Science.gov

Sample records for multispectral image classification

  1. Retinex Preprocessing for Improved Multi-Spectral Image Classification

    NASA Technical Reports Server (NTRS)

    Thompson, B.; Rahman, Z.; Park, S.

    2000-01-01

    The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of multi-spectral images and thus provides better within-class variations than would otherwise be obtained without the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained by the interaction between different agronomic treatments applied to the regions: the preprocessed images are closer to ground truth. The principle advantage that the retinex offers is that for different lighting conditions classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent, whereas classifications derived from the original

  2. Implementation of Multispectral Image Classification on a Remote Adaptive Computer

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Gloster, Clay S.; Stephens, Mark; Graves, Corey A.; Nakkar, Mouna

    1999-01-01

    As the demand for higher performance computers for the processing of remote sensing science algorithms increases, the need to investigate new computing paradigms its justified. Field Programmable Gate Arrays enable the implementation of algorithms at the hardware gate level, leading to orders of m a,gnitude performance increase over microprocessor based systems. The automatic classification of spaceborne multispectral images is an example of a computation intensive application, that, can benefit from implementation on an FPGA - based custom computing machine (adaptive or reconfigurable computer). A probabilistic neural network is used here to classify pixels of of a multispectral LANDSAT-2 image. The implementation described utilizes Java client/server application programs to access the adaptive computer from a remote site. Results verify that a remote hardware version of the algorithm (implemented on an adaptive computer) is significantly faster than a local software version of the same algorithm implemented on a typical general - purpose computer).

  3. Intelligent image processing for vegetation classification using multispectral LANDSAT data

    NASA Astrophysics Data System (ADS)

    Santos, Stewart R.; Flores, Jorge L.; Garcia-Torales, G.

    2015-09-01

    We propose an intelligent computational technique for analysis of vegetation imaging, which are acquired with multispectral scanner (MSS) sensor. This work focuses on intelligent and adaptive artificial neural network (ANN) methodologies that allow segmentation and classification of spectral remote sensing (RS) signatures, in order to obtain a high resolution map, in which we can delimit the wooded areas and quantify the amount of combustible materials present into these areas. This could provide important information to prevent fires and deforestation of wooded areas. The spectral RS input data, acquired by the MSS sensor, are considered in a random propagation remotely sensed scene with unknown statistics for each Thematic Mapper (TM) band. Performing high-resolution reconstruction and adding these spectral values with neighbor pixels information from each TM band, we can include contextual information into an ANN. The biggest challenge in conventional classifiers is how to reduce the number of components in the feature vector, while preserving the major information contained in the data, especially when the dimensionality of the feature space is high. Preliminary results show that the Adaptive Modified Neural Network method is a promising and effective spectral method for segmentation and classification in RS images acquired with MSS sensor.

  4. Classification of emerald based on multispectral image and PCA

    NASA Astrophysics Data System (ADS)

    Yang, Weiping; Zhao, Dazun; Huang, Qingmei; Ren, Pengyuan; Feng, Jie; Zhang, Xiaoyan

    2005-02-01

    Traditionally, the grade discrimination and classifying of bowlders (emeralds) are implemented by using methods based on people's experiences. In our previous works, a method based on NCS(Natural Color System) color system and sRGB color space conversion is employed for a coarse grade classification of emeralds. However, it is well known that the color match of two colors is not a true "match" unless their spectra are the same. Because metameric colors can not be differentiated by a three channel(RGB) camera, a multispectral camera(MSC) is used as image capturing device in this paper. It consists of a trichromatic digital camera and a set of wide-band filters. The spectra are obtained by measuring a series of natural bowlders(emeralds) samples. Principal component analysis(PCA) method is employed to get some spectral eigenvectors. During the fine classification, the color difference and RMS of spectrum difference between estimated and original spectra are used as criterion. It has been shown that 6 eigenvectors are enough to reconstruct reflection spectra of the testing samples.

  5. Classification of multispectral image data by extraction and classification of homogeneous objects

    NASA Technical Reports Server (NTRS)

    Kettig, R. L.; Landgrebe, D. A.

    1975-01-01

    A method of classification of digitized multispectral image data is described. It is designed to exploit a particular type of dependence between adjacent states of nature that is characteristic of the data. The advantages of this, as opposed to the conventional per point approach, are greater accuracy and efficiency, and the results are in a more desirable form for most purposes. Experimental results from both aircraft and satellite data are included.

  6. Computer classification of remotely sensed multispectral image data by extraction and classification of homogeneous objects

    NASA Technical Reports Server (NTRS)

    Kettig, R. L.

    1975-01-01

    A method of classification of digitized multispectral images is developed and experimentally evaluated on actual earth resources data collected by aircraft and satellite. The method is designed to exploit the characteristic dependence between adjacent states of nature that is neglected by the more conventional simple-symmetric decision rule. Thus contextual information is incorporated into the classification scheme. The principle reason for doing this is to improve the accuracy of the classification. For general types of dependence this would generally require more computation per resolution element than the simple-symmetric classifier. But when the dependence occurs in the form of redundance, the elements can be classified collectively, in groups, therby reducing the number of classifications required.

  7. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  8. A Comparison of Local Variance, Fractal Dimension, and Moran's I as Aids to Multispectral Image Classification

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.

    2004-01-01

    The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.

  9. Maximum-likelihood techniques for joint segmentation-classification of multispectral chromosome images.

    PubMed

    Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L

    2005-12-01

    Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information. PMID:16350919

  10. Neutral Networks for Subpixel Classification of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo R.; Hunt, Shawn D.

    1998-01-01

    In this work, the implementation and use of AVHRR (Advanced Very High Resolution Radiometer) images for subpixel analysis is studied. The work consists of two parts, the first is making training data, the second is using the training data to design a neural net subpixel analyzer. Most work on subpixel analysis has been done with images with more spectral bands. AVHRR images were chosen because of their easy acquisition, and because the five spectral bands allow investigation into the development of training data. The first step in subpixel analysis is the development of training data. This consists of image to be classified, and the classification of each pixel. In order to do the classification, a high spatial resolution image is typically needed in order to manually create a classified image. It is difficult to have both the image of interest, and a high spatial resolution image of the same area taken at the same time. Thus it was studied whether a subsampled image taken from the image of interest could serve as the training data. Statistical work has been done showing the unusefulness of this approach. In the second part of the analysis, a feedforward neural net was trained and used to classify the AVHRR images. Results of these tests, comparing the neural net with typical statistical based schemes are shown.

  11. Fusion of Hyperspectral and Vhr Multispectral Image Classifications in Urban Areas

    NASA Astrophysics Data System (ADS)

    Hervieu, Alexandre; Le Bris, Arnaud; Mallet, Clément

    2016-06-01

    An energetical approach is proposed for classification decision fusion in urban areas using multispectral and hyperspectral imagery at distinct spatial resolutions. Hyperspectral data provides a great ability to discriminate land-cover classes while multispectral data, usually at higher spatial resolution, makes possible a more accurate spatial delineation of the classes. Hence, the aim here is to achieve the most accurate classification maps by taking advantage of both data sources at the decision level: spectral properties of the hyperspectral data and the geometrical resolution of multispectral images. More specifically, the proposed method takes into account probability class membership maps in order to improve the classification fusion process. Such probability maps are available using standard classification techniques such as Random Forests or Support Vector Machines. Classification probability maps are integrated into an energy framework where minimization of a given energy leads to better classification maps. The energy is minimized using a graph-cut method called quadratic pseudo-boolean optimization (QPBO) with ?-expansion. A first model is proposed that gives satisfactory results in terms of classification results and visual interpretation. This model is compared to a standard Potts models adapted to the considered problem. Finally, the model is enhanced by integrating the spatial contrast observed in the data source of higher spatial resolution (i.e., the multispectral image). Obtained results using the proposed energetical decision fusion process are shown on two urban multispectral/hyperspectral datasets. 2-3% improvement is noticed with respect to a Potts formulation and 3-8% compared to a single hyperspectral-based classification.

  12. Improved image classification with neural networks by fusing multispectral signatures with topological data

    NASA Technical Reports Server (NTRS)

    Harston, Craig; Schumacher, Chris

    1992-01-01

    Automated schemes are needed to classify multispectral remotely sensed data. Human intelligence is often required to correctly interpret images from satellites and aircraft. Humans suceed because they use various types of cues about a scene to accurately define the contents of the image. Consequently, it follows that computer techniques that integrate and use different types of information would perform better than single source approaches. This research illustrated that multispectral signatures and topographical information could be used in concert. Significantly, this dual source tactic classified a remotely sensed image better than the multispectral classification alone. These classifications were accomplished by fusing spectral signatures with topographical information using neural network technology. A neural network was trained to classify Landsat mulitspectral signatures. A file of georeferenced ground truth classifications were used as the training criterion. The network was trained to classify urban, agriculture, range, and forest with an accuracy of 65.7 percent. Another neural network was programmed and trained to fuse these multispectral signature results with a file of georeferenced altitude data. This topological file contained 10 levels of elevations. When this nonspectral elevation information was fused with the spectral signatures, the classifications were improved to 73.7 and 75.7 percent.

  13. Multispectral image classification of MRI data using an empirically-derived clustering algorithm

    SciTech Connect

    Horn, K.M.; Osbourn, G.C.; Bouchard, A.M.; Sanders, J.A. |

    1998-08-01

    Multispectral image analysis of magnetic resonance imaging (MRI) data has been performed using an empirically-derived clustering algorithm. This algorithm groups image pixels into distinct classes which exhibit similar response in the T{sub 2} 1st and 2nd-echo, and T{sub 1} (with ad without gadolinium) MRI images. The grouping is performed in an n-dimensional mathematical space; the n-dimensional volumes bounding each class define each specific tissue type. The classification results are rendered again in real-space by colored-coding each grouped class of pixels (associated with differing tissue types). This classification method is especially well suited for class volumes with complex boundary shapes, and is also expected to robustly detect abnormal tissue classes. The classification process is demonstrated using a three dimensional data set of MRI scans of a human brain tumor.

  14. Estimation of context for statistical classification of multispectral image data

    NASA Technical Reports Server (NTRS)

    Tilton, J. C.; Vardeman, S. B.; Swain, P. H.

    1982-01-01

    Recent investigations have demonstrated the effectiveness of a contextual classifier that combines spatial and spectral information employing a general statistical approach. This statistical classification algorithm exploits the tendency of certain ground cover classes to occur more frequently in some spatial contexts than in others. Indeed, a key input to this algorithm is a statistical characterization of the context: the context function. An unbiased estimator of the context function is discussed which, besides having the advantage of statistical unbiasedness, has the additional advantage over other estimation techniques of being amenable to an adaptive implementation in which the context-function estimate varies according to local contextual information. Results from applying the unbiased estimator to the contextual classification of three real Landsat data sets are presented and contrasted with results from noncontextual classifications and from contextual classifications utilizing other context-function estimation techniques.

  15. [Classification of wetlands in multispectral remote sensing image based on HPSO and FCM].

    PubMed

    Jiang, Wei-Guo; Chen, Qiang; Guo, Ji; Tang, Hong; Li, Xue

    2010-12-01

    The present paper analyzed the characteristics of particle swarm optimization(PSO), hybrid particle swarm optimization (HPSO) and fuzzy C-means (FCM), imported FCM into HPSO, and improved the HPSO-FCM arithmetic. An HPSO-FCM program was developed using Fortran language in MATLAB. Besides, a synthesis image combined with the former three principal components was obtained through band stacking and principal component analysis, taking the multispectral visible image of HJ-1 Satellite shot in June 2009 and the ASAR radar image of ENVISAT as basic data. And the paper has done a wetlands classification experiment in the synthesis image of the East Dongting Lake of Hunan province, using HPSO-FCM arithmetic and ISODATA separately. The results indicated: (1) The arithmetic which imported crossover operator of genetic algorithms and FCM into HPSO had better search speed and convergent precision, and it could search and optimize the best cluster center more efficiently. (2) The HPSO-FCM arithmetic has better precision in wetlands classification in multispectral remote sensing image, and it is an effective method in remote sensing image classification. PMID:21322233

  16. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  17. GENIE: A HYBRID GENETIC ALGORITHM FOR FEATURE CLASSIFICATION IN MULTI-SPECTRAL IMAGES

    SciTech Connect

    S. PERKINS; ET AL

    2000-12-01

    We consider the problem of pixel-by-pixel classification of a multi-spectral image using supervised learning. Conventional supervised classification techniques such as maximum likelihood classification and less conventional ones such as neural networks, typically base such classifications solely on the spectral components of each pixel. It is easy to see why the color of a pixel provides a nice, bounded, fixed dimensional space in which these classifiers work well. It is often the case however, that spectral information alone is not sufficient to correctly classify a pixel. Maybe spatial neighborhood information is required as well. Or may be the raw spectral components do not themselves make for easy classification, but some arithmetic combination of them would. In either of these cases we have the problem of selecting suitable spatial, spectral or spatio-spectral features that allow the classifier to do its job well. The number of all possible such features is extremely large. How can we select a suitable subset? We have developed GENIE, a hybrid learning system that combines a genetic algorithm that searches a space of image processing operations for a set that can produce suitable feature planes, and a more conventional classifier which uses those feature planes to output a final classification. In this paper we show that the use of a hybrid GA provides significant advantages over using either a GA alone or more conventional classification methods alone. We present results using high-resolution IKONOS data, looking for regions of burned forest and for roads.

  18. Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data.

    PubMed

    Medina, José M; Díaz, José A; Vukusic, Pete

    2015-04-20

    Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage. PMID:25969062

  19. [Identification and classification of rice leaf blast based on multi-spectral imaging sensor].

    PubMed

    Feng, Lei; Chai, Rong-Yao; Sun, Guang-Ming; Wu, Di; Lou, Bing-Gan; He, Yong

    2009-10-01

    Site-specific variable pesticide application is one of the major precision crop production management operations. Rice blast is a severe threat for rice production. Traditional chemistry methods can do the accurate crop disease identification, however they are time-consuming, require being executed by professionals and are of high cost. Crop disease identification and classification by human sight need special crop protection knowledge, and is low efficient. To obtain fast, reliable, accurate rice blast disease information is essential for achieving effective site-specific pesticide applications and crop management. The present paper describes a multi-spectral leaf blast identification and classification image sensor, which uses three channels of crop leaf and canopy images. The objective of this work was to develop and evaluate an algorithm under simplified lighting conditions for identifying damaged rice plants by the leaf blast using digital color images. Based on the results obtained from this study, the seed blast identification accuracy can be achieved at 95%, and the leaf blast identification accuracy can be achieved at 90% during the rice growing season. Thus it can be concluded that multi-spectral camera can provide sufficient information to perform reasonable rice leaf blast estimation. PMID:20038048

  20. Watershed image segmentation and cloud classification from multispectral MSG-SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    González, Albano; Pérez, Juan C.; Muñoz, Jonathan; Méndez, Zebensui; Armas, Montserrat

    2012-01-01

    In this work a technique for cloud detection and classification from MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and Infra-red Imager) imagery is presented. It is based on the segmentation of the multispectral images using order-invariant watershed algorithms, which are applied to the corresponding gradient images, computed by a multi-dimensional morphological operator. To reduce the over-segmentation produced by the watershed method, a RAG (Region Adjacency Graph) based region merging technique is applied, using region dissimilarity functions. Once the objects present in the image have been segmented, they are classified using a multi-threshold method based on physical considerations that takes into account the statistical parameters inside each region.

  1. Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks.

    PubMed

    Reddick, W E; Glass, J O; Cook, E N; Elkin, T D; Deaton, R J

    1997-12-01

    We present a fully automated process for segmentation and classification of multispectral magnetic resonance (MR) images. This hybrid neural network method uses a Kohonen self-organizing neural network for segmentation and a multilayer backpropagation neural network for classification. To separate different tissue types, this process uses the standard T1-, T2-, and PD-weighted MR images acquired in clinical examinations. Volumetric measurements of brain structures, relative to intracranial volume, were calculated for an index transverse section in 14 normal subjects (median age 25 years; seven male, seven female). This index slice was at the level of the basal ganglia, included both genu and splenium of the corpus callosum, and generally, showed the putamen and lateral ventricle. An intraclass correlation of this automated segmentation and classification of tissues with the accepted standard of radiologist identification for the index slice in the 14 volunteers demonstrated coefficients (ri) of 0.91, 0.95, and 0.98 for white matter, gray matter, and ventricular cerebrospinal fluid (CSF), respectively. An analysis of variance for estimates of brain parenchyma volumes in five volunteers imaged five times each demonstrated high intrasubject reproducibility with a significance of at least p < 0.05 for white matter, gray matter, and white/gray partial volumes. The population variation, across 14 volunteers, demonstrated little deviation from the averages for gray and white matter, while partial volume classes exhibited a slightly higher degree of variability. This fully automated technique produces reliable and reproducible MR image segmentation and classification while eliminating intra- and interobserver variability. PMID:9533591

  2. Wavelet analysis and classification of urban environment using high-resolution multispectral image data

    NASA Astrophysics Data System (ADS)

    Myint, Soe Win

    2001-07-01

    Attempts to analyze urban features and classify land use and land cover directly from high-resolution satellite data with traditional computer classification techniques have proven to be inefficient. The fundamental problem usually found in identifying urban land cover types from high-resolution satellite imagery is that urban areas are composed of diverse materials (metal, glass, concrete, asphalt, plastic, trees, soil, etc.). These materials, each of which may have completely different spectral characteristics, are combined in complex ways by human beings. Hence, each urban land cover type may contain several different objects with different reflectance values. Noisy appearance with lots of edges, and the complex nature of these images, inhibit accurate interpretation of urban features. Traditional classifiers employ spectral information based on single pixel value and ignore a great amount of spatial information. Texture features play an important role in image segmentation and object recognition, as well as interpretation of images in a variety of applications ranging from medical imaging to remote sensing. This study analyzed urban texture features in multi-spectral image data. Recent development in the mathematical theory of wavelet transform has received overwhelming attention by the image analysts. An evaluation of the ability of wavelet transform and other texture analysis algorithms in urban feature extraction and classification was performed in this study. Advanced Thermal Land Application Sensor (ATLAS) image data at 2.5 m spatial resolution acquired with 15 channel (0.45 mum--12.2 mum) were used for this research. The data were collected by a NASA Stennis LearJet 23 flying at 6600 feet over Baton Rouge, Louisiana, on May 7, 1999. The algorithms examined were the wavelet transforms, spatial co-occurrence matrix, fractal analysis, and spatial autocorrelation. The performance of the above approaches with the use of different window sizes, different

  3. Automated melanoma detection: multispectral imaging and neural network approach for classification.

    PubMed

    Tomatis, Stefano; Bono, Aldo; Bartoli, Cesare; Carrara, Mauro; Lualdi, Manuela; Tragni, Gabrina; Marchesini, Renato

    2003-02-01

    Our aim in the present research is to investigate the diagnostic performance of artificial neural networks (ANNs) applied to multispectral images of cutaneous pigmented skin lesions as well as to compare this approach to a standard traditional linear classification method, such as discriminant function analysis. This study involves a series of 534 patients with 573 cutaneous pigmented lesions (132 melanomas and 441 nonmelanoma lesions). Each lesion was analyzed by a telespectrophotometric system (TS) in vivo, before surgery. The system is able to acquire a set of 17 images at selected wavelengths from 400 to 1040 nm. For each wavelength, five lesion descriptors were extracted, related to the criteria of the ABCD (for asymmetry, border, color, and dimension) clinical guide for melanoma diagnosis. These variables were first reduced in dimension by the use of factor analysis techniques and then used as input data in an ANN. Multivariate discriminant analysis (MDA) was also performed on the same dataset. The whole dataset was split into two independent groups: i.e., train (the first 400 cases, 95 melanomas) and verification set (last 173 cases, 37 melanomas). Factor analysis was able to summarize the data structure into ten variables, accounting for at least 90% of the original parameters variance. After proper training, the ANN was able to classify the population with 80% sensitivity, 72% specificity, and 78% sensitivity, 76% specificity for the train and validation set, respectively. Following ROC analysis, area under curve (AUC) was 0.852 (train) and 0.847 (verify). Sensitivity and specificity values obtained by the standard discriminant analysis classifier resulted in a figure of 80% sensitivity, 60% specificity and 76% sensitivity, 57% specificity for the train and validation set, respectively. AUC for MDA was 0.810 and 0.764 for the train and verify set, respectively. Classification results were significantly different between the two methods both for diagnostic

  4. Object-oriented classification using quasi-synchronous multispectral images (optical and radar) over agricultural surface

    NASA Astrophysics Data System (ADS)

    Marais Sicre, Claire; Baup, Frederic; Fieuzal, Remy

    2015-04-01

    over 214 plots during the MCM'10 experiment conducted by the CESBIO laboratory in 2010. Classifications performances have been evaluated considering two cases: using only one frequency in optical or microwave domain, or using a combination of several frequencies (mixed between optical and microwave). For the first case, best results were obtained using optical wavelength with mean overall accuracy (OA) of 84%, followed by Terrasar-X (HH) and Radarsat-2 (HV or HV) which respectively offer overall accuracies of 77% and 73%. Concerning the vegetation, wheat was well classified whatever the wavelength used (OA > 93%). Barley was more complicated to classified and could be mingled with wheat or grassland. Best results were obtained using of green, red, blue, X-band or L-band wavelength offering an OA superior to 45%. Radar images were clearly well adapted to identify rapeseed (OA > 83%), especially at C (VV, HH and HV) and X-band (HH). The accuracy of grassland classification never exceeded 79% and results were stable between frequencies (excepted at L-band: 51%). The three soil roughness states were quite well classified whatever the wavelength and performances decreased with the increase of soil roughness. The combine use of multi-frequencies increased performances of the classification. Overall accuracy reached respectively 83% and 96% for C-band full polarization and for Formosat-2 multispectral approaches.

  5. Radar and multispectral image fusion options for improved land cover classification

    NASA Astrophysics Data System (ADS)

    Villiger, Erwin J.

    Investigators engaged in research utilizing remotely-sensed data are increasingly faced with a plethora of data sources and platforms that exploit different portions of the electromagnetic spectrum. Considerable efforts have focused on the application of these sources to the development of a better understanding of lithosphere, biosphere, and atmospheric systems. Many of these efforts have concentrated on the use of single sensors. More recently, some research efforts have turned to the fusion of sources in an effort to determine if different sensors and platforms can be combined to more effectively analyze or model the systems in question. This study evaluates multisensor integration of Synthetic Aperture Radar (SAR) with Multispectral Imagery (MSI) data for land cover analysis and vegetation mapping. Three principle analytical issues are addressed in this investigation: the value of SAR collected at different incident angles, preclassification processing alternatives to improve fusion classification results, and the value of cross-season (dry and wet) data integration in a subtropical climate. The study site for this research is Andros Island, the largest island in The Bahamas archipelago. Andros has a number of distinct plant communities ranging from saltwater marsh and mangroves to pine stands and hardwood coppices. Despite the island's size and proximity to the United States, it is largely uninhabited and has large expanses of minimally disturbed landscapes. An empirical assessment of SAR filtering techniques, namely speckle suppression and texture analysis at various window sizes, is utilized to determine the most appropriate technique to apply when integrating SAR and MSI for land cover characterization. Multiple RADARSAT-1 SAR images were collected at various incident angles for wet and dry season conditions over the region of interest. Two Landsat Thematic Mapper-5 MSI datasets were also collected to coincide with the time periods of the SAR images. A land

  6. D Land Cover Classification Based on Multispectral LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    Multispectral Lidar System can emit simultaneous laser pulses at the different wavelengths. The reflected multispectral energy is captured through a receiver of the sensor, and the return signal together with the position and orientation information of sensor is recorded. These recorded data are solved with GNSS/IMU data for further post-processing, forming high density multispectral 3D point clouds. As the first commercial multispectral airborne Lidar sensor, Optech Titan system is capable of collecting point clouds data from all three channels at 532nm visible (Green), at 1064 nm near infrared (NIR) and at 1550nm intermediate infrared (IR). It has become a new source of data for 3D land cover classification. The paper presents an Object Based Image Analysis (OBIA) approach to only use multispectral Lidar point clouds datasets for 3D land cover classification. The approach consists of three steps. Firstly, multispectral intensity images are segmented into image objects on the basis of multi-resolution segmentation integrating different scale parameters. Secondly, intensity objects are classified into nine categories by using the customized features of classification indexes and a combination the multispectral reflectance with the vertical distribution of object features. Finally, accuracy assessment is conducted via comparing random reference samples points from google imagery tiles with the classification results. The classification results show higher overall accuracy for most of the land cover types. Over 90% of overall accuracy is achieved via using multispectral Lidar point clouds for 3D land cover classification.

  7. Classification of multispectral image data by the Binary Diamond neural network and by nonparametric, pixel-by-pixel methods

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda; Tilton, James

    1993-01-01

    The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.

  8. Multispectral imaging and image processing

    NASA Astrophysics Data System (ADS)

    Klein, Julie

    2014-02-01

    The color accuracy of conventional RGB cameras is not sufficient for many color-critical applications. One of these applications, namely the measurement of color defects in yarns, is why Prof. Til Aach and the Institute of Image Processing and Computer Vision (RWTH Aachen University, Germany) started off with multispectral imaging. The first acquisition device was a camera using a monochrome sensor and seven bandpass color filters positioned sequentially in front of it. The camera allowed sampling the visible wavelength range more accurately and reconstructing the spectra for each acquired image position. An overview will be given over several optical and imaging aspects of the multispectral camera that have been investigated. For instance, optical aberrations caused by filters and camera lens deteriorate the quality of captured multispectral images. The different aberrations were analyzed thoroughly and compensated based on models for the optical elements and the imaging chain by utilizing image processing. With this compensation, geometrical distortions disappear and sharpness is enhanced, without reducing the color accuracy of multispectral images. Strong foundations in multispectral imaging were laid and a fruitful cooperation was initiated with Prof. Bernhard Hill. Current research topics like stereo multispectral imaging and goniometric multispectral measure- ments that are further explored with his expertise will also be presented in this work.

  9. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon

    SciTech Connect

    Adams, J.B.; Sabol, D.E.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R.; Kapos, V.; Filho, R.A.

    1995-05-01

    Four time-sequential Landsat Thematic Mapper (TM) images of an area of Amazon forest, pasture, and second growth near Manaus, Brazil were classified according to dominant ground cover, using a new technique based on fractions of spectral endmembers. A simple four-endmember model consisting of reflectance spectra of green vegetation, nonphotosynthetic vegetation, soil, and shade was applied to all four images. Fractions of endmembers were used to define seven categories, each of which consisted of one or more classes of ground cover, where class names were based on field observations. Endmember fractions varied over time for many pixels, reflecting processes operating on the ground such as felling of forest, or regrowth of vegetation in previously cleared areas. Changes in classes over time were used to establish superclasses which grouped pixels having common histories. Sources of classification error were evaluated, including system noise, endmember variability, and low spectral contrast. Field work during each of the four years showed consistently high accuracy in per-image classification. Classification accuracy in any one year was improved by considering the multiyear context. Although the method was tested in the amazon basin, the results suggest that endmember classification may be generally useful for comparing multispectral images in space and time.

  10. 3D and Multispectral Imaging For Subcutaneous Structures Classification And Analysis

    SciTech Connect

    Paquit, Vincent C; Tobin Jr, Kenneth William; Price, Jeffery R; Meriaudeau, Fabrice

    2009-01-01

    A classification method to differentiate subcutaneous structures is presented. To obtain characteristic spectral signatures, we are investigating light propagation phenomena in biological tissues by combining visible to near-infrared multi-wavelength skin imaging and three dimensional topographic imaging of the skin surface.

  11. GENIE: a hybrid genetic algorithm for feature classification in multispectral images

    NASA Astrophysics Data System (ADS)

    Perkins, Simon J.; Theiler, James P.; Brumby, Steven P.; Harvey, Neal R.; Porter, Reid B.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-10-01

    We consider the problem of pixel-by-pixel classification of a multi- spectral image using supervised learning. Conventional spuervised classification techniques such as maximum likelihood classification and less conventional ones s uch as neural networks, typically base such classifications solely on the spectral components of each pixel. It is easy to see why: the color of a pixel provides a nice, bounded, fixed dimensional space in which these classifiers work well. It is often the case however, that spectral information alone is not sufficient to correctly classify a pixel. Maybe spatial neighborhood information is required as well. Or maybe the raw spectral components do not themselves make for easy classification, but some arithmetic combination of them would. In either of these cases we have the problem of selecting suitable spatial, spectral or spatio-spectral features that allow the classifier to do its job well. The number of all possible such features is extremely large. How can we select a suitable subset? We have developed GENIE, a hybrid learning system that combines a genetic algorithm that searches a space of image processing operations for a set that can produce suitable feature planes, and a more conventional classifier which uses those feature planes to output a final classification. In this paper we show that the use of a hybrid GA provides significant advantages over using either a GA alone or more conventional classification methods alone. We present results using high-resolution IKONOS data, looking for regions of burned forest and for roads.

  12. Studies on pansharpening and object-based classification of Worldview-2 multispectral image

    NASA Astrophysics Data System (ADS)

    Wyczałek, I.; Wyczałek, E.

    2013-12-01

    The new information contained in four additional spectral bands of high - resolution images from the satellite sensor WorldView - 2 should provide a visible improvement in the quality of analysis of large - scale phenomena occurring at the ground. Selected part of the image of Poznan was analyzed in order to verify these possibilities in relation to the urban environment. It includes riverside green area and a number of adjacent buildings. Attention has been focused on two components of object - oriented analysis - sharpening the image and its classification. In terms of pansharpening the aim was to obtain a clear picture of terrain objects in details, what should lead to the correct division of the image into homogenous segments and the subsequent fine classification. It was intended to ensure the possibility of separating small field objects within the set of classes. The task was carried out using various computer programs that enable the development and analysis of raster data (IDRISI Andes, ESRI ArcGIS 9.3, eCognition Developer 8) and some own computational modules. The main scientific objective of this study was to determine how much information from new spectral image layers after their pansharpening affects the quality of object - based classification of land cover in green and building areas of the city. As a basis for improving the quality of the classification was above mentioned ability of using additional data from new spectral bands of WorldView - 2 image. To assess the quality of the classification we used test that examines only the uncertain areas of t he picture, that is these which lie on differently classified types of land cover. The outcome of assessment confirmed the thesis of the positive albeit small impact of additional spectral channels on the result of object - based classification. But also pansharpening itself only slightly improves the quality of classified image

  13. Multispectral imaging probe

    SciTech Connect

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  14. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  15. IMPROVING THE ACCURACY OF HISTORIC SATELLITE IMAGE CLASSIFICATION BY COMBINING LOW-RESOLUTION MULTISPECTRAL DATA WITH HIGH-RESOLUTION PANCHROMATIC DATA

    SciTech Connect

    Getman, Daniel J

    2008-01-01

    Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic data (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.

  16. Multispectral Image Feature Points

    PubMed Central

    Aguilera, Cristhian; Barrera, Fernando; Lumbreras, Felipe; Sappa, Angel D.; Toledo, Ricardo

    2012-01-01

    This paper presents a novel feature point descriptor for the multispectral image case Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH) descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.

  17. Multispectral rock-type separation and classification.

    SciTech Connect

    Moya, Mary M.; Fogler, Robert Joseph; Paskaleva, Biliana; Hayat, Majeed M.

    2004-06-01

    This paper explores the possibility of separating and classifying remotely-sensed multispectral data from rocks and minerals onto seven geological rock-type groups. These groups are extracted from the general categories of metamorphic, igneous and sedimentary rocks. The study is performed under ideal conditions for which the data is generated according to laboratory hyperspectral data for the members, which are, in turn, passed through the Multi-spectral Thermal Imager (MTI) filters yielding 15 bands. The main challenge in separability is the small size of the training data sets, which initially did not permit direct application of Bayesian decision theory. To enable Bayseian classification, the original training data is linearly perturbed with the addition minerals, vegetation, soil, water and other valid impurities. As a result, the size of the training data is significantly increased and accurate estimates of the covariance matrices are achieved. In addition, a set of reduced (five) linearly-extracted canonical features that are optimal in providing the most important information about the data is determined. An alternative nonlinear feature-selection method is also employed based on spectral indices comprising a small subset of all possible ratios between bands. By applying three optimization strategies, combinations of two and three ratios are found that provide reliable separability and classification between all seven groups according to the Bhattacharyya distance. To set a benchmark to which the MTI capability in rock classification can be compared, an optimization strategy is performed for the selection of optimal multispectral filters, other than the MTI filters, and an improvement in classification is predicted.

  18. The trophic classification of lakes using ERTS multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Boland, D. H.

    1975-01-01

    Lake classification methods based on the use of ERTS data are described. Preliminary classification results obtained by multispectral and digital image processing techniques indicate satisfactory correlation between ERTS data and EPA-supplied water analysis. Techniques for determining lake trophic levels using ERTS data are examined, and data obtained for 20 lakes are discussed.

  19. Polarimetric Multispectral Imaging Technology

    NASA Technical Reports Server (NTRS)

    Cheng, L.-J.; Chao, T.-H.; Dowdy, M.; Mahoney, C.; Reyes, G.

    1993-01-01

    The Jet Propulsion Laboratory is developing a remote sensing technology on which a new generation of compact, lightweight, high-resolution, low-power, reliable, versatile, programmable scientific polarimetric multispectral imaging instruments can be built to meet the challenge of future planetary exploration missions. The instrument is based on the fast programmable acousto-optic tunable filter (AOTF) of tellurium dioxide (TeO2) that operates in the wavelength range of 0.4-5 microns. Basically, the AOTF multispectral imaging instrument measures incoming light intensity as a function of spatial coordinates, wavelength, and polarization. Its operation can be in either sequential, random access, or multiwavelength mode as required. This provides observation flexibility, allowing real-time alternation among desired observations, collecting needed data only, minimizing data transmission, and permitting implementation of new experiments. These will result in optimization of the mission performance with minimal resources. Recently we completed a polarimetric multispectral imaging prototype instrument and performed outdoor field experiments for evaluating application potentials of the technology. We also investigated potential improvements on AOTF performance to strengthen technology readiness for applications. This paper will give a status report on the technology and a prospect toward future planetary exploration.

  20. Cucumber disease diagnosis using multispectral images

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Li, Hongning; Shi, Junsheng; Yang, Weiping; Liao, Ningfang

    2009-07-01

    In this paper, multispectral imaging technique for plant diseases diagnosis is presented. Firstly, multispectral imaging system is designed. This system utilizes 15 narrow-band filters, a panchromatic band, a monochrome CCD camera, and standard illumination observing environment. The spectral reflectance and color of 8 Macbeth color patches are reproduced between 400nm and 700nm in the process. In addition, spectral reflectance angle and color difference is obtained through measurements and analysis of color patches using spectrometer and multispectral imaging system. The result shows that 16 narrow-bands multispectral imaging system realizes good accuracy in spectral reflectance and color reproduction. Secondly, a horticultural plant, cucumber' familiar disease are the researching objects. 210 multispectral samples are obtained by multispectral and are classified by BP artificial neural network. The classification accuracies of Sphaerotheca fuliginea, Corynespora cassiicola, Pseudoperonospora cubensis are 100%. Trichothecium roseum and Cladosporium cucumerinum are 96.67% and 90.00%. It is confirmed that the multispectral imaging system realizes good accuracy in the cucumber diseases diagnosis.

  1. Multispectral thermal imaging

    SciTech Connect

    Weber, P.G.; Bender, S.C.; Borel, C.C.; Clodius, W.B.; Smith, B.W.; Garrett, A.; Pendergast, M.M.; Kay, R.R.

    1998-12-01

    Many remote sensing applications rely on imaging spectrometry. Here the authors use imaging spectrometry for thermal and multispectral signatures measured from a satellite platform enhanced with a combination of accurate calibrations and on-board data for correcting atmospheric distortions. The approach is supported by physics-based end-to-end modeling and analysis, which permits a cost-effective balance between various hardware and software aspects. The goal is to develop and demonstrate advanced technologies and analysis tools toward meeting the needs of the customer; at the same time, the attributes of this system can address other applications in such areas as environmental change, agriculture, and volcanology.

  2. MULTISPECTRAL THERMAL IMAGER - OVERVIEW

    SciTech Connect

    P. WEBER

    2001-03-01

    The Multispectral Thermal Imager satellite fills a new and important role in advancing the state of the art in remote sensing sciences. Initial results with the full calibration system operating indicate that the system was already close to achieving the very ambitious goals which we laid out in 1993, and we are confident of reaching all of these goals as we continue our research and improve our analyses. In addition to the DOE interests, the satellite is tasked about one-third of the time with requests from other users supporting research ranging from volcanology to atmospheric sciences.

  3. Monitoring urban growth by using segmentation-classification of multispectral Landsat images in Izmit, Turkey.

    PubMed

    Yildiz, Selin; Doker, Mehmet Fatih

    2016-07-01

    Assessing the spatial land use and land cover (LULC) information is essential for decision making and management of landscapes. In fact, LULC information has been changed dramatically in fast-growing cities. This results in wrong land use problems due to unplanned and uncontrolled urbanization. The planning and evaluating of limited natural resources under the pressure of a growing population can be possible when a precise land use management plan is established. Therefore, it is imperative to monitor continuous LULC changes for future planning. Remote sensing (RS) technique is used for determining changes in LULC in urban areas. In this study, we have focused on Izmit, which is one of a growing number of metropolitan cities where the impact of the spatial growing period on LULC has been assessed over the past 30 years by using RS data. We have utilized the segmentation process and supervised classification of Landsat satellite images for four different dates (1985, 1995, 2005, and 2015). The outcome of this research can be summarized by significant changes in the shares of urban areas and farmland LULC classes. The overall observed increase in urban area class is up to 2177 ha between 1985 and 2015 period and this dramatic change has resulted in the decline of 1211 ha of farmland. Another conclusion is that the new residential areas have been created to the north, south and east of Izmit during this period. PMID:27270481

  4. Multispectral imaging axicons.

    PubMed

    Bialic, Emilie; de la Tocnaye, Jean-Louis de Bougrenet

    2011-07-10

    Large-aperture linear diffractive axicons are optical devices providing achromatic nondiffracting beams with an extended depth of focus when illuminated by white light sources. Annular apertures introduce chromatic foci separation, making chromatic imaging possible despite important radiometric losses. Recently, a new type of diffractive axicon has been introduced, by multiplexing concentric annular axicons with appropriate sizes and periods, called a multiple annular linear diffractive axicon (MALDA). This new family of conical optics combines multiple annular axicons in different ways to optimize color foci recombination, separation, or interleaving. We present different types of MALDA, give an experimental illustration of the use of these devices, and describe the manufacturing issues related to their fabrication to provide color imaging systems with long focal depths and good diffraction efficiency. Application to multispectral image analysis is discussed. PMID:21743576

  5. Contextual classification of multispectral image data - An unbiased estimator for the context distribution

    NASA Technical Reports Server (NTRS)

    Tilton, J. C.; Swain, P. H.; Vardeman, S. B.

    1981-01-01

    Recent investigations have demonstrated the effectiveness of a contextual classifier that combines spatial and spectral information employing a general statistical approach. This statistical classification algorithm exploits the tendency of certain ground-cover classes to occur more frequently in some spatial contexts than in others. Indeed, a key input to this algorithm is a statistical characterization of the context: the context distribution. Here a discussion is given of an unbiased estimator of the context distribution which, besides having the advantage of statistical unbiasedness, has the additional advantage over other estimation techniques of being amenable to an adaptive implementation in which the context distribution estimate varies according to local contextual information. Results from applying the unbiased estimator to the contextual classification of three real Landsat data sets are presented and contrasted with results from noncontextual classifications and from contextual classifications utilizing other context distribution estimation techniques.

  6. Unsupervised classification of remote multispectral sensing data

    NASA Technical Reports Server (NTRS)

    Su, M. Y.

    1972-01-01

    The new unsupervised classification technique for classifying multispectral remote sensing data which can be either from the multispectral scanner or digitized color-separation aerial photographs consists of two parts: (a) a sequential statistical clustering which is a one-pass sequential variance analysis and (b) a generalized K-means clustering. In this composite clustering technique, the output of (a) is a set of initial clusters which are input to (b) for further improvement by an iterative scheme. Applications of the technique using an IBM-7094 computer on multispectral data sets over Purdue's Flight Line C-1 and the Yellowstone National Park test site have been accomplished. Comparisons between the classification maps by the unsupervised technique and the supervised maximum liklihood technique indicate that the classification accuracies are in agreement.

  7. Robust materials classification based on multispectral polarimetric BRDF imagery

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhao, Yong-qiang; Luo, Li; Liu, Dan; Pan, Quan

    2009-07-01

    When light is reflected from object surface, its spectral characteristics will be affected by surface's elemental composition, while its polarimetric characteristics will be determined by the surface's orientation, roughness and conductance. Multispectral polarimetric imaging technique records both the spectral and polarimetric characteristics of the light, and adds dimensions to the spatial intensity typically acquired and it also could provide unique and discriminatory information which may argument material classification techniques. But for the sake of non-Lambert of object surface, the spectral and polarimetric characteristics will change along with the illumination angle and observation angle. If BRDF is ignored during the material classification, misclassification is inevitable. To get a feature that is robust material classification to non-Lambert surface, a new classification methods based on multispectral polarimetric BRDF characteristics is proposed in this paper. Support Vector Machine method is adopted to classify targets in clutter grass environments. The train sets are obtained in the sunny, while the test sets are got from three different weather and detected conditions, at last the classification results based on multispectral polarimetric BRDF features are compared with other two results based on spectral information, and multispectral polarimetric information under sunny, cloudy and dark conditions respectively. The experimental results present that the method based on multispectral polarimetric BRDF features performs the most robust, and the classification precision also surpasses the other two. When imaging objects under the dark weather, it's difficult to distinguish different materials using spectral features as the grays between backgrounds and targets in each different wavelength would be very close, but the method proposed in this paper would efficiently solve this problem.

  8. Multispectral Landsat images of Antartica

    SciTech Connect

    Lucchitta, B.K.; Bowell, J.A.; Edwards, K.L.; Eliason, E.M.; Fergurson, H.M.

    1988-01-01

    The U.S. Geological Survey has a program to map Antarctica by using colored, digitally enhanced Landsat multispectral scanner images to increase existing map coverage and to improve upon previously published Landsat maps. This report is a compilation of images and image mosaic that covers four complete and two partial 1:250,000-scale quadrangles of the McMurdo Sound region.

  9. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  10. Semiautomated object-based classification of rain-induced landslides with VHR multispectral images on Madeira Island

    NASA Astrophysics Data System (ADS)

    Heleno, Sandra; Matias, Magda; Pina, Pedro; Sousa, António Jorge

    2016-04-01

    A method for semiautomated landslide detection and mapping, with the ability to separate source and run-out areas, is presented in this paper. It combines object-based image analysis and a support vector machine classifier and is tested using a GeoEye-1 multispectral image, sensed 3 days after a major damaging landslide event that occurred on Madeira Island (20 February 2010), and a pre-event lidar digital terrain model. The testing is developed in a 15 km2 wide study area, where 95 % of the number of landslides scars are detected by this supervised approach. The classifier presents a good performance in the delineation of the overall landslide area, with commission errors below 26 % and omission errors below 24 %. In addition, fair results are achieved in the separation of the source from the run-out landslide areas, although in less illuminated slopes this discrimination is less effective than in sunnier, east-facing slopes.

  11. Automated object-based classification of rain-induced landslides with VHR multispectral images in Madeira Island

    NASA Astrophysics Data System (ADS)

    Heleno, S.; Matias, M.; Pina, P.; Sousa, A. J.

    2015-09-01

    A method for semi-automatic landslide detection, with the ability to separate source and run-out areas, is presented in this paper. It combines object-based image analysis and a Support Vector Machine classifier on a GeoEye-1 multispectral image, sensed 3 days after the major damaging landslide event that occurred in Madeira island (20 February 2010), with a pre-event LIDAR Digital Elevation Model. The testing is developed in a 15 km2-wide study area, where 95 % of the landslides scars are detected by this supervised approach. The classifier presents a good performance in the delineation of the overall landslide area. In addition, fair results are achieved in the separation of the source from the run-out landslide areas, although in less illuminated slopes this discrimination is less effective than in sunnier east facing-slopes.

  12. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Vargo, T.D.; Lockhart, R.R.; Descour, M.R.; Richards-Kortum, R.

    1999-07-06

    A multispectral imaging method and apparatus are described which are adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging. 5 figs.

  13. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Vargo, Timothy D.; Lockhart, Randal R.; Descour, Michael R.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging method and apparatus adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging

  14. Object identification by multispectral fusion and Haar classification

    NASA Astrophysics Data System (ADS)

    Manohar, Arun; Lanza di Scalea, Francesco

    2010-04-01

    An approach to identify and classify objects in real time by multispectral imaging, wavelets based fusion, and Haar classification is presented. The specific object of interest is a cardboard box placed on the roadside. The proposed approach involves capturing a scene in the visible and infra red spectrum. Fusing the spectra is performed by using the wavelet transform. Further, Haar training is performed using sample positives and negatives prior to classification. The presented approach is tested to work in real time with very good accuracy. If successful, the method will be applied to the detection of a variety of anomalous objects placed at the roadside.

  15. Multispectral tissue analysis and classification towards enabling automated robotic surgery

    NASA Astrophysics Data System (ADS)

    Triana, Brian; Cha, Jaepyeong; Shademan, Azad; Krieger, Axel; Kang, Jin U.; Kim, Peter C. W.

    2014-02-01

    Accurate optical characterization of different tissue types is an important tool for potentially guiding surgeons and enabling automated robotic surgery. Multispectral imaging and analysis have been used in the literature to detect spectral variations in tissue reflectance that may be visible to the naked eye. Using this technique, hidden structures can be visualized and analyzed for effective tissue classification. Here, we investigated the feasibility of automated tissue classification using multispectral tissue analysis. Broadband reflectance spectra (200-1050 nm) were collected from nine different ex vivo porcine tissues types using an optical fiber-probe based spectrometer system. We created a mathematical model to train and distinguish different tissue types based upon analysis of the observed spectra using total principal component regression (TPCR). Compared to other reported methods, our technique is computationally inexpensive and suitable for real-time implementation. Each of the 92 spectra was cross-referenced against the nine tissue types. Preliminary results show a mean detection rate of 91.3%, with detection rates of 100% and 70.0% (inner and outer kidney), 100% and 100% (inner and outer liver), 100% (outer stomach), and 90.9%, 100%, 70.0%, 85.7% (four different inner stomach areas, respectively). We conclude that automated tissue differentiation using our multispectral tissue analysis method is feasible in multiple ex vivo tissue specimens. Although measurements were performed using ex vivo tissues, these results suggest that real-time, in vivo tissue identification during surgery may be possible.

  16. Multispectral image processor

    NASA Technical Reports Server (NTRS)

    Haskell, R. E.

    1977-01-01

    Correlation clustering of 250,000 pixels are numerically classified in real time according to various image elements. Processor operates upon data supplied by Earth Resources Technology Satellite. Algorithmic signal manipulation is used to provide discrete control of individual image parameters.

  17. Gimbaled multispectral imaging system and method

    DOEpatents

    Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.

    2016-01-26

    A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.

  18. Multispectral data acquisition and classification - Statistical models for system design

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Park, S. K.

    1978-01-01

    In this paper we relate the statistical processes that are involved in multispectral data acquisition and classification to a simple radiometric model of the earth surface and atmosphere. If generalized, these formulations could provide an analytical link between the steadily improving models of our environment and the performance characteristics of rapidly advancing device technology. This link is needed to bring system analysis tools to the task of optimizing remote sensing and (real-time) signal processing systems as a function of target and atmospheric properties, remote sensor spectral bands and system topology (e.g., image-plane processing), radiometric sensitivity and calibration accuracy, compensation for imaging conditions (e.g., atmospheric effects), and classification rates and errors.

  19. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  20. Galileo multispectral imaging of Earth.

    PubMed

    Geissler, P; Thompson, W R; Greenberg, R; Moersch, J; McEwen, A; Sagan, C

    1995-08-25

    Nearly 6000 multispectral images of Earth were acquired by the Galileo spacecraft during its two flybys. The Galileo images offer a unique perspective on our home planet through the spectral capability made possible by four narrowband near-infrared filters, intended for observations of methane in Jupiter's atmosphere, which are not incorporated in any of the currently operating Earth orbital remote sensing systems. Spectral variations due to mineralogy, vegetative cover, and condensed water are effectively mapped by the visible and near-infrared multispectral imagery, showing a wide variety of biological, meteorological, and geological phenomena. Global tectonic and volcanic processes are clearly illustrated by these images, providing a useful basis for comparative planetary geology. Differences between plant species are detected through the narrowband IR filters on Galileo, allowing regional measurements of variation in the "red edge" of chlorophyll and the depth of the 1-micrometer water band, which is diagnostic of leaf moisture content. Although evidence of life is widespread in the Galileo data set, only a single image (at approximately 2 km/pixel) shows geometrization plausibly attributable to our technical civilization. Water vapor can be uniquely imaged in the Galileo 0.73-micrometer band, permitting spectral discrimination of moist and dry clouds with otherwise similar albedo. Surface snow and ice can be readily distinguished from cloud cover by narrowband imaging within the sensitivity range of Galileo's silicon CCD camera. Ice grain size variations can be mapped using the weak H2O absorption at 1 micrometer, a technique which may find important applications in the exploration of the moons of Jupiter. The Galileo images have the potential to make unique contributions to Earth science in the areas of geological, meteorological and biological remote sensing, due to the inclusion of previously untried narrowband IR filters. The vast scale and near global

  1. Remote online processing of multispectral image data

    NASA Astrophysics Data System (ADS)

    Groh, Christine; Rothe, Hendrik

    2005-10-01

    Within the scope of this paper a both compact and economical data acquisition system for multispecral images is described. It consists of a CCD camera, a liquid crystal tunable filter in combination with an associated concept for data processing. Despite of their limited functionality (e.g.regarding calibration) in comparison with commercial systems such as AVIRIS the use of these upcoming compact multispectral camera systems can be advantageous in many applications. Additional benefit can be derived adding online data processing. In order to maintain the systems low weight and price this work proposes to separate data acquisition and processing modules, and transmit pre-processed camera data online to a stationary high performance computer for further processing. The inevitable data transmission has to be optimised because of bandwidth limitations. All mentioned considerations hold especially for applications involving mini-unmanned-aerial-vehicles (mini-UAVs). Due to their limited internal payload the use of a lightweight, compact camera system is of particular importance. This work emphasises on the optimal software interface in between pre-processed data (from the camera system), transmitted data (regarding small bandwidth) and post-processed data (based on high performance computer). Discussed parameters are pre-processing algorithms, channel bandwidth, and resulting accuracy in the classification of multispectral image data. The benchmarked pre-processing algorithms include diagnostic statistics, test of internal determination coefficients as well as loss-free and lossy data compression methods. The resulting classification precision is computed in comparison to a classification performed with the original image dataset.

  2. Hierarchical Object-based Image Analysis approach for classification of sub-meter multispectral imagery in Tanzania

    NASA Astrophysics Data System (ADS)

    Chung, C.; Nagol, J. R.; Tao, X.; Anand, A.; Dempewolf, J.

    2015-12-01

    Increasing agricultural production while at the same time preserving the environment has become a challenging task. There is a need for new approaches for use of multi-scale and multi-source remote sensing data as well as ground based measurements for mapping and monitoring crop and ecosystem state to support decision making by governmental and non-governmental organizations for sustainable agricultural development. High resolution sub-meter imagery plays an important role in such an integrative framework of landscape monitoring. It helps link the ground based data to more easily available coarser resolution data, facilitating calibration and validation of derived remote sensing products. Here we present a hierarchical Object Based Image Analysis (OBIA) approach to classify sub-meter imagery. The primary reason for choosing OBIA is to accommodate pixel sizes smaller than the object or class of interest. Especially in non-homogeneous savannah regions of Tanzania, this is an important concern and the traditional pixel based spectral signature approach often fails. Ortho-rectified, calibrated, pan sharpened 0.5 meter resolution data acquired from DigitalGlobe's WorldView-2 satellite sensor was used for this purpose. Multi-scale hierarchical segmentation was performed using multi-resolution segmentation approach to facilitate the use of texture, neighborhood context, and the relationship between super and sub objects for training and classification. eCognition, a commonly used OBIA software program, was used for this purpose. Both decision tree and random forest approaches for classification were tested. The Kappa index agreement for both algorithms surpassed the 85%. The results demonstrate that using hierarchical OBIA can effectively and accurately discriminate classes at even LCCS-3 legend.

  3. Classification of Histology Sections via Multispectral Convolutional Sparse Coding*

    PubMed Central

    Zhou, Yin; Barner, Kenneth; Spellman, Paul

    2014-01-01

    Image-based classification of histology sections plays an important role in predicting clinical outcomes. However this task is very challenging due to the presence of large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g., cell type, cell state). In the field of biomedical imaging, for the purposes of visualization and/or quantification, different stains are typically used for different targets of interest (e.g., cellular/subcellular events), which generates multi-spectrum data (images) through various types of microscopes and, as a result, provides the possibility of learning biological-component-specific features by exploiting multispectral information. We propose a multispectral feature learning model that automatically learns a set of convolution filter banks from separate spectra to efficiently discover the intrinsic tissue morphometric signatures, based on convolutional sparse coding (CSC). The learned feature representations are then aggregated through the spatial pyramid matching framework (SPM) and finally classified using a linear SVM. The proposed system has been evaluated using two large-scale tumor cohorts, collected from The Cancer Genome Atlas (TCGA). Experimental results show that the proposed model 1) outperforms systems utilizing sparse coding for unsupervised feature learning (e.g., PSD-SPM [5]); 2) is competitive with systems built upon features with biological prior knowledge (e.g., SMLSPM [4]). PMID:25554749

  4. Predicting beef tenderness using color and multispectral image texture features.

    PubMed

    Sun, X; Chen, K J; Maddock-Carlin, K R; Anderson, V L; Lepper, A N; Schwartz, C A; Keller, W L; Ilse, B R; Magolski, J D; Berg, E P

    2012-12-01

    The objective of this study was to investigate the usefulness of raw meat surface characteristics (texture) in predicting cooked beef tenderness. Color and multispectral texture features, including 4 different wavelengths and 217 image texture features, were extracted from 2 laboratory-based multispectral camera imaging systems. Steaks were segregated into tough and tender classification groups based on Warner-Bratzler shear force. The texture features were submitted to STEPWISE multiple regression and support vector machine (SVM) analyses to establish prediction models for beef tenderness. A subsample (80%) of tender or tough classified steaks were used to train models which were then validated on the remaining (20%) test steaks. For color images, the SVM model correctly identified tender steaks with 100% accurately while the STEPWISE equation identified 94.9% of the tender steaks correctly. For multispectral images, the SVM model predicted 91% and STEPWISE predicted 87% average accuracy of beef tender. PMID:22647652

  5. Multispectral imaging with vertical silicon nanowires

    PubMed Central

    Park, Hyunsung; Crozier, Kenneth B.

    2013-01-01

    Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156

  6. Study on multispectral imaging detection and recognition

    NASA Astrophysics Data System (ADS)

    Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng

    2009-07-01

    Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.

  7. SWNT Imaging Using Multispectral Image Processing

    NASA Astrophysics Data System (ADS)

    Blades, Michael; Pirbhai, Massooma; Rotkin, Slava V.

    2012-02-01

    A flexible optical system was developed to image carbon single-wall nanotube (SWNT) photoluminescence using the multispectral capabilities of a typical CCD camcorder. The built in Bayer filter of the CCD camera was utilized, using OpenCV C++ libraries for image processing, to decompose the image generated in a high magnification epifluorescence microscope setup into three pseudo-color channels. By carefully calibrating the filter beforehand, it was possible to extract spectral data from these channels, and effectively isolate the SWNT signals from the background.

  8. Multispectral Imaging from Mars PATHFINDER

    NASA Technical Reports Server (NTRS)

    Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.

    2007-01-01

    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.

  9. Classification Metrics for Improved Atmospheric Correction of Multispectral VNIR Imagery

    PubMed Central

    Richter, Rudolf

    2008-01-01

    Multispectral visible/near-infrared (VNIR) earth observation satellites, e.g., Ikonos, Quickbird, ALOS AVNIR-2, and DMC, usually acquire imagery in a few (3 – 5) spectral bands. Atmospheric correction is a challenging task for these images because the standard methods require at least one shortwave infrared band (around 1.6 or 2.2 μm) or hyperspectral instruments to derive the aerosol optical thickness. New classification metrics for defining cloud, cloud over water, haze, water, and saturation are presented to achieve improvements for an automatic processing system. The background is an ESA contract for the development of a prototype atmospheric processor for the optical payload AVNIR-2 on the ALOS platform.

  10. Single sensor that outputs narrowband multispectral images

    NASA Astrophysics Data System (ADS)

    Kong, Linghua; Yi, Dingrong; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao

    2010-01-01

    We report the work of developing a hand-held (or miniaturized), low-cost, stand-alone, real-time-operation, narrow bandwidth multispectral imaging device for the detection of early stage pressure ulcers.

  11. Simultaneous denoising and compression of multispectral images

    NASA Astrophysics Data System (ADS)

    Hagag, Ahmed; Amin, Mohamed; Abd El-Samie, Fathi E.

    2013-01-01

    A new technique for denoising and compression of multispectral satellite images to remove the effect of noise on the compression process is presented. One type of multispectral images has been considered: Landsat Enhanced Thematic Mapper Plus. The discrete wavelet transform (DWT), the dual-tree DWT, and a simple Huffman coder are used in the compression process. Simulation results show that the proposed technique is more effective than other traditional compression-only techniques.

  12. Nonparametric classification of subpixel materials in multispectral imagery

    NASA Astrophysics Data System (ADS)

    Boudreau, Eric R.; Huguenin, Robert L.; Karaska, Mark A.

    1996-06-01

    An effective process for the automatic classification of subpixel materials in multispectral imagery has been developed. The applied analysis spectral analytical process (AASAP) isolates the contribution of specific materials of interest (MOI) within mixed pixels. AASAP consists of a suite of algorithms that perform environmental correction, signature derivation, and subpixel classification. Atmospheric and sun angle correction factors are extracted directly from imagery, allowing signatures produced from a given image to be applied to other images. AASAP signature derivation extracts a component of the pixel spectra that is most common to the training set to produce a signature spectrum and nonparametric feature space. The subpixel classifier applies a background estimation technique to a given pixel under test to produce a residual. A detection occurs when the residual falls within the signature feature space. AASAP was employed to detect stands of Loblolly Pine in a landsat TM scene that contained a variety of species of southern yellow pine. An independent field evaluation indicated that 85% of the detections contained over 20% Loblolly, and that 91% of the known Loblolly stands were detected. For another application, a crop signature derived from a scene in Texas detected occurrences of the same crop in scenes from Kansas and Mexico. AASAP has also been used to locate subpixel occurrences of soil contamination, wetlands species, and lines of communications.

  13. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data.

    PubMed

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088

  14. A Comparative Study of Land Cover Classification by Using Multispectral and Texture Data

    PubMed Central

    Qadri, Salman; Khan, Dost Muhammad; Ahmad, Farooq; Qadri, Syed Furqan; Babar, Masroor Ellahi; Shahid, Muhammad; Ul-Rehman, Muzammil; Razzaq, Abdul; Shah Muhammad, Syed; Fahad, Muhammad; Ahmad, Sarfraz; Pervez, Muhammad Tariq; Naveed, Nasir; Aslam, Naeem; Jamil, Mutiullah; Rehmani, Ejaz Ahmad; Ahmad, Nazir; Akhtar Khan, Naeem

    2016-01-01

    The main objective of this study is to find out the importance of machine vision approach for the classification of five types of land cover data such as bare land, desert rangeland, green pasture, fertile cultivated land, and Sutlej river land. A novel spectra-statistical framework is designed to classify the subjective land cover data types accurately. Multispectral data of these land covers were acquired by using a handheld device named multispectral radiometer in the form of five spectral bands (blue, green, red, near infrared, and shortwave infrared) while texture data were acquired with a digital camera by the transformation of acquired images into 229 texture features for each image. The most discriminant 30 features of each image were obtained by integrating the three statistical features selection techniques such as Fisher, Probability of Error plus Average Correlation, and Mutual Information (F + PA + MI). Selected texture data clustering was verified by nonlinear discriminant analysis while linear discriminant analysis approach was applied for multispectral data. For classification, the texture and multispectral data were deployed to artificial neural network (ANN: n-class). By implementing a cross validation method (80-20), we received an accuracy of 91.332% for texture data and 96.40% for multispectral data, respectively. PMID:27376088

  15. Estimating atmospheric parameters and reducing noise for multispectral imaging

    DOEpatents

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  16. Semi-supervised classification tool for DubaiSat-2 multispectral imagery

    NASA Astrophysics Data System (ADS)

    Al-Mansoori, Saeed

    2015-10-01

    This paper addresses a semi-supervised classification tool based on a pixel-based approach of the multi-spectral satellite imagery. There are not many studies demonstrating such algorithm for the multispectral images, especially when the image consists of 4 bands (Red, Green, Blue and Near Infrared) as in DubaiSat-2 satellite images. The proposed approach utilizes both unsupervised and supervised classification schemes sequentially to identify four classes in the image, namely, water bodies, vegetation, land (developed and undeveloped areas) and paved areas (i.e. roads). The unsupervised classification concept is applied to identify two classes; water bodies and vegetation, based on a well-known index that uses the distinct wavelengths of visible and near-infrared sunlight that is absorbed and reflected by the plants to identify the classes; this index parameter is called "Normalized Difference Vegetation Index (NDVI)". Afterward, the supervised classification is performed by selecting training homogenous samples for roads and land areas. Here, a precise selection of training samples plays a vital role in the classification accuracy. Post classification is finally performed to enhance the classification accuracy, where the classified image is sieved, clumped and filtered before producing final output. Overall, the supervised classification approach produced higher accuracy than the unsupervised method. This paper shows some current preliminary research results which point out the effectiveness of the proposed technique in a virtual perspective.

  17. Multispectral Imaging Broadens Cellular Analysis

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Amnis Corporation, a Seattle-based biotechnology company, developed ImageStream to produce sensitive fluorescence images of cells in flow. The company responded to an SBIR solicitation from Ames Research Center, and proposed to evaluate several methods of extending the depth of field for its ImageStream system and implement the best as an upgrade to its commercial products. This would allow users to view whole cells at the same time, rather than just one section of each cell. Through Phase I and II SBIR contracts, Ames provided Amnis the funding the company needed to develop this extended functionality. For NASA, the resulting high-speed image flow cytometry process made its way into Medusa, a life-detection instrument built to collect, store, and analyze sample organisms from erupting hydrothermal vents, and has the potential to benefit space flight health monitoring. On the commercial end, Amnis has implemented the process in ImageStream, combining high-resolution microscopy and flow cytometry in a single instrument, giving researchers the power to conduct quantitative analyses of individual cells and cell populations at the same time, in the same experiment. ImageStream is also built for many other applications, including cell signaling and pathway analysis; classification and characterization of peripheral blood mononuclear cell populations; quantitative morphology; apoptosis (cell death) assays; gene expression analysis; analysis of cell conjugates; molecular distribution; and receptor mapping and distribution.

  18. Evaluating intensity normalization for multispectral classification of carotid atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Gao, Shan; van't Klooster, Ronald; van Wijk, Diederik F.; Nederveen, Aart J.; Lelieveldt, Boudewijn P. F.; van der Geest, Rob J.

    2015-03-01

    Intensity normalization is an important preprocessing step for automatic plaque analysis in MR images as most segmentation algorithms require the images to have a standardized intensity range. In this study, we derived several intensity normalization approaches with inspiration from expert manual analysis protocols, for classification of carotid vessel wall plaque from in vivo multispectral MRI. We investigated intensity normalization based on a circular region centered at lumen (nCircle); based on sternocleidomastoid muscle (nSCM); based on intensity scaling (nScaling); based on manually classified fibrous tissue (nManuFibrous) and based on automatic classified fibrous tissue (nAutoFibrous). The proposed normalization methods were evaluated using three metrics: (1) Dice similarity coefficient (DSC) between manual and automatic segmentation obtained by classifiers using different normalizations; (2) correlation between proposed normalizations and normalization used by expert; (3) Mahalanobis Distance between pairs of components. In the performed classification experiments, features of normalized image, smoothed, gradient magnitude and Laplacian images at multi-scales, distance to lumen, distance to outer wall, wall thickness were calculated for each vessel wall (VW) pixel. A supervised pattern recognition system, based on a linear discriminate classifier, was trained using the manual segmentation result to classify each VW pixel to be one of the four classes: fibrous tissue, lipid, calcification, and loose matrix according to the highest posterior probability. We evaluated our method on image data of 23 patients. Compared to the result of conventional square region based intensity normalizatio n, nScaling resulted in significant increase in DSC for lipid (p = 0.006) and nAutoFibrous resulted in significant increase in DSC for calcification (p = 0.004). In conclusion, it was demonstrated that the conventional region based normalization approach is not optimal and n

  19. The logic of multispectral classification and mapping of land

    USGS Publications Warehouse

    Robinove, Charles J.

    1981-01-01

    The use of multispectral reflectance data as surrogates for land attributes must be done within strict rules of logic and with a recognition of judgmental factors such as the use of a priori or a posteriori classification schemes. The naming and describing of spectral classes as surrogates of information classes is a critical element in the logic of mapping and must be complete and logically consistent. Maps of information classes derived from multispectral data should be portrayed without class boundaries so as to indicate the degree of homogeneity or heterogeneity of classes on maps in which these characteristics are of major importance. 

  20. [Cucumber diseases diagnosis using multispectral imaging technique].

    PubMed

    Feng, Jie; Liao, Ning-Fang; Zhao, Bo; Luo, Yong-Dao; Li, Bao-Ju

    2009-02-01

    For a reliable diagnosis of plant diseases and insect pests, spectroscopy analysis technique and mutispectral imaging technique are proposed to diagnose five cucumber diseases, namely Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, Corynespora cassiicola and Pseudoperonospora cubensis. In the experiment, the cucumbers' multispectral images of 14 visible lights channels, near infrared channel and panchromatic channel were captured using narrow-band multispectral imaging system under standard observation environment. And the 5 cucumber diseases, healthy leaves and reference white were classified using their multispectral information, the distance, angle and relativity. The discrimination of Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, and reference white was 100%, and that of Pseudoperonospora cubensis and healthy leaves was 80% and 93.33% respectively. The mean correct discrimination of diseases was 81.90% when the distance and relativity were used together. The result shows that the method realized good accuracy in the cucumber diseases diagnosis. PMID:19445229

  1. [Horticultural plant diseases multispectral classification using combined classified methods].

    PubMed

    Feng, Jie; Li, Hong-Ning; Yang, Wei-Ping; Hou, De-Dong; Liao, Ning-Fang

    2010-02-01

    The research on multispectral data disposal is getting more and more attention with the development of multispectral technique, capturing data ability and application of multispectral technique in agriculture practice. In the present paper, a cultivated plant cucumber' familiar disease (Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, Corynespora cassiicola, Pseudoperonospora cubensis) is the research objects. The cucumber leaves multispectral images of 14 visible light channels, near infrared channel and panchromatic channel were captured using narrow-band multispectral imaging system under standard observation and illumination environment, and 210 multispectral data samples which are the 16 bands spectral reflectance of different cucumber disease were obtained. The 210 samples were classified by distance, relativity and BP neural network to discuss effective combination of classified methods for making a diagnosis. The result shows that the classified effective combination of distance and BP neural network classified methods has superior performance than each method, and the advantage of each method is fully used. And the flow of recognizing horticultural plant diseases using combined classified methods is presented. PMID:20384138

  2. Scene/object classification using multispectral data fusion algorithms

    NASA Astrophysics Data System (ADS)

    Kuzma, Thomas J.; Lazofson, Laurence E.; Choe, Howard C.; Chovan, John D.

    1994-06-01

    Near-simultaneous, multispectral, coregistered imagery of ground target and background signatures were collected over a full diurnal cycle in visible, infrared, and ultraviolet spectrally filtered wavebands using Battelle's portable sensor suite. The imagery data were processed using classical statistical algorithms, artificial neural networks and data clustering techniques to classify objects in the imaged scenes. Imagery collected at different times throughout the day were employed to verify algorithm robustness with respect to temporal variations of spectral signatures. In addition, several multispectral sensor fusion medical imaging applications were explored including imaging of subcutaneous vasculature, retinal angiography, and endoscopic cholecystectomy. Work is also being performed to advance the state of the art using differential absorption lidar as an active remote sensing technique for spectrally detecting, identifying, and tracking hazardous emissions. These investigations support a wide variety of multispectral signature discrimination applications including the concepts of automated target search, landing zone detection, enhanced medical imaging, and chemical/biological agent tracking.

  3. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE PAGESBeta

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  4. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    SciTech Connect

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.

  5. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.

    2014-01-01

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. Our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.

  6. High-speed multispectral confocal biomedical imaging

    PubMed Central

    Carver, Gary E.; Locknar, Sarah A.; Morrison, William A.; Krishnan Ramanujan, V.; Farkas, Daniel L.

    2014-01-01

    Abstract. A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues. PMID:24658777

  7. Testing of Land Cover Classification from Multispectral Airborne Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Bakuła, K.; Kupidura, P.; Jełowicki, Ł.

    2016-06-01

    Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return

  8. Multispectral imaging using a single bucket detector

    PubMed Central

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-01-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector’s fast response, a scene’s 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers. PMID:27103168

  9. Multispectral imaging using a single bucket detector.

    PubMed

    Bian, Liheng; Suo, Jinli; Situ, Guohai; Li, Ziwei; Fan, Jingtao; Chen, Feng; Dai, Qionghai

    2016-01-01

    Existing multispectral imagers mostly use available array sensors to separately measure 2D data slices in a 3D spatial-spectral data cube. Thus they suffer from low photon efficiency, limited spectrum range and high cost. To address these issues, we propose to conduct multispectral imaging using a single bucket detector, to take full advantage of its high sensitivity, wide spectrum range, low cost, small size and light weight. Technically, utilizing the detector's fast response, a scene's 3D spatial-spectral information is multiplexed into a dense 1D measurement sequence and then demultiplexed computationally under the single pixel imaging scheme. A proof-of-concept setup is built to capture multispectral data of 64 pixels × 64 pixels × 10 wavelength bands ranging from 450 nm to 650 nm, with the acquisition time being 1 minute. The imaging scheme holds great potentials for various low light and airborne applications, and can be easily manufactured as production-volume portable multispectral imagers. PMID:27103168

  10. IMAGE 100: The interactive multispectral image processing system

    NASA Technical Reports Server (NTRS)

    Schaller, E. S.; Towles, R. W.

    1975-01-01

    The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.

  11. Multispectral laser imaging for advanced food analysis

    NASA Astrophysics Data System (ADS)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  12. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  13. Vector anisotropic filter for multispectral image denoising

    NASA Astrophysics Data System (ADS)

    Ben Said, Ahmed; Foufou, Sebti; Hadjidj, Rachid

    2015-04-01

    In this paper, we propose an approach to extend the application of anisotropic Gaussian filtering for multi- spectral image denoising. We study the case of images corrupted with additive Gaussian noise and use sparse matrix transform for noise covariance matrix estimation. Specifically we show that if an image has a low local variability, we can make the assumption that in the noisy image, the local variability originates from the noise variance only. We apply the proposed approach for the denoising of multispectral images corrupted by noise and compare the proposed method with some existing methods. Results demonstrate an improvement in the denoising performance.

  14. Analytical models and system topologies for remote multispectral data acquisition and classification

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Park, S. K.; Burcher, E. E.; Kelly, W. L., IV

    1978-01-01

    Simple analytical models are presented of the radiometric and statistical processes that are involved in multispectral data acquisition and classification. Also presented are basic system topologies which combine remote sensing with data classification. These models and topologies offer a preliminary but systematic step towards the use of computer simulations to analyze remote multispectral data acquisition and classification systems.

  15. Multi-spectral imaging with mid-infrared semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wang, Yang; Le, Han Q.

    2006-01-01

    Multi-spectral laser imaging can be a useful technology for target discrimination, classification, and identification based on object spectral signatures. The mid-IR region (~3-14 μm) is particularly rich of molecular spectroscopic fingerprints, but the technology has been under utilized. Compact, potentially inexpensive semiconductor lasers may allow more cost-effective applications. This paper describes a development of semiconductor-laser-based multi-spectral imaging for both near-IR and mid-IR, and demonstrates the potential of this technology. The near-IR study employed 7 wavelengths from 0.635-1.55 μm, and used for system engineering evaluation as well as for studying the fundamental aspects of multi-spectral laser imaging. These include issues of wavelength-dependence scattering as a function of incident and receiving angle and the polarization effects. Stokes vector imaging and degree-of-linear-polarization were shown to reveal significant information to characterize the targets. The mid-IR study employed 4 wavelengths from 3.3-9.6 μm, and was applied to diverse targets that consist of natural and man-made materials and household objects. It was shown capable to resolve and distinguish small spectral differences among various targets, thanks to the laser radiometric and spectral accuracy. Colorless objects in the visible were shown with "colorful" signatures in the mid-IR. An essential feature of the study is an advanced system architecture that employs wavelength-division-multiplexed laser beams for high spectral fidelity and resolution. In addition, unlike conventional one-transmitter and one receiver design, the system is based on a scalable CDMA network concept with multiple transmitters and receivers to allow efficient information acquisition. The results suggest that multi-spectral laser imaging in general can be a unique and powerful technology for wide ranging applications.

  16. Fusion of multisensor, multispectral, and defocused images

    NASA Astrophysics Data System (ADS)

    Shahida, Mohd.; Guptab, Sumana

    2005-10-01

    Fusion is basically extraction of best of inputs and conveying it to the output. In this paper, we present an image fusion technique using the concept of perceptual information across the bands. This algorithm is relevant to visual sensitivity and tested by merging multisensor, multispectral and Defoucused images. Fusion is achieved through the formation of one fused pyramid using the DWT coefficients from the decomposed pyramids of the source images. The fused image is obtained through conventional discrete wavelet transform (DWT) reconstruction process. Results obtained using the proposed method show a significant reduction of distortion artifacts and a large preservation of spectral information.

  17. Recurrent neural networks for automatic clustering of multispectral satellite images

    NASA Astrophysics Data System (ADS)

    Koprinkova-Hristova, Petia; Alexiev, Kiril; Borisova, Denitsa; Jelev, Georgi; Atanassov, Valentin

    2013-10-01

    In the present work we applied a recently developed procedure for multidimensional data clustering to multispectral satellite images. The core of our approach lays in projection of the multidimensional image to a two dimensional space. For this purpose we used extensively investigated family of recurrent artificial neural networks (RNN) called "Echo state network" (ESN). ESN incorporates a randomly generated recurrent reservoir with sigmoid nonlinearities of neurons outputs. The procedure called Intrinsic Plasticity (IP) that is aimed at reservoir output entropy maximization was applied for adapting of reservoir steady states to the multidimensional input data. Next we consider all possible combinations between steady states of each two neurons in the reservoir as two-dimensional projections of the original multidimensional data. These low dimensional projections were subjected to subtractive clustering in order to determine number and position of data clusters. Two approaches to choose a proper projection among the all possible combinations between neurons were investigated. The first one is based on the calculation of two-dimensional density distributions of each projection, determination of number of their local maxima and choice of the projections with biggest number of these maxima. The second one applies clustering to all projections and chooses those with maximum number of clusters. Multispectral data from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) instrument are used in this work. The obtained number and position of clusters of a multi-spectral image of a mountain region in Bulgaria is compared with the regional landscape classification.

  18. Image processing of underwater multispectral imagery

    USGS Publications Warehouse

    Zawada, D.G.

    2003-01-01

    Capturing in situ fluorescence images of marine organisms presents many technical challenges. The effects of the medium, as well as the particles and organisms within it, are intermixed with the desired signal. Methods for extracting and preparing the imagery for analysis are discussed in reference to a novel underwater imaging system called the low-light-level underwater multispectral imaging system (LUMIS). The instrument supports both uni- and multispectral collections, each of which is discussed in the context of an experimental application. In unispectral mode, LUMIS was used to investigate the spatial distribution of phytoplankton. A thin sheet of laser light (532 nm) induced chlorophyll fluorescence in the phytoplankton, which was recorded by LUMIS. Inhomogeneities in the light sheet led to the development of a beam-pattern-correction algorithm. Separating individual phytoplankton cells from a weak background fluorescence field required a two-step procedure consisting of edge detection followed by a series of binary morphological operations. In multispectral mode, LUMIS was used to investigate the bio-assay potential of fluorescent pigments in corals. Problems with the commercial optical-splitting device produced nonlinear distortions in the imagery. A tessellation algorithm, including an automated tie-point-selection procedure, was developed to correct the distortions. Only pixels corresponding to coral polyps were of interest for further analysis. Extraction of these pixels was performed by a dynamic global-thresholding algorithm.

  19. Remote Multispectral Imaging of Wildland Fires (Invited)

    NASA Astrophysics Data System (ADS)

    Vodacek, A.; Kremens, R.

    2010-12-01

    Wildland fires produce a variety of signal phenomenology that are remotely observable. These signals span a large portion of the electromagnetic spectrum and can be related to a variety of properties of wildland fires as they propagate. The deployment of multispectral sensors from aircraft provides a unique perspective on the fire and its interactions in the environment by repeated imaging over time. We describe a set of airborne imaging experiments, image processing methodologies and a workflow system for near real-time extraction of information on the fire and the immediate environment.

  20. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  1. Simultaneous multispectral imaging using lenslet arrays

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Jensen, James

    2013-03-01

    There is a need for small compact multispectral and hyperspectral imaging systems that simultaneously images in many spectral bands across the infrared spectral region from short to long-wave infrared. This is a challenge for conventional optics and usually requires large, costly and complex optical systems. However, with the advances in materials and photolithographic technology, Micro-Optical-Electrical-Machine-Systems (MOEMS) can meet these goals. In this paper Pacific Advanced Technology and ECBC will present the work that we are doing under a SBIR contract to the US Army using a MOEMS based diffractive optical lenslet array to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. Under this program we will develop a proof of concept system that demonstrates how a diffractive optical (DO) lenslet array can image 1024 x 1024 pixels in 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The purpose of this work is to simultaneously image multiple colors each frame and reduce the temporal changes between colors that are apparent in sequential multispectral imaging. Translating the lenslet array will collect hyperspectral image data cubes as will be explained later in this paper. Because the optics is integrated with the detector the entire multispectral/hyperspectral system can be contained in a miniature package. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information each frame of the camera. Thus enabling the implementation of spectral-temporal-spatial algorithms in real-time with high sensitivity for the detection of weak signals in a high background clutter environment with low sensitivity to camera motion. Using MOEMS actuation the DO lenslet array is translated along the optical axis to complete the full hyperspectral data cube in just a few frames of the

  2. Multispectral multisensor image fusion using wavelet transforms

    USGS Publications Warehouse

    Lemeshewsky, George P.

    1999-01-01

    Fusion techniques can be applied to multispectral and higher spatial resolution panchromatic images to create a composite image that is easier to interpret than the individual images. Wavelet transform-based multisensor, multiresolution fusion (a type of band sharpening) was applied to Landsat thematic mapper (TM) multispectral and coregistered higher resolution SPOT panchromatic images. The objective was to obtain increased spatial resolution, false color composite products to support the interpretation of land cover types wherein the spectral characteristics of the imagery are preserved to provide the spectral clues needed for interpretation. Since the fusion process should not introduce artifacts, a shift invariant implementation of the discrete wavelet transform (SIDWT) was used. These results were compared with those using the shift variant, discrete wavelet transform (DWT). Overall, the process includes a hue, saturation, and value color space transform to minimize color changes, and a reported point-wise maximum selection rule to combine transform coefficients. The performance of fusion based on the SIDWT and DWT was evaluated with a simulated TM 30-m spatial resolution test image and a higher resolution reference. Simulated imagery was made by blurring higher resolution color-infrared photography with the TM sensors' point spread function. The SIDWT based technique produced imagery with fewer artifacts and lower error between fused images and the full resolution reference. Image examples with TM and SPOT 10-m panchromatic illustrate the reduction in artifacts due to the SIDWT based fusion.

  3. Land cover classification in multispectral satellite imagery using sparse approximations on learned dictionaries

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Altmann, Garrett L.

    2014-05-01

    Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of great interest for landscape characterization and change detection in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methodologies to the environmental sciences, using state-of-theart adaptive signal processing, combined with compressive sensing and machine learning techniques. We use a modified Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using CoSA: unsupervised Clustering of Sparse Approximations. We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska (USA). Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties (e.g., soil moisture and inundation), and topographic/geomorphic characteristics. In this paper, we explore learning from both raw multispectral imagery, as well as normalized band difference indexes. We explore a quantitative metric to evaluate the spectral properties of the clusters, in order to potentially aid in assigning land cover categories to the cluster labels.

  4. Multispectral imaging for medical diagnosis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.

    1977-01-01

    Photography technique determines amount of morbidity present in tissue. Imaging apparatus incorporates numerical filtering. Overall system operates in near-real time. Information gained from this system enables physician to understand extent of injury and leads to accelerated treatment.

  5. Highly Protable Airborne Multispectral Imaging System

    NASA Technical Reports Server (NTRS)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  6. The Multispectral Imaging Science Working Group. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    The status and technology requirements for using multispectral sensor imagery in geographic, hydrologic, and geologic applications are examined. Critical issues in image and information science are identified.

  7. Modeling misregistration and related effects on multispectral classification

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1981-01-01

    The effects of misregistration on the multispectral classification accuracy when the scene registration accuracy is relaxed from 0.3 to 0.5 pixel are investigated. Noise, class separability, spatial transient response, and field size are considered simultaneously with misregistration in their effects on accuracy. Any noise due to the scene, sensor, or to the analog/digital conversion, causes a finite fraction of the measurements to fall outside of the classification limits, even within nominally uniform fields. Misregistration causes field borders in a given band or set of bands to be closer than expected to a given pixel, causing additional pixels to be misclassified due to the mixture of materials in the pixel. Simplified first order models of the various effects are presented, and are used to estimate the performance to be expected.

  8. Modeling misregistration and related effects on multispectral classification

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1982-01-01

    Any noise in measurements (due to the scene, sensor, or the analog to digital process) causes a finite fraction of measurements to fall outside of the classification limits. For field boundaries, where the misregistration effects are felt, the misregistration causes the border in a given (set of) band(s) to be closer than expected to a given pixel, so that the mixed materials in the pixels cause additional pixels to fall outside of the class limits. Considerations of the transient distance involved in the difference in brightness between adjacent fields, when scaled to "per pixel", allow the estimation of the width of the border zones. The entire problem is then scaled to field sizes to allow estimation of the global effects. This approach allows the estimation of the accuracy of multispectral classification which might be expected for field interiors, the useful number of quantization bits, and one set of criteria for an unbiased classifier.

  9. Non-linear methods in remotely sensed multispectral data classification

    NASA Astrophysics Data System (ADS)

    Nikolov, Hs; Petkov, Di; Jeliazkova, N.; Ruseva, S.; Boyanov, K.

    The aim of this research is to examine existing geoinformation processing systems and to develop a new system, able to cope with the stochastic nature of remote sensing data. In order to achieve this objective, it is necessary to structure the methodological knowledge in the area of data mining and reveal the most suitable methods for the prediction and decision support based on large amounts of multispectral data. Non-linear methods are a vast and quickly advancing field of research, but in the case of geoinformatics they are far away from applications targeted to end-users. The idea is to establish a framework by decomposing the task into functionality objectives and to allow the end-user to experiment with a set of classification methods and select the best methods for specific applications. In this framework we consider Bayesian analysis tools, nonlinear regression models, neural networks, fuzzy reasoning systems, kernel methods, evolutionary programming, genetic algorithms and decision trees. In particular we compare our results from Bayesian classification based on estimated probability densities of the data to the results obtained from other classification methods. We demonstrate that the theoretically optimal Bayesian classification also provides optimal classification in practice.

  10. Multispectral fingerprint imaging for spoof detection

    NASA Astrophysics Data System (ADS)

    Nixon, Kristin A.; Rowe, Robert K.

    2005-03-01

    Fingerprint systems are the most widespread form of biometric authentication. Used in locations such as airports and in PDA's and laptops, fingerprint readers are becoming more common in everyday use. As they become more familiar, the security weaknesses of fingerprint sensors are becoming better known. Numerous websites now exist describing in detail how to create a fake fingerprint usable for spoofing a biometric system from both a cooperative user and from latent prints. While many commercial fingerprint readers claim to have some degree of spoof detection incorporated, they are still generally susceptible to spoof attempts using various artificial fingerprint samples made from gelatin or silicone or other materials and methods commonly available on the web. This paper describes a multispectral sensor that has been developed to collect data for spoof detection. The sensor has been designed to work in conjunction with a conventional optical fingerprint reader such that all images are collected during a single placement of the finger on the sensor. The multispectral imaging device captures sub-surface information about the finger that makes it very difficult to spoof. Four attributes of the finger that are collected with the multispectral imager will be described and demonstrated in this paper: spectral qualities of live skin, chromatic texture of skin, sub-surface image of live skin, and blanching on contact. Each of these attributes is well suited to discriminating against particular kinds of spoofing samples. A series of experiments was conducted to demonstrate the capabilities of the individual attributes as well as the collective spoof detection performance.

  11. Use of Multispectral Imaging in Varietal Identification of Tomato

    PubMed Central

    Shrestha, Santosh; Deleuran, Lise Christina; Olesen, Merete Halkjær; Gislum, René

    2015-01-01

    Multispectral imaging is an emerging non-destructive technology. In this work its potential for varietal discrimination and identification of tomato cultivars of Nepal was investigated. Two sample sets were used for the study, one with two parents and their crosses and other with eleven cultivars to study parents and offspring relationship and varietal identification respectively. Normalized canonical discriminant analysis (nCDA) and principal component analysis (PCA) were used to analyze and compare the results for parents and offspring study. Both the results showed clear discrimination of parents and offspring. nCDA was also used for pairwise discrimination of the eleven cultivars, which correctly discriminated upto 100% and only few pairs below 85%. Partial least square discriminant analysis (PLS-DA) was further used to classify all the cultivars. The model displayed an overall classification accuracy of 82%, which was further improved to 96% and 86% with stepwise PLS-DA models on high (seven) and poor (four) sensitivity cultivars, respectively. The stepwise PLS-DA models had satisfactory classification errors for cross-validation and prediction 7% and 7%, respectively. The results obtained provide an opportunity of using multispectral imaging technology as a primary tool in a scientific community for identification/discrimination of plant varieties in regard to genetic purity and plant variety protection/registration. PMID:25690549

  12. Multispectral imaging of aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  13. Multi-spectral imaging of oxygen saturation

    NASA Astrophysics Data System (ADS)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  14. Multi-spectral compressive snapshot imaging using RGB image sensors.

    PubMed

    Rueda, Hoover; Lau, Daniel; Arce, Gonzalo R

    2015-05-01

    Compressive sensing is a powerful sensing and reconstruction framework for recovering high dimensional signals with only a handful of observations and for spectral imaging, compressive sensing offers a novel method of multispectral imaging. Specifically, the coded aperture snapshot spectral imager (CASSI) system has been demonstrated to produce multi-spectral data cubes color images from a single snapshot taken by a monochrome image sensor. In this paper, we expand the theoretical framework of CASSI to include the spectral sensitivity of the image sensor pixels to account for color and then investigate the impact on image quality using either a traditional color image sensor that spatially multiplexes red, green, and blue light filters or a novel Foveon image sensor which stacks red, green, and blue pixels on top of one another. PMID:25969307

  15. Multispectral imaging system for contaminant detection

    NASA Technical Reports Server (NTRS)

    Poole, Gavin H. (Inventor)

    2003-01-01

    An automated inspection system for detecting digestive contaminants on food items as they are being processed for consumption includes a conveyor for transporting the food items, a light sealed enclosure which surrounds a portion of the conveyor, with a light source and a multispectral or hyperspectral digital imaging camera disposed within the enclosure. Operation of the conveyor, light source and camera are controlled by a central computer unit. Light reflected by the food items within the enclosure is detected in predetermined wavelength bands, and detected intensity values are analyzed to detect the presence of digestive contamination.

  16. Viability Prediction of Ricinus cummunis L. Seeds Using Multispectral Imaging

    PubMed Central

    Olesen, Merete Halkjær; Nikneshan, Pejman; Shrestha, Santosh; Tadayyon, Ali; Deleuran, Lise Christina; Boelt, Birte; Gislum, René

    2015-01-01

    The purpose of this study was to highlight the use of multispectral imaging in seed quality testing of castor seeds. Visually, 120 seeds were divided into three classes: yellow, grey and black seeds. Thereafter, images at 19 different wavelengths ranging from 375–970 nm were captured of all the seeds. Mean intensity for each single seed was extracted from the images, and a significant difference between the three colour classes was observed, with the best separation in the near-infrared wavelengths. A specified feature (RegionMSI mean) based on normalized canonical discriminant analysis, were employed and viable seeds were distinguished from dead seeds with 92% accuracy. The same model was tested on a validation set of seeds. These seeds were divided into two groups depending on germination ability, 241 were predicted as viable and expected to germinate and 59 were predicted as dead or non-germinated seeds. This validation of the model resulted in 96% correct classification of the seeds. The results illustrate how multispectral imaging technology can be employed for prediction of viable castor seeds, based on seed coat colour. PMID:25690554

  17. Viability prediction of Ricinus cummunis L. seeds using multispectral imaging.

    PubMed

    Olesen, Merete Halkjær; Nikneshan, Pejman; Shrestha, Santosh; Tadayyon, Ali; Deleuran, Lise Christina; Boelt, Birte; Gislum, René

    2015-01-01

    The purpose of this study was to highlight the use of multispectral imaging in seed quality testing of castor seeds. Visually, 120 seeds were divided into three classes: yellow, grey and black seeds. Thereafter, images at 19 different wavelengths ranging from 375-970 nm were captured of all the seeds. Mean intensity for each single seed was extracted from the images, and a significant difference between the three colour classes was observed, with the best separation in the near-infrared wavelengths. A specified feature (RegionMSI mean) based on normalized canonical discriminant analysis, were employed and viable seeds were distinguished from dead seeds with 92% accuracy. The same model was tested on a validation set of seeds. These seeds were divided into two groups depending on germination ability, 241 were predicted as viable and expected to germinate and 59 were predicted as dead or non-germinated seeds. This validation of the model resulted in 96% correct classification of the seeds. The results illustrate how multispectral imaging technology can be employed for prediction of viable castor seeds, based on seed coat colour. PMID:25690554

  18. Hyperspectral and multispectral imaging for evaluating food safety and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spectral imaging technologies have been developed rapidly during the past decade. This paper presents hyperspectral and multispectral imaging technologies in the area of food safety and quality evaluation, with an introduction, demonstration, and summarization of the spectral imaging techniques avai...

  19. Classroom multispectral imaging using inexpensive digital cameras.

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.

    2007-12-01

    The proliferation of increasingly cheap digital cameras in recent years means that it has become easier to exploit the broad wavelength sensitivity of their CCDs (360 - 1100 nm) for classroom-based teaching. With the right tools, it is possible to open children's eyes to the invisible world of UVA and near-IR radiation either side of our narrow visual band. The camera-filter combinations I describe can be used to explore the world of animal vision, looking for invisible markings on flowers, or in bird plumage, for example. In combination with a basic spectroscope (such as the Project-STAR handheld plastic spectrometer, 25), it is possible to investigate the range of human vision and camera sensitivity, and to explore the atomic and molecular absorption lines from the solar and terrestrial atmospheres. My principal use of the cameras has been to teach multispectral imaging of the kind used to determine remotely the composition of planetary surfaces. A range of camera options, from 50 circuit-board mounted CCDs up to $900 semi-pro infrared camera kits (including mobile phones along the way), and various UV-vis-IR filter options will be presented. Examples of multispectral images taken with these systems are used to illustrate the range of classroom topics that can be covered. Particular attention is given to learning about spectral reflectance curves and comparing images from Earth and Mars taken using the same filter combination that it used on the Mars Rovers.

  20. Multispectral fluorescence imaging device for malignancy detection

    NASA Astrophysics Data System (ADS)

    Bocher, Thomas; Luhmann, Till; Baier, S.; Dierolf, Marc; Naumann, M.; Beuthan, Juergen; Berlien, Hans-Peter; Mueller, Gerhard J.

    1997-12-01

    In medical diagnosis of superficial lesions at inner or outer surfaces of the human body fluorescence imaging techniques are able to deliver additional information on the metabolic and structural state of the observed tissue. To subtract background fluorescence and to achieve a differential diagnosis a multispectral analysis in several wavelength windows is needed. Additionally, special image algorithms have to be applied which depend on the examined malignancy. For this purpose a multispectral fluorescence imaging device was developed. It can be used both endoscopically and in combination with a standard operational microscope from Carl Zeiss, Germany. In this paper, the device and first clinical results are presented. The device was built to detect superficial lesions like tumors, inflammations, etc. Target chromophores are NADH, Protoporphyrin IX, collagen and other. The measured optical bands are (405 plus or minus 5) nm, (442 plus or minus 5) nm, (458 plus or minus 5) nm, (550 plus or minus 5) nm, (630 plus or minus 5) nm and (690 plus or minus 5) nm. A special UV-source with a liquid light guide is used as the illumination source in two excitation bands of (365 plus or minus 10) nm and (420 plus or minus 20) nm. First clinical investigations of superficial malignancies like squamous cell carcinoma and basalioma are presented.

  1. Extraction of topographic and spectral albedo information from multispectral images.

    USGS Publications Warehouse

    Eliason, P.T.; Soderblom, L.A.; Chavez, P.A., Jr.

    1981-01-01

    A technique has been developed to separate and extract spectral-reflectivity variations and topographic informaiton from multispectral images. The process is a completely closed system employing only the image data and can be applied to any digital multispectral data set. -from Authors

  2. Material classification through distance aware multispectral data fusion

    NASA Astrophysics Data System (ADS)

    Schwaneberg, O.; Köckemann, U.; Steiner, H.; Sporrer, S.; Kolb, A.; Jung, N.

    2013-04-01

    Safety applications require fast, precise and highly reliable sensors at low costs. This paper presents signal processing methods for an active multispectral optical point sensor instrumentation for which a first technical implementation exists. Due to the very demanding requirements for safeguarding equipment, these processing methods are targeted to run on a small embedded system with a guaranteed reaction time T < 2 ms and a sufficiently low failure rate according to applicable safety standards, e.g., ISO-13849. The proposed data processing concept includes a novel technique for distance-aided fusion of multispectral data in order to compensate for displacement-related alteration of the measured signal. The distance measuring is based on triangulation with precise results even for low-resolution detectors, thus strengthening the practical applicability. Furthermore, standard components, such as support vector machines (SVMs), are used for reliable material classification. All methods have been evaluated for variants of the underlying sensor principle. Therefore, the results of the evaluation are independent of any specific hardware.

  3. A multispectral imaging approach for diagnostics of skin pathologies

    NASA Astrophysics Data System (ADS)

    Lihacova, Ilze; Derjabo, Aleksandrs; Spigulis, Janis

    2013-06-01

    Noninvasive multispectral imaging method was applied for different skin pathology such as nevus, basal cell carcinoma, and melanoma diagnostics. Developed melanoma diagnostic parameter, using three spectral bands (540 nm, 650 nm and 950 nm), was calculated for nevus, melanoma and basal cell carcinoma. Simple multispectral diagnostic device was established and applied for skin assessment. Development and application of multispectral diagnostics method described further in this article.

  4. Evolving forest fire burn severity classification algorithms for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Harvey, Neal R.; Bloch, Jeffrey J.; Theiler, James P.; Perkins, Simon J.; Young, Aaron C.; Szymanski, John J.

    2001-08-01

    Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned approximately 43,000 acres (17,500 ha) and 235 residences in the town of Los Alamos, NM. Initial estimates of forest damage included 17,000 acres (6,900 ha) of 70-100% tree mortality. Restoration efforts following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made hazards. These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region. During and after the fire, remote-sensing data was acquired from a variety of aircraft-based and satellite-based sensors, including Landsat 7. We now report on the application of a machine learning technique, implemented in a software package called GENIE, to the classification of forest fire burn severity using Landsat 7 ETM+ multispectral imagery. The details of this automatic classification are compared to the manually produced burn classification, which was derived from field observations and manual interpretation of high-resolution aerial color/infrared photography.

  5. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery.

    PubMed

    Jiang, Dong; Huang, Yaohuan; Zhuang, Dafang; Zhu, Yunqiang; Xu, Xinliang; Ren, Hongyan

    2012-01-01

    Land cover data represent a fundamental data source for various types of scientific research. The classification of land cover based on satellite data is a challenging task, and an efficient classification method is needed. In this study, an automatic scheme is proposed for the classification of land use using multispectral remote sensing images based on change detection and a semi-supervised classifier. The satellite image can be automatically classified using only the prior land cover map and existing images; therefore human involvement is reduced to a minimum, ensuring the operability of the method. The method was tested in the Qingpu District of Shanghai, China. Using Environment Satellite 1(HJ-1) images of 2009 with 30 m spatial resolution, the areas were classified into five main types of land cover based on previous land cover data and spectral features. The results agreed on validation of land cover maps well with a Kappa value of 0.79 and statistical area biases in proportion less than 6%. This study proposed a simple semi-automatic approach for land cover classification by using prior maps with satisfied accuracy, which integrated the accuracy of visual interpretation and performance of automatic classification methods. The method can be used for land cover mapping in areas lacking ground reference information or identifying rapid variation of land cover regions (such as rapid urbanization) with convenience. PMID:23049886

  6. A Simple Semi-Automatic Approach for Land Cover Classification from Multispectral Remote Sensing Imagery

    PubMed Central

    Jiang, Dong; Huang, Yaohuan; Zhuang, Dafang; Zhu, Yunqiang; Xu, Xinliang; Ren, Hongyan

    2012-01-01

    Land cover data represent a fundamental data source for various types of scientific research. The classification of land cover based on satellite data is a challenging task, and an efficient classification method is needed. In this study, an automatic scheme is proposed for the classification of land use using multispectral remote sensing images based on change detection and a semi-supervised classifier. The satellite image can be automatically classified using only the prior land cover map and existing images; therefore human involvement is reduced to a minimum, ensuring the operability of the method. The method was tested in the Qingpu District of Shanghai, China. Using Environment Satellite 1(HJ-1) images of 2009 with 30 m spatial resolution, the areas were classified into five main types of land cover based on previous land cover data and spectral features. The results agreed on validation of land cover maps well with a Kappa value of 0.79 and statistical area biases in proportion less than 6%. This study proposed a simple semi-automatic approach for land cover classification by using prior maps with satisfied accuracy, which integrated the accuracy of visual interpretation and performance of automatic classification methods. The method can be used for land cover mapping in areas lacking ground reference information or identifying rapid variation of land cover regions (such as rapid urbanization) with convenience. PMID:23049886

  7. Study on airborne multispectral imaging fusion detection technology

    NASA Astrophysics Data System (ADS)

    Ding, Na; Gao, Jiaobo; Wang, Jun; Cheng, Juan; Gao, Meng; Gao, Fei; Fan, Zhe; Sun, Kefeng; Wu, Jun; Li, Junna; Gao, Zedong; Cheng, Gang

    2014-11-01

    The airborne multispectral imaging fusion detection technology is proposed in this paper. In this design scheme, the airborne multispectral imaging system consists of the multispectral camera, the image processing unit, and the stabilized platform. The multispectral camera can operate in the spectral region from visible to near infrared waveband (0.4-1.0um), it has four same and independent imaging channels, and sixteen different typical wavelengths to be selected based on the different typical targets and background. The related experiments were tested by the airborne multispectral imaging system. In particularly, the camouflage targets were fused and detected in the different complex environment, such as the land vegetation background, the desert hot background and underwater. In the spectral region from 0.4 um to 1.0um, the three different characteristic wave from sixteen typical spectral are selected and combined according to different backgrounds and targets. The spectral image corresponding to the three characteristic wavelengths is resisted and fused by the image processing technology in real time, and the fusion video with typical target property is outputted. In these fusion images, the contrast of target and background is greatly increased. Experimental results confirm that the airborne multispectral imaging fusion detection technology can acquire multispectral fusion image with high contrast in real time, and has the ability of detecting and identification camouflage objects from complex background to targets underwater.

  8. Multispectral image analysis for algal biomass quantification.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2013-01-01

    This article reports a novel multispectral image processing technique for rapid, noninvasive quantification of biomass concentration in attached and suspended algae cultures. Monitoring the biomass concentration is critical for efficient production of biofuel feedstocks, food supplements, and bioactive chemicals. Particularly, noninvasive and rapid detection techniques can significantly aid in providing delay-free process control feedback in large-scale cultivation platforms. In this technique, three-band spectral images of Anabaena variabilis cultures were acquired and separated into their red, green, and blue components. A correlation between the magnitude of the green component and the areal biomass concentration was generated. The correlation predicted the biomass concentrations of independently prepared attached and suspended cultures with errors of 7 and 15%, respectively, and the effect of varying lighting conditions and background color were investigated. This method can provide necessary feedback for dilution and harvesting strategies to maximize photosynthetic conversion efficiency in large-scale operation. PMID:23554374

  9. Multispectral imaging with type II superlattice detectors

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Gamini; Duran, Joshua M.; Grupen, Matt; Scheihing, John E.; Nelson, Thomas R.; Eismann, Michael T.

    2012-06-01

    Infrared (IR) focal plane arrays (FPAs) with multispectral detector elements promise significant advantages for airborne threat warning, surveillance, and targeting applications. At present, the use of type II superlattice (T2SL) structures based on the 6.1Å-family materials (InAs, GaSb, and AlSb) has become an area of interest for developing IR detectors and their FPAs. The ability to vary the bandgap in the IR range, suppression of Auger processes, prospective reduction of Shockley-Read-Hall centers by improved material growth capabilities, and the material stability are a few reasons for the predicted dominance of the T2SL technology over presently leading HgCdTe and quantum well technologies. The focus of the work reported here is on the development of T2SL based dual-band IR detectors and their applicability for multispectral imaging. A new NpBPN detector designed for the detection of IR in the 3-5 and 8-12 μm atmospheric windows is presented; comparing its advantages over other T2SL based approaches. One of the key challenges of the T2SL dual-band detectors is the spectral crosstalk associated with the LWIR band. The properties of the state-of-the-art T2SLs (i.e., absorption coefficient, minority carrier lifetime and mobility, etc.) and the present growth limitations that impact spectral crosstalk are discussed.

  10. Multispectral Imaging for Determination of Astaxanthin Concentration in Salmonids

    PubMed Central

    Dissing, Bjørn S.; Nielsen, Michael E.; Ersbøll, Bjarne K.; Frosch, Stina

    2011-01-01

    Multispectral imaging has been evaluated for characterization of the concentration of a specific cartenoid pigment; astaxanthin. 59 fillets of rainbow trout, Oncorhynchus mykiss, were filleted and imaged using a rapid multispectral imaging device for quantitative analysis. The multispectral imaging device captures reflection properties in 19 distinct wavelength bands, prior to determination of the true concentration of astaxanthin. The samples ranged from 0.20 to 4.34 g per g fish. A PLSR model was calibrated to predict astaxanthin concentration from novel images, and showed good results with a RMSEP of 0.27. For comparison a similar model were built for normal color images, which yielded a RMSEP of 0.45. The acquisition speed of the multispectral imaging system and the accuracy of the PLSR model obtained suggest this method as a promising technique for rapid in-line estimation of astaxanthin concentration in rainbow trout fillets. PMID:21573000

  11. Synergistic combination technique for SAR image classification

    NASA Astrophysics Data System (ADS)

    Burman, Bhaskar

    1998-07-01

    Classification of earth terrain from satellite radar imagery represents an important and continually developing application of microwave remote sensing. The basic objective of this paper is to derive more information, through combining, than is present in any individual element of input data. Multispectral data has been used to provide complementary information so as to utilize a single SAR data for the purpose of land-cover classification. More recently neural networks have been applied to a number of image classification problems and have shown considerable success in exceeding the performance of conventional algorithms. In this work, a comparison study has been carried out between a conventional Maximum Likelihood (ML) classifier and a neural network (back-error-propagation) classifier in terms of classification accuracy. The results reveal that the combination of SAR and MSS data of the same scene produced better classification accuracy than either alone and the neural network classification has an edge over the conventional classification scheme.

  12. Novel instrumentation of multispectral imaging technology for detecting tissue abnormity

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is becoming a powerful tool in a wide range of biological and clinical studies by adding spectral, spatial and temporal dimensions to visualize tissue abnormity and the underlying biological processes. A conventional spectral imaging system includes two physically separated major components: a band-passing selection device (such as liquid crystal tunable filter and diffraction grating) and a scientific-grade monochromatic camera, and is expensive and bulky. Recently micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the clinical requirement for medical diagnostic imaging applications. However the challenging issue of how to integrate and place the micro filter mosaic chip to the targeting focal plane, i.e., the imaging sensor, of an off-shelf CMOS/CCD camera is not reported anywhere. This paper presents the methods and results of integrating such a miniaturized filter with off-shelf CMOS imaging sensors to produce handheld real-time multispectral imaging devices for the application of early stage pressure ulcer (ESPU) detection. Unlike conventional multispectral imaging devices which are bulky and expensive, the resulting handheld real-time multispectral ESPU detector can produce multiple images at different center wavelengths with a single shot, therefore eliminates the image registration procedure required by traditional multispectral imaging technologies.

  13. On-board multispectral classification study. Volume 2: Supplementary tasks. [adaptive control

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The operational tasks of the onboard multispectral classification study were defined. These tasks include: sensing characteristics for future space applications; information adaptive systems architectural approaches; data set selection criteria; and onboard functional requirements for interfacing with global positioning satellites.

  14. In vivo simultaneous multispectral fluorescence imaging with spectral multiplexed volume holographic imaging system

    NASA Astrophysics Data System (ADS)

    Lv, Yanlu; Zhang, Jiulou; Zhang, Dong; Cai, Wenjuan; Chen, Nanguang; Luo, Jianwen

    2016-06-01

    A simultaneous multispectral fluorescence imaging system incorporating multiplexed volume holographic grating (VHG) is developed to acquire multispectral images of an object in one shot. With the multiplexed VHG, the imaging system can provide the distribution and spectral characteristics of multiple fluorophores in the scene. The implementation and performance of the simultaneous multispectral imaging system are presented. Further, the system's capability in simultaneously obtaining multispectral fluorescence measurements is demonstrated with in vivo experiments on a mouse. The demonstrated imaging system has the potential to obtain multispectral images fluorescence simultaneously.

  15. Eliminate background interference from latent fingerprints using ultraviolet multispectral imaging

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Xu, Xiaojing; Wang, Guiqiang

    2014-02-01

    Fingerprints are the most important evidence in crime scene. The technology of developing latent fingerprints is one of the hottest research areas in forensic science. Recently, multispectral imaging which has shown great capability in fingerprints development, questioned document detection and trace evidence examination is used in detecting material evidence. This paper studied how to eliminate background interference from non-porous and porous surface latent fingerprints by rotating filter wheel ultraviolet multispectral imaging. The results approved that background interference could be removed clearly from latent fingerprints by using multispectral imaging in ultraviolet bandwidth.

  16. Fast Lossless Compression of Multispectral-Image Data

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew

    2006-01-01

    An algorithm that effects fast lossless compression of multispectral-image data is based on low-complexity, proven adaptive-filtering algorithms. This algorithm is intended for use in compressing multispectral-image data aboard spacecraft for transmission to Earth stations. Variants of this algorithm could be useful for lossless compression of three-dimensional medical imagery and, perhaps, for compressing image data in general.

  17. Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral scattering is a promising technique for nondestructive sensing of multiple quality attributes of apple fruit. This research developed new, improved methods for processing and analyzing multispectral scattering profiles in order to design and build a better multispectral imaging system ...

  18. Classification images: A review.

    PubMed

    Murray, Richard F

    2011-01-01

    Classification images have recently become a widely used tool in visual psychophysics. Here, I review the development of classification image methods over the past fifteen years. I provide some historical background, describing how classification images and related methods grew out of established statistical and mathematical frameworks and became common tools for studying biological systems. I describe key developments in classification image methods: use of optimal weighted sums based on the linear observer model, formulation of classification images in terms of the generalized linear model, development of statistical tests, use of priors to reduce dimensionality, methods for experiments with more than two response alternatives, a variant using multiplicative noise, and related methods for examining nonlinearities in visual processing, including second-order Volterra kernels and principal component analysis. I conclude with a selective review of how classification image methods have led to substantive findings in three representative areas of vision research, namely, spatial vision, perceptual organization, and visual search. PMID:21536726

  19. Textural features for image classification

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Dinstein, I.; Shanmugam, K.

    1973-01-01

    Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

  20. PORTABLE MULTISPECTRAL IMAGING INSTRUMENT FOR FOOD INDUSTRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper is to design and fabricate a hand-held multispectral instrument for real-time contaminant detection. Specifically, the protocol to develop a portable multispectral instrument including optical sensor design, fabrication, calibration, data collection, analysis and algorith...

  1. Pre-Processor for Compression of Multispectral Image Data

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron

    2006-01-01

    A computer program that preprocesses multispectral image data has been developed to provide the Mars Exploration Rover (MER) mission with a means of exploiting the additional correlation present in such data without appreciably increasing the complexity of compressing the data.

  2. Theoretical analysis of multispectral image segmentation criteria.

    PubMed

    Kerfoot, I B; Bresler, Y

    1999-01-01

    Markov random field (MRF) image segmentation algorithms have been extensively studied, and have gained wide acceptance. However, almost all of the work on them has been experimental. This provides a good understanding of the performance of existing algorithms, but not a unified explanation of the significance of each component. To address this issue, we present a theoretical analysis of several MRF image segmentation criteria. Standard methods of signal detection and estimation are used in the theoretical analysis, which quantitatively predicts the performance at realistic noise levels. The analysis is decoupled into the problems of false alarm rate, parameter selection (Neyman-Pearson and receiver operating characteristics), detection threshold, expected a priori boundary roughness, and supervision. Only the performance inherent to a criterion, with perfect global optimization, is considered. The analysis indicates that boundary and region penalties are very useful, while distinct-mean penalties are of questionable merit. Region penalties are far more important for multispectral segmentation than for greyscale. This observation also holds for Gauss-Markov random fields, and for many separable within-class PDFs. To validate the analysis, we present optimization algorithms for several criteria. Theoretical and experimental results agree fairly well. PMID:18267494

  3. CCD image acquisition for multispectral teledetection

    NASA Astrophysics Data System (ADS)

    Peralta-Fabi, R.; Peralta, A.; Prado, Jorge M.; Vicente, Esau; Navarette, M.

    1992-08-01

    A low cost high-reliability multispectral video system has been developed for airborne remote sensing. Three low weight CCD cameras are mounted together with a photographic camera in a keviar composite self-contained structure. The CCD cameras are remotely controlled have spectral filters (80 nm at 50 T) placed in front of their optical system and all cameras are aligned to capture the same image field. Filters may be changed so as to adjust spectral bands according to the object s reflectance properties but a set of bands common to most remote sensing aircraft and satellites are usually placed covering visible and near JR. This paper presents results obtained with this system and some comparisons as to the cost resolution and atmospheric correction advantages with respect to other more costly devices. Also a brief description of the Remotely Piloted Vehicle (RPV) project where the camera system will be mounted is given. The images so obtained replace the costlier ones obtained by satellites in severai specific applications. Other applications under development include fire monitoring identification of vegetation in the field and in the laboratory discrimination of objects by color for industrial applications and for geological and engineering surveys. 1.

  4. Color enhancement in multispectral image of human skin

    NASA Astrophysics Data System (ADS)

    Mitsui, Masanori; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2003-07-01

    Multispectral imaging is receiving attention in medical color imaging, as high-fidelity color information can be acquired by the multispectral image capturing. On the other hand, as color enhancement in medical color image is effective for distinguishing lesion from normal part, we apply a new technique for color enhancement using multispectral image to enhance the features contained in a certain spectral band, without changing the average color distribution of original image. In this method, to keep the average color distribution, KL transform is applied to spectral data, and only high-order KL coefficients are amplified in the enhancement. Multispectral images of human skin of bruised arm are captured by 16-band multispectral camera, and the proposed color enhancement is applied. The resultant images are compared with the color images reproduced assuming CIE D65 illuminant (obtained by natural color reproduction technique). As a result, the proposed technique successfully visualizes unclear bruised lesions, which are almost invisible in natural color images. The proposed technique will provide support tool for the diagnosis in dermatology, visual examination in internal medicine, nursing care for preventing bedsore, and so on.

  5. Multispectral image fusion based on fractal features

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the

  6. Multispectral Stokes polarimetry for dermatoscopic imaging

    NASA Astrophysics Data System (ADS)

    Castillejos, Y.; Martínez-Ponce, Geminiano; Mora-Nuñez, Azael; Castro-Sanchez, R.

    2015-12-01

    Most of skin pathologies, including melanoma and basal/squamous cell carcinoma, are related to alterations in external and internal order. Usually, physicians rely on their empirical expertise to diagnose these ills normally assisted with dermatoscopes. When there exists skin cancer suspicion, a cytology or biopsy is made, but both laboratory tests imply an invasive procedure. In this regard, a number of non-invasive optical techniques have been proposed recently to improve the diagnostic certainty and assist in the early detection of cutaneous cancer. Herein, skin optical properties are derived with a multispectral polarimetric dermatoscope using three different illumination wavelength intervals centered at 470, 530 and 635nm. The optical device consist of two polarizing elements, a quarter-wave plate and a linear polarizer, rotating at a different angular velocity and a CCD array as the photoreceiver. The modulated signal provided by a single pixel in the acquired image sequence is analyzed with the aim of computing the Stokes parameters. Changes in polarization state of selected wavelengths provide information about the presence of skin pigments such as melanin and hemoglobin species as well as collagen structure, among other components. These skin attributes determine the local physiology or pathology. From the results, it is concluded that optical polarimetry will provide additional elements to dermatologists in their diagnostic task.

  7. Airborne system for multispectral, multiangle polarimetric imaging.

    PubMed

    Bowles, Jeffrey H; Korwan, Daniel R; Montes, Marcos J; Gray, Deric J; Gillis, David B; Lamela, Gia M; Miller, W David

    2015-11-01

    In this paper, we describe the design, fabrication, calibration, and deployment of an airborne multispectral polarimetric imager. The motivation for the development of this instrument was to explore its ability to provide information about water constituents, such as particle size and type. The instrument is based on four 16 MP cameras and uses wire grid polarizers (aligned at 0°, 45°, 90°, and 135°) to provide the separation of the polarization states. A five-position filter wheel provides for four narrow-band spectral filters (435, 550, 625, and 750 nm) and one blocked position for dark-level measurements. When flown, the instrument is mounted on a programmable stage that provides control of the view angles. View angles that range to ±65° from the nadir have been used. Data processing provides a measure of the polarimetric signature as a function of both the view zenith and view azimuth angles. As a validation of our initial results, we compare our measurements, over water, with the output of a Monte Carlo code, both of which show neutral points off the principle plane. The locations of the calculated and measured neutral points are compared. The random error level in the measured degree of linear polarization (8% at 435) is shown to be better than 0.25%. PMID:26560615

  8. Integration of multispectral and C-band SAR data for crop classification

    NASA Astrophysics Data System (ADS)

    Ianninia, L.; Molijn, R. A.; Hanssen, R. F.

    2013-10-01

    The paper debates the impact of sensor configuration diversity on the crop classification performance. More specifically, the analysis accounts for multi-temporal and polarimetric C-Band SAR information used individually and in synergy with Multispectral imagery. The dataset used for the investigation comprises several multi-angle Radarsat-2 (RS2) fullpol acquisitions and RapidEye (RE) images both at fine resolution collected over the Indian Head (Canada) agricultural site area and spanning the summer crop growth cycle from May to September. A quasi-Maximum Likelihood (ML) classification approach applied at per-field level has been adopted to integrate the different data sources. The analysis provided evidence on the overall accuracy enhancement with respect to the individual sensor performances, with 4%-8% increase over a single RE image, a 40%-10% increase over a single 1-pol/full-pol image and 15%-0% increase over multitemporal 1-pol/full-pol RS2 series respectively. A more detailed crop analysis revealed that in particular canola and the cereals benefit from the integration, whereas lentil and flax can experience similar or worse performance when compared to the RE-based classification. Comments and suggestions for further development are presented.

  9. Multispectral confocal microendoscope for in vivo and in situ imaging

    PubMed Central

    Makhlouf, Houssine; Gmitro, Arthur F.; Tanbakuchi, Anthony A.; Udovich, Josh A.; Rouse, Andrew R.

    2016-01-01

    We describe the design and operation of a multispectral confocal microendoscope. This fiber-based fluorescence imaging system consists of a slit-scan confocal microscope coupled to an imaging catheter that is designed to be minimally invasive and allow for cellular level imaging in vivo. The system can operate in two imaging modes. The grayscale mode of operation provides high resolution real-time in vivo images showing the intensity of fluorescent signal from the specimen. The multispectral mode of operation uses a prism as a dispersive element to collect a full multispectral image of the fluorescence emission. The instrument can switch back and forth nearly instantaneously between the two imaging modes (less than half a second). In the current configuration, the multispectral confocal microendoscope achieves 3-μm lateral resolution and 30-μm axial resolution. The system records light from 500 to 750 nm, and the minimum resolvable wavelength difference varies from 2.9 to 8.3 nm over this spectral range. Grayscale and multispectral imaging results from ex-vivo human tissues and small animal tissues are presented. PMID:19021344

  10. Novel round-robin tabu search algorithm for prostate cancer classification and diagnosis using multispectral imagery.

    PubMed

    Tahir, Muhammad Atif; Bouridane, Ahmed

    2006-10-01

    Quantitative cell imagery in cancer pathology has progressed greatly in the last 25 years. The application areas are mainly those in which the diagnosis is still critically reliant upon the analysis of biopsy samples, which remains the only conclusive method for making an accurate diagnosis of the disease. Biopsies are usually analyzed by a trained pathologist who, by analyzing the biopsies under a microscope, assesses the normality or malignancy of the samples submitted. Different grades of malignancy correspond to different structural patterns as well as to apparent textures. In the case of prostate cancer, four major groups have to be recognized: stroma, benign prostatic hyperplasia, prostatic intraepithelial neoplasia, and prostatic carcinoma. Recently, multispectral imagery has been used to solve this multiclass problem. Unlike conventional RGB color space, multispectral images allow the acquisition of a large number of spectral bands within the visible spectrum, resulting in a large feature vector size. For such a high dimensionality, pattern recognition techniques suffer from the well-known "curse-of-dimensionality" problem. This paper proposes a novel round-robin tabu search (RR-TS) algorithm to address the curse-of-dimensionality for this multiclass problem. The experiments have been carried out on a number of prostate cancer textured multispectral images, and the results obtained have been assessed and compared with previously reported works. The system achieved 98%-100% classification accuracy when testing on two datasets. It outperformed principal component/linear discriminant classifier (PCA-LDA), tabu search/nearest neighbor classifier (TS-1NN), and bagging/boosting with decision tree (C4.5) classifier. PMID:17044412

  11. Robustly building keypoint mappings with global information on multispectral images

    NASA Astrophysics Data System (ADS)

    Li, Yong; Jin, Hongbin; Qiao, Wei; Jing, Jing; Yu, Hang

    2015-12-01

    This paper proposes an approach to robustly build keypoint mappings on multispectral images. The distinctiveness and repeatability of descriptors often decrease significantly on multispectral images and thus give unreliable keypoint mappings. To complement this decrease, global information over entire images is induced in this work to evaluate keypoint mappings. Initial keypoint mappings are established by utilizing descriptors. A pair of keypoint mappings determines a similarity transformation T, and then it is evaluated with the induced global information that is defined to be the similarity metric between the reference image and the transformed image by T. A process is utilized that iteratively considers the pairs of keypoint mappings and searches the best reference matched keypoint for every test keypoint. Experimental results show that the proposed approach can provide more reliable keypoint mappings than SIFT, ORB, FREAK, and ISS on multispectral images.

  12. Fourier Spectral Filter Array for Optimal Multispectral Imaging.

    PubMed

    Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo

    2016-04-01

    Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data. PMID:26849867

  13. Online Variety Discrimination of Rice Seeds Using Multispectral Imaging and Chemometric Methods

    NASA Astrophysics Data System (ADS)

    Liu, W.; Liu, Ch.; Ma, F.; Lu, X.; Yang, J.; Zheng, L.

    2016-01-01

    Variety identification plays an important role in ensuring the quality and quantity of yield in rice production. The feasibility of a rapid and nondestructive determination of varieties of rice seeds was examined by using a multispectral imaging system combined with chemometric data analysis. Methods of the partial least squares discriminant analysis (PLSDA), principal component analysis-back propagation neural network (PCA-BPNN), and least squares-support vector machines (LS-SVM) were applied to classify varieties of rice seeds. The results demonstrate that clear differences among varieties of rice seeds could be easily visualized using the multispectral imaging technique and an excellent classification could be achieved combining data of the spectral and morphological features. The classification accuracy was up to 94% in a validation set with the LS-SVM model, which was better than the PLSDA (62%) and PCA-BPNN (84%) models.

  14. Multispectral microwave imaging radar for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Rawson, R.; Ausherman, D.; Bryan, L.; Porcello, L.

    1974-01-01

    A multispectral airborne microwave radar imaging system, capable of obtaining four images simultaneously is described. The system has been successfully demonstrated in several experiments and one example of results obtained, fresh water ice, is given. Consideration of the digitization of the imagery is given and an image digitizing system described briefly. Preliminary results of digitization experiments are included.

  15. Multispectral Digital Image Analysis of Varved Sediments in Thin Sections

    NASA Astrophysics Data System (ADS)

    Jäger, K.; Rein, B.; Dietrich, S.

    2006-12-01

    An update of the recently developed method COMPONENTS (Rein, 2003, Rein & Jäger, subm.) for the discrimination of sediment components in thin sections is presented here. COMPONENTS uses a 6-band (multispectral) image analysis. To derive six-band spectral information of the sediments, thin sections are scanned with a digital camera mounted on a polarizing microscope. The thin sections are scanned twice, under polarized and under unpolarized plain light. During each run RGB images are acquired which are subsequently stacked to a six-band file. The first three bands (Blue=1, Green=2, Red=3) result from the spectral behaviour in the blue, green and red band with unpolarized light conditions, and the bands 4 to 6 (Blue=4, Green=5, Red=6) from the polarized light run. The next step is the discrimination of the sediment components by their transmission behaviour. Automatic classification algorithms broadly used in remote sensing applications cannot be used due to unavoidable variations of sediment particle or thin section thicknesses that change absolute grey values of the sediment components. Thus, we use an approach based on band ratios, also known as indices. By using band ratios, the grey values measured in different bands are normalized against each other and illumination variations (e.g. thickness variations) are eliminated. By combining specific ratios we are able to detect all seven major components in the investigated sediments (carbonates, diatoms, fine clastic material, plant rests, pyrite, quartz and resin). Then, the classification results (compositional maps) are validated. Although the automatic classification and the analogous classification show high concordances, some systematic errors could be identified. For example, the transition zone between the sediment and resin filled cracks is classified as fine clastic material and very coarse carbonates are partly classified as quartz because coarse carbonates can be very bright and spectra are partly

  16. Multispectral Microscopic Imager (MMI): Multispectral Imaging of Geological Materials at a Handlens Scale

    NASA Astrophysics Data System (ADS)

    Farmer, J. D.; Nunez, J. I.; Sellar, R. G.; Gardner, P. B.; Manatt, K. S.; Dingizian, A.; Dudik, M. J.; McDonnell, G.; Le, T.; Thomas, J. A.; Chu, K.

    2011-12-01

    The Multispectral Microscopic Imager (MMI) is a prototype instrument presently under development for future astrobiological missions to Mars. The MMI is designed to be a arm-mounted rover instrument for use in characterizing the microtexture and mineralogy of materials along geological traverses [1,2,3]. Such geological information is regarded as essential for interpreting petrogenesis and geological history, and when acquired in near real-time, can support hypothesis-driven exploration and optimize science return. Correlated microtexure and mineralogy also provides essential data for selecting samples for analysis with onboard lab instruments, and for prioritizing samples for potential Earth return. The MMI design employs multispectral light-emitting diodes (LEDs) and an uncooled focal plane array to achieve the low-mass (<1kg), low-cost, and high reliability (no moving parts) required for an arm-mounted instrument on a planetary rover [2,3]. The MMI acquires multispectral, reflectance images at 62 μm/pixel, in which each image pixel is comprised of a 21-band VNIR spectrum (0.46 to 1.73 μm). This capability enables the MMI to discriminate and resolve the spatial distribution of minerals and textures at the microscale [2, 3]. By extending the spectral range into the infrared, and increasing the number of spectral bands, the MMI exceeds the capabilities of current microimagers, including the MER Microscopic Imager (MI); 4, the Phoenix mission Robotic Arm Camera (RAC; 5) and the Mars Science Laboratory's Mars Hand Lens Imager (MAHLI; 6). In this report we will review the capabilities of the MMI by highlighting recent lab and field applications, including: 1) glove box deployments in the Astromaterials lab at Johnson Space Center to analyze Apollo lunar samples; 2) GeoLab glove box deployments during the 2011 Desert RATS field trials in northern AZ to characterize analog materials collected by astronauts during simulated EVAs; 3) field deployments on Mauna Kea

  17. Systemically diseased chicken identification using multispectral images and region of interest analysis

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chieh; Chao, Kuanglin; Chen, Yud-Ren; Early, Howard L.

    2004-11-01

    A simple multispectral classification method for the identification of systemically diseased chickens was developed and tested between two different imaging systems. An image processing algorithm was developed to define and locate the region of interest (ROI) as classification areas on the image. The average intensity was calculated for each classification area of the chicken image. A decision tree algorithm was used to determine threshold values for each classification areas. The wavelength of 540 nm was used for image differentiation purpose. There were 164 wholesome and 176 systemically diseased chicken images collected using the first imaging system, and 332 wholesome and 318 systemically diseased chicken images taken by the second imaging system. The differentiation thresholds, generated by the decision tree method, based on the images from the first imaging system were applied to the images from the second imaging system, and vice versa. The accuracy from evaluation was 95.7% for wholesome and 97.7% of systemically diseased chickens for the first image batch, and 99.7% for wholesome and 93.5% for systemically diseased chickens for the second image batch. The result showed that using single wavelength and threshold, this simple classification method can be used in automated on-line applications for chicken inspection.

  18. Using Image Tour to Explore Multiangle, Multispectral Satellite Image

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Wegman, Edward J.; Martinez, Wendy; Symanzik, Juergen; Wallet, Brad

    2006-01-01

    This viewgraph presentation reviews the use of Image Tour to explore the multiangle, multispectral satellite imagery. Remote sensing data are spatial arrays of p-dimensional vectors where each component corresponds to one of p variables. Applying the same R(exp p) to R(exp d) projection to all pixels creates new images, which may be easier to analyze than the original because d < p. Image grand tour (IGT) steps through the space of projections, and d=3 outputs a sequence of RGB images, one for each step. In this talk, we apply IGT to multiangle, multispectral data from NASA's MISR instrument. MISR views each pixel in four spectral bands at nine view angles. Multiple views detect photon scattering in different directions and are indicative of physical properties of the scene. IGT allows us to explore MISR's data structure while maintaining spatial context; a key requirement for physical interpretation. We report results highlighting the uniqueness of multiangle data and how IGT can exploit it.

  19. Nondestructive prediction of pork freshness parameters using multispectral scattering images

    NASA Astrophysics Data System (ADS)

    Tang, Xiuying; Li, Cuiling; Peng, Yankun; Chao, Kuanglin; Wang, Mingwu

    2012-05-01

    Optical technology is an important and immerging technology for non-destructive and rapid detection of pork freshness. This paper studied on the possibility of using multispectral imaging technique and scattering characteristics to predict the freshness parameters of pork meat. The pork freshness parameters selected for prediction included total volatile basic nitrogen (TVB-N), color parameters (L *, a *, b *), and pH value. Multispectral scattering images were obtained from pork sample surface by a multispectral imaging system developed by ourselves; they were acquired at the selected narrow wavebands whose center wavelengths were 517,550, 560, 580, 600, 760, 810 and 910nm. In order to extract scattering characteristics from multispectral images at multiple wavelengths, a Lorentzian distribution (LD) function with four parameters (a: scattering asymptotic value; b: scattering peak; c: scattering width; d: scattering slope) was used to fit the scattering curves at the selected wavelengths. The results show that the multispectral imaging technique combined with scattering characteristics is promising for predicting the freshness parameters of pork meat.

  20. Automatic recognition of abnormal cells in cytological tests using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Gertych, A.; Galliano, G.; Bose, S.; Farkas, D. L.

    2010-03-01

    Cervical cancer is the leading cause of gynecologic disease-related death worldwide, but is almost completely preventable with regular screening, for which cytological testing is a method of choice. Although such testing has radically lowered the death rate from cervical cancer, it is plagued by low sensitivity and inter-observer variability. Moreover, its effectiveness is still restricted because the recognition of shape and morphology of nuclei is compromised by overlapping and clumped cells. Multispectral imaging can aid enhanced morphological characterization of cytological specimens. Features including spectral intensity and texture, reflecting relevant morphological differences between normal and abnormal cells, can be derived from cytopathology images and utilized in a detection/classification scheme. Our automated processing of multispectral image cubes yields nuclear objects which are subjected to classification facilitated by a library of spectral signatures obtained from normal and abnormal cells, as marked by experts. Clumps are processed separately with reduced set of signatures. Implementation of this method yields high rate of successful detection and classification of nuclei into predefined malignant and premalignant types and correlates well with those obtained by an expert. Our multispectral approach may have an impact on the diagnostic workflow of cytological tests. Abnormal cells can be automatically highlighted and quantified, thus objectivity and performance of the reading can be improved in a way which is currently unavailable in clinical setting.

  1. Multispectral data acquisition and classification - Computer modeling for smart sensor design

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Davis, R. E.; Huck, F. O.; Arduini, R. F.

    1980-01-01

    In this paper a model of the processes involved in multispectral remote sensing and data classification is developed as a tool for designing and evaluating smart sensors. The model has both stochastic and deterministic elements and accounts for solar radiation, atmospheric radiative transfer, surface reflectance, sensor spectral reponses, and classification algorithms. Preliminary results are presented which indicate the validity and usefulness of this approach. Future capabilities of smart sensors will ultimately be limited by the accuracy with which multispectral remote sensing processes and their error sources can be computationally modeled.

  2. Improving performance of real-time multispectral imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time multispectral imaging system can be a science-based tool for fecal and ingesta contaminant detection during poultry processing. For the implementation of this imaging system at commercial poultry processing plant, false positive errors must be removed. For doing this, we tested and imp...

  3. Leica ADS40 Sensor for Coastal Multispectral Imaging

    NASA Technical Reports Server (NTRS)

    Craig, John C.

    2007-01-01

    The Leica ADS40 Sensor as it is used for coastal multispectral imaging is presented. The contents include: 1) Project Area Overview; 2) Leica ADS40 Sensor; 3) Focal Plate Arrangements; 4) Trichroid Filter; 5) Gradient Correction; 6) Image Acquisition; 7) Remote Sensing and ADS40; 8) Band comparisons of Satellite and Airborne Sensors; 9) Impervious Surface Extraction; and 10) Impervious Surface Details.

  4. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    This viewgraph presentation describes the spatial resolution of the AWiFS multispectral images characterized by an estimation of the Modulation Transfer Function (MTF) at Nyquist frequency. The contents include: 1) MTF Analysis; 2) Target Analysis; 3) "Pulse Target"; 4) "Pulse" Method; 5) Target Images; 6) Bridge Profiles; 7) MTF Calculation; 8) MTF Results; and 9) Results Summary.

  5. Detection of sudden death syndrome using a multispectral imaging sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sudden death syndrome (SDS), caused by the fungus Fusarium solani f. sp. glycines, is a widespread mid- to late-season disease with distinctive foliar symptoms. This paper reported the development of an image analysis based method to detect SDS using a multispectral image sensor. A hue, saturation a...

  6. Citrus greening detection using airborne hyperspectral and multispectral imaging techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral imaging can provide unique spectral signatures for diseased vegetation. Airborne multispectral and hyperspectral imaging can be used to detect potentially infected trees over a large area for rapid detection of infected zones. This paper proposes a method to detect the citrus greening...

  7. Filter selection based on light source for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  8. A review and analysis of neural networks for classification of remotely sensed multispectral imagery

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1993-01-01

    A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.

  9. The Multispectral Imaging Science Working Group. Volume 2: Working group reports

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    Summaries of the various multispectral imaging science working groups are presented. Current knowledge of the spectral and spatial characteristics of the Earth's surface is outlined and the present and future capabilities of multispectral imaging systems are discussed.

  10. Semiconductor Laser Multi-Spectral Sensing and Imaging

    PubMed Central

    Le, Han Q.; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers. PMID:22315555

  11. Trophic classification of Colorado lakes utilizing contact data, Landsat and aircraft-acquired multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Boland, D. H. P.; Blackwell, R. J.

    1978-01-01

    Multispectral scanner data, acquired over several Colorado lakes using Landsat-1 and aircraft, were used in conjunction with National Eutrophication Survey contact-sensed data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators (chlorophyll a, inverse of Secchi disk transparency, conductivity, total phosphorous, total organic nitrogen, algal assay yield). Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators (chlorophyll a, Secchi disk transparency, total organic nitrogen), and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state. Multispectral scanner data acquired from satellite and aircraft platforms can be used to advantage in lake monitoring and survey programs.

  12. Improving classification of hydrogeomorphic features in a gravel-bed river using an object-oriented fuzzy classification of multispectral satellite and LiDAR terrain data

    NASA Astrophysics Data System (ADS)

    Aggett, G. R.

    2012-12-01

    Recent attempts to map hydrogeomorphic objects by automatically classifying high spatial and spectral resolution data have tended to yield somewhat unsatisfactory results. This paper suggests that the main reason for this is the inherent limitations of image processing techniques that use a per-pixel approach to spectral classification, and their tendency to ignore spatial characteristics and relationships of hydrogeomorphic objects in the classification process. Pixel-based classifications have problems adequately or conveniently exploiting contextual information or expert knowledge. Object-based image-processing techniques may overcome these difficulties by first segmenting the image into meaningful multi-pixel objects of various sizes, based on both spectral and spatial characteristics of groups of pixels. Objects are assigned classes using fuzzy logic and a hierarchical decision key. This is tested here in the fluvial domain by comparing a per-pixel classification of a gravel-bed river to an object-oriented fuzzy classifier, using a readily available and relatively inexpensive high resolution satellite dataset that can be ordered for a specific date either in the future, or from an image library. Despite improved results using the object-oriented method, we also assert and demonstrate that the fusion of image data with detailed terrain modeled information is required if we are to make strides in reducing classification ambiguities in complex river systems. Thus a second experiment investigates the utility of fusing a LiDAR dataset with multispectral imagery to enhance the object-oriented image classification.

  13. Investigation related to multispectral imaging systems

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F.; Erickson, J. D.

    1974-01-01

    A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.

  14. Characteristic variogram for land use in Multispectral Images

    NASA Astrophysics Data System (ADS)

    Mera, E.; Condal, A.; Rios, C.; Da Silva, L.

    2016-05-01

    In remote sensing is the concept of spectral signature in multispectral imagery to recognize different land uses in the area; This study proposes the existence of a characteristic variogram for land use in multispectral images. To test this idea we proceeded to work with a sector of a scene image of multispectral Landsat 7 ETM +, in 6 of their bands (1- 450nm to 520nm, 2 - 520nm to 600nm, 3 - 630nm to 690nm, 4 - 760nm to 900nm 5 - over 1550nm to 1.750nm and 7 - 2.080nm to 2.350nm), corresponding to two uses of urban land and agricultural, the omnidirectional variogram for each band was analyzed and modal variogram for each land use was established in the stripe set. Of the analyzed claims data for each land use is a model characteristic and modal cross variogram how their wavelengths.

  15. Prediction of coefficients for lossless compression of multispectral images

    NASA Astrophysics Data System (ADS)

    Ruedin, Ana M. C.; Acevedo, Daniel G.

    2005-08-01

    We present a lossless compressor for multispectral Landsat images that exploits interband and intraband correlations. The compressor operates on blocks of 256 x 256 pixels, and performs two kinds of predictions. For bands 1, 2, 3, 4, 5, 6.2 and 7, the compressor performs an integer-to-integer wavelet transform, which is applied to each block separately. The wavelet coefficients that have not yet been encoded are predicted by means of a linear combination of already coded coefficients that belong to the same orientation and spatial location in the same band, and coefficients of the same location from other spectral bands. A fast block classification is performed in order to use the best weights for each landscape. The prediction errors or differences are finally coded with an entropy - based coder. For band 6.1, we do not use wavelet transforms, instead, a median edge detector is applied to predict a pixel, with the information of the neighbouring pixels and the equalized pixel from band 6.2. This technique exploits better the great similarity between histograms of bands 6.1 and 6.2. The prediction differences are finally coded with a context-based entropy coder. The two kinds of predictions used reduce both spatial and spectral correlations, increasing the compression rates. Our compressor has shown to be superior to the lossless compressors Winzip, LOCO-I, PNG and JPEG2000.

  16. Land mine detection using multispectral image fusion

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.; Roeske, F.; Donetti, J.G.; Fields, D.J.; Sherwood, R.J.; Schaich, P.C.

    1995-03-29

    Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.

  17. Demosaicking for multispectral images based on vectorial total variation

    NASA Astrophysics Data System (ADS)

    Shinoda, Kazuma; Hamasaki, Taisuke; Kawase, Maru; Hasegawa, Madoka; Kato, Shigeo

    2016-08-01

    Multispectral images (MSIs), which consist of more color components than RGB images, can be used in the field of vegetation analysis and medical imaging. A capturing system with multispectral filter array (MSFA) technology has been researched to shorten the capturing time and reduce the cost. In this system, the mosaicked image captured by the MSFA is demosaicked to reconstruct the MSI. We propose a demosaicking method using vectorial total variation (VTV) regularization for an MSI. This process is regarded as inverse problem of the image observation model. The reconstructed image is estimated by minimizing the VTV as a regularization term under the constraint condition. In the experimental results, the reconstructed image quality obtained using the proposed method is better than that of the conventional approaches in terms of both peak signal-to-noise ratio and structural similarity.

  18. Demosaicking for multispectral images based on vectorial total variation

    NASA Astrophysics Data System (ADS)

    Shinoda, Kazuma; Hamasaki, Taisuke; Kawase, Maru; Hasegawa, Madoka; Kato, Shigeo

    2016-05-01

    Multispectral images (MSIs), which consist of more color components than RGB images, can be used in the field of vegetation analysis and medical imaging. A capturing system with multispectral filter array (MSFA) technology has been researched to shorten the capturing time and reduce the cost. In this system, the mosaicked image captured by the MSFA is demosaicked to reconstruct the MSI. We propose a demosaicking method using vectorial total variation (VTV) regularization for an MSI. This process is regarded as inverse problem of the image observation model. The reconstructed image is estimated by minimizing the VTV as a regularization term under the constraint condition. In the experimental results, the reconstructed image quality obtained using the proposed method is better than that of the conventional approaches in terms of both peak signal-to-noise ratio and structural similarity.

  19. Benchmarking Deep Learning Frameworks for the Classification of Very High Resolution Satellite Multispectral Data

    NASA Astrophysics Data System (ADS)

    Papadomanolaki, M.; Vakalopoulou, M.; Zagoruyko, S.; Karantzalos, K.

    2016-06-01

    In this paper we evaluated deep-learning frameworks based on Convolutional Neural Networks for the accurate classification of multispectral remote sensing data. Certain state-of-the-art models have been tested on the publicly available SAT-4 and SAT-6 high resolution satellite multispectral datasets. In particular, the performed benchmark included the AlexNet, AlexNet-small and VGG models which had been trained and applied to both datasets exploiting all the available spectral information. Deep Belief Networks, Autoencoders and other semi-supervised frameworks have been, also, compared. The high level features that were calculated from the tested models managed to classify the different land cover classes with significantly high accuracy rates i.e., above 99.9%. The experimental results demonstrate the great potentials of advanced deep-learning frameworks for the supervised classification of high resolution multispectral remote sensing data.

  20. Multispectral Joint Image Restoration via Optimizing a Scale Map.

    PubMed

    Shen, Xiaoyong; Yan, Qiong; Xu, Li; Ma, Lizhuang; Jia, Jiaya

    2015-12-01

    Color, infrared and flash images captured in different fields can be employed to effectively eliminate noise and other visual artifacts. We propose a two-image restoration framework considering input images from different fields, for example, one noisy color image and one dark-flashed near-infrared image. The major issue in such a framework is to handle all structure divergence and find commonly usable edges and smooth transitions for visually plausible image reconstruction. We introduce a novel scale map as a competent representation to explicitly model derivative-level confidence and propose new functions and a numerical solver to effectively infer it following our important structural observations. Multispectral shadow detection is also used to make our system more robust. Our method is general and shows a principled way to solve multispectral restoration problems. PMID:26539855

  1. Classification images with uncertainty

    PubMed Central

    Tjan, Bosco S.; Nandy, Anirvan S.

    2009-01-01

    Classification image and other similar noise-driven linear methods have found increasingly wider applications in revealing psychophysical receptive field structures or perceptual templates. These techniques are relatively easy to deploy, and the results are simple to interpret. However, being a linear technique, the utility of the classification-image method is believed to be limited. Uncertainty about the target stimuli on the part of an observer will result in a classification image that is the superposition of all possible templates for all the possible signals. In the context of a well-established uncertainty model, which pools the outputs of a large set of linear frontends with a max operator, we show analytically, in simulations, and with human experiments that the effect of intrinsic uncertainty can be limited or even eliminated by presenting a signal at a relatively high contrast in a classification-image experiment. We further argue that the subimages from different stimulus-response categories should not be combined, as is conventionally done. We show that when the signal contrast is high, the subimages from the error trials contain a clear high-contrast image that is negatively correlated with the perceptual template associated with the presented signal, relatively unaffected by uncertainty. The subimages also contain a “haze” that is of a much lower contrast and is positively correlated with the superposition of all the templates associated with the erroneous response. In the case of spatial uncertainty, we show that the spatial extent of the uncertainty can be estimated from the classification subimages. We link intrinsic uncertainty to invariance and suggest that this signal-clamped classification-image method will find general applications in uncovering the underlying representations of high-level neural and psychophysical mechanisms. PMID:16889477

  2. Development of Handheld Multispectral Imaging For Food Safety Inspection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop a handheld multispectral instrument for food safety inspection for poultry carcasses. The prototype system developed in this research consisted of a compact dual-band spectral imaging system, Light Emitting diode (LED), and portable computer. The dual-...

  3. Performance evaluation of supervised change detection tool on DubaiSat-2 multispectral and pansharp images

    NASA Astrophysics Data System (ADS)

    Almatroushi, Hessa R.

    2014-10-01

    Supervised Change Detection Tool (SCDT) is an in-house developed tool in Emirates Institution for Advanced Science and Technology (EIAST). The developed tool is based on Algebra Change Detection algorithm and multi-class Support Vector Machine classifier and is capable of highlighting the areas of change, describing them, and discarding any falsedetections that result from shadow. Further, it can collect the analysis results, which include the change of class an area went through and the overall change percentage of each class defined, in a Microsoft Word document automatically. This paper evaluates the performance of the SCDT, which was initially developed for DubaiSat-1 multispectral images, on DubaiSat-2 multispectral and pansharp images. Moreover, it compares its performance opposed to Change Detection Analysis (i.e. Post-Classification) in ENVI.

  4. Multispectral imaging for digital painting analysis: a Gauguin case study

    NASA Astrophysics Data System (ADS)

    Cornelis, Bruno; Dooms, Ann; Leen, Frederik; Munteanu, Adrian; Schelkens, Peter

    2010-08-01

    This paper is an introduction into the analysis of multispectral recordings of paintings. First, we will give an overview of the advantages of multispectral image analysis over more traditional techniques: first of all, the bands residing in the visible domain provide an accurate measurement of the color information which can be used for analysis but also for conservational and archival purposes (i.e. preserving the art patrimonial by making a digital library). Secondly, inspection of the multispectral imagery by art experts and art conservators has shown that combining the information present in the spectral bands residing in- and outside the visible domain can lead to a richer analysis of paintings. In the remainder of the paper, practical applications of multispectral analysis are demonstrated, where we consider the acquisition of thirteen different, high resolution spectral bands. Nine of these reside in the visible domain, one in the near ultraviolet and three in the infrared. The paper will illustrate the promising future of multispectral analysis as a non-invasive tool for acquiring data which cannot be acquired by visual inspection alone and which is highly relevant to art preservation, authentication and restoration. The demonstrated applications include detection of restored areas and detection of aging cracks.

  5. Multispectral-image fusion using neural networks

    NASA Astrophysics Data System (ADS)

    Kagel, Joseph H.; Platt, C. A.; Donaven, T. W.; Samstad, Eric A.

    1990-08-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard a circuit card assembly and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations results and a description of the prototype system are presented. 1.

  6. Multispectral image fusion using neural networks

    NASA Technical Reports Server (NTRS)

    Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.

    1990-01-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.

  7. Crop classification using HJ satellite multispectral data in the North China Plain

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Wu, Bingfang; Li, Qiangzi

    2013-01-01

    The HJ satellite constellation is designed for environment and disaster monitoring by the Chinese government. This paper investigates the performance of multitemporal multispectral charge-coupled device (CCD) data on board HJ-1-A and HJ-1-B for crop classification in the North China Plain. Support vector machine classifier is selected for the classification using different combinations of multitemporal HJ multispectral data. The results indicate that multitemporal HJ CCD data could effectively identify wheat fields with an overall classification accuracy of 91.7%. Considering only single temporal data, 88.2% is the best classification accuracy achieved using the data acquired at the flowering time of wheat. The performance of the combination of two temporal data acquired at the jointing and flowering times of wheat is almost as well as using all three temporal data, indicating that two appropriate temporal data are enough for wheat classification, and much more data have little effect on improving the classification accuracy. Moreover, two temporal data acquired over a larger time interval achieves better results than that over a smaller interval. However, the field borders and smaller cotton fields cannot be identified effectively by HJ multispectral data, and misclassification phenomenon exists because of the relatively coarse spatial resolution.

  8. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  9. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  10. Multi-spectral confocal microendoscope for in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  11. Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification.

    PubMed

    Gong, Wei; Sun, Jia; Shi, Shuo; Yang, Jian; Du, Lin; Zhu, Bo; Song, Shalei

    2015-01-01

    The abilities of multispectral LiDAR (MSL) as a new high-potential active instrument for remote sensing have not been fully revealed. This study demonstrates the potential of using the spectral and spatial features derived from a novel MSL to discriminate surface objects. Data acquired with the MSL include distance information and the intensities of four wavelengths at 556, 670, 700, and 780 nm channels. A support vector machine was used to classify diverse objects in the experimental scene into seven types: wall, ceramic pots, Cactaceae, carton, plastic foam block, and healthy and dead leaves of E. aureum. Different features were used during classification to compare the performance of different detection systems. The spectral backscattered reflectance of one wavelength and distance represented the features from an equivalent single-wavelength LiDAR system; reflectance of the four wavelengths represented the features from an equivalent multispectral image with four bands. Results showed that the overall accuracy of using MSL data was as high as 88.7%, this value was 9.8%-39.2% higher than those obtained using a single-wavelength LiDAR, and 4.2% higher than for multispectral image. PMID:26340630

  12. Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification

    PubMed Central

    Gong, Wei; Sun, Jia; Shi, Shuo; Yang, Jian; Du, Lin; Zhu, Bo; Song, Shalei

    2015-01-01

    The abilities of multispectral LiDAR (MSL) as a new high-potential active instrument for remote sensing have not been fully revealed. This study demonstrates the potential of using the spectral and spatial features derived from a novel MSL to discriminate surface objects. Data acquired with the MSL include distance information and the intensities of four wavelengths at 556, 670, 700, and 780 nm channels. A support vector machine was used to classify diverse objects in the experimental scene into seven types: wall, ceramic pots, Cactaceae, carton, plastic foam block, and healthy and dead leaves of E. aureum. Different features were used during classification to compare the performance of different detection systems. The spectral backscattered reflectance of one wavelength and distance represented the features from an equivalent single-wavelength LiDAR system; reflectance of the four wavelengths represented the features from an equivalent multispectral image with four bands. Results showed that the overall accuracy of using MSL data was as high as 88.7%, this value was 9.8%–39.2% higher than those obtained using a single-wavelength LiDAR, and 4.2% higher than for multispectral image. PMID:26340630

  13. The Multispectral Imaging Science Working Group. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Cox, S. C. (Editor)

    1982-01-01

    Results of the deliberations of the six multispectral imaging science working groups (Botany, Geography, Geology, Hydrology, Imaging Science and Information Science) are summarized. Consideration was given to documenting the current state of knowledge in terrestrial remote sensing without the constraints of preconceived concepts such as possible band widths, number of bands, and radiometric or spatial resolutions of present or future systems. The findings of each working group included a discussion of desired capabilities and critical developmental issues.

  14. Real-time multispectral imaging application for poultry safety inspection

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, Matthew P.

    2006-02-01

    The ARS imaging research group in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses for poultry industry. The industrial scale system includes a common aperture camera with three visible wavelength optical trim filters. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were presented. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line. The test results of industrial sacle real-time system showed that the multispectral imaging technique performed well for detecting fecal contaminants with a commercial processing speed (currently 140 birds per minute). The accuracy for the detection of fecal and ingesta contaminates was approximately 96%.

  15. Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.

  16. Retinal oxygen saturation evaluation by multi-spectral fundus imaging

    NASA Astrophysics Data System (ADS)

    Khoobehi, Bahram; Ning, Jinfeng; Puissegur, Elise; Bordeaux, Kimberly; Balasubramanian, Madhusudhanan; Beach, James

    2007-03-01

    Purpose: To develop a multi-spectral method to measure oxygen saturation of the retina in the human eye. Methods: Five Cynomolgus monkeys with normal eyes were anesthetized with intramuscular ketamine/xylazine and intravenous pentobarbital. Multi-spectral fundus imaging was performed in five monkeys with a commercial fundus camera equipped with a liquid crystal tuned filter in the illumination light path and a 16-bit digital camera. Recording parameters were controlled with software written specifically for the application. Seven images at successively longer oxygen-sensing wavelengths were recorded within 4 seconds. Individual images for each wavelength were captured in less than 100 msec of flash illumination. Slightly misaligned images of separate wavelengths due to slight eye motion were registered and corrected by translational and rotational image registration prior to analysis. Numerical values of relative oxygen saturation of retinal arteries and veins and the underlying tissue in between the artery/vein pairs were evaluated by an algorithm previously described, but which is now corrected for blood volume from averaged pixels (n > 1000). Color saturation maps were constructed by applying the algorithm at each image pixel using a Matlab script. Results: Both the numerical values of relative oxygen saturation and the saturation maps correspond to the physiological condition, that is, in a normal retina, the artery is more saturated than the tissue and the tissue is more saturated than the vein. With the multi-spectral fundus camera and proper registration of the multi-wavelength images, we were able to determine oxygen saturation in the primate retinal structures on a tolerable time scale which is applicable to human subjects. Conclusions: Seven wavelength multi-spectral imagery can be used to measure oxygen saturation in retinal artery, vein, and tissue (microcirculation). This technique is safe and can be used to monitor oxygen uptake in humans. This work

  17. Uniqueness in multispectral constant-wave epi-illumination imaging.

    PubMed

    Garcia-Allende, P B; Radrich, K; Symvoulidis, P; Glatz, J; Koch, M; Jentoft, K M; Ripoll, J; Ntziachristos, V

    2016-07-01

    Multispectral tissue imaging based on optical cameras and continuous-wave tissue illumination is commonly used in medicine and biology. Surprisingly, there is a characteristic absence of a critical look at the quantities that can be uniquely characterized from optically diffuse matter by multispectral imaging. Here, we investigate the fundamental question of uniqueness in epi-illumination measurements from turbid media obtained at multiple wavelengths. By utilizing an analytical model, tissue-mimicking phantoms, and an in vivo imaging experiment we show that independent of the bands employed, spectral measurements cannot uniquely retrieve absorption and scattering coefficients. We also establish that it is, nevertheless, possible to uniquely quantify oxygen saturation and the Mie scattering power-a previously undocumented uniqueness condition. PMID:27367111

  18. Multispectral imaging system with interchangeable filter design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The design and calibration of a three-band image acquisition system was reported. The prototype system developed was a three-band spectral imaging system that acquired two visible images and a NIR image simultaneously. This was accomplished by using a three-port imaging system that consisted of th...

  19. Construction and demonstration of a multispectral tomographic scanning imager (TOSCA).

    PubMed

    Hovland, Harald

    2013-02-25

    This work presents the first experimental demonstrator of an imager based on a tomographic scanning (TOSCA) principle. The device described generates a stream of multispectral images of a scene or target using simple conical scan optics and a simple patterned reticle, followed by collecting optics and one or several single pixel detectors. Tomographic processing techniques are then applied to the one-dimensional signals to reproduce two-dimensional images. Various aspects of the design and construction are described, and resulting images and movies are shown. PMID:23482001

  20. Unsupervised hyperspectral image classification

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaoli; Chang, Chein-I.

    2007-09-01

    Two major issues encountered in unsupervised hyperspectral image classification are (1) how to determine the number of spectral classes in the image and (2) how to find training samples that well represent each of spectral classes without prior knowledge. A recently developed concept, Virtual dimensionality (VD) is used to estimate the number of spectral classes of interest in the image data. This paper proposes an effective algorithm to generate an appropriate training set via a recently developed Prioritized Independent Component Analysis (PICA). Two sets of hyperspectral data, Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Cuprite data and HYperspectral Digital Image Collection Experiment (HYDICE) data are used for experiments and performance analysis for the proposed method.

  1. Segmenting clouds from space : a hybrid multispectral classification algorithm for satellite imagery.

    SciTech Connect

    Post, Brian Nelson; Wilson, Mark P.; Smith, Jody Lynn; Wehlburg, Joseph Cornelius; Nandy, Prabal

    2005-07-01

    This paper reports on a novel approach to atmospheric cloud segmentation from a space based multi-spectral pushbroom satellite system. The satellite collects 15 spectral bands ranging from visible, 0.45 um, to long wave infra-red (IR), 10.7um. The images are radiometrically calibrated and have ground sample distances (GSD) of 5 meters for visible to very near IR bands and a GSD of 20 meters for near IR to long wave IR. The algorithm consists of a hybrid-classification system in the sense that supervised and unsupervised networks are used in conjunction. For performance evaluation, a series of numerical comparisons to human derived cloud borders were performed. A set of 33 scenes were selected to represent various climate zones with different land cover from around the world. The algorithm consisted of the following. Band separation was performed to find the band combinations which form significant separation between cloud and background classes. The potential bands are fed into a K-Means clustering algorithm in order to identify areas in the image which have similar centroids. Each cluster is then compared to the cloud and background prototypes using the Jeffries-Matusita distance. A minimum distance is found and each unknown cluster is assigned to their appropriate prototype. A classification rate of 88% was found when using one short wave IR band and one mid-wave IR band. Past investigators have reported segmentation accuracies ranging from 67% to 80%, many of which require human intervention. A sensitivity of 75% and specificity of 90% were reported as well.

  2. Colorimetric-spectral clustering: a tool for multispectral image compression

    NASA Astrophysics Data System (ADS)

    Ciprian, R.; Carbucicchio, M.

    2011-11-01

    In this work a new compression method for multispectral images has been proposed: the 'colorimetric-spectral clustering'. The basic idea arises from the well-known cluster analysis, a multivariate analysis which finds the natural links between objects grouping them into clusters. In the colorimetric-spectral clustering compression method, the objects are the spectral reflectance factors of the multispectral images that are grouped into clusters on the basis of their colour difference. In particular two spectra can belong to the same cluster only if their colour difference is lower than a threshold fixed before starting the compression procedure. The performance of the colorimetric-spectral clustering has been compared to the k-means cluster analysis, in which the Euclidean distance between spectra is considered, to the principal component analysis and to the LabPQR method. The colorimetric-spectral clustering is able to preserve both the spectral and the colorimetric information of a multispectral image, allowing this information to be reproduced for all pixels of the image.

  3. Development of a Multispectral Imaging Prototype for Real-Time Detection of Apple Fruit Firmness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multispectral scattering is a promising nondestructive technique for assessing the firmness of fruit. This paper reports on the development of a laser-based multispectral imaging prototype for real-time detection of apple fruit firmness. The prototype consisted of a common aperture multispectral ima...

  4. Temporal registration of multispectral digital satellite images using their edge images

    NASA Technical Reports Server (NTRS)

    Nack, M. L.

    1975-01-01

    An algorithm is described which will form an edge image by detecting the edges of features in a particular spectral band of a digital satellite image. It is capable also of forming composite multispectral edge images. In addition, an edge image correlation algorithm is presented which performs rapid automatic registration of the edge images and, consequently, the grey level images.

  5. Implementation of ILLIAC 4 algorithms for multispectral image interpretation. [earth resources data

    NASA Technical Reports Server (NTRS)

    Ray, R. M.; Thomas, J. D.; Donovan, W. E.; Swain, P. H.

    1974-01-01

    Research has focused on the design and partial implementation of a comprehensive ILLIAC software system for computer-assisted interpretation of multispectral earth resources data such as that now collected by the Earth Resources Technology Satellite. Research suggests generally that the ILLIAC 4 should be as much as two orders of magnitude more cost effective than serial processing computers for digital interpretation of ERTS imagery via multivariate statistical classification techniques. The potential of the ARPA Network as a mechanism for interfacing geographically-dispersed users to an ILLIAC 4 image processing facility is discussed.

  6. The Land Analysis System (LAS) for multispectral image processing

    USGS Publications Warehouse

    Wharton, S. W.; Lu, Y. C.; Quirk, Bruce K.; Oleson, Lyndon R.; Newcomer, J. A.; Irani, Frederick M.

    1988-01-01

    The Land Analysis System (LAS) is an interactive software system available in the public domain for the analysis, display, and management of multispectral and other digital image data. LAS provides over 240 applications functions and utilities, a flexible user interface, complete online and hard-copy documentation, extensive image-data file management, reformatting, conversion utilities, and high-level device independent access to image display hardware. The authors summarize the capabilities of the current release of LAS (version 4.0) and discuss plans for future development. Particular emphasis is given to the issue of system portability and the importance of removing and/or isolating hardware and software dependencies.

  7. Multispectral imaging of the ocular fundus using LED illumination

    NASA Astrophysics Data System (ADS)

    Everdell, N. L.; Styles, I. B.; Claridge, E.; Hebden, J. C.; Calcagni, A. S.

    2009-07-01

    We present preliminary data from an imaging system based on LED illumination for obtaining sequential multispectral optical images of the human ocular fundus. The system is capable of acquiring images at speeds of up to 20fps and we have demonstrated that the system is fast enough to allow images to be acquired with minimal inter-frame movement. Further improvements have been identified that will improve both imaging speed and image quality. The long-term goal is to use the system in conjunction with novel image analysis algorithms to extract chromophore concentrations from images of the ocular fundus, with a particular emphasis on age-related macular degeneration. The system has also found utility in fluorescence microscopy.

  8. Noninvasive inspection of skin lesions via multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pelagotti, Anna; Ferrara, Pasquale; Pescitelli, Leonardo; Gerlini, Gianni; Piva, Alessandro; Borgognoni, Lorenzo

    2013-04-01

    An optical noninvasive inspection tool is presented to, in vivo, better characterize biological tissues such as human skin. The method proposed exploits a multispectral imaging device to acquire a set of images in the visible and NIR range. This kind of information can be very helpful to improve early diagnosis of melanoma, a very aggressive cutaneous neoplasm, incidence and mortality of which continues to rise worldwide. Currently, noninvasive methods (i.e. dermoscopy) have improved melanoma detection, but the definitive diagnosis is still achieved only by invasive method (istopathological observation of the excised lesion). The multispectral system we developed is capable of imaging layers of structures placed at increasing depth, thanks to the fact that light propagates into the skin and reaches different depths depending on its wavelength. This allows to image many features which are less or not visible in the clinical and dermoscopic examination. A new semeiotics is proposed to describe the content of multispectral images. Dermoscopic criteria can be easily applied to describe each image in the set, however inter-images correlations need new suitable descriptors. The first group of new parameters describes how the dermoscopic features, vary across the set of images. More aspects are then introduced. E.g. the longest wavelength where structures can be detected gives an estimate of the maximum depth reached by the pigmented lesion. While the presence of a bright-to-dark transition between the wavebands in the violet to blue range, reveals the presence of blue-whitish veil, which is a further malignancy marker.

  9. Effect of Pansharpened Image on Some of Pixel Based and Object Based Classification Accuracy

    NASA Astrophysics Data System (ADS)

    Karakus, P.; Karabork, H.

    2016-06-01

    Classification is the most important method to determine type of crop contained in a region for agricultural planning. There are two types of the classification. First is pixel based and the other is object based classification method. While pixel based classification methods are based on the information in each pixel, object based classification method is based on objects or image objects that formed by the combination of information from a set of similar pixels. Multispectral image contains a higher degree of spectral resolution than a panchromatic image. Panchromatic image have a higher spatial resolution than a multispectral image. Pan sharpening is a process of merging high spatial resolution panchromatic and high spectral resolution multispectral imagery to create a single high resolution color image. The aim of the study was to compare the potential classification accuracy provided by pan sharpened image. In this study, SPOT 5 image was used dated April 2013. 5m panchromatic image and 10m multispectral image are pan sharpened. Four different classification methods were investigated: maximum likelihood, decision tree, support vector machine at the pixel level and object based classification methods. SPOT 5 pan sharpened image was used to classification sun flowers and corn in a study site located at Kadirli region on Osmaniye in Turkey. The effects of pan sharpened image on classification results were also examined. Accuracy assessment showed that the object based classification resulted in the better overall accuracy values than the others. The results that indicate that these classification methods can be used for identifying sun flower and corn and estimating crop areas.

  10. Multispectral imaging contributions to global land ice measurements from space

    USGS Publications Warehouse

    Kargel, J.S.; Abrams, M.J.; Bishop, M.P.; Bush, A.; Hamilton, G.; Jiskoot, H.; Kaab, Andreas; Kieffer, H.H.; Lee, E.M.; Paul, F.; Rau, F.; Raup, B.; Shroder, J.F.; Soltesz, D.; Stainforth, D.; Stearns, L.; Wessels, R.

    2005-01-01

    Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world's glaciers, analyse them for glacier extent and changes, and assess change data for causes and implications for people and the environment. Although GLIMS is making use of multiple remote-sensing systems, ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) is optimized for many needed observations, including mapping of glacier boundaries and material facies, and tracking of surface dynamics, such as flow vector fields and supraglacial lake development. Software development by GLIMS is geared toward mapping clean-ice and debris-covered glaciers; terrain classification emphasizing snow, ice, water, and admixtures of ice with rock debris; multitemporal change analysis; visualization of images and derived data; and interpretation and archiving of derived data. A global glacier database has been designed at the National Snow and Ice Data Center (NSIDC, Boulder, Colorado); parameters are compatible with and expanded from those of the World Glacier Inventory (WGI). These technology efforts are summarized here, but will be presented in detail elsewhere. Our presentation here pertains to one broad question: How can ASTER and other satellite multispectral data be used to map, monitor, and characterize the state and dynamics of glaciers and to understand their responses to 20th and 21st century climate change? Our sampled results are not yet glaciologically or climatically representative. Our early results, while indicating complexity, are generally consistent with the glaciology community's conclusion that climate change is spurring glacier responses around the world (mainly retreat). Whether individual glaciers are advancing or retreating, the aggregate average of glacier change must be climatic in origin, as nonclimatic variations average out. We have discerned regional spatial patterns in glaciological response behavior

  11. Implementation and evaluation of ILLIAC 4 algorithms for multispectral image processing

    NASA Technical Reports Server (NTRS)

    Swain, P. H.

    1974-01-01

    Data concerning a multidisciplinary and multi-organizational effort to implement multispectral data analysis algorithms on a revolutionary computer, the Illiac 4, are reported. The effectiveness and efficiency of implementing the digital multispectral data analysis techniques for producing useful land use classifications from satellite collected data were demonstrated.

  12. Multispectral Thermal Imager (MTI) Payload Overview

    SciTech Connect

    Bender, S.C.; Brock, B.C.; Bullington, D.M.; Byrd, D.A.; Claassen, P.J.; Decker, M.L.; Henson, T.D.; Kay, R.R.; Kidner, R.E.; Lanes, C.E.; Little, C.; Marbach, K.D.; Rackley, N.G.; Rienstra, J.L.; Smith, B.W.; Taplin, R.B.; Weber, P.G.

    1999-07-07

    MTI is a comprehensive research and development project that includes up-front modeling and analysis, satellite system design, fabrication, assembly and testing, on-orbit operations, and experimentation and data analysis. The satellite is designed to collect radiometrically calibrated, medium resolution imagery in 15 spectral bands ranging from 0.45 to 10.70 pm. The payload portion of the satellite includes the imaging system components, associated electronics boxes, and payload support structure. The imaging system includes a three-mirror anastigmatic off-axis telescope, a single cryogenically cooled focal plane assembly, a mechanical cooler, and an onboard calibration system. Payload electronic subsystems include image digitizers, real-time image compressors, a solid state recorder, calibration source drivers, and cooler temperature and vibration controllers. The payload support structure mechanically integrates all payload components and provides a simple four point interface to the spacecraft bus. All payload components have been fabricated and tested, and integrated.

  13. Multispectral image fusion for visual display

    NASA Astrophysics Data System (ADS)

    Peli, Tamar; Peli, Eli; Ellis, Kenneth K.; Stahl, Robert

    1999-03-01

    This paper describes a contrast-based monochromatic fusion process. The fusion process is aimed for on board real time the information content in the combined image, while retaining visual clues that are essential for navigation/piloting tasks. The method is a multi scale fusion process that provides a combination of pixel selection from a single image and a weighing of the two/multiple images. The spectral region is divided into spatial sub bands of different scales and orientations, and within each scale a combination rule for the corresponding pixels taken from the two components is applied. Even when the combination rule is a binary selection the combined fused image may have a combination of pixel values taken from the two components at various scales since it is taken at each scale. The visual band input is given preference in low scale, large features fusion. This fusion process provides a fused image better tuned to the natural and intuitive human perception. This is necessary for pilotage and navigation under stressful conditions, while maintaining or enhancing the targeting detection and recognition performance of proven display fusion methodologies. The fusion concept was demonstrated against imagery from image intensifiers and forward looking IR sensors currently used by the US Navy for navigation and targeting. The approach is easily extendible to more than two bands.

  14. Standardized system for multispectral imaging of palimpsests

    NASA Astrophysics Data System (ADS)

    Easton, Roger L., Jr.; Knox, Keith T.; Christens-Barry, William A.; Boydston, Kenneth; Toth, Michael B.; Emery, Doug; Noel, William

    2010-02-01

    The Archimedes Palimpsest imaging team has developed a spectral imaging system and associated processing techniques for general use with palimpsests and other artifacts. It includes an illumination system of light-emitting diodes (LEDs) in 13 narrow bands from the near ultraviolet through the near infrared (▵λ<= 40nm), blue and infrared LEDs at raking angles, high-resolution monochrome and color sensors, a variety of image collection techniques (including spectral imaging of emitted fluorescence), standard metadata records, and image processing algorithms, including pseudocolor color renderings and principal component analysis (PCA). This paper addresses the development and optimization of these techniques for the study of parchment palimpsests and the adaptation of these techniques to allow flexibility for new technologies and processing capabilities. The system has proven useful for extracting text from several palimpsests, including all original manuscripts in the Archimedes Palimpsest, the undertext in a privately owned 9th-century Syriac palimpsest, and in a survey of selected palimpsested leaves at St. Catherine's Monastery in Egypt. In addition, the system is being used at the U.S. Library of Congress for spectral imaging of historical manuscripts and other documents.

  15. Component pattern analysis of chemicals using multispectral THz imaging system

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuki

    2004-04-01

    We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  16. Analysis of lithology: Vegetation mixes in multispectral images

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Smith, M.; Adams, J. D.

    1982-01-01

    Discrimination and identification of lithologies from multispectral images is discussed. Rock/soil identification can be facilitated by removing the component of the signal in the images that is contributed by the vegetation. Mixing models were developed to predict the spectra of combinations of pure end members, and those models were refined using laboratory measurements of real mixtures. Models in use include a simple linear (checkerboard) mix, granular mixing, semi-transparent coatings, and combinations of the above. The use of interactive computer techniques that allow quick comparison of the spectrum of a pixel stack (in a multiband set) with laboratory spectra is discussed.

  17. Spectral mixture analysis of multispectral thermal infrared images

    NASA Technical Reports Server (NTRS)

    Gillespie, Alan R.

    1992-01-01

    Remote spectral measurements of light reflected or emitted from terrestrial scenes is commonly integrated over areas sufficiently large that the surface comprises more than one component. Techniques have been developed to analyze multispectral or imaging spectrometer data in terms of a wide range of mixtures of a limited number of components. Spectral mixture analysis has been used primarily for visible and near-infrared images, but it may also be applied to thermal infrared data. Two approaches are reviewed: binary mixing and a more general treatment for isothermal mixtures of a greater number of components.

  18. Video rate multispectral imaging for camouflaged target detection

    NASA Astrophysics Data System (ADS)

    Henry, Sam

    2015-05-01

    The ability to detect and identify camouflaged targets is critical in combat environments. Hyperspectral and Multispectral cameras allow a soldier to identify threats more effectively than traditional RGB cameras due to both increased color resolution and ability to see beyond visible light. Static imagers have proven successful, however the development of video rate imagers allows for continuous real time target identification and tracking. This paper presents an analysis of existing anomaly detection algorithms and how they can be adopted to video rates, and presents a general purpose semisupervised real time anomaly detection algorithm using multiple frame sampling.

  19. Towards noncontact skin melanoma selection by multispectral imaging analysis

    NASA Astrophysics Data System (ADS)

    Kuzmina, Ilona; Diebele, Ilze; Jakovels, Dainis; Spigulis, Janis; Valeine, Lauma; Kapostinsh, Janis; Berzina, Anna

    2011-06-01

    A clinical trial comprising 334 pigmented and vascular lesions has been performed in three Riga clinics by means of multispectral imaging analysis. The imaging system Nuance 2.4 (CRi) and self-developed software for mapping of the main skin chromophores were used. Specific features were observed and analyzed for malignant skin melanomas: notably higher absorbance (especially as the difference of optical density relative to the healthy skin), uneven chromophore distribution over the lesion area, and the possibility to select the ``melanoma areas'' in the correlation graphs of chromophores. The obtained results indicate clinical potential of this technology for noncontact selection of melanoma from other pigmented and vascular skin lesions.

  20. Recognition of lineaments in Eastern Rhodopes on Landsat multispectral images

    NASA Astrophysics Data System (ADS)

    Borisova, Denitsa; Jelev, Georgi; Atanassov, Valentin; Koprinkova-Hristova, Petia; Alexiev, Kiril

    Lineaments usually appear on the multispectral images as lines (edges) or linear formations as a result of the color variations of the surface structures. Lineaments are line features on earth’s surface which reflect geological structure. The basic geometry of a line is orientation, length and curve. Detection of lineaments is an important operation in the exploration for mineral deposits, in the investigation of active fault patterns, water resources, etc. In this study the integrated approach is applied. It comes together the methods of the visual interpretation of various geological and geographical indications in the satellite images, application of spatial analysis in GIS and automatic processing of Landsat multispectral image by Canny algorithm, Directional Filter and Neural Network. Canny algorithm for extracting edges is series of filters (Gaussian, Sobel, etc.) applied to all bands of the image using the free IDL source (http://www.cis.rit.edu/class/simg782/programs/ canny.pro). Directional Filter is applied to sharpen the image in a specific (preferred) direction. Another method is the Neural Network algorithm for recognizing lineaments. Lineaments are effectively extracted using different methods of automatic. The results from above mentioned methods are compared to results derived from visual interpretation of satellite images and from geological map. The rose-diagrams of distribution of lineaments and maps of their density are completed. Acknowledgments: This study is supported by the project DFNI - I01/8 funded by the Bulgarian Science Fund.

  1. Improved 3D cellular imaging by multispectral focus assessment

    NASA Astrophysics Data System (ADS)

    Zhao, Tong; Xiong, Yizhi; Chung, Alice P.; Wachman, Elliot S.; Farkas, Daniel L.

    2005-03-01

    Biological specimens are three-dimensional structures. However, when capturing their images through a microscope, there is only one plane in the field of view that is in focus, and out-of-focus portions of the specimen affect image quality in the in-focus plane. It is well-established that the microscope"s point spread function (PSF) can be used for blur quantitation, for the restoration of real images. However, this is an ill-posed problem, with no unique solution and with high computational complexity. In this work, instead of estimating and using the PSF, we studied focus quantitation in multi-spectral image sets. A gradient map we designed was used to evaluate the sharpness degree of each pixel, in order to identify blurred areas not to be considered. Experiments with realistic multi-spectral Pap smear images showed that measurement of their sharp gradients can provide depth information roughly comparable to human perception (through a microscope), while avoiding PSF estimation. Spectrum and morphometrics-based statistical analysis for abnormal cell detection can then be implemented in an image database where the axial structure has been refined.

  2. Computer implemented classification of vegetation using aircraft acquired multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Cibula, W. G.

    1975-01-01

    The use of aircraft 24-channel multispectral scanner data in conjunction with computer processing techniques to obtain an automated classification of plant species association was discussed. The classification of various plant species associations was related to information needed for specific applications. In addition, the necessity for multiple selection of training fields for a single class in situations where the study area consists of highly irregular terrain was detailed. A single classification was illuminated differently in different areas, resulting in the existence of multiple spectral signatures for a given class. These different signatures result since different qualities of radiation upwell to the detector from portions that have differing qualities of incident radiation. Techniques of training field selection were outlined, and a classification obtained from a natural area in Tishomingo State Park in northern Mississippi was presented.

  3. Multispectral image fusion for detecting land mines

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.; Roeske, F.; Donetti, J.G.; Fields, D.J.; sherwood, R.J.; Schaich, P.C.

    1995-04-01

    This report details a system which fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a variety of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts.

  4. Algorithms for lineaments detection in processing of multispectral images

    NASA Astrophysics Data System (ADS)

    Borisova, D.; Jelev, G.; Atanassov, V.; Koprinkova-Hristova, Petia; Alexiev, K.

    2014-10-01

    Satellite remote sensing is a universal tool to investigate the different areas of Earth and environmental sciences. The advancement of the implementation capabilities of the optoelectronic devices which are long-term-tested in the laboratory and the field and are mounted on-board of the remote sensing platforms further improves the capability of instruments to acquire information about the Earth and its resources in global, regional and local scales. With the start of new high-spatial and spectral resolution satellite and aircraft imagery new applications for large-scale mapping and monitoring becomes possible. The integration with Geographic Information Systems (GIS) allows a synergistic processing of the multi-source spatial and spectral data. Here we present the results of a joint project DFNI I01/8 funded by the Bulgarian Science Fund focused on the algorithms of the preprocessing and the processing spectral data by using the methods of the corrections and of the visual and automatic interpretation. The objects of this study are lineaments. The lineaments are basically the line features on the earth's surface which are a sign of the geological structures. The geological lineaments usually appear on the multispectral images like lines or edges or linear shapes which is the result of the color variations of the surface structures. The basic geometry of a line is orientation, length and curve. The detection of the geological lineaments is an important operation in the exploration for mineral deposits, in the investigation of active fault patterns, in the prospecting of water resources, in the protecting people, etc. In this study the integrated approach for the detecting of the lineaments is applied. It combines together the methods of the visual interpretation of various geological and geographical indications in the multispectral satellite images, the application of the spatial analysis in GIS and the automatic processing of the multispectral images by Canny

  5. Camera system for multispectral imaging of documents

    NASA Astrophysics Data System (ADS)

    Christens-Barry, William A.; Boydston, Kenneth; France, Fenella G.; Knox, Keith T.; Easton, Roger L., Jr.; Toth, Michael B.

    2009-02-01

    A spectral imaging system comprising a 39-Mpixel monochrome camera, LED-based narrowband illumination, and acquisition/control software has been designed for investigations of cultural heritage objects. Notable attributes of this system, referred to as EurekaVision, include: streamlined workflow, flexibility, provision of well-structured data and metadata for downstream processing, and illumination that is safer for the artifacts. The system design builds upon experience gained while imaging the Archimedes Palimpsest and has been used in studies of a number of important objects in the LOC collection. This paper describes practical issues that were considered by EurekaVision to address key research questions for the study of fragile and unique cultural objects over a range of spectral bands. The system is intended to capture important digital records for access by researchers, professionals, and the public. The system was first used for spectral imaging of the 1507 world map by Martin Waldseemueller, the first printed map to reference "America." It was also used to image sections of the Carta Marina 1516 map by the same cartographer for comparative purposes. An updated version of the system is now being utilized by the Preservation Research and Testing Division of the Library of Congress.

  6. Multi-spectral image dissector camera system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The image dissector sensor for the Earth Resources Program is evaluated using contrast and reflectance data. The ground resolution obtainable for low contrast at the targeted signal to noise ratio of 1.8 was defined. It is concluded that the system is capable of achieving the detection of small, low contrast ground targets from satellites.

  7. Effective Key Parameter Determination for an Automatic Approach to Land Cover Classification Based on Multispectral Remote Sensing Imagery

    PubMed Central

    Wang, Yong; Jiang, Dong; Zhuang, Dafang; Huang, Yaohuan; Wang, Wei; Yu, Xinfang

    2013-01-01

    The classification of land cover based on satellite data is important for many areas of scientific research. Unfortunately, some traditional land cover classification methods (e.g. known as supervised classification) are very labor-intensive and subjective because of the required human involvement. Jiang et al. proposed a simple but robust method for land cover classification using a prior classification map and a current multispectral remote sensing image. This new method has proven to be a suitable classification method; however, its drawback is that it is a semi-automatic method because the key parameters cannot be selected automatically. In this study, we propose an approach in which the two key parameters are chosen automatically. The proposed method consists primarily of the following three interdependent parts: the selection procedure for the pure-pixel training-sample dataset, the method to determine the key parameters, and the optimal combination model. In this study, the proposed approach employs both overall accuracy and their Kappa Coefficients (KC), and Time-Consumings (TC, unit: second) in order to select the two key parameters automatically instead of using a test-decision, which avoids subjective bias. A case study of Weichang District of Hebei Province, China, using Landsat-5/TM data of 2010 with 30 m spatial resolution and prior classification map of 2005 recognised as relatively precise data, was conducted to test the performance of this method. The experimental results show that the methodology determining the key parameters uses the portfolio optimisation model and increases the degree of automation of Jiang et al.'s classification method, which may have a wide scope of scientific application. PMID:24204582

  8. Evaluation of textural features for multispectral images

    NASA Astrophysics Data System (ADS)

    Bayram, Ulya; Can, Gulcan; Duzgun, Sebnem; Yalabik, Nese

    2011-11-01

    Remote sensing is a field that has wide use, leading to the fact that it has a great importance. Therefore performance of selected features plays a great role. In order to gain some perspective on useful textural features, we have brought together state-of-art textural features in recent literature, yet to be applied in remote sensing field, as well as presenting a comparison with traditional ones. Therefore we selected most commonly used textural features in remote sensing that are grey-level co-occurrence matrix (GLCM) and Gabor features. Other selected features are local binary patterns (LBP), edge orientation features extracted after applying steerable filter, and histogram of oriented gradients (HOG) features. Color histogram feature is also used and compared. Since most of these features are histogram-based, we have compared performance of bin-by-bin comparison with a histogram comparison method named as diffusion distance method. During obtaining performance of each feature, k-nearest neighbor classification method (k-NN) is applied.

  9. Dual plasmonic gold nanoparticles for multispectral photoacoustic imaging application

    NASA Astrophysics Data System (ADS)

    Raghavan, Vijay; Subhash, Hrebesh; Breathnach, Aedán.; Leahy, Martin; Dockery, Peter; Olivo, Malini

    2014-03-01

    Nanoparticle contrast agents for molecular targeted imaging have widespread interest in diagnostic applications with cellular resolution, specificity and selectivity for visualization and assessment of various disease processes. Of particular interest is gold nanoparticle owing to its tunability of the surface plasmon resonance (SPR) and its relative inertness. Here we present the synthesis of anisotropic multi-branched star shaped gold nanoparticles exhibiting dual-band plasmon absorption peaks and its application as a contrast agent for multispectral photoacoustic imaging. The transverse plasmon absorption peak of the synthesised dual plasmonic gold nanostar (DPGNS) was around 700 nm and that of longitudinal plasmon absorption in the longer wavelength region around 1050-1150 nm. Unlike most reported PA contrast agent with surface plasmon absorption in the range of 700 to 800 nm showing moderate tissue penetration, 1050-1200 nm range lies in the farther region of the optical window of biological tissue where scattering and the intrinsic optical extinction of endogenous chromophores is at its minimum. We also present a proof of principle demonstration of DPGNS as contrast agent for multispectral photoacoustic animal imaging. Our results show that DPGNS are promising for PA imaging with extended-depth imaging applications.

  10. Morphological Feature Extraction for Automatic Registration of Multispectral Images

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.

    2007-01-01

    The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.

  11. Portable multispectral imaging system for oral cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Fang; Ou-Yang, Mang; Lee, Cheng-Chung

    2013-09-01

    This study presents the portable multispectral imaging system that can acquire the image of specific spectrum in vivo for oral cancer diagnosis. According to the research literature, the autofluorescence of cells and tissue have been widely applied to diagnose oral cancer. The spectral distribution is difference for lesions of epithelial cells and normal cells after excited fluorescence. We have been developed the hyperspectral and multispectral techniques for oral cancer diagnosis in three generations. This research is the third generation. The excited and emission spectrum for the diagnosis are acquired from the research of first generation. The portable system for detection of oral cancer is modified for existing handheld microscope. The UV LED is used to illuminate the surface of oral cavity and excite the cells to produce fluorescent. The image passes through the central channel and filters out unwanted spectrum by the selection of filter, and focused by the focus lens on the image sensor. Therefore, we can achieve the specific wavelength image via fluorescence reaction. The specificity and sensitivity of the system are 85% and 90%, respectively.

  12. Online quantitative analysis of multispectral images of human body tissues

    SciTech Connect

    Lisenko, S A

    2013-08-31

    A method is developed for online monitoring of structural and morphological parameters of biological tissues (haemoglobin concentration, degree of blood oxygenation, average diameter of capillaries and the parameter characterising the average size of tissue scatterers), which involves multispectral tissue imaging, image normalisation to one of its spectral layers and determination of unknown parameters based on their stable regression relation with the spectral characteristics of the normalised image. Regression is obtained by simulating numerically the diffuse reflectance spectrum of the tissue by the Monte Carlo method at a wide variation of model parameters. The correctness of the model calculations is confirmed by the good agreement with the experimental data. The error of the method is estimated under conditions of general variability of structural and morphological parameters of the tissue. The method developed is compared with the traditional methods of interpretation of multispectral images of biological tissues, based on the solution of the inverse problem for each pixel of the image in the approximation of different analytical models. (biomedical optics)

  13. An automatic agricultural zone classification procedure for crop inventory satellite images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kux, H. J.; Velasco, F. R. D.; Deoliveira, M. O. B.

    1982-01-01

    A classification procedure for assessing crop areal proportion in multispectral scanner image is discussed. The procedure is into four parts: labeling; classification; proportion estimation; and evaluation. The procedure also has the following characteristics: multitemporal classification; the need for a minimum field information; and verification capability between automatic classification and analyst labeling. The processing steps and the main algorithms involved are discussed. An outlook on the future of this technology is also presented.

  14. Fuzzy neural-network-based segmentation of multispectral magnetic-resonance brain images

    NASA Astrophysics Data System (ADS)

    Blonda, Palma N.; Bennardo, A.; Satalino, Giuseppe; Pasquariello, Guido; De Blasi, Roberto A.; Milella, D.

    1996-06-01

    This study investigates the applicability of a multimodular neuro-fuzzy system in the multispectral analysis of magnetic resonance (MR) images of the human brain. The system consists of two components: an unsupervised neural module for image segmentation in tissue regions and a supervised module for tissue labeling. The former is the fuzzy Kohonen clustering network (FKCN). The latter is a feed-forward network based on the back-propagation learning rule. The results obtained with the FKCN have been compared with those extracted by a self organizing map (SOM). The system has been used to analyze the multispectral MR brain images of a healthy volunteer. The data set included the proton density (PD), T2, T1 weighted spin-echo (SE) bands and a new T1- weighted three dimensional sequence, i.e. the magnetization- prepared rapid gradient echo (MP-RAGE). One of the main objectives of this study has been to evaluate the usefulness of brain imaging with the MP-RAGE sequence in view of automatic tissue classification. To this purpose, a quantitative evaluation has been provided on the base of some labeled areas selected interactively by a neuro- radiologist from the input raw images. Quantitative results seem to indicate that the MP-RAGE sequence may provide higher tissue separability than the T1-weighted SE sequence.

  15. Multispectral Chiral Imaging with a Metalens.

    PubMed

    Khorasaninejad, M; Chen, W T; Zhu, A Y; Oh, J; Devlin, R C; Rousso, D; Capasso, F

    2016-07-13

    The vast majority of biologically active compounds, ranging from amino acids to essential nutrients such as glucose, possess intrinsic handedness. This in turn gives rise to chiral optical properties that provide a basis for detecting and quantifying enantio-specific concentrations of these molecules. However, traditional chiroptical spectroscopy and imaging techniques require cascading of multiple optical components in sophisticated setups. Here, we present a planar lens with an engineered dispersive response, which simultaneously forms two images with opposite helicity of an object within the same field-of-view. In this way, chiroptical properties can be probed across the visible spectrum using only the lens and a camera without the addition of polarizers or dispersive optical devices. We map the circular dichroism of the exoskeleton of a chiral beetle, Chrysina gloriosa, which is known to exhibit high reflectivity of left-circularly polarized light, with high spatial resolution limited by the numerical aperture of the planar lens. Our results demonstrate the potential of metasurfaces in realizing a compact and multifunctional device with unprecedented imaging capabilities. PMID:27267137

  16. Modeling space-based multispectral imaging systems with DIRSIG

    NASA Astrophysics Data System (ADS)

    Brown, Scott D.; Sanders, Niek J.; Goodenough, Adam A.; Gartley, Michael

    2011-06-01

    The Landsat Data Continuity Mission (LDCM) focuses on a next generation global coverage, imaging system to replace the aging Landsat 5 and Landsat 7 systems. The major difference in the new system is the migration from the multi-spectral whiskbroom design employed by the previous generation of sensors to modular focal plane, multi-spectral pushbroom architecture. Further complicating the design shift is that the reflective and thermal acquisition capability is split across two instruments spatially separated on the satellite bus. One of the focuses of the science and engineering teams prior to launch is the ability to provide seamless data continuity with the historic Landsat data archive. Specifically, the challenges of registering and calibrating data from the new system so that long-term science studies are minimally impacted by the change in the system design. In order to provide the science and engineering teams with simulated pre-launch data, an effort was undertaken to create a robust end-to-end model of the LDCM system. The modeling environment is intended to be flexible and incorporate measured data from the actual system components as they were completed and integrated. The output of the modeling environment needs to include not only radiometrically robust imagery, but also the meta-data necessary to exercise the processing pipeline. This paper describes how the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model has been utilized to model space-based, multi-spectral imaging (MSI) systems in support of systems engineering trade studies. A mechanism to incorporate measured focal plane projections through the forward optics is described. A hierarchal description of the satellite system is presented including the details of how a multiple instrument platform is described and modeled, including the hierarchical management of temporally correlated jitter that allows engineers to explore impacts of different jitter sources on instrument

  17. GRIN optics for multispectral infrared imaging

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Nguyen, Vinh; Sanghera, Jas; Kotov, Mikhail; Drake, Gryphon

    2015-06-01

    Graded index (GRIN) optics offer potential for both weight savings and increased performance but have so far been limited to visible and NIR bands (wavelengths shorter than about 0.9 μm). NRL is developing a capability to extend GRIN optics to longer wavelengths in the infrared by exploiting diffused IR transmitting chalcogenide glasses. These IR-GRIN lenses are compatible with all IR wavebands (SWIR, MWIR and LWIR) and can be used alongside conventional wideband materials. Traditional multiband IR imagers require many elements for correction of chromatic aberrations, making them large and heavy and not well-suited for weight sensitive platforms. IR-GRIN optical elements designed with simultaneous optical power and chromatic correction can reduce the number of elements in wideband systems, making multi-band IR imaging practical for platforms including small UAVs and soldier handheld, helmet or weapon mounted cameras. The IR-GRIN lens technology, design space and anti-reflection considerations are presented in this paper.

  18. Multispectral image processing: the nature factor

    NASA Astrophysics Data System (ADS)

    Watkins, Wendell R.

    1998-09-01

    The images processed by our brain represent our window into the world. For some animals this window is derived from a single eye, for others, including humans, two eyes provide stereo imagery, for others like the black widow spider several eyes are used (8 eyes), and some insects like the common housefly utilize thousands of eyes (ommatidia). Still other animals like the bat and dolphin have eyes for regular vision, but employ acoustic sonar vision for seeing where their regular eyes don't work such as in pitch black caves or turbid water. Of course, other animals have adapted to dark environments by bringing along their own lighting such as the firefly and several creates from the depths of the ocean floor. Animal vision is truly varied and has developed over millennia in many remarkable ways. We have learned a lot about vision processes by studying these animal systems and can still learn even more.

  19. Jovian chromophore characteristics from multispectral HST images

    NASA Astrophysics Data System (ADS)

    Strycker, Paul D.; Chanover, Nancy J.; Simon-Miller, Amy A.; Banfield, Don; Gierasch, Peter J.

    2011-10-01

    The chromophores responsible for coloring the jovian atmosphere are embedded within Jupiter's vertical aerosol structure. Sunlight propagates through this vertical distribution of aerosol particles, whose colors are defined by ϖ0( λ), and we remotely observe the culmination of the radiative transfer as I/ F( λ). In this study, we employed a radiative transfer code to retrieve ϖ0( λ) for particles in Jupiter's tropospheric haze at seven wavelengths in the near-UV and visible regimes. The data consisted of images of the 2008 passage of Oval BA to the south of the Great Red Spot obtained by the Wide Field Planetary Camera 2 on-board the Hubble Space Telescope. We present derived particle colors for locations that were selected from 14 weather regions, which spanned a large range of observed colors. All ϖ0( λ) curves were absorbing in the blue, and ϖ0( λ) increased monotonically to approximately unity as wavelength increased. We found accurate fits to all ϖ0( λ) curves using an empirically derived functional form: ϖ0( λ) = 1 - A exp(- Bλ). The best-fit parameters for the mean ϖ0( λ) curve were A = 25.4 and B = 0.0149 for λ in units of nm. We performed a principal component analysis (PCA) on our ϖ0( λ) results and found that one or two independent chromophores were sufficient to produce the variations in ϖ0( λ). A PCA of I/ F( λ) for the same jovian locations resulted in principal components (PCs) with roughly the same variances as the ϖ0( λ) PCA, but they did not result in a one-to-one mapping of PC amplitudes between the ϖ0( λ) PCA and I/ F( λ) PCA. We suggest that statistical analyses performed on I/ F( λ) image cubes have limited applicability to the characterization of chromophores in the jovian atmosphere due to the sensitivity of I/ F( λ) to horizontal variations in the vertical aerosol distribution.

  20. Multispectral therapeutic endoscopy imaging and intervention

    NASA Astrophysics Data System (ADS)

    Bala, John L.; Schwaitzberg, Steven D.

    2007-02-01

    With the debut of antibiotic drug therapy, and as a result of its ease of use and general success in treating infection, drugs have become the treatment of choice for most bacterial infections. However, the advent of multiple, very aggressive drug-resistant bacteria, an increasing population which cannot tolerate drugs, and the high cost of drug therapy suggest that a new modality for treating infections is needed. The complex interplay of clonal spread, persistence, transfer of resistance elements and cell-to-cell interaction all contribute to the difficulty in developing drugs to treat new antibiotic-resistant bacterial strains. A dynamic non-drug system, using extant pulsed ultraviolet lightwave technology to kill infection, is being developed to destroy pathogens. This paper theorizes that the shock effect of pulsed xenon's high energy ultraviolet pulses at wavelengths between 250-270nm separates the bacteria's DNA bands, and, subsequently, destroys them. Preliminary laboratory tests have demonstrated the ability of the technology to destroy Staphylococcus aureus, Pseudomonas aeruginosa Escherichia coli, Helicobacter pylori, Acinetobacter baumannii, Klebsiella punemonia, Bacillus subtillis, and Aspergillus fumigates at penetration depths of greater than 3mm in fluids with 100% effectiveness in less than five seconds of exposure to pulsed xenon lightwaves. Micro Invasive Technology, Inc is developing .pulsed xenon therapeutic catheters and endoscopic instruments for internal antimicrobial eradication and topographical devices for prophylactic wound, burn and surgical entrance/exit site sterilization. Pulsed Xenon light sources have a broad optical spectrum (190-1200nm), and can generate light pulses with sufficient energy for combined imaging and therapeutic intervention by multiplexing a fiber optic pathway into the body. In addition, Pulsed Xenon has proven ability to activate photo reactive dyes; share endoscopic lightguides with lasers while, simultaneously

  1. An application of LANDSAT multispectral imagery for the classification of hydrobiological systems, Shark River Slough, Everglades National Park, Florida

    NASA Technical Reports Server (NTRS)

    Rose, P. W.; Rosendahl, P. C. (Principal Investigator)

    1979-01-01

    Multivariant hydrologic parameters over the Shark River Slough were investigated. Ground truth was established utilizing U-2 infrared photography and comprehensive field data to define a control network which represented all hydrobiological systems in the slough. These data were then applied to LANDSAT imagery utilizing an interactive multispectral processor which generated hydrographic maps through classification of the slough and defined the multispectral surface radiance characteristics of the wetlands areas in the park. The spectral response of each hydrobiological zone was determined and plotted to formulate multispectral relationships between the emittent energy from the slough in order to determine the best possible multispectral wavelength combinations to enhance classification results. The extent of each hydrobiological zone in slough was determined and flow vectors for water movement throughout the slough established.

  2. A real-time multispectral imaging system for low- or mid-altitude remote sensing

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua

    2012-10-01

    Multispectral imaging is a powerful tool in remote sensing applications. Recently a micro-arrayed narrow-band optical mosaic filter was invented and successfully fabricated to reduce the size and cost of multispectral imaging devices in order to meet the requirements for low- or mid- altitude remote sensing. Such a filter with four narrow bands is integrated with an off-shelf CCD camera, resulting in an economic and light-weight multispectral imaging camera with the capacity of producing multiple images at different center wavelengths with a single shot. The multispectral imaging camera is then integrated with a wireless transmitter and battery to produce a remote sensing multispectral imaging system. The design and some preliminary results of a prototyped multispectral imaging system with the potential for remote sensing applications with a weight of only 200 grams are reported. The prototyped multispectral imaging system eliminates the image registration procedure required by traditional multispectral imaging technologies. In addition, it has other advantages such as low cost, being light weight and compact in design.

  3. Monitoring human melanocytic cell responses to piperine using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Phillips, Kevin G.; Sonka, Julia; Yelma, Aznegashe; Reddy, Neha; Vanka, Meenakshi; Thuillier, Philippe; Soumyanath, Amala; Jacques, Steven

    2011-03-01

    Vitiligo is a depigmentary disease characterized by melanocyte loss attributed most commonly to autoimmune mechanisms. Currently vitiligo has a high incidence (1% worldwide) but a poor set of treatment options. Piperine, a compound found in black pepper, is a potential treatment for the depigmentary skin disease vitiligo, due to its ability to stimulate mouse epidermal melanocyte proliferation in vitro and in vivo. The present study investigates the use of multispectral imaging and an image processing technique based on local contrast to quantify the stimulatory effects of piperine on human melanocyte proliferation in reconstructed epidermis. We demonstrate the ability of the imaging method to quantify increased pigmentation in response to piperine treatment. The quantization of melanocyte stimulation by the proposed imaging technique illustrates the potential use of this technology to quickly assess therapeutic responses of vitiligo tissue culture models to treatment non-invasively.

  4. Digital enhancement of multispectral MSS data for maximum image visibility

    NASA Technical Reports Server (NTRS)

    Algazi, V. R.

    1973-01-01

    A systematic approach to the enhancement of images has been developed. This approach exploits two principal features involved in the observation of images: the properties of human vision and the statistics of the images being observed. The rationale of the enhancement procedure is as follows: in the observation of some features of interest in an image, the range of objective luminance-chrominance values being displayed is generally limited and does not use the whole perceptual range of vision of the observer. The purpose of the enhancement technique is to expand and distort in a systematic way the grey scale values of each of the multispectral bands making up a color composite, to enhance the average visibility of the features being observed.

  5. Sparse-based multispectral image encryption via ptychography

    NASA Astrophysics Data System (ADS)

    Rawat, Nitin; Shi, Yishi; Kim, Byoungho; Lee, Byung-Geun

    2015-12-01

    Recently, we proposed a model of securing a ptychography-based monochromatic image encryption system via the classical Photon-counting imaging (PCI) technique. In this study, we examine a single-channel multispectral sparse-based photon-counting ptychography imaging (SMPI)-based cryptosystem. A ptychography-based cryptosystem creates a complex object wave field, which can be reconstructed by a series of diffraction intensity patterns through an aperture movement. The PCI sensor records only a few complex Bayer patterned samples that have been utilized in the decryption process. Sparse sensing and nonlinear properties of the classical PCI system, together with the scanning probes, enlarge the key space, and such a combination therefore enhances the system's security. We demonstrate that the sparse samples have adequate information for image decryption, as well as information authentication by means of optical correlation.

  6. Parallel evolution of image processing tools for multispectral imagery

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Brumby, Steven P.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Szymanski, John J.; Bloch, Jeffrey J.

    2000-11-01

    We describe the implementation and performance of a parallel, hybrid evolutionary-algorithm-based system, which optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses an integrated spatio-spectral approach and is capable of combining suitably-registered data from different sensors. We investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA.

  7. Jovian Chromophore Characteristics from Multispectral HST Images

    NASA Technical Reports Server (NTRS)

    Strycker, Paul D.; Chanover, Nancy J.; Simon-Miller, Amy A.; Banfield, Don; Gierasch, Peter J.

    2011-01-01

    The chromophores responsible for coloring the jovian atmosphere are embedded within Jupiter's vertical aerosol structure. Sunlight propagates through this vertical distribution of aerosol particles, whose colors are defined by omega-bar (sub 0)(lambda), and we remotely observe the culmination of the radiative transfer as I/F(lambda). In this study, we employed a radiative transfer code to retrieve omega-bar (sub 0)(lambda) for particles in Jupiter's tropospheric haze at seven wavelengths in the near-UV and visible regimes. The data consisted of images of the 2008 passage of Oval BA to the south of the Great Red Spot obtained by the Wide Field Planetary Camera 2 on-board the Hubble Space Telescope. We present derived particle colors for locations that were selected from 14 weather regions, which spanned a large range of observed colors. All omega-bar (sub 0)(lambda) curves were absorbing in the blue, and omega-bar (sub 0)(lambda) increased monotonically to approximately unity as wavelength increased. We found accurate fits to all omega-bar (sub 0)(lambda) curves using an empirically derived functional form: omega-bar (sub 0)(lambda) = 1 A exp(-B lambda). The best-fit parameters for the mean omega-bar (sub 0)(lambda) curve were A = 25.4 and B = 0.0149 for lambda in units of nm. We performed a principal component analysis (PCA) on our omega-bar (sub 0)(lambda) results and found that one or two independent chromophores were sufficient to produce the variations in omega-bar (sub 0)(lambda). A PCA of I/F(lambda) for the same jovian locations resulted in principal components (PCs) with roughly the same variances as the omega-bar (sub 0)(lambda) PCA, but they did not result in a one-to-one mapping of PC amplitudes between the omega-bar (sub 0)(lambda) PCA and I/F(lambda) PCA. We suggest that statistical analyses performed on I/ F(lambda) image cubes have limited applicability to the characterization of chromophores in the jovian atmosphere due to the sensitivity of 1/ F

  8. The influence of multispectral scanner spatial resolution on forest feature classification

    NASA Technical Reports Server (NTRS)

    Sadowski, F. G.; Malila, W. A.; Sarno, J. E.; Nalepka, R. F.

    1977-01-01

    Inappropriate spatial resolution and corresponding data processing techniques may be major causes for non-optimal forest classification results frequently achieved from multispectral scanner (MSS) data. Procedures and results of empirical investigations are studied to determine the influence of MSS spatial resolution on the classification of forest features into levels of detail or hierarchies of information that might be appropriate for nationwide forest surveys and detailed in-place inventories. Two somewhat different, but related studies are presented. The first consisted of establishing classification accuracies for several hierarchies of features as spatial resolution was progressively coarsened from (2 meters) squared to (64 meters) squared. The second investigated the capabilities for specialized processing techniques to improve upon the results of conventional processing procedures for both coarse and fine resolution data.

  9. River velocities from sequential multispectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Mied, Richard P.

    2013-06-01

    We address the problem of extracting surface velocities from a pair of multispectral remote sensing images over rivers using a new nonlinear multiple-tracer form of the global optimal solution (GOS). The derived velocity field is a valid solution across the image domain to the nonlinear system of equations obtained by minimizing a cost function inferred from the conservation constraint equations for multiple tracers. This is done by deriving an iteration equation for the velocity, based on the multiple-tracer displaced frame difference equations, and a local approximation to the velocity field. The number of velocity equations is greater than the number of velocity components, and thus overly constrain the solution. The iterative technique uses Gauss-Newton and Levenberg-Marquardt methods and our own algorithm of the progressive relaxation of the over-constraint. We demonstrate the nonlinear multiple-tracer GOS technique with sequential multispectral Landsat and ASTER images over a portion of the Potomac River in MD/VA, and derive a dense field of accurate velocity vectors. We compare the GOS river velocities with those from over 12 years of data at four NOAA reference stations, and find good agreement. We discuss how to find the appropriate spatial and temporal resolutions to allow optimization of the technique for specific rivers.

  10. Design and fabrication of sinusoidal spectral filters for multispectral imaging

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Jia, Jie; Hirakawa, Keigo; Sarangan, Andrew

    2015-08-01

    Multispectral imaging beyond the three RGB colors still remains a challenge, especially in portable inexpensive systems. In this paper, we describe the design and fabrication of broadband multichroic filters that have a sinusoidal transmission spectra to utilize a novel methodology based on the Fourier spectral reconstruction in the frequency domain. Since the spectral filters are posed as an optimal sampling of hyperspectral images, they also allow for the reconstruction of the full spectrum from subsequent demosaicking algorithms. Unlike conventional Color Filter Arrays (CFA) which utilizes absorption dyes embedded in a polymeric material, the sinusoidal multichroic filters require an all-dielectric interference filter design. However, the goal of most dielectric filter designs is to achieve sharp transitions with high-contrast. A smoothly varying sinusoidal transition is more difficult with conventional approaches. However, this can be achieved by trading off the contrast. Following the principles of a simple Fabry-Perot cavity, we have designed and built interference filters from 0.5 sinusoidal periods to 3 sinusoidal periods from 450nm to 900nm spectral range. Also, in order to maintain a uniform period across the entire spectrum, the material must have a very low dispersion. In this design, we have used ZnS as the cavity material. The six filters have been used in a multispectral imaging test bed.

  11. Two Levels Fusion Decision for Multispectral Image Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Elmannai, H.; Loghmari, M. A.; Naceur, M. S.

    2015-10-01

    Major goal of multispectral data analysis is land cover classification and related applications. The dimension drawback leads to a small ratio of the remote sensing training data compared to the number of features. Therefore robust methods should be associated to overcome the dimensionality curse. The presented work proposed a pattern recognition approach. Source separation, feature extraction and decisional fusion are the main stages to establish an automatic pattern recognizer. The first stage is pre-processing and is based on non linear source separation. The mixing process is considered non linear with gaussians distributions. The second stage performs feature extraction for Gabor, Wavelet and Curvelet transform. Feature information presentation provides an efficient information description for machine vision projects. The third stage is a decisional fusion performed in two steps. The first step assign the best feature to each source/pattern using the accuracy matrix obtained from the learning data set. The second step is a source majority vote. Classification is performed by Support Vector Machine. Experimentation results show that the proposed fusion method enhances the classification accuracy and provide powerful tool for pattern recognition.

  12. Improving multispectral satellite image compression using onboard subpixel registration

    NASA Astrophysics Data System (ADS)

    Albinet, Mathieu; Camarero, Roberto; Isnard, Maxime; Poulet, Christophe; Perret, Jokin

    2013-09-01

    Future CNES earth observation missions will have to deal with an ever increasing telemetry data rate due to improvements in resolution and addition of spectral bands. Current CNES image compressors implement a discrete wavelet transform (DWT) followed by a bit plane encoding (BPE) but only on a mono spectral basis and do not profit from the multispectral redundancy of the observed scenes. Recent CNES studies have proven a substantial gain on the achievable compression ratio, +20% to +40% on selected scenarios, by implementing a multispectral compression scheme based on a Karhunen Loeve transform (KLT) followed by the classical DWT+BPE. But such results can be achieved only on perfectly registered bands; a default of registration as low as 0.5 pixel ruins all the benefits of multispectral compression. In this work, we first study the possibility to implement a multi-bands subpixel onboard registration based on registration grids generated on-the-fly by the satellite attitude control system and simplified resampling and interpolation techniques. Indeed bands registration is usually performed on ground using sophisticated techniques too computationally intensive for onboard use. This fully quantized algorithm is tuned to meet acceptable registration performances within stringent image quality criteria, with the objective of onboard real-time processing. In a second part, we describe a FPGA implementation developed to evaluate the design complexity and, by extrapolation, the data rate achievable on a spacequalified ASIC. Finally, we present the impact of this approach on the processing chain not only onboard but also on ground and the impacts on the design of the instrument.

  13. A Multispectral Micro-Imager for Lunar Field Geology

    NASA Technical Reports Server (NTRS)

    Nunez, Jorge; Farmer, Jack; Sellar, Glenn; Allen, Carlton

    2009-01-01

    Field geologists routinely assign rocks to one of three basic petrogenetic categories (igneous, sedimentary or metamorphic) based on microtextural and mineralogical information acquired with a simple magnifying lens. Indeed, such observations often comprise the core of interpretations of geological processes and history. The Multispectral Microscopic Imager (MMI) uses multi-wavelength, light-emitting diodes (LEDs) and a substrate-removed InGaAs focal-plane array to create multispectral, microscale reflectance images of geological samples (FOV 32 X 40 mm). Each pixel (62.5 microns) of an image is comprised of 21 spectral bands that extend from 470 to 1750 nm, enabling the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases. MMI images provide crucial context information for in situ robotic analyses using other onboard analytical instruments (e.g. XRD), or for the selection of return samples for analysis in terrestrial labs. To further assess the value of the MMI as a tool for lunar exploration, we used a field-portable, tripod-mounted version of the MMI to image a variety of Apollo samples housed at the Lunar Experiment Laboratory, NASA s Johnson Space Center. MMI images faithfully resolved the microtextural features of samples, while the application of ENVI-based spectral end member mapping methods revealed the distribution of Fe-bearing mineral phases (olivine, pyroxene and magnetite), along with plagioclase feldspars within samples. Samples included a broad range of lithologies and grain sizes. Our MMI-based petrogenetic interpretations compared favorably with thin section-based descriptions published in the Lunar Sample Compendium, revealing the value of MMI images for astronaut and rover-mediated lunar exploration.

  14. Image-based target detection with multispectral UWB OFDM radar

    NASA Astrophysics Data System (ADS)

    Bufler, Travis D.; Garmatyuk, Dmitriy S.

    2012-06-01

    This paper proposes an image-based automatic target detection algorithm to be used in clutter and sparse target environments. We intend to apply the algorithm to an ultra-wideband multispectral radar concept by means of employing multi-carrier waveforms based upon Orthogonal Frequency Division Multiplexing (OFDM) modulation. Individual sub-bands of an OFDM waveform can be processed separately to yield range and cross-range reconstruction of a target scene containing both targets and clutter. Target detection in resulting images will be performed and contrasted with the detection performance of a traditional fixed-waveform Synthetic Aperture Radar system. The target detection algorithm is implemented through the use of scalar and vector field operations performed on the images from the reconstructed target scene. We hypothesize that the use of vector operations and field analysis will allow for an adaptive approach to the detection of targets within clutter.

  15. Sub-pixel resolution with the Multispectral Thermal Imager (MTI).

    SciTech Connect

    Decker, Max Louis; Smith, Jody Lynn; Nandy, Prabal

    2003-06-01

    The Multispectral Thermal Imager Satellite (MTI) has been used to test a sub-pixel sampling technique in an effort to obtain higher spatial frequency imagery than that of its original design. The MTI instrument is of particular interest because of its infrared detectors. In this spectral region, the detector size is traditionally the limiting factor in determining the satellite's ground sampling distance (GSD). Additionally, many over-sampling techniques require flexible command and control of the sensor and spacecraft. The MTI sensor is well suited for this task, as it is the only imaging system on the MTI satellite bus. In this super-sampling technique, MTI is maneuvered such that the data are collected at sub-pixel intervals on the ground. The data are then processed using a deconvolution algorithm using in-scene measured point spread functions (PSF) to produce an image with synthetically-boosted GSD.

  16. A practical one-shot multispectral imaging system using a single image sensor.

    PubMed

    Monno, Yusuke; Kikuchi, Sunao; Tanaka, Masayuki; Okutomi, Masatoshi

    2015-10-01

    Single-sensor imaging using the Bayer color filter array (CFA) and demosaicking is well established for current compact and low-cost color digital cameras. An extension from the CFA to a multispectral filter array (MSFA) enables us to acquire a multispectral image in one shot without increased size or cost. However, multispectral demosaicking for the MSFA has been a challenging problem because of very sparse sampling of each spectral band in the MSFA. In this paper, we propose a high-performance multispectral demosaicking algorithm, and at the same time, a novel MSFA pattern that is suitable for our proposed algorithm. Our key idea is the use of the guided filter to interpolate each spectral band. To generate an effective guide image, in our proposed MSFA pattern, we maintain the sampling density of the G -band as high as the Bayer CFA, and we array each spectral band so that an adaptive kernel can be estimated directly from raw MSFA data. Given these two advantages, we effectively generate the guide image from the most densely sampled G -band using the adaptive kernel. In the experiments, we demonstrate that our proposed algorithm with our proposed MSFA pattern outperforms existing algorithms and provides better color fidelity compared with a conventional color imaging system with the Bayer CFA. We also show some real applications using a multispectral camera prototype we built. PMID:26011882

  17. Fuzzy Markov random fields versus chains for multispectral image segmentation.

    PubMed

    Salzenstein, Fabien; Collet, Christophe

    2006-11-01

    This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data. PMID:17063681

  18. Classification of non native tree species in Adda Park (Italy) through multispectral and multitemporal surveys from UAV

    NASA Astrophysics Data System (ADS)

    Pinto, Livio; Sona, Giovanna; Biffi, Andrea; Dosso, Paolo; Passoni, Daniele; Baracani, Matteo

    2014-05-01

    July, was realized over a longer period : from 09/07/2013 to 28/08/2013, due to weather condition and technical reasons. In any case the vegetation characteristics resulted to be unchanged. The second set of flights, in autumn, were done in a shorter period, during the days 16-17-18 October 2013, thus obtaining even better homogeneity of the vegetation conditions. Image and data processing are based on standard classification techniques, both pixel and object based, applied simultaneously on multispectral and multitemporal data, with the aim of producing a thematic map of the species of interest. The classification accuracies will be computed on the basis of ground truth comparison, to study possible misclassification among species.

  19. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.

    PubMed

    Chaudhari, Abhijit J; Darvas, Felix; Bading, James R; Moats, Rex A; Conti, Peter S; Smith, Desmond J; Cherry, Simon R; Leahy, Richard M

    2005-12-01

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour. PMID:16306643

  20. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    NASA Astrophysics Data System (ADS)

    Chaudhari, Abhijit J.; Darvas, Felix; Bading, James R.; Moats, Rex A.; Conti, Peter S.; Smith, Desmond J.; Cherry, Simon R.; Leahy, Richard M.

    2005-12-01

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour.

  1. Pattern recognition via multispectral, hyperspectral, and polarization-based imaging

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Alam, Mohammad S.; Sakla, Wesam A.

    2010-04-01

    Pattern recognition deals with the detection and identification of a specific target in an unknown input scene. Target features such as shape, color, surface dynamics, and material characteristics are common target attributes used for identification and detection purposes. Pattern recognition using multispectral (MS), hyperspectral (HS), and polarization-based spectral (PS) imaging can be effectively exploited to highlight one or more of these attributes for more efficient target identification and detection. In general, pattern recognition involves two steps: gathering target information from sensor data and identifying and detecting the desired target from sensor data in the presence of noise, clutter, and other artifacts. Multispectral and hyperspectral imaging (MSI/HSI) provide both spectral and spatial information about the target. As the reflection or emission spectral signatures depend on the elemental composition of objects residing within the scene, the polarization state of radiation is sensitive to the surface features such as relative smoothness or roughness, surface material, shapes and edges, etc. Therefore, polarization information imparted by surface reflections of the target yields unique and discriminatory signatures which could be used to augment spectral target detection techniques, through the fusion of sensor data. Sensor data fusion is currently being used to effectively recognize and detect one or more of the target attributes. However, variations between sensors and temporal changes within sensors can introduce noise in the measurements, contributing to additional target variability that hinders the detection process. This paper provides a quick overview of target identification and detection using MSI/HSI, highlighting the advantages and disadvantages of each. It then discusses the effectiveness of using polarization-based imaging in highlighting some of the target attributes at single and multiple spectral bands using polarization

  2. Optical perception for detection of cutaneous T-cell lymphoma by multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Ping; Wang, Hsiang-Chen; Chen, Shih-Hua; Tsai, Chung-Hung; Yang, Jen-Hung

    2014-12-01

    In this study, the spectrum of each picture element of the patient’s skin image was obtained by multi-spectral imaging technology. Spectra of normal or pathological skin were collected from 15 patients. Principal component analysis and principal component scores of skin spectra were employed to distinguish the spectral characteristics with different diseases. Finally, skin regions with suspected cutaneous T-cell lymphoma (CTCL) lesions were successfully predicted by evaluation and classification of the spectra of pathological skin. The sensitivity and specificity of this technique were 89.65% and 95.18% after the analysis of about 109 patients. The probability of atopic dermatitis and psoriasis patients misinterpreted as CTCL were 5.56% and 4.54%, respectively.

  3. Landsat sattelite multi-spectral image classification of land cover and land use changes for GIS-based urbanization analysis in irrigation districts of lower Rio Grande Valley of Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lower Rio Grande Valley in the south of Texas is experiencing rapid increase of population to bring up urban growth that continues influencing on the irrigation districts in the region. This study evaluated the Landsat satellite multi-spectral imagery to provide information for GIS-based urbaniz...

  4. Quantitative multispectral biosensing and imaging using plasmonic crystals

    NASA Astrophysics Data System (ADS)

    Stewart, Matthew E.

    Conventional surface plasmon resonance (SPR) systems use a prism to couple light into a surface plasmon mode at a metal film-dielectric interface. This cumbersome experimental setup is difficult to integrate into a robust, portable, low-cost, and high-resolution imaging-based device for rapid bioanalytical measurements. More recent work with nanostructured metals, such as nanohole arrays in gold films, enable sensing and imaging of surface binding events using simple, normal incident reflection or transmission configurations. These plasmonic structures exhibit multiple resonances that can be leveraged in sensing applications using multispectral analysis protocols. This thesis describes two new types of low-cost plasmonic crystal sensors formed by soft UV nanoimprint lithography that enable quantitative multispectral analysis of surface binding events in spectroscopic and imaging modes. The first plasmonic optic reported is a quasi-3D crystal consisting of a periodic array of nanoscale holes in a thin gold film with a second, physically separate level of isolated gold disks below each nanoscale hole. The second plasmonic optic reported is a full-3D plasmonic crystal that consists of a polymer embossed with a square array of nanowells covered with a conformal thin gold film. These crystals enable quantitative spectroscopy and imaging of surface binding events with submonolayer sensitivities and micrometer spatial resolution, and can be readily integrated into microfluidic channels for the development of compact form factor devices. Full-3D finite difference time domain calculations are used to accurately model the i transmission spectra and the electromagnetic field distributions in and around the metal nanostructures of the crystals, and to provide insight into the physics underlying the complex optical response of these novel plasmonic structures.

  5. Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging

    PubMed Central

    Calcagni, A; Gibson, J M; Styles, I B; Claridge, E; Orihuela-Espina, F

    2011-01-01

    Purpose To develop a non-invasive method for quantification of blood and pigment distributions across the posterior pole of the fundus from multispectral images using a computer-generated reflectance model of the fundus. Methods A computer model was developed to simulate light interaction with the fundus at different wavelengths. The distribution of macular pigment (MP) and retinal haemoglobins in the fundus was obtained by comparing the model predictions with multispectral image data at each pixel. Fundus images were acquired from 16 healthy subjects from various ethnic backgrounds and parametric maps showing the distribution of MP and of retinal haemoglobins throughout the posterior pole were computed. Results The relative distributions of MP and retinal haemoglobins in the subjects were successfully derived from multispectral images acquired at wavelengths 507, 525, 552, 585, 596, and 611 nm, providing certain conditions were met and eye movement between exposures was minimal. Recovery of other fundus pigments was not feasible and further development of the imaging technique and refinement of the software are necessary to understand the full potential of multispectral retinal image analysis. Conclusion The distributions of MP and retinal haemoglobins obtained in this preliminary investigation are in good agreement with published data on normal subjects. The ongoing development of the imaging system should allow for absolute parameter values to be computed. A further study will investigate subjects with known pathologies to determine the effectiveness of the method as a screening and diagnostic tool. PMID:21904394

  6. Mineral Classification of the Martian Surface Using THEMIS Multi-Spectral Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Osterloo, M. M.; Brumby, S. P.; Funsten, H. O.; Feldman, W. C.

    2004-12-01

    Recent advancements in multi-spectral imaging and image analysis techniques have greatly enhanced our ability to do planetary research. Much has been discovered about Mars through recent missions such as Mars Global Surveyor, 2001 Mars Odyssey, and the Mars Exploration Rovers. The Thermal Emission Spectrometer on board the Mars Global Surveyor has allowed the mapping of surface mineralogies on Mars at several kilometers scale through hyperspectral imaging [1]. Here, we use the high resolution multi-spectral imagery of THEMIS (THermal Emission Imaging System) on board the 2001 Mars Odyssey to identify different mineral classes at spatial scales of hundreds of meters. THEMIS contains two independent multi-spectral imaging systems: a 10-band thermal infrared imager (IR) with a resolution of 100m/pixel, and a 5-band visible imager with a resolution of 10m/pixel. Here we will use the IR data. The 9 IR bands are centered from 6.8 microns to 14 .9 microns [2]. Using Arizona State University's online spectral library[3], we have been investigating the extent to which we can differentiate between different mineral classes. By identifying certain mineral classes we can better understand the geologic processes which created them and detect areas of interest for further study. Linear mixing of minerals and dust is investigated to estimate ratios of minerals and their resulting spectra. We then compare these spectra to observations of several regions on Mars. We compare these results with TES data and previous mineralogical maps. [1] Christensen et al, (2001) JGR 106, E10; [2] Christensen et al, (2002) Space Science Reviews 110, 1; [3] Christensen et al, (2000) JGR 105, E4

  7. Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy

    PubMed Central

    Campos-Delgado, Daniel U.; Navarro, O. Gutiérrez; Arce-Santana, E. R.; Jo, Javier A.

    2015-01-01

    In this paper, we investigate novel low-dimensional and model-free representations for multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) data. We depart from the classical definition of the phasor in the complex plane to propose the extended output phasor (EOP) and extended phasor (EP) for multi-spectral information. The frequency domain properties of the EOP and EP are analytically studied based on a multiexponential model for the impulse response of the imaged tissue. For practical implementations, the EOP is more appealing since there is no need to perform deconvolution of the instrument response from the measured m-FLIM data, as in the case of EP. Our synthetic and experimental evaluations with m-FLIM datasets of human coronary atherosclerotic plaques show that low frequency indexes have to be employed for a distinctive representation of the EOP and EP, and to reduce noise distortion. The tissue classification of the m-FLIM datasets by EOP and EP also improves with low frequency indexes, and does not present significant differences by using either phasor. PMID:26114031

  8. Building Keypoint Mappings on Multispectral Images by a Cascade of Classifiers with a Resurrection Mechanism

    PubMed Central

    Li, Yong; Jing, Jing; Jin, Hongbin

    2015-01-01

    Inspired by the boosting technique for detecting objects, this paper proposes a cascade structure with a resurrection mechanism to establish keypoint mappings on multispectral images. The cascade structure is composed of four steps by utilizing best bin first (BBF), color and intensity distribution of segment (CIDS), global information and the RANSAC process to remove outlier keypoint matchings. Initial keypoint mappings are built with the descriptors associated with keypoints; then, at each step, only a small number of keypoint mappings of a high confidence are classified to be incorrect. The unclassified keypoint mappings will be passed on to subsequent steps for determining whether they are correct. Due to the drawback of a classification rule, some correct keypoint mappings may be misclassified as incorrect at a step. Observing this, we design a resurrection mechanism, so that they will be reconsidered and evaluated by the rules utilized in subsequent steps. Experimental results show that the proposed cascade structure combined with the resurrection mechanism can effectively build more reliable keypoint mappings on multispectral images than existing methods. PMID:26007729

  9. Characterization method for a multispectral high-dynamic-range imaging system

    NASA Astrophysics Data System (ADS)

    Kim, Duck Bong; Lee, Kwan H.

    2014-07-01

    An accurate characterization method for a multispectral high-dynamic-range (HDR) imaging system is proposed by combining multispectral and HDR imaging technologies. The multispectral HDR imaging system, which can acquire the visible spectrum at many wavelength bands, can provide an accurate color reproduction and physical radiance information of real objects. An HDR camera is used to capture an HDR image without multiple exposures and a liquid crystal tunable filter (LCTF) is used to generate multispectral images. Due to its several limitations in the multispectral HDR imaging system, a carefully designed and an innovative characterization algorithm is presented by considering a logarithmic camera response of the HDR camera and different spectral transmittance of the LCTF. The proposed method efficiently and accurately recovers the full spectrum from the multispectral HDR images using a transformation matrix and provides device-independent color information (e.g., CIEXYZ and CIELAB). The transformation matrix is estimated by training the estimated sensor responses from a multispectral HDR imaging system and the reflectance measurements from a spectroradiometer using Moore-Penrose pseudoinverse matrix.

  10. Advances in Hyperspectral and Multispectral Image Fusion and Spectral Unmixing

    NASA Astrophysics Data System (ADS)

    Lanaras, C.; Baltsavias, E.; Schindler, K.

    2015-08-01

    In this work, we jointly process high spectral and high geometric resolution images and exploit their synergies to (a) generate a fused image of high spectral and geometric resolution; and (b) improve (linear) spectral unmixing of hyperspectral endmembers at subpixel level w.r.t. the pixel size of the hyperspectral image. We assume that the two images are radiometrically corrected and geometrically co-registered. The scientific contributions of this work are (a) a simultaneous approach to image fusion and hyperspectral unmixing, (b) enforcing several physically plausible constraints during unmixing that are all well-known, but typically not used in combination, and (c) the use of efficient, state-of-the-art mathematical optimization tools to implement the processing. The results of our joint fusion and unmixing has the potential to enable more accurate and detailed semantic interpretation of objects and their properties in hyperspectral and multispectral images, with applications in environmental mapping, monitoring and change detection. In our experiments, the proposed method always improves the fusion compared to competing methods, reducing RMSE between 4% and 53%.

  11. Multispectral photoacoustic imaging of nerves with a clinical ultrasound system

    NASA Astrophysics Data System (ADS)

    Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.

    2014-03-01

    Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.

  12. Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging.

    PubMed

    Li, Weizhi; Mo, Weirong; Zhang, Xu; Squiers, John J; Lu, Yang; Sellke, Eric W; Fan, Wensheng; DiMaio, J Michael; Thatcher, Jeffrey E

    2015-12-01

    Multispectral imaging (MSI) was implemented to develop a burn tissue classification device to assist burn surgeons in planning and performing debridement surgery. To build a classification model via machine learning, training data accurately representing the burn tissue was needed, but assigning raw MSI data to appropriate tissue classes is prone to error. We hypothesized that removing outliers from the training dataset would improve classification accuracy. A swine burn model was developed to build an MSI training database and study an algorithm’s burn tissue classification abilities. After the ground-truth database was generated, we developed a multistage method based on Z -test and univariate analysis to detect and remove outliers from the training dataset. Using 10-fold cross validation, we compared the algorithm’s accuracy when trained with and without the presence of outliers. The outlier detection and removal method reduced the variance of the training data. Test accuracy was improved from 63% to 76%, matching the accuracy of clinical judgment of expert burn surgeons, the current gold standard in burn injury assessment. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities. PMID:26305321

  13. Outlier detection and removal improves accuracy of machine learning approach to multispectral burn diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Li, Weizhi; Mo, Weirong; Zhang, Xu; Squiers, John J.; Lu, Yang; Sellke, Eric W.; Fan, Wensheng; DiMaio, J. Michael; Thatcher, Jeffrey E.

    2015-12-01

    Multispectral imaging (MSI) was implemented to develop a burn tissue classification device to assist burn surgeons in planning and performing debridement surgery. To build a classification model via machine learning, training data accurately representing the burn tissue was needed, but assigning raw MSI data to appropriate tissue classes is prone to error. We hypothesized that removing outliers from the training dataset would improve classification accuracy. A swine burn model was developed to build an MSI training database and study an algorithm's burn tissue classification abilities. After the ground-truth database was generated, we developed a multistage method based on Z-test and univariate analysis to detect and remove outliers from the training dataset. Using 10-fold cross validation, we compared the algorithm's accuracy when trained with and without the presence of outliers. The outlier detection and removal method reduced the variance of the training data. Test accuracy was improved from 63% to 76%, matching the accuracy of clinical judgment of expert burn surgeons, the current gold standard in burn injury assessment. Given that there are few surgeons and facilities specializing in burn care, this technology may improve the standard of burn care for patients without access to specialized facilities.

  14. 3D and multispectral imaging for subcutaneous veins detection.

    PubMed

    Paquit, Vincent C; Tobin, Kenneth W; Price, Jeffery R; Mèriaudeau, Fabrice

    2009-07-01

    The first and perhaps most important phase of a surgical procedure is the insertion of an intravenous (IV) catheter. Currently, this is performed manually by trained personnel. In some visions of future operating rooms, however, this process is to be replaced by an automated system. Experiments to determine the best NIR wavelengths to optimize vein contrast for physiological differences such as skin tone and/or the presence of hair on the arm or wrist surface are presented. For illumination our system is composed of a mercury arc lamp coupled to a 10nm band-pass spectrometer. A structured lighting system is also coupled to our multispectral system in order to provide 3D information of the patient arm orientation. Images of each patient arm are captured under every possible combinations of illuminants and the optimal combination of wavelengths for a given subject to maximize vein contrast using linear discriminant analysis is determined. PMID:19582050

  15. Spatial clustering of pixels of a multispectral image

    DOEpatents

    Conger, James Lynn

    2014-08-19

    A method and system for clustering the pixels of a multispectral image is provided. A clustering system computes a maximum spectral similarity score for each pixel that indicates the similarity between that pixel and the most similar neighboring. To determine the maximum similarity score for a pixel, the clustering system generates a similarity score between that pixel and each of its neighboring pixels and then selects the similarity score that represents the highest similarity as the maximum similarity score. The clustering system may apply a filtering criterion based on the maximum similarity score so that pixels with similarity scores below a minimum threshold are not clustered. The clustering system changes the current pixel values of the pixels in a cluster based on an averaging of the original pixel values of the pixels in the cluster.

  16. Biological tissue identification using a multispectral imaging system

    NASA Astrophysics Data System (ADS)

    Delporte, Céline; Sautrot, Sylvie; Ben Chouikha, Mohamed; Viénot, Françoise; Alquié, Georges

    2013-02-01

    A multispectral imaging system enabling biological tissue identifying and differentiation is presented. The measurement of β(λ) spectral radiance factor cube for four tissue types (beef muscle, pork muscle, turkey muscle and beef liver) present in the same scene was carried out. Three methods for tissue identification are proposed and their relevance evaluated. The first method correlates the scene spectral radiance factor with tissue database characteristics. This method gives detection rates ranging from 63.5 % to 85 %. The second method correlates the scene spectral radiance factor derivatives with a database of tissue β(λ) derivatives. This method is more efficient than the first one because it gives detection rates ranging from 79 % to 89 % with over-detection rates smaller than 0.2 %. The third method uses the biological tissue spectral signature. It enhances contrast in order to afford tissue differentiation and identification.

  17. Multispectral imaging fluorescence microscopy for lymphoid tissue analysis

    NASA Astrophysics Data System (ADS)

    Monici, Monica; Agati, Giovanni; Fusi, Franco; Mazzinghi, Piero; Romano, Salvatore; Pratesi, Riccardo; Alterini, Renato; Bernabei, Pietro A.; Rigacci, Luigi

    1999-01-01

    Multispectral imaging autofluorescence microscopy (MIAM) is used here for the analysis of lymphatic tissues. Lymph node biopsies, from patients with lympthoadenopathy of different origin have been examined. Natural fluorescence (NF) images of 3 micrometers sections were obtained using three filters peaked at 450, 550 and 680 nm with 50 nm bandpass. Monochrome images were combined together in a single RGB image. NF images of lymph node tissue sections show intense blue-green fluorescence of the connective stroma. Normal tissue shows follicles with faintly fluorescent lymphocytes, as expected fro the morphologic and functional characteristics of these cells. Other more fluorescent cells (e.g., plasma cells and macrophages) are evidenced. Intense green fluorescence if localized in the inner wall of the vessels. Tissues coming from patients affected by Hodgkin's lymphoma show spread fluorescence due to connective infiltration and no evidence of follicle organization. Brightly fluorescent large cells, presumably Hodgkin cells, are also observed. These results indicate that MIAM can discriminate between normal and pathological tissues on the basis of their natural fluorescence pattern, and, therefore, represent a potentially useful technique for diagnostic applications. Analysis of the fluorescence spectra of both normal and malignant lymphoid tissues resulted much less discriminatory than MIAM.

  18. Semantic classification of business images

    NASA Astrophysics Data System (ADS)

    Erol, Berna; Hull, Jonathan J.

    2006-01-01

    Digital cameras are becoming increasingly common for capturing information in business settings. In this paper, we describe a novel method for classifying images into the following semantic classes: document, whiteboard, business card, slide, and regular images. Our method is based on combining low-level image features, such as text color, layout, and handwriting features with high-level OCR output analysis. Several Support Vector Machine Classifiers are combined for multi-class classification of input images. The system yields 95% accuracy in classification.

  19. Multispectral image segmentation using parallel mean shift algorithm and CUDA technology

    NASA Astrophysics Data System (ADS)

    Zghidi, Hafedh; Walczak, Maksym; Świtoński, Adam

    2016-06-01

    We present a parallel mean shift algorithm running on CUDA and its possible application in segmentation of multispectral images. The aim of this paper is to present a method of analyzing highly noised multispectral images of various objects, so that important features are enhanced and easier to identify. The algorithm finds applications in analysis of multispectral images of eyes so that certain features visible only in specific wavelengths are made clearly visible despite high level of noise, for which processing time is very long.

  20. MathWeb: a concurrent image analysis tool suite for multispectral data fusion

    NASA Astrophysics Data System (ADS)

    Achalakul, Tiranee; Haaland, Peter D.; Taylor, Stephen

    1999-03-01

    This paper describes a preliminary approach to the fusion of multi-spectral image data for the analysis of cervical cancer. The long-term goal of this research is to define spectral signatures and automatically detect cancer cell structures. The approach combines a multi-spectral microscope with an image analysis tool suite, MathWeb. The tool suite incorporates a concurrent Principal Component Transform (PCT) that is used to fuse the multi-spectral data. This paper describes the general approach and the concurrent PCT algorithm. The algorithm is evaluated from both the perspective of image quality and performance scalability.

  1. High Throughput Multispectral Image Processing with Applications in Food Science.

    PubMed

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples. PMID:26466349

  2. Assigning Main Orientation to an EOH Descriptor on Multispectral Images

    PubMed Central

    Li, Yong; Shi, Xiang; Wei, Lijun; Zou, Junwei; Chen, Fang

    2015-01-01

    This paper proposes an approach to compute an EOH (edge-oriented histogram) descriptor with main orientation. EOH has a better matching ability than SIFT (scale-invariant feature transform) on multispectral images, but does not assign a main orientation to keypoints. Alternatively, it tends to assign the same main orientation to every keypoint, e.g., zero degrees. This limits EOH to matching keypoints between images of translation misalignment only. Observing this limitation, we propose assigning to keypoints the main orientation that is computed with PIIFD (partial intensity invariant feature descriptor). In the proposed method, SIFT keypoints are detected from images as the extrema of difference of Gaussians, and every keypoint is assigned to the main orientation computed with PIIFD. Then, EOH is computed for every keypoint with respect to its main orientation. In addition, an implementation variant is proposed for fast computation of the EOH descriptor. Experimental results show that the proposed approach performs more robustly than the original EOH on image pairs that have a rotation misalignment. PMID:26140348

  3. Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-01-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  4. Multispectral fundus imaging for early detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Beach, James M.; Tiedeman, James S.; Hopkins, Mark F.; Sabharwal, Yashvinder S.

    1999-04-01

    Functional imaging of the retina and associated structures may provide information for early assessment of risks of developing retinopathy in diabetic patients. Here we show results of retinal oximetry performed using multi-spectral reflectance imaging techniques to assess hemoglobin (Hb) oxygen saturation (OS) in blood vessels of the inner retina and oxygen utilization at the optic nerve in diabetic patients without retinopathy and early disease during experimental hyperglycemia. Retinal images were obtained through a fundus camera and simultaneously recorded at up to four wavelengths using image-splitting modules coupled to a digital camera. Changes in OS in large retinal vessels, in average OS in disk tissue, and in the reduced state of cytochrome oxidase (CO) at the disk were determined from changes in reflectance associated with the oxidation/reduction states of Hb and CO. Step to high sugar lowered venous oxygen saturation to a degree dependent on disease duration. Moderate increase in sugar produced higher levels of reduced CO in both the disk and surrounding tissue without a detectable change in average tissue OS. Results suggest that regulation of retinal blood supply and oxygen consumption are altered by hyperglycemia and that such functional changes are present before clinical signs of retinopathy.

  5. High Throughput Multispectral Image Processing with Applications in Food Science

    PubMed Central

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing’s outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples. PMID:26466349

  6. Radiometric characterization of hyperspectral imagers using multispectral sensors

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel; Thome, Kurt; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-08-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (MODIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of MODIS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most bands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  7. Establish keypoint matches on multispectral images utilizing descriptor and global information over entire image

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zou, Junwei; Jing, Jing; Jin, Hongbin; Yu, Hang

    2016-05-01

    This paper proposes an approach to registering multispectral images by establishing keypoint matches. The matching ability of descriptors is characterized by the repeatability and distinctiveness that typically decrease on multispectral images. The decrease of matching ability often yields a set of keypoint matches containing a high rate of incorrect matches, and in this case the outlier matches are very difficult to be removed. To establish reliable keypoint matches, this paper proposes an approach of two stages. Firstly, keypoint matches of smaller descriptor distance are obtained as an initial set. Secondly, complementary information to the local window for computing descriptors is employed to evaluate keypoint matches and find good matches. A smaller descriptor distance for a keypoint match implies a greater probability of being correct and hence the initial set contains a higher rate of correct matches. The global information can be viewed as a means of enhancing the matching ability of descriptors, compensating the decrease of common information between multispectral images. Experimental results show that the proposed method can effectively establish keypoint matches on multispectral images of large spectral difference.

  8. Object-Based Fusion of Envisat ASAR and HJ-1 Multispectral Images for Urban Landcover Mapping

    NASA Astrophysics Data System (ADS)

    Vu, Tuong-Thuy; Ban, Yifang

    2010-12-01

    The objective of this research is to investigate the synergy of ESA ENVISAT ASAR data and the Chinese HJ-1 multispectral data for urban land cover mapping in Beijing, China. A newly developed fusion approach is applied to map a complex urban area, which consists of both old and new built-up areas, using ENVISAT ASAR data acquired on 31 July 2008 and HJ-1B multispectral imagery acquired on 12 May 2009. First, radar and optical images are classified and segmented separately with scale-space analysis in integration with shape analysis, hybrid pixel/object based unsupervised classification and histogram intersection technique. Second, based on a set of predefined rules, extracted objects from the first step will be fused to produce the final classified map. The developed fusion method is fully automatic with less user interaction and would be a suitable tool for operational uses if satisfactory accuracy could be achieved. Future research is planned to improve the algorithm performance with addition of multi-temporal SAR data.

  9. Imaging Science Panel. Multispectral Imaging Science Working Group joint meeting with Information Science Panel: Introduction

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The state-of-the-art of multispectral sensing is reviewed and recommendations for future research and development are proposed. specifically, two generic sensor concepts were discussed. One is the multispectral pushbroom sensor utilizing linear array technology which operates in six spectral bands including two in the SWIR region and incorporates capabilities for stereo and crosstrack pointing. The second concept is the imaging spectrometer (IS) which incorporates a dispersive element and area arrays to provide both spectral and spatial information simultaneously. Other key technology areas included very large scale integration and the computer aided design of these devices.

  10. A new method of building footprints detection using airborne laser scanning data and multispectral image

    NASA Astrophysics Data System (ADS)

    Luo, Yiping; Jiang, Ting; Gao, Shengli; Wang, Xin

    2010-10-01

    It presents a new approach for detecting building footprints in a combination of registered aerial image with multispectral bands and airborne laser scanning data synchronously obtained by Leica-Geosystems ALS40 and Applanix DACS-301 on the same platform. A two-step method for building detection was presented consisting of selecting 'building' candidate points and then classifying candidate points. A digital surface model(DSM) derived from last pulse laser scanning data was first filtered and the laser points were classified into classes 'ground' and 'building or tree' based on mathematic morphological filter. Then, 'ground' points were resample into digital elevation model(DEM), and a Normalized DSM(nDSM) was generated from DEM and DSM. The candidate points were selected from 'building or tree' points by height value and area threshold in nDSM. The candidate points were further classified into building points and tree points by using the support vector machines(SVM) classification method. Two classification tests were carried out using features only from laser scanning data and associated features from two input data sources. The features included height, height finite difference, RGB bands value, and so on. The RGB value of points was acquired by matching laser scanning data and image using collinear equation. The features of training points were presented as input data for SVM classification method, and cross validation was used to select best classification parameters. The determinant function could be constructed by the classification parameters and the class of candidate points was determined by determinant function. The result showed that associated features from two input data sources were superior to features only from laser scanning data. The accuracy of more than 90% was achieved for buildings in first kind of features.

  11. A new method of multispectral image processing with camouflage effect detection

    NASA Astrophysics Data System (ADS)

    Hu, Jianghua; Cui, Guangzhen; Qin, Lei

    2015-10-01

    In order to enhance the observability of multispectral image and improve the accuracy of camouflage effect evaluation based on multispectral photographic. A new method for multispectral image processing has been put forward. In the visible band, more spectral images for image fusion which are based on wavelet transformation respectively are chosen. The image information is enhanced. The visible light and near infrared band images are fused and introduced in three-channel of red, green and blue. The true color image is synthetized. While the detail of visible light image is enhanced, near infrared image information which is more interesting in camouflage evaluation is kept. Finally the fusion image are processed through histogram stretching and correlation method. The image color and luminance difference of each part is enhanced. The target recognition and camouflage effect evaluation is more advantageous. The experimental results proved that the method has a good effect.

  12. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  13. Initial performance verification for the Multispectral Thermal Imager

    NASA Astrophysics Data System (ADS)

    Weber, Paul G.

    2000-07-01

    The Multispectral Thermal Imager (MTI) is designed to demonstrate the utility of multispectral remote sensing from a satellite platform for a variety of applications of interest to the U.S. Department of Energy. These applications include characterization of industrial facilities, environmental impacts of effluents, global change, hazardous waste sites, resource exploitation, crop health, and others. The MTI was designed using a procedure which we call `End-to-end modeling and analysis (EEM).' We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term `end-to-end modeling and analysis.' We based the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolved, and as real hardware was tested, we updated the EEM to facilitate trade studies, and to judge, for example, whether components that deviated from specifications were acceptable. During detailed calibration at the Los Alamos Radiometric Calibration Facility we used our models to explain certain observations, and to extend limited measurements to larger domains of applicability. Data analysis programs have been developed to generate a comprehensive set of data products through our Data Processing and Analysis Center. The satellite was due for launch on 8 February 2000: the actual launch data was 12 March, 2000. At the conference we anticipate sharing some preliminary observations from on-orbit.

  14. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  15. Novel image fusion scheme based on maximum ratio combining for robust multispectral face recognition

    NASA Astrophysics Data System (ADS)

    Omri, Faten; Foufou, Sebti

    2015-04-01

    Recently, the research in multispectral face recognition has focused on developing efficient frameworks for improving face recognition performance at close-up distances. However, few studies have investigated the multispectral face images captured at long distance. In fact, great challenges still exist in recognizing human face in images captured at long distance as the image quality might be affected and some important features masked. Therefore, multispectral face recognition tools and algorithms should evolve from close-up distances to long distances. To address these issues, we present in this paper a novel image fusion scheme based on Maximum Ratio Combining algorithm and improve multispectral face recognition at long distance. The proposed method is compared with similar super-resolution method based on the Maximum likelihood algorithm. Simulation results show the efficiency of the proposed approach in term of average variance of detection error.

  16. In vivo imaging of cancer cells with electroporation of quantum dots and multispectral imaging

    NASA Astrophysics Data System (ADS)

    Yoo, Jung Sun; Won, Nayoun; Kim, Hong Bae; Bang, Jiwon; Kim, Sungjee; Ahn, Saeyoung; Soh, Kwang-Sup

    2010-06-01

    Our understanding of dissemination and growth of cancer cells is limited by our inability for long-term followup of this process in vivo. Fluorescence molecular imaging has the potential to track cancer cells with high contrast and sensitivity in living animals. For this purpose, intracellular delivery of near-infrared fluorescence quantum dots (QDs) by electroporation offers considerable advantages over organic fluorophores and other cell tagging methods. In this research we developed a multispectral imaging system that could eliminate two major parameters compromising in vivo fluorescence imaging performance, i.e., variations in the tissue optical properties and tissue autofluorescence. We demonstrated that electroporation of QDs and multispectral imaging allowed in vivo assessment of cancer development and progression in the xenograft mouse tumor model for more than 1 month, providing a powerful means to learn more about the biology of cancer and metastasis.

  17. Image quality degradation and retrieval errors introduced by registration and interpolation of multispectral digital images

    SciTech Connect

    Henderson, B.G.; Borel, C.C.; Theiler, J.P.; Smith, B.W.

    1996-04-01

    Full utilization of multispectral data acquired by whiskbroom and pushbroom imagers requires that the individual channels be registered accurately. Poor registration introduces errors which can be significant, especially in high contrast areas such as boundaries between regions. We simulate the acquisition of multispectral imagery in order to estimate the errors that are introduced by co-registration of different channels and interpolation within the images. We compute the Modulation Transfer Function (MTF) and image quality degradation brought about by fractional pixel shifting and calculate errors in retrieved quantities (surface temperature and water vapor) that occur as a result of interpolation. We also present a method which might be used to estimate sensor platform motion for accurate registration of images acquired by a pushbroom scanner.

  18. Multispectral mid-infrared imaging using frequency upconversion

    NASA Astrophysics Data System (ADS)

    Sanders, Nicolai; Dam, Jeppe Seidelin; Jensen, Ole Bjarlin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-03-01

    It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version of the infrared object field, with a bandwidth corresponding given by the acceptance parameter of the conversion process, and a center frequency given by the phase-match condition. Tuning of the phase-matched wavelengths has previously been demonstrated by changing the temperature [2] or angle [3 Keywords: Infrared imaging, nonlinear frequency conversion, diode lasers, upconversion ] of the nonlinear material. Unfortunately, temperature tuning is slow, and angle tuning typically results in alignment issues. Here we present a novel approach where the wavelength of the mixing field is used as a tuning parameter, allowing for fast tuning and hence potentially fast image acquisition, paving the way for upconversion based real time multispectral imaging. In the present realization the upconversion module consists of an external cavity tapered diode laser in a Littrow configuration with a computer controlled feedback grating. The output from a tunable laser is used as seed for a fiber amplifier system, boosting the power to approx. 3 W over the tuning range from 1025 to 1085 nm. Using a periodically poled lithium niobate crystal, the infrared wavelength that can be phase-matched is tunable over more than 200 nm. Using a crystal with multiple poling periods allows for upconversion within the entire transparency range of the nonlinear material.

  19. Detecting early stage pressure ulcer on dark skin using multispectral imager

    NASA Astrophysics Data System (ADS)

    Yi, Dingrong; Kong, Linghua; Sprigle, Stephen; Wang, Fengtao; Wang, Chao; Liu, Fuhan; Adibi, Ali; Tummala, Rao

    2010-02-01

    We are developing a handheld multispectral imaging device to non-invasively inspect stage I pressure ulcers in dark pigmented skins without the need of touching the patient's skin. This paper reports some preliminary test results of using a proof-of-concept prototype. It also talks about the innovation's impact to traditional multispectral imaging technologies and the fields that will potentially benefit from it.

  20. Multispectral image analysis of forest (grassland) fire based on agent

    NASA Astrophysics Data System (ADS)

    Guan, Jiaying; Li, Deren; Guan, Zequn

    2001-09-01

    Now the developing research of Agent can help operators to do the routine assignments, by which we can economize the precious resources and improve the real-time image analysis of the computers. This paper firstly makes a brief introduction of the Agent conception. Then we make some discussions about the multispectral images of a certain area, which is based on the concept of Agent. The main objects of this paper are inspections of forest (grassland) fire. The purpose of this paper is to propose three stages with which Agent could monitor the wildly areas and make decision automatically, without operators' intervention. First stage, if the value of pixels are more than a given threshold, Agent will give the operators an alarm and notify the operators that there are something happened; Second stage, analyze data and self-learning; Third stage, according to the database and knowledge database, Agents make decisions. As the decisions will be influenced by many factors, so some models, such as heat sources model, weather model, fire model, vegetation model are needed.

  1. Spatial Resolution Characterization for AWiFS Multispectral Images

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Ryan, Robert E.; Pagnutti, Mary; Stanley, Thomas

    2006-01-01

    Within the framework of the Joint Agency Commercial Imagery Evaluation program, the National Aeronautics and Space Administration, the National Geospatial-Intelligence Agency, and the U.S. Geological Survey cooperate in the characterization of high-to-moderate-resolution commercial imagery of mutual interest. One of the systems involved in this effort is the Advanced Wide Field Sensor (AWiFS) onboard the Indian Remote Sensing (IRS) Reourcesat-1 satellite, IRS-P6. Spatial resolution of the AWiFS multispectral images was characterized by estimating the value of the system Modulation Transfer Function (MTF) at the Nyquist spatial frequency. The Nyquist frequency is defined as half the sampling frequency, and the sampling frequency is equal to the inverse of the ground sample distance. The MTF was calculated as a ratio of the Fourier transform of a profile across an AWiFS image of the Lake Pontchartrain Causeway Bridge and the Fourier transform of a profile across an idealized model of the bridge for each spectral band evaluated. The mean MTF value for the AWiFS imagery evaluated was estimated to be 0.1.

  2. Infrared optical coatings for the EarthCARE Multispectral Imager.

    PubMed

    Hawkins, Gary; Woods, David; Sherwood, Richard; Djotni, Karim

    2014-10-20

    The Earth Cloud, Aerosol and Radiation Explorer mission (EarthCARE) Multispectral Imager (MSI) is a radiometric instrument designed to provide the imaging of the atmospheric cloud cover and the cloud top surface temperature from a sun-synchronous low Earth orbit. The MSI forms part of a suite of four instruments destined to support the European Space Agency Living Planet mission on-board the EarthCARE satellite payload to be launched in 2016, whose synergy will be used to construct three-dimensional scenes, textures, and temperatures of atmospheric clouds and aerosols. The MSI instrument contains seven channels: four solar channels to measure visible and short-wave infrared wavelengths, and three channels to measure infrared thermal emission. In this paper, we describe the optical layout of the infrared instrument channels, thin-film multilayer designs, the coating deposition method, and the spectral system throughput for the bandpass interference filters, dichroic beam splitters, lenses, and mirror coatings to discriminate wavelengths at 8.8, 10.8, and 12.0 μm. The rationale for the selection of thin-film materials, spectral measurement technique, and environmental testing performance are also presented. PMID:25402784

  3. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  4. Critical dimension measurement of transparent film layers by multispectral imaging.

    PubMed

    Kwon, Soonyang; Kim, Namyoon; Jo, Taeyong; Pahk, Heui Jae

    2014-07-14

    An optical microscopy system as a non-destructive method for measuring critical dimension (CD) is widely used for its stability and fastness. In case of transparent thin film measurement, it is hard to recognize the pattern under white light illumination due to its transparency and reflectance characteristics. In this paper, the optical measurement system using multispectral imaging for CD measurement of transparent thin film is introduced. The measurement system utilizes an Acousto-Optic Tunable Filter (AOTF) to illuminate the specimen with various monochromatic lights. The relationship between spectral reflectance and CD measurement are deduced from series of measurement experiments with two kinds of Indium Tin Oxide (ITO) patterned samples. When the difference of spectral reflectance between substrate and thin film layers is large enough to yield a large image intensity difference, the thin film layer can be distinguished from substrate, and it is possible to measure the CD of transparent thin films. This paper analyzes CD measurement of transparent thin film with reflectance theory and shows that the CD measurement of transparent thin film can be performed successfully with the proposed system within a certain wavelength range filtered by AOTF. PMID:25090550

  5. Multispectral Image Road Extraction Based Upon Automated Map Conflation

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    Road network extraction from remotely sensed imagery enables many important and diverse applications such as vehicle tracking, drone navigation, and intelligent transportation studies. There are, however, a number of challenges to road detection from an image. Road pavement material, width, direction, and topology vary across a scene. Complete or partial occlusions caused by nearby buildings, trees, and the shadows cast by them, make maintaining road connectivity difficult. The problems posed by occlusions are exacerbated with the increasing use of oblique imagery from aerial and satellite platforms. Further, common objects such as rooftops and parking lots are made of materials similar or identical to road pavements. This problem of common materials is a classic case of a single land cover material existing for different land use scenarios. This work addresses these problems in road extraction from geo-referenced imagery by leveraging the OpenStreetMap digital road map to guide image-based road extraction. The crowd-sourced cartography has the advantages of worldwide coverage that is constantly updated. The derived road vectors follow only roads and so can serve to guide image-based road extraction with minimal confusion from occlusions and changes in road material. On the other hand, the vector road map has no information on road widths and misalignments between the vector map and the geo-referenced image are small but nonsystematic. Properly correcting misalignment between two geospatial datasets, also known as map conflation, is an essential step. A generic framework requiring minimal human intervention is described for multispectral image road extraction and automatic road map conflation. The approach relies on the road feature generation of a binary mask and a corresponding curvilinear image. A method for generating the binary road mask from the image by applying a spectral measure is presented. The spectral measure, called anisotropy-tunable distance (ATD

  6. An automated approach for constructing road network graph from multispectral images

    NASA Astrophysics Data System (ADS)

    Sun, Weihua; Messinger, David W.

    2012-06-01

    We present an approach for automatically building a road network graph from multispectralWorldView II images in suburban and urban areas. In this graph, the road parts are represented by edges and their connectivity by vertices. This approach consists of an image processing chain utilizing both high-resolution spatial features as well as multiple band spectral signatures from satellite images. Based on an edge-preserving filtered image, a two-pass spatial-spectral flood fill technique is adopted to extract a road class map. This technique requires only one pixel as the initial training set and collects spatially adjacent and spectrally similar pixels to the initial points as a second level training set for a higher accuracy asphalt classification. Based on the road class map, a road network graph is built after going through a curvilinear detector and a knowledge based system. The graph projects a logical representation of the road network in an urban image. Rules can be made to filter salient road parts with different width as well as ruling out parking lots from the asphalt class map. This spatial spectral joint approach we propose here is capable of building up a road network connectivity graph and this graph lays a foundation for further road related tasks.

  7. A new clustering algorithm applicable to multispectral and polarimetric SAR images

    NASA Technical Reports Server (NTRS)

    Wong, Yiu-Fai; Posner, Edward C.

    1993-01-01

    We describe an application of a scale-space clustering algorithm to the classification of a multispectral and polarimetric SAR image of an agricultural site. After the initial polarimetric and radiometric calibration and noise cancellation, we extracted a 12-dimensional feature vector for each pixel from the scattering matrix. The clustering algorithm was able to partition a set of unlabeled feature vectors from 13 selected sites, each site corresponding to a distinct crop, into 13 clusters without any supervision. The cluster parameters were then used to classify the whole image. The classification map is much less noisy and more accurate than those obtained by hierarchical rules. Starting with every point as a cluster, the algorithm works by melting the system to produce a tree of clusters in the scale space. It can cluster data in any multidimensional space and is insensitive to variability in cluster densities, sizes and ellipsoidal shapes. This algorithm, more powerful than existing ones, may be useful for remote sensing for land use.

  8. Real-time aerial multispectral imaging solutions using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-06-01

    The next generation of multispectral sensors and cameras needs to deliver significant improvements in size, weight, portability, and spectral band customization to support widespread commercial deployment for a variety of purposebuilt aerial, unmanned, and scientific applications. The benefits of multispectral imaging are well established for applications including machine vision, biomedical, authentication, and remote sensing environments - but many aerial and OEM solutions require more compact, robust, and cost-effective production cameras to realize these benefits. A novel implementation uses micropatterning of dichroic filters into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color camera image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. We demonstrate recent results of 4-9 band dichroic filter arrays in multispectral cameras using a variety of sensors including linear, area, silicon, and InGaAs. Specific implementations range from hybrid RGB + NIR sensors to custom sensors with applicationspecific VIS, NIR, and SWIR spectral bands. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and development path. Finally, we report on the wafer-level fabrication of dichroic filter arrays on imaging sensors for scalable production of multispectral sensors and cameras.

  9. Real-time compact multispectral imaging solutions using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Chandler, Eric V.; Fish, David E.

    2014-03-01

    The next generation of multispectral sensors and cameras will need to deliver significant improvements in size, weight, portability, and spectral band customization to support widespread commercial deployment. The benefits of multispectral imaging are well established for applications including machine vision, biomedical, authentication, and aerial remote sensing environments - but many OEM solutions require more compact, robust, and cost-effective production cameras to realize these benefits. A novel implementation uses micro-patterning of dichroic filters into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color camera image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. We demonstrate recent results of 4-9 band dichroic filter arrays in multispectral cameras using a variety of sensors including linear, area, silicon, and InGaAs. Specific implementations range from hybrid RGB + NIR sensors to custom sensors with application-specific VIS, NIR, and SWIR spectral bands. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and development path. Finally, we report on the wafer-level fabrication of dichroic filter arrays on imaging sensors for scalable production of multispectral sensors and cameras.

  10. Shuttle Imaging Radar-A (SIR-A) data as a complement to Landsat Multispectral Scanner (MSS) data

    NASA Technical Reports Server (NTRS)

    Henninger, D. L.; Carney, J. H.

    1983-01-01

    Principal components analysis and supervised classifications were performed on two dates of Landsat multispectral scanner (MSS) data registered to one date of Shuttle Imaging Radar-A (SIR-A) data in a wheat-growing area of New South Wales, Australia. The purpose was to evaluate SIR-A data as a complement to Landsat MSS data in an agricultural environment. The SIR-A data was filtered using a 7 x 7 pixel moving window median filter. Principal components analysis indicated the SIR-A data were discriminating between trees and agricultural fields. Supervised classifications using wheat, pasture, trees, and idle classes resulted in increased accuracies for wheat and pasture and slightly decreased accuracies for trees and idle for the Landsat MSS/SIR-A registered data sets over the Landsat MSS alone. Overall classification accuracies were unchanged for one date and substantially increased for the other when the SIR-A data were added to the Landsat MSS data.

  11. Image classification and interpolation

    NASA Astrophysics Data System (ADS)

    Khemka, Animesh; Bouman, Charles A.

    2012-03-01

    We have developed a novel interpolation method for images containing text, graphics and natural scenes. The method allows us to select the best interpolation algorithm for different regions of an image. In particular, we segment the image into graphical and natural regions and use the appropriate algorithm for each region. The natural regions are interpolated using a current state-of-the-art algorithm. However, when applied to graphical images, the current state-of-the-art interpolators tend to produce artifacts at edge discontinuities. Thus, we developed a novel approach which we call Low Entropy Interpolation (LEI) algorithm for the graphical images. The LEI algorithm is highly non-linear and produces very sharp edges with very few defects necessary for good quality interpolation of graphical images.

  12. Object-oriented fusion of RADARSAT-2 polarimetric synthetic aperture radar and HJ-1A multispectral data for land-cover classification

    NASA Astrophysics Data System (ADS)

    Xiao, Yan; Jiang, Qigang; Wang, Bin; Li, Yuanhua; Liu, Shu; Cui, Can

    2016-04-01

    The contribution of the integration of optical and polarimetric synthetic aperture radar (PolSAR) data to accurate land-cover classification was investigated. For this purpose, an object-oriented classification methodology that consisted of polarimetric decomposition, hybrid feature selection, and a support vector machine (SVM) was proposed. A RADARSAT-2 Fine Quad-Pol image and an HJ-1A CCD2 multispectral image were used as data sources. First, polarimetric decomposition was implemented for the RADARSAT-2 image. Sixty-one polarimetric parameters were extracted using different polarimetric decomposition methods and then merged with the main diagonal elements (T11, T22, T33) of the coherency matrix to form a multichannel image with 64 layers. Second, the HJ-1A and the multichannel images were divided into numerous image objects by implementing multiresolution segmentation. Third, 1104 features were extracted from the HJ-1A and the multichannel images for each image object. Fourth, the hybrid feature selection method that combined the ReliefF filter approach and the genetic algorithm (GA) wrapper approach (ReliefF-GA) was used. Finally, land-cover classification was performed by an SVM classifier on the basis of the selected features. Five other classification methodologies were conducted for comparison to verify the contribution of optical and PolSAR data integration and to test the superiority of the proposed object-oriented classification methodology. Comparison results show that HJ-1A data, RADARSAT-2 data, polarimetric decomposition, ReliefF-GA, and SVM have a significant contribution by improving land-cover classification accuracy.

  13. Multispectral Imager With Improved Filter Wheel and Optics

    NASA Technical Reports Server (NTRS)

    Bremer, James C.

    2007-01-01

    Figure 1 schematically depicts an improved multispectral imaging system of the type that utilizes a filter wheel that contains multiple discrete narrow-band-pass filters and that is rotated at a constant high speed to acquire images in rapid succession in the corresponding spectral bands. The improvement, relative to prior systems of this type, consists of the measures taken to prevent the exposure of a focal-plane array (FPA) of photodetectors to light in more than one spectral band at any given time and to prevent exposure of the array to any light during readout. In prior systems, these measures have included, variously the use of mechanical shutters or the incorporation of wide opaque sectors (equivalent to mechanical shutters) into filter wheels. These measures introduce substantial dead times into each operating cycle intervals during which image information cannot be collected and thus incoming light is wasted. In contrast, the present improved design does not involve shutters or wide opaque sectors, and it reduces dead times substantially. The improved multispectral imaging system is preceded by an afocal telescope and includes a filter wheel positioned so that its rotation brings each filter, in its turn, into the exit pupil of the telescope. The filter wheel contains an even number of narrow-band-pass filters separated by narrow, spoke-like opaque sectors. The geometric width of each filter exceeds the cross-sectional width of the light beam coming out of the telescope. The light transmitted by the sequence of narrow-band filters is incident on a dichroic beam splitter that reflects in a broad shorter-wavelength spectral band that contains half of the narrow bands and transmits in a broad longer-wavelength spectral band that contains the other half of the narrow spectral bands. The filters are arranged on the wheel so that if the pass band of a given filter is in the reflection band of the dichroic beam splitter, then the pass band of the adjacent filter

  14. Undercomplete learned dictionaries for land cover classification in multispectral imagery of Arctic landscapes using CoSA: clustering of sparse approximations

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Gangodagamage, Chandana

    2013-05-01

    Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of great interest for landscape characterization and change detection in support of global climate change science and modeling. We present results from an ongoing effort to extend machine vision methodologies to the environmental sciences, using state-of-theart adaptive signal processing, combined with compressive sensing and machine learning techniques. We use a Hebbian learning rule to build undercomplete spectral-textural dictionaries that are adapted to the data. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labels are automatically generated using our CoSA algorithm: unsupervised Clustering of Sparse Approximations. We demonstrate our method using multispectral Worldview-2 data from three Arctic study areas: Barrow, Alaska; the Selawik River, Alaska; and a watershed near the Mackenzie River delta in northwest Canada. Our goal is to develop a robust classification methodology that will allow for the automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and geomorphic characteristics. To interpret and assign land cover categories to the clusters we both evaluate the spectral properties of the clusters and compare the clusters to both field- and remote sensing-derived classifications of landscape attributes. Our work suggests that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing.

  15. Design considerations, modeling, and analysis for the multispectral thermal imager

    NASA Astrophysics Data System (ADS)

    Weber, Paul G.; Borel, Christoph C.; Clodius, William B.; Cooke, Bradly J.; Smith, Barham W.

    1999-07-01

    The design of remote sensing systems is driven by the need to provide cost-effective, substantive answers to questions posed by our customers. This is especially important for space-based systems, which tend to be expensive, and which generally cannot be changed after they are launched. We report here on the approach we employed in developing the desired attributes of a satellite mission, namely the Multispectral Thermal Imager. After an initial scoping study, we applied a procedure which we call: `End-to-end modeling and analysis (EEM).' We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term `end-to-end modeling and analysis.' We base the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolves, and as real hardware is tested, we can update the EEM to facilitate trade studies, and to judge, for example, whether components that deviate from specifications are acceptable.

  16. Terahertz detectors for long wavelength multi-spectral imaging.

    SciTech Connect

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.

    2007-10-01

    The purpose of this work was to develop a wavelength tunable detector for Terahertz spectroscopy and imaging. Our approach was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays. When this work began, grating-gate gate detectors, while having many promising characteristics, had a noise-equivalent power (NEP) of only 10{sup -5} W/{radical}Hz. Over the duration of this project, we have obtained a true NEP of 10{sup -8} W/{radical}Hz and a scaled NEP of 10{sup -9}W/{radical}Hz. The ultimate goal for these detectors is to reach a NEP in the 10{sup -9{yields}-10}W/{radical}Hz range; we have not yet seen a roadblock to continued improvement.

  17. Design Considerations, Modeling and Analysis for the Multispectral Thermal Imager

    SciTech Connect

    Borel, C.C.; Clodius, W.B.; Cooke, B.J.; Smith, B.W.; Weber, P.G.

    1999-02-01

    The design of remote sensing systems is driven by the need to provide cost-effective, substantive answers to questions posed by our customers. This is especially important for space-based systems, which tend to be expensive, and which generally cannot be changed after they are launched. We report here on the approach we employed in developing the desired attributes of a satellite mission, namely the Multispectral Thermal Imager. After an initial scoping study, we applied a procedure which we call: "End-to-end modeling and analysis (EEM)." We began with target attributes, translated to observable signatures and then propagated the signatures through the atmosphere to the sensor location. We modeled the sensor attributes to yield a simulated data stream, which was then analyzed to retrieve information about the original target. The retrieved signature was then compared to the original to obtain a figure of merit: hence the term "end-to-end modeling and analysis." We base the EEM in physics to ensure high fidelity and to permit scaling. As the actual design of the payload evolves, and as real hardware is tested, we can update the EEM to facilitate trade studies, and to judge, for example, whether components that deviate from specifications are acceptable.

  18. Enhancement classification of galaxy images

    NASA Astrophysics Data System (ADS)

    Jenkinson, John

    With the advent of astronomical imaging technology developments, and the increased capacity of digital storage, the production of photographic atlases of the night sky have begun to generate volumes of data which need to be processed autonomously. As part of the Tonantzintla Digital Sky Survey construction, the present work involves software development for the digital image processing of astronomical images, in particular operations that preface feature extraction and classification. Recognition of galaxies in these images is the primary objective of the present work. Many galaxy images have poor resolution or contain faint galaxy features, resulting in the misclassification of galaxies. An enhancement of these images by the method of the Heap transform is proposed, and experimental results are provided which demonstrate the image enhancement to improve the presence of faint galaxy features thereby improving classification accuracy. The feature extraction was performed using morphological features that have been widely used in previous automated galaxy investigations. Principal component analysis was applied to the original and enhanced data sets for a performance comparison between the original and reduced features spaces. Classification was performed by the Support Vector Machine learning algorithm.

  19. Study on nitrogen stress characterization of rape based on ground multi-spectral imaging sensor

    NASA Astrophysics Data System (ADS)

    Feng, Lei; He, Yong; Zhu, Zeyan; Huang, Min

    2006-01-01

    This paper presents the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine nitrogen level of the rape. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter which may be used to measure N (g)/leaf area (m2). Some noticeable relationships between the multi-spectral reflectance and SPAD readings were found from this study.

  20. Satellite image classification using convolutional learning

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao; Han, Jiho; Park, Dong-Chul

    2013-10-01

    A satellite image classification method using Convolutional Neural Network (CNN) architecture is proposed in this paper. As a special case of deep learning, CNN classifies classes of images without any feature extraction step while other existing classification methods utilize rather complex feature extraction processes. Experiments on a set of satellite image data and the preliminary results show that the proposed classification method can be a promising alternative over existing feature extraction-based schemes in terms of classification accuracy and classification speed.

  1. Multispectral imaging of organ viability during uterine transplantation surgery

    NASA Astrophysics Data System (ADS)

    Clancy, Neil T.; Saso, Srdjan; Stoyanov, Danail; Sauvage, Vincent; Corless, David J.; Boyd, Michael; Noakes, David E.; Thum, Meen-Yau; Ghaem-Maghami, Sadaf; Smith, J. R.; Elson, Daniel S.

    2014-02-01

    Uterine transplantation surgery has been proposed as a treatment for permanent absolute uterine factor infertility (AUFI) in the case of loss of the uterus. Due to the complexity of the vasculature correct reanastomosis of the blood supply during transplantation surgery is a crucial step to ensure reperfusion and viability of the organ. While techniques such as fluorescent dye imaging have been proposed to visualise perfusion there is no gold standard for intraoperative visualisation of tissue oxygenation. In this paper results from a liquid crystal tuneable filter (LCTF)-based multispectral imaging (MSI) laparoscope are described. The system was used to monitor uterine oxygen saturation (SaO2) before and after transplantation. Results from surgeries on two animal models (rabbits and sheep) are presented. A feature-based registration algorithm was used to correct for misalignment induced by breathing or peristalsis in the tissues of interest prior to analysis. An absorption spectrum was calculated at each spatial pixel location using reflectance data from a reference standard, and the relative contributions from oxy- and deoxyhaemoglobin were calculated using a least squares regression algorithm with non-negativity constraints. Results acquired during animal surgeries show that cornual oxygenation changes are consistent with those observed in point measurements taken using a pulse oximeter, showing reduced SaO2 following reanastomosis. Values obtained using the MSI laparoscope were lower than those taken with the pulse oximeter, which may be due to the latter's use of the pulsatile arterial blood signal. Future work incorporating immunological test results will help to correlate SaO2 levels with surgical outcomes.

  2. AFREET: HUMAN-INSPIRED SPATIO-SPECTRAL FEATURE CONSTRUCTION FOR IMAGE CLASSIFICATION WITH SUPPORT VECTOR MACHINES

    SciTech Connect

    S. PERKINS; N. HARVEY

    2001-02-01

    The authors examine the task of pixel-by-pixel classification of the multispectral and grayscale images typically found in remote-sensing and medical applications. Simple machine learning techniques have long been applied to remote-sensed image classification, but almost always using purely spectral information about each pixel. Humans can often outperform these systems, and make extensive use of spatial context to make classification decisions. They present AFREET: an SVM-based learning system which attempts to automatically construct and refine spatio-spectral features in a somewhat human-inspired fashion. Comparisons with traditionally used machine learning techniques show that AFREET achieves significantly higher performance. The use of spatial context is particularly useful for medical imagery, where multispectral images are still rare.

  3. Initial clinical testing of a multi-spectral imaging system built on a smartphone platform

    NASA Astrophysics Data System (ADS)

    Mink, Jonah W.; Wexler, Shraga; Bolton, Frank J.; Hummel, Charles; Kahn, Bruce S.; Levitz, David

    2016-03-01

    Multi-spectral imaging systems are often expensive and bulky. An innovative multi-spectral imaging system was fitted onto a mobile colposcope, an imaging system built around a smartphone in order to image the uterine cervix from outside the body. The multi-spectral mobile colposcope (MSMC) acquires images at different wavelengths. This paper presents the clinical testing of MSMC imaging (technical validation of the MSMC system is described elsewhere 1 ). Patients who were referred to colposcopy following abnormal screening test (Pap or HPV DNA test) according to the standard of care were enrolled. Multi-spectral image sets of the cervix were acquired, consisting of images from the various wavelengths. Image acquisition took 1-2 sec. Areas suspected for dysplasia under white light imaging were biopsied, according to the standard of care. Biopsied sites were recorded on a clockface map of the cervix. Following the procedure, MSMC data was processed from the sites of biopsied sites. To date, the initial histopathological results are still outstanding. Qualitatively, structures in the cervical images were sharper at lower wavelengths than higher wavelengths. Patients tolerated imaging well. The result suggests MSMC holds promise for cervical imaging.

  4. Fast Multispectral Imaging by Spatial Pixel-Binning and Spectral Unmixing.

    PubMed

    Pan, Zhi-Wei; Shen, Hui-Liang; Li, Chunguang; Chen, Shu-Jie; Xin, John H

    2016-08-01

    Multispectral imaging system is of wide application in relevant fields for its capability in acquiring spectral information of scenes. Its limitation is that, due to the large number of spectral channels, the imaging process can be quite time-consuming when capturing high-resolution (HR) multispectral images. To resolve this limitation, this paper proposes a fast multispectral imaging framework based on the image sensor pixel-binning and spectral unmixing techniques. The framework comprises a fast imaging stage and a computational reconstruction stage. In the imaging stage, only a few spectral images are acquired in HR, while most spectral images are acquired in low resolution (LR). The LR images are captured by applying pixel binning on the image sensor, such that the exposure time can be greatly reduced. In the reconstruction stage, an optimal number of basis spectra are computed and the signal-dependent noise statistics are estimated. Then the unknown HR images are efficiently reconstructed by solving a closed-form cost function that models the spatial and spectral degradations. The effectiveness of the proposed framework is evaluated using real-scene multispectral images. Experimental results validate that, in general, the method outperforms the state of the arts in terms of reconstruction accuracy, with additional 20× or more improvement in computational efficiency. PMID:27295668

  5. Color image reproduction based on multispectral and multiprimary imaging: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Teraji, Taishi; Ohsawa, Kenro; Uchiyama, Toshio; Motomura, Hideto; Murakami, Yuri; Ohyama, Nagaaki

    2001-12-01

    Multispectral imaging is significant technology for the acquisition and display of accurate color information. Natural color reproduction under arbitrary illumination becomes possible using spectral information of both image and illumination light. In addition, multiprimary color display, i.e., using more than three primary colors, has been also developed for the reproduction of expanded color gamut, and for discounting observer metamerism. In this paper, we present the concept for the multispectral data interchange for natural color reproduction, and the experimental results using 16-band multispectral camera and 6-primary color display. In the experiment, the accuracy of color reproduction is evaluated in CIE (Delta) Ea*b* for both image capture and display systems. The average and maximum (Delta) Ea*b* = 1.0 and 2.1 in 16-band mutispectral camera system, using Macbeth 24 color patches. In the six-primary color projection display, average and maximum (Delta) Ea*b* = 1.3 and 2.7 with 30 test colors inside the display gamut. Moreover, the color reproduction results with different spectral distributions but same CIE tristimulus value are visually compared, and it is confirmed that the 6-primary display gives improved agreement between the original and reproduced colors.

  6. Deep learning for image classification

    NASA Astrophysics Data System (ADS)

    McCoppin, Ryan; Rizki, Mateen

    2014-06-01

    This paper provides an overview of deep learning and introduces the several subfields of deep learning including a specific tutorial of convolutional neural networks. Traditional methods for learning image features are compared to deep learning techniques. In addition, we present our preliminary classification results, our basic implementation of a convolutional restricted Boltzmann machine on the Mixed National Institute of Standards and Technology database (MNIST), and we explain how to use deep learning networks to assist in our development of a robust gender classification system.

  7. Application of multispectral imaging detects areas with neuronal myelin loss, without tissue labelling.

    PubMed

    Vazgiouraki, Eleftheria; Papadakis, Vassilis M; Efstathopoulos, Paschalis; Lazaridis, Iakovos; Charalampopoulos, Ioannis; Fotakis, Costas; Gravanis, Achille

    2016-04-01

    The application of multispectral imaging to discriminate myelinated and demyelinated areas of neural tissue is herein presented. The method is applied through a custom-made, multispectral imaging monochromator, coupled to a commercially available microscope. In the present work, a series of spinal cord sections were analysed derived from mice with experimental autoimmune encephalomyelitis (EAE), an experimental model widely used to study multiple sclerosis (MS). The multispectral microscope allows imaging of local areas with loss of myelin without the need of tissue labelling. Imaging with the aforementioned method and system is compared in a parallel way with conventional methods (wide-field and confocal fluorescence microscopies). The diagnostic sensitivity of our method is 90.4% relative to the 'gold standard' method of immunofluorescence microscopy. The presented method offers a new platform for the possible future development of anin vivo, real-time, non-invasive, rapid imaging diagnostic tool of spinal cord myelin loss-derived pathologies. PMID:26510556

  8. Detection of melanoma metastases in resected human lymph nodes by noninvasive multispectral photoacoustic imaging.

    PubMed

    Langhout, Gerrit Cornelis; Grootendorst, Diederik Johannes; Nieweg, Omgo Edo; Wouters, Michel Wilhelmus Jacobus Maria; van der Hage, Jos Alexander; Jose, Jithin; van Boven, Hester; Steenbergen, Wiendelt; Manohar, Srirang; Ruers, Theodoor Jacques Marie

    2014-01-01

    Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR(©) multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes. PMID:25028587

  9. Multispectral image compression for spectral and color reproduction based on lossy to lossless coding

    NASA Astrophysics Data System (ADS)

    Shinoda, Kazuma; Murakami, Yuri; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2010-01-01

    In this paper we propose a multispectral image compression based on lossy to lossless coding, suitable for both spectral and color reproduction. The proposed method divides a multispectral image data into two groups, RGB and residual. The RGB component is extracted from the multispectral image, for example, by using the XYZ Color Matching Functions, a color conversion matrix, and a gamma curve. The original multispectral image is estimated from RGB data encoder, and the difference between the original and the estimated multispectral images, referred as a residual component in this paper, is calculated in the encoder. Then the RGB and the residual components are encoded by JPEG2000, respectively a progressive decoding is possible from the losslessly encoded code-stream. Experimental results show that, although the proposed method is slightly inferior to JPEG2000 with a multicomponent transform in rate-distortion plot of the spectrum domain at low bit rate, a decoded RGB image shows high quality at low bit rate with primary encoding of the RGB component. Its lossless compression ratio is close to that of JPEG2000 with the integer KLT.

  10. Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery

    PubMed Central

    Clancy, Neil T.; Stoyanov, Danail; James, David R. C.; Di Marco, Aimee; Sauvage, Vincent; Clark, James; Yang, Guang-Zhong; Elson, Daniel S.

    2012-01-01

    Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities. PMID:23082296

  11. Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery.

    PubMed

    Clancy, Neil T; Stoyanov, Danail; James, David R C; Di Marco, Aimee; Sauvage, Vincent; Clark, James; Yang, Guang-Zhong; Elson, Daniel S

    2012-10-01

    Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities. PMID:23082296

  12. Compression of multispectral fluorescence microscopic images based on a modified set partitioning in hierarchal trees

    NASA Astrophysics Data System (ADS)

    Mansoor, Awais; Robinson, J. Paul; Rajwa, Bartek

    2009-02-01

    Modern automated microscopic imaging techniques such as high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging are capable of producing hundreds to thousands of images per experiment. For quick retrieval, fast transmission, and storage economy, these images should be saved in a compressed format. A considerable number of techniques based on interband and intraband redundancies of multispectral images have been proposed in the literature for the compression of multispectral and 3D temporal data. However, these works have been carried out mostly in the elds of remote sensing and video processing. Compression for multispectral optical microscopy imaging, with its own set of specialized requirements, has remained under-investigated. Digital photography{oriented 2D compression techniques like JPEG (ISO/IEC IS 10918-1) and JPEG2000 (ISO/IEC 15444-1) are generally adopted for multispectral images which optimize visual quality but do not necessarily preserve the integrity of scientic data, not to mention the suboptimal performance of 2D compression techniques in compressing 3D images. Herein we report our work on a new low bit-rate wavelet-based compression scheme for multispectral fluorescence biological imaging. The sparsity of signicant coefficients in high-frequency subbands of multispectral microscopic images is found to be much greater than in natural images; therefore a quad-tree concept such as Said et al.'s SPIHT1 along with correlation of insignicant wavelet coefficients has been proposed to further exploit redundancy at high-frequency subbands. Our work propose a 3D extension to SPIHT, incorporating a new hierarchal inter- and intra-spectral relationship amongst the coefficients of 3D wavelet-decomposed image. The new relationship, apart from adopting the parent-child relationship of classical SPIHT, also brought forth the conditional "sibling" relationship by relating only the insignicant wavelet coefficients of subbands

  13. [Nitrogen stress measurement of canola based on multi-spectral charged coupled device imaging sensor].

    PubMed

    Feng, Lei; Fang, Hui; Zhou, Wei-Jun; Huang, Min; He, Yong

    2006-09-01

    Site-specific variable nitrogen application is one of the major precision crop production management operations. Obtaining sufficient crop nitrogen stress information is essential for achieving effective site-specific nitrogen applications. The present paper describes the development of a multi-spectral nitrogen deficiency sensor, which uses three channels (green, red, near-infrared) of crop images to determine the nitrogen level of canola. This sensor assesses the nitrogen stress by means of estimated SPAD value of the canola based on canola canopy reflectance sensed using three channels (green, red, near-infrared) of the multi-spectral camera. The core of this investigation is the calibration methods between the multi-spectral references and the nitrogen levels in crops measured using a SPAD 502 chlorophyll meter. Based on the results obtained from this study, it can be concluded that a multi-spectral CCD camera can provide sufficient information to perform reasonable SPAD values estimation during field operations. PMID:17112062

  14. Real-time multispectral 3-D photoacoustic imaging of blood phantoms

    NASA Astrophysics Data System (ADS)

    Kosik, Ivan; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging is exquisitely sensitive to blood and can infer blood oxygenation based on multispectral images. In this work we present multispectral real-time 3D photoacoustic imaging of blood phantoms. We used a custom-built 128-channel hemispherical transducer array coupled to two Nd:YAG pumped OPO laser systems synchronized to provide double pulse excitation at 680 nm and 1064 nm wavelengths, all during a triggered series of ultrasound pressure measurements lasting less than 300 μs. The results demonstrated that 3D PAI is capable of differentiating between oxygenated and deoxygenated blood at high speed at mm-level resolution.

  15. Optimal design of neural networks for land-cover classification from multispectral imagery

    NASA Astrophysics Data System (ADS)

    Silvan-Cardenas, Jose L.

    2004-02-01

    It has long been shown the effectiveness of artificial neural networks to solve highly non-linear problems such as land-cover classification based on multispectral imagery. However, due to the large amount of data that is processed within this kind of applications, it is desirable to design networks with the lowest number of neurons that are capable to separate all of the given classes. At present, there are several methods intended to determine this optimal network. Most of them involve adjoining or pruning hidden neurons followed by further training in iterative fashion, which is generally a very slow process. As an alternative, the approach described in this paper is based on the computation of centroids of relevant clusters for each class samples through the well known clustering method ISODATA. A proper tessellation of the ISODATA centroids allows first the determination of the minimum number of neurons in the first hidden layer that are required to effectively separate all of the classes; and secondly, to compute weight and bias parameters for such neurons. Then, the minimum network required to perform the logic function that combines the halfspaces generated by the first layer into class-discriminant surfaces is determined via a logic function reduction method. This approach is much faster than that of current methods because it allows to determine the optimum network size and compute weight and bias parameters without further iterative adjustments. The procedure was tested with landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. Results indicated that (1) the network exhibits good generalization behavior and (2) classification accuracies do not depend on the class boundary complexity but only on the class overlapping extent.

  16. A simple multispectral imaging algorithm for detection of defects on red delicious apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: A multispectral algorithm for detection and differentiation of defect and normal Red Delicious apples was developed from analysis of a series of hyperspectral line-scan images. Methods: A fast line-scan hyperspectral imaging system mounted on a conventional apple sorting machine was used t...

  17. Multi-spectral mid-infrared laser stand-off imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wang, Yang; Le, Han Q.

    2005-08-01

    A multi-spectral mid-IR laser imaging study including system engineering, experiments, and image processing and analysis is described. A 4-λ scalable system was built with semiconductor lasers, covering from 3.3-9.6 μm. The X-Y scanning system was capable of 2-dimensional (2D) multi-spectral imaging at a stand-off distance from 13-40 m. The system was applied to diverse targets that consist of man-made and natural materials and objects, and shown capable to resolve and distinguish small spectral differences among the various targets. Colorless objects in the visible were shown with "colorful" signatures in the mid-IR. Image processing algorithm based on spectral contrast was shown most effective to exploit the laser sensitivity and accuracy, as opposed to algorithms that operate mainly on the image spatial intensity. The results also showed the complexity of laser imaging phenomenology, involving both spectroscopic and geometrical scattering effects. A demonstration of 3D multi-spectral imaging was also given. The system design is suitable for compact packages with semiconductor lasers, and the results suggest that laser-based multi-spectral imaging can be a unique and powerful technology for target discrimination.

  18. Red to far-red multispectral fluorescence image fusion for detection of fecal contamination on apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research developed a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet/blue LED excitation for detection of fecal contamination on Golden Delicious apples. Using a hyperspectral line-scan imaging system consisting of an EMCCD camera, spectrograph, an...

  19. MULTISPECTRAL IMAGING SYSTEM FOR FECAL AND INGESTA DETECTION ON POULTRY CARCASSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multispectral imaging system including a common aperture camera with three optical trim filters (515.4, 566.4 and 631 nm), which were selected by visible/NIR spectroscopy and validated by a hyperspectral imaging system, was developed for a real-time, on-line poultry inspection application. The al...

  20. MULTISPECTRAL LASER-INDUCED FLUORESCENCE IMAGING SYSTEM FOR LARGE BIOLOGICAL SAMPLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presented is a detailed description of a common aperture, multispectral laser-induced fluorescence imaging system developed to allow detection of fecal matter on agricultural products. With an expanded, 355 nm, Nd:YAG laser beam as the excitation source, fluorescence emission images in the blue, gr...

  1. Fusion of multispectral and panchromatic images using improved GIHS and PCA mergers based on contourlet

    NASA Astrophysics Data System (ADS)

    Yang, Shuyuan; Zeng, Liang; Jiao, Licheng; Xiao, Jing

    2007-11-01

    Since Chavez proposed the highpass filtering procedure to fuse multispectral and panchromatic images, several fusion methods have been developed based on the same principle: to extract from the panchromatic image spatial detail information to later inject it into the multispectral one. In this paper, we present new fusion alternatives based on the same concept, using the multiresolution contourlet decomposition to execute the detail extraction phase and the generalized intensity-hue-saturation (GIHS) and principal component analysis (PCA) procedures to inject the spatial detail of the panchromatic image into the multispectral one. Experimental results show the new fusion method have better performance than GIHS, PCA, wavelet and the method of improved GIHS and PCA mergers based on wavelet decomposition.

  2. A novel coarse-to-fine method for registration of multispectral images

    NASA Astrophysics Data System (ADS)

    Jin, Hongbin; Fan, Chunxiao; Li, Yong; Xu, Liangpeng

    2016-07-01

    Due to non-linear intensity changes between multispectral images, the existed descriptors often yield low matching performance. In order to build reliable keypoint mappings on multispectral images, a novel coarse-to-fine method is designed using projective transformation and the information of edge overlap. The method consists of a coarse process and a fine-tuning process. In the coarse process, initial keypoint mappings are built with the descriptors associated with keypoints and the relative distance constraints are employed on them to remove outliers. In the fine-tuning process, the edge overlap information is utilized as similarity metric and an iterative framework is applied to search correct keypoint mappings. The performance of the proposed is investigated with keypoints extracted by speeded-up robust features. The experiment results show that the proposed method can build more reliable keypoint mappings on multispectral images than existed methods.

  3. Diffuse reflectance and fluorescence multispectral imaging system for assessment of skin

    NASA Astrophysics Data System (ADS)

    Saknite, Inga; Jakovels, Dainis; Spigulis, Janis

    2014-05-01

    The diffuse reflectance multispectral imaging technique has been used for distant mapping of in vivo skin chromophores (hemoglobin and melanin). The fluorescence multispectral imaging is not so common for skin applications due to complicity of data acquisition and processing, but could provide additional information about skin fluorophores. Both techniques are compatible, and could be combined into a multimodal solution. The multispectral imaging system Nuance based on liquid crystal tunable filters was adapted for diffuse reflectance and fluorescence spectral imaging of in vivo skin. Uniform illumination was achieved by LED ring light. Combination of four LEDs (warm white, 770 nm, 830 nm and 890 nm) was used to support diffuse reflectance mode in spectral range 450-950 nm. 405 nm LEDs were used for excitation of skin autofluorescence. Multispectral imaging system was adapted for spectral working range of 450-950 nm with scanning step of 10 nm and spectral resolution of 15 nm. An average field of view was 50x35 mm in size with spatial resolution 0,05 mm (the pixel size). Due to spectrally different illumination intensity and system sensitivity, various exposure times (from 7…500 ms) were used for each image acquisition. The proposed approach was tested for different skin lesions: benign nevus, hemangioma, basalioma and halo nevus. Spectral image cubes of different skin lesions were acquired and analyzed to test its diagnostic potential.

  4. Authenticity detection in image classification

    NASA Astrophysics Data System (ADS)

    Nova, Luis C.; Passos, Emmanuel P. L.

    1992-09-01

    Famous artists' paintings, in general, allow for a large number of forgeries. In the work of a great Brazilian painter, Candido Portinari, we try to detect fake works through their image. To reach classifying results we must extract from digitalized images features that distinguish Portinari's original paintings from the false ones. So, it has been noted that the degree of variation of gray tones in a brush stroke reflects each painter's particular style on the painting. It is a feature that can be easily detected by the power spectrum of the detail image. However, as power spectra have large amounts of data, we use just some significant values of them for the classification. These selected pixels of the spectrum image are in a line which is perpendicular to the direction the brush passed, i.e., they indicate the variation of gray tones in the brush stroke. The data described previously are used as input for further classification by a backpropagation neural network. This neural net was exhaustively trained and has topology and parameters appropriate to the problem. Two output units indicate the major result: original or false.

  5. Comparisons of neural networks to standard techniques for image classification and correlation

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1994-01-01

    Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.

  6. Pseudo colour visualization of fused multispectral laser scattering images for optical diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Zabarylo, U.; Minet, O.

    2010-01-01

    Investigations on the application of optical procedures for the diagnosis of rheumatism using scattered light images are only at the beginning both in terms of new image-processing methods and subsequent clinical application. For semi-automatic diagnosis using laser light, the multispectral scattered light images are registered and overlapped to pseudo-coloured images, which depict diagnostically essential contents by visually highlighting pathological changes.

  7. Acquisition of multi-spectral flash image using optimization method via weight map

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Seok; Kim, Dae-Chul; Kwon, Oh-Seol; Ha, Yeong-Ho

    2013-02-01

    To acquire images in low-light environments, it is usually necessary to adopt long exposure times or to resort to flashes. Flashes, however, often induce color distortion, cause the red-eye effect and can be disturbing to the subjects. On the other hand, long-exposure shots are susceptible to subject-motion, as well as motion-blur due to camera shake when performed with a hand-held camera. A recently introduced technique to overcome the limitations of the traditional lowlight photography is the use of the multi-spectral flash. Multi-spectral flash images are a combination of UV/IR and visible spectrum information. The general idea is to retrieve the details from the UV/IR spectrum and the color from the visible spectrum. Multi-spectral flash images, however, are themselves subject to color distortion and noise. In this work, a method of computing multi-spectral flash images so as to reduce the noise and to improve the color accuracy is presented. The proposed method is a previously seen optimization method, improved by introducing a weight map used to discriminate the uniform regions from the detail regions. The optimization target function takes into account the output likelihood with respect to the ambient light image, the sparsity of image gradients, and the spectral constraints for the IR-red and UV-blue channels. The performance of the proposed method was objectively evaluated using longexposure shots as references.

  8. Primer on Use of Multi-Spectral and Infra Red Imaging for On-Site Inspections

    SciTech Connect

    Henderson, J R

    2010-10-26

    . Finally, an appendix provides detail describing the magnitude and spatial extent of the surface shock expected from an underground nuclear explosion. If there is a seismic event or other data to suggest there has been a nuclear explosion in violation of the CTBT, an OSI may be conducted to determine whether a nuclear explosion has occurred and to gather information which may be useful in identifying the party responsible for conducting the explosion. The OSI must be conducted in the area where the event that triggered the inspection request occurred, and the inspected area must not exceed 1,000 square kilometers, or be more than 50 km on aside (CTBT Protocol, Part II, Paragraphs 2 and 3). One of the guiding principles for an inspection is that it be effective, minimally intrusive, timely, and cost-effective [Hawkins, Feb 1998]. In that context, MSIR is one of several technologies that can be used during an aircraft overflight to identify ground regions of high interest in a timely and cost-effective manner. This allows for an optimized inspection on the ground. The primary purpose for MSIR is to identify artifacts and anomalies that might be associated with a nuclear explosion, and to use the location of those artifacts and anomalies to reduce the search area that must be inspected from the ground. The MSIR measurements can have additional utility. The multi-spectral measurements of the ground can be used for terrain classification, which can aid in geological characterization of the Inspected Area. In conditions of where light smoke or haze is present, long-wave infrared imaging can provide better imaging of the ground than is possible with standard visible imagery.

  9. Multi-spectral imaging with infrared sensitive organic light emitting diode.

    PubMed

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  10. Multi-spectral imaging with infrared sensitive organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-08-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.

  11. Simulation of electronic registration of multispectral remote sensing images to 0.1 pixel accuracy

    NASA Technical Reports Server (NTRS)

    Reitsema, H. J.; Mord, A. J.; Fraser, D.; Richard, H. L.; Speaker, E. E.

    1984-01-01

    Band-to-band coregistration of multispectral remote sensing images can be achieved by electronic signal processing techniques rather than by costly and difficult mechanical alignment. This paper describes the results of a study of the end-to-end performance of electronic registration. The software simulation includes steps which model the performance of the geometric calibration process, the instrument image quality, detector performance and the effects of achieving coregistration through image resampling. The image resampling step emulates the Pipelined Resampling Processor, a real-time image resampler. The study demonstrates that the electronic alignment technique produces multispectral images which are superior to those produced by an imager whose pixel geometry is accurate to 0.1 pixel rms. The implications of this approach for future earth observation programs are discussed.

  12. Land use classification utilizing remote multispectral scanner data and computer analysis techniques

    NASA Technical Reports Server (NTRS)

    Leblanc, P. N.; Johannsen, C. J.; Yanner, J. E.

    1973-01-01

    An airborne multispectral scanner was used to collect the visible and reflective infrared data. A small subdivision near Lafayette, Indiana was selected as the test site for the urban land use study. Multispectral scanner data were collected over the subdivision on May 1, 1970 from an altitude of 915 meters. The data were collected in twelve wavelength bands from 0.40 to 1.00 micrometers by the scanner. The results indicated that computer analysis of multispectral data can be very accurate in classifying and estimating the natural and man-made materials that characterize land uses in an urban scene.

  13. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong

    2016-07-01

    Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics).

  14. Multispectral medical image fusion in Contourlet domain for computer based diagnosis of Alzheimer's disease.

    PubMed

    Bhateja, Vikrant; Moin, Aisha; Srivastava, Anuja; Bao, Le Nguyen; Lay-Ekuakille, Aimé; Le, Dac-Nhuong

    2016-07-01

    Computer based diagnosis of Alzheimer's disease can be performed by dint of the analysis of the functional and structural changes in the brain. Multispectral image fusion deliberates upon fusion of the complementary information while discarding the surplus information to achieve a solitary image which encloses both spatial and spectral details. This paper presents a Non-Sub-sampled Contourlet Transform (NSCT) based multispectral image fusion model for computer-aided diagnosis of Alzheimer's disease. The proposed fusion methodology involves color transformation of the input multispectral image. The multispectral image in YIQ color space is decomposed using NSCT followed by dimensionality reduction using modified Principal Component Analysis algorithm on the low frequency coefficients. Further, the high frequency coefficients are enhanced using non-linear enhancement function. Two different fusion rules are then applied to the low-pass and high-pass sub-bands: Phase congruency is applied to low frequency coefficients and a combination of directive contrast and normalized Shannon entropy is applied to high frequency coefficients. The superiority of the fusion response is depicted by the comparisons made with the other state-of-the-art fusion approaches (in terms of various fusion metrics). PMID:27475574

  15. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  16. Optimization of wavelengths sets for multispectral reflectance imaging of rat olfactory bulb activation in vivo

    NASA Astrophysics Data System (ADS)

    Renaud, Rémi; Bendahmane, Mounir; Chery, Romain; Martin, Claire; Gurden, Hirac; Pain, Frederic

    2012-06-01

    Wide field multispectral imaging of light backscattered by brain tissues provides maps of hemodynamics changes (total blood volume and oxygenation) following activation. This technique relies on the fit of the reflectance images obtain at two or more wavelengths using a modified Beer-Lambert law1,2. It has been successfully applied to study the activation of several sensory cortices in the anesthetized rodent using visible light1-5. We have carried out recently the first multispectral imaging in the olfactory bulb6 (OB) of anesthetized rats. However, the optimization of wavelengths choice has not been discussed in terms of cross talk and uniqueness of the estimated parameters (blood volume and saturation maps) although this point was shown to be crucial for similar studies in Diffuse Optical Imaging in humans7-10. We have studied theoretically and experimentally the optimal sets of wavelength for multispectral imaging of rodent brain activation in the visible. Sets of optimal wavelengths have been identified and validated in vivo for multispectral imaging of the OB of rats following odor stimulus. We studied the influence of the wavelengths sets on the magnitude and time courses of the oxy- and deoxyhemoglobin concentration variations as well as on the spatial extent of activated brain areas following stimulation. Beyond the estimation of hemodynamic parameters from multispectral reflectance data, we observed repeatedly and for all wavelengths a decrease of light reflectance. For wavelengths longer than 590 nm, these observations differ from those observed in the somatosensory and barrel cortex and question the basis of the reflectance changes during activation in the OB. To solve this issue, Monte Carlo simulations (MCS) have been carried out to assess the relative contribution of absorption, scattering and anisotropy changes to the intrinsic optical imaging signals in somatosensory cortex (SsC) and OB model.

  17. 3D tensor-based blind multispectral image decomposition for tumor demarcation

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Peršin, Antun

    2010-03-01

    Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).

  18. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H.

    2014-01-01

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images. PMID:24854208

  19. Multiple Classifier System for Remote Sensing Image Classification: A Review

    PubMed Central

    Du, Peijun; Xia, Junshi; Zhang, Wei; Tan, Kun; Liu, Yi; Liu, Sicong

    2012-01-01

    Over the last two decades, multiple classifier system (MCS) or classifier ensemble has shown great potential to improve the accuracy and reliability of remote sensing image classification. Although there are lots of literatures covering the MCS approaches, there is a lack of a comprehensive literature review which presents an overall architecture of the basic principles and trends behind the design of remote sensing classifier ensemble. Therefore, in order to give a reference point for MCS approaches, this paper attempts to explicitly review the remote sensing implementations of MCS and proposes some modified approaches. The effectiveness of existing and improved algorithms are analyzed and evaluated by multi-source remotely sensed images, including high spatial resolution image (QuickBird), hyperspectral image (OMISII) and multi-spectral image (Landsat ETM+). Experimental results demonstrate that MCS can effectively improve the accuracy and stability of remote sensing image classification, and diversity measures play an active role for the combination of multiple classifiers. Furthermore, this survey provides a roadmap to guide future research, algorithm enhancement and facilitate knowledge accumulation of MCS in remote sensing community. PMID:22666057

  20. Landsat multispectral sharpening using a sensor system model and panchromatic image

    USGS Publications Warehouse

    Lemeshewsky, G.P.

    2003-01-01

    The thematic mapper (TM) sensor aboard Landsats 4, 5 and enhanced TM plus (ETM+) on Landsat 7 collect imagery at 30-m sample distance in six spectral bands. New with ETM+ is a 15-m panchromatic (P) band. With image sharpening techniques, this higher resolution P data, or as an alternative, the 10-m (or 5-m) P data of the SPOT satellite, can increase the spatial resolution of the multispectral (MS) data. Sharpening requires that the lower resolution MS image be coregistered and resampled to the P data before high spatial frequency information is transferred to the MS data. For visual interpretation and machine classification tasks, it is important that the sharpened data preserve the spectral characteristics of the original low resolution data. A technique was developed for sharpening (in this case, 3:1 spatial resolution enhancement) visible spectral band data, based on a model of the sensor system point spread function (PSF) in order to maintain spectral fidelity. It combines high-pass (HP) filter sharpening methods with iterative image restoration to reduce degradations caused by sensor-system-induced blurring and resembling. Also there is a spectral fidelity requirement: sharpened MS when filtered by the modeled degradations should reproduce the low resolution source MS. Quantitative evaluation of sharpening performance was made by using simulated low resolution data generated from digital color-IR aerial photography. In comparison to the HP-filter-based sharpening method, results for the technique in this paper with simulated data show improved spectral fidelity. Preliminary results with TM 30-m visible band data sharpened with simulated 10-m panchromatic data are promising but require further study.

  1. An investigative study of multispectral data compression for remotely-sensed images using vector quantization and difference-mapped shift-coding

    NASA Technical Reports Server (NTRS)

    Jaggi, S.

    1993-01-01

    A study is conducted to investigate the effects and advantages of data compression techniques on multispectral imagery data acquired by NASA's airborne scanners at the Stennis Space Center. The first technique used was vector quantization. The vector is defined in the multispectral imagery context as an array of pixels from the same location from each channel. The error obtained in substituting the reconstructed images for the original set is compared for different compression ratios. Also, the eigenvalues of the covariance matrix obtained from the reconstructed data set are compared with the eigenvalues of the original set. The effects of varying the size of the vector codebook on the quality of the compression and on subsequent classification are also presented. The output data from the Vector Quantization algorithm was further compressed by a lossless technique called Difference-mapped Shift-extended Huffman coding. The overall compression for 7 channels of data acquired by the Calibrated Airborne Multispectral Scanner (CAMS), with an RMS error of 15.8 pixels was 195:1 (0.41 bpp) and with an RMS error of 3.6 pixels was 18:1 (.447 bpp). The algorithms were implemented in software and interfaced with the help of dedicated image processing boards to an 80386 PC compatible computer. Modules were developed for the task of image compression and image analysis. Also, supporting software to perform image processing for visual display and interpretation of the compressed/classified images was developed.

  2. Analysis of variograms with various sample sizes from a multispectral image

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variograms play a crucial role in remote sensing application and geostatistics. In this study, the analysis of variograms with various sample sizes of remotely sensed data was conducted. A 100 X 100 pixel subset was chosen from an aerial multispectral image which contained three wavebands, green, ...

  3. An airborne multispectral imaging system based on two consumer-grade cameras for agricultural remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS) sensor with 5616 × 3744 pixels. One came...

  4. The method of multispectral image processing of phytoplankton processing for environmental control of water pollution

    NASA Astrophysics Data System (ADS)

    Petruk, Vasil; Kvaternyuk, Sergii; Yasynska, Victoria; Kozachuk, Anastasia; Kotyra, Andrzej; Romaniuk, Ryszard S.; Askarova, Nursanat

    2015-12-01

    The paper presents improvement of the method of environmental monitoring of water bodies based on bioindication by phytoplankton, which identify phytoplankton particles carried out on the basis of comparison array multispectral images using Bayesian classifier of solving function based on Mahalanobis distance. It allows to evaluate objectively complex anthropogenic and technological impacts on aquatic ecosystems.

  5. Aerial multispectral imaging for cotton yield estimation under different irrigation and nitrogen treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton yield varied spatially within a field. The variability can be caused by various production inputs such as soil property, water management, and fertilizer application. Airborne multispectral imaging is capable of providing data and information to study effects of the inputs on the yield qualit...

  6. Viewing angle and imaging multispectral analysis of OLED display light emission

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2015-03-01

    OLED displays exhibit luminance fluctuations and color shifts that can be sensitive to human eye in particular conditions. Using viewing angle and imaging multispectral measurements we show that color shifts are generally related to the multilayered structure of each sub-pixel. Interference fringes result in angular variations while thickness variations result in surface non-uniformities.

  7. Real-time multispectral imaging system for online poultry fecal inspection using UML

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses was developed and tested. The prototype system includes a common aperture camera with three optical trim filters (517, 565 and 802-nm wavelength), which were selected and validated by...

  8. Distant Determination of Bilirubin Distribution in Skin by Multi-Spectral Imaging

    NASA Astrophysics Data System (ADS)

    Saknite, I.; Jakovels, D.; Spigulis, J.

    2011-01-01

    For mapping the bilirubin distribution in bruised skin the multi-spectral imaging technique was employed, which made it possible to observe temporal changes of the bilirubin content in skin photo-types II and III. The obtained results confirm the clinical potential of this technique for skin bilirubin diagnostics.

  9. Multispectral remote sensing from unmanned aircraft: image processing workflows and applications for rangeland environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...

  10. Real-Time Multispectral Imaging System for Online Poultry Fecal Inspection using Unified Modeling Language.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype real-time multispectral imaging system for fecal detection on broiler carcasses has been developed. The prototype system included a common aperture camera with three optical trim filters (517, 565 and 802-nm wavelength), which were selected by visible/NIR spectroscopy and validated by a...

  11. Use of multispectral scanner images for assessment of hydrothermal alteration in the Marysvale, Utah, mining area.

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Abrams, M.J.

    1983-01-01

    Airborne multispectral scanner. A color composite image was constructed using the following spectral band ratios: 1.6/2.2 mu m, 1.6/0.48 mu m, and 0.67/1.0 mu m. The color ratio composite successfully distinguished most types of altered rocks from unaltered rocks; further division of altered rocks into ferric oxide-rich and -poor types.

  12. Image Quaty Assessment for Vhr Remote Sensing Image Classification

    NASA Astrophysics Data System (ADS)

    Li, Zhipeng; Shen, Li; Wu, Linmei

    2016-06-01

    The data from remote sensing images are widely used for characterizing land use and land cover at present. With the increasing availability of very high resolution (VHR) remote sensing images, the remote sensing image classification becomes more and more important for information extraction. The VHR remote sensing images are rich in details, but high within-class variance as well as low between-class variance make the classification of ground cover a difficult task. What's more, some related studies show that the quality of VHR remote sensing images also has a great influence on the ability of the automatic image classification. Therefore, the research that how to select the appropriate VHR remote sensing images to meet the application of classification is of great significance. In this context, the factors of VHR remote sensing image classification ability are discussed and some indices are selected for describing the image quality and the image classification ability objectively. Then, we explore the relationship of the indices of image quality and image classification ability under a specific classification framework. The results of the experiments show that these image quality indices are not effective for indicating the image classification ability directly. However, according to the image quality metrics, we can still propose some suggestion for the application of classification.

  13. Overhead Detection of Underground Nuclear Explosions by Multi-Spectral and Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Henderson, John R.; Smith, Milton O.; Zelinski, Michael E.

    2014-03-01

    The Comprehensive Nuclear Test Ban Treaty allows for Multi-Spectral and Infrared Imaging from an aircraft and on the ground to help reduce the search area for an underground nuclear explosion from the initial 1,000 km2. Satellite data, primarily from Landsat, have been used as a surrogate for aircraft data to investigate whether there are any multi-spectral features associated with the nuclear tests in Pakistan, India or North Korea. It is shown that there are multi-spectral observables on the ground that can be associated with the nominal surface ground zero for at least some of these explosions, and that these are likely to be found by measurements allowed by the treaty.

  14. Winter wheat nutrition diagnosis under different N treatments based on multispectral images and remote sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Ruijiao; Li, Minzan; Li, Shuqiang; Ding, Yongjun

    2010-11-01

    In order to rapidly and accurately acquire winter wheat growing information and nitrogen content, a non-destructive testing method was developed combined with multi-spectral imaging technique and remote sensing technology to research wheat growing and nutrition status. Firstly, a 2-CCD multi-spectral image collecting platform was developed to acquire visible image and NIR image synchronously, meanwhile, the canopy spectral reflectance and the nitrogen content of wheat leaves were measured and analyzed to research the characteristics of the canopy spectral reflectance. Secondly, using calibration panels the experiential linear calibration model was established between image gray value and spectral reflectance. Thirdly, NIR image was processed to segment wheat canopy from soil and then gray value of wheat leaves was achieved by image processing of Red, Green, and Blue channels. Finally, the gray value of wheat leaves was transformed into spectral reflectance by aforementioned experiential linear model, and the vegetation index were calculated and analyzed to research the winter wheat growing and nitrogen content status. Experiment results showed that it was reasonable to diagnose nitrogen content of winter wheat based on multi-spectral imaging system and experiential linear model. There existed remarkable correlation between vegetation index (NDVI, GNDVI) and nitrogen content of winter wheat, and the correlation coefficients (R2 ) were 0.633 and 0.6.

  15. Development of filter exchangeable 3CCD camera for multispectral imaging acquisition

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Park, Soo Hyun; Kim, Moon S.; Noh, Sang Ha

    2012-05-01

    There are a lot of methods to acquire multispectral images. Dynamic band selective and area-scan multispectral camera has not developed yet. This research focused on development of a filter exchangeable 3CCD camera which is modified from the conventional 3CCD camera. The camera consists of F-mounted lens, image splitter without dichroic coating, three bandpass filters, three image sensors, filer exchangeable frame and electric circuit for parallel image signal processing. In addition firmware and application software have developed. Remarkable improvements compared to a conventional 3CCD camera are its redesigned image splitter and filter exchangeable frame. Computer simulation is required to visualize a pathway of ray inside of prism when redesigning image splitter. Then the dimensions of splitter are determined by computer simulation which has options of BK7 glass and non-dichroic coating. These properties have been considered to obtain full wavelength rays on all film planes. The image splitter is verified by two line lasers with narrow waveband. The filter exchangeable frame is designed to make swap bandpass filters without displacement change of image sensors on film plane. The developed 3CCD camera is evaluated to application of detection to scab and bruise on Fuji apple. As a result, filter exchangeable 3CCD camera could give meaningful functionality for various multispectral applications which need to exchange bandpass filter.

  16. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation].

    PubMed

    Wu, Qian; Sun, Hong; Li, Min-zan; Song, Yuan-yuan; Zhang, Yan-e

    2015-01-01

    In order to rapidly acquire maize growing information in the field, a non-destructive method of maize chlorophyll content index measurement was conducted based on multi-spectral imaging technique and imaging processing technology. The experiment was conducted at Yangling in Shaanxi province of China and the crop was Zheng-dan 958 planted in about 1 000 m X 600 m experiment field. Firstly, a 2-CCD multi-spectral image monitoring system was available to acquire the canopy images. The system was based on a dichroic prism, allowing precise separation of the visible (Blue (B), Green (G), Red (R): 400-700 nm) and near-infrared (NIR, 760-1 000 nm) band. The multispectral images were output as RGB and NIR images via the system vertically fixed to the ground with vertical distance of 2 m and angular field of 50°. SPAD index of each sample was'measured synchronously to show the chlorophyll content index. Secondly, after the image smoothing using adaptive smooth filtering algorithm, the NIR maize image was selected to segment the maize leaves from background, because there was a big difference showed in gray histogram between plant and soil background. The NIR image segmentation algorithm was conducted following steps of preliminary and accuracy segmentation: (1) The results of OTSU image segmentation method and the variable threshold algorithm were discussed. It was revealed that the latter was better one in corn plant and weed segmentation. As a result, the variable threshold algorithm based on local statistics was selected for the preliminary image segmentation. The expansion and corrosion were used to optimize the segmented image. (2) The region labeling algorithm was used to segment corn plants from soil and weed background with an accuracy of 95. 59 %. And then, the multi-spectral image of maize canopy was accurately segmented in R, G and B band separately. Thirdly, the image parameters were abstracted based on the segmented visible and NIR images. The average gray

  17. A Comparative Study of Landsat TM and SPOT HRG Images for Vegetation Classification in the Brazilian Amazon

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; de Miranda, Evaristo E.; Moran, Emilio

    2009-01-01

    Complex forest structure and abundant tree species in the moist tropical regions often cause difficulties in classifying vegetation classes with remotely sensed data. This paper explores improvement in vegetation classification accuracies through a comparative study of different image combinations based on the integration of Landsat Thematic Mapper (TM) and SPOT High Resolution Geometric (HRG) instrument data, as well as the combination of spectral signatures and textures. A maximum likelihood classifier was used to classify the different image combinations into thematic maps. This research indicated that data fusion based on HRG multispectral and panchromatic data slightly improved vegetation classification accuracies: a 3.1 to 4.6 percent increase in the kappa coefficient compared with the classification results based on original HRG or TM multispectral images. A combination of HRG spectral signatures and two textural images improved the kappa coefficient by 6.3 percent compared with pure HRG multispectral images. The textural images based on entropy or second-moment texture measures with a window size of 9 pixels × 9 pixels played an important role in improving vegetation classification accuracy. Overall, optical remote-sensing data are still insufficient for accurate vegetation classifications in the Amazon basin. PMID:19789716

  18. A new lossless compression algorithm for satellite earth science multi-spectral imagers

    NASA Astrophysics Data System (ADS)

    Gladkova, Irina; Gottipati, Srikanth; Grossberg, Michael

    2007-09-01

    Multispectral imaging is becoming an increasingly important tool for monitoring the earth and its environment from space borne and airborne platforms. Multispectral imaging data consists of visible and IR measurements from a scene across space and spectrum. Growing data rates resulting from faster scanning and finer spatial and spectral resolution makes compression an increasingly critical tool to reduce data volume for transmission and archiving. Examples of multispectral sensors we consider include the NASA 36 band MODIS imager, Meteosat 2nd generation 12 band SEVIRI imager, GOES R series 16 band ABI imager, current generation GOES 5 band imager, and Japan's 5 band MTSAT imager. Conventional lossless compression algorithms are not able to reach satisfactory compression ratios nor are they near the upper limits for lossless compression on imager data as estimated from the Shannon entropy. We introduce a new lossless compression algorithm developed for the NOAA-NESDIS satellite based Earth science multispectral imagers. The algorithm is based on capturing spectral correlations using spectral prediction, and spatial correlations with a linear transform encoder. Our results are evaluated by comparison with current sattelite compression algorithms such the new CCSDS standard compression algorithm, and JPEG2000. The algorithm as presented has been designed to work with NOAA's scientific data and so is purely lossless but lossy modes can be supported. The compression algorithm also structures the data in a way that makes it easy to incorporate robust error correction using FEC coding methods as TPC and LDPC for satellite use. This research was funded by NOAA-NESDIS for its Earth observing satellite program and NOAA goals.

  19. Hierarchical image classification in the bioscience literature.

    PubMed

    Kim, Daehyun; Yu, Hong

    2009-01-01

    Our previous work has shown that images appearing in bioscience articles can be classified into five types: Gel-Image, Image-of-Thing, Graph, Model, and Mix. For this paper, we explored and analyzed features strongly associated with each image type and developed a hierarchical image classification approach for classifying an image into one of the five types. First, we applied texture features to separate images into two groups: 1) a texture group comprising Gel Image, Image-of-Thing, and Mix, and 2) a non-texture group comprising Graph and Model. We then applied entropy, skewness, and uniformity for the first group, and edge difference, uniformity, and smoothness for the second group to classify images into specific types. Our results show that hierarchical image classification accurately divided images into the two groups during the initial classification and that the overall accuracy of the image classification was higher than that of our previous approach. In particular, the recall of hierarchical image classification was greatly improved due to the high accuracy of the initial classification. PMID:20351874

  20. Development and bench testing of a multi-spectral imaging technology built on a smartphone platform

    NASA Astrophysics Data System (ADS)

    Bolton, Frank J.; Weiser, Reuven; Kass, Alex J.; Rose, Donny; Safir, Amit; Levitz, David

    2016-03-01

    Cervical cancer screening presents a great challenge for clinicians across the developing world. In many countries, cervical cancer screening is done by visualization with the naked eye. Simple brightfield white light imaging with photo documentation has been shown to make a significant impact on cervical cancer care. Adoption of smartphone based cervical imaging devices is increasing across Africa. However, advanced imaging technologies such as multispectral imaging systems, are seldom deployed in low resource settings, where they are needed most. To address this challenge, the optical system of a smartphone-based mobile colposcopy imaging system was refined, integrating components required for low cost, portable multi-spectral imaging of the cervix. This paper describes the refinement of the mobile colposcope to enable it to acquire images of the cervix at multiple illumination wavelengths, including modeling and laboratory testing. Wavelengths were selected to enable quantifying the main absorbers in tissue (oxyand deoxy-hemoglobin, and water), as well as scattering parameters that describe the size distribution of scatterers. The necessary hardware and software modifications are reviewed. Initial testing suggests the multi-spectral mobile device holds promise for use in low-resource settings.

  1. Rayleigh-Rice Mixture Parameter Estimation via EM Algorithm for Change Detection in Multispectral Images.

    PubMed

    Zanetti, Massimo; Bovolo, Francesca; Bruzzone, Lorenzo

    2015-12-01

    The problem of estimating the parameters of a Rayleigh-Rice mixture density is often encountered in image analysis (e.g., remote sensing and medical image processing). In this paper, we address this general problem in the framework of change detection (CD) in multitemporal and multispectral images. One widely used approach to CD in multispectral images is based on the change vector analysis. Here, the distribution of the magnitude of the difference image can be theoretically modeled by a Rayleigh-Rice mixture density. However, given the complexity of this model, in applications, a Gaussian-mixture approximation is often considered, which may affect the CD results. In this paper, we present a novel technique for parameter estimation of the Rayleigh-Rice density that is based on a specific definition of the expectation-maximization algorithm. The proposed technique, which is characterized by good theoretical properties, iteratively updates the parameters and does not depend on specific optimization routines. Several numerical experiments on synthetic data demonstrate the effectiveness of the method, which is general and can be applied to any image processing problem involving the Rayleigh-Rice mixture density. In the CD context, the Rayleigh-Rice model (which is theoretically derived) outperforms other empirical models. Experiments on real multitemporal and multispectral remote sensing images confirm the validity of the model by returning significantly higher CD accuracies than those obtained by using the state-of-the-art approaches. PMID:26336124

  2. Segmentation of multispectral bladder MR images with inhomogeneity correction for virtual cystoscopy

    NASA Astrophysics Data System (ADS)

    Li, Lihong; Liang, Zhengrong; Wang, Su; Lu, Hongyu; Wei, Xinzhou; Wagshul, Mark; Zawin, Marlene; Posniak, Erica J.; Lee, Christopher S.

    2008-03-01

    Virtual cystoscopy (VC) is a developing noninvasive, safe, and low-cost technique for bladder cancer screening. Multispectral (T I- and T II-weighted) magnetic resonance (MR) images provide a better tissue contrast between bladder wall and bladder lumen comparing with computed tomography (CT) images. The intrinsic T I and T II contrast of the urine against the bladder wall eliminates the invasive air insufflation procedure which is often used in CT-based VC. We propose a new partial volume (PV) segmentation scheme with inhomogeneity correction to segment multispectral MR images for tumor screening by virtual cystoscopy. The proposed PV segmentation algorithm automatically estimates the bias field and segments tissue mixtures inside each voxel of MR images, thus preserving texture information. Experimental results indicate that the present scheme is promising towards mass screening by virtual cystoscopy means.

  3. Direct curvature correction for noncontact imaging modalities applied to multispectral imaging

    PubMed Central

    Kainerstorfer, Jana M.; Amyot, Franck; Ehler, Martin; Hassan, Moinuddin; Demos, Stavros G.; Chernomordik, Victor; Hitzenberger, Christoph K.; Gandjbakhche, Amir H.; Riley, Jason D.

    2010-01-01

    Noncontact optical imaging of curved objects can result in strong artifacts due to the object’s shape, leading to curvature biased intensity distributions. This artifact can mask variations due to the object’s optical properties, and makes reconstruction of optical∕physiological properties difficult. In this work we demonstrate a curvature correction method that removes this artifact and recovers the underlying data, without the necessity of measuring the object’s shape. This method is applicable to many optical imaging modalities that suffer from shape-based intensity biases. By separating the spatially varying data (e.g., physiological changes) from the background signal (dc component), we show that the curvature can be extracted by either averaging or fitting the rows and columns of the images. Numerical simulations show that our method is equivalent to directly removing the curvature, when the object’s shape is known, and accurately recovers the underlying data. Experiments on phantoms validate the numerical results and show that for a given image with 16.5% error due to curvature, the method reduces that error to 1.2%. Finally, diffuse multispectral images are acquired on forearms in vivo. We demonstrate the enhancement in image quality on intensity images, and consequently on reconstruction results of blood volume and oxygenation distributions. PMID:20799815

  4. Using high resolution multispectral imaging to map Pacific coral reefs in support of UNESCO's World Heritage Central Pacific project

    NASA Astrophysics Data System (ADS)

    Siciliano, Daria; Olsen, Richard C.

    2007-10-01

    Concerns over worldwide declines in marine resources have prompted the search for innovative solutions for their conservation and management, particularly for coral reef ecosystems. Rapid advances in sensor resolution, coupled with image analysis techniques tailored to the unique optical problems of marine environments have enabled the derivation of detailed benthic habitat maps of coral reef habitats from multispectral satellite imagery. Such maps delineate coral reefs' main ecological communities, and are essential for management of these resources as baseline assessments. UNESCO's World Heritage Central Pacific Project plans to afford protection through World Heritage recognition to a number of islands and atolls in the central Pacific Ocean, including the Phoenix Archipelago in the Republic of Kiribati. Most of these islands however lack natural resource maps needed for the identification of priority areas for inclusion in a marine reserve system. Our project provides assistance to UNESCO's World Heritage Centre and the Kiribati Government by developing benthic and terrestrial habitat maps of the Phoenix Islands from high-resolution multispectral imagery. The approach involves: (i) the analysis of new Quickbird multispectral imagery; and (ii) the use of MARXAN, a simulated annealing algorithm that uses a GIS interface. Analysis of satellite imagery was performed with ENVI®, and includes removal of atmospheric effects using ATCOR (a MODTRAN4 radiative transfer model); de-glinting and water column correction algorithms; and a number of unsupervised and supervised classifiers. Previously collected ground-truth data was used to train classifications. The resulting habitat maps are then used as input to MARXAN. This algorithm ultimately identifies a proportion of each habitat to be set aside for protection, and prioritizes conservation areas. The outputs of this research are being delivered to the UNESCO World Heritage Centre office and the Kiribati Government as

  5. Multispectral and polarimetric imaging in the LWIR: Intersubband detectors as a versatile solution

    NASA Astrophysics Data System (ADS)

    Nedelcu, Alexandru; Guériaux, Vincent; Berurier, Arnaud; Brière de l'Isle, Nadia; Huet, Odile

    2013-07-01

    GaAs-based intersubband infrared detectors, such as Quantum Well Infrared Photodetectors and Quantum Cascade Detectors have proven their ability to address not only conventional thermal imaging applications, but also advanced functionalities such as multispectral and polarimetric imaging. This paper illustrates this potential through the results achieved at III-V Lab in the frame of several ambitious projects, ranging from military applications to Earth observation and exo-planet detection. The advantages of these technologies at the system level are evidenced.

  6. Multi-spectral imaging analysis of pigmented and vascular skin lesions: results of a clinical trial

    NASA Astrophysics Data System (ADS)

    Kuzmina, Ilona; Diebele, Ilze; Valeine, Lauma; Jakovels, Dainis; Kempele, Anna; Kapostinsh, Janis; Spigulis, Janis

    2011-03-01

    A clinical trial comprising 266 pigmented lesions and 49 vascular lesions has been performed in three Riga clinics by means of multi-spectral imaging analysis. The imaging system Nuance 2.4 (CRI) and self-developed software for mapping of the main skin chromophores were used. The obtained results confirm clinical potential of this technology for non-contact quantitative assessment of skin pathologies.

  7. Progressive Vector Quantization on a massively parallel SIMD machine with application to multispectral image data

    NASA Technical Reports Server (NTRS)

    Manohar, Mareboyana; Tilton, James C.

    1994-01-01

    A progressive vector quantization (VQ) compression approach is discussed which decomposes image data into a number of levels using full search VQ. The final level is losslessly compressed, enabling lossless reconstruction. The computational difficulties are addressed by implementation on a massively parallel SIMD machine. We demonstrate progressive VQ on multispectral imagery obtained from the Advanced Very High Resolution Radiometer instrument and other Earth observation image data, and investigate the trade-offs in selecting the number of decomposition levels and codebook training method.

  8. TROPHIC CLASSIFICATION OF SELECTED ILLINOIS WATER BODIES: LAKE CLASSIFICATION THROUGH AMALGAMATION OF LANDSAT MULTISPECTRAL SCANNER AND CONTACT-SENSED DATA

    EPA Science Inventory

    A project was initiated to determine the feasibility of assessing and classifying a group of Illinois lakes through the utilization of a combination of contact- and satellite-acquired data. LANDSAT multispectral scanner (MSS) digital multidate data for 145 Illinois lakes were ext...

  9. Hyperspectral Image Classification using a Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.

    2001-01-01

    The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.

  10. Improving image classification in a complex wetland ecosystem through image fusion techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Sinha, Priyakant; Taylor, Subhashni

    2014-01-01

    The aim of this study was to evaluate the impact of image fusion techniques on vegetation classification accuracies in a complex wetland system. Fusion of panchromatic (PAN) and multispectral (MS) Quickbird satellite imagery was undertaken using four image fusion techniques: Brovey, hue-saturation-value (HSV), principal components (PC), and Gram-Schmidt (GS) spectral sharpening. These four fusion techniques were compared in terms of their mapping accuracy to a normal MS image using maximum-likelihood classification (MLC) and support vector machine (SVM) methods. Gram-Schmidt fusion technique yielded the highest overall accuracy and kappa value with both MLC (67.5% and 0.63, respectively) and SVM methods (73.3% and 0.68, respectively). This compared favorably with the accuracies achieved using the MS image. Overall, improvements of 4.1%, 3.6%, 5.8%, 5.4%, and 7.2% in overall accuracies were obtained in case of SVM over MLC for Brovey, HSV, GS, PC, and MS images, respectively. Visual and statistical analyses of the fused images showed that the Gram-Schmidt spectral sharpening technique preserved spectral quality much better than the principal component, Brovey, and HSV fused images. Other factors, such as the growth stage of species and the presence of extensive background water in many parts of the study area, had an impact on classification accuracies.

  11. Combining transverse field detectors and color filter arrays to improve multispectral imaging systems.

    PubMed

    Martínez, Miguel A; Valero, Eva M; Hernández-Andrés, Javier; Romero, Javier; Langfelder, Giacomo

    2014-05-01

    This work focuses on the improvement of a multispectral imaging sensor based on transverse field detectors (TFDs). We aimed to achieve a higher color and spectral accuracy in the estimation of spectral reflectances from sensor responses. Such an improvement was done by combining these recently developed silicon-based sensors with color filter arrays (CFAs). Consequently, we sacrificed the filter-less full spatial resolution property of TFDs to narrow down the spectrally broad sensitivities of these sensors. We designed and performed several experiments to test the influence of different design features on the estimation quality (type of sensor, tunability, interleaved polarization, use of CFAs, type of CFAs, number of shots), some of which are exclusive to TFDs. We compared systems that use a TFD with systems that use normal monochrome sensors, both combined with multispectral CFAs as well as common RGB filters present in commercial digital color cameras. Results showed that a system that combines TFDs and CFAs performs better than systems with the same type of multispectral CFA and other sensors, or even the same TFDs combined with different kinds of filters used in common imaging systems. We propose CFA+TFD-based systems with one or two shots, depending on the possibility of using longer capturing times or not. Improved TFD systems thus emerge as an interesting possibility for multispectral acquisition, which overcomes the limited accuracy found in previous studies. PMID:24921886

  12. Implementation of a multi-spectral color imaging device without color filter array

    NASA Astrophysics Data System (ADS)

    Langfelder, G.; Longoni, A. F.; Zaraga, F.

    2011-01-01

    In this work the use of the Transverse Field Detector (TFD) as a device for multispectral image acquisition is proposed. The TFD is a color imaging pixel capable of color reconstruction without color filters. Its basic working principle is based on the generation of a suitable electric field configuration inside a Silicon depleted region by means of biasing voltages applied to surface contacts. With respect to previously proposed methods for performing multispectral capture, the TFD has a unique characteristic of electrically tunable spectral responses. This feature allows capturing an image with different sets of spectral responses (RGB, R'G'B', and so on) simply by tuning the device biasing voltages in multiple captures. In this way no hardware complexity (no external filter wheels or varying sources) is added with respect to a colorimetric device. The estimation of the spectral reflectance of the area imaged by a TFD pixel is based in this work on a linear combination of six eigenfunctions. It is shown that a spectral reconstruction can be obtained either (1) using two subsequent image captures that generate six TFD spectral responses or (2) using a new asymmetric biasing scheme, which allows the implementation of five spectral responses for each TFD pixel site in a single configuration, definitely allowing one-shot multispectral imaging.

  13. Multispectral imaging of plant stress for detection of CO2 leaking from underground

    NASA Astrophysics Data System (ADS)

    Rouse, J.; Shaw, J. A.; Repasky, K. S.; Lawrence, R. L.

    2008-12-01

    Multispectral imaging of plant stress is a potentially useful method of detecting CO2 leaking from underground. During the summers of 2007 and 2008, we deployed a multispectral imager for vegetation sensing as part of an underground CO2 release experiment conducted at the Zero Emission Research and Technology (ZERT) field site near the Montana State University campus in Bozeman, Montana. The imager was mounted on a low tower and observed the vegetation in a region near an underground pipe during a multi-week CO2 release. The imager was calibrated to measure absolute reflectance, from which vegetation indices were calculated as a measure of vegetation health. The temporal evolution of these indices over the course of the experiment show that the vegetation nearest the pipe exhibited more stress than the vegetation located further from the pipe. The imager observed notably increased stress in vegetation at locations exhibiting particularly high flux of CO2 from the ground into the atmosphere. These data from the 2007 and 2008 experiments will be used to demonstrate the utility of a tower-mounted multispectral imaging system for detecting CO2 leakage from below ground with the ability to operate continuously during clear and cloudy conditions.

  14. Multispectral Airborne Laser Scanning for Automated Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, Leena; Hyyppä, Juha; Litkey, Paula

    2016-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.

  15. Synthesis of Multispectral Bands from Hyperspectral Data: Validation Based on Images Acquired by AVIRIS, Hyperion, ALI, and ETM+

    NASA Technical Reports Server (NTRS)

    Blonksi, Slawomir; Gasser, Gerald; Russell, Jeffrey; Ryan, Robert; Terrie, Greg; Zanoni, Vicki

    2001-01-01

    Multispectral data requirements for Earth science applications are not always studied rigorously studied before a new remote sensing system is designed. A study of the spatial resolution, spectral bandpasses, and radiometric sensitivity requirements of real-world applications would focus the design onto providing maximum benefits to the end-user community. To support systematic studies of multispectral data requirements, the Applications Research Toolbox (ART) has been developed at NASA's Stennis Space Center. The ART software allows users to create and assess simulated datasets while varying a wide range of system parameters. The simulations are based on data acquired by existing multispectral and hyperspectral instruments. The produced datasets can be further evaluated for specific end-user applications. Spectral synthesis of multispectral images from hyperspectral data is a key part of the ART software. In this process, hyperspectral image cubes are transformed into multispectral imagery without changes in spatial sampling and resolution. The transformation algorithm takes into account spectral responses of both the synthesized, broad, multispectral bands and the utilized, narrow, hyperspectral bands. To validate the spectral synthesis algorithm, simulated multispectral images are compared with images collected near-coincidentally by the Landsat 7 ETM+ and the EO-1 ALI instruments. Hyperspectral images acquired with the airborne AVIRIS instrument and with the Hyperion instrument onboard the EO-1 satellite were used as input data to the presented simulations.

  16. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    PubMed

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable. PMID:26717721

  17. Design of partially supervised classifiers for multispectral image data

    NASA Technical Reports Server (NTRS)

    Jeon, Byeungwoo; Landgrebe, David

    1993-01-01

    A partially supervised classification problem is addressed, especially when the class definition and corresponding training samples are provided a priori only for just one particular class. In practical applications of pattern classification techniques, a frequently observed characteristic is the heavy, often nearly impossible requirements on representative prior statistical class characteristics of all classes in a given data set. Considering the effort in both time and man-power required to have a well-defined, exhaustive list of classes with a corresponding representative set of training samples, this 'partially' supervised capability would be very desirable, assuming adequate classifier performance can be obtained. Two different classification algorithms are developed to achieve simplicity in classifier design by reducing the requirement of prior statistical information without sacrificing significant classifying capability. The first one is based on optimal significance testing, where the optimal acceptance probability is estimated directly from the data set. In the second approach, the partially supervised classification is considered as a problem of unsupervised clustering with initially one known cluster or class. A weighted unsupervised clustering procedure is developed to automatically define other classes and estimate their class statistics. The operational simplicity thus realized should make these partially supervised classification schemes very viable tools in pattern classification.

  18. Land use/cover classification in the Brazilian Amazon using satellite images

    PubMed Central

    Lu, Dengsheng; Batistella, Mateus; Li, Guiying; Moran, Emilio; Hetrick, Scott; Freitas, Corina da Costa; Dutra, Luciano Vieira; Sant’Anna, Sidnei João Siqueira

    2013-01-01

    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation-based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi-resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical-based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data. PMID:24353353

  19. Classification of land cover from remote sensing fused image based on ICA-SVM and D-S evidence theory

    NASA Astrophysics Data System (ADS)

    Chen, Mi; Fu, Yingchun; Sun, Tao; Li, Deren; Qin, Qianqing

    2008-10-01

    Remote sensing image classification is an important means for quantified remote sensing image analysis, and remote sensing image fusion can effectively improve the accuracy of image classification. This paper proposes a classification algorithm of remote sensing fused images based on independent component analysis (ICA), topographic independent component analysis (TICA), support vector machines (SVMs) and D-S evidence theory. Firstly a novel method of fusing panchromatic and multi-spectral remote sensing images is developed by contourlet transform which can offer a much richer set of directions and shapes than wavelet. As independent component analysis not only can effectively remove the correlation of multi-spectral images, but also can realize sparse coding of images and capture the essential edge structures and textures of images, then using features extracted from the ICA and TICA domain coefficients of the fused images, the SVMs are trained to classify the whole fused images. Finally apply the proposed novel D-S evidence combination scheme to make decision fusion for different classification results with different features obtained by SVMs. Experimental results show that the proposed algorithm can effectively improve the accuracy of image classification.

  20. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    NASA Technical Reports Server (NTRS)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  1. Multispectral image compression technology based on dual-tree discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Fang, Zhijun; Luo, Guihua; Liu, Zhicheng; Gan, Yun; Lu, Yu

    2009-10-01

    The paper proposes a combination of DCT and the Dual-Tree Discrete Wavelet Transform (DDWT) to solve the problems in multi-spectral image data storage and transmission. The proposed method not only removes spectral redundancy by1D DCT, but also removes spatial redundancy by 2D Dual-Tree Discrete Wavelet Transform. Therefore, it achieves low distortion under the conditions of high compression and high-quality reconstruction of the multi-spectral image. Tested by DCT, Haar and DDWT, the results show that the proposed method eliminates the blocking effect of wavelet and has strong visual sense and smooth image, which means the superiors with DDWT has more prominent quality of reconstruction and less noise.

  2. MULTISPECTRAL THERMAL IMAGER SCIENCE, DATA PRODUCT AND GROUND DATA PROCESSING OVERVIEW.

    SciTech Connect

    J. SZYMANSKI; L. BALICK; ET AL

    2001-04-01

    The mission of the Multispectral Thermal Imager (MTI) satellite is to demonstrate the efficacy of highly accurate multispectral imaging for passive characterization of urban and industrial areas, as well as sites of environmental interest. The satellite makes top-of-atmosphere radiance measurements that are subsequently processed into estimates of surface properties such as vegetation health, temperatures, material composition and others. The system also provides simultaneous data for atmospheric characterization at high spatial resolution. To utilize these data the MTI science program has several coordinated components, including modeling, comprehensive ground-truth measurements, image acquisition planning, data processing and data analysis and interpretation . Algorithms have been developed to retrieve a multitude of physical quantities and these algorithms are integrated in a processing pipeline architecture that emphasizes automation, flexibility and programmability. This paper describes the MTI data products and ground processing, as well as the ''how to'' aspects of starting a data center from scratch.

  3. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration

    NASA Astrophysics Data System (ADS)

    Wang, Pu; Wang, Ping; Wang, Han-Wei; Cheng, Ji-Xin

    2012-09-01

    Photoacoustic microscopy using vibrational overtone absorption as a contrast mechanism allows bond-selective imaging of deep tissues. Due to the spectral similarity of molecules in the region of overtone vibration, it is difficult to interrogate chemical components using photoacoustic signal at single excitation wavelength. Here we demonstrate that lipids and collagen, two critical markers for many kinds of diseases, can be distinguished by multispectral photoacoustic imaging of the first overtone of C-H bond. A phantom consisting of rat-tail tendon and fat was constructed to demonstrate this technique. Wavelengths between 1650 and 1850 nm were scanned to excite both the first overtone and combination bands of C-H bonds. B-scan multispectral photoacoustic images, in which each pixel contains a spectrum, were analyzed by a multivariate curve resolution-alternating least squares algorithm to recover the spatial distribution of collagen and lipids in the phantom.

  4. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    PubMed Central

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  5. Development of a portable 3CCD camera system for multispectral imaging of biological samples.

    PubMed

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  6. Localization of Eosinophilic Esophagitis from H&E stained images using multispectral imaging

    PubMed Central

    2011-01-01

    This study is an initial investigation on the capability of multispectral imaging to capture subtle spectral information that would enable the automatic delineation between the eosinophilic esophagitis and other eosin stained tissue components, especially the RBCs. In the method, a principal component analysis (PCA) was performed on the spectral transmittance samples of the different tissue components, excluding however the transmittance samples of the eosinophilic esophagitis. From the average spectral error configuration of the eosinophilic esophagitis transmittance samples, i.e. the difference between the actual transmittance and the estimated transmittance using m PC vectors, we indentified two spectral bands by which we can localize the eosinophils. Initial results show the possibility of automatically localizing the eosinophilic esophagitis by utilizing spectral information. PMID:21489190

  7. A Multispectral Image Creating Method for a New Airborne Four-Camera System with Different Bandpass Filters

    PubMed Central

    Li, Hanlun; Zhang, Aiwu; Hu, Shaoxing

    2015-01-01

    This paper describes an airborne high resolution four-camera multispectral system which mainly consists of four identical monochrome cameras equipped with four interchangeable bandpass filters. For this multispectral system, an automatic multispectral data composing method was proposed. The homography registration model was chosen, and the scale-invariant feature transform (SIFT) and random sample consensus (RANSAC) were used to generate matching points. For the difficult registration problem between visible band images and near-infrared band images in cases lacking manmade objects, we presented an effective method based on the structural characteristics of the system. Experiments show that our method can acquire high quality multispectral images and the band-to-band alignment error of the composed multiple spectral images is less than 2.5 pixels. PMID:26205264

  8. Registration and analysis of in-vivo multispectral images for correction of motion and comparison in time

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Roode, Rowland; Staring, Marius; Verdaasdonk, Rudolf

    2006-02-01

    In-vivo image-based multi-spectral images have typical problems in image acquisition, registration, visualization and analysis. As its spatial and spectral axes do not have the same unit, standard image algorithms often do not apply. The image size is often so large that it is hard to analyze them interactively. In a clinical setting, image motion will always occur during the acquisition times up to 30 seconds, since most (elderly) patients often have difficulty to retain their poses. In this paper, we discuss how the acquisition, registration, display and analysis can be optimized for in-vivo multi-spectral images.

  9. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study

    NASA Astrophysics Data System (ADS)

    Tomatis, Stefano; Carrara, Mauro; Bono, Aldo; Bartoli, Cesare; Lualdi, Manuela; Tragni, Gabrina; Colombo, Ambrogio; Marchesini, Renato

    2005-04-01

    The aim of this research was to evaluate the performance of a new spectroscopic system in the diagnosis of melanoma. This study involves a consecutive series of 1278 patients with 1391 cutaneous pigmented lesions including 184 melanomas. In an attempt to approach the 'real world' of lesion population, a further set of 1022 not excised clinically reassuring lesions was also considered for analysis. Each lesion was imaged in vivo by a multispectral imaging system. The system operates at wavelengths between 483 and 950 nm by acquiring 15 images at equally spaced wavelength intervals. From the images, different lesion descriptors were extracted related to the colour distribution and morphology of the lesions. Data reduction techniques were applied before setting up a neural network classifier designed to perform automated diagnosis. The data set was randomly divided into three sets: train (696 lesions, including 90 melanomas) and verify (348 lesions, including 53 melanomas) for the instruction of a proper neural network, and an independent test set (347 lesions, including 41 melanomas). The neural network was able to discriminate between melanomas and non-melanoma lesions with a sensitivity of 80.4% and a specificity of 75.6% in the 1391 histologized cases data set. No major variations were found in classification scores when train, verify and test subsets were separately evaluated. Following receiver operating characteristic (ROC) analysis, the resulting area under the curve was 0.85. No significant differences were found among areas under train, verify and test set curves, supporting the good network ability to generalize for new cases. In addition, specificity and area under ROC curve increased up to 90% and 0.90, respectively, when the additional set of 1022 lesions without histology was added to the test set. Our data show that performance of an automated system is greatly population dependent, suggesting caution in the comparison with results reported in the

  10. Nightfire method to track volcanic eruptions from multispectral satellite images

    NASA Astrophysics Data System (ADS)

    Trifonov, Grigory; Zhizhin, Mikhail; Melnikov, Dmitry

    2016-04-01

    This work presents the first results of an application of the Nightfire hotspot algorithm towards volcano activity detection. Nightfire algorithm have been developed to play along with a Suomi-NPP polar satellite launched in 2011, which has a new generation multispectral VIIRS thermal sensor on board, to detect gas flares related to the upstream and downstream production of oil and natural gas. Simultaneously using of nighttime data in SWIR, MWIR, and LWIR sensor bands the algorithm is able to estimate the hotspot temperature, size and radiant heat. Four years of non-filtered observations have been accumulated in a spatio-temporal detection database, which currently totals 125 GB in size. The first part of this work presents results of retrospective cross-match of the detection database with the publicly available observed eruptions databases. The second part discusses how an approximate 3D shape of a lava lake could be modeled based on the apparent source size and satellite zenith angle. The third part presents the results of fusion Landsat-8 and Himawari-8 satellites data with the VIIRS Nightfire for several active volcanoes.

  11. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    PubMed

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M < N principal component (PC) vectors. The pixel's enhanced spectrum is transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method. PMID:22612136

  12. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    PubMed

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. PMID:26213059

  13. Processing Of Multispectral Data For Identification Of Rocks

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.

    1990-01-01

    Linear discriminant analysis and supervised classification evaluated. Report discusses processing of multispectral remote-sensing imagery to identify kinds of sedimentary rocks by spectral signatures in geological and geographical contexts. Raw image data are spectra of picture elements in images of seven sedimentary rock units exposed on margin of Wind River Basin in Wyoming. Data acquired by Landsat Thematic Mapper (TM), Thermal Infrared Multispectral Scanner (TIMS), and NASA/JPL airborne synthetic-aperture radar (SAR).

  14. Imaging Techniques for Clinical Burn Assessment with a Focus on Multispectral Imaging

    PubMed Central

    Thatcher, Jeffrey E.; Squiers, John J.; Kanick, Stephen C.; King, Darlene R.; Lu, Yang; Wang, Yulin; Mohan, Rachit; Sellke, Eric W.; DiMaio, J. Michael

    2016-01-01

    Significance: Burn assessments, including extent and severity, are some of the most critical diagnoses in burn care, and many recently developed imaging techniques may have the potential to improve the accuracy of these evaluations. Recent Advances: Optical devices, telemedicine, and high-frequency ultrasound are among the highlights in recent burn imaging advancements. We present another promising technology, multispectral imaging (MSI), which also has the potential to impact current medical practice in burn care, among a variety of other specialties. Critical Issues: At this time, it is still a matter of debate as to why there is no consensus on the use of technology to assist burn assessments in the United States. Fortunately, the availability of techniques does not appear to be a limitation. However, the selection of appropriate imaging technology to augment the provision of burn care can be difficult for clinicians to navigate. There are many technologies available, but a comprehensive review summarizing the tissue characteristics measured by each technology in light of aiding clinicians in selecting the proper device is missing. This would be especially valuable for the nonburn specialists who encounter burn injuries. Future Directions: The questions of when burn assessment devices are useful to the burn team, how the various imaging devices work, and where the various burn imaging technologies fit into the spectrum of burn care will continue to be addressed. Technologies that can image a large surface area quickly, such as thermography or laser speckle imaging, may be suitable for initial burn assessment and triage. In the setting of presurgical planning, ultrasound or optical microscopy techniques, including optical coherence tomography, may prove useful. MSI, which actually has origins in burn care, may ultimately meet a high number of requirements for burn assessment in routine clinical use. PMID:27602255

  15. PDE-constrained multispectral imaging of tissue chromophores with the equation of radiative transfer

    PubMed Central

    Kim, Hyun Keol; Flexman, Molly; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.

    2010-01-01

    We introduce a transport-theory-based PDE-constrained multispectral model for direct imaging of the spatial distributions of chromophores concentrations in biological tissue. The method solves the forward problem (boundary radiance at each wavelength) and the inverse problem (spatial distribution of chromophores concentrations), in an all-at-once manner in the framework of a reduced Hessian sequential quadratic programming method. To illustrate the code’s performance, we present numerical and experimental studies involving tumor bearing mice. It is shown that the PDE-constrained multispectral method accelerates the reconstruction process by up to 15 times compared to unconstrained reconstruction algorithms and provides more accurate results as compared to the so-called two-step approach to multi-wavelength imaging. PMID:21258511

  16. Multispectral Photoacoustic Imaging of Prostate Cancer: Preliminary Ex-vivo Results

    PubMed Central

    Dogra, Vikram S.; Chinni, Bhargava K.; Valluru, Keerthi S.; Joseph, Jean V.; Ghazi, Ahmed; Yao, Jorge L.; Evans, Katie; Messing, Edward M.; Rao, Navalgund A.

    2013-01-01

    Objective: The objective of this study is to validate if ex-vivo multispectral photoacoustic (PA) imaging can differentiate between malignant prostate tissue, benign prostatic hyperplasia (BPH), and normal human prostate tissue. Materials and Methods: Institutional Review Board's approval was obtained for this study. A total of 30 patients undergoing prostatectomy for biopsy-confirmed prostate cancer were included in this study with informed consent. Multispectral PA imaging was performed on surgically excised prostate tissue and chromophore images that represent optical absorption of deoxyhemoglobin (dHb), oxyhemoglobin (HbO2), lipid, and water were reconstructed. After the imaging procedure is completed, malignant prostate, BPH and normal prostate regions were marked by the genitourinary pathologist on histopathology slides and digital images of marked histopathology slides were obtained. The histopathology images were co-registered with chromophore images. Region of interest (ROI) corresponding to malignant prostate, BPH and normal prostate were defined on the chromophore images. Pixel values within each ROI were then averaged to determine mean intensities of dHb, HbO2, lipid, and water. Results: Our preliminary results show that there is statistically significant difference in mean intensity of dHb (P < 0.0001) and lipid (P = 0.0251) between malignant prostate and normal prostate tissue. There was difference in mean intensity of dHb (P < 0.0001) between malignant prostate and BPH. Sensitivity, specificity, positive predictive value, and negative predictive value of our imaging system were found to be 81.3%, 96.2%, 92.9% and 89.3% respectively. Conclusion: Our preliminary results of ex-vivo human prostate study suggest that multispectral PA imaging can differentiate between malignant prostate, BPH and normal prostate tissue. PMID:24228210

  17. Correlating multispectral imaging and compositional data from the Mars Exploration Rovers and implications for Mars Science Laboratory

    USGS Publications Warehouse

    Anderson, Ryan B.; Bell, James F., III

    2013-01-01

    In an effort to infer compositional information about distant targets based on multispectral imaging data, we investigated methods of relating Mars Exploration Rover (MER) Pancam multispectral remote sensing observations to in situ alpha particle X-ray spectrometer (APXS)-derived elemental abundances and Mössbauer (MB)-derived abundances of Fe-bearing phases at the MER field sites in Gusev crater and Meridiani Planum. The majority of the partial correlation coefficients between these data sets were not statistically significant. Restricting the targets to those that were abraded by the rock abrasion tool (RAT) led to improved Pearson’s correlations, most notably between the red–blue ratio (673 nm/434 nm) and Fe3+-bearing phases, but partial correlations were not statistically significant. Partial Least Squares (PLS) calculations relating Pancam 11-color visible to near-IR (VNIR; ∼400–1000 nm) “spectra” to APXS and Mössbauer element or mineral abundances showed generally poor performance, although the presence of compositional outliers led to improved PLS results for data from Meridiani. When the Meridiani PLS model for pyroxene was tested by predicting the pyroxene content of Gusev targets, the results were poor, indicating that the PLS models for Meridiani are not applicable to data from other sites. Soft Independent Modeling of Class Analogy (SIMCA) classification of Gusev crater data showed mixed results. Of the 24 Gusev test regions of interest (ROIs) with known classes, 11 had >30% of the pixels in the ROI classified correctly, while others were mis-classified or unclassified. k-Means clustering of APXS and Mössbauer data was used to assign Meridiani targets to compositional classes. The clustering-derived classes corresponded to meaningful geologic and/or color unit differences, and SIMCA classification using these classes was somewhat successful, with >30% of pixels correctly classified in 9 of the 11 ROIs with known classes. This work shows

  18. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    PubMed

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation. PMID:27091626

  19. Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties.

    PubMed

    Ovanesyan, Zaven; Mimun, L Christopher; Kumar, Gangadharan Ajith; Yust, Brian G; Dannangoda, Chamath; Martirosyan, Karen S; Sardar, Dhiraj K

    2015-09-30

    Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance. PMID:26322519

  20. Enhancement of galaxy images for improved classification

    NASA Astrophysics Data System (ADS)

    Jenkinson, John; Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, the classification accuracy of galaxy images is demonstrated to be improved by enhancing the galaxy images. Galaxy images often contain faint regions that are of similar intensity to stars and the image background, resulting in data loss during background subtraction and galaxy segmentation. Enhancement darkens these faint regions, enabling them to be distinguished from other objects in the image and the image background, relative to their original intensities. The heap transform is employed for the purpose of enhancement. Segmentation then produces a galaxy image which closely resembles the structure of the original galaxy image, and one that is suitable for further processing and classification. 6 Morphological feature descriptors are applied to the segmented images after a preprocessing stage and used to extract the galaxy image structure for use in training the classifier. The support vector machine learning algorithm performs training and validation of the original and enhanced data, and a comparison between the classification accuracy of each data set is included. Principal component analysis is used to compress the data sets for the purpose of classification visualization and a comparison between the reduced and original feature spaces. Future directions for this research include galaxy image enhancement by various methods, and classification performed with the use of a sparse dictionary. Both future directions are introduced.

  1. Science Applications of a Multispectral Microscopic Imager for the Astrobiological Exploration of Mars

    PubMed Central

    Farmer, Jack D.; Sellar, R. Glenn; Swayze, Gregg A.; Blaney, Diana L.

    2014-01-01

    Abstract Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. Key Words: Mars—Microscopic imager—Multispectral imaging

  2. A Switchable Mid-Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability.

    PubMed

    Tittl, Andreas; Michel, Ann-Katrin U; Schäferling, Martin; Yin, Xinghui; Gholipour, Behrad; Cui, Long; Wuttig, Matthias; Taubner, Thomas; Neubrech, Frank; Giessen, Harald

    2015-08-19

    A switchable perfect absorber with multispectral thermal imaging capability is presented. Aluminum nanoantenna arrays above a germanium antimony telluride (GST) spacer layer and aluminum mirror provide efficient wavelength-tunable absorption in the mid-infrared. Utilizing the amorphous-to-crystalline phase transition in GST, this device offers switchable absorption with strong reflectance contrast at resonance and large phase-change-induced spectral shifts. PMID:26173394

  3. Application of principal component analysis to multispectral imaging data for evaluation of pigmented skin lesions

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Lihacova, Ilze; Kuzmina, Ilona; Spigulis, Janis

    2013-11-01

    Non-invasive and fast primary diagnostics of pigmented skin lesions is required due to frequent incidence of skin cancer - melanoma. Diagnostic potential of principal component analysis (PCA) for distant skin melanoma recognition is discussed. Processing of the measured clinical multi-spectral images (31 melanomas and 94 nonmalignant pigmented lesions) in the wavelength range of 450-950 nm by means of PCA resulted in 87 % sensitivity and 78 % specificity for separation between malignant melanomas and pigmented nevi.

  4. Recent Multispectral Imaging Results from the Pancam Instruments on the Mars Exploration Rovers Spirit and Opportunity

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    2006-12-01

    As of early September 2006, the Mars Exploration Rover Panoramic Camera (Pancam) instruments have acquired more than 57,000 and 52,000 multispectral images, respectively, from the rovers' landing sites and traverse paths within Gusev crater and Meridiani Planum. These observations include more than 950 and 600 full multispectral imaging observations, respectively, in the 11 distinct near-UV to near-IR wavelengths sampled by the Pancams. Both rovers have faced challenges in their exploration activities during 2006 because of power restrictions imposed by the low-Sun, southern hemisphere winter conditions. Still, major science campaigns have been conducted at both landing sites. At Gusev, Pancam imaging documented major geomorphic and color units during the Spirit rover's traverse down the south side of Husband Hill and across the Southern Basin to the possible volcanic or impact feature known as Home Plate. More recently, at Spirit's "Winter Haven" stationary location in Gusev crater, a full-resolution, 360 degree, low-compression panorama (the "McMurdo" panorama) has been obtained using all of Pancam's filters. In Meridiani, the geology and color properties of the terrain during Opportunity's traverse south from Erebus crater to its current location at the rim of Victoria crater has been documented in detail by Pancam multispectral imaging, including a number of albedo measurements and other coordinated observations with orbiting NASA and ESA spacecraft designed to enhance surface-orbital "ground truth" connections. Panoramas, mosaics, and multispectral analysis results from these recent Pancam data sets will be summarized and discussed in terms of their geologic context and complimentarity to other MER remote sensing and in situ investigations and results obtained during this past year.

  5. Real-time multispectral imaging system for online poultry fecal inspection using UML

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Kise, Michio; Lawrence, Kurt C.; Windham, William R.; Smith, Douglas P.; Thai, Chi N.

    2006-10-01

    A prototype real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses has been developed. The prototype system includes a common aperture camera with three optical trim filters (517, 565 and 802-nm wavelength), which were selected by visible/NIR spectroscopy and validated by a hyperspectral imaging system with decision tree algorithm. The on-line testing results showed that the multispectral imaging technique can be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses with a processing speed of 140 birds per minute. This paper demonstrated both multispectral imaging hardware and real-time image processing software. For the software development, the Unified Modeling Language (UML) design approach was used for on-line application. The UML models included class, object, activity, sequence, and collaboration diagram. User interface model included seventeen inputs and six outputs. A window based real-time image processing software composed of eleven components, which represented class, architecture, and activity. Both hardware and software for a real-time fecal detection were tested at the pilot-scale poultry processing plant. The run-time of the software including online calibration was fast enough to inspect carcasses on-line with an industry requirement. Based on the preliminary test at the pilot-scale processing line, the system was able to acquire poultry images in real-time. According to the test results, the imaging system is reliable for the harsh environments and UML based image processing software is flexible and easy to be updated when additional parameters are needed for in-plant trials.

  6. Co-registration of multispectral images for enhanced target recognition

    NASA Astrophysics Data System (ADS)

    Khaghani, Farbod; Nelson, Richard J.

    2007-04-01

    Unlike straightforward registration problems encountered in broadband imaging, spectral imaging in fielded instruments often suffers from a combination of imaging aberrations that make spatial co-registration of the images a challenging problem. Depending on the sensor architecture, typical problems to be mitigated include differing focus, magnification, and warping between the images in the various spectral bands due to optics differences; scene shift between spectral images due to parallax; and scene shift due to temporal misregistration between the spectral images. However, typical spectral images sometimes contain scene commonalities that can be exploited in traditional ways. As a first step toward automatic spatial co-registration for spectral images, we exploit manually-selected scene commonalities to produce transformation parameters in a four-channel spectral imager. The four bands consist of two mid-wave infrared channels and two short-wave infrared channels. Each of the four bands is blurred differently due to differing focal lengths of the imaging optics, magnified differently, warped differently, and translated differently. Centroid location techniques are used on the scene commonalities in order to generate sub-pixel values for the fiducial markers used in the transformation polygons, and conclusions are drawn about the effectiveness of such techniques in spectral imaging applications.

  7. Chlorophyll a spatial inference using artificial neural network from multispectral images and in situ measurements.

    PubMed

    Ferreira, Monique S; Galo, Maria De Lourdes B T

    2013-01-01

    Considering the importance of monitoring the water quality parameters, remote sensing is a practicable alternative to limnological variables detection, which interacts with electromagnetic radiation, called optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to develop a method of spatial inference of chlorophyll a concentration using Artificial Neural Networks (ANN). To achieve this purpose, a multispectral image and fluorometric measurements were used as input data. The multispectral image was processed and the net training and validation dataset were carefully chosen. From this, the neural net architecture and its parameters were defined to model the variable of interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis was done. Thus, it was noticed that the integration of fluorometric and multispectral data provided good results in the chlorophyll a inference, when combined in a structure of artificial neural networks. PMID:23828358

  8. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  9. Multiview matrix completion for multilabel image classification.

    PubMed

    Yong Luo; Tongliang Liu; Dacheng Tao; Chao Xu

    2015-08-01

    There is growing interest in multilabel image classification due to its critical role in web-based image analytics-based applications, such as large-scale image retrieval and browsing. Matrix completion (MC) has recently been introduced as a method for transductive (semisupervised) multilabel classification, and has several distinct advantages, including robustness to missing data and background noise in both feature and label space. However, it is limited by only considering data represented by a single-view feature, which cannot precisely characterize images containing several semantic concepts. To utilize multiple features taken from different views, we have to concatenate the different features as a long vector. However, this concatenation is prone to over-fitting and often leads to very high time complexity in MC-based image classification. Therefore, we propose to weightedly combine the MC outputs of different views, and present the multiview MC (MVMC) framework for transductive multilabel image classification. To learn the view combination weights effectively, we apply a cross-validation strategy on the labeled set. In particular, MVMC splits the labeled set into two parts, and predicts the labels of one part using the known labels of the other part. The predicted labels are then used to learn the view combination coefficients. In the learning process, we adopt the average precision (AP) loss, which is particular suitable for multilabel image classification, since the ranking-based criteria are critical for evaluating a multilabel classification system. A least squares loss formulation is also presented for the sake of efficiency, and the robustness of the algorithm based on the AP loss compared with the other losses is investigated. Experimental evaluation on two real-world data sets (PASCAL VOC' 07 and MIR Flickr) demonstrate the effectiveness of MVMC for transductive (semisupervised) multilabel image classification, and show that MVMC can exploit

  10. An interventional multispectral photoacoustic imaging platform for the guidance of minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; Nikitichev, Daniil I.; Mari, Jean Martial; West, Simeon J.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2015-07-01

    Precise and efficient guidance of medical devices is of paramount importance for many minimally invasive procedures. These procedures include fetal interventions, tumor biopsies and treatments, central venous catheterisations and peripheral nerve blocks. Ultrasound imaging is commonly used for guidance, but it often provides insufficient contrast with which to identify soft tissue structures such as vessels, tumors, and nerves. In this study, a hybrid interventional imaging system that combines ultrasound imaging and multispectral photoacoustic imaging for guiding minimally invasive procedures was developed and characterized. The system provides both structural information from ultrasound imaging and molecular information from multispectral photoacoustic imaging. It uses a commercial linear-array ultrasound imaging probe as the ultrasound receiver, with a multimode optical fiber embedded in a needle to deliver pulsed excitation light to tissue. Co-registration of ultrasound and photoacoustic images is achieved with the use of the same ultrasound receiver for both modalities. Using tissue ex vivo, the system successfully discriminated deep-located fat tissue from the surrounding muscle tissue. The measured photoacoustic spectrum of the fat tissue had good agreement with the lipid spectrum in literature.

  11. Multispectral/hyperspectral image enhancement for biological cell analysis

    SciTech Connect

    Nuffer, Lisa L.; Medvick, Patricia A.; Foote, Harlan P.; Solinsky, James C.

    2006-08-01

    The paper shows new techniques for analyzing cell images taken with a microscope using multiple filters to form a datacube of spectral image planes. Because of the many neighboring spectral samples, much of the datacube appears as redundant, similar tissue. The analysis is based on the nonGaussian statistics of the image data, allowing for remapping of the data into image components that are dissimilar, and hence isolate subtle, spatial object regions of interest in the tissues. This individual component image set can be recombined into a single RGB color image useful in real-time location of regions of interest. The algorithms are susceptible to parallelization using Field Programmable Gate Array hardware processing.

  12. Application of High Resolution Multispectral Imagery for Levee Slide Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Hossain, A. K. M. Azad; Easson, Greg

    2007-01-01

    The objective is to develop methods to detect and monitor levee slides using commercially available high resolution multispectral imagery. High resolution multispectral imagery like IKONOS and QuickBird are suitable for detecting and monitoring levee slides. IKONOS is suitable for visual inspection, image classification and Tasseled Cap transform based slide detection. Tasseled Cap based model was found to be the best method for slide detection. QuickBird was suitable for visual inspection and image classification.

  13. LED lighting for use in multispectral and hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lighting for machine vision and hyperspectral imaging is an important component for collecting high quality imagery. However, it is often given minimal consideration in the overall design of an imaging system. Tungsten-halogens lamps are the most common source of illumination for broad spectrum appl...

  14. Citrus greening disease detection using airborne multispectral and hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral imaging can provide unique spectral signatures for diseased vegetation. Airborne hyperspectral imaging can be used to detect potentially infected trees over a large area for rapid detection of infected zones. Ground inspection and management can be focused on these infected zones rath...

  15. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-06-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.

  16. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    PubMed Central

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  17. Multispectral imaging utilizing LCTF technology for plant disease detection

    NASA Astrophysics Data System (ADS)

    Tian, Lixun; Liao, Ningfang; Chai, Ali; Tan, Boneng; Cui, Deqi; Wang, Jiajia

    2011-08-01

    The aim of this paper is to pave the way for the establishment of analysis of the lights reflected from the leaf's surface as an analytical method of plant disease. An imaging LCTF spectrometer that covers a visible light with 400-720 nm wavelength bands has been developed. This paper first outlines the structure of imaging LCTF spectrometer, including their operational principles and construction. Next, various spectral images acquired using the LCTF spectrometer in laboratory environment experiments to measure spectral characteristics of rays reflected from cucumber leaves surfaces that are infected by different germs are analyzed. Then, the results of the experiments conducted using the imaging spectrometer are shown, including the analyzed relative radiance of rays reflected from the plants, and spectral images acquired at various wavelengths. These experimental results demonstrate clearly that rays reflected from plant contaminated by different disease germs have different spectral properties.

  18. Knowledge-based automated road network extraction system using multispectral images

    NASA Astrophysics Data System (ADS)

    Sun, Weihua; Messinger, David W.

    2013-04-01

    A novel approach for automated road network extraction from multispectral WorldView-2 imagery using a knowledge-based system is presented. This approach uses a multispectral flood-fill technique to extract asphalt pixels from satellite images; it follows by identifying prominent curvilinear structures using template matching. The extracted curvilinear structures provide an initial estimate of the road network, which is refined by the knowledge-based system. This system breaks the curvilinear structures into small segments and then groups them using a set of well-defined rules; a saliency check is then performed to prune the road segments. As a final step, these segments, carrying road width and orientation information, can be reconstructed to generate a proper road map. The approach is shown to perform well with various urban and suburban scenes. It can also be deployed to extract the road network in large-scale scenes.

  19. Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs.

    PubMed

    Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Ahmad, Azeem; Mehta, Dalip Singh

    2016-04-01

    We report multispectral phase-shifting interference microscopy for quantitative phase imaging of human red blood cells (RBCs). A wide range of wavelengths are covered by means of using multiple color light emitting diodes (LEDs) with narrow spectral bandwidth ranging from violet to deep red color. The multicolor LED light source was designed and operated sequentially, which works as a multispectral scanning light source. Corresponding to each color LED source, five phase-shifted interferograms were recorded sequentially for the measurement of phase maps, as well as the refractive index of RBCs within the entire visible region. The proposed technique provides information about the effect of wavelengths on the morphology and refractive index of human RBCs. The system does not require expensive multiple color filters or any wavelength scanning mechanism along with broadband light source. PMID:27139652

  20. Fast interactive registration tool for reproducible multi-spectral imaging for wound healing and treatment evaluation

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke J.; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-02-01

    Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.

  1. Radiometric calibration of Landsat Thematic Mapper multispectral images

    USGS Publications Warehouse

    Chavez, P.S., Jr.

    1989-01-01

    A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author

  2. Geometric calibration and accuracy assessment of a multispectral imager on UAVs

    NASA Astrophysics Data System (ADS)

    Zheng, Fengjie; Yu, Tao; Chen, Xingfeng; Chen, Jiping; Yuan, Guoti

    2012-11-01

    The increasing developments in Unmanned Aerial Vehicles (UAVs) platforms and associated sensing technologies have widely promoted UAVs remote sensing application. UAVs, especially low-cost UAVs, limit the sensor payload in weight and dimension. Mostly, cameras on UAVs are panoramic, fisheye lens, small-format CCD planar array camera, unknown intrinsic parameters and lens optical distortion will cause serious image aberrations, even leading a few meters or tens of meters errors in ground per pixel. However, the characteristic of high spatial resolution make accurate geolocation more critical to UAV quantitative remote sensing research. A method for MCC4-12F Multispectral Imager designed to load on UAVs has been developed and implemented. Using multi-image space resection algorithm to assess geometric calibration parameters of random position and different photogrammetric altitudes in 3D test field, which is suitable for multispectral cameras. Both theoretical and practical accuracy assessments were selected. The results of theoretical strategy, resolving object space and image point coordinate differences by space intersection, showed that object space RMSE were 0.2 and 0.14 pixels in X direction and in Y direction, image space RMSE were superior to 0.5 pixels. In order to verify the accuracy and reliability of the calibration parameters,practical study was carried out in Tianjin UAV flight experiments, the corrected accuracy validated by ground checkpoints was less than 0.3m. Typical surface reflectance retrieved on the basis of geo-rectified data was compared with ground ASD measurement resulting 4% discrepancy. Hence, the approach presented here was suitable for UAV multispectral imager.

  3. Handheld multispectral fluorescence lifetime imaging system for in vivo applications.

    PubMed

    Cheng, Shuna; Cuenca, Rodrigo M; Liu, Boang; Malik, Bilal H; Jabbour, Joey M; Maitland, Kristen C; Wright, John; Cheng, Yi-Shing Lisa; Jo, Javier A

    2014-03-01

    There is an increasing interest in the application of fluorescence lifetime imaging (FLIM) for medical diagnosis. Central to the clinical translation of FLIM technology is the development of compact and high-speed clinically compatible systems. We present a handheld probe design consisting of a small maneuverable box fitted with a rigid endoscope, capable of continuous lifetime imaging at multiple emission bands simultaneously. The system was characterized using standard fluorescent dyes. The performance was then further demonstrated by imaging a hamster cheek pouch in vivo, and oral mucosa tissue both ex vivo and in vivo, all using safe and permissible exposure levels. Such a design can greatly facilitate the evaluation of FLIM for oral cancer imaging in vivo. PMID:24688824

  4. Multispectral light scattering imaging and multivariate analysis of airborne particulates

    NASA Astrophysics Data System (ADS)

    Holler, Stephen; Skelsey, Charles R.; Fuerstenau, Stephen D.

    2005-05-01

    Light scattering patterns from non-spherical particles and aggregates exhibit complex structure that is only revealed when observing in two angular dimensions. However, due to the varied shape and packing of such aerosols, the rich structure in the two-dimensional angular optical scattering (TAOS) pattern varies from particle to particle. We examine two-dimensional light scattering patterns obtained at multiple wavelengths using a single CCD camera with minimal cross talk between channels. The integration of the approach with a single CCD camera assures that data is acquired within the same solid angle and orientation. Since the optical size of the scattering particle is inversely proportional to the illuminating wavelength, the spectrally resolved scattering information provides characteristic information about the airborne particles simultaneously in two different scaling regimes. The simultaneous acquisition of data from airborne particulate matter at two different wavelengths allows for additional degrees of freedom in the analysis and characterization of the aerosols. Whereas our previous multivariate analyses of aerosol particles has relied solely on spatial frequency components, our present approach attempts to incorporate the relative symmetry of the particledetector system while extracting information content from both spectral channels. In addition to single channel data, this current approach also examines relative metrics. Consequently, we have begun to employ multivariate techniques based on novel morphological descriptors in order to classify "unknown" particles within a database of TAOS patterns from known aerosols utilizing both spectral and spatial information acquired. A comparison is made among several different classification metrics, all of which show improved classification capabilities relative to our previous approaches.

  5. Three-dimensional multispectral hand-held optoacoustic imaging with microsecond-level delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Bay, Erwin; Razansky, Daniel

    2015-03-01

    Three-dimensional hand-held optoacoustic imaging comes with important advantages that prompt the clinical translation of this modality, with applications envisioned in cardiovascular and peripheral vascular disease, disorders of the lymphatic system, breast cancer, arthritis or inflammation. Of particular importance is the multispectral acquisition of data by exciting the tissue at several wavelengths, which enables functional imaging applications. However, multispectral imaging of entire three-dimensional regions is significantly challenged by motion artefacts in concurrent acquisitions at different wavelengths. A method based on acquisition of volumetric datasets having a microsecond-level delay between pulses at different wavelengths is described in this work. This method can avoid image artefacts imposed by a scanning velocity greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g., abrupt displacements during handheld-mode operation in a clinical environment.

  6. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification

    NASA Astrophysics Data System (ADS)

    Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian

    2012-07-01

    Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.

  7. Multispectral laser-induced fluorescence imaging system for large biological samples

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2003-07-01

    A laser-induced fluorescence imaging system developed to capture multispectral fluorescence emission images simultaneously from a relatively large target object is described. With an expanded, 355-nm Nd:YAG laser as the excitation source, the system captures fluorescence emission images in the blue, green, red, and far-red regions of the spectrum centered at 450, 550, 678, and 730 nm, respectively, from a 30-cm-diameter target area in ambient light. Images of apples and of pork meat artificially contaminated with diluted animal feces have demonstrated the versatility of fluorescence imaging techniques for potential applications in food safety inspection. Regions of contamination, including sites that were not readily visible to the human eye, could easily be identified from the images.

  8. Design of multi-spectral images real-time segmentation system

    NASA Astrophysics Data System (ADS)

    Zhai, Bo; Qu, Youshan; Han, Yameng; Zhou, Jiang

    2015-02-01

    In order to realize the real-time segmentation processing of multi spectral images in practice, a real-time multi-spectral images segmentation system composed of four TMS320C6455 DSPs, two Virtex-4 - V4 XC4VLX80 - FPGAs and one Virtex-2 Pro - V2 Pro20 - FPGA is designed. Through the optimization of the cooperation processing of the multi DSP and multi FPGA, the parallel multitask processing ability of the DSPs and the effective interface coordination ability of the FPGAs in the built system are used fully. In order to display the processing ability, the segmentation test experiments of 10 spectra visible images, with 1024×1024, segmented by the Multi-scale Image Segmentation Method, was done in the built multi spectral images segment system. The experiment results prove that the multi DSP and multi FPGA multi spectral images processing system designed in this paper satisfies the real-time processing requirement in engineering practice.

  9. Interventional multi-spectral photoacoustic imaging in laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Hill, Emma R.; Xia, Wenfeng; Nikitichev, Daniil I.; Gurusamy, Kurinchi; Beard, Paul C.; Hawkes, David J.; Davidson, Brian R.; Desjardins, Adrien E.

    2016-03-01

    Laparoscopic procedures can be an attractive treatment option for liver resection, with a shortened hospital stay and reduced morbidity compared to open surgery. One of the central challenges of this technique is visualisation of concealed structures within the liver, particularly the vasculature and tumourous tissue. As photoacoustic (PA) imaging can provide contrast for haemoglobin in real time, it may be well suited to guiding laparoscopic procedures in order to avoid inadvertent trauma to vascular structures. In this study, a clinical laparoscopic ultrasound probe was used to receive ultrasound for PA imaging and to obtain co-registered B-mode ultrasound (US) images. Pulsed excitation light was delivered to the tissue via a fibre bundle in dark-field mode. Monte Carlo simulations were performed to optimise the light delivery geometry for imaging targets at depths of 1 cm, 2 cm and 3 cm, and 3D-printed mounts were used to position the fibre bundle relative to the transducer according to the simulation results. The performance of the photoacoustic laparoscope system was evaluated with phantoms and tissue models. The clinical potential of hybrid PA/US imaging to improve the guidance of laparoscopic surgery is discussed.

  10. Multispectral image feature fusion for detecting land mines

    SciTech Connect

    Clark, G.A.; Fields, D.J.; Sherwood, R.J.

    1994-11-15

    Our system fuses information contained in registered images from multiple sensors to reduce the effect of clutter and improve the the ability to detect surface and buried land mines. The sensor suite currently consists if a camera that acquires images in sixible wavelength bands, du, dual-band infrared (5 micron and 10 micron) and ground penetrating radar. Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a variety of physical properties that are more separate in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, holes made by animals and natural processes, etc.) and some artifacts.

  11. Omnidirectional scene illuminant estimation using a multispectral imaging system

    NASA Astrophysics Data System (ADS)

    Tominaga, Shoji; Fukuda, Tsuyoshi

    2007-01-01

    A method is developed for estimating an omnidirectional distribution of the scene illuminant spectral distribution, including spiky fluorescent spectra. First, we show a measuring apparatus, consisting of the mirrored ball system and the imaging system using a LCT filter (or color filters), a monochrome CCD camera, and a personal computer. Second, the measuring system is calibrated and images representing the omnidirectional light distribution are created. Third, we present an algorithm for recovering the illuminant spectral-power distribution from the image data. Finally, the feasibility of the proposed method is demonstrated in an experiment on a classroom scene with different illuminant sources such as fluorescent light, incandescent light, and daylight. The accuracy of the estimated scene illuminants is shown in the cases of the 6-channel multi-band camera, 31-channel spectral camera, and 61-channel spectral camera.

  12. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula

    2010-02-01

    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  13. Correction of motion artefacts and pseudo colour visualization of multispectral light scattering images for optical diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Minet, Olaf; Scheibe, Patrick; Beuthan, Jürgen; Zabarylo, Urszula

    2009-10-01

    State-of-the-art image processing methods offer new possibilities for diagnosing diseases using scattered light. The optical diagnosis of rheumatism is taken as an example to show that the diagnostic sensitivity can be improved using overlapped pseudo-coloured images of different wavelengths, provided that multispectral images are recorded to compensate for any motion related artefacts which occur during examination.

  14. Video-rate dual polarization multispectral endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Pigula, Anne; Clancy, Neil T.; Arya, Shobhit; Hanna, George B.; Elson, Daniel S.

    2015-03-01

    Cancerous and precancerous growths often exhibit changes in scattering, and therefore depolarization, as well as collagen breakdown, causing changes in birefringent effects. Simple difference of linear polarization imaging is unable to represent anisotropic effects like birefringence, and Mueller polarimetry is time-consuming and difficult to implement clinically. This work presents a dual-polarization endoscope to collect co- and cross-polarized images for each of two polarization states, and further incorporates narrow band detection to increase vascular contrast, particularly vascular remodeling present in diseased tissue, and provide depth sensitivity. The endoscope was shown to be sensitive to both isotropic and anisotropic materials in phantom and in vivo experiments.

  15. Digital image correlation techniques applied to LANDSAT multispectral imagery

    NASA Technical Reports Server (NTRS)

    Bonrud, L. O. (Principal Investigator); Miller, W. J.

    1976-01-01

    The author has identified the following significant results. Automatic image registration and resampling techniques applied to LANDSAT data achieved accuracies, resulting in mean radial displacement errors of less than 0.2 pixel. The process method utilized recursive computational techniques and line-by-line updating on the basis of feedback error signals. Goodness of local feature matching was evaluated through the implementation of a correlation algorithm. An automatic restart allowed the system to derive control point coordinates over a portion of the image and to restart the process, utilizing this new control point information as initial estimates.

  16. MULTISPECTRAL DIAGNOSTIC IMAGING OF THE IRIS IN PIGMENT DISPERSION SYNDROME

    PubMed Central

    Roberts, Daniel K.; Lukic, Ana; Yang, Yongyi; Wilensky, Jacob T.; Wernick, Miles N.

    2011-01-01

    Purpose To determine if wavelength selection with near infrared (NIR) iris imaging may enhance iris transillumination defects (ITDs) in pigment dispersion syndrome. Methods An experimental apparatus was used to acquire iris images in 6 African-American (AA) and 6 White patients with pigment dispersion syndrome. Light emitting diode (LED) probes of 6 different spectral bands (700 to 950 nm) were used to project light into patients' eyes. Iris patterns were photographed, ITD regions of interest were outlined, and region of interest contrasts were calculated for each spectral band. Results Contrasts varied as a function of wavelength (P<0.0001) for both groups, but tended to be highest in the 700 to 800 nm range. Contrasts were higher in Whites than AAs at 700 nm but the opposite was found at 810 nm (P<0.001). Conclusions Optimized NIR iris imaging may be wavelength dependent. Ideal wavelength to image ITDs in more pigmented eyes may be slightly longer than for less pigmented eyes. PMID:21423031

  17. Assessing Uncertainties in Accuracy of Landuse Classification Using Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Hsiao, L.-H.; Cheng, K.-S.

    2013-05-01

    Multispectral remote sensing images are widely used for landuse/landcover (LULC) classification. Performance of such classification practices is normally evaluated through the confusion matrix which summarizes the producer's and user's accuracies and the overall accuracy. However, the confusion matrix is based on the classification results of a set of multi-class training data. As a result, the classification accuracies are heavily dependent on the representativeness of the training data set and it is imperative for practitioners to assess the uncertainties of LULC classification in order for a full understanding of the classification results. In addition, the Gaussian-based maximum likelihood classifier (GMLC) is widely applied in many practices of LULC classification. The GMLC assumes the classification features jointly form a multivariate normal distribution, whereas as, in reality, many features of individual landcover classes have been found to be non-Gaussian. Direct application of GMLC will certainly affect the classification results. In a pilot study conducted in Taipei and its vicinity, we tackled these two problems by firstly transforming the original training data set to a corresponding data set which forms a multivariate normal distribution before conducting LULC classification using GMLC. We then applied the bootstrap resampling technique to generate a large set of multi-class resampled training data from the multivariate normal training data set. LULC classification was then implemented for each resampled training data set using the GMLC. Finally, the uncertainties of LULC classification accuracies were assessed by evaluating the means and standard deviations of the producer's and user's accuracies of individual LULC classes which were derived from a set of confusion matrices. Results of this study demonstrate that Gaussian-transformation of the original training data achieved better classification accuracies and the bootstrap resampling technique is

  18. An unsupervised classification of multispectral scanner data using correspondence analysis (CLAMS)

    NASA Technical Reports Server (NTRS)

    Monget, J. M.; Roux, P.

    1975-01-01

    An unsupervised classification method was designed as a three step procedure: dimension reduction, classification of channels and clustering of measured reflectance spectra. The basic concept is that similar channels are most likely to characterize typical shapes of reflectance spectrum. Some results are shown which are in good agreement with the known ground truth.

  19. Cloud classification using whole-sky imager data

    SciTech Connect

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R.

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  20. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    SciTech Connect

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  1. Rapid algal culture diagnostics for open ponds using multispectral image analysis.

    PubMed

    Murphy, Thomas E; Macon, Keith; Berberoglu, Halil

    2014-01-01

    This article presents a multispectral image analysis approach for probing the spectral backscattered irradiance from algal cultures. It was demonstrated how this spectral information can be used to measure algal biomass concentration, detect invasive species, and monitor culture health in real time. To accomplish this, a conventional RGB camera was used as a three band photodetector for imaging cultures of the green alga Chlorella sp. and the cyanobacterium Anabaena variabilis. A novel floating reference platform was placed in the culture, which enhanced the sensitivity of image color intensity to biomass concentration. Correlations were generated between the RGB color vector of culture images and the biomass concentrations for monocultures of each strain. These correlations predicted the biomass concentrations of independently prepared cultures with average errors of 22 and 14%, respectively. Moreover, the difference in spectral signatures between the two strains was exploited to detect the invasion of Chlorella sp. cultures by A. variabilis. Invasion was successfully detected for A. variabilis to Chlorella sp. mass ratios as small as 0.08. Finally, a method was presented for using multispectral imaging to detect thermal stress in A. variabilis. These methods can be extended to field applications to provide delay free process control feedback for efficient operation of large scale algae cultivation systems. PMID:24265121

  2. Chromaffin cell calcium signal and morphology study based on multispectral images

    NASA Astrophysics Data System (ADS)

    Wu, Hongxiu; Wei, Shunhui; Qu, Anlian; Zhou, Zhuan

    1998-09-01

    Increasing or decreasing the internal calcium concentration can promote or prevent programmed cell death (PCD). We therefore performed a Ca2+ imaging study using Ca2+ indicator dye fura-2 and a sensitive cooled-CCD camera with a 12 bit resolution. Monochromatic beams of light with a wavelength of 345,380 nm were isolated from light emitted by a xenon lamp using a monochromator. The concentration of free calcium can be directly calculated from the ratio of two fluorescence values taken at two appropriately selected wavelength. Fluorescent light emitted from the cells was capture using a camera system. The cell morphology study is based on multispectral scanning, with smear images provided as three monochromatic images by illumination with light of 610,535 and 470 nm wavelengths. The nuclear characteristic parameters extracted from individual nuclei by system are nuclear area, nuclear diameter, nuclear density vector. The results of the restoration of images and the performance of a primitive logic for the detection of nuclei with PCD proved the usefulness of the system and the advantages of using multispectral images in the restoration and detection procedures.

  3. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.

    PubMed

    Núñez, Jorge I; Farmer, Jack D; Sellar, R Glenn; Swayze, Gregg A; Blaney, Diana L

    2014-02-01

    Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.46 to 1.73 μm. This spectral range enables the discrimination of a wide variety of rock-forming minerals, especially Fe-bearing phases, and the detection of hydrated minerals. The MMI advances beyond the capabilities of current microimagers on Mars by extending the spectral range into the infrared and increasing the number of spectral bands. The design employs multispectral light-emitting diodes and an uncooled indium gallium arsenide focal plane array to achieve a very low mass and high reliability. To better understand and demonstrate the capabilities of the MMI for future surface missions to Mars, we analyzed samples from Mars-relevant analog environments with the MMI. Results indicate that the MMI images faithfully resolve the fine-scale microtextural features of samples and provide important information to help constrain mineral composition. The use of spectral endmember mapping reveals the distribution of Fe-bearing minerals (including silicates and oxides) with high fidelity, along with the presence of hydrated minerals. MMI-based petrogenetic interpretations compare favorably with laboratory-based analyses, revealing the value of the MMI for future in situ rover-mediated astrobiological exploration of Mars. PMID:24552233

  4. Diagnosis of cutaneous thermal burn injuries by multispectral imaging analysis

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Zawacki, B. E.

    1978-01-01

    Special photographic or television image analysis is shown to be a potentially useful technique to assist the physician in the early diagnosis of thermal burn injury. A background on the medical and physiological problems of burns is presented. The proposed methodology for burns diagnosis from both the theoretical and clinical points of view is discussed. The television/computer system constructed to accomplish this analysis is described, and the clinical results are discussed.

  5. A mixture neural net for multispectral imaging spectrometer processing

    NASA Technical Reports Server (NTRS)

    Casasent, David; Slagle, Timothy

    1990-01-01

    Each spatial region viewed by an imaging spectrometer contains various elements in a mixture. The elements present and the amount of each are to be determined. A neural net solution is considered. Initial optical neural net hardware is described. The first simulations on the component requirements of a neural net are considered. The pseudoinverse solution is shown to not suffice, i.e. a neural net solution is required.

  6. Core Temperature and Density Profiles from Multispectral Imaging of ICF Plasmas

    SciTech Connect

    Koch, J A; Barbee, T W Jr.; Dalhed, S; Haan, S; Izumi, N; Lee, R W; Welser, L; McCrorey, D L; Mancini, R C; Marshall, F; Meyerhoffer, D; Sangster, C; Smalyuk, V; Soures, J; Klein, L

    2003-08-26

    We have developed a multiple monochromatic x-ray imaging diagnostic using an array of pinholes coupled to a multilayer Bragg mirror, and we have used this diagnostic to obtain unique multispectral imaging data of inertial-confinement fusion implosion plasmas. Argon dopants in the fuel allow emission images to be obtained in the Ar He-b and Ly-b spectral regions, and these images provide data on core temperature and density profiles. We have analyzed these data to obtain quasi-three-dimensional maps of electron temperature and scaled electron density within the core for several cases of drive symmetry, and we observed a two-lobed structure evolving for increasingly prolate-asymmetric drive. This structure is invisible in broad-band x-ray images. Future work will concentrate on hydrodynamics simulations for comparison with the data.

  7. Snap-shot multispectral imaging of vascular dynamics in a mouse window-chamber model.

    PubMed

    Hendargo, Hansford C; Zhao, Yulin; Allenby, Taylor; Palmer, Gregory M

    2015-07-15

    Understanding tumor vascular dynamics through parameters such as blood flow and oxygenation can yield insight into tumor biology and therapeutic response. Hyperspectral microscopy enables optical detection of hemoglobin saturation or blood velocity by either acquiring multiple images that are spectrally distinct or by rapid acquisition at a single wavelength over time. However, the serial acquisition of spectral images over time prevents the ability to monitor rapid changes in vascular dynamics and cannot monitor concurrent changes in oxygenation and flow rate. Here, we introduce snap shot-multispectral imaging (SS-MSI) for use in imaging the microvasculature in mouse dorsal-window chambers. By spatially multiplexing spectral information into a single-image capture, simultaneous acquisition of dynamic hemoglobin saturation and blood flow over time is achieved down to the capillary level and provides an improved optical tool for monitoring rapid in vivo vascular dynamics. PMID:26176452

  8. Multispectral imaging approach for simplified non-invasive in-vivo evaluation of gingival erythema

    NASA Astrophysics Data System (ADS)

    Eckhard, Timo; Valero, Eva M.; Nieves, Juan L.; Gallegos-Rueda, José M.; Mesa, Francisco

    2012-03-01

    Erythema is a common visual sign of gingivitis. In this work, a new and simple low-cost image capture and analysis method for erythema assessment is proposed. The method is based on digital still images of gingivae and applied on a pixel-by-pixel basis. Multispectral images are acquired with a conventional digital camera and multiplexed LED illumination panels at 460nm and 630nm peak wavelength. An automatic work-flow segments teeth from gingiva regions in the images and creates a map of local blood oxygenation levels, which relates to the presence of erythema. The map is computed from the ratio of the two spectral images. An advantage of the proposed approach is that the whole process is easy to manage by dental health care professionals in clinical environment.

  9. Snap-shot multispectral imaging of vascular dynamics in a mouse window chamber model

    PubMed Central

    Hendargo, Hansford C.; Zhao, Yulin; Allenby, Taylor; Palmer, Gregory M.

    2015-01-01

    Understanding tumor vascular dynamics through parameters such as blood flow and oxygenation can yield insight into tumor biology and therapeutic response. Hyperspectral microscopy enables optical detection of hemoglobin saturation or blood velocity by either acquiring multiple images that are spectrally distinct or by rapid acquisition at a single wavelength over time. However, the serial acquisition of spectral images over time prevents the ability to monitor rapid changes in vascular dynamics and cannot monitor concurrent changes in oxygenation and flow rate. Here, we introduce snap shot-multispectral imaging (SS-MSI) for use in imaging the microvasculature in mouse dorsal window chambers. By spatially multiplexing spectral information into a single image capture, simultaneous acquisition of dynamic hemoglobin saturation and blood flow over time is achieved down to the capillary level and provides an improved optical tool for monitoring rapid in vivo vascular dynamics. PMID:26176452

  10. Spectral ladar: towards active 3D multispectral imaging

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  11. Interventional multispectral photoacoustic imaging with a clinical linear array ultrasound probe for guiding nerve blocks

    NASA Astrophysics Data System (ADS)

    Xia, Wenfeng; West, Simeon J.; Nikitichev, Daniil I.; Ourselin, Sebastien; Beard, Paul C.; Desjardins, Adrien E.

    2016-03-01

    Accurate identification of tissue structures such as nerves and blood vessels is critically important for interventional procedures such as nerve blocks. Ultrasound imaging is widely used as a guidance modality to visualize anatomical structures in real-time. However, identification of nerves and small blood vessels can be very challenging, and accidental intra-neural or intra-vascular injections can result in significant complications. Multi-spectral photoacoustic imaging can provide high sensitivity and specificity for discriminating hemoglobin- and lipid-rich tissues. However, conventional surface-illumination-based photoacoustic systems suffer from limited sensitivity at large depths. In this study, for the first time, an interventional multispectral photoacoustic imaging (IMPA) system was used to image nerves in a swine model in vivo. Pulsed excitation light with wavelengths in the ranges of 750 - 900 nm and 1150 - 1300 nm was delivered inside the body through an optical fiber positioned within the cannula of an injection needle. Ultrasound waves were received at the tissue surface using a clinical linear array imaging probe. Co-registered B-mode ultrasound images were acquired using the same imaging probe. Nerve identification was performed using a combination of B-mode ultrasound imaging and electrical stimulation. Using a linear model, spectral-unmixing of the photoacoustic data was performed to provide image contrast for oxygenated and de-oxygenated hemoglobin, water and lipids. Good correspondence between a known nerve location and a lipid-rich region in the photoacoustic images was observed. The results indicate that IMPA is a promising modality for guiding nerve blocks and other interventional procedures. Challenges involved with clinical translation are discussed.

  12. Airborne Multispectral LIDAR Data for Land-Cover Classification and Land/water Mapping Using Different Spectral Indexes

    NASA Astrophysics Data System (ADS)

    Morsy, S.; Shaker, A.; El-Rabbany, A.; LaRocque, P. E.

    2016-06-01

    Airborne Light Detection And Ranging (LiDAR) data is widely used in remote sensing applications, such as topographic and landwater mapping. Recently, airborne multispectral LiDAR sensors, which acquire data at different wavelengths, are available, thus allows recording a diversity of intensity values from different land features. In this study, three normalized difference feature indexes (NDFI), for vegetation, water, and built-up area mapping, were evaluated. The NDFIs namely, NDFIG-NIR, NDFIG-MIR, and NDFINIR-MIR were calculated using data collected at three wavelengths; green: 532 nm, near-infrared (NIR): 1064 nm, and mid-infrared (MIR): 1550 nm by the world's first airborne multispectral LiDAR sensor "Optech Titan". The Jenks natural breaks optimization method was used to determine the threshold values for each NDFI, in order to cluster the 3D point data into two classes (water and land or vegetation and built-up area). Two sites at Scarborough, Ontario, Canada were tested to evaluate the performance of the NDFIs for land-water, vegetation, and built-up area mapping. The use of the three NDFIs succeeded to discriminate vegetation from built-up areas with an overall accuracy of 92.51%. Based on the classification results, it is suggested to use NDFIG-MIR and NDFINIR-MIR for vegetation and built-up areas extraction, respectively. The clustering results show that the direct use of NDFIs for land-water mapping has low performance. Therefore, the clustered classes, based on the NDFIs, are constrained by the recorded number of returns from different wavelengths, thus the overall accuracy is improved to 96.98%.

  13. Forest Classification Accuracy as Influenced by Multispectral Scanner Spatial Resolution. [Sam Houston National Forest, Texas

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Sadowski, F. E.; Sarno, J. E.

    1976-01-01

    The author has identified the following significant results. A supervised classification within two separate ground areas of the Sam Houston National Forest was carried out for two sq meters spatial resolution MSS data. Data were progressively coarsened to simulate five additional cases of spatial resolution ranging up to 64 sq meters. Similar processing and analysis of all spatial resolutions enabled evaluations of the effect of spatial resolution on classification accuracy for various levels of detail and the effects on area proportion estimation for very general forest features. For very coarse resolutions, a subset of spectral channels which simulated the proposed thematic mapper channels was used to study classification accuracy.

  14. 3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.

  15. A neural network approach for enhancing information extraction from multispectral image data

    USGS Publications Warehouse

    Liu, J.; Shao, G.; Zhu, H.; Liu, S.

    2005-01-01

    A back-propagation artificial neural network (ANN) was applied to classify multispectral remote sensing imagery data. The classification procedure included four steps: (i) noisy training that adds minor random variations to the sampling data to make the data more representative and to reduce the training sample size; (ii) iterative or multi-tier classification that reclassifies the unclassified pixels by making a subset of training samples from the original training set, which means the neural model can focus on fewer classes; (iii) spectral channel selection based on neural network weights that can distinguish the relative importance of each channel in the classification process to simplify the ANN model; and (iv) voting rules that adjust the accuracy of classification and produce outputs of different confidence levels. The Purdue Forest, located west of Purdue University, West Lafayette, Indiana, was chosen as the test site. The 1992 Landsat thematic mapper imagery was used as the input data. High-quality airborne photographs of the same Lime period were used for the ground truth. A total of 11 land use and land cover classes were defined, including water, broadleaved forest, coniferous forest, young forest, urban and road, and six types of cropland-grassland. The experiment, indicated that the back-propagation neural network application was satisfactory in distinguishing different land cover types at US Geological Survey levels II-III. The single-tier classification reached an overall accuracy of 85%. and the multi-tier classification an overall accuracy of 95%. For the whole test, region, the final output of this study reached an overall accuracy of 87%. ?? 2005 CASI.

  16. The LANDSAT-1 multispectral scanner as a tool in the classification of inland lakes

    NASA Technical Reports Server (NTRS)

    Boland, D. H. P.; Blackwell, R. J.

    1975-01-01

    Relationships between LANDSAT-1 multispectral scanner (MSS) data and the trophic status of a group of lakes in the north-northeastern part of the United States were studied by predicting the magnitudes of two trophic state indicators, estimating lake position on a multivariate trophic scale, and automatically classifying lakes according to their trophic state. Initially, the principal component ordination was employed with 100 lakes. MSS data for some 20 lakes was then extracted from computer-compatible tapes (CCT) using a binary marking technique. The output was in the form of descriptive statistics and photographic concatenations. Color ratios were incorporated into regression models for the prediction of Secchi disc transparency, chlorophyll a, and lake position on the tropic scale. Results indicate that the LANDSAT-1 system, although handicapped by low spectral and spatial resolutions as well as excessive cloud cover, can be used as a supplemental data source in lake survey programs.

  17. Multi-spectral Imaging of Vegetation for CO2 Leak Detection

    NASA Astrophysics Data System (ADS)

    Hogan, J. A.; Shaw, J. A.; Dobeck, L.; Spangler, L.; Lawrence, R. L.

    2009-12-01

    Practical use of geologic carbon sequestration for reducing carbon dioxide emissions into the atmosphere requires reliable monitoring techniques. Multispectral imaging of vegetation growing over the storage site is one possible technique for detecting carbon dioxide leakage. To demonstrate and quantitatively assess the monitoring capabilities of this approach, a multi-spectral imaging system has been deployed at the Zero Emissions Research and Technology (ZERT) field site in Bozeman, Montana. The Normalized-Difference Vegetation Index (NDVI) is calculated from visible and near-infrared images to detect the effects on vegetation caused by CO2 released from a buried pipe in a controlled experiment. The images are processed to examine time-series trends of the NDVI as the plants are exposed to CO2. Data from a summer 2009 experiment show that with a CO2 release rate of 0.2 tons per day, the NDVI values near the release pipe and at a control point away from the release pipe diverged significantly. These values remained different throughout the one-month release duration. The NDVI values near and away from the pipe both increase similarly after significant rain events, but maintain a trend indicating increasing plant stress throughout the experiment.

  18. Developing handheld real time multispectral imager to clinically detect erythema in darkly pigmented skin

    NASA Astrophysics Data System (ADS)

    Kong, Linghua; Sprigle, Stephen; Yi, Dingrong; Wang, Fengtao; Wang, Chao; Liu, Fuhan

    2010-02-01

    Pressure ulcers have been identified as a public health concern by the US government through the Healthy People 2010 initiative and the National Quality Forum (NQF). Currently, no tools are available to assist clinicians in erythema, i.e. the early stage pressure ulcer detection. The results from our previous research (supported by NIH grant) indicate that erythema in different skin tones can be identified using a set of wavelengths 540, 577, 650 and 970nm. This paper will report our recent work which is developing a handheld, point-of-care, clinicallyviable and affordable, real time multispectral imager to detect erythema in persons with darkly pigmented skin. Instead of using traditional filters, e.g. filter wheels, generalized Lyot filter, electrical tunable filter or the methods of dispersing light, e.g. optic-acoustic crystal, a novel custom filter mosaic has been successfully designed and fabricated using lithography and vacuum multi layer film technologies. The filter has been integrated with CMOS and CCD sensors. The filter incorporates four or more different wavelengths within the visual to nearinfrared range each having a narrow bandwidth of 30nm or less. Single wavelength area is chosen as 20.8μx 20.8μ. The filter can be deposited on regular optical glass as substrate or directly on a CMOS and CCD imaging sensor. This design permits a multi-spectral image to be acquired in a single exposure, thereby providing overwhelming convenience in multi spectral imaging acquisition.

  19. Multispectral image enhancement for H&E stained pathological tissue specimens

    NASA Astrophysics Data System (ADS)

    Bautista, Pinky A.; Abe, Tokiya; Yamaguchi, Masahiro; Ohyama, Nagaaki; Yagi, Yukako

    2008-03-01

    The presence of a liver disease such as cirrhosis can be determined by examining the proliferation of collagen fiber from a tissue slide stained with special stain such as the Masson's trichrome(MT) stain. Collagen fiber and smooth muscle, which are both stained the same in an H&E stained slide, are stained blue and pink respectively in an MT-stained slide. In this paper we show that with multispectral imaging the difference between collagen fiber and smooth muscle can be visualized even from an H&E stained image. In the method M KL bases are derived using the spectral data of those H&E stained tissue components which can be easily differentiated from each other, i.e. nucleus, cytoplasm, red blood cells, etc. and based on the spectral residual error of fiber weighting factors are determined to enhance spectral features at certain wavelengths. Results of our experiment demonstrate the capability of multispectral imaging and its advantage compared to the conventional RGB imaging systems to delineate tissue structures with subtle colorimetric difference.

  20. Multi-Spectral imaging of vegetation for detecting CO2 leaking from underground

    SciTech Connect

    Rouse, J.H.; Shaw, J.A.; Lawrence, R.L.; Lewicki, J.L.; Dobeck, L.M.; Repasky, K.S.; Spangler, L.H.

    2010-06-01

    Practical geologic CO{sub 2} sequestration will require long-term monitoring for detection of possible leakage back into the atmosphere. One potential monitoring method is multi-spectral imaging of vegetation reflectance to detect leakage through CO{sub 2}-induced plant stress. A multi-spectral imaging system was used to simultaneously record green, red, and near-infrared (NIR) images with a real-time reflectance calibration from a 3-m tall platform, viewing vegetation near shallow subsurface CO{sub 2} releases during summers 2007 and 2008 at the Zero Emissions Research and Technology field site in Bozeman, Montana. Regression analysis of the band reflectances and the Normalized Difference Vegetation Index with time shows significant correlation with distance from the CO{sub 2} well, indicating the viability of this method to monitor for CO{sub 2} leakage. The 2007 data show rapid plant vigor degradation at high CO{sub 2} levels next to the well and slight nourishment at lower, but above-background CO{sub 2} concentrations. Results from the second year also show that the stress response of vegetation is strongly linked to the CO{sub 2} sink-source relationship and vegetation density. The data also show short-term effects of rain and hail. The real-time calibrated imaging system successfully obtained data in an autonomous mode during all sky and daytime illumination conditions.

  1. Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping.

    PubMed

    Chang, Yi; Yan, Luxin; Fang, Houzhang; Luo, Chunan

    2015-06-01

    Multispectral remote sensing images often suffer from the common problem of stripe noise, which greatly degrades the imaging quality and limits the precision of the subsequent processing. The conventional destriping approaches usually remove stripe noise band by band, and show their limitations on different types of stripe noise. In this paper, we tentatively categorize the stripes in remote sensing images in a more comprehensive manner. We propose to treat the multispectral images as a spectral-spatial volume and pose an anisotropic spectral-spatial total variation regularization to enhance the smoothness of solution along both the spectral and spatial dimension. As a result, a more comprehensive stripes and random noise are perfectly removed, while the edges and detail information are well preserved. In addition, the split Bregman iteration method is employed to solve the resulting minimization problem, which highly reduces the computational load. We extensively validate our method under various stripe categories and show comparison with other approaches with respect to result quality, running time, and quantitative assessments. PMID:25706634

  2. Quantitative evaluation of atherosclerotic plaque phantom by near-infrared multispectral imaging with three wavelengths

    NASA Astrophysics Data System (ADS)

    Nagao, Ryo; Ishii, Katsunori; Awazu, Kunio

    2014-03-01

    Atherosclerosis is a primary cause of critical ischemic disease. The risk of critical event is involved the content of lipid in unstable plaque. Near-infrared (NIR) range is effective for diagnosis of atherosclerotic plaque because of the absorption peaks of lipid. NIR multispectral imaging (NIR-MSI) is suitable for the evaluation of plaque because it can provide spectroscopic information and spatial image quickly with a simple measurement system. The purpose of this study is to evaluate the lipid concentrations in plaque phantoms quantitatively with a NIR-MSI system. A NIR-MSI system was constructed with a supercontinuum light, a grating spectrometer and a MCT camera. Plaque phantoms with different concentrations of lipid were prepared by mixing bovine fat and a biological soft tissue model to mimic the different stages of unstable plaque. We evaluated the phantoms by the NIR-MSI system with three wavelengths in the band at 1200 nm. Multispectral images were processed by spectral angle mapper method. As a result, the lipid areas of phantoms were effectively highlighted by using three wavelengths. In addition, the concentrations of lipid areas were classified according to the similarity between measured spectra and a reference spectrum. These results suggested the possibility of image enhancement and quantitative evaluation of lipid in unstable plaque with a NIR-MSI.

  3. RGB representation of two-dimensional multi-spectral acoustic data for object surface profile imaging

    NASA Astrophysics Data System (ADS)

    Guo, Xinhua; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2013-10-01

    Conventionally, acoustic imaging has been performed using a single frequency or a limited number of frequencies. However, the rich information on surface profiles, structures hidden under surfaces and material properties of objects may exhibit frequency dependence. In this study, acoustic imaging on object surface was conducted over a wide frequency range with a fine frequency step, and a method for displaying the acquired multi-spectral acoustic data was proposed. A complicated rigid surface with different profiles was illuminated by sound waves sweeping over the frequency range from 1 to 20 kHz with a 30 Hz step. The reflected sound was two-dimensionally recorded using a scanning microphone, and processed using a holographic reconstruction method. The two-dimensional distributions of obtained sound pressure at each frequency were defined as ‘multi-spectral acoustic imaging data’. Next, the multi-spectral acoustic data were transformed into a single RGB-based picture for easy understanding of the surface characteristics. The acoustic frequencies were allocated to red, green and blue using the RGB filter technique. The depths of the grooves were identified by their colours in the RGB image.

  4. Estimating Scots Pine Tree Mortality Using High Resolution Multispectral Images

    NASA Astrophysics Data System (ADS)

    Buriak, L.; Sukhinin, A. I.; Conard, S. G.; Ivanova, G. A.; McRae, D. J.; Soja, A. J.; Okhotkina, E.

    2010-12-01

    Scots pine (Pinus sylvestris) forest stands of central Siberia are characterized by a mixed-severity fire regime that is dominated by low- to high-severity surface fires, with crown fires occurring less frequently. The purpose of this study was to link ground measurements with air-borne and satellite observations of active wildfires and older fire scars to better estimate tree mortality remotely. Data from field sampling on experimental fires and wildfires were linked with intermediate-resolution satellite (Landsat Enhanced Thematic Mapper) data to estimate fire severity and carbon emissions. Results are being applied to Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, MERIS, Landsat-ETM, SPOT (i.e., low, middle and high spatial resolution), to understand their remote-sensing capability for mapping fire severity, as indicated by tree mortality. Tree mortality depends on fireline intensity, residence time, and the physiological effects on the cambium layer, foliage and roots. We have correlated tree mortality measured after fires of varying severity with NDVI and other Chlorophyll Indexes to model tree mortality on a landscape scale. The field data obtained on experimental and wildfires are being analyzed and compared with intermediate-resolution satellite data (Landsat7-ETM) to help estimate fire severity, emissions, and carbon balance. In addition, it is being used to monitor immediate ecosystem fire effects (e.g., tree mortality) and long-term postfire vegetation recovery. These data are also being used to validate AVHRR , MODIS, and MERIS estimates of burn area. We studied burned areas in the Angara Region of central Siberia (northeast of Lake Baikal) for which both ground data and satellite data (ENVISAT-MERIS, Spot4, Landsat5, Landsat7-ETM) were available for the 2003 - 2004 and 2006 - 2008 periods. Ground validation was conducted on seventy sample plots established on burned sites differing in

  5. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    SciTech Connect

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Marcu, Laura; Elson, Daniel S.

    2014-03-15

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  6. An interactive lake survey program. [airborne multispectral sensor image processing

    NASA Technical Reports Server (NTRS)

    Smith, A. Y.

    1977-01-01

    Consideration is given to the development and operation of the interactive lake survey program developed by the Jet Propulsion Laboratory and the Environmental Protection Agency. The program makes it possible to locate, isolate, and store any number of water bodies on the basis of a given digital image. The stored information may be used to generate statistical analyses of each body of water including the lake surface area and the shoreline perimeter. The hardware includes a 360/65 host computer, a Ramtek G100B display controller, and a trackball cursor. The system is illustrated by the LAKELOC operation as it would be applied to a Landsat scene, noting the FARINA and STATUS programs. The water detection algorithm, which increases the accuracy with which water and land data may be separated, is discussed.

  7. Hurricane coastal flood analysis using multispectral spectral images

    NASA Astrophysics Data System (ADS)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  8. Semi-quantitative Multispectral Optoacoustic Tomography (MSOT) for volumetric PK imaging of gastric emptying

    PubMed Central

    Morscher, Stefan; Driessen, Wouter H.P.; Claussen, Jing; Burton, Neal C.

    2014-01-01

    A common side effect of medication is gastrointestinal intolerance. Symptoms can include reduced appetite, diarrhea, constipation, GI inflammation, nausea and vomiting. Such effects often have a dramatic impact on compliance with a treatment regimen. Therefore, characterization of GI tolerance is an important step when establishing a novel therapeutic approach. In this study, Multispectral Optoacoustic Tomography (MSOT) is used to monitor gastrointestinal motility by in vivo whole body imaging in mice. MSOT combines high spatial and temporal resolution based on ultrasound detection with strong optical contrast in the near infrared. Animals were given Indocyanine Green (ICG) by oral gavage and imaged by MSOT to observe the fate of ICG in the gastrointestinal tract. Exponential decay of ICG signal was observed in the stomach in good correlation with ex vivo validation. We discuss how kinetic imaging in MSOT allows visualization of parameters unavailable to other imaging methods, both in 2D and 3D. PMID:25431754

  9. De-Hazing of Multi-Spectral Images with Evolutionary Computing

    NASA Astrophysics Data System (ADS)

    von Allmen, P.; Lee, S.; Diner, D. J.; Martonchik, J.; Davis, A. B.

    2009-12-01

    We developed an algorithm that allows for removing haze from a digital picture by numerically subtracting the contribution of optical scattering by aerosols. The scene is modeled by defining a reflectance function for each pixel, which describes the angular dependence of light scattering at the surface, and by describing the scattering from aerosols with a set of models of varying complexity. An optimization algorithm that mixes downhill methods with evolutionary computing approaches was used to fit the observed image to the model of the scene. The contribution of the aerosol scattering is then removed to obtain a de-hazed image. We will present results for multispectral images taken by NASA’s Multi-angle Imaging SpectroRadiometer and we will discuss the numerical efficiency of the algorithm implemented on a multi-node quadcore cluster computer.

  10. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  11. A design approach to real-time formatting of high speed multispectral image data

    NASA Technical Reports Server (NTRS)

    Meredith, B. D.; Kelly, W. L., IV

    1981-01-01

    A design approach to formatting multispectral image data in real time at very high data rates is presented for future onboard processing applications. The approach employs a microprocessor-based alternating buffer memory configuration whose formatting function is completely programmable. Data are read from an output buffer in the desired format by applying the proper sequence of addresses to the buffer via a lookup table memory. Sensor data can be processed using this approach at rates limited by the buffer memory access time and the buffer switching process delay time. This design offers flexible high speed data processing and benefits from continuing increases in the performance of digital memories.

  12. Pollution detection by digital correlation of multispectral, stero-image pairs.

    NASA Technical Reports Server (NTRS)

    Krause, F. R.; Betz, H. T.; Lysobey, D. H.

    1971-01-01

    Remote detection of air pollution circulation patterns is proposed to eventually predict the accumulation of hazardous surface concentrations in time for preventive emission control operations. Earth observations from space platforms will contain information on the height, mean velocity and lateral mixing scales of inversion layers and pollution plumes. Although this information is often not visible on photographs, it could conceivably be retrieved through a digital cross-correlation of multispectral stereo image pairs. Laboratory and field test results are used to illustrate the detection of non-visual inversion layers, the reduction of dominant signal interference, and the spectroscopic identification of combustion products.

  13. High speed lookup table approach to radiometric calibration of multispectral image data

    NASA Technical Reports Server (NTRS)

    Kelly, W. L., IV; Meredith, B. D.; Howle, W. M.

    1980-01-01

    A concept for performing radiometric correction of multispectral image data onboard a spacecraft at very high data rates is presented and demonstrated. This concept utilized a lookup table approach, implemented in hardware, to convert the raw sensor data into the desired corrected output data. The digital lookup table memory was interfaced to a microprocessor to allow the data correction function to be completely programmable. Sensor data was processed with this approach at rates equal to the access time of the lookup table memory. This concept offers flexible high speed data processing for a wide range of applications and will benefit from the continuing improvements in performance of digital memories.

  14. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  15. An operative quantitative analysis of multispectral images of the eyeground

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Kubarko, A. I.

    2014-09-01

    In the approximation of a four-layer model of the eyeground, we have studied the information content of photographs of the eyeground obtained in different spectral intervals from the visible range of the spectrum. We have shown that, under conditions of a priori uncertainty of all parameters of the eyeground that affect spectral fluxes of light multiply scattered by the eyeground, the two-dimensional distributions of the following parameters can be determined: (i) the contents of hemoglobin and macular pigment in the retina; (ii) the contents of melanin in the pigment epithelium and choroid; (iii) the degree of blood oxygenation; and (iv) the structural parameter of the retina, which characterizes the volume concentration of its effective scatterers. Based on results of a numerical simulation of the light-transfer process in the medium under study, we have determined regression relationships between parameters of the eyeground and spectral characteristics of its image and have proposed a method for the operative retrieval of parameter maps of the eyeground, which uses the determined regressions.

  16. Neural network technologies for image classification

    NASA Astrophysics Data System (ADS)

    Korikov, A. M.; Tungusova, A. V.

    2015-11-01

    We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.

  17. Multispectral Photography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.

  18. Thresholding for biological material detection in real-time multispectral imaging

    NASA Astrophysics Data System (ADS)

    Yoon, Seung Chul; Park, Bosoon; Lawrence, Kurt C.; Windham, William R.

    2005-09-01

    Recently, hyperspectral image analysis has proved successful for a target detection problem encountered in remote sensing as well as near sensing utilizing in situ instrumentation. The conventional global bi-level thresholding for target detection, such as the clustering-based Otsu's method, has been inadequate for the detection of biologically harmful material on foods that has a large degree of variability in size, location, color, shape, texture, and occurrence time. This paper presents multistep-like thresholding based on kernel density estimation for the real-time detection of harmful contaminants on a food product presented in multispectral images. We are particularly concerned with the detection of fecal contaminants on poultry carcasses in real-time. In the past, we identified 2 optimal wavelength bands and developed a real-time multispectral imaging system using a common aperture camera and a globally optimized thresholding method from a ratio of the optimal bands. This work extends our previous study by introducing a new decision rule to detect fecal contaminants on a single bird level. The underlying idea is to search for statistical separability along the two directions defined by the global optimal threshold vector and its orthogonal vector. Experimental results with real birds and fecal samples in different amounts are provided.

  19. Model-based recovery of histological parameters from multispectral images of the colon

    NASA Astrophysics Data System (ADS)

    Hidovic-Rowe, Dzena; Claridge, Ela

    2005-04-01

    Colon cancer alters the macroarchitecture of the colon tissue. Common changes include angiogenesis and the distortion of the tissue collagen matrix. Such changes affect the colon colouration. This paper presents the principles of a novel optical imaging method capable of extracting parameters depicting histological quantities of the colon. The method is based on a computational, physics-based model of light interaction with tissue. The colon structure is represented by three layers: mucosa, submucosa and muscle layer. Optical properties of the layers are defined by molar concentration and absorption coefficients of haemoglobins; the size and density of collagen fibres; the thickness of the layer and the refractive indexes of collagen and the medium. Using the entire histologically plausible ranges for these parameters, a cross-reference is created computationally between the histological quantities and the associated spectra. The output of the model was compared to experimental data acquired in vivo from 57 histologically confirmed normal and abnormal tissue samples and histological parameters were extracted. The model produced spectra which match well the measured data, with the corresponding spectral parameters being well within histologically plausible ranges. Parameters extracted for the abnormal spectra showed the increase in blood volume fraction and changes in collagen pattern characteristic of the colon cancer. The spectra extracted from multi-spectral images of ex-vivo colon including adenocarcinoma show the characteristic features associated with normal and abnormal colon tissue. These findings suggest that it should be possible to compute histological quantities for the colon from the multi-spectral images.

  20. A recursive spectral selection scheme for unsupervised segmentation of multispectral Pap smear image sets

    NASA Astrophysics Data System (ADS)

    Zhao, Tong; Wachman, Elliot S.; Geyer, Stanley J.; Farkas, Daniel L.

    2004-07-01

    Efficient computer-aided cervical cancer detection can improve both the accuracy and the productivity of cytotechnologists and pathologists. Nuclear segmentation is essential to automated screening, and is still a challenge. We propose and demonstrate a novel approach to improving segmentation performance by multispectral imaging followed by unsupervised nuclear segmentation relying on selecting a useful subset of spectral or derived image features. In the absence of prior knowledge, feature selection can be negatively affected by the bias, present in most unsupervised segmentation, to erroneously segment out small objects, yielding ill-balanced class samples. To address this issue, we first introduce a new measurement, Criterion Vector (CV), measuring the distances between the segmentation result and the original data. This efficiently reduces the bias generated by feature selection. Second, we apply a novel recursive feature selection scheme, to generate a new feature subset based on the corresponding CV, ensuring that the correct part of the initial segmentation results is used to obtain better feature subsets. We studied the speed and accuracy of our two-step algorithm in analyzing a number of multispectral Pap smear image sets. The results show high accuracy of segmentation, as well as great reduction of spectral redundancy. The nuclear segmentation accuracy can reach over 90%, by selecting as few as 4 distinct spectra out of 30.