in AML cells. PMID:26608370

  13. Astragaloside IV reduces the expression level of P-glycoprotein in multidrug-resistant human hepatic cancer cell lines

    PubMed Central

    WANG, PEI-PEI; XU, DU-JUAN; HUANG, CAN; WANG, WEI-PING; XU, WEN-KE

    2014-01-01

    Astragaloside is a saponin widely used in traditional Chinese medicine and has been reported to be a potent multidrug resistance (MDR) reversal agent. The present study investigated the role of astragaloside IV (ASIV) in the regulation of P-glycoprotein (P-gp, encoded by the mdr1 gene) and its effect on the reversal of MDR. The activity of ASIV was evaluated using human hepatic cancer cells Bel-7402 and the corresponding 5-fluorouracil (5-FU) resistant cells Bel-7402/FU. ASIV (0.08 mg/ml) potentiated the cytotoxicity of 5-FU which was demonstrated using the MTT assay on Bel-7402/FU cells. ASIV reduced the expression of P-gp as was revealed by immunocytochemistry. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that ASIV inhibited P-gp-mediated drug efflux. Furthermore, it was demonstrated that ASIV enhanced the drug accumulation of 5-FU using a high performance liquid chromatography (HPLC) assay for drug resistant cells. Furthermore, ASIV may downregulate the expression of P-gp, which was examined using western blot analysis and polymerase chain reaction. In conclusion, the results of the present study indicated that ASIV reverses the drug resistance of Bel-7402/FU cells by downregulating the expression of mdr1. ASIV may represent a potent modulator of P-gp-mediated MDR in hepatic cancer therapy. PMID:24676670

  14. Synthesis and small-animal positron emission tomography evaluation of [11C]-elacridar as a radiotracer to assess the distribution of P-glycoprotein at the blood-brain barrier

    PubMed Central

    Dörner, Bernd; Kuntner, Claudia; Bankstahl, Jens P.; Bankstahl, Marion; Stanek, Johann; Wanek, Thomas; Stundner, Gloria; Mairinger, Severin; Löscher, Wolfgang; Müller, Markus; Langer, Oliver; Erker, Thomas

    2013-01-01

    With the aim to develop a positron emission tomography (PET) tracer to assess the distribution of P-glycoprotein (P-gp) at the blood-brain barrier (BBB) in vivo, the potent third-generation P-gp inhibitor elacridar (1) was labeled with 11C by reaction of O-desmethyl 1 with [11C]-methyl triflate. In vitro autoradiography and small-animal PET imaging of [11C]-1 was performed in rats (n=3), before and after administration of unlabeled 1, as well as in wild-type, Mdr1a/b(−/−) and Bcrp1(−/−) mice (n=3). In PET experiments in rats, administration of unlabeled 1 increased brain activity uptake 5.4-fold, whereas blood activity levels remained unchanged. In Mdr1a/b(−/−) mice, brain activity uptake was 2.5-fold higher compared to wild-type animals, whereas in Bcrp1(−/−) mice brain activity uptake was only 1.3-fold higher. In vitro autoradiography showed that 63% of [11C]-1 binding was displaceable by an excess of unlabeled 1. As the signal obtained with [11C]-1 appeared to be specific for P-gp at the BBB, its utility for the visualization of cerebral P-gp merits further investigation. PMID:19711894

  15. P-gp, MRP2 and OAT1/OAT3 mediate the drug-drug interaction between resveratrol and methotrexate.

    PubMed

    Jia, Yongming; Liu, Zhihao; Wang, Changyuan; Meng, Qiang; Huo, Xiaokui; Liu, Qi; Sun, Huijun; Sun, Pengyuan; Yang, Xiaobo; Ma, Xiaodong; Liu, Kexin

    2016-09-01

    The purpose of present study was to investigate the effect of resveratrol (Res) on altering methotrexate (MTX) pharmacokinetics and clarify the related molecular mechanism. Res significantly increased rat intestinal absorption of MTX in vivo and in vitro. Simultaneously, Res inhibited MTX efflux transport in MDR1-MDCK and MRP2-MDCK cell monolayers, suggesting that the target of drug interaction was MDR1 and MRP2 in the intestine during the absorption process. Furthermore, there was a significant decrease in renal clearance of MTX after simultaneous intravenous administration. Similarly, MTX uptake was markedly inhibited by Res in rat kidney slices and hOAT1/3-HEK293 cell, indicating that OAT1 and OAT3 were involved in the drug interaction in the kidney. Additionally, concomitant administration of Res decreased cytotoxic effects of MTX in hOAT1/3-HEK293 cells, and ameliorated nephrotoxicity caused by MTX in rats. Conversely, intestinal damage caused by MTX was not exacerbated after Res treatment. In conclusion, Res enhanced MTX absorption in intestine and decreased MTX renal elimination by inhibiting P-gp, MRP2, OAT1 and OAT3 in vivo and in vitro. Res improved MTX-induced renal damage without increasing intestinal toxicity. PMID:27377006

  16. Astragaloside Ⅳ reduces the expression level of P-glycoprotein in multidrug-resistant human hepatic cancer cell lines.

    PubMed

    Wang, Pei-Pei; Xu, Du-Juan; Huang, Can; Wang, Wei-Ping; Xu, Wen-Ke

    2014-06-01

    Astragaloside is a saponin widely used in traditional Chinese medicine and has been reported to be a potent multidrug resistance (MDR) reversal agent. The present study investigated the role of astragaloside Ⅳ (ASIV) in the regulation of P-glycoprotein (P-gp, encoded by the mdr1 gene) and its effect on the reversal of MDR. The activity of ASIV was evaluated using human hepatic cancer cells Bel-7402 and the corresponding 5-fluorouracil (5-FU) resistant cells Bel-7402/FU. ASIV (0.08 mg/ml) potentiated the cytotoxicity of 5-FU which was demonstrated using the MTT assay on Bel-7402/FU cells. ASIV reduced the expression of P-gp as was revealed by immunocytochemistry. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that ASIV inhibited P-gp-mediated drug efflux. Furthermore, it was demonstrated that ASⅣ enhanced the drug accumulation of 5-FU using a high performance liquid chromatography (HPLC) assay for drug resistant cells. Furthermore, ASIV may downregulate the expression of P-gp, which was examined using western blot analysis and polymerase chain reaction. In conclusion, the results of the present study indicated that ASIV reverses the drug resistance of Bel-7402/FU cells by downregulating the expression of mdr1. ASIV may represent a potent modulator of P-gp-mediated MDR in hepatic cancer therapy. PMID:24676670

  17. Automation of cell-based drug absorption assays in 96-well format using permeable support systems.

    PubMed

    Larson, Brad; Banks, Peter; Sherman, Hilary; Rothenberg, Mark

    2012-06-01

    Cell-based drug absorption assays, such as Caco-2 and MDCK-MDR1, are an essential component of lead compound ADME/Tox testing. The permeability and transport data they provide can determine whether a compound continues in the drug discovery process. Current methods typically incorporate 24-well microplates and are performed manually. Yet the need to generate absorption data earlier in the drug discovery process, on an increasing number of compounds, is driving the use of higher density plates. A simple, more efficient process that incorporates 96-well permeable supports and proper instrumentation in an automated process provides more reproducible data compared to manual methods. Here we demonstrate the ability to perform drug permeability and transport assays using Caco-2 or MDCKII-MDR1 cells. The assay procedure was automated in a 96-well format, including cell seeding, media and buffer exchanges, compound dispense, and sample removal using simple robotic instrumentation. Cell monolayer integrity was confirmed via transepithelial electrical resistance and Lucifer yellow measurements. Proper cell function was validated by analyzing apical-to-basolateral and basolateral-to-apical movement of rhodamine 123, a known P-glycoprotein substrate. Apparent permeability and efflux data demonstrate how the automated procedure provides a less variable method than manual processing, and delivers a more accurate assessment of a compound's absorption characteristics. PMID:22357561

  18. Inhibition of multixenobiotic resistance transporters (MXR) by silver nanoparticles and ions in vitro and in Daphnia magna.

    PubMed

    Georgantzopoulou, Anastasia; Cambier, Sébastien; Serchi, Tommaso; Kruszewski, Marcin; Balachandran, Yekkuni L; Grysan, Patrick; Audinot, Jean-Nicolas; Ziebel, Johanna; Guignard, Cédric; Gutleb, Arno C; Murk, AlberTinka J

    2016-11-01

    The P-glycoprotein (P-gp, ABCB1) and multidrug resistance associated protein 1 (MRP1), important members of the ABC (ATP-binding cassette) transporters, protect cells and organisms via efflux of xenobiotics and are responsible for the phenomenon of multidrug or multixenobiotic resistance (MXR). In this study we first evaluated, in vitro, the interaction of silver nanoparticles (Ag NPs, 20, 23 and 27nm), Ag 200nm particles and Ag ions (AgNO3) with MXR efflux transporters using MDCKII and the P-gp over-expressing MDCKII-MDR1 cells and calcein-AM as a substrate of the transporters. Next the in vivo modulation of MXR activity was studied in Daphnia magna juveniles with the model P-gp and MRP1 inhibitors verapamil-HCl and MK571, respectively. The common environmental contaminants perfluorooctane sulfonate and bisphenol A, previously observed to interfere with the P-gp in vitro, also inhibited the efflux of calcein in vivo. Small-sized Ag NPs (with biomolecules present on the surface) and AgNO3 inhibited the MXR activity in daphnids and MDCKII-MDR1 cells, but abcb1 gene expression remained unchanged. Both Ag NPs and dissolved ions contributed to the effects. This study provides evidence of the interference of Ag NPs and AgNO3 with the MXR activity both in vitro and in D. magna, and should be taken into account when Ag NP toxicity is assessed. PMID:27376922

  19. Early non-steady-state population pharmacokinetics of oral cyclosporine in renal transplant recipients

    PubMed Central

    Baek, Hyunjeong; Han, Seunghoon; Yim, Dong-Seok; Kim, Sung Joo; Lee, Soo-Youn; Jang, Hye Ryoun; Lee, Jung Eun; Kim, Dae Joong; Kim, Yoon-Goo; Oh, Ha Young; Huh, Wooseong

    2014-01-01

    This study aimed to evaluate the change in the pharmacokinetics (PK) of cyclosporine in the non-steady-state period in the first week after renal transplantation; the factors influencing this change, including genetic variability; and the time point concentration that correlated best with drug exposure. Data were obtained from 69 patients, and PK studies were conducted on postoperative days (PODs) 2, 3, and 7. Samples were taken pre-dose and at 1, 2, 3, 4, 6, 8, and 12 hours after drug administration. MDR1, CYP3A4, and CYP3A5 were genotyped. A population PK analysis and correlational analysis between the concentration at each time point and the area under the time–concentration curve were performed. A two-compartment model with first-order absorption was chosen. The rate and extent of drug absorption showed a significant increase on POD3, followed by a slight decrease on POD7. Until POD3, 8 hours post-dose was the single time point concentration that correlated best with drug exposure and 3 hours was the best time point on POD7. In both analyses, the MDR1 genotype showed potential as a factor influencing PK change. We conclude that oral administration of cyclosporine and dose adjustment based on a single concentration measurement might result in unexpected drug exposure during this early posttransplantation period. PMID:25422583

  20. The multixenobiotic resistance mechanism in aquatic organisms

    SciTech Connect

    Kurelec, B. )

    1992-01-01

    Many aquatic organisms thrive and reproduce in polluted waters. This fact indicates that they are well equipped with a defense system(s) against several toxic xenobiotics simultaneously because water pollution is typically caused by a mixture of a number of pollutants. We have found that the biochemical mechanism underlying such multixenobiotic' resistance in freshwater and marine mussel, in several marine sponges, and in freshwater fish is similar to the mechanism of multidrug resistance (MDR) found in tumor cells that became refractory to treatment with a variety of chemotherapeutic agents. All these organisms possess a verapamil-sensitive potential to bind 2-acetylaminofluorene and vincristine onto membrane vesicles. They all express mRNA for mdr1 gene, and mdr1 protein product, the glycoprotein P170. Finally, in in vivo experiments, the accumulation of xenobiotics is enhanced in all investigated organisms in the presence of verapamil, the inhibitor of the P170 extrusion pump. The knowledge that the presence of one xenobiotic may block the pumping out, and hence accelerating accumulation, of others, may help us to understand and interpret our present and past data on different environmental parameters obtained using indicator organisms.99 references.

  1. Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations.

    PubMed

    Chen, L M; Xu, Y H; Zhou, C L; Zhao, J; Li, C Y; Wang, R

    2010-01-01

    This study was designed to investigate potential resistance mechanisms by studying the expression of resistant genes in 14 fluconazole-resistant Candida albicans isolates, with G487T and T916C mutations in the 14alpha-demethylase (ERG11) gene, collected from human immunodeficiency virus uninfected patients and a fluconazole-susceptible control strain. The in vitro susceptibilities of the C. albicans isolates to fluconazole were determined using the broth microdilution method and a disc diffusion assay. Expression of Candida drug resistance (CDR)1, CDR2, ERG11, fluconazole resistance (FLU)1 and multidrug resistance (MDR)1 genes was measured using real-time reverse transcription-polymerase chain reaction and evaluated relative to the expression of the control gene 18SrRNA. The CDR1 and CDR2 genes were upregulated in all the fluconazole-resistant C. albicans isolates, whereas only a few isolates showed high expression of MDR1, FLU1 and ERG11 genes compared with the control strain. In conclusion, overexpression of the CDR1 and CDR2 genes may play an important role in fluconazole-resistant C. albicans with G487T and T916C mutations. PMID:20515567

  2. Deciphering azole resistance mechanisms with a focus on transcription factor-encoding genes TAC1, MRR1 and UPC2 in a set of fluconazole-resistant clinical isolates of Candida albicans.

    PubMed

    Morio, Florent; Pagniez, Fabrice; Besse, Myriam; Gay-andrieu, Françoise; Miegeville, Michel; Le Pape, Patrice

    2013-11-01

    Several and often combined mechanisms can lead to acquired azole resistance in Candida albicans and subsequent therapeutic failure. The aim of this study was to provide a complete overview of the molecular basis of azole resistance in a set of six C. albicans clinical isolates recovered from patients who failed azole therapy. For this purpose, expression levels of CDR1, MDR1 and ERG11 were investigated by reverse transcription PCR (RT-PCR) together with amplification and sequencing of the genes encoding their transcription factors TAC1, MRR1 and UPC2. In all, the data underline that azole resistance in this set of clinical isolates results from distinct, often combined, mechanisms, being mostly driven by CDR1 and/or MDR1 active efflux. We show that gain-of-function (GOF) mutations in the transcription-factor-encoding genes TAC1, MRR1 and UPC2 are a common event in azole-resistant C. albicans clinical isolates. In addition, together with the finding that these genes are highly permissive to nucleotide changes, we describe several novel mutations that could act as putative GOF mutations involved in fluconazole resistance. PMID:24051054

  3. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis.

    PubMed

    Berkow, Elizabeth L; Manigaba, Kayihura; Parker, Josie E; Barker, Katherine S; Kelly, Stephen L; Rogers, P David

    2015-10-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis. PMID:26169412

  4. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis

    PubMed Central

    Berkow, Elizabeth L.; Manigaba, Kayihura; Parker, Josie E.; Barker, Katherine S.; Kelly, Stephen L.

    2015-01-01

    While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis. PMID:26169412

  5. Vulvovaginal candidiasis: species distribution, fluconazole resistance and drug efflux pump gene overexpression.

    PubMed

    Zhang, Jie-Yu; Liu, Jin-Hui; Liu, Fa-Di; Xia, Yan-Hua; Wang, Jing; Liu, Xi; Zhang, Zhi-Qin; Zhu, Na; Yan-Yan; Ying, Ying; Huang, Xiao-Tian

    2014-10-01

    The increasing incidence of vulvovaginal candidiasis (VVC) and the emergence of fluconazole resistance are an indisputable fact. However, little information is available regarding the correlation between fluconazole resistance in vaginal Candida albicans and the expression of drug efflux pump genes. In this study, we investigated the species distribution, fluconazole susceptibility profiles and the mechanisms of fluconazole resistance in Candida strains. In total, 785 clinical Candida isolates were collected from patients with VVC. C. albicans was the most frequently isolated species(n = 529) followed by C. glabrata (n = 164) and C. krusei (n = 57). Of all Candida isolates, 4.7% were resistant to fluconazole. We randomly selected 18 fluconazole resistant isolates of C. albicans to evaluate the expression of CDR1, CDR2, MDR1 and FLU1 genes. Compared with fluconazole-susceptible C. albicans isolates, CDR1 gene expression displayed 3.16-fold relative increase, which was statistically significant. CDR2, MDR1 and FLU1 overexpression was observed in several fluconazole-resistant C. albicans isolates, but statistical significance was not achieved. These results demonstrate a high frequency of non-albicans species (32.6%); however, C. albicans is the most common Candida species implicated in vaginitis, and this strain displays considerable fluconazole resistance. Meanwhile, our study further indicates that fluconazole resistance in C. albicans may correlate with CDR1 gene overexpression. PMID:24962255

  6. Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein.

    PubMed

    Ye, Ling; Wang, Tao; Tang, Lan; Liu, Wei; Yang, Zhen; Zhou, Juan; Zheng, Zhijie; Cai, Zheng; Hu, Ming; Liu, Zhongqiu

    2011-11-01

    Andrographolide (AP), isolated from Andrographis paniculata (Burm. F.) Nees, is an anticancer agent with significant clinical potential. This study determined its oral bioavailability and how intestinal disposition affects its bioavailability. Pharmacokinetics was evaluated in rats. Intestinal disposition was determined using a single-pass rat intestinal perfusion model and the cultured Caco-2 cells and Madin-Darby canine kidney II cells over expressing human P-gp (MDR1-MDCKII). Absolute bioavailability of AP was 2.67%. In the duodenum and jejunum, AP was rapidly metabolized to a sulfonate, identified as 14-deoxy-12-sulfo- andrographolide. AP was also rapidly metabolized by liver S9 fraction and in blank perfusates collected from duodenum and jejunum. The apparent permeability (P(app) ) of AP from basolateral (B) to apical (A) (4.94 × 10 cm/s) in the Caco-2 model was four times higher than the P(app) from A to B (1.14 × 10(-5) cm/s). Moreover, AP was significantly more permeable in the B to A direction than the opposite direction in MDR1-MDCKII cells. In the perfusion model, the effective permeability (P*(eff) ) for AP was highest in the duodenum, followed by jejunum, and then ileum and colon. In the ileum and colon, the P*(eff) for AP was significantly increased by verapamil, a P-glycoprotein (P-gp) inhibitor. AP has poor oral bioavailability because of its rapid biotransformation and efflux by P-gp. PMID:21721007

  7. Anti-proliferative activity and cell cycle arrest induced by evodiamine on paclitaxel-sensitive and -resistant human ovarian cancer cells

    PubMed Central

    Zhong, Zhang-Feng; Tan, Wen; Wang, Sheng-Peng; Qiang, Wen-An; Wang, Yi-Tao

    2015-01-01

    Chemo-resistance is the main factor for poor prognosis in human ovarian epithelial cancer. Active constituents derived from Chinese medicine with anti-cancer potential might circumvent this obstacle. In our present study, evodiamine (EVO) derived from Evodia rutaecarpa (Juss.) Benth suppressed the proliferation of human epithelial ovarian cancer, A2780 and the related paclitaxel-resistant cell lines and did not cause cytotoxicity, as confirmed by the significant decline of clone formation and the representative alterations of CFDA-SE fluorescence. Meanwhile, EVO induced cell cycle arrest in a dose- and time-dependent manner. This disturbance might be mediated by the cooperation of Cyclin B1 and Cdc2, including the up-regulation of Cyclin B1, p27, and p21, and activation failure of Cdc2 and pRb. MAPK signaling pathway regulation also assisted in this process. Furthermore, chemo-sensitivity potential was enhanced as indicated in A2780/PTXR cells by the down-regulation of MDR-1 expression, accompanied by MDR-1 function suppression. Taken together, we confirmed initially that EVO exerted an anti-proliferative effect on human epithelial ovarian cancer cells, A2780/WT and A2780/PTXR, induced G2/M phase cell cycle arrest, and improved chemo-resistance. Overall, we found that EVO significantly suppressed malignant proliferation in human epithelial ovarian cancer, thus proving to be a potential anti-cancer agent in the future. PMID:26553648

  8. RANK-RANKL interactions are involved in cell adhesion-mediated drug resistance in multiple myeloma cell lines.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Yoshizumi, Misako; Ueda, Emi; Itoh, Tatsuki; Imano, Motohiro; Satou, Takao; Nishida, Shozo

    2016-07-01

    Interaction between multiple myeloma (MM) cells and the bone marrow microenvironment plays a critical role in MM pathogenesis and the development of drug resistance. Recently, it has been reported that MM cells express the receptor activator of nuclear factor-κB (NF-κB) (RANK). However, the role of the RANK/RANK ligand (RANKL) system in drug resistance remains unclear. In this study, we demonstrated a novel function of the RANK/RANKL system in promoting drug resistance in MM. We found that RANKL treatment induced drug resistance in RANK-expressing but not RANK-negative cell lines. RANKL stimulation of RANK-expressing cells increased multidrug resistance protein 1 (MDR1), breast cancer resistance protein (BCRP), and lung resistance protein 1 (LRP1) expression and decreased Bim expression through various signaling molecules. RNA silencing of Bim expression induced drug resistance, but the RANKL-mediated drug resistance could not be overcome through the RNA silencing of MDR1, BCRP, and LRP1 expression. These results indicate that the RANK/RANKL system induces chemoresistance through the activation of multiple signal transduction pathways and by decreasing Bim expression in RANK-positive MM cells. These findings may prove to be useful in the development of cell adhesion-mediated drug resistance inhibitors in RANK-positive MM cells. PMID:26762414

  9. Reversal effect of vitamin D on different multidrug-resistant cells.

    PubMed

    Yan, M; Nuriding, H

    2014-01-01

    We investigated the reversal effect of vitamin D on the multidrug-resistant leukemic Jurkat/ADR and K562/ADR cell lines and conducted a preliminary investigation of its reversal mechanism. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the reversal effect of vitamin D on multidrug-resistant cells. Real-time polymerase chain reaction was used to determine the effect of vitamin D on intracellular expression of mRNA of the multidrug-resistant gene (MDRI) and the multidrug-resistance-related gene (MRP1). A protein quantitative analysis method was used to determine the effect of vitamin D on intracellular glutathione content. After treatment of Jurkat/ADR and K562/ADR cells with vitamin D, multidrug resistance was reversed in a dose-dependent manner, which may have reduced mRNA expression of the MDR1 and MRP1 genes, the P-glycoprotein content on the cell surface, and the intracellular glutathione level. Different concentrations of vitamin D showed varying reversal effects on different multidrug-resistant cells. The resistance mechanism may be related to the inhibition of the expression of MDR1 and MRP1 genes. PMID:25158250

  10. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    PubMed Central

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  11. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo

    PubMed Central

    Zhou, Sheng; Morris, John J.; Barnes, Yuxiao; Lan, Lubin; Schuetz, John D.; Sorrentino, Brian P.

    2002-01-01

    Hematopoietic stem cells (HSCs) can be identified by a “side population” (SP) phenotype. Previous studies have implicated the ATP binding cassette transporter genes Mdr1a/1b and/or Bcrp1 in the SP phenotype. To define the relative role of these transporters, we generated Bcrp1 null mice and evaluated HSCs both functionally and phenotypically. Loss of Bcrp1 gene expression, but not Mdr1a/1b, led to a significant reduction in the number of SP cells in the bone marrow and in skeletal muscle. In the bone marrow, there was a nearly absolute loss of lineage negative, c-Kit-positive, Sca-1-positive SP cells, and the residual SP cells were depleted of repopulating cells in a transplant assay, demonstrating that Bcrp1 expression is necessary for the SP phenotype in HSCs. Furthermore, Bcrp1 null hematopoietic cells were significantly more sensitive to mitoxantrone in drug-treated transplanted mice. These results show that Bcrp1 gene expression alone defines the SP stem cell phenotype, and suggest that the physiological function of Bcrp1 expression in HSCs is to provide protection from cytotoxic substrates. PMID:12218177

  12. Candida albicans and C. tropicalis Isolates from the Expired Breathes of Captive Dolphins and Their Environments in an Aquarium

    PubMed Central

    Takahashi, Hideo; Ueda, Keiichi; Itano, Eiko Nakagawa; Yanagisawa, Makio; Murata, Yoshiteru; Murata, Michiko; Yaguchi, Takashi; Murakami, Masaru; Kamei, Katsuhiko; Inomata, Tomo; Miyahara, Hirokazu; Sano, Ayako; Uchida, Senzo

    2010-01-01

    Genotypes of Candida spp. isolated from exhalation of 20 dolphins, 11 water samples from captive pools, and 24 oral cavities of staff members in an aquarium using a combination of multiple drug resistance 1 gene (MDR1) and the internal transcribed spacer (ITS) 1 5.8s-ITS 2 regions of ribosomal RNA gene (ITS rDNA) sequences were studied. The holding ratios of the dolphins, captive pools, and staff members were 70, 90, and 29%, respectively. Isolated pathogenic yeast species common to the dolphins and environments were Candida albicans and C. tropicalis. Identical genotypes in both Candida spp. based on the combination of MDR1 and ITSrDNA were found in some dolphins, between a dolphin and a staff, among dolphins and environments, and among environments. The results indicated the diffusion and exchange of pathogenic yeasts at the aquarium among dolphins and environments. The isolates at the aquarium showed higher rates of resistance to azole antifungals compared to reference isolates. PMID:21234394

  13. Multidrug transporter proteins and cellular factors involved in free and mAb linked calicheamicin-gamma1 (gentuzumab ozogamicin, GO) resistance and in the selection of GO resistant variants of the HL60 AML cell line.

    PubMed

    Cianfriglia, Maurizio; Mallano, Alessandra; Ascione, Alessandro; Dupuis, Maria Luisa

    2010-06-01

    In this study we elucidated the role of ATP-binding cassette (ABC) multi-drug transporter proteins and cellular factors such as Bcl-2 expression and CD33 down-modulation contributing to free and hP67.6 mAb linked calicheamicin-gamma1 (CalC-gamma1) resistance. We analyzed in a well designed HL60 cell system the relationship between the expression of ABC proteins, Bcl-2 and CD33 modulation with the activity of free and mAb-linked CalC-gamma1. The results herein reported and discussed, strongly suggest that both MDR1-Pgp and MRP1 efflux systems are engaged by CalC-gamma1, but only MDR1-Pgp over-expression efficiently abrogates drug cytotoxicity in MDR cells. Paradoxically, Bcl-2 expression, as observed for other anticancer compounds belonging to the enediyne family of drugs, confers CalC-gamma1 susceptibility rather than resistance in HL60 cells. Further, the isolation of a resistant HL60 subline (HL60AL) that was developed by exposing the parental sensitive cells to sub-effective doses of gemtuzumab ozogamicin (GO) over an extended period of time shows a reduced level of CD33 expression that represents an important escape mechanism of HL60 MDR cells to the cytotoxic effect of GO. PMID:20428776

  14. Design, synthesis, and biological evaluation of a novel series of peripheral-selective noradrenaline reuptake inhibitors - Part 3.

    PubMed

    Yukawa, Tomoya; Nakada, Yoshihisa; Sakauchi, Nobuki; Kamei, Taku; Yamada, Masami; Ohba, Yusuke; Fujimori, Ikuo; Ueno, Hiroyuki; Takiguchi, Maiko; Kuno, Masako; Kamo, Izumi; Nakagawa, Hideyuki; Fujioka, Yasushi; Igari, Tomoko; Ishichi, Yuji; Tsukamoto, Tetsuya

    2016-08-15

    Peripheral-selective inhibition of noradrenaline reuptake is a novel mechanism for the treatment of stress urinary incontinence to overcome adverse effects associated with central action. Here, we describe our medicinal chemistry approach to discover a novel series of highly potent, peripheral-selective, and orally available noradrenaline reuptake inhibitors with a low multidrug resistance protein 1 (MDR1) efflux ratio by cyclization of an amide moiety and introduction of an acidic group. We observed that the MDR1 efflux ratio was correlated with the pKa value of the acidic moiety. The resulting compound 9 exhibited favorable PK profiles, probably because of the effect of intramolecular hydrogen bond, which was supported by a its single-crystal structure. The compound 9, 1-{[(6S,7R)-7-(4-chloro-3-fluorophenyl)-1,4-oxazepan-6-yl]methyl}-2-oxo-1,2-dihydropyridine-3-carboxylic acid hydrochloride, which exhibited peripheral NET-selective inhibition at tested doses in rats by oral administration, increased urethral resistance in a dose-dependent manner. PMID:27325446

  15. Pharmacogenetic Analysis of Pediatric Patients with Acute Lymphoblastic Leukemia: A Possible Association between Survival Rate and ITPA Polymorphism

    PubMed Central

    Kim, Hyery; Kang, Hyoung Jin; Kim, Hyo Jeong; Jang, Mi Kyung; Kim, Nam Hee; Oh, Yongtaek; Han, Byoung-Don; Choi, Ji-Yeob; Kim, Chul Woo; Lee, Ji Won; Park, Kyung Duk; Shin, Hee Young; Ahn, Hyo Seop

    2012-01-01

    Genetic polymorphisms are important factors in the effects and toxicity of chemotherapeutics. To analyze the pharmacogenetic and ethnic differences in chemotherapeutics, major genes implicated in the treatment of acute lymphoblastic leukemia (ALL) were analyzed. Eighteen loci of 16 genes in 100 patients with ALL were analyzed. The distribution of variant alleles were CYP3A4*1B (0%), CYP3A5*3 (0%), GSTM1 (21%), GSTP1 (21%), GSTT1 (16%), MDR1 exon 21 (77%), MDR1 exon 26 (61%), MTHFR 677 (63%), MTHFR 1298 (29%), NR3C1 1088 (0%), RFC1 80 (68%), TPMT combined genotype (7%), VDR intron 8 (11%), VDR FokI (83%), TYMS enhancer repeat (22%) and ITPA 94 (30%). The frequencies of single nucleotide polymorphisms (SNPs) of 10 loci were statistically different from those in Western Caucasians. Dose percents (actual/planned dose) or toxicity of mercaptopurine and methotrexate were not related to any SNPs. Event free survival (EFS) rate was lower in ITPA variants, and ITPA 94 AC/AA variant genotypes were the only independent risk factor for lower EFS in multivariate analysis, which was a different pharmacogenetic implication from Western studies. This study is the first pharmacogenetic study in Korean pediatric ALL. Our result suggests that there are other possible pharmacogenetic factors besides TPMT or ITPA polymorphisms which influence the metabolism of mercaptopurine in Asian populations. PMID:23029095

  16. Glucose deprivation induces chemoresistance in colorectal cancer cells by increasing ATF4 expression

    PubMed Central

    Hu, Ya-Ling; Yin, Yuan; Liu, He-Yong; Feng, Yu-Yang; Bian, Ze-Hua; Zhou, Le-Yuan; Zhang, Ji-Wei; Fei, Bo-Jian; Wang, Yu-Gang; Huang, Zhao-Hui

    2016-01-01

    AIM: To investigate the role of activating transcription factor 4 (ATF4) in glucose deprivation (GD) induced colorectal cancer (CRC) drug resistance and the mechanism involved. METHODS: Chemosensitivity and apoptosis were measured under the GD condition. Inhibition of ATF4 using short hairpin RNA in CRC cells under the GD condition and in ATF4-overexpressing CRC cells was performed to identify the role of ATF4 in the GD induced chemoresistance. Quantitative real-time RT-PCR and Western blot were used to detect the mRNA and protein expression of drug resistance gene 1 (MDR1), respectively. RESULTS: GD protected CRC cells from drug-induced apoptosis (oxaliplatin and 5-fluorouracil) and induced the expression of ATF4, a key gene of the unfolded protein response. Depletion of ATF4 in CRC cells under the GD condition can induce apoptosis and drug re-sensitization. Similarly, inhibition of ATF4 in the ATF4-overexpressing CRC cells reintroduced therapeutic sensitivity and apoptosis. In addition, increased MDR1 expression was observed in GD-treated CRC cells. CONCLUSION: These data indicate that GD promotes chemoresistance in CRC cells through up-regulating ATF4 expression. PMID:27468213

  17. Influences of "spasmolytic powder" on pgp expression of Coriaria Lactone-kindling drug-resistant epileptic rat model.

    PubMed

    Chen, Lei; Feng, Peimin; Li, Yaohua; Zhou, Dong

    2013-09-01

    The earliest records of traditional Chinese medicine (TCM) prevention and treatment of epilepsy dated back to famous "Huang Di Nei Jing." TCM "spasmolytic powder" (equal-ratio compatibility of scorpion and centipede) is a famous prescription which was recognized as a useful add-on drug for refractory epilepsy in clinical observations. Multidrug resistance gene (mdr1) product Pgp overexpression in blood-brain barrier and blood-cerebrospinal fluid barrier is well recognized as the drug resistance mechanism of refractory epilepsy. Here, we established the drug-resistant epilepsy Sprague-Dawley rat model induced by Coriaria Lactone and treated these rats with topiramate and verapamil and low dose, middle dose, and high dose of spasmolytic powder by intragastric administration for 1 week. Electroencephalogram, real-time PCR, and immunohistochemistry were respectively used to detect epileptic discharge frequencies and amplitudes and expression of mdrl mRNA and Pgp on hippocampus and temporal lobe of rats. The results showed that the seizure decreases significantly in the high- and middle-dose groups of spasmolytic powder and topiramate group; in addition, mdr1 mRNA and Pgp expressions on hippocampus and temporal lobe of these drug intervention groups were significantly less than the model group (P < 0.05). These findings indicate that inhibition of intracephalic Pgp expression is possibly one of mechanisms of spasmolytic powder treating refractory epilepsy. PMID:23263794

  18. Permeability of plumbagin across human intestinal cell in vitro.

    PubMed

    Sumsakul, Wiriyaporn; Na-Bangchang, Kesara

    2016-03-01

    Plumbagin is the active compound isolated from plants used in traditional medicine for treatment of various diseases such as activities malaria, leishmaniasis, viral infections and cancers. The aim of the study was to investigate the permeability of plumbagin across Caco-2 (human epithelial colorectal adenocarcinoma) cell monolayer and its effects on the expression and function of P-glycoprotein. The integrity of Caco-2 cell monolayer was evaluated by measuring trans-epithelial electrical resistance and permeation (Papp) of Lucifer yellow across the cell monolayer. The effect of plumbagin on P-glycoprotein was detected by measuring its interference with the transport of the P-glycoprotein substrate (R123) and the effect on MDR-1 mRNA expression was detected by RT-PCR. The Papp of plumbagin (2-8 µM) for the apical to basolateral and basolateral to apical directions were 10.29-15.96 × 10(-6) and 7.40-9.02 × 10(-6) cm/s, respectively, with the efflux ratios of 0.57-0.73. Plumbagin is not either a substrate or inhibitor of P-glycoprotein. It did not interfere with the P-glycoprotein-mediated R123 transport across Caco-2 cell monolayer, as well as the function of P-glycoprotein and the expression of MDR-1 mRNA. Results suggest moderate permeability of plumbagin across the Caco-2 cell monolayer in both directions. The transport mechanism is likely to be a passive transport. PMID:26620575

  19. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus

    SciTech Connect

    Germann, U.A.; Willingham, M.C.; Pastan, I.; Gottesman, M.M. )

    1990-03-06

    The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. The authors expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by ({sup 3}H)azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents compete with the ({sup 3}H)azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart.

  20. What You Need to Know about Drugs: Ecstasy

    MedlinePlus

    ... About Drugs: Ecstasy KidsHealth > For Kids > What You Need to Know About Drugs: Ecstasy Print A A A Text Size en español Lo que necesitas saber sobre las drogas: El Éxtasis What It Is: Ecstasy (3, 4-methylenedioxy-N-methamphetamine, or MDMA) is a drug that is illegally ...

  1. Drug Abuse - Multiple Languages: MedlinePlus

    MedlinePlus

    ... drogas Tagalog (Tagalog) Substance Abuse or Dependence Pag-abuso sa Paggamit ng Mga Bagay o Dependensya - Tagalog (Tagalog) Bilingual PDF Health Information Translations Vietnamese (Tiếng Việt) Drugs, Alcohol and HIV/AIDS: A Consumer Guide English Rượu & ...

  2. What You Need to Know About Drugs: Heroin

    MedlinePlus

    ... Recipes What You Need to Know About Drugs: Heroin KidsHealth > For Kids > What You Need to Know About Drugs: Heroin Print A A A Text Size en español ... sobre las drogas: La heroína What It Is: Heroin (say: HAIR-uh-win) comes from the opium ...

  3. Radiosynthesis and in vivo evaluation of 1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoprotein and breast cancer resistance protein

    PubMed Central

    Dörner, Bernd; Kuntner, Claudia; Bankstahl, Jens P.; Wanek, Thomas; Bankstahl, Marion; Stanek, Johann; Müllauer, Julia; Bauer, Florian; Mairinger, Severin; Löscher, Wolfgang; Miller, Donald W.; Chiba, Peter; Müller, Markus; Erker, Thomas; Langer, Oliver

    2013-01-01

    Aim of this study was to label the potent dual P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP) inhibitor elacridar (1) with 18F to provide a positron emission tomography (PET) radiotracer to visualize Pgp and BCRP. A series of new 1- and 2-halogen- and nitro-substituted derivatives of 1 (4a-e) was synthesized as precursor molecules and reference compounds for radiolabelling and shown to display comparable in vitro potency to 1 in increasing rhodamine 123 accumulation in a cell line overexpressing human Pgp (MDCKII-MDR1). 1-[18F]fluoroelacridar ([18F]4b) was synthesized in a decay-corrected radiochemical yield of 1.7±0.9% by a 1-step no-carrier added nucleophilic aromatic 18F-substitution of 1-nitro precursor 4c. Small-animal PET imaging of [18F]4b was performed in naïve rats, before and after administration of unlabelled 1 (5 mg/kg, n=3), as well as in wild-type and Mdr1a/b(−/−)Bcrp1(−/−) mice (n=3). In PET experiments in rats, administration of unlabelled 1 increased brain activity uptake by a factor of 9.5 (p=0.0002, 2-tailed Student’s t-test), whereas blood activity levels remained unchanged. In Mdr1a/b(−/−)Bcrp1(−/−) mice, the mean brain-to-blood ratio of activity at 60 min after tracer injection was 7.6 times higher as compared to wild-type animals (p=0.0002). HPLC analysis of rat brain tissue extracts collected at 40 min after injection of [18F]4b revealed that 93±7% of total radioactivity in brain was in the form of unchanged [18F]4b. In conclusion, the in vivo behavior of [18F]4b was found to be similar to previously described [11C]1 suggesting transport of [18F]4b by BCRP and/or Pgp at the rodent BBB. However, low radiochemical yields and a significant degree of in vivo defluorination will limit the utility of [18F]4b as a PET tracer. PMID:21419632

  4. CD44hiCD24lo mammosphere-forming cells from primary breast cancer display resistance to multiple chemotherapeutic drugs.

    PubMed

    Ji, Ping; Zhang, Yong; Wang, Shu-Jun; Ge, Hai-Liang; Zhao, Guo-Ping; Xu, Ying-Chun; Wang, Ying

    2016-06-01

    It has been widely suggested that mammosphere-forming cells from tumor cell lines or primary tumors represent the population of cancer stem cells (CSCs), which is supposed to lead to the failure of routine chemotherapy and the recurrence of the disease. However, it is still difficult to obtain CSCs from primary breast cancer for further investigation. We performed a modified culture system to generate mammosphere-forming cells derived from freshly isolated human breast cancer samples and the breast cancer cell line MCF-7. Cancer stem cell-like phenotypes such as CD44 and CD24 were measured by flow cytometry while alkaline phosphatase (AP) and mammaglobin (MGB1) expression was evaluated immunohistochemically. The expression levels of Klf4, Nanog, Oct4, Sox2 and mdr1 genes were analyzed by quantitative real‑time PCR. Resistance to chemotherapeutic drugs was detected through the apoptosis assay upon drug treatments together with the detection of drug-resistant gene mdr1. The results revealed that we successfully obtained mammosphere‑forming cells from the primary breast cancer in conditioned medium after 14 days of culture. Mammosphere-forming cells from primary breast cancer displayed a CD44hiCD24lo phenotype as well as positive AP and MGB1 reactivity. Stem cell-related genes such as Klf4, Nanog and Oct4 were detectably expressed in these cells. These cells formed tumor-like structures in the lymph nodes of nude mice, which were morphologically and histologically similar to breast cancer. Compared to the breast cancer cell line MCF-7 or mammosphere-forming cells from MCF-7 cells, the mammosphere-forming cells from the primary breast cancer exhibited resistance to three of four first-line chemotherapeutic drugs investigated through the induction of apoptosis, which was largely associated with the increased expression of drug-resistant gene mdr1 upon drug treatment. In conclusion, mammosphere-forming cells generated from the primary breast cancer exhibit CSC

  5. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    SciTech Connect

    Al-Salman, Fadheela; Plant, Nick

    2012-08-15

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  6. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers.

    PubMed

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin; Oskarsson, Agneta

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7-0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on transport

  7. Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats.

    PubMed

    Choudhuri, Supratim; Cherrington, Nathan J; Li, Ning; Klaassen, Curtis D

    2003-11-01

    The aim of this study was to quantitatively determine the constitutive expression levels of various transporter mRNAs in rat choroid plexus. To provide a reference for the relative expression levels, the expression of various transporter mRNAs in choroid plexus were compared with that in liver, kidney, and ileum. The mRNA levels of multidrug resistance protein (Mrp)1, 2, 3, 4, 5, and 6; multidrug resistance (Mdr)1a, 1b, and 2; organic anion transporting polypeptide (Oatp)1, 2, 3, 4, 5, 9, 12, and Oat-K (1/2); organic anion transporter (Oat)1, 2, and 3; organic cation transporter (Oct)1, 2, 3, N1, and N2; bile acid transporters sodium taurocholate cotransporting polypeptide (Ntcp), bile salt excretory protein (Bsep), and ileal bile acid transporter (Ibat); divalent metal transporter 1 (DMT1), Menke's and Wilson's metal transporters; equilibrative nucleotide transporters (Ent) 1 and 2, and constitutive nucleotide transporters (Cnt)1 and 2; peptide transporters (Pept)1 and 2; as well as ATP-binding cassette (Abc)G5 and 8 were measured in choroid plexus by the branched DNA signal amplification method. Mrp1, 4, and 5, Oatp3, Menke's transporter, DMT1, Ent1, and Pept2 mRNAs were expressed in choroid plexus at higher levels than in liver, kidney, or ileum. OctN1 and N2, Oatp2, Oat2 and 3, and Cnt1 and 2 mRNAs expressions were detectable in choroid plexus, but the levels were lower compared with that in liver, kidney, or ileum. The remaining transporters [Mrp2, Mrp3, Oct1, Oct2, Oatp1, Oatp4, Oatp5, Oatp12, Oat-K (1/2), Ntcp, Bsep, Ibat, Mdr1a, Mdr1b, Mdr2, Oat1, Ent2, Pept1, AbcG5, AbcG8] were expressed at very low levels in choroid plexus. The constitutive expression levels of different transporters in choroid plexus may provide an insight into the range of xenobiotics that can potentially be transported by the choroid plexus, thereby providing a means of xenobiotic detoxification in the brain. PMID:14570765

  8. Multiple human isoforms of drug transporters contribute to the hepatic and renal transport of olmesartan, a selective antagonist of the angiotensin II AT1-receptor.

    PubMed

    Yamada, Akihiro; Maeda, Kazuya; Kamiyama, Emi; Sugiyama, Daisuke; Kondo, Tsunenori; Shiroyanagi, Yoshiyuki; Nakazawa, Hayakazu; Okano, Teruo; Adachi, Masashi; Schuetz, John D; Adachi, Yasuhisa; Hu, Zhuohan; Kusuhara, Hiroyuki; Sugiyama, Yuichi

    2007-12-01

    Olmesartan, a novel angiotensin II AT1-receptor antagonist, is excreted into both bile and urine, with minimal metabolism. Because olmesartan is a hydrophilic anionic compound, some transporters could be involved in its hepatic and renal clearance. In this study, we characterized the role of human drug transporters in the pharmacokinetics of olmesartan and determined the contribution of each transporter to the overall clearance of olmesartan. Olmesartan was significantly taken up into human embryonic kidney 293 cells expressing organic anion-transporting polypeptide (OATP) 1B1, OATP1B3, organic anion transporter (OAT) 1, and OAT3. We also observed its saturable uptake into human hepatocytes and kidney slices. Estimated from the relative activity factor method and application of specific inhibitors, the relative contributions of OATP1B1 and OATP1B3 to the uptake of olmesartan in human hepatocytes were almost the same, whereas OAT3 was predominantly involved in its uptake in kidney slices. The vectorial transport of olmesartan was observed in OATP1B1/multidrug resistance-associated protein (MRP) 2 double transfectants, but not in OATP1B1/multidrug resistance (MDR) 1 and OATP1B1/breast cancer resistance protein (BCRP) transfectants. ATP-dependent transport into membrane vesicles expressing human MRP2 and MRP4 was clearly observed, with K(m) values of 14.9 and 26.2 microM, respectively, whereas the urinary excretion of olmesartan in Mrp4-knockout mice was not different from that of control mice. We also investigated the transcellular transport of olmesartan medoxomil, a prodrug of olmesartan. Vectorial basal-to-apical transport was observed in OATP1B1/MRP2, OATP1B1/MDR1 double, and OATP1B1/BCRP double transfectants, suggesting the possible involvement of MRP2, MDR1, and BCRP in the limit of intestinal absorption of olmesartan medoxomil. From these results, we suggest that multiple transporters make a significant contribution to the pharmacokinetics of olmesartan and

  9. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.

    PubMed

    Eddouzi, Jamel; Parker, Josie E; Vale-Silva, Luis A; Coste, Alix; Ischer, Françoise; Kelly, Steve; Manai, Mohamed; Sanglard, Dominique

    2013-07-01

    Antifungal resistance of Candida species is a clinical problem in the management of diseases caused by these pathogens. In this study we identified from a collection of 423 clinical samples taken from Tunisian hospitals two clinical Candida species (Candida albicans JEY355 and Candida tropicalis JEY162) with decreased susceptibility to azoles and polyenes. For JEY355, the fluconazole (FLC) MIC was 8 μg/ml. Azole resistance in C. albicans JEY355 was mainly caused by overexpression of a multidrug efflux pump of the major facilitator superfamily, Mdr1. The regulator of Mdr1, MRR1, contained a yet-unknown gain-of-function mutation (V877F) causing MDR1 overexpression. The C. tropicalis JEY162 isolate demonstrated cross-resistance between FLC (MIC > 128 μg/ml), voriconazole (MIC > 16 μg/ml), and amphotericin B (MIC > 32 μg/ml). Sterol analysis using gas chromatography-mass spectrometry revealed that ergosterol was undetectable in JEY162 and that it accumulated 14α-methyl fecosterol, thus indicating a perturbation in the function of at least two main ergosterol biosynthesis proteins (Erg11 and Erg3). Sequence analyses of C. tropicalis ERG11 (CtERG11) and CtERG3 from JEY162 revealed a deletion of 132 nucleotides and a single amino acid substitution (S258F), respectively. These two alleles were demonstrated to be nonfunctional and thus are consistent with previous studies showing that ERG11 mutants can only survive in combination with other ERG3 mutations. CtERG3 and CtERG11 wild-type alleles were replaced by the defective genes in a wild-type C. tropicalis strain, resulting in a drug resistance phenotype identical to that of JEY162. This genetic evidence demonstrated that CtERG3 and CtERG11 mutations participated in drug resistance. During reconstitution of the drug resistance in C. tropicalis, a strain was obtained harboring only defective Cterg11 allele and containing as a major sterol the toxic metabolite 14α-methyl-ergosta-8,24(28)-dien-3α,6β-diol, suggesting

  10. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance.

    PubMed

    Znaidi, Sadri; Weber, Sandra; Al-Abdin, Osman Zin; Bomme, Perrine; Saidane, Saloua; Drouin, Simon; Lemieux, Sébastien; De Deken, Xavier; Robert, François; Raymond, Martine

    2008-05-01

    Upc2p, a transcription factor of the zinc cluster family, is an important regulator of sterol biosynthesis and azole drug resistance in Candida albicans. To better understand Upc2p function in C. albicans, we used genomewide location profiling to identify the transcriptional targets of Upc2p in vivo. A triple hemagglutinin epitope, introduced at the C terminus of Upc2p, conferred a gain-of-function effect on the fusion protein. Location profiling identified 202 bound promoters (P < 0.05). Overrepresented functional groups of genes whose promoters were bound by Upc2p included 12 genes involved in ergosterol biosynthesis (NCP1, ERG11, ERG2, and others), 18 genes encoding ribosomal subunits (RPS30, RPL32, RPL12, and others), 3 genes encoding drug transporters (CDR1, MDR1, and YOR1), 4 genes encoding transcription factors (INO2, ACE2, SUT1, and UPC2), and 6 genes involved in sulfur amino acid metabolism (MET6, SAM2, SAH1, and others). Bioinformatic analyses suggested that Upc2p binds to the DNA motif 5'-VNCGBDTR that includes the previously characterized Upc2p binding site 5'-TCGTATA. Northern blot analysis showed that increased binding correlates with increased expression for the analyzed Upc2p targets (ERG11, MDR1, CDR1, YOR1, SUT1, SMF12, and CBP1). The analysis of ERG11, MDR1, and CDR1 transcripts in wild-type and upc2Delta/upc2Delta strains grown under Upc2p-activating conditions (lovastatin treatment and hypoxia) showed that Upc2p regulates its targets in a complex manner, acting as an activator or as a repressor depending upon the target and the activating condition. Taken together, our results indicate that Upc2p is a key regulator of ergosterol metabolism. They also suggest that Upc2p may contribute to azole resistance by regulating the expression of drug efflux pump-encoding genes in addition to ergosterol biosynthesis genes. PMID:18390649

  11. New potent P-glycoprotein modulators with the cucurbitane scaffold and their synergistic interaction with doxorubicin on resistant cancer cells.

    PubMed

    Ramalhete, Cátia; Molnár, Joseph; Mulhovo, Silva; Rosário, Virgílio E; Ferreira, Maria-José U

    2009-10-01

    The novel cucurbitacins, balsaminagenin A and B (1-2) and balsaminoside A (3) and the know cucurbitacin karavelagenin C (4), together with five new mono or diacylated derivatives (5-9) of karavelagenin C were evaluated for multidrug resistance reversing activity on human MDR1 gene transfected mouse lymphoma cells. Compounds 2-6 exhibited a strong activity compared with that of the positive control, verapamil. Structure-activity relationships are discussed. Moreover, in the checkerboard model of combination chemotherapy, the interaction between doxorubicin and compounds 2-5 synergistically enhanced the effect of the anticancer drug. Compounds 1-4 were isolated from the aerial parts of Momordica balsamina L. The structures of the compounds were established on the basis of spectroscopic methods including 2D NMR experiments (COSY, HMQC, HMBC and NOESY). PMID:19733087

  12. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand.

    PubMed

    Imwong, Mallika; Jindakhad, Thantip; Kunasol, Chanon; Sutawong, Kreepol; Vejakama, Phisitt; Dondorp, Arjen M

    2015-01-01

    Artemisinin resistant falciparum malaria is an increasing problem in Southeast Asia, but has not been associated with increased transmission of the disease, yet. During a recent outbreak in 2014 in Ubon Ratchatani, Eastern Thailand, parasites from 101 patients with falciparum malaria were genotyped for antimalarial drug resistance markers. Mutations in the Kelch13 marker for artemisinin resistance were present in 93% of samples, mainly C580Y from 2 major clusters as identified by microsatellite typing. Resistance markers for antifolates and chloroquine were also highly prevalent. Most strains (91%) carried single copy number PfMDR1, suggesting sustained sensitivity to mefloquine, the partner drug in the local first-line artemisinin combination therapy (ACT). The high prevalence of artemisinin resistance in this recent malaria outbreak suggests but does not prove a causative role in increased transmission. Careful monitoring of ACT efficacy and additional genetic epidemiological studies are warranted to guide the public health response to the outbreak. PMID:26616851

  13. Novel dihydro-beta-agarofuran sesquiterpenes as potent modulators of human P-glycoprotein dependent multidrug resistance.

    PubMed

    Torres-Romero, David; Muñoz-Martínez, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Gamarro, Francisco; Bazzocchi, Isabel L

    2009-12-21

    P-Glycoprotein (Pgp) overexpression is one factor contributing to multidrug resistance (MDR) in cancer cells and represents one drawback in the treatment of cancer. In an attempt to find more specific and less toxic anticancer MDR-reversal agents, we report herein the isolation, structure elucidation and biological activity of nine new (, and ) and seven known (, and ) dihydro-beta-agarofuran sesquiterpenes from the leaves of Celastrus vulcanicola. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, CD studies and biogenetic means. All the compounds were assayed on human MDR1-transfected NIH-3T3 cells, in order to determine their ability to reverse the MDR phenotype due to Pgp overexpression. Six compounds from these series (, , , , and ) showed an effectiveness that was similar to (or higher than) the classical Pgp reversal agent verapamil for the reversal of resistance to daunomycin and vinblastine. The structure-activity relationships are discussed. PMID:20024113

  14. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression.

    PubMed

    Uhr, Manfred; Tontsch, Alina; Namendorf, Christian; Ripke, Stephan; Lucae, Susanne; Ising, Marcus; Dose, Tatjana; Ebinger, Martin; Rosenhagen, Marcus; Kohli, Martin; Kloiber, Stefan; Salyakina, Daria; Bettecken, Thomas; Specht, Michael; Pütz, Benno; Binder, Elisabeth B; Müller-Myhsok, Bertram; Holsboer, Florian

    2008-01-24

    The clinical efficacy of a systemically administered drug acting on the central nervous system depends on its ability to pass the blood-brain barrier, which is regulated by transporter molecules such as ABCB1 (MDR1). Here we report that polymorphisms in the ABCB1 gene predict the response to antidepressant treatment in those depressed patients receiving drugs that have been identified as substrates of ABCB1 using abcb1ab double-knockout mice. Our results indicate that the combined consideration of both the medication's capacity to act as an ABCB1-transporter substrate and the patient's ABCB1 genotype are strong predictors for achieving a remission. This finding can be viewed as a further step into personalized antidepressant treatment. PMID:18215618

  15. Comparative Study on the MDR Reversal Effects of Selected Chalcones

    PubMed Central

    Ivanova, A. B.; Batovska, D. I.; Todorova, I. T.; Stamboliyska, B. A.; Serly, J.; Molnar, J.

    2011-01-01

    Based on the structure of three previously established lead compounds, fifteen selected chalcones were synthesized and evaluated for their multidrug resistance (MDR) reversal activity on mouse lymphoma cells. The most active chalcones were stronger revertants than the positive control, verapamil. In the model of combination chemotherapy, the interactions between the anticancer drug doxorubicin and two of the most effective compounds were measured in vitro, on human MDR1 gene transfected mouse lymphoma cells, showing that the type of interaction for one of these compounds was indifferent while that for the other one was additive. Furthermore, two chalcones inhibited 50% of cell proliferation in concentration of around 0.4 μg/mL and were from 2- to 100-fold more active than the most chalcones. The structure-activity relationships were obtained and discussed in view of their usefulness for the design of chalcone-like P-gp modulators and drugs able to treat resistant cancers. PMID:27516904

  16. Comparative Study on the MDR Reversal Effects of Selected Chalcones.

    PubMed

    Ivanova, A B; Batovska, D I; Todorova, I T; Stamboliyska, B A; Serly, J; Molnar, J

    2011-01-01

    Based on the structure of three previously established lead compounds, fifteen selected chalcones were synthesized and evaluated for their multidrug resistance (MDR) reversal activity on mouse lymphoma cells. The most active chalcones were stronger revertants than the positive control, verapamil. In the model of combination chemotherapy, the interactions between the anticancer drug doxorubicin and two of the most effective compounds were measured in vitro, on human MDR1 gene transfected mouse lymphoma cells, showing that the type of interaction for one of these compounds was indifferent while that for the other one was additive. Furthermore, two chalcones inhibited 50% of cell proliferation in concentration of around 0.4 μg/mL and were from 2- to 100-fold more active than the most chalcones. The structure-activity relationships were obtained and discussed in view of their usefulness for the design of chalcone-like P-gp modulators and drugs able to treat resistant cancers. PMID:27516904

  17. Microchamber Device for Detection of Transporter Activity of Adherent Cells

    PubMed Central

    Tsugane, Mamiko; Uejima, Etsuko; Suzuki, Hiroaki

    2015-01-01

    We present a method to detect the transporter activity of intact adherent cells using a microchamber device. When adherent cells are seeded onto the poly-di-methyl siloxane substrate having microchambers with openings smaller than the size of a cell, the cells form a confluent layer that covers the microchambers, creating minute, confined spaces. As substances exported across the cell membrane accumulate, transporter activity can be detected by observing the fluorescence intensity increase in the microchamber. We tested the microchamber device with HeLa cells over-expressing MDR1, an ATP-binding cassette transporter, and succeeded in detecting the transport of fluorescence-conjugated paclitaxel, the anti-cancer drug, at the single-cell level. PMID:25853126

  18. Apoptosis induction and modulation of P-glycoprotein mediated multidrug resistance by new macrocyclic lathyrane-type diterpenoids.

    PubMed

    Duarte, Noélia; Varga, Andras; Cherepnev, Georg; Radics, Rita; Molnár, Joseph; Ferreira, Maria-José U

    2007-01-01

    The macrocyclic lathyrane diterpenes, latilagascenes D-F (1-3) and jolkinol B (4), were isolated from the methanol extract of Euphorbia lagascae, and evaluated for multidrug resistance reversing activity on mouse lymphoma cells. All compounds displayed very strong activity compared with that of the positive control, verapamil. The structure-activity relationship is discussed. The evaluation of compounds 1 and 4, and of latigascenes A-C (5-7), isolated from the same species, as apoptosis-inducers was also carried out. Compound 1 was the most active. Furthermore, in the model of combination chemotherapy, the interaction between the doxorubicine and latilagascene B (6) was studied in vitro, on human MDR1 gene transfected mouse lymphoma cells, showing that the type of interaction was synergistic. Latilagascenes D-F (1-3) are new compounds whose structures were established on the basis of spectroscopic methods, including 2D NMR experiments (COSY, HMQC, HMBC and NOESY). PMID:17035027

  19. Phenytoin intoxication with no symptoms correlated with serum drug level: a case study

    PubMed Central

    Avcil, Mucahit; Duman, Ali; Turkdogan, Kenan Ahmet; Kapci, Mucahit; Akoz, Ayhan; Canakci, Selcuk Eren; Ozluer, Yunus Emre

    2015-01-01

    In high-dose intake of phenytoin, which is used frequently to treatepilepsy, nystagmus, diplopia, nausea-vomiting, lethargy, confusion, seizure, and coma can be observed. In recent studies on phenytoin intoxication, in which seizure and coma were observed in drug levels greater than 50 ug/mL. The serum phenytoin level of apatient, who consumed approximately 100 pcs of 100 mg phenytoin tablets in an effort to commit suicide, and who had no pathological finding in her neurologic examination, was 124 ug/mL. High drug level and the absence of toxic effect (or the absence of toxic effect correlated with the drug level) indicates that cytochrome P450 is functioning, but there can be a mutation in the MDR1 gene. In our case study, we report on phenytoin intoxication in a patient having a high level of phenytoin but no symptoms correlated with serum drug level, as supported by the findings in the literature. PMID:26966493

  20. Whole-genome characterization of chemoresistant ovarian cancer.

    PubMed

    Patch, Ann-Marie; Christie, Elizabeth L; Etemadmoghadam, Dariush; Garsed, Dale W; George, Joshy; Fereday, Sian; Nones, Katia; Cowin, Prue; Alsop, Kathryn; Bailey, Peter J; Kassahn, Karin S; Newell, Felicity; Quinn, Michael C J; Kazakoff, Stephen; Quek, Kelly; Wilhelm-Benartzi, Charlotte; Curry, Ed; Leong, Huei San; Hamilton, Anne; Mileshkin, Linda; Au-Yeung, George; Kennedy, Catherine; Hung, Jillian; Chiew, Yoke-Eng; Harnett, Paul; Friedlander, Michael; Quinn, Michael; Pyman, Jan; Cordner, Stephen; O'Brien, Patricia; Leditschke, Jodie; Young, Greg; Strachan, Kate; Waring, Paul; Azar, Walid; Mitchell, Chris; Traficante, Nadia; Hendley, Joy; Thorne, Heather; Shackleton, Mark; Miller, David K; Arnau, Gisela Mir; Tothill, Richard W; Holloway, Timothy P; Semple, Timothy; Harliwong, Ivon; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Idrisoglu, Senel; Bruxner, Timothy J C; Christ, Angelika N; Poudel, Barsha; Holmes, Oliver; Anderson, Matthew; Leonard, Conrad; Lonie, Andrew; Hall, Nathan; Wood, Scott; Taylor, Darrin F; Xu, Qinying; Fink, J Lynn; Waddell, Nick; Drapkin, Ronny; Stronach, Euan; Gabra, Hani; Brown, Robert; Jewell, Andrea; Nagaraj, Shivashankar H; Markham, Emma; Wilson, Peter J; Ellul, Jason; McNally, Orla; Doyle, Maria A; Vedururu, Ravikiran; Stewart, Collin; Lengyel, Ernst; Pearson, John V; Waddell, Nicola; deFazio, Anna; Grimmond, Sean M; Bowtell, David D L

    2015-05-28

    Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1. PMID:26017449

  1. Chemosensitization of multidrug resistant Candida albicans by the oxathiolone fused chalcone derivatives

    PubMed Central

    Ła̧cka, Izabela; Konieczny, Marek T.; Bułakowska, Anita; Kodedová, Marie; Gašková, Dana; Maurya, Indresh K.; Prasad, Rajendra; Milewski, Sławomir

    2015-01-01

    Three structurally related oxathiolone fused chalcone derivatives appeared effective chemosensitizers, able to restore in part sensitivity to fluconazole of multidrug-resistant C. albicans strains. Compound 21 effectively chemosensitized cells resistant due to the overexpression of the MDR1 gene, compound 6 reduced resistance of cells overexpressing the ABC-type drug transporters CDR1/CDR2 and derivative 18 partially reversed fluconazole resistance mediated by both types of yeast drug efflux pumps. The observed effect of sensitization of resistant strains of Candida albicans to fluconazole activity in the presence of active compounds most likely resulted from inhibition of the pump-mediated efflux, as was revealed by the results of studies involving the fluorescent probes, Nile Red, Rhodamine 6G and diS-C3(3). PMID:26300857

  2. Transporter assays and assay ontologies: useful tools for drug discovery.

    PubMed

    Zdrazil, Barbara; Chichester, Christine; Zander Balderud, Linda; Engkvist, Ola; Gaulton, Anna; Overington, John P

    2014-06-01

    Transport proteins represent an eminent class of drug targets and ADMET (absorption, distribution, metabolism, excretion, toxicity) associated genes. There exists a large number of distinct activity assays for transport proteins, depending on not only the measurement needed (e.g. transport activity, strength of ligand–protein interaction), but also due to heterogeneous assay setups used by different research groups. Efforts to systematically organize this (divergent) bioassay data have large potential impact in Public-Private partnership and conventional commercial drug discovery. In this short review, we highlight some of the frequently used high-throughput assays for transport proteins, and we discuss emerging assay ontologies and their application to this field. Focusing on human P-glycoprotein (Multidrug resistance protein 1; gene name: ABCB1, MDR1), we exemplify how annotation of bioassay data per target class could improve and add to existing ontologies, and we propose to include an additional layer of metadata supporting data fusion across different bioassays. PMID:25027375

  3. Candida Efflux ATPases and Antiporters in Clinical Drug Resistance.

    PubMed

    Prasad, Rajendra; Rawal, Manpreet Kaur; Shah, Abdul Haseeb

    2016-01-01

    An enhanced expression of genes encoding ATP binding cassette (ABC) and major facilitator superfamily (MFS) transport proteins are known to contribute to the development of tolerance to antifungals in pathogenic yeasts. For example, the azole resistant (AR) clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of CDR1 and/or CaMDR1 belonging to ABC and MFS, superfamilies, respectively. The reduced accumulation (due to rapid efflux) of drugs in AR isolates confirms the role of efflux pump proteins in the development of drug tolerance. Considering the importance of major multidrug transporters, the focus of recent research has been to understand the structure and function of these proteins which could help to design inhibitors/modulators of these pump proteins. This chapter focuses on some aspects of the structure and function of yeast transporter proteins particularly in relation to MDR in Candida. PMID:26721282

  4. Combating P-glycoprotein-mediated multidrug resistance with 10-O-phenyl dihydroartemisinin ethers in MCF-7 cells.

    PubMed

    Zhong, Hang; Zhao, Xuan; Zuo, Zhizhong; Sun, Jingwei; Yao, Yao; Wang, Tao; Liu, Dan; Zhao, Linxiang

    2016-01-27

    A series of 10-β-phenyl ethers of dihydroartemisinin (DHA) with piperazine substitutions were synthesized with the goal of overcoming multidrug resistance in cancer therapy. These novel compounds exerted significant antiproliferative activities in breast cancer MCF-7 and MCF-7/Adr cell lines at the submicromolar level and were shown to be approximately 100- to 300-times more potent than the lead compound DHA. Remarkably, the P-gp-overexpressed MCF-7/Adr cell line showed collateral sensitivity towards these derivatives. Furthermore, compounds 3d and 5c, with the highest selectivity for MCF-7/Adr towards MCF-7 cells, were free from P-gp efflux in a MDCK-MDR1 assay. Flow cytometry and western blot assays suggested that the antiproliferative effects of 5c were associated with cell cycle arrest at G1 phase through the downregulation of Cyclin D1 and Cyclin B1. PMID:26741854

  5. Problems of Glioblastoma Multiforme Drug Resistance.

    PubMed

    Stavrovskaya, A A; Shushanov, S S; Rybalkina, E Yu

    2016-02-01

    Glioblastoma multiforme (GBL) is the most common and aggressive brain neoplasm. A standard therapeutic approach for GBL involves combination therapy consisting of surgery, radiotherapy, and chemotherapy. The latter is based on temozolomide (TMZ). However, even by applying such a radical treatment strategy, the mean patient survival time is only 14.6 months. Here we review the molecular mechanisms underlying the resistance of GBL cells to TMZ including genetic and epigenetic mechanisms. Present data regarding a role for genes and proteins MGMT, IDH1/2, YB-1, MELK, MVP/LRP, MDR1 (ABCB1), and genes encoding other ABC transporters as well as Akt3 kinase in developing resistance of GBL to TMZ are discussed. Some epigenetic regulators of resistance to TMZ such as microRNA and EZH2 are reviewed. PMID:27260389

  6. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand

    PubMed Central

    Imwong, Mallika; Jindakhad, Thantip; Kunasol, Chanon; Sutawong, Kreepol; Vejakama, Phisitt; Dondorp, Arjen M.

    2015-01-01

    Artemisinin resistant falciparum malaria is an increasing problem in Southeast Asia, but has not been associated with increased transmission of the disease, yet. During a recent outbreak in 2014 in Ubon Ratchatani, Eastern Thailand, parasites from 101 patients with falciparum malaria were genotyped for antimalarial drug resistance markers. Mutations in the Kelch13 marker for artemisinin resistance were present in 93% of samples, mainly C580Y from 2 major clusters as identified by microsatellite typing. Resistance markers for antifolates and chloroquine were also highly prevalent. Most strains (91%) carried single copy number PfMDR1, suggesting sustained sensitivity to mefloquine, the partner drug in the local first-line artemisinin combination therapy (ACT). The high prevalence of artemisinin resistance in this recent malaria outbreak suggests but does not prove a causative role in increased transmission. Careful monitoring of ACT efficacy and additional genetic epidemiological studies are warranted to guide the public health response to the outbreak. PMID:26616851

  7. Use of a cloned multidrug resistance gene for coamplification and overproduction of major excreted protein, a transformation-regulated secreted acid protease

    SciTech Connect

    Kane, S.E.; Troen, B.R.; Gal, S.; Ueda, K.; Pastan, I.; Gottesman, M.M.

    1988-08-01

    Malignantly transformed mouse fibroblasts synthesize and secrete large amounts of major excreted protein (MEP), a 39,000-dalton precursor to an acid protease (cathepsin L). To evaluate the possible role of this protease in the transformed phenotype, the authors transfected cloned genes for mouse or human MEP into mouse MIH 3T3 cells with an expression vector for the dominant, selectable human multidrug resistance (MDR1) gene. The cotransfected MEP sequences were efficiently coamplified and transcribed during stepwise selection for multidrug resistance in colchicine. The transfected NIH 3T3 cell lines containing amplified MEP sequences synthesized as much MEP as did Kirsten sarcoma virus-transformed NIH 3T3 cells. The MEP synthesized by cells transfected with the cloned mouse and human MEP genes were also secreted. Elevated synthesis and secretion of MEP by NIH 3T3 cells did not change the nontransformed phenotype of these cells.

  8. Is Resistance Useless? Multidrug Resistance and Collateral Sensitivity

    PubMed Central

    Hall, Matthew D.; Handley, Misty D.; Gottesman, Michael M.

    2009-01-01

    When cancer cells develop resistance to chemotherapeutics, it is frequently conferred by the ATP-dependent efflux pump P-glycoprotein (MDR1, P-gp, ABCB1). P-gp can efflux a wide range of cancer drugs; thus its expression confers cross-resistance, termed multidrug resistance (MDR), to a wide range of drugs. Strategies to overcome this resistance have been actively sought for over 30 years, yet no clinical solutions exist. A less understood aspect of MDR is the hypersensitivity of resistant cancer cells to other drugs, a phenomenon generally known as collateral sensitivity (CS). This review highlights the extent of this effect for the first time, discusses hypotheses such as ROS generation to account for the underlying generality of this phenomenon, and proposes the exploitation of CS as a strategy to improve response to chemotherapy. PMID:19762091

  9. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    PubMed Central

    Zhang, Jing; Wu, Huizhe; Chen, Qiuchen; Zhao, Pengfei; Zhao, Haishan; Yao, Weifan; Wei, Minjie

    2015-01-01

    Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A) from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature. PMID:26347880

  10. Quantitative evaluation of ABC transporter-mediated drug resistance based on the determination of the anticancer activity of camptothecin against breast cancer stem cells using TIRF.

    PubMed

    Arumugam, Parthasarathy; Song, Joon Myong

    2016-06-13

    Elevated expression of drug efflux pumps such as multidrug resistant protein-1 (MDR1/ABCB1) and multidrug resistance associated protein-1 (MRP1/ABCC1) in cancer stem cells (CSCs) among a bulky tumor cell population was attributed to drug resistance. For the first time, we have quantitatively evaluated the cytotoxic profile of camptothecin (CPT) against the CSC. In the present study, a Qdot based total internal reflection fluorescence (TIRF) detection system effectively interpreted that drug resistance to CPT was reduced in the CSC under ABCB1 inhibited conditions. This study revealed that quantitative finding of the EC50 value for apoptosis and necrosis in correlation with the ABC inhibitor and CSC population using TIRF could provide more details of the anti-cancer efficacy of chemotherapeutic agents. PMID:27182942

  11. Phallusiasterols A and B: Two New Sulfated Sterols from the Mediterranean Tunicate Phallusia fumigata and Their Effects as Modulators of the PXR Receptor

    PubMed Central

    Imperatore, Concetta; D’Aniello, Filomena; Aiello, Anna; Fiorucci, Stefano; D’Amore, Claudio; Sepe, Valentina; Menna, Marialuisa

    2014-01-01

    Purification of the apolar extracts of the marine ascidian Phallusia fumigata, afforded two new sulfated sterols, phallusiasterols A (1) and B (2). The structures of the new compounds have been elucidated using mass spectrometry and NMR experiments. The effects of phallusiasterols A and B as modulators of pregnane-X-receptor (PXR) have been investigated. These studies revealed that phallusiasterol A induces PXR transactivation in HepG2 cells and stimulates the expression of the PXR target genes CYP3A4 and MDR1 in the same cell line. Molecular docking calculations suggested the theoretical binding mode of phallusiasterol A with hPXR and revealed that phallusiasterol A fitted well in the LBD of PXR. PMID:24705503

  12. Celecoxib, a cyclooxygenase-2 inhibitor, potentiates the chemotherapic effect of vinorelbine in the medullary thyroid cancer TT cell line.

    PubMed

    Vivaldi, A; Ciampi, R; Tacito, A; Molinaro, E; Agate, L; Bottici, V; Pinchera, A; Collecchi, P; Elisei, R

    2012-05-15

    We analyzed the in vitro effects of celecoxib, a COX-2 inhibitor, and determined if celecoxib can sensitize a human MTC-derived cell line (TT) to chemotherapeutics. We found that celecoxib induced apoptosis in TT cells and decreased drug efflux by reducing the expression of MDR-1 mRNA, which codes for the drug efflux pump P-gp. We also observed that TT cells were 10-fold more resistant to doxorubicin than to vinorelbine, mimicking what can be observed in clinical practice. In addition, we found that the combination of celecoxib and vinorelbine, but not doxorubicin, induced a significant reduction in cell viability and a significant increase in apoptosis. In conclusion, we showed that celecoxib was able to enhance the chemotherapeutic effect of vinorelbine. A clinical trial exploring the in vivo activities of celecoxib in MTC patients who cannot benefit from available treatments would be desirable, taking into account the possible risks of cardiovascular effects of this drug. PMID:22305971

  13. Utility of a novel Oatp1b2 knockout mouse model for evaluating the role of Oatp1b2 in the hepatic uptake of model compounds.

    PubMed

    Chen, Cuiping; Stock, Jeffery L; Liu, Xingrong; Shi, Jilin; Van Deusen, Jeffrey W; DiMattia, Debra A; Dullea, Robert G; de Morais, Sonia M

    2008-09-01

    We generated the organic anion transporting polypeptide (Oatp) 1b2 knockout (KO) mouse model and assessed its utility to study hepatic uptake using model compounds: cerivastatin, lovastatin acid, pravastatin, simvastatin acid, rifampicin, and rifamycin SV. A selective panel of liver cytochromes P450 (P450s) (Cyp3a11, Cyp3a13, Cyp3a16, Cyp2c29, and Cyp2c39) and transporters [Oatp1b2, Oatp1a1, Oatp1a4, Oatp1a5; organic anion transporter (Oat) 1, Oat2, Oat3; multidrug resistance gene 1 (Mdr1) a, Mdr1b; bile salt export pump, multidrug resistance associated protein (Mrp) 2, Mrp3; breast cancer resistance protein] were measured by reverse transcription-polymerase chain reaction in both KO and wild-type (WT) male mice. Male KO and WT mice received each model compound s.c. at 3 mg/kg. Blood and liver samples were obtained at 0, 0.5, and 2 h postdose and analyzed using liquid chromatography/tandem mass spectrometry. Liver/plasma concentration ratio (K(p,liver)) was calculated. Student's t test was used to compare the mRNA and K(p,liver) between the KO and WT mice. A similar mRNA expression was observed between the KO and WT for the selected P450s and transporters except for Oatp1b2, for which the level was negligible in the KO but prominent in the WT mice with P < 0.0001. The in vivo results showed a differential effect of Oatp1b2 on hepatic uptake of the model compounds, indicating that Oatp1b2 plays a more significant role in the hepatobiliary disposition of rifampicin and lovastatin than the other compounds tested. This study suggests the Oatp1b2 mouse as a useful in vivo tool to understand drug targeting and disposition in the liver. PMID:18556442

  14. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies.

    PubMed

    Wang, Renxue; Liu, Lin; Sheps, Jonathan A; Forrest, Dana; Hofmann, Alan F; Hagey, Lee R; Ling, Victor

    2013-08-15

    The bile salt export pump (BSEP), encoded by the abcb11 gene, is the major canalicular transporter of bile acids from the hepatocyte. BSEP malfunction in humans causes bile acid retention and progressive liver injury, ultimately leading to end-stage liver failure. The natural, hydrophilic, bile acid ursodeoxycholic acid (UDCA) is efficacious in the treatment of cholestatic conditions, such as primary biliary cirrhosis and cholestasis of pregnancy. The beneficial effects of UDCA include promoting bile flow, reducing hepatic inflammation, preventing apoptosis, and maintaining mitochondrial integrity in hepatocytes. However, the role of BSEP in mediating UDCA efficacy is not known. Here, we used abcb11 knockout mice (abcb11-/-) to test the effects of acute and chronic UDCA administration on biliary secretion, bile acid composition, liver histology, and liver gene expression. Acutely infused UDCA, or its taurine conjugate (TUDC), was taken up by the liver but retained, with negligible biliary output, in abcb11-/- mice. Feeding UDCA to abcb11-/- mice led to weight loss, retention of bile acids, elevated liver enzymes, and histological damage to the liver. Semiquantitative RT-PCR showed that genes encoding Mdr1a and Mdr1b (canalicular) as well as Mrp4 (basolateral) transporters were upregulated in abcb11-/- mice. We concluded that infusion of UDCA and TUDC failed to induce bile flow in abcb11-/- mice. UDCA fed to abcb11-/- mice caused liver damage and the appearance of biliary tetra- and penta-hydroxy bile acids. Supplementation with UDCA in the absence of Bsep caused adverse effects in abcb11-/- mice. PMID:23764895

  15. pH dependent but not P-gp dependent bidirectional transport study of S-propranolol: the importance of passive diffusion

    PubMed Central

    Zheng, Yi; Benet, Leslie Z.; Okochi, Hideaki; Chen, Xijing

    2016-01-01

    Purpose Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Methods Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. Results S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. Conclusions S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol. PMID:25690341

  16. Genetic and Clinical Factors Affecting Plasma Clozapine Concentration

    PubMed Central

    Edman, Gunnar; Bertilsson, Leif; Hukic, Dzana Sudic; Lavebratt, Catharina; Eriksson, Sven V.; Ösby, Urban

    2015-01-01

    Objective: To assess (1) the variance of plasma clozapine levels; (2) the relative importance of sex, smoking habits, weight, age, and specific genetic variants of cytochrome P450 1A2 (CYP1A2), uridine diphosphate glucuronosyltransferase 1A4 (UGT1A4), and multidrug resistance protein 1 (MDR1) on plasma levels of clozapine; and (3) the relation between plasma clozapine levels, fasting glucose levels, and waist circumference. Method: There were 113 patients on clozapine treatment recruited from psychosis outpatient clinics in Stockholm County, Sweden. Patients had genotype testing for single nucleotide polymorphisms: 2 in MDR1, 3 in CYP1A2, and 1 in UGT1A4. Multiple and logistic regression were used to analyze the relations. Results: There was a wide variation in plasma concentrations of clozapine (mean = 1,615 nmol/L, SD = 1,354 nmol/L), with 37% of the samples within therapeutic range (1,100–2,100 nmol/L). Smokers had significantly lower plasma clozapine concentrations than nonsmokers (P ≤ .03). There was a significant association between the rs762551 A allele of CYP1A2 and lower plasma clozapine concentration (P ≤ .05). Increased fasting glucose level was 3.7-fold more frequent in CC and CA genotypes than AA genotype (odds ratio = 0.27; 95% confidence interval, 0.10–0.72). There was no significant relation between higher fasting glucose levels, larger waist circumference, and higher clozapine levels. Conclusions: It is difficult to predict plasma clozapine concentration, even when known individual and genetic factors are considered. Therefore, therapeutic drug monitoring is recommended in patients who are treated with clozapine. PMID:26137357

  17. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells.

    PubMed

    Sarisozen, Can; Vural, Imran; Levchenko, Tatyana; Hincal, A Atilla; Torchilin, Vladimir P

    2012-05-01

    The over-expression of the P-glycoprotein (P-gp) in cancer cells is one of the main reasons of the acquired Multidrug Resistance (MDR). Combined treatment of MDR cancer cells with P-gp inhibitors and chemotherapeutic agents could result in reversal of resistance in P-gp-expressing cells. In this study, paclitaxel (PTX) was co-encapsulated in actively targeted (anticancer mAb 2C5-modified) polymeric lipid-core PEG-PE-based micelles with Cyclosporine A (CycA), which is one of the most effective first generation P-gp inhibitors. Cell culture studies performed using MDCKII (parental and MDR1) cell lines to investigate the potential MDR reversal effect of the formulations. The average size of both empty and loaded PEG₂₀₀₀-PE/Vitamin E mixed micelles was found between 10 and 25 nm. Zeta potentials of the formulations were found between -7 and -35 mV. The percentage of PTX in the micelles was found higher than 3% for both formulations and cumulative PTX release of about 70% was demonstrated. P-gp inhibition with CycA caused an increase in the cytotoxicity of PTX. Dual-loaded micelles demonstrated significantly higher cytotoxicity in the resistant MDCKII-MDR1 cells than micelles loaded with PTX alone. Micelle modification with mAb 2C5 results in the highest cytotoxicity against resistant cells, with or without P-gp modulator, probably because of better internalization bypassing the P-gp mechanism. Our results suggest that micelles delivering a combination of P-gp modulator and anticancer drug or micelles loaded with only PTX, but targeted with mAb 2C5 represent a promising approach to overcome drug resistance in cancer cells. PMID:22506922

  18. Modulation of P-glycoprotein function and multidrug resistance in cancer cells by Thai plant extracts.

    PubMed

    Takano, M; Kakizoe, S; Kawami, M; Nagai, J; Patanasethnont, D; Sripanidkulchai, B; Yumoto, R

    2014-11-01

    The effects of ethanol extracts from Thai plants belonging to the families of Annonaceae, Rutaceae, and Zingiberaceae on P-glycoprotein (P-gp) function and multidrug resistance were examined in paclitaxel-resistant HepG2 (PR-HepG2) cells. All the extracts tested, significantly increased the accumulation of [3H]paclitaxel, a P-gp substrate, in the cells. Among nine extracts, Z01 and Z02, extracts from Curcuma comosa and Kaempferia marginata (Zingiberaceae family), respectively, potently increased the accumulation. In addition, Z01 and Z02 increased the accumulation of other P-gp substrates, rhodamine 123 and doxorubicin, in PR-HepG2 cells in a concentration-dependent manner. Increased accumulation of rhodamine 123 and doxorubicin by Z01 and Z02 was also confirmed by confocal laser scanning microscopy. The effect of Z01 and Z02 pretreatment on the expression of MDR1 mRNA was also examined. The expression of MDR1 mRNA was not affected by the treatment of PR-HepG2 cells with these extracts for 48 hours. Cytotoxicity of paclitaxel was examined by XTT and protein assays in the absence and presence of Z02. Z02 potentiated the cytotoxicity of paclitaxel in PR-HepG2 cells. These results suggest that Curcuma comosa and Kaempferia marginata belonging to Zingiberaceae are useful sources to search for new P-gp modulator(s) that can be used to overcome multidrug resistance of cancer cells. PMID:25985578

  19. Lactation stage-dependent expression of transporters in rat whole mammary gland and primary mammary epithelial organoids.

    PubMed

    Gilchrist, Samuel E; Alcorn, Jane

    2010-04-01

    Since solute carrier (SLC) and ATP-binding cassette (ABC) transporters play pivotal roles in the transport of both nutrients and drugs into breast milk, drug-nutrient transport interactions at the lactating mammary gland are possible. Our purpose was to characterize lactation stage-dependent changes in transporter expression in rat mammary gland and isolated mammary epithelial organoids (MEO) to provide additional insight for the safe use of maternal medications during breastfeeding. We used quantitative reverse transcription-polymerase chain reaction to assess the temporal expression patterns of SLC and ABC transporters in rat mammary gland and isolated MEO at different stages of lactation. In whole mammary gland five distinct patterns of expression emerged relative to late gestation: (i) decreasing throughout lactation (Mdr1a, Mdr1b, Mrp1, Octn2, Ent2, Ent3, Ncbt2, Mtx1); (ii) prominent increase in early lactation, which may remain elevated or decline with advancing lactation (Octn1, Cnt2, Cnt3, Ent1, Pept1, Pept2); (iii) constant but decreasing later in lactation (Octn3, Dmt1); (iv) increasing until mid-to-late lactation (Oct1, Cnt1); and (v) prominent increase late in lactation (Ncbt1). In isolated MEO (an enriched source of mammary epithelial cells) major differences in expression patterns were noted for Octn3, Ncbt1, and Mtx1, but otherwise were reasonably similar with the whole mammary gland. In conclusion our study augments existing data on transporter expression in the lactating mammary gland. These data should facilitate investigations into lactation-stage dependent changes in drug or nutrient milk-to-serum concentration ratios, the potential for drug- or disease-transporter interactions, and mechanistic studies of transporter function in the lactating mammary gland. PMID:19702690

  20. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction.

    PubMed

    Alcorn, J; Lu, X; Moscow, J A; McNamara, P J

    2002-11-01

    Transporter-mediated processes in the lactating mammary gland may explain the significant accumulation of certain drugs in breast milk. The purpose of this study was to identify potential candidate drug transport proteins involved in drug accumulation in milk. Quantitative reverse transcription-polymerase chain reaction methods were developed to determine the relative RNA levels of 30 different drug transporter genes. Transporter gene RNA levels in lactating mammary epithelial cells (MEC) purified from pooled fresh breast milk samples were compared with levels in nonlactating MEC, liver, and kidney tissue. Transcripts were detected in lactating MEC for OCT1, OCT3, OCTN1, OCTN2, OATP-A, OATP-B, OATP-D, OATP-E, MRP1, MRP2, MRP5, MDR1, CNT1, CNT3, ENT1, ENT3, NCBT1, PEPT1, and PEPT2. No transcripts were detected for OCT2, OAT1, OAT2, OAT3, OAT4, OATP-C, MRP3, MRP4, CNT2, ENT2, and NCBT2. Lactating MEC demonstrated more than 4-fold higher RNA levels of OCT1, OCTN1, PEPT2, CNT1, CNT3, and ENT3, and more than 4-fold lower RNA levels of MDR1 and OCTN2 relative to nonlactating MEC. Lactating MEC showed significantly higher RNA levels of CNT3 relative to liver and kidney, increased PEPT2 RNA levels relative to liver, and increased OATP-A RNA levels relative to kidney. These data imply CNT3 may play a specialized role in nucleoside accumulation in milk and may identify an important role for PEPT2 and OATP-A transporters at the lactating mammary epithelium. Furthermore, transporters expressed in lactating MEC identify a potential role for these transporters in drug disposition at the mammary gland. PMID:12388627

  1. Mechanisms of methotrexate resistance in osteosarcoma cell lines and strategies for overcoming this resistance

    PubMed Central

    WANG, JIANJUN; LI, GUOJUN

    2015-01-01

    The aim of the present study was to investigate the underlying mechanisms of methotrexate (MTX) resistance in the human osteosarcoma cell line, Saos-2/MTX4.4, and to evaluate various methods of overcoming the resistance to this chemotherapeutic agent. MMT assays were performed to determine the resistance of the primary (Saos-2) and resistant (Saos-2/MTX4.4) cell lines to MTX, cisplatin [cis-diamminedichloroplatinum II (DDP)], ifosfamide (IFO), Adriamycin (ADM), epirubicin (EPI) and theprubicin (THP). The Saos-2/MTX4.4 cells exhibited a low resistance to IFO, ADM, EPI and THP; however, no resistance to DDP was identified. Overall, the Saos-2/MTX4.4 cells exhibited a greater resistance to all the chemotherapeutic agents investigated compared with the Saos-2 cells. Rhodamine 123 (R123) fluorescence was measured in the Saos-2/MTX4.4 and Saos-2 cells 30 and 60 min after the addition of R123, and R123 plus verapamil (VER). VER administration increased the intracellular accumulation of R123. In addition, reverse transcription-quantitative polymerase chain reaction was performed to determine the mRNA expression levels of multidrug resistance gene 1 (MDR1) in the two cell lines. Although the Saos-2/MTX4.4 cells were more resistant to the chemotherapeutic agents than the Saos-2 cells, no significant difference was identified between the relative mRNA expression levels of MDR1 in the Saos-2/MTX4.4 and Saos-2 cells (0.4350±0.0354 vs. 0.3886±0.0456; P>0.05). PMID:25621072

  2. Breast cancer resistance protein BCRP (ABCG2)-mediated transepithelial nitrofurantoin secretion and its regulation in human intestinal epithelial (Caco-2) layers.

    PubMed

    Wright, Jamie A; Haslam, Iain S; Coleman, Tanya; Simmons, Nicholas L

    2011-12-15

    In order to determine the capacity and regulation of the breast cancer resistance protein (BCRP)-mediated transport in intact human intestinal epithelial monolayers (Caco-2) in which multiple ABC transporters are expressed, nitrofurantoin has been used as a selective transported substrate. Nitrofurantoin transepithelial secretion was confirmed in both human BCRP and mouse bcrp-transfected MDCKII epithelia, whereas no net transepithelial secretion was observed in native or human MDR1-MDCKII epithelia. Furthermore, nitrofurantoin transepithelial secretion by BCRP-MDCKII monolayers was inhibited by Ko143 (10 μM), but not verapamil (100 μM). In Caco-2 cells grown upon permeable supports, nitrofurantoin displayed a dose-dependent transepithelial secretion with an apparent Km=69.41 ± 22.3 μM and Vmax=14.03 ± 2.27 nmol/(cm(2).h). Net nitrofurantoin transepithelial secretion by Caco-2 epithelia was inhibited 92% by 10 μM Ko143. Regulation of expression and function of BCRP in Caco-2 epithelial monolayers was determined after 72-h pre-exposure of the monolayers to a number of potential inducing agents. Quantitative real-time PCR and Western blotting were used to correlate induction of BCRP transcript and protein levels with transport activity. 72-h pre-treatment with β-napthoflavone and rosiglitazone up-regulates BCRP mRNA and protein expression and transport of nitrofurantoin. Ko143-sensitive transepithelial secretion of the bi-substrate (MDR1/BCRP) prazosin was also increased in the presence of rosiglitazone. We conclude that nitrofurantoin may be used to unambiguously measure BCRP-mediated fluxes in Caco-2 epithelial layers. Since dynamic regulation of BCRP expression and function is retained, the Caco-2 cell-line is useful as a screen for drug-drug and drug-diet interactions mediated by BCRP. PMID:22004608

  3. In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression

    SciTech Connect

    Han Yi; Chin Tan, Theresa May; Lim, Lee-Yong

    2008-08-01

    Piperine, a major component of black pepper, is used as spice and nutrient enhancer. The purpose of the present study was to evaluate the effects of acute and prolonged piperine exposure on cellular P-gp expression and function in vitro and in vivo. Piperine at concentrations ranging from 10 to 100 {mu}M, determined by MTT assay to be non-cytotoxic, was observed to inhibit P-gp mediated efflux transport of [{sup 3}H]-digoxin across L-MDR1 and Caco-2 cell monolayers. The acute inhibitory effect was dependent on piperine concentration, with abolishment of [{sup 3}H]-digoxin polarized transport attained at 50 {mu}M of piperine. In contrast, prolonged (48 and 72 h) co-incubation of Caco-2 cell monolayers with piperine (50 and 100 {mu}M) increased P-gp activity through an up-regulation of cellular P-gp protein and MDR1 mRNA levels. The up-regulated protein was functionally active, as demonstrated by a higher degree of [{sup 3}H]-digoxin efflux across the cell monolayers, but the induction was readily reversed by the removal of the spice from the culture medium. Peroral administration of piperine at the dose of 112 {mu}g/kg body weight/day to male Wistar rats for 14 consecutive days also led to increased intestinal P-gp levels. However, there was a concomitant reduction in the rodent liver P-gp although the kidney P-gp level was unaffected. Our data suggest that caution should be exercised when piperine is to be co-administered with drugs that are P-gp substrates, particularly for patients whose diet relies heavily on pepper.

  4. P-glycoprotein activity and biological response

    SciTech Connect

    Vaalburg, W. . E-mail: w.vaalburg@pet.umcg.nl; Hendrikse, N.H.; Elsinga, P.H.; Bart, J.; Waarde, A. van

    2005-09-01

    P-glycoprotein (P-gp) is a transmembrane drug efflux pump encoded by the MDR-1 gene in humans. Most likely P-gp protects organs against endogenous and exogenous toxins by extruding toxic compounds such as chemotherapeutics and other drugs. Many drugs are substrates for P-gp. Since P-gp is also expressed in the blood-brain barrier, P-gp substrates reach lower concentrations in the brain than in P-gp-negative tissues. Failure of response to chemotherapy of malignancies can be due to intrinsic or acquired drug resistance. Many tumors are multidrug resistant (MDR); resistant to several structurally unrelated chemotherapeutic agents. Several mechanisms are involved in MDR of which P-gp is studied most extensively. P-gp extrudes drugs out of tumor cells resulting in decreased intracellular drug concentrations, leading to the MDR phenotype. Furthermore, the MDR-1 gene exhibits several single nucleotide polymorphisms, some of which result in different transport capabilities. P-gp functionality and the effect of P-gp modulation on the pharmacokinetics of novel and established drugs can be studied in vivo by positron emission tomography (PET) using carbon-11 and fluorine-18-labeled P-gp substrates and modulators. PET may demonstrate the consequences of genetic differences on tissue pharmacokinetics. Inhibitors such as calcium-channel blockers (verapamil), cyclosporin A, ONT-093, and XR9576 can modulate the P-gp functionality. With PET the effect of P-gp modulation on the bioavailability of drugs can be investigated in humans in vivo. PET also allows the measurement of the efficacy of newly developed P-gp modulators.

  5. TSPO Ligand-Methotrexate Prodrug Conjugates: Design, Synthesis, and Biological Evaluation.

    PubMed

    Laquintana, Valentino; Denora, Nunzio; Cutrignelli, Annalisa; Perrone, Mara; Iacobazzi, Rosa Maria; Annese, Cosimo; Lopalco, Antonio; Lopedota, Angela Assunta; Franco, Massimo

    2016-01-01

    The 18-kDa translocator protein (TSPO) is a potential mitochondrial target for drug delivery to tumors overexpressing TSPO, including brain cancers, and selective TSPO ligands have been successfully used to selectively deliver drugs into the target. Methotrexate (MTX) is an anticancer drug of choice for the treatment of several cancers, but its permeability through the blood brain barrier (BBB) is poor, making it unsuitable for the treatment of brain tumors. Therefore, in this study, MTX was selected to achieve two TSPO ligand-MTX conjugates (TSPO ligand α-MTX and TSPO ligand γ-MTX), potentially useful for the treatment of TSPO-rich cancers, including brain tumors. In this work, we have presented the synthesis, the physicochemical characterizations, as well as the in vitro stabilities of the new TSPO ligand-MTX conjugates. The binding affinity for TSPO and the selectivity versus central-type benzodiazepine receptor (CBR) was also investigated. The cytotoxicity of prepared conjugates was evaluated on MTX-sensitive human and rat glioma cell lines overexpressing TSPO. The estimated coefficients of lipophilicity and the stability studies of the conjugates confirm that the synthesized molecules are stable enough in buffer solution at pH 7.4, as well in physiological medium, and show an increased lipophilicity compared to the MTX, compatible with a likely ability to cross the blood brain barrier. The latter feature of two TSPO ligand-MTX conjugates was also confirmed by in vitro permeability studies conducted on Madin-Darby canine kidney cells transfected with the human MDR1 gene (MDCK-MDR1) monolayers. TSPO ligand-MTX conjugates have shown to possess a high binding affinity for TSPO, with IC50 values ranging from 7.2 to 40.3 nM, and exhibited marked toxicity against glioma cells overexpressing TSPO, in comparison with the parent drug MTX. PMID:27322261

  6. Fruit juice inhibition of uptake transport: a new type of food–drug interaction

    PubMed Central

    Bailey, David G

    2010-01-01

    A new type of interaction in which fruit juices diminish oral drug bioavailability through inhibition of uptake transport is the focus of this review. The discovery was based on an opposite to anticipated finding when assessing the possibility of grapefruit juice increasing oral fexofenadine bioavailability in humans through inhibition of intestinal MDR1-mediated efflux transport. In follow-up investigations, grapefruit or orange juice at low concentrations potentially and selectively inhibited in vitro OATP1A2-mediated uptake compared with MDR1-caused efflux substrate transport. These juices at high volume dramatically depressed oral fexofenadine bioavailability. Grapefruit was the representative juice to characterize the interaction subsequently. A volume–effect relationship study using a normal juice amount halved average fexofenadine absorption. Individual variability and reproducibility data indicated the clinical interaction involved direct inhibition of intestinal OATP1A2. Naringin was a major causal component suggesting that other flavonoids in fruits and vegetables might also produce the effect. Duration of juice clinical inhibition of fexofenadine absorption lasted more than 2 h but less than 4 h indicating the interaction was avoidable with appropriate interval of time between juice and drug consumption. Grapefruit juice lowered the oral bioavailability of several medications transported by OATP1A2 (acebutolol, celiprolol, fexofenadine, talinolol, L-thyroxine) while orange juice did the same for others (atenolol, celiprolol, ciprofloxacin, fexofenadine). Juice clinical inhibition of OATP2B1 was unresolved while that of OATP1B1 seemed unlikely. The interaction between grapefruit juice and etoposide also seemed relevant. Knowledge of both affected uptake transporter and drug hydrophilicity assisted prediction of the clinical interaction with grapefruit or orange juice. PMID:21039758

  7. Radioprotection of 1,2-dimethylhydrazine-initiated colon cancer in rats using low-dose γ rays by modulating multidrug resistance-1, cytokeratin 20, and β-catenin expression.

    PubMed

    Nabil, H M; Hassan, B N; Tohamy, A A; Waaer, H F; Abdel Moneim, A E

    2016-03-01

    Ionizing radiation is a widely used therapy for solid tumors. However, high-dose ionizing radiation causes apoptosis, transforms normal cells into tumor cells, and impairs immune functions, leading to the defects in the removal of damaged or tumor cells. In contrast, low-dose radiation has been reported to exert various beneficial effects in cells. This experimental study investigated the effect of γ rays at low dose on the development of colorectal tumor in a 1,2-dimethylhydrazine (DMH)-induced colon cancer. Colorectal tumor model was induced in Wistar rats by subcutaneous injection of DMH (20 mg/kg) once a week for 15 weeks. Starting from zero day of DMH injection, a single low dose of whole-body γ irradiation of 0.5 Gy/week was applied to the rats. A significant reduction in lipid peroxidation, nitric oxide, and elevation in the glutathione content and antioxidant enzyme activity (superoxide dismutase and catalase) were observed after γ irradiation comparing with DMH group. Moreover, γ ray reduced the expressions of multidrug resistance 1 (MDR1), β-catenin, and cytokeratin 20 (CK20) those increased in DMH-treated rats. However, survivin did not change with γ ray treatment. A histopathological examination of the DMH-injected rats revealed ulcerative colitis, dysplasia, anaplasia, and hyperchromasia. An improvement in the histopathological picture was seen in the colon of rats exposed to γ rays. In conclusion, the present results showed that low-dose γ ray significantly inhibited DMH-induced colon carcinogenesis in rats by modulating CK20, MDR1, and β-catenin expression but not survivin expression. PMID:25926526

  8. GST-pi gene-transduced hematopoietic progenitor cell transplantation overcomes the bone marrow toxicity of cyclophosphamide in mice.

    PubMed

    Matsunaga, T; Sakamaki, S; Kuga, T; Kuroda, H; Kusakabe, T; Akiyama, T; Konuma, Y; Hirayama, Y; Kobune, M; Kato, J; Sasaki, K; Kogawa, K; Koyama, R; Niitsu, Y

    2000-08-10

    Autologous transplantation of bone marrow cells (BMCs) transduced with the multidrug resistance 1 (MDR1) gene or dihydrofolate reductase (DHFR) gene has already been applied in clinical chemoprotection trials. However, anticancer drugs frequently used in high-dose chemotherapy (HDC), such as alkylating agents, are not relevant to MDR1 or DHFR gene products. In this context, we have previously reported that glutathione S-transferase-pi (GST-pi) gene-transduced human CD34(+) cells showed resistance in vitro against 4-hydroperoxicyclophosphamide, an active form of cyclophosphamide (CY). In the present study, a subsequent attempt was made in a murine model to evaluate the effectiveness of transplantation of GST-pi-transduced BMCs to protect bone marrow against high-dose CY. The gene transfection was carried out retrovirally, employing a recombinant fibronectin fragment. Transfection efficiency into CFU-GM was 30%. After the transplantation, recipient mice (GST-pi mice) received three sequential courses of high-dose CY. As the chemotherapy courses advanced, both shortening of recovery period from WBC nadir and shallowing of WBC nadir were observed. In contrast to the fact that three of seven control mice died, possibly due to chemotoxicity, all seven GST-pi mice were alive after the third course, at which point the vector GST-pi gene was detected in 50% of CFU-GM derived from their BMCs and peripheral blood mononuclear cells. When BMCs obtained from these seven mice were retransplanted into secondary recipient mice, 20% of CFU-GM from BMCs showed positive signals for vector GST-pi DNA after 6 months. These data indicate that the GST-pi gene can confer resistance to bone marrow against CY by being transduced into long-term repopulating cells. PMID:10954901

  9. Integrated biomarkers induced by chlorpyrifos in two different life stages of zebrafish (Danio rerio) for environmental risk assessment.

    PubMed

    Jeon, Hwang-Ju; Lee, Yong-Ho; Kim, Myoung-Jin; Choi, Sung-Deuk; Park, Byung-Jun; Lee, Sung-Eun

    2016-04-01

    This study was performed to understand how chlorpyrifos (CHL) affects zebrafish (Danio rerio) embryos and adults, by exposing this model organism to various concentrations of the insecticide. The 96-h acute toxicity test to determine the effect of CHL on adult zebrafish yielded a LC50 of 709.43μg/L(-1). Small molecular weight proteins less than 25kDa and phospholipids were analyzed with MALDI-TOF MS/MS in order to compare expression patterns, revealing that some peaks were dramatically altered after CHL treatment. Whereas no acute toxicity was detected in the embryo toxicity test, malformation of zebrafish larvae was observed, with many individuals harboring curved spines. In an angiogenesis test on larvae of transgenic zebrafish, CHL did not have an inhibitory effect. Relative gene expression analyses using real-time polymerase chain reaction (RT-PCR) of DNA from zebrafish embryos revealed that different subtypes of cytochrome P450 (CYP450), such as CYP1A and CYP3A, were significantly up-regulated in response to CHL at a concentration of 400μg/L(-1) compared to the control. The expression level of NR1I2, a CYP gene transcriptional regulator, UGT1a1, and MDR1 were all up-regulated in the CHL-treated embryos. Finally, the expression level of acetylcholinesterase (AChE) and catalase (CAT) decreased, whereas that of superoxide dismutase (SOD) did not differ significantly. Our results suggest that the up-regulation of metabolic enzymes including CYP450 and MDR1 may be involved in CHL resistance in zebrafish. PMID:26998704

  10. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole.

    PubMed

    Ahmad, Aijaz; Khan, Amber; Manzoor, Nikhat

    2013-01-23

    Thymol (THY) and carvacrol (CARV), the principal chemical components of thyme oil have long been known for their wide use in medicine due to antimicrobial and disinfectant properties. This study, however, draws attention to a possible synergistic antifungal effect of these monoterpenes with azole antimycotic-fluconazole. Resistance to azoles in Candida albicans involves over-expression of efflux-pump genes MDR1, CDR1, CDR2 or mutations and over-expression of target gene ERG11. The inhibition of drug efflux pumps is considered a feasible strategy to overcome clinical antifungal resistance. To put forward this approach, we investigated the combination effects of these monoterpenes and FLC against 38 clinically obtained FLC-sensitive, and eleven FLC-resistant Candida isolates. Synergism was observed with combinations of THY-FLC and CARV-FLC evaluated by checkerboard microdilution method and nature of the interactions was calculated by FICI. In addition, antifungal activity was assessed using agar-diffusion and time-kill curves. The drug efflux activity was determined using two dyes, Rhodamine6G (R6G) and fluorescent Hoechst 33342. No significant differences were observed in dye uptakes between FLC-susceptible and resistant isolates, incubated in glucose free buffer. However, a significantly higher efflux was recorded in FLC-resistant isolates when glucose was added. Both monoterpenes inhibited efflux by 70-90%, showing their high potency to block drug transporter pumps. Significant differences, in the expression levels of CDR1 and MDR1, induced by monoterpenes revealed reversal of FLC-resistance. The selectively fungicidal characteristics and ability to restore FLC susceptibility in resistant isolates signify a promising candidature of THY and CARV as antifungal agents in combinational treatments for candidiasis. PMID:23111348

  11. Overexpression and mutation as a genetic mechanism of fluconazole resistance in Candida albicans isolated from human immunodeficiency virus patients in Indonesia.

    PubMed

    Rosana, Yeva; Yasmon, Andi; Lestari, Delly Chipta

    2015-09-01

    Fluconazole is the standard treatment for oropharyngeal candidiasis, which is the third most common opportunistic infection in human immunodeficiency virus (HIV)/AIDS patients in Indonesia. Overuse of this drug could lead to the emergence of resistance. The objective of this study was to analyse the role of ERG11, CDR1, CDR2 and MDR1 gene overexpression and mutations in the ERG11 gene as a genetic mechanism of fluconazole resistance in Candida albicans isolated from HIV patients in Indonesia. Overexpression of ERG11, CDR1, CDR2 and MDR1 was analysed by real-time reverse transcription PCR, while ERG11 gene mutation analysis was performed using sequencing methods. Seventeen isolates out of 92 strains of C. albicans isolated from 108 HIV patients were found to be resistant to azole antifungals. The highest gene overexpression of ERG11 was found in C. albicans resistant to single fluconazole, while the highest gene overexpression of CDR2 was detected in all isolates of C. albicans resistant to multiple azoles. Amino acid substitutions were observed at six positions, i.e. D116E, D153E, I261V, E266D, V437I and V488I. The amino acid substitution I261V was identified in this study and was probably associated with fluconazole resistance. The combination of overexpression of CDR2 and ERG11 and mutation in the ERG11 gene was found to be a genetic mechanism of fluconazole resistance in C. albicans isolated from HIV patients in Indonesia. PMID:26297039

  12. Doxorubicin induces drug efflux pumps in Candida albicans.

    PubMed

    Kofla, Grzegorz; Turner, Vincent; Schulz, Bettina; Storch, Ulrike; Froelich, Daniela; Rognon, Bénédicte; Coste, Alix T; Sanglard, Dominique; Ruhnke, Markus

    2011-02-01

    Candida albicans is one of the most important opportunistic fungal pathogens. It can cause serious fungal diseases in immunocompromised patients, including those with cancer. Treatment failures due to the emergence of drug-resistant C. albicans strains have become a serious clinical problem. Resistance incidents were often mediated by fungal efflux pumps which are closely related to the human ABC transporter P-glycoprotein (P-gp). P-gp is often overexpressed in cancer cells and confers resistance to many cytotoxic drugs. We examined whether cytotoxic drugs commonly used for cancer treatment (doxorubicin and cyclophosphamide) could alter the expression of genes responsible for the development of fluconazole resistance in Candida cells in the way they can influence homologous genes in cancer cell lines. ABC transporters (CDR1 and CDR2) and other resistance genes (MDR1 and ERG11) were tested by real-time PCR for their expression in C. albicans cells at the mRNA level after induction by antineoplastic drugs. The results were confirmed by a lacZ gene reporter system and verified at the protein level using GFP and immunoblotting. We showed that doxorubicin is a potent inducer of CDR1/CDR2 expression in C. albicans at both the mRNA and protein level and thus causes an increase in fluconazole MIC values. However, cyclophosphamide, which is not a substrate of human P-gp, did not induce ABC transporter expression in C. albicans. Neither doxorubicin nor cyclophosphamide could influence the expression of the other resistance genes (MDR1 and ERG11). The induction of CDR1/CDR2 by doxorubicin in C. albicans and the resulting alteration of antifungal susceptibility might be of clinical relevance for the antifungal treatment of Candida infections occurring after anticancer chemotherapy with doxorubicin. PMID:20818920

  13. Molecular mechanisms associated with Fluconazole resistance in clinical Candida albicans isolates from India.

    PubMed

    Mane, Arati; Vidhate, Pallavi; Kusro, Chanchal; Waman, Vaishali; Saxena, Vandana; Kulkarni-Kale, Urmila; Risbud, Arun

    2016-02-01

    Resistance to azole antifungals is a significant problem in Candida albicans. An understanding of resistance at molecular level is essential for the development of strategies to tackle resistance and rationale design of newer antifungals and target-based molecular approaches. This study presents the first evaluation of molecular mechanisms associated with fluconazole resistance in clinical C.albicans isolates from India. Target site (ERG11) alterations were determined by DNA sequencing, whereas real-time PCRs were performed to quantify target and efflux pump genes (CDR1, CDR2, MDR1) in 87 [Fluconazole susceptible (n = 30), susceptible-dose dependent (n = 30) and resistant (n = 27)] C.albicans isolates. Cross-resistance to fluconazole, ketoconazole and itraconazole was observed in 74.1% isolates. Six amino acid substitutions were identified, including 4 (E116D, F145L, E226D, I437V) previously reported ones and 2 (P406L, Q474H) new ones. CDR1 over-expression was seen in 77.7% resistant isolates. CDR2 was exclusively expressed with CDR1 and their concomitant over-expression was associated with azole cross-resistance. MDR1 and ERG11 over-expression did not seem to be associated with resistance. Our results show that drug efflux mediated by Adenosine-5'-triphosphate (ATP)-binding cassette transporters, especially CDR1 is the predominant mechanism of fluconazole resistance and azole cross-resistance in C. albicans and indicate the need for research directed towards developing strategies to tackle efflux mediated resistance to salvage azoles. PMID:26648048

  14. Selected mechanisms of molecular resistance of Candida albicans to azole drugs.

    PubMed

    Gołąbek, Karolina; Strzelczyk, Joanna Katarzyna; Owczarek, Aleksander; Cuber, Piotr; Ślemp-Migiel, Anna; Wiczkowski, Andrzej

    2015-01-01

    A phenomenon of increasing resistance of Candida spp. to azoles has been observed for several years now. One of the mechanisms of lack of sensitivity to azoles is associated with CDR1, CDR2, MRD1 genes (their products are active transport pumps conditioning drug efflux from pathogen's cell), and ERG11 gene (encoding lanosterol 14α-demethylase). Test material was 120 strains of Candida albicans (60 resistant and 60 susceptible to azole drugs) obtained from clinical samples. The first stage of experiment assessed the expression of CDR1, CDR2, MDR1 and ERG11 genes by Q-PCR. The impact of ERG11 gene's mutations on the expression of this gene was analysed. The final stage of the experiment assessed the level of genome methylation of Candida albicans strains. An increase in the expression of CDR2, MDR1 and ERG11 was observed in azole-resistant strains of Candida albicans in comparison to strains sensitive to this class of drugs. Furthermore, 19 changes in the sequence of ERG11 were detected in tested strains. Four of the discovered mutations: T495A, A530C, G622A and A945C led to the following amino acid substitutions: D116E, K128T, V159I and E266D, respectively. It has also been found that statistically five mutations: T462C, G1309A, C216T, C1257T and A945C affected the expression of ERG11. The applied method of assessing the level of methylation of Candida albicans genome did not confirm its role in the development of resistance to azoles. The results indicate however, that resistance of Candida albicans strains to azole drugs is multifactorial. PMID:25901298

  15. Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and In Vivo Impact in Infected Galleria mellonella Larvae.

    PubMed

    Souza, Ana Carolina R; Fuchs, Beth Burgwyn; Pinhati, Henrique M S; Siqueira, Ricardo A; Hagen, Ferry; Meis, Jacques F; Mylonakis, Eleftherios; Colombo, Arnaldo L

    2015-10-01

    Candida parapsilosis is the main non-albicans Candida species isolated from patients in Latin America. Mutations in the ERG11 gene and overexpression of membrane transporter proteins have been linked to fluconazole resistance. The aim of this study was to evaluate the molecular mechanisms in fluconazole-resistant strains of C. parapsilosis isolated from critically ill patients. The identities of the nine collected C. parapsilosis isolates at the species level were confirmed through molecular identification with a TaqMan qPCR assay. The clonal origin of the strains was checked by microsatellite typing. The Galleria mellonella infection model was used to confirm in vitro resistance. We assessed the presence of ERG11 mutations, as well as the expression of ERG11 and two additional genes that contribute to antifungal resistance (CDR1 and MDR1), by using real-time quantitative PCR. All of the C. parapsilosis (sensu stricto) isolates tested exhibited fluconazole MICs between 8 and 16 μg/ml. The in vitro data were confirmed by the failure of fluconazole in the treatment of G. mellonella infected with fluconazole-resistant strains of C. parapsilosis. Sequencing of the ERG11 gene revealed a common mutation leading to a Y132F amino acid substitution in all of the isolates, a finding consistent with their clonal origin. After fluconazole exposure, overexpression was noted for ERG11, CDR1, and MDR1 in 9/9, 9/9, and 2/9 strains, respectively. We demonstrated that a combination of molecular mechanisms, including the presence of point mutations in the ERG11 gene, overexpression of ERG11, and genes encoding efflux pumps, are involved in fluconazole resistance in C. parapsilosis. PMID:26259795

  16. miR-200c Inhibits Melanoma Progression and Drug Resistance through Down-Regulation of Bmi-1

    PubMed Central

    Liu, Shujing; Tetzlaff, Michael T.; Cui, Rutao; Xu, Xiaowei

    2013-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs that play crucial roles in tumorigenesis and tumor progression. Melanoma is the most aggressive skin cancer that is resistant or rapidly develops resistance to a variety of chemotherapeutic agents. The role of miRNAs in melanoma progression and drug resistance has not been well studied. Herein, we demonstrate that miR-200c is down-regulated in melanomas (primary and metastatic) compared with melanocytic nevi. Overexpression of miR-200c in melanoma cells resulted in significantly decreased cell proliferation and migratory capacity as well as drug resistance. miR-200c overexpression resulted in significant down-regulation of BMI-1, ABCG2, ABCG5, and MDR1 expression and in a concomitant increase in E-cadherin levels. Knockdown of BMI-1 showed similar effects as miR-200c overexpression in melanoma cells. In addition, miR-200c overexpression significantly inhibited melanoma xenograft growth and metastasis in vivo, and this correlated with diminished expression of BMI-1 and reduced levels of E-cadherin in these tumors. The effects of miR-200c on melanoma cell proliferation and migratory capacity and on self-renewal were rescued by overexpression of Bmi-1, and the reversal of these phenotypes correlated with a reduction in E-cadherin expression and increased levels of ABCG2, ABCG5, and MDR1. Taken together, these findings demonstrate a key role for miR-200c in melanoma progression and drug resistance. These results suggest that miR-200c may represent a critical target for increasing melanoma sensitivity to clinical therapies. PMID:22982443

  17. P-glycoprotein expression in normal and reactive bone marrows.

    PubMed Central

    Hegewisch-Becker, S.; Fliegner, M.; Tsuruo, T.; Zander, A.; Zeller, W.; Hossfeld, D. K.

    1993-01-01

    The expression of mdr1 gene product P-glycoprotein (P-gp) was investigated in 53 normal and reactive bone marrows by means of immunocytochemistry, using the monoclonal antibody (mAb) C219 and the alkaline phosphatase anti-alkaline phosphatase method. In a limited number of patients, data were confirmed by using the mAb MRK16 or a polymerase chain reaction assay for mdr1 gene expression. There was no history of prior chemotherapy or any malignancy in this group. Bone marrow aspirates were obtained as part of a routine diagnostic programme in bone marrow donors or in patients presenting with a variety of diagnoses such as unexplained gammopathy, fever, anaemia, other changes in peripheral blood smear, rheumatoid arthritis, vasculitis, or urticaria pigmentosa. Morphologically the bone marrow was normal in 23 patients, a megaloblastic erythropoiesis was seen in two patients and unspecific changes were seen in 28 patients. Twenty-seven of 53 samples were found to be positive for P-gp expression with the percentage of positive cells ranging from 2%-80% (mean = 24%). With a cutoff point of 10%, five of 23 normal (22%) and 13 of 28 reactive bone marrows (46%) were considered positive for P-gp expression. There was no obvious correlation between diagnosis or age and P-gp expression. Additional staining for the early surface marker CD-34 was performed in 12 samples, with none of them revealing more than 1% positivity. Since P-gp expression has so far been described only in CD-34 positive bone marrow cells, data suggest that P-gp expression may be reinduced in CD-34 negative cells under conditions which remain to be determined. Images Figure 1 Figure 2 PMID:8094974

  18. P-glycoprotein in autoimmune rheumatic diseases.

    PubMed

    García-Carrasco, M; Mendoza-Pinto, C; Macias Díaz, S; Vera-Recabarren, M; Vázquez de Lara, L; Méndez Martínez, S; Soto-Santillán, P; González-Ramírez, R; Ruiz-Arguelles, A

    2015-07-01

    P-glycoprotein (Pgp) is a transmembrane protein of 170 kD encoded by the multidrug resistance 1 (MDR-1) gene, localized on chromosome 7. More than 50 polymorphisms of the MDR-1 gene have been described; a subset of these has been shown to play a pathophysiological role in the development of inflammatory bowel disease, femoral head osteonecrosis induced by steroids, lung cancer and renal epithelial tumors. Polymorphisms that have a protective effect on the development of conditions such as Parkinson disease have also been identified. P-glycoprotein belongs to the adenosine triphosphate binding cassette transporter superfamily and its structure comprises a chain of approximately 1280 aminoacid residues with an N-C terminal structure, arranged as 2 homologous halves, each of which has 6 transmembrane segments, with a total of 12 segments with 2 cytoplasmic nucleotide binding domains. Many cytokines like interleukin 2 and tumor necrosis factor alpha increase Pgp expression and activity. Pgp functions as an efflux pump for a variety of toxins in order to protect particular organs and tissues as the central nervous system. Pgp transports a variety of substrates including glucocorticoids while other drugs such as tacrolimus and cyclosporine A act as modulators of this protein. The most widely used method to measure Pgp activity is flow cytometry using naturally fluorescent substrates such as anthracyclines or rhodamine 123. The study of drug resistance and its association to Pgp began with the study of resistance to chemotherapy in the treatment of cancer and antiretroviral therapy for human immunodeficiency virus; however, the role of Pgp in the treatment of systemic lupus erythematosus, rheumatoid arthritis and psoriatic arthritis has been a focus of study lately and has emerged as an important mechanism by which treatment failure occurs. The present review analyzes the role of Pgp in these autoimmune diseases. PMID:25712147

  19. Morphometric Analysis of Auxin-Mediated Development

    NASA Astrophysics Data System (ADS)

    Lewis, Daniel

    Auxin controls many aspects of plant development through its effects on growth. Its distribution is controlled by specific tissue and organ level polar transport streams. The responses to environmental cues such as gravity light, nutrient availability are largely controlled by coordinated regulation of distinct auxin transport streams. Many plant responses to the environment involve changes in shape. Much can be learned about the underlying processes controlling plant form if the response is measured with sufficient resolution. Computer-aided analysis of digital images or 'machine vision' can be used to greatly increase the speed and consistency of data from a morphometric study of plant form. Advances in image acquisition and analysis pioneered at UW-Madison have allowed unprecedented resolution of the growth and gravitropism of Arabidopsis. A reverse genetic analysis was used to determine if the MDR-like ABC transporters influence auxin distribution important for plant development and the response to environmental cues in Arabidopsis. Mutations in MDR1 (At3g28860) reduce acropetal auxin transport in the root. This is correlated with deviation from the vertical axis. Mutations in MDR4 (At2g47000) reduce basipetal auxin transport in the root. This is correlated with hypergravitropism. It was theorized that reduced transport whithin the elongation zone is responsible for the increased curvature. Flavanols were found to regulate gravitropism upstream of MDR4. The mdr1 mdr4 double mutant showed additive but not synergistic phenotypes, suggesting that the two auxin transport streams are more independent than interdependent. MDR proteins seem to enhance auxin transport in situations where PIN-type effux alone is insufficient.

  20. Transcriptional expression levels of cell stress marker genes in the Pacific oyster Crassostrea gigas exposed to acute thermal stress

    PubMed Central

    Farcy, Émilie; Voiseux, Claire; Lebel, Jean-Marc

    2008-01-01

    During the annual cycle, oysters are exposed to seasonal slow changes in temperature, but during emersion at low tide on sunny summer days, their internal temperature may rise rapidly, resulting in acute heat stress. We experimentally exposed oysters to a 1-h acute thermal stress and investigated the transcriptional expression level of some genes involved in cell stress defence mechanisms, including chaperone proteins (heat shock proteins Hsp70, Hsp72 and Hsp90 (HSP)), regulation of oxidative stress (Cu-Zn superoxide dismutase, metallothionein (MT)), cell detoxification (glutathione S-transferase sigma, cytochrome P450 and multidrug resistance (MDR1)) and regulation of the cell cycle (p53). Gene mRNA levels were quantified by reverse transcription-quantitative polymerase chain reaction and expressed as their ratio to actin mRNA, used as a reference. Of the nine genes studied, HSP, MT and MDR1 mRNA levels increased in response to thermal stress. We compared the responses of oysters exposed to acute heat shock in summer and winter and observed differences in terms of magnitude and kinetics. A larger increase was observed in September, with recovery within 48 h, whereas in March, the increase was smaller and lasted more than 2 days. The results were also compared with data obtained from the natural environment. Though the functional molecule is the protein and information at the mRNA level only has limitations, the potential use of mRNAs coding for cell stress defence proteins as early sensitive biomarkers is discussed. PMID:19002605

  1. Ginkgolide B protects human umbilical vein endothelial cells against xenobiotic injuries via PXR activation

    PubMed Central

    Zhou, Tao; You, Wen-ting; Ma, Zeng-chun; Liang, Qian-de; Tan, Hong-ling; Xiao, Cheng-rong; Tang, Xiang-lin; Zhang, Bo-li; Wang, Yu-guang; Gao, Yue

    2016-01-01

    Aim: Pregnane X receptor (PXR) is a nuclear receptor that regulates a number of genes encoding drug metabolism enzymes and transporters and plays a key role in xeno- and endobiotic detoxification. Ginkgolide B has shown to increase the activity of PXR. Here we examined whether ginkgolide B activated PXR and attenuated xenobiotic-induced injuries in endothelial cells. Methods: Human umbilical vein endothelial cells (HUVECs) were treated with ginkgolide B. The expression of PXR, CYP3A4, MDR1, VCAM-1, E-selectin and caspase-3 were quantified with qRT-PCR and Western blot analysis. Cell apoptosis was analyzed with flow cytometry. Fluorescently labeled human acute monocytic leukemia cells (THP-1 cells) were used to examine cell adhesion. Results: Ginkgolide B (30–300 μmol/L) did not change the mRNA and protein levels of PXR in the cells, but dose-dependently increased nuclear translocation of PXR protein. Ginkgolide B increased the expression of CYP3A4 and MDR1 in the cells, which was partially reversed by pretreatment with the selective PXR signaling antagonist sulforaphane, or transfection with PXR siRNA. Functionally, ginkgolide B dose-dependently attenuated doxorubicin- or staurosporine-induced apoptosis, which was reversed by transfection with PXR siRNA. Moreover, ginkgolide B suppressed TNF-α-induced THP-1 cell adhesion and TNF-α-induced expression of vascular adhesion molecule 1 (VCAM-1) and E-selectin in the cells, which was also reversed by transfection with PXR siRNA. Conclusion: Ginkgolide B exerts anti-apoptotic and anti-inflammatory effects on endothelial cells via PXR activation, suggesting that a PXR-mediated endothelial detoxification program may be important for protecting endothelial cells from xeno- and endobiotic-induced injuries. PMID:26775663

  2. Clusterin inhibition using OGX-011 synergistically enhances zoledronic acid activity in osteosarcoma

    PubMed Central

    Lamoureux, Francois; Baud'huin, Marc; Ory, Benjamin; Guiho, Romain; Zoubeidi, Amina; Gleave, Martin; Heymann, Dominique; Rédini, Françoise

    2014-01-01

    Purpose Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants new strategies still needed to improve overall patient survival. Among new therapeutic approaches, zoledronic acid (ZOL) represents a promising adjuvant molecule to chemotherapy to limit the osteolytic component of bone tumors. However, ZOL triggers the elevation of heat shock proteins (Hsp), including Hsp27 and clusterin (CLU), which could enhance tumor cell survival and treatment resistance. We hypothesized that targeting CLU using siRNA or the antisense drug, OGX-011, will suppress treatment-induced CLU induction and enhance ZOL-induced cell death in osteosarcoma (OS) cells. Methods The combined effects of OGX-011 and ZOL were investigated in vitro on cell growth, viability, apoptosis and cell cycle repartition of ZOL-sensitive or -resistant human OS cell lines (SaOS2, U2OS, MG63 and MNNG/HOS). Results In OS cell lines, ZOL increased levels of HSPs, especially CLU, in a dose- and time-dependent manner by mechanism including increased HSF1 transcription activity. The OS resistant cells to ZOL exhibited higher CLU expression level than the sensitive cells. Moreover, CLU overexpression protects OS sensitive cells to ZOL-induced cell death by modulating the MDR1 and farnesyl diphosphate synthase expression. OGX-011 suppressed treatment-induced increases in CLU and synergistically enhanced the activity of ZOL on cell growth and apoptosis. These biologic events were accompanied by decreased expression of HSPs, MDR1 and HSF1 transcriptional activity. In vivo, OGX-011, administered 3 times a week (IP, 20mg/kg), potentiated the effect of ZOL (s.c; 50μg/kg), significantly inhibiting tumor growth by 50% and prolonging survival in MNNG/HOS xenograft model compared to ZOL alone. Conclusion These results indicate that ZOL-mediated induction of CLU can be attenuated by OGX-011, with synergistic effects on delaying progression of

  3. Thiazide-like diuretic drug metolazone activates human pregnane X receptor to induce cytochrome 3A4 and multidrug-resistance protein 1

    PubMed Central

    Banerjee, Monimoy; Chen, Taosheng

    2014-01-01

    Human pregnane X receptor (hPXR) regulates the expression of drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) and drug transporters such as multidrug-resistance protein 1 (MDR1). PXR can be modulated by small molecules, including Federal Drug Administration (FDA)–approved drugs, thus altering drug metabolism and causing drug-drug interactions. To determine the role of FDA-approved drugs in PXR-mediated regulation of drug metabolism and clearance, we screened 1481 FDA-approved small-molecule drugs by using a luciferase reporter assay in HEK293T cells and identified the diuretic drug metolazone as an activator of PXR. Our data showed that metolazone activated hPXR-mediated expression of CYP3A4 and MDR1 in human hepatocytes and intestine cells and increased CYP3A4 promoter activity in various cell lines. Mammalian two-hybrid assays showed that hPXR recruits its co-activator SRC-1 upon metolazone binding in HepG2 cells, explaining the mechanism of hPXR activation. To understand the role of other commonly-used diuretics in PXR activation and the structure-activity relationship of metolazone, thiazide and non-thiazide diuretics drugs were also tested but only metolazone activates PXR. To understand the molecular mechanism, docking studies and mutational analysis were carried out and showed that metolazone binds in the ligand-binding pocket and interacts with mostly hydrophobic amino acid residues. This is the first report showing that metolazone activates PXR. Because activation of hPXR might cause drug-drug interactions, metolazone should be used with caution for drug treatment in patients undergoing combination therapy. PMID:25181459

  4. Induction of apoptosis in colon cancer cells by a novel topoisomerase I inhibitor TopIn

    SciTech Connect

    Bae, Soo Kyung; Gwak, Jungsug; Song, Im-Sook; Park, Hyung-Soon; Oh, Sangtaek

    2011-05-27

    Highlights: {yields} TopIn activates p53-dependent transcription in colon cancer cells. {yields} TopIn induces apoptosis in colon cancer cells. {yields} TopIn selectively inhibits topoisomerase I activity. {yields} TopIn does not affect the activity of BCRP and MDR-1. -- Abstract: The tumor suppressor p53 plays an important role in cellular emergency mechanisms through regulating the genes involved in cell cycle arrest and apoptosis. To identify small molecules that can activate p53-responsive transcription, we performed chemical screening using genetically engineered HCT116 reporter cells. We found that TopIn (7-phenyl-6H-[1,2,5]oxadiazolo[3,4-e]indole 3-oxide) efficiently activated p53-mediated transcriptional activity and induced phosphorylation of p53 at Ser15, thereby stabilizing the p53 protein. Furthermore, TopIn upregulated the expression of p21{sup WAF1/CIP1}, a downstream target of p53, and suppressed cellular proliferation in various colon cancer cells. Additionally, TopIn induced DNA fragmentation, caspase-3/7 activation and poly ADP ribose polymerase cleavage, typical biochemical markers of apoptosis, in p53 wild-type and mutated colon cancer cells. Finally, we found that TopIn inhibited topoisomerase I activity, but not topoisomerase II, in vitro and induced the formation of the topoisomerase I-DNA complex in HCT116 colon cancer cells. Unlike camptothecin (CPT) and its derivative SN38, TopIn did not affect the activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP) or multidrug-resistant protein-1 (MDR-1). These results suggest that TopIn may present a promising new topoisomerase I-targeting anti-tumor therapeutics.

  5. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells.

    PubMed

    Lan, Wei-Guang; Xu, Dian-Hong; Xu, Chen; Ding, Chang-Ling; Ning, Fang-Ling; Zhou, Yan-Li; Ma, Long-Bo; Liu, Chang-Min; Han, Xia

    2016-07-01

    The development of multidrug resistance (MDR) is a crucial cause of therapy failure in gastric cancer, which results in disease recurrence and metastasis. Long non-coding RNAs (lncRNAs) have been proven to be critical in carcinogenesis and metastasis of gastric cancer. However, little is known about the roles of ANRIL (antisense non-coding RNA in the INK4 locus) in gastric cancer MDR. The aim of our study is to identify the biological function of ANRIL in gastric cancer MDR. In our results, ANRIL was highly expressed in gastric cancer tissues of cisplatin-resistant and 5-fluorouracil (5-FU)-resistant patients, and the same upregulation trends were observed in cisplatin-resistant cells (BGC823/DDP) and 5-FU-resistant cells (BGC823/5-FU). In addition, BGC823/DDP and BGC823/5-FU cells transfected with ANRIL siRNA and treated with cisplatin or 5-FU, respectively, exhibited significant lower survival rate, decreased invasion capability, and high percentage of apoptotic tumor cells. The influence of ANRIL knockdown on MDR was assessed by measuring IC50 of BGC823/DDP and BGC823/5-FU cells to cisplatin and 5-FU, the result showed that silencing ANRIL decreased the IC50 values in gastric cancer cells. Moreover, qRT-PCR and western blotting revealed that ANRIL knockdown decreased the expression of MDR1 and MRP1, both of which are MDR related genes; regression analysis showed that the expression of ANRIL positively correlated with the expression of MDR1 and MRP1, resprectively In summary, knockdown of lncRNA ANRIL in gastric cancer cells inhibits the development of MDR, suggesting an efficacious target for reversing MDR in gastric cancer therapy. PMID:27121324

  6. Identification and properties of plasma membrane azole efflux pumps from the pathogenic fungi Cryptococcus gattii and Cryptococcus neoformans

    PubMed Central

    Basso, Luiz R.; Gast, Charles E.; Bruzual, Igor; Wong, Brian

    2015-01-01

    Objectives Cryptococcus gattii from the North American Northwest (NW) have higher azole MICs than do non-NW C. gattii or Cryptococcus neoformans. Since mechanisms of azole resistance in C. gattii are not known, we identified C. gattii and C. neoformans plasma membrane azole efflux pumps and characterized their properties. Methods The C. gattii R265 genome was searched for orthologues of known fungal azole efflux genes, expression of candidate genes was assessed by RT–PCR and the expressed genes' cDNAs were cloned and expressed in Saccharomyces cerevisiae. Azole MICs and intracellular [3H]fluconazole were measured in C. gattii and C. neoformans and in S. cerevisiae expressing each cDNA of interest, as was [3H]fluconazole uptake by post-Golgi vesicles (PGVs) isolated from S. cerevisiae sec6-4 mutants expressing each cDNA of interest. Results Intracellular [3H]fluconazole concentrations were inversely correlated with fluconazole MICs only in 25 NW C. gattii strains. S. cerevisiae expressing three C. gattii cDNAs (encoded by orthologues of C. neoformans AFR1 and MDR1 and the previously unstudied gene AFR2) and their C. neoformans counterparts had higher azole MICs and lower intracellular [3H]fluconazole concentrations than did empty-vector controls. PGVs from S. cerevisiae expressing all six Cryptococcus cDNAs also accumulated more [3H]fluconazole than did controls, and [3H]fluconazole transport by all six transporters of interest was ATP dependent and was inhibited by excess unlabelled fluconazole, voriconazole, itraconazole and posaconazole. Conclusions We conclude that C. gattii and C. neoformans AFR1, MDR1 and AFR2 encode ABC transporters that pump multiple azoles out of S. cerevisiae cells, thereby causing azole resistance. PMID:25630649

  7. Trantinterol, a novel β2-adrenoceptor agonist, noncompetitively inhibits P-glycoprotein function in vitro and in vivo.

    PubMed

    Wang, Tingting; Sun, Yantong; Ma, Wenxiao; Yang, Zhichao; Yang, Junfeng; Liu, Jingrui; Fan, Hongbo; Yang, Yan; Gu, Jingkai; Fawcett, John Paul; Guo, Yingjie

    2015-01-01

    P-glycoprotein (P-gp)-mediated drug-drug interactions are important factors causing adverse effects of drugs in clinical use. The aim of this study was to determine whether trantinterol (also known as SPFF), a novel β2-adrenoceptor agonist, was a P-gp inhibitor or substrate. The results showed that trantinterol was not a substrate of P-gp but increased rhodamine 123 (Rho 123) uptake by MDCK-MDR1 cells and decreased the efflux transport of both Rho 123 and cyclosporine A (CsA) in bidirectional transport studies across MDCK-MDR1 cell monolayers. This suggested that trantinterol was a P-gp inhibitor but not a P-gp substrate. The mechanism of inhibition was investigated in the P-gp-Glo assay system, where it was found that trantinterol inhibited P-gp ATPase activity in a dose-dependent manner. A subsequent study using the antibody binding assay with the conformation-sensitive P-gp-specific antibody UIC2 confirmed that trantinterol decreased UIC2 binding at 10 μM in contrast to the competitive inhibitor, verapamil. This suggested that trantinterol was a noncompetitive inhibitor of P-gp. Finally, a pharmacokinetic study in rat showed that trantinterol significantly increased the area under the plasma concentration-time curve (AUC) and maximum plasma concentration (Cmax) of digoxin and paclitaxel (PAC), and the Cmax of cyclosporine A (CsA). In summary, trantinterol is a potent noncompetitive P-gp inhibitor which may increase the bioavailability of other P-gp substrate drugs coadministered with it. PMID:25389765

  8. Interaction of drugs of abuse and maintenance treatments with human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2).

    PubMed

    Tournier, Nicolas; Chevillard, Lucie; Megarbane, Bruno; Pirnay, Stéphane; Scherrmann, Jean-Michel; Declèves, Xavier

    2010-08-01

    Drug interaction with P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) may influence its tissue disposition including blood-brain barrier transport and result in potent drug-drug interactions. The limited data obtained using in-vitro models indicate that methadone, buprenorphine, and cannabinoids may interact with human P-gp; but almost nothing is known about drugs of abuse and BCRP. We used in vitro P-gp and BCRP inhibition flow cytometric assays with hMDR1- and hBCRP-transfected HEK293 cells to test 14 compounds or metabolites frequently involved in addiction, including buprenorphine, norbuprenorphine, methadone, ibogaine, cocaine, cocaethylene, amphetamine, N-methyl-3,4-methylenedioxyamphetamine, 3,4-methylenedioxyamphetamine, nicotine, ketamine, Delta9-tetrahydrocannabinol (THC), naloxone, and morphine. Drugs that in vitro inhibited P-gp or BCRP were tested in hMDR1- and hBCRP-MDCKII bidirectional transport studies. Human P-gp was significantly inhibited in a concentration-dependent manner by norbuprenorphine>buprenorphine>methadone>ibogaine and THC. Similarly, BCRP was inhibited by buprenorphine>norbuprenorphine>ibogaine and THC. None of the other tested compounds inhibited either transporter, even at high concentration (100 microm). Norbuprenorphine (transport efflux ratio approoximately 11) and methadone (transport efflux ratio approoximately 1.9) transport was P-gp-mediated; however, with no significant stereo-selectivity regarding methadone enantiomers. BCRP did not transport any of the tested compounds. However, the clinical significance of the interaction of norbuprenorphine with P-gp remains to be evaluated. PMID:19887017

  9. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes.

    PubMed

    Wisniewska-Kruk, Joanna; Hoeben, Kees A; Vogels, Ilse M C; Gaillard, Pieter J; Van Noorden, Cornelis J F; Schlingemann, Reinier O; Klaassen, Ingeborg

    2012-03-01

    Loss of blood-retinal barrier (BRB) properties is an important feature in the pathology of diabetic macular edema (DME), but cellular mechanisms underlying BRB dysfunction are poorly understood. Therefore, we developed and characterized a novel in vitro BRB model, based on primary bovine retinal endothelial cells (BRECs). These cells were shown to maintain specific in vivo BRB properties by expressing high levels of the endothelial junction proteins occludin, claudin-5, VE-cadherin and ZO-1 at cell borders, and the specific pumps glucose transporter-1 (GLUT1) and efflux transporter P-glycoprotein (MDR1). To investigate the influence of pericytes and astrocytes on BRB maintenance in vitro, we compared five different co-culture BRB models, based on BRECs, bovine retinal pericytes (BRPCs) and rat glial cells. Co-cultures of BRECs with BRPCs and glial cells showed the highest trans-endothelial resistance (TEER) as well as decreased permeability of tracers after vascular endothelial growth factor (VEGF) stimulation, suggesting a major role for these cell types in maintaining barrier properties. To mimic the in vivo situation of DME, we stimulated BRECs with VEGF, which downregulated MDR1 and GLUT1 mRNA levels, transiently reduced expression levels of endothelial junctional proteins and altered their organization, increased the number of intercellular gaps in BRECs monolayers and influence the permeability of the model to differently-sized molecular tracers. Moreover, as has been shown in vivo, expression of plasmalemma vesicle-associated protein (PLVAP) was increased in endothelial cells in the presence of VEGF. This in vitro model is the first co-culture model of the BRB that mimicks in vivo VEGF-dependent changes occurring in DME. PMID:22200486

  10. Molecular basis of preferential resistance to colchicine in multidrug-resistant human cells conferred by Gly-185 yields Val-185 substitution in P-glycoprotein

    SciTech Connect

    Safa, A.R.; Stern, R.K.; Choi, Kyunghee; Agresti, M.; Tamai, Ikumi; Mehta, N.D.; Roninson, I.B. )

    1990-09-01

    Expression of P-glycoprotein, encoded by the human MDR1 gene, results in cross-resistance to many lipophilic cytotoxic drugs (multidrug resistance). P-glycoprotein is believed to function as an energy-dependent efflux pump that is responsible for decreased drug accumulation in multidrug-resistant cells. Previous work showed that preferential resistance to colchicine in a colchicine-selected multidrug-resistant cell line was caused by spontaneous mutations in the MDR1 gene that resulted in a Gly-185 {yields} Val-185 substitution in P-glycoprotein. The authors have now compared transfectant cell lines expressing the wild-type Gly-185 or the mutant Val-185 P-glycoprotein with regard to their levels of resistance to and accumulation and binding of different drugs. In cells expressing the mutant protein, increased resistance to colchicine and decreased resistance to vinblastine correlated with a decreased accumulation of colchicine and increased accumulation of vinblastine. Expression of the mutant P-glycoprotein also resulted in significantly increased resistance to epipodophyllotoxin and decreased resistance to vincristine and actinomycin D; smaller changes in resistance were observed for several other drugs. Unexpectedly, the mutant P-glycoprotein showed increased binding of photoactive analogs of vinblastine and verapamil and the photoactive compound azidopine and decreased binding of a photoactive colchicine analog. These results suggest that the Gly-185 {yields} Val-185 substitution affects not the initial drug-binding site of P-glycoprotein but another site, associated with the release of P-glycoprotein-bound drugs to the outside of the cell.

  11. Resistant mechanisms of anthracyclines--pirarubicin might partly break through the P-glycoprotein-mediated drug-resistance of human breast cancer tissues.

    PubMed

    Kubota, T; Furukawa, T; Tanino, H; Suto, A; Otan, Y; Watanabe, M; Ikeda, T; Kitajima, M

    2001-01-01

    Juliano and Ling initially reported the expression of a 170 kDa glycoprotein in the membrane of Chinese hamster ovarian cells in 1976, and named this glycoprotein P-glycoprotein (P-gp) based on its predicted role of causing "permeability" of the cell membrane. After much research on anthracycline-resistance, this P-gp was finally characterized as a multidrug-resistant protein coded by the mdr1 gene. Multidrug resistance associated protein (MRP) was initially cloned from H69AR, a human small cell-lung carcinoma cell line which is resistant to doxorubicin (DXR) but does not express P-gp. MRP also excretes substrates through the cell membrane using energy from ATP catabolism. The substrate of MRP is conjugated with glutathione before active efflux from cell membrane. Recently, membrane transporter proteins were re-categorized as members of "ATP-Binding Cassette transporter"(ABC-transporter) superfamily, as shown at http://www.med.rug.nl/mdl/humanabc.htm and http://www.gene.ucl.ac.uk/nomenclature/genefamily/abc.html. A total of ABC transporters have been defined, and MDR1 and multidrug resistance associated protein 1 (MRP1) were reclassified as ABCB1 and ABCC1, respectively. Their associated superfamilies include 11 and 13 other protein, in addition to ABCB and ABCC, respectively. Lung resistance-related protein (LRP) is not a member of the superfamily of ABC transporter proteins, because it shows nuclear membrane expression and transports substrate between nucleus and cytoplasm. LRP was initially cloned from a non-small cell lung carcinoma cell line, SW1573/2R120 which is resistant to DXR, vincristine, etoposide and gramicidin D and does not express P-gp. The mechanisms of resistance remains unclear, and why some resistant cell lines express P-gp and others express MRP and/or LRP is likewise unclear. PMID:11791127

  12. Antitubercular Agent Delamanid and Metabolites as Substrates and Inhibitors of ABC and Solute Carrier Transporters.

    PubMed

    Sasabe, Hiroyuki; Shimokawa, Yoshihiko; Shibata, Masakazu; Hashizume, Kenta; Hamasako, Yusuke; Ohzone, Yoshihiro; Kashiyama, Eiji; Umehara, Ken

    2016-06-01

    Delamanid (Deltyba, OPC-67683) is the first approved drug in a novel class of nitro-dihydro-imidazooxazoles developed for the treatment of multidrug-resistant tuberculosis. Patients with tuberculosis require treatment with multiple drugs, several of which have known drug-drug interactions. Transporters regulate drug absorption, distribution, and excretion; therefore, the inhibition of transport by one agent may alter the pharmacokinetics of another, leading to unexpected adverse events. Therefore, it is important to understand how delamanid affects transport activity. In the present study, the potencies of delamanid and its main metabolites as the substrates and inhibitors of various transporters were evaluated in vitro Delamanid was not transported by the efflux ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2), solute carrier (SLC) transporters, organic anion-transporting polypeptides, or organic cation transporter 1. Similarly, metabolite 1 (M1) was not a substrate for any of these transporters except P-gp. Delamanid showed no inhibitory effect on ABC transporters MDR1, BCRP, and bile salt export pump (BSEP; ABCB11), SLC transporters, or organic anion transporters. M1 and M2 inhibited P-gp- and BCRP-mediated transport but did so only at the 50% inhibitory concentrations (M1, 4.65 and 5.71 μmol/liter, respectively; M2, 7.80 and 6.02 μmol/liter, respectively), well above the corresponding maximum concentration in plasma values observed following the administration of multiple doses in clinical trials. M3 and M4 did not affect the activities of any of the transporters tested. These in vitro data suggest that delamanid is unlikely to have clinically relevant interactions with drugs for which absorption and disposition are mediated by this group of transporters. PMID:27021329

  13. Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and In Vivo Impact in Infected Galleria mellonella Larvae

    PubMed Central

    Souza, Ana Carolina R.; Fuchs, Beth Burgwyn; Pinhati, Henrique M. S.; Siqueira, Ricardo A.; Hagen, Ferry; Meis, Jacques F.; Mylonakis, Eleftherios

    2015-01-01

    Candida parapsilosis is the main non-albicans Candida species isolated from patients in Latin America. Mutations in the ERG11 gene and overexpression of membrane transporter proteins have been linked to fluconazole resistance. The aim of this study was to evaluate the molecular mechanisms in fluconazole-resistant strains of C. parapsilosis isolated from critically ill patients. The identities of the nine collected C. parapsilosis isolates at the species level were confirmed through molecular identification with a TaqMan qPCR assay. The clonal origin of the strains was checked by microsatellite typing. The Galleria mellonella infection model was used to confirm in vitro resistance. We assessed the presence of ERG11 mutations, as well as the expression of ERG11 and two additional genes that contribute to antifungal resistance (CDR1 and MDR1), by using real-time quantitative PCR. All of the C. parapsilosis (sensu stricto) isolates tested exhibited fluconazole MICs between 8 and 16 μg/ml. The in vitro data were confirmed by the failure of fluconazole in the treatment of G. mellonella infected with fluconazole-resistant strains of C. parapsilosis. Sequencing of the ERG11 gene revealed a common mutation leading to a Y132F amino acid substitution in all of the isolates, a finding consistent with their clonal origin. After fluconazole exposure, overexpression was noted for ERG11, CDR1, and MDR1 in 9/9, 9/9, and 2/9 strains, respectively. We demonstrated that a combination of molecular mechanisms, including the presence of point mutations in the ERG11 gene, overexpression of ERG11, and genes encoding efflux pumps, are involved in fluconazole resistance in C. parapsilosis. PMID:26259795

  14. Reversal of multidrug resistance of hepatocellular carcinoma cells by metformin through inhibiting NF-κB gene transcription

    PubMed Central

    Wu, Wei; Yang, Jun-Ling; Wang, Yi-Lang; Wang, Han; Yao, Min; Wang, Li; Gu, Juan-Juan; Cai, Yin; Shi, Yun; Yao, Deng-Fu

    2016-01-01

    AIM To interfere with the activation of nuclear factor-κB (NF-κB) with metformin and explore its effect in reversing multidrug resistance (MDR) of hepatocellular carcinoma (HCC) cells. METHODS Expression of P-glycoprotein (P-gp) and NF-κB in human HepG2 or HepG2/adriamycin (ADM) cells treated with pCMV-NF-κB-small interference RNA (siRNA) with or without metformin, was analyzed by Western blot or fluorescence quantitative PCR. Cell viability was tested by CCK-8 assay. Cell cycle and apoptosis were measured by flow cytometry and Annexin-V-PE/7-AnnexinV apoptosis detection double staining assay, respectively. RESULTS P-gp overexpression in HepG2 and HepG2/ADM cells was closely related to mdr1 mRNA (3.310 ± 0.154) and NF-κB mRNA (2.580 ± 0.040) expression. NF-κB gene transcription was inhibited by specific siRNA with significant down-regulation of P-gp and enhanced HCC cell chemosensitivity to doxorubicin. After pretreatment with metformin, HepG2/ADM cells were sensitized to doxorubicin and P-gp was decreased through the NF-κB signaling pathway. The synergistic effect of metformin and NF-κB siRNA were found in HepG2/ADM cells with regard to proliferation inhibition, cell cycle arrest and inducing cell apoptosis. CONCLUSION Metformin via silencing NF-κB signaling could effectively reverse MDR of HCC cells by down-regulating MDR1/P-gp expression.

  15. Function and expression of ATP-binding cassette transporters in cultured human Y79 retinoblastoma cells.

    PubMed

    Ishikawa, Yuka; Nagai, Junya; Okada, Yumi; Sato, Koya; Yumoto, Ryoko; Takano, Mikihisa

    2010-01-01

    The aim of this study was to reveal the expression and function of P-glycoprotein and multidrug resistance-associated proteins (MRP), members of the ATP-binding cassette (ABC) superfamily of drug transporters, in cultured human Y79 retinoblastoma cells. ABC transporter mRNA expression was evaluated by conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR analyses. Cellular accumulation of rhodamine 123 (P-glycoprotein substrate), calcein (MRP substrate), and doxorubicin (P-glycoprotein/MRP substrate) was analyzed by fluorometry. Conventional RT-PCR analysis showed the expression of multidrug resistance 1 (MDR1), MRP1, MRP2 and lung resistance-related protein (LRP) mRNAs. Real-time RT-PCR analysis revealed that the expression levels of the MDR1 and MRP2 genes in Y79 cells were much lower than those in human intestinal cell line Caco-2, while the expression level of MRP1 was higher than that in Caco-2 cells. The accumulation of rhodamine 123 was not enhanced by verapamil or reversin 205, inhibitors of P-glycoprotein, indicating no function of P-glycoprotein in Y79 cells. The accumulation of calcein was significantly increased by various MRP inhibitors including probenecid, indicating that MRP functions in Y79 cells. The accumulation of doxorubicin was increased in the presence of metabolic inhibitors (10 mM 2-deoxyglucose and 5 mM sodium azide). However, most MRP inhibitors such as probenecid and indomethacin did not affect doxorubicin accumulation, while cyclosporin A and taclorimus significantly increased doxorubicin accumulation. These results suggest that MRP, but not P-glycoprotein, functions in Y79 cells, and that the efflux of doxorubicin from Y79 cells may be due to an ATP-dependent transporter, which has not been identified yet. PMID:20190417

  16. Role of ABC and Solute Carrier Transporters in the Placental Transport of Lamivudine.

    PubMed

    Ceckova, Martina; Reznicek, Josef; Ptackova, Zuzana; Cerveny, Lukas; Müller, Fabian; Kacerovsky, Marian; Fromm, Martin F; Glazier, Jocelyn D; Staud, Frantisek

    2016-09-01

    Lamivudine is one of the antiretroviral drugs of choice for the prevention of mother-to-child transmission (MTCT) in HIV-positive women. In this study, we investigated the relevance of drug efflux transporters P-glycoprotein (P-gp) (MDR1 [ABCB1]), BCRP (ABCG2), MRP2 (ABCC2), and MATE1 (SLC47A1) for the transmembrane transport and transplacental transfer of lamivudine. We employed in vitro accumulation and transport experiments on MDCK cells overexpressing drug efflux transporters, in situ-perfused rat term placenta, and vesicular uptake in microvillous plasma membrane (MVM) vesicles isolated from human term placenta. MATE1 significantly accelerated lamivudine transport in MATE1-expressing MDCK cells, whereas no transporter-driven efflux of lamivudine was observed in MDCK-MDR1, MDCK-MRP2, and MDCK-BCRP monolayers. MATE1-mediated efflux of lamivudine appeared to be a low-affinity process (apparent Km of 4.21 mM and Vmax of 5.18 nmol/mg protein/min in MDCK-MATE1 cells). Consistent with in vitro transport studies, the transplacental clearance of lamivudine was not affected by P-gp, BCRP, or MRP2. However, lamivudine transfer across dually perfused rat placenta and the uptake of lamivudine into human placental MVM vesicles revealed pH dependency, indicating possible involvement of MATE1 in the fetal-to-maternal efflux of the drug. To conclude, placental transport of lamivudine does not seem to be affected by P-gp, MRP2, or BCRP, but a pH-dependent mechanism mediates transport of lamivudine in the fetal-to-maternal direction. We suggest that MATE1 might be, at least partly, responsible for this transport. PMID:27401571

  17. MRP-1 expression levels determine strain-specific susceptibility to sodium arsenic-induced renal injury between C57BL/6 and BALB/c mice

    SciTech Connect

    Kimura, Akihiko; Ishida, Yuko; Wada, Takashi; Yokoyama, Hitoshi; Mukaida, Naofumi; Kondo, Toshikazu . E-mail: kondot@wakayama-med.ac.jp

    2005-02-15

    To clarify the pathophysiological mechanism underlying acute renal injury caused by acute exposure to arsenic, we subcutaneously injected both BALB/c and C57BL/6 mice with sodium arsenite (NaAs; 13.5 mg/kg). BALB/c mice exhibited exaggerated elevation of serum blood urea nitrogen (BUN) and creatinine (CRE) levels, compared with C57BL/6 mice. Moreover, half of BALB/c mice died by 24 h, whereas all C57BL/6 mice survived. Histopathological examination on kidney revealed severe hemorrhages, acute tubular necrosis, neutrophil infiltration, cast formation, and disappearance of PAS-positive brush borders in BALB/c mice, later than 10 h. These pathological changes were remarkably attenuated in C57BL/6 mice, accompanied with lower intrarenal arsenic concentrations, compared with BALB/c mice. Among heavy metal inducible proteins including multidrug resistance-associated protein (MRP)-1, multidrug resistance gene (MDR)-1, metallothionein (MT)-1, and arsenite inducible, cysteine- and histidine-rich RNA-associated protein (AIRAP), intrarenal MDR-1, MT-1, and AIRAP gene expression was enhanced to a similar extent in both strains, whereas NaAs challenge augmented intrarenal MRP-1 mRNA and protein expression levels in C57BL/6 but not BALB/c mice. Moreover, the administration of a specific inhibitor of MRP-1, MK-571, significantly exaggerated acute renal injury in C57BL/6 mice. Thus, MRP-1 is crucially involved in arsenic efflux and eventually prevention of acute renal injury upon acute exposure to NaAs.

  18. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance.

    PubMed

    Zheng, Wenjing; Cao, Chengwen; Liu, Yanan; Yu, Qianqian; Zheng, Chuping; Sun, Dongdong; Ren, Xiaofan; Liu, Jie

    2015-01-01

    Multidrug resistance (MDR) is a major barrier against effective cancer treatment. Dual-delivering a therapeutic small interfering RNA (siRNA) and chemotherapeutic agents has been developed to reverse drug resistance in tumor cells. In this study, amine-terminated generation 5 polyamidoamine (PAMAM) dendrimers (G5.NH2)-modified selenium nanoparticles (G5@Se NP) were synthesized for the systemic dual-delivery of mdr1 siRNA and cisplatin (cis-diamminedichloroplatinum-(II), DDP), which was demonstrated to enhance siRNA loading, releasing efficiency and gene-silencing efficacy. When the mdr1 siRNA was conjugated with G5@Se NP via electrostatic interaction, a significant down-regulation of P-glycoprotein and multidrug resistance-associated protein expression was observed; G5@Se-DDP-siRNA arrested A549/DDP cells at G1 phase and led to enhanced cytotoxicity in A549/DDP cells through induction of apoptosis involving the AKT and ERK signaling pathways. Interestingly, G5@Se-DDP NP were much less reactive than DDP in the reactions with both MT and GSH, indicating that loading of DDP in a nano-delivery system could effectively prevent cell detoxification. Furthermore, animal studies demonstrated that the new delivery system of G5@Se-DDP-siRNA significantly enhanced the anti-tumor effect on tumor-bearing nude mice, with no appreciable abnormality in the major organs. These results suggest that G5@Se NP could be a potential platform to combine chemotherapy and gene therapy technology in the treatment of human disease. PMID:25204523

  19. P-glycoprotein expression in Ehrlich ascites tumour cells after in vitro and in vivo selection with daunorubicin.

    PubMed Central

    Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.

    1998-01-01

    Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176

  20. TSPO Ligand-Methotrexate Prodrug Conjugates: Design, Synthesis, and Biological Evaluation

    PubMed Central

    Laquintana, Valentino; Denora, Nunzio; Cutrignelli, Annalisa; Perrone, Mara; Iacobazzi, Rosa Maria; Annese, Cosimo; Lopalco, Antonio; Lopedota, Angela Assunta; Franco, Massimo

    2016-01-01

    The 18-kDa translocator protein (TSPO) is a potential mitochondrial target for drug delivery to tumors overexpressing TSPO, including brain cancers, and selective TSPO ligands have been successfully used to selectively deliver drugs into the target. Methotrexate (MTX) is an anticancer drug of choice for the treatment of several cancers, but its permeability through the blood brain barrier (BBB) is poor, making it unsuitable for the treatment of brain tumors. Therefore, in this study, MTX was selected to achieve two TSPO ligand-MTX conjugates (TSPO ligand α-MTX and TSPO ligand γ-MTX), potentially useful for the treatment of TSPO-rich cancers, including brain tumors. In this work, we have presented the synthesis, the physicochemical characterizations, as well as the in vitro stabilities of the new TSPO ligand-MTX conjugates. The binding affinity for TSPO and the selectivity versus central-type benzodiazepine receptor (CBR) was also investigated. The cytotoxicity of prepared conjugates was evaluated on MTX-sensitive human and rat glioma cell lines overexpressing TSPO. The estimated coefficients of lipophilicity and the stability studies of the conjugates confirm that the synthesized molecules are stable enough in buffer solution at pH 7.4, as well in physiological medium, and show an increased lipophilicity compared to the MTX, compatible with a likely ability to cross the blood brain barrier. The latter feature of two TSPO ligand-MTX conjugates was also confirmed by in vitro permeability studies conducted on Madin-Darby canine kidney cells transfected with the human MDR1 gene (MDCK-MDR1) monolayers. TSPO ligand-MTX conjugates have shown to possess a high binding affinity for TSPO, with IC50 values ranging from 7.2 to 40.3 nM, and exhibited marked toxicity against glioma cells overexpressing TSPO, in comparison with the parent drug MTX. PMID:27322261

  1. Effect of HEPES buffer on the uptake and transport of P-glycoprotein substrates and large neutral amino acids

    PubMed Central

    Luo, Shuanghui; Pal, Dhananjay; Shah, Sujay J.; Kwatra, Deep; Paturi, Kalyani D.; Mitra, Ashim. K.

    2010-01-01

    HEPES has been widely employed as an organic buffer agent in cell culture medium as well as uptake and transport experiments in vitro. However, concentrations of HEPES used in such studies vary from one laboratory to another. In this study, we investigated the effect of HEPES on the uptake and bidirectional transport of P-gp substrates employing both Caco-2 and MDCK-MDR1 cells. ATP-dependent uptake of glutamic acid was also examined. ATP production was further quantified applying ATP Determination Kit. An addition of HEPES to the cellular washing and incubation media significantly altered the uptake and transport of P-gp substrates in both Caco-2 and MDCK-MDR1 cells. Uptake of P-gp substrates substantially diminished as the HEPES concentration was raised to 25 mM. Bidirectional (A-B and B-A) transport studies revealed that permeability ratio of PappB-A to PappA-B in the presence of 25 mM HEPES was significantly higher than control. The uptake of phenylalanine is an ATP-independent process, whereas the accumulation of glutamic acid is ATP-dependent. While phenylalanine uptake remained unchanged glutamic acid uptake was elevated with the addition of HEPES. Verapamil is an inhibitor of P-gp mediated uptake, elevation of cyclosporine uptake in the presence of 5 μM verapamil was compromised by the presence of 25 mM HEPES. The results of ATP assay indicated that HEPES stimulated the production of ATP. This study suggests that the addition of HEPES in the medium modulated the energy dependent efflux and uptake processes. The effect of HEPES on P-gp mediated drug efflux and transport may provide some mechanistic insight into possible reasons for inconsistencies in the results reported from various laboratories. PMID:20163160

  2. Incorporation of ABCB1-mediated transport into a physiologically-based pharmacokinetic model of docetaxel in mice

    PubMed Central

    Hudachek, Susan F.

    2015-01-01

    Docetaxel is one of the most widely used anticancer agents. While this taxane has proven to be an effective chemotherapeutic drug, noteworthy challenges exist in relation to docetaxel administration due to the considerable interindividual variability in efficacy and toxicity associated with the use of this compound, largely attributable to differences between individuals in their ability to metabolize and eliminate docetaxel. Regarding the latter, the ATP-binding cassette transporter B1 (ABCB1, PGP, MDR1) is primarily responsible for docetaxel elimination. To further understand the role of ABCB1 in the biodistribution of docetaxel in mice, we utilized physiologically-based pharmacokinetic (PBPK) modeling that included ABCB1-mediated transport in relevant tissues. Transporter function was evaluated by studying docetaxel pharmacokinetics in wild-type FVB and Mdr1a/b constitutive knockout (KO) mice and incorporating this concentration–time data into a PBPK model comprised of eight tissue compartments (plasma, brain, heart, lung, kidney, intestine, liver and slowly perfused tissues) and, in addition to ABCB1-mediated transport, included intravenous drug administration, specific binding to intracellular tubulin, intestinal and hepatic metabolism, glomerular filtration and tubular reabsorption. For all tissues in both the FVB and KO cohorts, the PBPK model simulations closely mirrored the observed data. Furthermore, both models predicted AUC values that were with 15 % of the observed AUC values, indicating that our model-simulated drug exposures accurately reflected the observed tissue exposures. Overall, our PBPK model furthers the understanding of the role of ABCB1 in the biodistribution of docetaxel. Additionally, this exemplary model structure can be applied to investigate the pharmacokinetics of other ABCB1 transporter substrates. PMID:23616082

  3. Genetic susceptibility in childhood acute leukaemias: a systematic review

    PubMed Central

    Brisson, Gisele D; Alves, Liliane R; Pombo-de-Oliveira, Maria S

    2015-01-01

    Acute leukaemias (AL) correspond to 25–35% of all cancer cases in children. The aetiology is still sheltered, although several factors are implicated in causality of AL subtypes. Childhood acute leukaemias are associated with genetic syndromes (5%) and ionising radiation as risk factors. Somatic genomic alterations occur during fetal life and are initiating events to childhood leukaemia. Genetic susceptibility has been explored as a risk factor, since environmental exposure of the child to xenobiotics, direct or indirectly, can contribute to the accumulation of somatic mutations. Hence, a systematic review was conducted in order to understand the association between gene polymorphisms and childhood leukaemia risk. The search was performed in the electronic databases PubMed, Lilacs, and Scielo, selecting articles published between 1995 and 2013. This review included 90 case-control publications, which were classified into four groups: xenobiotic system (n = 50), DNA repair (n = 16), regulatory genes (n = 15), and genome wide association studies (GWAS) (n = 9). We observed that the most frequently investigated genes were: NQO1, GSTM1, GSTT1, GSTP1, CYP1A1, NAT2, CYP2D6, CYP2E1, MDR1 (ABCB1), XRCC1, ARID5B, and IKZF1. The collected evidence suggests that genetic polymorphisms in CYP2E1, GSTM1, NQO1, NAT2, MDR1, and XRCC1 are capable of modulating leukaemia risk, mainly when associated with environmental exposures, such as domestic pesticides and insecticides, smoking, trihalomethanes, alcohol consumption, and x-rays. More recently, genome wide association studies identified significant associations between genetic polymorphisms in ARID5B e IKZF1 and acute lymphoblastic leukaemia, but only a few studies have replicated these results until now. In conclusion, genetic susceptibility contributes to the risk of childhood leukaemia through the effects of gene–gene and gene–environment interactions. PMID:26045716

  4. Models to predict unbound intracellular drug concentrations in the presence of transporters.

    PubMed

    Korzekwa, Ken R; Nagar, Swati; Tucker, Jalia; Weiskircher, Erica A; Bhoopathy, Siddhartha; Hidalgo, Ismael J

    2012-05-01

    Knowledge of free drug intracellular concentration is necessary to predict the impacts of drugs on intracellular targets. The goal of this study was to develop models to predict free intracellular drug concentrations in the presence of apical efflux transporters. The apical efflux transporter P-glycoprotein (P-gp), encoded by human gene multidrug resistance 1 (MDR1), was studied. Apparent permeabilities for 10 compounds in Madin-Darby canine kidney (MDCK) and MDR1-MDCK cell monolayers were obtained experimentally. Six of these compounds were evaluated additionally in the presence of the P-gp inhibitor cyclosporine A. A three-compartment model was developed, and passive and apical efflux clearances (CL(d) and CL(ae), respectively) were estimated. Endogenous canine transporters also were delineated. The three-compartment model was unable to simulate experimentally observed lag times and exhibited systematic bias across the simulations. Next, a five-compartment model with explicit membrane compartments was developed. This model resulted in lower systematic errors and simulated the lag time observed experimentally. Apical efflux was modeled out of the cell or out of the membrane. The five-compartment model with apical efflux out of the membrane predicted marked differences in unbound intracellular concentrations between the apical-to-basolateral and the basolateral-to-apical directions. Upon apical drug addition, large decreases in intracellular concentrations were observed with the efflux transporter. No such difference was predicted upon basolateral drug addition. This is consistent with experimental differences in the impact of P-gp on hepatic and brain distribution and supports the hypothesis that apical efflux occurs out of the apical membrane. PMID:22279052

  5. ATP binding cassette transporter gene expression in rat liver progenitor cells

    PubMed Central

    Ros, J E; Roskams, T A D; Geuken, M; Havinga, R; Splinter, P L; Petersen, B E; LaRusso, N F; van der Kolk, D M; Kuipers, F; Faber, K N; Müller, M; Jansen, P L M

    2003-01-01

    Background and aim: Liver regeneration after severe liver damage depends in part on proliferation and differentiation of hepatic progenitor cells (HPCs). Under these conditions they must be able to withstand the toxic milieu of the damaged liver. ATP binding cassette (ABC) transporters are cytoprotective efflux pumps that may contribute to the preservation of these cells. The aim of this study was to determine the ABC transporter phenotype of HPCs. Methods: HPC activation was studied in rats treated with 2- acetylaminofluorene (2-AAF) followed by partial hepatectomy (PHx). ABC transporter gene expression was determined by real time detection reverse transcription-polymerase chain reaction in isolated HPCs, hepatocytes, cholangiocytes, and cultured progenitor cell-like RLF φ 13 cells and by immunohistochemistry of total liver samples. ABC transporter efflux activity was studied in RLF φ 13 cells by flow cytometry. Results: 2-AAF/PHx treated animals showed increased hepatic mRNA levels of the genes encoding multidrug resistance proteins Mdr1b, Mrp1, and Mrp3. Immunohistochemistry demonstrated expression of Mrp1 and Mrp3 proteins in periportal progenitor cells and of the Mdr1b protein in periportal hepatocytes. Freshly isolated Thy-1 positive cells and cultured RLF φ 13 progenitor cells highly expressed Mrp1 and Mrp3 mRNA while the hepatocyte specific transporters Mdr2, Bsep, Mrp2, and Mrp6 were only minimally expressed. Blocking Mrp activity by MK-571 resulted in accumulation of the Mrp specific substrate carboxyfluorescein in RLF φ 13 cells. Conclusion: HPCs express high levels of active Mrp1 and Mrp3. These may have a cytoprotective role in conditions of severe hepatotoxicity. PMID:12801967

  6. [In Process Citation].

    PubMed

    Gálvez San Román, J L; Jiménez Hidalgo, C; Portillo Cano, M M; García Sánchez, M O; Navarro Bustos, C; Julián-Jiménez, A; Martínez Ortiz de Zarate, M; González Del Castillo, J

    2016-01-01

                 Fundamento. El objetivo de este artículo es determinar la prevalencia y conocer los cambios epidemiológicos más relevantes en la última década en la infección del tracto urinario (ITU) en los servicios de urgencias (SU), así como el perfil y manejo de los pacientes.             Métodos. Estudio descriptivo con análisis transversal, multicéntrico en 49 SU españoles durante 12 meses. Se incluyeron todos los pacientes con el diagnóstico de ITU y de infección. Se registraron todos los pacientes atendidos en los SU.             Resultados. Se incluyeron 2.517 casos diagnosticados de ITU con una edad media de 55 ± 23 años, el 64,6% mujeres. Estos representan el 22% de las infecciones y el 3,2% de todos los pacientes del SU. El 36% de las ITU se registraron en pacientes con 70 o más años. El 51,9% tenían alguna enfermedad de base (16,5% diabetes mellitus) y el 32,7% alguno de los factores de riesgo de multirresistencia para bacterias. El 8,3% cumplían criterios de sepsis. El 71,9% de los pacientes recibieron el alta desde el SU.              Conclusiones. Las ITU son infecciones muy frecuentes en los SU, con importante comorbilidad asociada, elevada edad media y predominio en mujeres. Respecto a una década anterior, las ITU han aumentado su prevalencia (3,2% frente a 2,1%) y el paciente tiene más edad [55,5 (DE 23) frente a 52 (DE 22) años], mayor comorbilidad (51,9% frente a 40,6%) y gravedad clínica (8,3% frente a 6,5%).             Palabras clave. Infección del tracto urinario. Servicio de Urgencias. Epidemiología. PMID:27125608

  7. Raltegravir permeability across blood-tissue barriers and the potential role of drug efflux transporters.

    PubMed

    Hoque, M Tozammel; Kis, Olena; De Rosa, María F; Bendayan, Reina

    2015-05-01

    The objectives of this study were to investigate raltegravir transport across several blood-tissue barrier models and the potential interactions with drug efflux transporters. Raltegravir uptake, accumulation, and permeability were evaluated in vitro in (i) P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 1 (MRP1), or MRP4-overexpressing MDA-MDR1 (P-gp), HEK-ABCG2, HeLa-MRP1, or HEK-MRP4 cells, respectively; (ii) cell culture systems of the human blood-brain (hCMEC/D3), mouse blood-testicular (TM4), and human blood-intestinal (Caco-2) barriers; and (iii) rat jejunum and ileum segments using an in situ single-pass intestinal perfusion model. [(3)H]Raltegravir accumulation by MDA-MDR1 (P-gp) and HEK-ABCG2-overexpressing cells was significantly enhanced in the presence of PSC833 {6-[(2S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]-7-L-valine-cyclosporine}, a P-gp inhibitor, or Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], a BCRP inhibitor, suggesting the inhibition of a P-gp- or BCRP-mediated efflux process, respectively. Furthermore, [(3)H]raltegravir accumulation by human cerebral microvessel endothelial hCMEC/D3 and mouse Sertoli TM4 cells was significantly increased by PSC833 and Ko143. In human intestinal Caco-2 cells grown on Transwell filters, PSC833, but not Ko143, significantly decreased the [(3)H]raltegravir efflux ratios. In rat intestinal segments, [(3)H]raltegravir in situ permeability was significantly enhanced by the concurrent administration of PSC833 and Ko143. In contrast, in the transporter inhibition assays, raltegravir (10 to 500 μM) did not increase the accumulation of substrate for P-gp (rhodamine-6G), BCRP ([(3)H]mitoxantrone), or MRP1 [2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)] by MDA-MDR1 (P-gp)-, HEK-ABCG2-, or HeLa-MRP1-overexpressing

  8. The hypoxia-mimetic agent CoCl2 induces chemotherapy resistance in LOVO colorectal cancer cells.

    PubMed

    Yang, Guanglei; Xu, Shuqing; Peng, Lintao; Li, Hui; Zhao, Yan; Hu, Yanfang

    2016-03-01

    Hypoxia, which is an important factor that mediates tumor progression and poor treatment response, is particularly associated with tumor chemoresistance. However, the molecular mechanisms underlying hypoxia-induced colorectal cancer chemoresistance remain unclear. The present study aimed to explore the mechanism underlying hypoxia‑induced chemotherapy resistance in LOVO colorectal cancer cells. LOVO cells were cultured in a hypoxic environment simulated by cobalt chloride (CoCl2), which is a chemical inducer of hypoxia‑inducible factor‑1α (HIF‑1α). HIF‑1α is a transcription factor that has an important role in tumor cell adaptation to hypoxia, and controls the expression of several genes. Various CoCl2 concentrations are often used to simulate degrees of hypoxia. In the present study, following treatment with CoCl2, an MTT assay was conducted to determine the growth and drug sensitivity of LOVO cells. Reverse transcription‑polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of HIF‑1α and factors associated with chemotherapy resistance, including multidrug resistance protein (MRP) and multidrug resistant 1 (MDR1), which encodes the major transmembrane efflux transporter P‑glycoprotein (P‑gp). In addition, the expression levels of apoptosis‑related proteins, including B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) and Bcl‑2‑associated agonist of cell death (Bad) were detected by western blotting. Flow cytometry (FCM) was used to visually observe Adriamycin (ADR) accumulation and retention, thus analyzing intracellular drug transportation in cells under hypoxic and normoxic conditions. CoCl2‑simulated hypoxia was able to inhibit tumor cell proliferation, and upregulate the expression levels of HIF‑1α, MDR1/P‑gp and MRP. In addition, proapoptotic members of the Bcl‑2 protein family, Bax and Bad, were downregulated. The anti‑apoptotic member Bcl‑2

  9. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies

    SciTech Connect

    Yang, Cuiping Zhang, Tianhong Li, Zheng Xu, Liang Liu, Fei Ruan, Jinxiu Liu, Keliang Zhang, Zhenqing

    2013-12-15

    Aconitine (AC) is a highly toxic alkaloid from bioactive plants of the genus Aconitum, some of which have been widely used as medicinal herbs for thousands of years. In this study, we systematically evaluated the potential role of P-glycoprotein (P-gp) in the mechanisms underlying the low and variable bioavailability of oral AC. First, the bidirectional transport of AC across Caco-2 and MDCKII-MDR1 cells was investigated. The efflux of AC across monolayers of these two cell lines was greater than its influx. Additionally, the P-gp inhibitors, verapamil and cyclosporin A, significantly decreased the efflux of AC. An in situ intestinal perfusion study in rats showed that verapamil co-perfusion caused a significant increase in the intestinal permeability of AC, from 0.22 × 10{sup −5} to 2.85 × 10{sup −5} cm/s. Then, the pharmacokinetic profile of orally administered AC with or without pre-treatment with verapamil was determined in rats. With pre-treatment of verapamil, the maximum plasma concentration (C{sub max}) of AC increased sharply, from 39.43 to 1490.7 ng/ml. Accordingly, a 6.7-fold increase in the area under the plasma concentration–time curve (AUC{sub 0–12} {sub h}) of AC was observed when co-administered with verapamil. In silico docking analyses suggested that AC and verapamil possess similar P-gp recognition mechanisms. This work demonstrated that P-gp is involved in limiting the intestinal absorption of AC and attenuating its toxicity to humans. Our data indicate that potential P-gp-mediated drug–drug interactions should be considered carefully in the clinical application of aconite and formulations containing AC. - Highlights: • Verapamil and cyclosporin A decreased the efflux of aconitine across Caco-2 cells. • Both inhibitors decreased the efflux of aconitine across MDCKII-MDR1 cells. • Co-perfusion with verapamil increased the intestinal permeability of aconitine. • Co-administration with verapamil sharply increased the C{sub max

  10. JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein–protein interaction in human colon cancer cells

    SciTech Connect

    Nishimoto, Arata; Kugimiya, Naruji; Hosoyama, Toru; Enoki, Tadahiko; Li, Tao-Sheng; Hamano, Kimikazu

    2013-08-30

    Highlights: •JAB1 interacted with unphosphorylated STAT3 in the nucleus. •JAB1 knockdown tended to increase nuclear STAT3 expression. •JAB1 knockdown significantly decreased unphosphorylated STAT3 DNA-binding activity. •JAB1 knockdown significantly decreased MDR1, NANOG, and VEGF expressions. •Nuclear JAB1, but not nuclear STAT3, correlated with STAT3 DNA-binding activity. -- Abstract: Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target

  11. Mda-7/IL-24 enhances sensitivity of B cell lymphoma to chemotherapy drugs.

    PubMed

    Ma, Ming; Zhao, Lianmei; Sun, Guogui; Zhang, Chao; Liu, Lihua; Du, Yanyan; Yang, Xingxiao; Shan, Baoen

    2016-05-01

    Interleukin-24 (IL-24) is a cytokine encoded by a tumor suppressor gene of the IL-10 family, also known as the melanoma differentiation associated gene-7 (Mda-7) and first discovered in human melanoma cells. Mda-7/IL-24 has been shown to inhibit the proliferation of various human tumor cell lines, but its effect on the sensitivity of B cell lymphoma to chemotherapy agents is not yet clear. The present study investigated the effects of Mda-7/IL-24 overexpression on the sensitivity of human B cell lymphoma cells to chemotherapy, as well as its mechanism of action. The sensitivity of stable Mda-7/IL-24 overexpressing Raji and Daudi cells to cis-diamminedichloroplatinum (CDDP), epirubicin and vinblastine (VCR) were assessed by the MTS method, and the IC50 value calculated. Cell apoptosis and the intracellular accumulation of Rhodamine-123 were assayed by flow cytometry. The expression of multidrug resistance gene 1 (MDR1), B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1), topoisomerase II (Topo II) and multidrug resistance-related protein 1 (MRP1) mRNA and protein were analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. In addition, western blot analysis was also used to investigate the effect of Mda-7/IL-24 on activity of GTP-RhoA-ERK signaling pathway in Raji and Daudi cells. Growth inhibition and apoptosis rates of Mda-7/IL-24 overexpressing Raji and Daudi cells were higher than those of non-transfected cells and cells transfected with vector alone when treated with CDDP, epirubicin and VCR. The IC50 values of CDDP, epirubicin and VCR were lower for Mda-7/IL-24-overexpressing Raji and Daudi cells than for non-transfected cells and cells transfected with empty vector. Intracellular accumulation of Rhodamine-123 and the expression of Topo II were higher, while the levels of MDR1, BMI and MRP1 mRNA and protein were lower, in Mda-7/IL-24 overexpressing Raji and Daudi cells

  12. Correlation of nucleoside and nucleobase transporter gene expression with antimetabolite drug cytotoxicity.

    PubMed

    Lu, Xin; Gong, Shimei; Monks, Anne; Zaharevitz, Daniel; Moscow, Jeffrey A

    2002-01-01

    Antimetabolite drugs that inhibit nucleic acid metabolism are widely used in cancer chemotherapy. Nucleoside and nucleobase transporters are important for the cellular uptake of nucleic acids and their corresponding anticancer analogue drugs. Thus, these transporters may play a role both in antimetabolite drug sensitivity, by mediating the uptake of nucleoside analogues, and in antimetabolite drug resistance, by mediating the uptake of endogenous nucleosides that may rescue cells from toxicity. Therefore, we examined the relation of the expression of nucleoside and nucleobase transporters to antimetabolite cytotoxicity. We measured the RNA levels of all eight known nucleoside and nucleobase transporters in 50 cell lines included in the National Cancer Institute's Anticancer Drug Screen panel. RNA levels of concentrative nucleoside transporters (CNTs), equilibrative nucleoside transporters (ENTs) and nucleobase transporters (NCBTs) were determined by quantitative RT-PCR using real-time fluorescence acquisition. This method was validated by measuring the expression of the MDR1 gene, and correlating our results with independently determined measurements of MDR1 RNA levels and protein function in these cell lines. We then correlated the pattern of RNA levels to the pattern of cytotoxicity of anticancer drugs in the NCI drug screen database using the COMPARE analysis. Several hypothesized relations between transporter gene expression and cytotoxicity, based upon known interactions between certain nucleoside analogues and transporter proteins, were not observed, suggesting that expression of individual transporters may not be a significant determinant of the cytotoxicity of these drugs. The most closely correlated drug cytotoxicity patterns to transporter gene expression patterns (where increased expression corresponds to increase sensitivity) included those between CNT1 and O6-methylguanine and between ENT2 and hydroxyurea. We also observed that p53 status influenced

  13. Comparative effects of 1α-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on transporters and enzymes in fxr(+/+) and fxr(-/-) mice.

    PubMed

    Chow, Edwin C Y; Durk, Matthew R; Maeng, Han-Joo; Pang, K Sandy

    2013-10-01

    Previous studies have shown that 1α,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ] treatment in mice resulted in induction of intestinal and renal Cyp24a1 and Trpv6 expression, increased hepatic Cyp7a1 expression and activity, as well as higher renal Mdr1/P-gp expression. The present study compared the equimolar efficacies of 1α-hydroxyvitamin D3 [1α(OH)D3 ] (6 nmol/kg i.p. q2d × 4), a lipophilic precursor with a longer plasma half-life that is converted to 1,25(OH)2 D3 , and 1,25(OH)2 D3 on vitamin D receptor (VDR) target genes. To clarify whether changes in VDR genes was due to VDR and not secondary, farnesoid X receptor (FXR)-directed effects, namely, lower Cyp7a1 expression in rat liver due to increased bile acid absorption, wildtype [fxr(+/+)] and FXR knockout [fxr(-/-)] mice were used to distinguish between VDR and FXR effects. With the exception that hepatic Sult2a1 mRNA was increased equally well by 1α(OH)D3 and 1,25(OH)2 D3 , 1α(OH)D3 treatment led to higher increases in hepatic Cyp7a1, renal Cyp24a1, VDR, Mdr1 and Mrp4, and intestinal Cyp24a1 and Trpv6 mRNA expression in both fxr(+/+) and fxr(-/-) mice compared to 1,25(OH)2 D3 treatment. A similar induction in protein expression and microsomal activity of hepatic Cyp7a1 and renal P-gp and Mrp4 protein expression was noted for both compounds. A higher intestinal induction of Trpv6 was observed, resulting in greater hypercalcemic effect following 1α(OH)D3 treatment. The higher activity of 1α(OH)D3 was explained by its rapid conversion to 1,25(OH)2 D3 in tissue sites, furnishing higher plasma and tissue 1,25(OH)2 D3 levels compared to following 1,25(OH)2 D3 -treatment. In conclusion, 1α(OH)D3 exerts a greater effect on VDR gene induction than equimolar doses of 1,25(OH)2 D3 in mice. PMID:23897575

  14. Grape Seed Procyanidin Reversal of P-glycoprotein Associated Multi-Drug Resistance via Down-regulation of NF-κB and MAPK/ERK Mediated YB-1 Activity in A2780/T Cells

    PubMed Central

    Wang, Sheng-qi; Duan, Lian; Huo, Qi-lu; Ren, Fei; Li, Guo-feng

    2013-01-01

    The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multi-drug resistance (MDR), leading chemotherapy failure of patients suffered with cancer. Grape seed procyanidin(GSP) is a natural polyphenol supplement with anti-inflammatory effect. Present study assessed a new use of GSP on the MDR reversal activity and its possible molecular mechanisms in MDR1-overpressing paclitaxel resistant ovarian cancer cells. Our results showed GSP significantly enhanced the cytotoxicity of paclitaxel and adriamycin in paclitaxel resistant A2780/T cells but its parental A2780 cells. Furthermore, GSP strongly inhibited P-gp expression by blocking MDR1 gene transcription, as well as, increased the intracellular accumulation of the P-gp substrate rhodamine-123 in A2780/T cells. Nuclear factor-κB(NF-κB) activity, IκB degradation level and NF-κB/p65 nuclear translocation induced by lipopolysaccharide (LPS) and receptor activator for nuclear factor-κB ligand (RANKL) were markedly inhibited by pre-treatment with GSP. Meanwhile, GSP inhibited MAPK/ERK pathway by decreasing the phosphorylation of ERK1/2, resulting in reduced the Y-box binding protein 1 (YB-1) activation with blocking its nuclear translocation. Moreover, the up-regulation of P-gp expression, the activation of AKT/NF-κB and MAPK/ERK pathway induced by LPS was attenuated by GSP administration. Compared with PDTC and U1026, inhibitor of NF-κB and MAPK/ERK respectively, GSP showed the same tendency of down-regulating NF-κB and MAPK/ERK mediated YB-1 activities. Thus, GSP reverses P-gp associated MDR by inhibiting the function and expression of P-gp through down-regulation of NF-κB activity and MAPK/ERK pathway mediated YB-1 nuclear translocation, offering insight into the mechanism of reversing MDR by natural polyphenol supplement compounds. GSP could be a new potential MDR reversal agent used for combination therapy with chemotherapeutics in clinic. PMID:23967153

  15. Feroniellin A-induced autophagy causes apoptosis in multidrug-resistant human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Surapinit, Serm; Malilas, Waraporn; Moon, Jeong; Phuwapraisirisan, Preecha; Tip-Pyang, Santi; Johnston, Randal N; Koh, Sang Seok; Assavalapsakul, Wanchai; Chung, Young-Hwa

    2014-04-01

    During the screening of natural chemicals that can reverse multidrug resistance in human A549 lung cancer cells resistant to etoposide (A549RT-eto), we discovered that Feroniellin A (FERO), a novel furanocoumarin, shows toxicity toward A549RT-eto cells in a dose- and time-dependent manner. FERO reduced the expression of NF-κB, leading to downregulation of P-glycoprotein (P-gp), encoded by MDR1, which eventually sensitized A549RT-eto cells to apoptosis. FERO specifically diminished transcription and promoter activity of MDR1 but did not inhibit the expression of other multidrug resistance genes MRP2 and BCRP. Moreover, co-administration of FERO with Bay11-7802, an inhibitor of NF-κB, accelerated apoptosis of A549RT-eto cells through decreased expression of P-gp, indicating that NF-κB is involved in multidrug resistance. Conversely, addition of Z-VAD, a pan-caspase inhibitor, blocked FERO-induced apoptosis in A549RT-eto cells but did not block downregulation of P-gp, indicating that a decrease in P-gp expression is necessary but not sufficient for FERO-induced apoptosis. Interestingly, we found that FERO also induces autophagy, which is characterized by the conversion of LC3 I to LC3 II, induction of GFP-LC3 puncta, enhanced expression of Beclin-1 and ATG5, and inactivation of mTOR. Furthermore, suppression of Beclin-1 by siRNA reduced FERO-induced apoptosis in A549RT-eto cells and activation of autophagy by rapamycin accelerated FERO-induced apoptosis, suggesting that autophagy plays an active role in FERO-induced apoptosis. Herein, we report that FERO reverses multidrug resistance in A549RT-eto cells and exerts its cytotoxic effect by induction of both autophagy and apoptosis, which suggests that FERO can be a useful anticancer drug for multidrug-resistant lung cancer. PMID:24535083

  16. Cancer cell adaptation to chemotherapy

    PubMed Central

    Di Nicolantonio, Federica; Mercer, Stuart J; Knight, Louise A; Gabriel, Francis G; Whitehouse, Pauline A; Sharma, Sanjay; Fernando, Augusta; Glaysher, Sharon; Di Palma, Silvana; Johnson, Penny; Somers, Shaw S; Toh, Simon; Higgins, Bernie; Lamont, Alan; Gulliford, Tim; Hurren, Jeremy; Yiangou, Constantinos; Cree, Ian A

    2005-01-01

    Background Tumor resistance to chemotherapy may be present at the beginning of treatment, develop during treatment, or become apparent on re-treatment of the patient. The mechanisms involved are usually inferred from experiments with cell lines, as studies in tumor-derived cells are difficult. Studies of human tumors show that cells adapt to chemotherapy, but it has been largely assumed that clonal selection leads to the resistance of recurrent tumors. Methods Cells derived from 47 tumors of breast, ovarian, esophageal, and colorectal origin and 16 paired esophageal biopsies were exposed to anticancer agents (cisplatin; 5-fluorouracil; epirubicin; doxorubicin; paclitaxel; irinotecan and topotecan) in short-term cell culture (6 days). Real-time quantitative PCR was used to measure up- or down-regulation of 16 different resistance/target genes, and when tissue was available, immunohistochemistry was used to assess the protein levels. Results In 8/16 paired esophageal biopsies, there was an increase in the expression of multi-drug resistance gene 1 (MDR1) following epirubicin + cisplatin + 5-fluorouracil (ECF) chemotherapy and this was accompanied by increased expression of the MDR-1 encoded protein, P-gp. Following exposure to doxorubicin in vitro, 13/14 breast carcinomas and 9/12 ovarian carcinomas showed >2-fold down-regulation of topoisomerase IIα (TOPOIIα). Exposure to topotecan in vitro, resulted in >4-fold down-regulation of TOPOIIα in 6/7 colorectal tumors and 8/10 ovarian tumors. Conclusion This study suggests that up-regulation of resistance genes or down-regulation in target genes may occur rapidly in human solid tumors, within days of the start of treatment, and that similar changes are present in pre- and post-chemotherapy biopsy material. The molecular processes used by each tumor appear to be linked to the drug used, but there is also heterogeneity between individual tumors, even those with the same histological type, in the pattern and magnitude of

  17. Adaptive hepatic and intestinal alterations in mice after deletion of NADPH-cytochrome P450 Oxidoreductase (Cpr) in hepatocytes.

    PubMed

    Cheng, Xingguo; Gu, Jun; Klaassen, Curtis D

    2014-11-01

    Cytochrome P450 enzymes (P450) play an important role in first-pass metabolism in both the intestine and liver. NADPH-cytochrome P450 oxidoreductase (Cpr) is an essential electron transfer protein required for microsomal P450 activity. Mice with conditional knockout of Cpr in hepatocytes develop normally and survive even with complete loss of liver microsomal P450 activity. Our current studies were performed to determine whether alternative drug-metabolizing pathways increase in an attempt to maintain whole-body homeostasis. In addition to the liver, Cpr is mainly expressed in tissues such as lung, kidney, and gastrointestinal tract. In livers of H-Cpr-null mice, there is a marked increase in mRNA expression of phase I enzymes (Aldh1a1, 1a7, 3a2; Ces1b2, 2a6, and 2a12), antioxidant enzymes (Ho-1, Nqo1, and epoxide hydrolase), phase II enzymes (Ugt1a9; Gsta1/2, m3, m4, m6, t1, and t3; and Sult1a1 and 1d1), and drug transporters (Oatp1a4, Oct3, Mate1, Mdr1a, and Mrp3 and 4). In addition, glucuronide-conjugated bilirubin concentrations are doubled in serum of H-Cpr-null mice. Both constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein in nuclei are higher in the livers of H-Cpr-null mice, indicating that CAR and Nrf2 are activated. In the small intestine of H-Cpr-null mice, mRNA expression of Cyp3a11 and Mdr1a, two genes critical for intestinal first-pass metabolism, are markedly up-regulated. In addition, nutrient (Pept1) and cholesterol (Npc1l1) transporters are induced in the small intestine of H-Cpr-null mice. In conclusion, in H-Cpr-null mice, adaptive regulation of alternative detoxification genes in liver and small intestine appear to partially compensate for the loss of microsomal P450 function in liver. PMID:25147274

  18. [Modulation on the P-glycoprotein in the jejunum by combined use of Glycyrrhiza inflata and Kansui].

    PubMed

    Sun, Ya-Bin; Li, Guo-Feng; Tang, Zhong-Kun; Wu, Bing-Yi

    2010-04-01

    To investigate the modulation on the P-glycoprotein in the jejunum by combined use of Glycyrrhiza inflata and Kansui with ussing chamber and rt-pcr, Rhodamine 123 (R123), a P-gp substrate and fluorescein sodium (CF), a model drug of non-P-gp substrate transported by a passive diffusion were taken as investigational drugs. Because these two drugs can be easily assayed and widely used in various research fields. The permeability of R123 or CF via Wistar rat jejunum membranes was evaluated by in vitro ussing chamber after oral administration of four different decoctions of Glycyrrhiza inflata and Kansui for 1 week. And the concentration of R123 or CF was determined by the fluorospectrophotometry in the receiving solution. Meanwhile the expression of mdr1a in P-glycoprotein was detected by real-time fluorescent quantitative PCR. After oral administration of combined decoction of the single drug, the absorptive directed permeability of R123 increased significantly (P < 0.01). On the other hand, Kansui and combine decoction of the two drugs also decrease the permeability of secretory directed transport (P < 0.05). No action of Glycyrrhiza inflata was found on the secretory transport of R123 [Papp = (2.56 +/- 0.38) x 10(-5), cm x s(-1)] across the jejunum tissues, while Papp of control group was found [Papp = (2.35 +/- 0.27) x 10(-5), cm x s(-1)]. After oral administration of Kansui decoction for 1 week and 2 weeks, the levels of mdr1a expression in Wistar rats were lower than that of the control group, but there were no significant difference in the results. Meanwhile, Glycyrrhiza inflata had no effect on transport of CF across the jejunum tissues, though the other three groups could decrease the permeability of CF, as compared with control group. Kansui may slightly inhibit P-glycoprotein function in the intestinal membrane. For another, some compositions in Kansui inhibit P-glycoprotein function, and some others strengthen the tight junction between cells in the

  19. Evaluation of the Transport, In Vitro Metabolism and Pharmacokinetics of Salvinorin A, a Potent Hallucinogen

    PubMed Central

    Teksin, Zeynep S.; Lee, Insong J.; Nemieboka, Noble N.; Othman, Ahmed A.; Upreti, Vijay V.; Hassan, Hazem E.; Syed, Shariq S.; Prisinzano, Thomas E.; Eddington, Natalie D.

    2009-01-01

    Salvinorin A is an unregulated potent hallucinogen isolated from the leaves of Salvia divinorum. It is the only known non-nitrogenous kappa-opioid selective agonist and rivals synthetic lysergic acid diethylamide (LSD) in potency. This objective of this study was to characterize the in vitro transport, in vitro metabolism, and pharmacokinetic properties of Salvinorin A. The transport characteristics of Salvinorin A were assessed using MDCK-MDR1 cell monolayers. The P-glycoprotein (P-gp) affinity status was assessed by the P-gp ATPase assay. In vitro metabolism studies were performed with various specific human CYP450 isoforms and UGT2B7 to assess the metabolic characteristics of Salvinorin A. Cohorts (n=3) of male Sprague Dawley rats were used to evaluate the pharmacokinetics and brain distribution of Salvinorin A (10 mg/kg, intraperitonal (i.p.) over a 240 min period. A validated UV-HPLC and LC/MS/MS method was used to quantify the hallucinogen concentrations obtained from the in vitro and in vivo studies, respectively. Salvinorin A displayed a high secretory transport in the MDCK-MDR1 cells (4.07±1.34 × 10-5 cm/s). Salvinorin A also stimulated the P-gp ATPase activity in a concentration (5-10 μm) dependent manner, suggesting that it may be a substrate of P-gp. A significant decrease in Salvinorin A concentration ranging from 14.7±0.80 % to 31.1±1.20 % was observed after incubation with CYP2D6, CYP1A1, CYP2C18, and CYP2E1, respectively. A significant decrease was also observed after incubation with UGT2B7. These results suggest that Salvinorin A may be a substrate of UGT2B7, CYP2D6, CYP1A1, CYP2E1 and CYP2C18. The in vivo pharmacokinetic study showed a relatively fast elimination with a half-life (t1/2) of 75 min and a clearance (Cl/F) of 26 L/h/kg. The distribution was extensive (Vd of 47.1 L/kg), however the brain to plasma ratio was 0.050. Accordingly, the brain half life was relatively short, 36 min. Salvinorin A is rapidly eliminated after i.p. dosing

  20. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that

  1. Nutritional status affects fluvastatin-induced hepatotoxicity and myopathy in rats.

    PubMed

    Sugatani, Junko; Sadamitsu, Satoshi; Kurosawa, Masatoshi; Ikushiro, Shin-ichi; Sakaki, Toshiyuki; Ikari, Akira; Miwa, Masao

    2010-10-01

    Rats that consumed a high-fat and high-sucrose diet (HF diet) developed hepatic steatosis. Treatment of HF diet-fed rats with fluvastatin (8 mg/kg) was lethal, followed by an elevation in levels of plasma aspartate aminotransferase and creatine kinase activities and skeletal muscle toxicity. This study was conducted to determine whether nutritional status affects statin-induced adverse effects in rats. Fluvastatin treatment of rats fed the HF diet led to an increase in systemic exposure, suggesting altered metabolism and elimination. In fact, although hepatic multidrug resistance-associated protein (Mrp) 2 and multidrug resistance (Mdr) 1b protein levels were not significantly changed by fluvastatin treatment for 8 days of rats fed a HF diet, the organic anion-transporting protein (Oatp) 1, Mrp3, CYP1A, CYP2C, UDP-glucuronosyltransferase (UGT) 1A1, and UGT1A5 protein levels were moderately decreased and the Oatp2, CYP3A, and UGT2B1 protein levels were markedly suppressed. No significant difference in the baseline level of Oatp1, Oatp2, Mrp2, Mrp3, Mdr1b, CYP1A, CYP2C, CYP3A, UGT1A1, UGT1A5, or UGT2B1 protein was found between the standard diet- and HF diet-fed groups. In addition, the mRNA levels of Oatp2, CYP2C11, and CYP3A1/2 were markedly decreased in HF diet-fed and fluvastatin-treated rats. There was no significant difference in the glucuronidation activities against fluvastatin among the four groups. In liver cell nuclei, levels of constitutive androstane receptor, pregnane X receptor, and hepatocyte nuclear factor 4α proteins were decreased in fluvastatin-treated HF diet-fed rats, which correlated with the decrease in Oatp2, CYP2C, and CYP3A. Taken together, these results indicate that nutritional status may influence adverse effects of fluvastatin by increasing systemic exposure through modulation of hepatic uptake and elimination. PMID:20587623

  2. Solute Carrier Family of the Organic Anion-Transporting Polypeptides 1A2- Madin-Darby Canine Kidney II: A Promising In Vitro System to Understand the Role of Organic Anion-Transporting Polypeptide 1A2 in Blood-Brain Barrier Drug Penetration.

    PubMed

    Liu, Houfu; Yu, Na; Lu, Sijie; Ito, Sumito; Zhang, Xuan; Prasad, Bhagwat; He, Enuo; Lu, Xinyan; Li, Yang; Wang, Fei; Xu, Han; An, Gang; Unadkat, Jashvant D; Kusuhara, Hiroyuki; Sugiyama, Yuichi; Sahi, Jasminder

    2015-07-01

    Organic anion-transporting polypeptide (OATP) 1A2 has the potential to be a target for central nervous system drug delivery due to its luminal localization at the human blood-brain barrier and broad substrate specificity. We found OATP1A2 mRNA expression in the human brain to be comparable to breast cancer resistance protein and OATP2B1 and much higher than P-glycoprotein (P-gp), and confirmed greater expression in the brain relative to other tissues. The goal of this study was to establish a model system to explore OATP1A2-mediated transcellular transport of substrate drugs and the interplay with P-gp. In vitro (human embryonic kidney 293 cells stably expressing Oatp1a4, the closest murine isoform) and in vivo (naïve and Oatp1a4 knock-out mice) studies with OATP1A2 substrate triptan drugs demonstrated that these drugs were not Oatp1a4 substrates. This species difference demonstrates that the rodent is not a good model to investigate the active brain uptake of potential OATP1A2 substrates. Thus, we constructed a novel OATP1A2 expressing Madin-Darby canine kidney (MDCK) II wild type and an MDCKII-multidrug resistance protein 1 (MDR1) system using BacMam virus transduction. The spatial expression pattern of OATP1A2 after transduction in MDCKII-MDR1 cells was superimposed to P-gp, confirming apical membrane localization. OATP1A2-mediated uptake of zolmitriptan, rosuvastatin, and fexofenadine across monolayers increased with increasing OATP1A2 protein expression. OATP1A2 counteracted P-gp efflux for cosubstrates zolmitriptan and fexofenadine. A three-compartment model incorporating OATP1A2-mediated influx was used to quantitatively describe the time- and concentration-dependent apical-to-basolateral transcellular transport of rosuvastatin across OATP1A2 expressing the MDCKII monolayer. This novel, simple and versatile experimental system is useful for understanding the contribution of OATP1A2-mediated transcellular transport across barriers, such as the blood

  3. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence.

    PubMed

    Lohberger, Andrea; Coste, Alix T; Sanglard, Dominique

    2014-01-01

    Azoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur in Candida albicans principally by overexpression of multidrug transporter gene CDR1, CDR2, or MDR1 or by overexpression of ERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs) TAC1 (involved in the control of CDR1 and CDR2), MRR1 (involved in the control of MDR1), and UPC2 (involved in the control of ERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial to C. albicans survival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence of C. albicans in the absence of the selective drug pressure. In this work, the effect of GOF mutations on C. albicans virulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neither TAC1 nor MRR1 GOF mutations had a significant effect on C. albicans virulence. In contrast, the presence of two hyperactive UPC2 alleles in C. albicans resulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate with UPC2 hyperactive alleles was observed in competition experiments with the wild type in vivo but not in vitro. Interestingly, UPC2 hyperactivity delayed filamentation of C. albicans after phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining the UPC2 GOF mutation with another hyperactive TF did not compensate for the negative effect of UPC2 on virulence. In conclusion

  4. ERG11 mutations and expression of resistance genes in fluconazole-resistant Candida albicans isolates.

    PubMed

    Xu, Yonghao; Sheng, Fang; Zhao, Jie; Chen, Lamei; Li, Chunyang

    2015-11-01

    Azole resistance in the pathogenic yeast Candida albicans poses significant challenges for its antibiotic treatment. The conformational change of the target enzyme 14 alpha-demethylase (Erg11p) due to ERG11 gene mutations is one of the mechanisms resulting in the azole resistance. ERG11 of 23 isolates (8 susceptible and 15 resistant) and 6 standard strains of Candida albicans were amplified and sequenced. Nineteen missense mutations were detected. Two mutations, G487T (A114S) and T916C (Y257H), coexisted exclusively in 14 fluconazole-resistant isolates. To identify the resistance mechanisms in the isolates with G487T and T916C mutations, we compared the expression of 5 resistance-related genes in the 14 azole-resistant isolates with those in the susceptible type strain ATCC 10231, Saccharomyces cerevisiae AD/CDR1 and AD/CDR2. The tested values of mRNA transcription of CDR1 and CDR2 were higher than that of control strain, while the semi-quantified Cdr1p values were not higher in all of the 14 resistant isolates. And the data analyzed with t test suggest that both of the differences are significant (P < 0.0005) when the resistant isolates are considered as a whole. Cdr2p was up-regulated in 5 isolates, and down-regulated or even undetectable in the remaining 9 isolates. The transcription of ERG11, MDR1, and FLU1 varied in these isolates. These data suggested that overexpression of the five genes might not be the reason of resistance in the 14 isolates with G487T and T916C, especially in the 5 isolates (GZ09, GZ15, GZ16, GZ58, and 4263) in which neither translation of Cdr1p/Cdr2p nor transcription of ERG11, MDR1, or FLU1 was detected up-regulated. The results suggest that Erg11p conformational change due to the point mutations is most likely responsible for the azole resistance in these isolates. PMID:26349561

  5. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected.

    PubMed

    Löscher, Wolfgang; Luna-Tortós, Carlos; Römermann, Kerstin; Fedrowitz, Maren

    2011-01-01

    Resistance to multiple antiepileptic drugs (AEDs) is a common problem in epilepsy, affecting at least 30% of patients. One prominent hypothesis to explain this resistance suggests an inadequate penetration or excess efflux of AEDs across the blood - brain barrier (BBB) as a result of overexpressed efflux transporters such as P-glycoprotein (Pgp), the encoded product of the multidrug resistance- 1 (MDR1, ABCB1) gene. Pgp and MDR1 are markedly increased in epileptogenic brain tissue of patients with AED-resistant partial epilepsy and following seizures in rodent models of partial epilepsy. In rodent models, AED-resistant rats exhibit higher Pgp levels than responsive animals; increased Pgp expression is associated with lower brain levels of AEDs; and, most importantly, co-administration of Pgp inhibitors reverses AED resistance. Thus, it is reasonable to conclude that Pgp plays a significant role in mediating resistance to AEDs in rodent models of epilepsy - however, whether this phenomenon extends to at least some human refractory epilepsy remains unclear, particularly because it is still a matter of debate which AEDs, if any, are transported by human Pgp. The difficulty in determining which AEDs are substrates of human Pgp is mainly a consequence of the fact that AEDs are highly permeable compounds, which are not easily identified as Pgp substrates in in vitro models of the BBB, such as monolayer (Transwell(®)) efflux assays. By using a modified assay (concentration equilibrium transport assay; CETA), which minimizes the influence of high transcellular permeability, two groups have recently demonstrated that several major AEDs are transported by human Pgp. Importantly, it was demonstrated in these studies that Pgp-mediated transport highly depends on the AED concentration and may not be identified if concentrations below or above the therapeutic range are used. In addition to the efflux transporters, seizure-induced alterations in BBB integrity and activity of

  6. The hypoxia-mimetic agent CoCl2 induces chemotherapy resistance in LOVO colorectal cancer cells

    PubMed Central

    YANG, GUANGLEI; XU, SHUQING; PENG, LINTAO; LI, HUI; ZHAO, YAN; HU, YANFANG

    2016-01-01

    Hypoxia, which is an important factor that mediates tumor progression and poor treatment response, is particularly associated with tumor chemoresistance. However, the molecular mechanisms underlying hypoxia-induced colorectal cancer chemoresistance remain unclear. The present study aimed to explore the mechanism underlying hypoxia-induced chemotherapy resistance in LOVO colorectal cancer cells. LOVO cells were cultured in a hypoxic environment simulated by cobalt chloride (CoCl2), which is a chemical inducer of hypoxia-inducible factor-1α (HIF-1α). HIF-1α is a transcription factor that has an important role in tumor cell adaptation to hypoxia, and controls the expression of several genes. Various CoCl2 concentrations are often used to simulate degrees of hypoxia. In the present study, following treatment with CoCl2, an MTT assay was conducted to determine the growth and drug sensitivity of LOVO cells. Reverse transcription-polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of HIF-1α and factors associated with chemotherapy resistance, including multidrug resistance protein (MRP) and multidrug resistant 1 (MDR1), which encodes the major transmembrane efflux transporter P-glycoprotein (P-gp). In addition, the expression levels of apoptosis-related proteins, including B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax) and Bcl-2-associated agonist of cell death (Bad) were detected by western blotting. Flow cytometry (FCM) was used to visually observe Adriamycin (ADR) accumulation and retention, thus analyzing intracellular drug transportation in cells under hypoxic and normoxic conditions. CoCl2-simulated hypoxia was able to inhibit tumor cell proliferation, and upregulate the expression levels of HIF-1α, MDR1/P-gp and MRP. In addition, proapoptotic members of the Bcl-2 protein family, Bax and Bad, were downregulated. The anti-apoptotic member Bcl-2 exhibited no significant change in expression

  7. Interaction of HM30181 with P-glycoprotein at the murine blood-brain barrier assessed with positron emission tomography

    PubMed Central

    Bauer, Florian; Wanek, Thomas; Mairinger, Severin; Stanek, Johann; Sauberer, Michael; Kuntner, Claudia; Parveen, Zahida; Chiba, Peter; Müller, Markus; Langer, Oliver; Erker, Thomas

    2013-01-01

    HM30181, a potent and selective inhibitor of the adenosine triphosphate-binding cassette transporter P-glycoprotein (Pgp), was shown to enhance oral bioavailability and improve antitumour efficacy of paclitaxel in mouse tumour models. In search for a positron emission tomography (PET) radiotracer to visualise Pgp expression levels at the blood-brain barrier (BBB), we examined the ability of HM30181 to inhibit Pgp at the murine BBB. HM30181 was shown to be approximately equipotent with the reference Pgp inhibitor tariquidar in inhibiting rhodamine 123 efflux from CCRF-CEM T cells (IC50, tariquidar: 8.2±2.0 nM, HM30181: 13.1±2.3 nM). PET scans with the Pgp substrate (R)-[11C]verapamil in FVB wild-type mice pretreated i.v. with HM30181 (10 or 21 mg/kg) failed to show significant increases in (R)-[11C]verapamil brain uptake compared with vehicle treated animals. PET scans with [11C]HM30181 showed low and not significantly different brain uptake of [11C]HM30181 in wild-type, Mdr1a/b(−/−) and Bcrp1(−/−) mice and significantly, i.e. 4.7-fold (P<0.01), higher brain uptake, relative to wild-type animals, in Mdr1a/b(−/−)Bcrp1(−/−) mice. This was consistent with HM30181 being at microdoses a dual substrate of Pgp and breast cancer resistance protein (Bcrp). In vitro autoradiography on low (EMT6) and high (EMT6Ar1.0) Pgp expressing murine breast tumour sections showed 1.9 times higher binding of [11C]HM30181 in EMT6Ar1.0 tumours (P<0.001) which was displaceable with unlabelled tariquidar, elacridar or HM30181 (1 μM). Our data suggest that HM30181 is not able to inhibit Pgp at the murine BBB at clinically feasible doses and that [11C]HM30181 is not suitable as a PET tracer to visualise cerebral Pgp expression levels. PMID:23022332

  8. Species differences in the disposition of the CCR5 antagonist, UK-427,857, a new potential treatment for HIV.

    PubMed

    Walker, Don K; Abel, Samantha; Comby, Pierre; Muirhead, Gary J; Nedderman, Angus N R; Smith, Dennis A

    2005-04-01

    UK-427,857 (4, 4-difluoro-N-[(1S)-3-[exo-3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-8-yl]-1-phenylpropyl]cyclohexanecarboxamide) is a novel CCR5 antagonist undergoing investigation for use in the treatment of human immunodeficiency virus (HIV) infection. Pharmacokinetic and metabolism studies have been performed in mouse, rat, dog, and human after single and multiple administration by oral and intravenous routes. The compound has physicochemical properties that are borderline for good pharmacokinetics, being moderately lipophilic (log D(7.4) 2.1) and basic (pK(a) 7.3), possessing a number of H-bonding functionalities, and with a molecular weight of 514. The compound was incompletely absorbed in rat (approximately 20-30%) but well absorbed in dog (>70%). Based on in vitro studies in Caco-2 cells, UK-427,857 has relatively poor membrane permeability, and transcellular flux is enhanced in the presence of inhibitors of P-glycoprotein. Further evidence for the involvement of P-glycoprotein in restricting the oral absorption of UK-427,857 was obtained in P-glycoprotein null mice (mdr1a/mdr1b knockout). In these animals, AUC after oral administration was 3-fold higher than in control animals. In oral dose escalation studies in humans, the compound demonstrated nonlinear pharmacokinetics, with increased dose-normalized exposure with increased dose size, consistent with saturation of P-glycoprotein. The oral dose-exposure relationship of UK-427,857 in humans was not reflected in either rat or dog. In animal species and humans, UK-427,857 undergoes some metabolism, with parent compound the major component present in the systemic circulation and excreta. Elimination of radioactive dose was primarily via the feces. In rat, parent compound was secreted via bile and directly into the gastrointestinal tract. Metabolites were products of oxidative metabolism and showed a high degree of structural consistency across species. PMID:15650075

  9. Effects of Methylmercury Contained in a Diet Mimicking the Wayana Amerindians Contamination through Fish Consumption: Mercury Accumulation, Metallothionein Induction, Gene Expression Variations, and Role of the Chemokine CCL2

    PubMed Central

    Bourdineaud, Jean-Paul; Laclau, Muriel; Maury-Brachet, Régine; Gonzalez, Patrice; Baudrimont, Magalie; Mesmer-Dudons, Nathalie; Fujimura, Masatake; Marighetto, Aline; Godefroy, David; Rostène, William; Brèthes, Daniel

    2012-01-01

    Methylmercury (MeHg) is a potent neurotoxin, and human beings are mainly exposed to this pollutant through fish consumption. We addressed the question of whether a diet mimicking the fish consumption of Wayanas Amerindians from French Guiana could result in observable adverse effects in mice. Wayanas adult men are subjected to a mean mercurial dose of 7 g Hg/week/kg of body weight. We decided to supplement a vegetarian-based mice diet with 0.1% of lyophilized Hoplias aimara fish, which Wayanas are fond of and equivalent to the same dose as that afflicting the Wayanas Amerindians. Total mercury contents were 1.4 ± 0.2 and 5.4 ± 0.5 ng Hg/g of food pellets for the control and aimara diets, respectively. After 14 months of exposure, the body parts and tissues displaying the highest mercury concentration on a dry weight (dw) basis were hair (733 ng/g) and kidney (511 ng/g), followed by the liver (77 ng/g). Surprisingly, despite the fact that MeHg is a neurotoxic compound, the brain accumulated low levels of mercury (35 ng/g in the cortex). The metallothionein (MT) protein concentration only increased in those tissues (kidney, muscles) in which MeHg demethylation had occurred. This can be taken as a molecular sign of divalent mercurial contamination since only Hg2+ has been reported yet to induce MT accumulation in contaminated tissues. The suppression of the synthesis of the chemokine CCL2 in the corresponding knockout (KO) mice resulted in important changes in gene expression patterns in the liver and brain. After three months of exposure to an aimara-containing diet, eight of 10 genes selected (Sdhb, Cytb, Cox1, Sod1, Sod2, Mt2, Mdr1a and Bax) were repressed in wild-type mice liver whereas none presented a differential expression in KO Ccl2−/− mice. In the wild-type mice brain, six of 12 genes selected (Cytb, Cox1, Sod1, Sod2, Mdr1a and Bax) presented a stimulated expression, whereas all remained at the basal level of expression in KO Ccl2−/− mice. In the

  10. Effects of methylmercury contained in a diet mimicking the Wayana Amerindians contamination through fish consumption: mercury accumulation, metallothionein induction, gene expression variations, and role of the chemokine CCL2.

    PubMed

    Bourdineaud, Jean-Paul; Laclau, Muriel; Maury-Brachet, Régine; Gonzalez, Patrice; Baudrimont, Magalie; Mesmer-Dudons, Nathalie; Fujimura, Masatake; Marighetto, Aline; Godefroy, David; Rostène, William; Brèthes, Daniel

    2012-01-01

    Methylmercury (MeHg) is a potent neurotoxin, and human beings are mainly exposed to this pollutant through fish consumption. We addressed the question of whether a diet mimicking the fish consumption of Wayanas Amerindians from French Guiana could result in observable adverse effects in mice. Wayanas adult men are subjected to a mean mercurial dose of 7 g Hg/week/kg of body weight. We decided to supplement a vegetarian-based mice diet with 0.1% of lyophilized Hoplias aimara fish, which Wayanas are fond of and equivalent to the same dose as that afflicting the Wayanas Amerindians. Total mercury contents were 1.4 ± 0.2 and 5.4 ± 0.5 ng Hg/g of food pellets for the control and aimara diets, respectively. After 14 months of exposure, the body parts and tissues displaying the highest mercury concentration on a dry weight (dw) basis were hair (733 ng/g) and kidney (511 ng/g), followed by the liver (77 ng/g). Surprisingly, despite the fact that MeHg is a neurotoxic compound, the brain accumulated low levels of mercury (35 ng/g in the cortex). The metallothionein (MT) protein concentration only increased in those tissues (kidney, muscles) in which MeHg demethylation had occurred. This can be taken as a molecular sign of divalent mercurial contamination since only Hg(2+) has been reported yet to induce MT accumulation in contaminated tissues. The suppression of the synthesis of the chemokine CCL2 in the corresponding knockout (KO) mice resulted in important changes in gene expression patterns in the liver and brain. After three months of exposure to an aimara-containing diet, eight of 10 genes selected (Sdhb, Cytb, Cox1, Sod1, Sod2, Mt2, Mdr1a and Bax) were repressed in wild-type mice liver whereas none presented a differential expression in KO Ccl2(-/-) mice. In the wild-type mice brain, six of 12 genes selected (Cytb, Cox1, Sod1, Sod2, Mdr1a and Bax) presented a stimulated expression, whereas all remained at the basal level of expression in KO Ccl2(-/-) mice. In the

  11. Transport Inhibition of Digoxin Using Several Common P-gp Expressing Cell Lines Is Not Necessarily Reporting Only on Inhibitor Binding to P-gp

    PubMed Central

    Lumen, Annie Albin; Li, Libin; Li, Jiben; Ahmed, Zeba; Meng, Zhou; Owen, Albert; Ellens, Harma; Hidalgo, Ismael J.; Bentz, Joe

    2013-01-01

    We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable

  12. Pregnane X receptor mediates the induction of P-glycoprotein by spironolactone in HepG2 cells.

    PubMed

    Rigalli, Juan Pablo; Ruiz, María Laura; Perdomo, Virginia Gabriela; Villanueva, Silvina Stella Maris; Mottino, Aldo Domingo; Catania, Viviana Alicia

    2011-07-11

    We evaluated the effect of spironolactone (SL), a well-known inducer of biotransformation and elimination pathways, on the expression and activity of P-glycoprotein (P-gp/ABCB1/MDR1), a major xenobiotic transporter, in HepG2 cells, as well as the potential mediation of pregnane X nuclear receptor (PXR). Cells were exposed to SL (1, 5, 10, 20 or 50 μM) for 48 h. Expression of P-gp and its mRNA levels were estimated by Western blotting and real time PCR, respectively. P-gp activity was inversely correlated with the ability of the cells to accumulate the model substrate rhodamine 123 (Rh123, 5 μM), in the presence or absence of verapamil (50 μM), a P-gp inhibitor. At the highest dose of SL tested, P-gp and MDR1 mRNA levels were significantly increased (73 and 108%) with respect to control cells. Rh123 accumulation was concomitantly reduced and verapamil was able to abolish this effect, confirming P-gp participation. Additionally, we tested the cytotoxicity of doxorubicin, a model substrate of P-gp, under inducing conditions. HepG2 cells treated with SL exhibited higher viability, i.e. less doxorubicin toxicity, than control cells, consistent with P-gp up-regulation. When HepG2 cells were treated with SL in the presence of ketoconazole (KTZ), a non-specific nuclear receptor inhibitor, the up-regulation of P-gp was suppressed. To further identify the nuclear receptor involved, cells were transfected with a siRNA directed against human PXR, leading to a 74% decrease in PXR protein levels, which totally abolished SL induction of P-gp. We conclude that SL up-regulates P-gp expression, likely at transcriptional level, and its efflux activity in HepG2 cells. This effect is mediated by PXR. Thus, ligands of PXR such as SL may alter the disposition and toxicity of other xenobiotics, including drugs of therapeutic use, that are P-gp substrates. PMID:21459122

  13. Purine Nucleoside Analog - Sulfinosine Modulates Diverse Mechanisms of Cancer Progression in Multi-Drug Resistant Cancer Cell Lines

    PubMed Central

    Dačević, Mirjana; Isaković, Aleksandra; Podolski-Renić, Ana; Isaković, Andelka M.; Stanković, Tijana; Milošević, Zorica; Rakić, Ljubisav; Ruždijić, Sabera; Pešić, Milica

    2013-01-01

    Achieving an effective treatment of cancer is difficult, particularly when resistance to conventional chemotherapy is developed. P-glycoprotein (P-gp) activity governs multi-drug resistance (MDR) development in different cancer cell types. Identification of anti-cancer agents with the potential to kill cancer cells and at the same time inhibit MDR is important to intensify the search for novel therapeutic approaches. We examined the effects of sulfinosine (SF), a quite unexplored purine nucleoside analog, in MDR (P-gp over-expressing) non-small cell lung carcinoma (NSCLC) and glioblastoma cell lines (NCI-H460/R and U87-TxR, respectively). SF showed the same efficacy against MDR cancer cell lines and their sensitive counterparts. However, it was non-toxic for normal human keratinocytes (HaCaT). SF induced caspase-dependent apoptotic cell death and autophagy in MDR cancer cells. After SF application, reactive oxygen species (ROS) were generated and glutathione (GSH) concentration was decreased. The expression of key enzyme for GSH synthesis, gamma Glutamyl-cysteine-synthetase (γGCS) was decreased as well as the expression of gst-π mRNA. Consequently, SF significantly decreased the expression of hif-1α, mdr1 and vegf mRNAs even in hypoxic conditions. SF caused the inhibition of P-gp (coded by mdr1) expression and activity. The accumulation of standard chemotherapeutic agent – doxorubicin (DOX) was induced by SF in concentration- and time-dependent manner. The best effect of SF was obtained after 72 h when it attained the effect of known P-gp inhibitors (Dex-verapamil and tariquidar). Accordingly, SF sensitized the resistant cancer cells to DOX in subsequent treatment. Furthermore, SF decreased the experssion of vascular endothelial growth factor (VEGF) on mRNA and protein level and modulated its secretion. In conclusion, the effects on P-gp (implicated in pharmacokinetics and MDR), GSH (implicated in detoxification) and VEGF (implicated in tumor-angiogenesis and

  14. Stereoisomeric Prodrugs to Improve Corneal Absorption of Prednisolone: Synthesis and In Vitro Evaluation.

    PubMed

    Sheng, Ye; Yang, Xiaoyan; Wang, Zhiying; Mitra, Ashim K

    2016-06-01

    A series of stereoisomeric prodrugs have been designed to examine efficacy in generating higher corneal absorption relative to prednisolone. Prodrugs have been studied and identified with LC/MS/MS and NMR analyses. Prodrugs have been characterized for aqueous solubility, buffer stability, and cytotoxicity. Cellular uptake and permeability studies have been conducted across MDCK-MDR1 cells to determine prodrug affinity towards P-glycoprotein (P-gp) and peptide transporters. Enzyme-mediated degradation of prodrugs has been determined using Statens Seruminstitut rabbit cornea (SIRC) cell homogenates. Prodrugs exhibited higher aqueous solubility relative to prednisolone. Prodrugs circumvented P-gp-mediated cellular efflux and were recognized by peptide transporters. Prodrugs (DP, DDP) produced with D-isomers (D-valine) were significantly stable against both chemical and enzymatic hydrolyses. The order of degradation rate constants observed in chemical and enzymatic hydrolyses were in the same order, i.e., L-valine-L-valine-prednisolone (LLP) > L-valine-D-valine-prednisolone (LDP) > D-valine-L-valine-prednisolone (DLP) > D-valine-D-valine-prednisolone (DDP). Results obtained from this study clearly suggest that stereoisomeric prodrug approach is an effective strategy to overcome P-gp-mediated efflux and improve transcorneal permeability of prednisolone following topical administration. PMID:26335418

  15. Effects of Danshen Ethanol Extract on the Pharmacokinetics of Fexofenadine in Healthy Volunteers

    PubMed Central

    Qiu, Furong; Zeng, Jin; Liu, Songcan; He, Min; Zhu, Leilei; Ye, Yujie; Miao, Ping; Shen, Shujiao; Jiang, Jian

    2014-01-01

    This study investigated the effect of multidose administration of danshen ethanol extract on fexofenadine pharmacokinetics in healthy volunteers. A sequential, open-label, two-period pharmacokinetic interaction design was used. 12 healthy male volunteers received a single oral dose of fexofenadine (60 mg) followed by danshen ethanol extract (1 g orally, three times a day) for 10 days, after which they received 1 g of the danshen extract with fexofenadine (60 mg) on the last day. The plasma concentrations of fexofenadine was measured by LC-MS/MS. After 10 days of the danshen extract administration, the mean AUC and Cmax⁡ of the fexofenadine was decreased by 37.2% and 27.4% compared with the control, respectively. The mean clearance of fexofenadine was increased by 104.9%. The in vitro study showed that tanshinone IIA and cryptotanshinone could induce MDR1 mRNA. This study showed that multidose administration of danshen ethanol extract could increase oral clearance of fexofenadine. The increased oral clearance of fexofenadine is attributable to induction of intestinal P-glycoprotein. PMID:25538791

  16. Cisplatin Resistant Spheroids Model Cl