Science.gov

Sample records for multivalent single-chain fv

  1. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    SciTech Connect

    Surinder Batra, Ph D

    2006-02-27

    its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  2. Design, expression and characterization of single chain Fv, Mms13 and the single chain Fv‑mms13 fusion protein.

    PubMed

    Kong, Deng; Wang, Xiaoke; Wang, Xiaohong; Wang, Xueyun; Chen, Xiaoli; Ji, Guoqiang; Fu, Xinhua; Wang, Shouxun

    2015-07-01

    Single chain Fv (scFv) antibodies are attractive as tumor-targeting vehicles due to their smaller size compared with intact antibody molecules. Mms13 is a putative membrane anchor protein of magnetosome. The present study fused the scFV gene of type Ⅳ collagenase to mms13 using the splicing by overlap extension polymerase chain reaction technique. The genes of scFv, mms13 and the scFv-mms13 fusion gene were cloned into a pET30a(+) vector to construct pET30a(+)-scFv, pET30a(+)-mms13 and pET30a(+)-scFv-mms13 expression vectors. The three protein compositions were confirmed by DNA sequencing and western blot analysis, and their cellular locations were determined using SDS-PAGE. The results of enzyme-linked immunosorbent assays and immunofluorescence demonstrated that the ScFv and ScFv-mms13 fusion proteins bound to the type Ⅳ collagenase and the antigen-associated cancer cells SMMC-7721, MCF-7 and HepG2 cells, in a dose-dependent and saturable manner. Although the immunoreactivities of ScFv-mms13 to the type Ⅳ collagenase and associated tumor cells were marginally lower than the corresponding scFv (3G11), considerable binding ability to the antigen by ScFv-mms13 remained. PMID:25824464

  3. Production and characterization of a single chain variable fragment (scFv) for the mycotoxin deoxynivalenol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deoxynivalenol (DON)is a mycotoxin produced by certain fungi that infest cereal grains worldwide. A hybridoma cell line producing a monoclonal antibody (Mab) recognizing DON was used as the starting point in the development of a recombinant single chain variable fragment (scFv) antibody. The scFv wa...

  4. Latex agglutination test based on single-chain Fv recombinant antibody fragment.

    PubMed

    Golchin, M; Khalili-Yazdi, A; Karamouzian, M; Abareghi, A

    2012-01-01

    Recombinant antibodies have been proposed as invaluable tools for various therapeutic and diagnostic purposes. Here, we describe the development of a novel latex agglutination test (LAT) using single-chain Fv recombinant antibody fragment for the detection of K99(+) enterotoxigenic Escherichia coli strains. For the production of a single-chain Fv antibody fragment (scFv) against the major colonization factor (FanC) of K99 antigen, the scFv gene was integrated into a bacterial expression vector under the control of T7 promoter. After high-level expression of soluble scFv (approximately 50 mg/l) in flask cultivation of E. coli DE3 and purification, scFv was immobilized on different latex particles, and then, these sensitized beads were used in LAT. Results obtained with our latex reagents revealed that the recombinant antibody-coated particles were able to give a good agglutination signal with purified antigen, intact cells displaying this protein and clinical specimens. The strength of agglutination of scFv-coated beads for antigen was comparable to that of polyclonal anti-K99-coated particles. However, the assay proved to be simple and rapid, similar to conventional LATs, and owing to more convenient and economical production of recombinant antibodies, they can be considered as a useful reagent for replacing monoclonal antibodies in LATs. PMID:21916915

  5. Anti-hepatoma human single-chain Fv antibody and adriamycin conjugates with potent antitumor activity.

    PubMed

    Chen, Lin; Liu, Yan-Hong; Li, Yue-Hui; Jiang, Yan; Xie, Ping-Li; Zhou, Guo-Hua; Li, Guan-Cheng

    2014-01-01

    To construct an improved biological missile, an immunoconjugate ADM-Dex-ScFv-SA3 was synthesized, which was composed of a hepatocellular carcinoma-specific, single-chain Fv antibody (ScFv-SA3) and a highly potent cytotoxic drug, adriamycin (ADM), as the warhead. Oxidized Dextran T10 (Dex-T10) was used as a linker to connect these two moieties. The 40 KD soluble anti-hepatoma human Trx-ScFv-SA3 protein was expressed in E. coli BL21 (DE3), using a prokaryotic expression vector, pET21a (+)-Trx-ScFv-SA3-His. It was purified using a His-Tag Ni-Agarose column and identified by western blot. The activity of Trx-ScFv-SA3 was verified by enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry to confirm that it specifically binds to the hepatocellular carcinoma cell line HepG2. To prepare ADM-Dex-ScFv-SA3, ADM was conjugated to the antibody at a molar ratio of 14.21:1. The antitumor effect of the conjugate was tested by MTT assay, plate colony formation assay and xenografts in a nude mice experimental model. In vitro experiments revealed that ADM-Dex-ScFv-SA3 could bind to tumor cells selectively and inhibit the proliferation and the colony formation ability of HepG2 cells. In vivo experiments showed that ADM-Dex-ScFv-SA3 suppressed the tumor growth and prolonged the median survival time in tumor-bearing mice. Tumor histology slides indicated a significantly slower tumor tissue proliferation in the ADM-Dex-ScFv-SA3 group. These data indicate that the targeted drug, ADM-Dex-ScFv-SA3, may be a highly potent and selective therapy for the treatment of hepatoma. PMID:24239629

  6. Engineering tandem single-chain Fv as cell surface reporters with enhanced properties of fluorescence detection.

    PubMed

    Gallo, Eugenio; Snyder, Avin C; Jarvik, Jonathan W

    2015-10-01

    A recently described fluorescence biosensor platform utilizes single-chain Fv (scFvs) that selectively bind and activate fluorogen molecules. In this report we investigated the display of tandem scFv biosensors at the surface of mammalian cells with the aim of advancing current fluorescence detection strategies. We initially screened different peptide linkers to separate each scFv unit, and discovered that tandem proteins joined by either flexible or α-helical linkers properly fold and display at the surface of mammalian cells. Accordingly, we performed a combinatorial scFv-dimer study and identified that fluorescence activation correlated with the cellular location (membrane distal versus proximal) and selections of the different scFvs. Furthermore, in vitro measurements showed that the stability of each scFv monomer unit influenced the folding and cell surface activities of tandem scFvs. Additionally, we investigated the absence or poor signals from some scFv-dimer combinations and discovered that intramolecular and intermolecular scFv chain mispairings led to protein misfolding and/or secretory-pathway-mediated degradation. Furthermore, when tandem scFvs were utilized as fluorescence reporter tags with surface receptors, the biosensor unit and target protein showed independent activities. Thus, the live cell application of tandem scFvs permitted advanced detection of target proteins via fluorescence signal amplification, Förster resonance energy transfer resulting in the increase of Stokes shift and multi-color vesicular traffic of surface receptors. PMID:25843939

  7. Baculovirus display of single chain antibody (scFv) using a novel signal peptide

    PubMed Central

    2010-01-01

    Background Cells permissive to virus can become refractory to viral replication upon intracellular expression of single chain fragment variable (scFv) antibodies directed towards viral structural or regulatory proteins, or virus-coded enzymes. For example, an intrabody derived from MH-SVM33, a monoclonal antibody against a conserved C-terminal epitope of the HIV-1 matrix protein (MAp17), was found to exert an inhibitory effect on HIV-1 replication. Results Two versions of MH-SVM33-derived scFv were constructed in recombinant baculoviruses (BVs) and expressed in BV-infected Sf9 cells, N-myristoylation-competent scFvG2/p17 and N-myristoylation-incompetent scFvE2/p17 protein, both carrying a C-terminal HA tag. ScFvG2/p17 expression resulted in an insoluble, membrane-associated protein, whereas scFvE2/p17 was recovered in both soluble and membrane-incorporated forms. When coexpressed with the HIV-1 Pr55Gag precursor, scFvG2/p17 and scFvE2/p17 did not show any detectable negative effect on virus-like particle (VLP) assembly and egress, and both failed to be encapsidated in VLP. However, soluble scFvE2/p17 isolated from Sf9 cell lysates was capable of binding to its specific antigen, in the form of a synthetic p17 peptide or as Gag polyprotein-embedded epitope. Significant amounts of scFvE2/p17 were released in the extracellular medium of BV-infected cells in high-molecular weight, pelletable form. This particulate form corresponded to BV particles displaying scFvE2/p17 molecules, inserted into the BV envelope via the scFv N-terminal region. The BV-displayed scFvE2/p17 molecules were found to be immunologically functional, as they reacted with the C-terminal epitope of MAp17. Fusion of the N-terminal 18 amino acid residues from the scFvE2/p17 sequence (N18E2) to another scFv recognizing CD147 (scFv-M6-1B9) conferred the property of BV-display to the resulting chimeric scFv-N18E2/M6. Conclusion Expression of scFvE2/p17 in insect cells using a BV vector resulted in

  8. Structural dynamics of a single-chain Fv antibody against (4-hydroxy-3-nitrophenyl)acetyl.

    PubMed

    Sato, Yusui; Tanaka, Yusuke; Inaba, Satomi; Sekiguchi, Hiroshi; Maruno, Takahiro; Sasaki, Yuji C; Fukada, Harumi; Kobayashi, Yuji; Azuma, Takachika; Oda, Masayuki

    2016-10-01

    Protein structure dynamics are critical for understanding structure-function relationships. An antibody can recognize its antigen, and can evolve toward the immunogen to increase binding strength, in a process referred to as affinity maturation. In this study, a single-chain Fv (scFv) antibody against (4-hydroxy-3-nitrophenyl)acetyl, derived from affinity matured type, C6, was designed to comprise the variable regions of light and heavy chains connected by a (GGGGS)3 linker peptide. This scFv was expressed in Escherichia coli in the insoluble fraction, solubilized in the presence of urea, and refolded by stepwise dialysis. The correctly refolded scFv was purified, and its structural, physical, and functional properties were analyzed using analytical ultracentrifugation, circular dichroism spectrometry, differential scanning calorimetry, and surface plasmon resonance biosensor. Thermal stability of C6 scFv increased greatly upon antigen binding, due to favorable enthalpic contributions. Antigen binding kinetics were comparable to those of the intact C6 antibody. Structural dynamics were analyzed using the diffracted X-ray tracking method, showing that fluctuations were suppressed upon antigen binding. The antigen binding energy determined from the angular diffusion coefficients was in good agreement with that calculated from the kinetics analysis, indicating that the fluctuations detected at single-molecule level are well reflected by antigen binding events. PMID:27222286

  9. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. PMID:26452845

  10. Linker peptide and affinity tag for detection and purification of single-chain Fv fragments.

    PubMed

    Küttner, Gabriele; Giessmann, Elke; Wessner, Helga; Scholz, Christa; Reinhardt, Dina; Winkler, Karsten; Marx, Uwe; Höhne, Wolfgang

    2004-05-01

    The peptide tag GATPQDLNTML, corresponding to amino acids 46-56 of the human immunodeficiency virus type 1 (HIV-1) capsid protein p24, is the linear epitope of the murine monoclonal antibody CB4-1. This antibody shows high affinity (KD = 1.8 x 10(-8) M) to the free epitope peptide in solution. The original p24 peptide tag and mutant derivatives were fused to the C terminus of a single-chain antibody (scFv) and characterized with respect to sensitivity in Western blot analyses and behavior in purification procedures using affinity chromatography. The p24 tag also proved to be a suitable alternative to the (Gly4Ser)3 linker commonly used to connect single-chain antibody variable regions derived from a heavy (VH) and light chain (VL). Binding of CB4-1 antibody to the p24 tag was not hampered when the tag was located internally in the protein sequence, and the specific antigen affinity of the scFv was only slightly reduced. All scFv variants were solubly expressed in Escherichia coli and could be purified from the periplasm. Our results highlight the p24 tag as a useful tool for purifying and detecting recombinantly expressed scFvs. PMID:15152607

  11. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To improve expression efficiency of the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse in the methylotrophic yeast Pichia pastoris (P. pastoris) GS115, the DNA sequence encoding for CBL-scFv was designed and synthesized based on the codon bias of P. p...

  12. A single-chain bispecific Fv2 molecule produced in mammalian cells redirects lysis by activated CTL.

    PubMed

    Jost, C R; Titus, J A; Kurucz, I; Segal, D M

    1996-02-01

    Single-chain Fv (sFv) molecules consist of the two variable domains of an antibody (Ab) connected by a polypeptide spacer and contain the binding activities of their parental antibodies (Abs). In this paper we have attached the C-terminus of 2C11-sFv (anti-mouse CD3 epsilon-chain) to the N-terminus of OKT9-sFv (anti-human transferrin receptor [TfR]) through a 23 amino acid inter-sFv linker consisting primarily of CH1 region residues from 2C11, to form a single-chain bispecific Fv2 [bs(sFv)2] molecule. The bs(sFv)2 was expressed in COS-7 cells, and was secreted at the same rate as the two parental sFvs. The secreted protein had both anti-CD3 and anti-TfR binding activities. Essentially all of the secreted bs(sFv)2 molecules bound TfR and the binding affinity of the bs(sFv)2 was comparable to that of OKT9 sFv and Fab. Thus, the attachment of the inter-sFv linker to the N-terminus of OKT9-sFv did not impair its binding function. The bs(sFv)2 retained both binding specificities after long-term storage at 4 degrees C or overnight incubation at 37 degrees C. It redirected activated mouse CTL to specifically lyse human TfR+ target cells at low (ng/ml) concentrations and was much more active than a chemically cross-linked heteroconjugate prepared from the same parental mAbs. Because bs(sFv)2 molecules secreted by mammalian cells are homogeneous proteins containing two binding sites in a single polypeptide chain, they hold great promise as an easily obtainable, economic source of a bispecific molecule suitable for in vivo use. PMID:8649442

  13. Development of Phage-Based Single Chain Fv Antibody Reagents for Detection of Yersinia pestis

    PubMed Central

    Shou, Yulin; Graves, Steven W.; Bradbury, Andrew R. M.

    2011-01-01

    Background Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1). F1 is encoded by the caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we screened a large single chain Fv antibody fragment (scFv) phage display library using purified F1 antigen as a selection target. Different forms of the selected antibodies were used to establish assays for recombinant F1 antigen and Y. pestis detection. Methods Phage antibody panning was performed against F1 in an automated fashion using the Kingfisher magnetic bead system. Selected scFvs were screened for F1-binding specificity by one-step alkaline phosphatase enzyme linked immunosorbant assay (ELISA), and assayed for binding to recombinant antigen and/or Y. pestis by flow cytometry and whole-cell ELISA. Results Seven of the eight selected scFvs were shown to specifically bind both recombinant F1 and a panel of F1-positive Yersinia cells. The majority of the soluble scFvs were found to be difficult to purify, unstable and prone to cross-reactivity with F1-negative Yersinia strains, whereas phage displayed scFvs were found to be easy to purify/label and remarkably stable. Furthermore direct fluorescent labeling of phage displaying scFv allowed for an easy one-step flow cytometry assay. Slight cross-reactivity was observed when fixed cells were used in ELISA. Conclusions Our high throughput methods of selection and screening allowed for time and cost effective discovery of seven scFvs specifically binding Y. pestis F1 antigen. We describe implementation of different methods for phage-based immunoassay. Based on the success of these methods and the proven stability of phage, we indicate that the use of phage-displayed, rather than phage-free proteins, might generally overcome the shortcomings of scFv

  14. Expression of functional single-chain variable domain fragment antibody (scFv) against mycotoxin zearalenone in Pichia pastoris.

    PubMed

    Chang, Hyun-Joo; Choi, Sung-Wook; Chun, Hyang Sook

    2008-10-01

    A synthetic gene coding for single-chain variable domain fragment antibody against mycotoxin zearalenone (scFv-ZEN) has been designed, constructed and expressed in Pichia pastoris. The native scFv-ZEN sequence was optimized to Pichia preference codon usage. The expression level of codon-optimized scFv-ZEN was slightly higher than that of native scFv-ZEN, and its maximum yield reached 328 mg total protein/l in flask culture. The binding activities of two selected clones to ZEN using surface plasmon resonance analysis were comparable or better than that of monoclonal antibody. Our results demonstrate the potential of soluble scFv-ZEN for developing a rapid and affordable immunoassay for detection of ZEN in food and feedstuff. PMID:18575809

  15. Development of single chain variable fragment (scFv) antibodies against surface proteins of ‘Ca. Liberibacter asiaticus’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ca. Liberibacter asiaticus’ is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vec...

  16. Development of single-chain Fv against the nucleoprotein of type A influenza virus and its use in ELISA.

    PubMed

    Sengupta, Devyani; Shaikh, Asma; Bhatia, S; Pateriya, A K; Khandia, R; Sood, R; Prakash, A; Pattnaik, B; Pradhan, H K

    2014-11-01

    Single chain fragment variable (ScFv) antibodies specific to the nucleoprotein (NP) of avian influenza virus (AIV) were developed using a phage display system. The variable heavy (VH) and the variable light (VL) chain gene fragments were derived from spleen cells of Balb/c mouse immunized with a recombinant NP (rNP) antigen (∼63 kDa) of H5N1 influenza virus. The VH and the VL DNA fragments were assembled through a flexible linker DNA to generate ScFv DNA that was cloned subsequently in a phagemid to express ScFv protein in Escherichia coli cells. The specific reactivity of the ScFv with the rNP antigen and viral antigen (H5N1) was confirmed by Western blot and ELISA. A competitive inhibition ELISA (CI-ELISA) was developed using the rNP and the anti-NP ScFv for detection of type-specific antibodies to AIV in chicken sera. The ScFv based CI-ELISA was compared with hemagglutination inhibition (HI) test and agar gel immunodiffusion (AGID) test over 850 sera. Sensitivity of the CI-ELISA was 100% with HI and AGID and specificity was 98.7% with HI and 100% with AGID. PMID:25152529

  17. Design and Generation of Humanized Single-chain Fv Derived from Mouse Hybridoma for Potential Targeting Application.

    PubMed

    Khantasup, Kannika; Chantima, Warangkana; Sangma, Chak; Poomputsa, Kanokwan; Dharakul, Tararaj

    2015-12-01

    Single-chain variable antibody fragments (scFvs) are attractive candidates for targeted immunotherapy in several human diseases. In this study, a concise humanization strategy combined with an optimized production method for humanizing scFvs was successfully employed. Two antibody clones, one directed against the hemagglutinin of H5N1 influenza virus, the other against EpCAM, a cancer biomarker, were used to demonstrate the validity of the method. Heavy chain (VH) and light chain (VL) variable regions of immunoglobulin genes from mouse hybridoma cells were sequenced and subjected to the construction of mouse scFv 3-D structure. Based on in silico modeling, the humanized version of the scFv was designed via complementarity-determining region (CDR) grafting with the retention of mouse framework region (FR) residues identified by primary sequence analysis. Root-mean-square deviation (RMSD) value between mouse and humanized scFv structures was calculated to evaluate the preservation of CDR conformation. Mouse and humanized scFv genes were then constructed and expressed in Escherichia coli. Using this method, we successfully generated humanized scFvs that retained the targeting activity of their respective mouse scFv counterparts. In addition, the humanized scFvs were engineered with a C-terminal cysteine residue (hscFv-C) for site-directed conjugation for use in future targeting applications. The hscFv-C expression was extensively optimized to improve protein production yield. The protocol yielded a 20-fold increase in production of hscFv-Cs in E. coli periplasm. The strategy described in this study may be applicable in the humanization of other antibodies derived from mouse hybridoma. PMID:26683180

  18. Construction and structural modeling of a single-chain Fv-asparaginase fusion protein resistant to proteolysis.

    PubMed

    Guo, L; Wang, J; Qian, S; Yan, X; Chen, R; Meng, G

    2000-11-20

    In this study, we construct a fusion protein composed of L-asparaginase (ASNase; from Escherichia coli AS 1.357) and a protective single-chain Fv (scFv), which was selected from a phage-display scFv library from our previous studies. The antibody moiety of the fusion protein was fused to the N-terminus of the enzyme moiety via a linker peptide, (Gly(4)Ser)(6). Recombinant plasmid pET-SLA was constructed to express scFv-ASNase fusion to high levels in E. coli and the expressed product was found to form inclusion bodies. We obtained a soluble fusion protein by refolding and purification. The soluble fusion protein exhibited about 82% of the enzymatic activity of the native ASNase at the same molar concentration, and had a K(m) value similar to that of the native enzyme for the substrate L-asparagine. Importantly, the fusion protein was more stable than native ASNase. In addition: (1) following treatment with trypsin, alpha-chymotrypsin, and rennet, at 37 degrees C for 30 min, scFv-ASNase fusion retained 94.0%, 88.8%, and 84.5% of its original activity, respectively, whereas native ASNase became inactive; and (2) ScFv-ASNase fusion had a much longer in vitro half-life (9 h) in serum than the native enzyme (2 h). The three-dimensional structure of the fusion protein was obtained by modeling with the Homology and Discover modules of the INSIGHT II software package. On the basis of the structural evidence and biochemical properties, we propose that the scFv moiety of the fusion protein may confer ASNase moiety resistance to proteolysis as a result of both steric hindrance and a change in the electrostatic surface of the enzyme. PMID:11005928

  19. Toward in vivo imaging of heart disease using a radiolabeled single-chain Fv fragment targeting tenascin-C.

    PubMed

    Kobayashi, Norihiro; Odaka, Kenichi; Uehara, Tomoya; Imanaka-Yoshida, Kyoko; Kato, Yoshinori; Oyama, Hiroyuki; Tadokoro, Hiroyuki; Akizawa, Hiromichi; Tanada, Shuji; Hiroe, Michiaki; Fukumura, Toshimitsu; Komuro, Issei; Arano, Yasushi; Yoshida, Toshimichi; Irie, Toshiaki

    2011-12-01

    Antibodies specific to a particular target molecule can be used as analytical reagents, not only for in vitro immunoassays but also for noninvasive in vivo imaging, e.g., immunoscintigraphies. In the latter case, it is important to reduce the size of antibody molecules in order to achieve suitable in vivo "diagnostic kinetics" and generate higher-resolution images. For these purposes, single-chain Fv fragments (scFvs; M(r) < 30 kDa) have greater potential than intact immunoglobulins (~150 kDa) or Fab (or Fab') fragments (~50 kDa). Our recent observation of enhanced tenascin-C (Tnc) expression at sites of cardiac repair after myocardial infarction prompted us to develop a radiolabeled scFv against Tnc for in vivo imaging of heart disease. We cloned the genes encoding the heavy and light chain variable domains of the mouse anti-Tnc monoclonal antibody 4F10, and combined them to create a single gene. The resulting scFv-4F10 gene was expressed in E. coli cells to produce soluble scFv proteins. scFv-4F10 has an affinity for Tnc (K(a) = 3.5 × 10(7) M(-1)), similar to the Fab fragment of antibody 4F10 (K(a) = 1.3 × 10(7) M(-1)) and high enough to be of practical use. A cysteine residue was then added to the C-terminus to achieve site-specific (111)In labeling via a chelating group. The resulting (111)In-labeled scFv was administered to a rat model of acute myocardial infarction. Biodistribution and quantitative autoradiographic studies indicated higher uptake of the radioactivity at the infarcted myocardium than the noninfarcted one. Single photon emission computed tomography (SPECT) provided in vivo cardiac images that coincided with the ex vivo observations. Our results will promote advances in diagnostic strategies for heart disease. PMID:22074352

  20. Development of high-affinity single chain Fv against foot-and-mouth disease virus.

    PubMed

    Jung, Joon-Goo; Jeong, Gu Min; Yim, Sung Sun; Jeong, Ki Jun

    2016-03-01

    Foot-and-mouth disease (FMD) is caused by the FMD virus (FMDV) and results in severe economic losses in livestock farming. For rapid FMD diagnostic and therapeutic purposes, an effective antibody against FMDV is needed. Here, we developed a high-affinity antibody against FMDV by FACS-based high throughput screening of a random library. With the FITC-conjugated VP1 epitope of FMDV and high-speed FACS sorting, we screened the synthetic antibody (scFv) library in which antibody variants are displayed in the periplasm of Escherichia coli. After three rounds of sorting, we isolated one antibody fragment (#138-scFv) against the VP1 epitope of FMDV. Next, to improve its affinity, a mutation library of #138-scFV was constructed by error-prone PCR and screened by FACS. After three rounds of sorting, we isolated one antibody (AM-32 scFv), which has a higher binding affinity (KD=42.7nM) than that of the original #138-scFv. We also confirmed that it specifically binds to whole inactivated FMDV. PMID:26827774

  1. Effects of cytoplasmic and periplasmic chaperones on secretory production of single-chain Fv antibody in Escherichia coli.

    PubMed

    Sonoda, Hiroyuki; Kumada, Yoichi; Katsuda, Tomohisa; Yamaji, Hideki

    2011-04-01

    The effects of cytoplasmic and periplasmic chaperones on the secretory production of an anti-bovine ribonuclease A single-chain variable fragment (scFv) 3A21 in Escherichia coli were investigated. Co-expression of a cytoplasmic chaperone, GroEL/ES, DnaK/DnaJ/GrpE, trigger factor, or SecB with 3A21 scFv affected the proportions of antigen-binding activity in the cytoplasmic soluble fraction, the periplasmic fraction, and the extracellular medium, but there was no significant difference in the total activity compared to the control without chaperone co-expression. On the other hand, co-expression of a periplasmic chaperone, Skp or FkpA, with the exception of DsbC, greatly increased the binding activity in all the soluble fractions. Co-expression of both Skp and FkpA had no synergistic effect. Combinations of cytoplasmic and periplasmic chaperones decreased the productivity. In shake-flask cultures of cells co-expressing Skp or FkpA, considerable amounts of 3A21 scFv were detected in the extracellular medium by enzyme-linked immunosorbent assay (ELISA) and Western blot, and the extracellular production level of 3A21 scFv was calculated to be around 40mg/l. The binding activity of 3A21 scFv co-expressed with Skp was slightly higher than that with FkpA. These results indicate that the co-expression of periplasmic chaperones Skp and FkpA is extremely useful for the secretory production of scFvs in a culture medium using E. coli, but cytoplasmic chaperones and multiple-chaperone combinations may not be effective. PMID:21324738

  2. Construction of Recombinant Single Chain Variable Fragment (ScFv) Antibody Against Superantigen for Immunodetection Using Antibody Phage Display Technology.

    PubMed

    Singh, Pawan Kumar; Agrawal, Ranu; Kamboj, D V; Singh, Lokendra

    2016-01-01

    Superantigens are a class of antigens that bind to the major histocompatibility complex class (MHC) II and T-cell receptor (TCR) and cause the nonspecific activation of T cells, resulting in a massive release of pro-inflammatory mediators. They are produced by the gram-positive organisms Staphylococcus aureus and Streptococcus pyogenes, and by a variety of other microbes such as viruses and mycoplasma, and cause toxic shock syndrome (TSS) and even death in some cases. The immunodetection of superantigens is difficult due to the polyclonal activation of T-cells leading to nonspecific antibody production. The production of recombinant monoclonal antibodies against superantigens can solve this problem and are far better than polyclonal antibodies in terms of detection. Here, we describe the construction of recombinant single chain variable fragments (ScFv) antibodies against superantigens with specific reference to SEB (staphylococcal enterotoxin B) using antibody phage display technology. PMID:26676049

  3. Expression and characterization of a functional single-chain variable fragment (scFv) protein recognizing MCF7 breast cancer cells in E. coli cytoplasm.

    PubMed

    Mahgoub, Ilham Omer

    2012-08-01

    Single-chain variable fragment (scFv) is one of the most common antibody forms. This report describes the expression of the scFv gene as a soluble protein in Origami DE3 cytoplasm. The purified scFv recognized the epidermal growth factor receptor (EGFRvIII) on the surface of MCF-7 cells. The scFv protein was purified in soluble form at a concentration of 10 mg/l, and the scFv protein activity and specificity were characterized using several immunological assays. The purified scFv protein showed specific binding to MCF-7 cells, evidenced by a band of 68 kDa in Western blot analysis, and immunofluorescence clearly proved that the scFv antibody recognized the EGFRvIII antigen epitopes. Furthermore, 53 % of the MCF-7 cells were bound to scFv protein, as measured by flow cytometry analysis. This study demonstrated that the Origami DE3 expression system can produce single-chain antibodies in active form for later use in gene therapy and vaccine production. PMID:22552770

  4. Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells.

    PubMed

    Toleikis, Lars; Frenzel, André

    2012-01-01

    Despite the rising impact of the generation of antibodies by phage display and other technologies, hybridoma technology still provides a valuable tool for the generation of high-affinity binders against different targets. But there exist several limitations of using hybridoma-derived antibodies. The source of the hybridoma clones are mostly rat or mouse B-lymphocytes. Therefore a human-anti-mouse or human-anti-rat antibody response may result in immunogenicity of these antibodies. This leads to the necessity of humanization of these antibodies where the knowledge of the amino acid sequence of the proteins is inalienable. Furthermore, additional in vitro modifications, e.g., affinity maturation or fusion to other proteins, are dependent on cloning of the antigen-binding domains.Here we describe the isolation of RNA from hybridoma cells and the primers that can be used for the amplification of VL and VH as well as the cloning of the antibody in scFv format and its expression in Escherichia coli. PMID:22907345

  5. Negative effects of a disulfide bond mismatch in anti-rabies G protein single-chain antibody variable fragment FV57.

    PubMed

    Duan, Ye; Gu, Tiejun; Zhang, Xizhen; Jiang, Chunlai; Yuan, Ruosen; Li, Zhuang; Wang, Dandan; Chen, Xiaoxu; Wu, Chunlai; Chen, Yan; Wu, Yongge; Kong, Wei

    2014-06-01

    Rabies virus (RV) causes a fatal infectious disease requiring efficient post-exposure prophylaxis (PEP), which includes a rabies vaccine and rabies immunoglobulin (RIG). The single-chain antibody variable fragment (scFv), a small engineered antibody fragment derived from an antibody variable heavy chain and light chain, has the potential to replace the current application of RIG. In previous studies, we constructed and evaluated an anti-rabies virus G protein scFv (FV57) based on the monoclonal antibody CR57. Of the five cysteines in FV57, four are linked in intra-chain disulfide bonds (Cys-VH28/Cys-VH98 and Cys-VL16/Cys-VL84), and one is free (Cys-VL85). However, the thiol in Cys-VL85 neighboring Cys-VL84 in the CDR3 of the light chain is likely to mismatch with the thiol in Cys-VL16 during the renaturing process. In order to study effects of the mismatched disulfide bond, Cys-VL85 and Cys-VL84 of FV57 were mutated to serine to construct mutants FV57(VL85S) and FV57(VL84S). Furthermore, the disulfide bonds in the light chain of FV57, FV57(VL85S) and FV57(VL84S) were deleted by mutating Cys-VL16 to serine. All mutants were prepared and evaluated along with the original FV57. The results indicated that the mismatched disulfide bond of FV57 linking the light chain FR1 and CDR3 would confer deleterious negative effects on its activity against RV, likely due to spatial hindrance in the light chain CDR3. Moreover, avoidance of the disulfide bond mismatch provided an additional 30% protective efficacy against RV infection in the mouse RV challenge model. Thus, modifications of FV57 to eliminate the disulfide bond mismatch may provide a candidate therapeutic agent for effective PEP against rabies. PMID:24598312

  6. Peptide docking of HIV-1 p24 with single chain fragment variable (scFv) by CDOCKER algorithm

    NASA Astrophysics Data System (ADS)

    Karim, Hana Atiqah Abdul; Tayapiwatana, Chatchai; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abdul; Lee, Vannajan Sanghiran

    2014-10-01

    In search for the important residues that might have involve in the binding interaction between the p24 caspid protein of HIV-1 fragment (MET68 - PRO90) with the single chain fragment variable (scFv) of FAB23.5, modern computational chemistry approach has been conducted and applied. The p24 fragment was initially taken out from the 1AFV protein molecule consisting of both light (VL) and heavy (VH) chains of FAB23.5 as well as the HIV-1 caspid protein. From there, the p24 (antigen) fragment was made to dock back into the protein pocket receptor (antibody) by using the CDOCKER algorithm to conduct the molecular docking process. The score calculated from the CDOCKER gave 15 possible docked poses with various docked ligand's positions, the interaction energy as well as the binding energy. The best docked pose that imitates the original antigen's position was determined and further processed to the In Situ minimization to obtain the residues interaction energy as well as to observe the hydrogen bonds interaction in the protein-peptide complex. Based on the results demonstrated, the specific residues in the complex that have shown immense lower interaction energies in the 5Å vicinity region from the peptide are from the heavy chain (VH:TYR105) and light chain (VL: ASN31, TYR32, and GLU97). Those residues play vital roles in the binding mechanism of Antibody-Antigen (Ab-Ag) complex of p24 with FAB23.5.

  7. Development of single chain variable fragment (scFv) antibodies against surface proteins of 'Ca. Liberibacter asiaticus'.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Minenkova, Olga; Hartung, John

    2016-03-01

    'Candidatus Liberibacter asiaticus' is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vector, pKM19. The antibody population is enriched for antibodies that bind antigens of 'Ca. Liberibacter asiaticus'. The primary library has more than 10(7) unique antibodies and the genes that encode them. We have screened this library for antibodies that bind to specifically-chosen proteins that are present on the surface of 'Ca. Liberibacter asiaticus'. These proteins were used as targets for affinity-based selection of scFvs that bind to the major outer membrane protein, OmpA; the polysaccharide capsule protein KpsF; a protein component of the type IV pilus (CapF); and, two flagellar proteins FlhA and FlgI. These scFvs have been used in ELISA and dot blot assays against purified protein antigens and 'Ca. Liberibacter asiaticus' infected plant extracts. We have also recloned many of these scFvs into a plasmid expression vector designed for the production of scFvs. Screening of these scFvs was more efficient when phage-bound, rather than soluble scFvs, were used. We have demonstrated a technology to produce antibodies at will and against any protein target encoded by 'Ca. Liberibacter asiaticus'. Applications could include advanced diagnostic methods for huanglongbing and the development of immune labeling reagents for in planta applications. PMID:26744234

  8. Successful engineering of a highly potent single-chain variable-fragment (scFv) bispecific antibody to target disialoganglioside (GD2) positive tumors

    PubMed Central

    Cheng, Ming; Santich, Brian H.; Xu, Hong; Ahmed, Mahiuddin; Huse, Morgan; Cheung, Nai-Kong V.

    2016-01-01

    ABSTRACT Engineering potent bispecific antibodies from single-chain variable fragments (scFv) remains difficult due to the inherent instability and insufficient binding of scFv's compared to their parental immunoglobulin format. Previously, we described a scFv-based bispecific antibody (scBA) against disialoganglioside (GD2) based on the anti-GD2 murine 5F11-scFv and the anti-CD3 huOKT3-scFv (5F11-scBA). In this study, we substituted the 5F11-scFv with the higher affinity (13-fold) hu3F8-scFv to form hu3F8-scBA. With this modification, hu3F8-scBA redirected T cells to kill GD2(+) cancer cell lines with up to 5,000-fold higher potency (femtomolar EC50) compared with 5F11-scBA (picomolar EC50) in cytotoxicity assays, even against target cells with low GD2 densities. Furthermore, hu3F8-scBA induced stronger T-cell activation than 5F11-scBA, as measured by Ca2+ flux and cytokine release. Additionally, in vivo, hu3F8-scBA suppressed tumor growth and prolonged mice survival much more effectively than 5F11-scBA, in both neuroblastoma and melanoma xenograft models. We conclude that the functional properties of scBA's can be increased substantially by relatively modest increases in antigen affinity. PMID:27471647

  9. High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris.

    PubMed

    Zarei, Najmeh; Vaziri, Behrouz; Shokrgozar, Mohammad Ali; Mahdian, Reza; Fazel, Ramin; Khalaj, Vahid

    2014-12-01

    Single-chain variable fragments (scFvs) have recently emerged as attractive candidates in targeted immunotherapy of various malignancies. The anti-CD22 scFv is able to target CD22, on B cell surface and is being considered as a promising molecule in targeted immunotherapy of B cell malignancies. The recombinant anti-CD22 scFv has been successfully expressed in Escherichia coli; however, the insufficient production yield has been a major bottleneck for its therapeutic application. The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the production of a wide variety of recombinant proteins such as antibody fragments. In this study, we used the Pichia expression system to express a humanized scFv antibody against CD22. The full-length humanized scFv gene was codon optimized, cloned into the pPICZαA and expressed in GS115 strain. The maximum production level of the scFv (25 mg/L) were achieved at methanol concentration, 1 %; pH 6.0; inoculum density, OD600 = 3 and the induction time of 72 h. The correlation between scFv gene dosage and expression level was also investigated by real-time PCR, and the results confirmed the presence of such correlation up to five gene copies. Immunofluorescence and flow cytometry studies and Biacore analysis demonstrated binding to CD22 on the surface of human lymphoid cell line Raji and recombinant soluble CD22, respectively. Taken together, the presented data suggest that the Pichia pastoris can be considered as an efficient host for the large-scale production of anti-CD22 scFv as a promising carrier for targeted drug delivery in treatment of CD22(+) B cell malignancies. PMID:25239038

  10. Structure of a Single-Chain Fv Bound to the 17 N-Terminal Residues of Huntingtin Provides Insights into Pathogenic Amyloid Formation and Suppression

    PubMed Central

    De Genst, Erwin; Chirgadze, Dimitri Y.; Klein, Fabrice A.C.; Butler, David C.; Matak-Vinković, Dijana; Trottier, Yvon; Huston, James S.; Messer, Anne; Dobson, Christopher M.

    2015-01-01

    Huntington's disease is triggered by misfolding of fragments of mutant forms of the huntingtin protein (mHTT) with aberrant polyglutamine expansions. The C4 single-chain Fv antibody (scFv) binds to the first 17 residues of huntingtin [HTT(1-17)] and generates substantial protection against multiple phenotypic pathologies in situ and in vivo. We show in this paper that C4 scFv inhibits amyloid formation by exon1 fragments of huntingtin in vitro and elucidate the structural basis for this inhibition and protection by determining the crystal structure of the complex of C4 scFv and HTT(1-17). The peptide binds with residues 3–11 forming an amphipathic helix that makes contact with the antibody fragment in such a way that the hydrophobic face of this helix is shielded from the solvent. Residues 12–17 of the peptide are in an extended conformation and interact with the same region of another C4 scFv:HTT(1-17) complex in the asymmetric unit, resulting in a β-sheet interface within a dimeric C4 scFv:HTT(1-17) complex. The nature of this scFv–peptide complex was further explored in solution by high-resolution NMR and physicochemical analysis of species in solution. The results provide insights into the manner in which C4 scFv inhibits the aggregation of HTT, and hence into its therapeutic potential, and suggests a structural basis for the initial interactions that underlie the formation of disease-associated amyloid fibrils by HTT. PMID:25861763

  11. A neutralizing recombinant single chain antibody, scFv, against BaP1, A P-I hemorrhagic metalloproteinase from Bothrops asper snake venom.

    PubMed

    Castro, J M A; Oliveira, T S; Silveira, C R F; Caporrino, M C; Rodriguez, D; Moura-da-Silva, A M; Ramos, O H P; Rucavado, A; Gutiérrez, J M; Magalhães, G S; Faquim-Mauro, E L; Fernandes, I

    2014-09-01

    BaP1 is a P-I class snake venom metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomings by Bothrops asper, a medically important snake species in Central America and parts of South and North America. The main treatment for these accidents is the passive immunotherapy using antibodies raised in horses. In order to obtain more specific and batch-to-batch consistent antivenons, recombinant antibodies are considered a good option compared to animal immunization. We constructed a recombinant single chain variable fragment (scFv) from a monoclonal antibody against BaP1 (MABaP1) formerly secreted by a hybridoma clone. This recombinant antibody was cloned into pMST3 vector in fusion with SUMO protein and contains VH and VL domains linked by a flexible (G4S)3 polypeptide (scFvBaP1). The aim of this work was to produce scFvBaP1 and to evaluate its potential concerning the neutralization of biologically important activities of BaP1. The cytoplasmic expression of this construct was successfully achieved in C43 (DE3) bacteria. Our results showed that scFvBaP1-SUMO fusion protein presented an electrophoretic band of around 43 kDa from which SUMO alone corresponded to 13.6 kDa, and only the scFv was able to recognize BaP1 as well as the whole venom by ELISA. In contrast, neither an irrelevant scFv anti-LDL nor its MoAb partner recognized it. BaP1-induced fibrinolysis was significantly neutralized by scFvBaP1, but not by SUMO, in a concentration-dependent manner. In addition, scFvBaP1, as well as MaBaP1, completely neutralized in vivo hemorrhage, muscle necrosis, and inflammation induced by the toxin. Docking analyses revealed possible modes of interaction of the recombinant antibody with BaP1. Our data showed that scFv recognized BaP1 and whole B. asper venom, and neutralized biological effects of this SVMP. This scFv antibody can be used for understanding the molecular mechanisms of neutralization of SVMPs, and for exploring the potential of

  12. Sustained in vivo inhibition of protein domains using single-chain Fv recombinant antibodies and its application to dissect RGMa activity on axonal outgrowth.

    PubMed

    Tassew, Nardos G; Charish, Jason; Chestopalova, Larisa; Monnier, Philippe P

    2009-01-28

    Antibodies are powerful tools for delineating the specific function of protein domains, yet several limitations restrict their in vivo applicability. Here we present a new method to obtain sustained in vivo inhibition of specific protein domains using recombinant antibodies. We show that long term in vivo expression of single-chain Fv (scFv) fragments in the developing CNS can be achieved through retroviral transduction. Moreover, specific scFvs generated against the N- and C-terminal domains of the repulsive guidance molecule, RGMa, prevent proper axon targeting in the visual system. This work reveals a previously unappreciated role for the RGMa N-terminal domain in axon guidance, and provides a novel, broadly applicable and rapid procedure to functionally antagonize any protein domain in vivo. PMID:19176821

  13. Efficient refolding and immobilization of PMMA-tag-fused single-chain Fv antibodies for sensitive immunological detection on a PMMA plate.

    PubMed

    Kumada, Yoichi; Ishikawa, Yasuyuki; Fujiwara, Yusuke; Takeda, Rui; Miyamoto, Ryosuke; Niwa, Daisuke; Momose, Shun; Kang, Bongmun; Kishimoto, Michimasa

    2014-09-01

    In this study, we investigated the efficient refolding and site-specific immobilization of single-chain variable fragments (scFvs) genetically fused with a poly(methylmethacrylate)-binding peptide (PMMA-tag). According to the results of an aggregation test of a scFv-PM in the presence of 0.5 M urea, aggregation was hardly detectable at a weak-alkaline pH (8.5) with lower concentrations of NaCl. Consequently, more than 93% recovery of the anti-RNase scFv-PM model was attained, when it was refolded by dialysis against 50 mM TAPS (pH8.5). These results suggested that the apparent isoelectric point (pI) of a target scFv was decreased to a great extent by the genetic fusion of a PMMA-tag containing 5 acidic amino acids, and, thus, the solubility of the scFv-PM in its semi-denatured form was considerably improved. We also designed alternative peptide-tags composed of plural aspartic acid residues (D5, D10 and D15-tags) to decrease the apparent pI value of the fusion protein. As a consequence, scFv-D5, scFv-D10 and scFv-D15 were also efficiently refolded with yields of more than 95%. It is noteworthy that even scFv-PS-D15, which had both a positively charged polystyrene-binding peptide (PS-tag) and a negatively charged D15-tag, was serially connected at the C-terminal region of scFvs, and also refolded with a yield of 96.1%. These results clearly indicate that controlling the apparent pI value of scFvs by the fusion of oligo-peptides composed of acidic amino acids at the C-terminus resulted in a high degree of recovery via dialysis refolding. According to the results of a sandwich ELISA using scFv-PMs, scFv-D15 and scFv-PS-D15 as ligands, high antigen-binding signals were detected from both the PMMA and phi-PS plates immobilized with scFv-PMs. Furthermore, the high antigen-binding activity of scFv-PMs was maintained in an adsorption state when it was immobilized on the surface of not only PMMA, but also hydrophilic PS (phi-PS) and polycarbonate (PC). These results

  14. Overproduction of anti-Tn antibody MLS128 single-chain Fv fragment in Escherichia coli cytoplasm using a novel pCold-PDI vector.

    PubMed

    Subedi, Ganesh P; Satoh, Tadashi; Hanashima, Shinya; Ikeda, Akemi; Nakada, Hiroshi; Sato, Reiko; Mizuno, Mamoru; Yuasa, Noriyuki; Fujita-Yamaguchi, Yoko; Yamaguchi, Yoshiki

    2012-03-01

    Overproduction of recombinant proteins in Escherichia coli is often hampered by their failure to fold correctly, leading to their accumulation within inclusion bodies. To overcome the problem, a variety of techniques aimed at soluble expression have been developed including low temperature expression and/or fusion of soluble tags and chaperones. However, a general protocol for bacterial expression of disulfide bond-containing proteins has hitherto not been established. Single chain Fv fragments (scFvs) are disulfide bond-containing proteins often difficult to express in soluble forms in E. coli. We here examine in detail the E. coli expression of a scFv originating from an anti-carbohydrate MLS128 antibody as a model system. We combine three techniques: (1) tagging scFv with thioredoxin, DsbC and protein disulfide isomerase (PDI), (2) expressing the proteins at low temperature using the pCold vector system, and (3) using Origami E. coli strains with mutations in the thioredoxin reductase and glutathione reductase genes. We observed a high expression level of soluble MLS128-scFv in the Origami strain only when PDI is used as a tag. The recombinant protein retains full binding activity towards synthetic carbohydrate antigens. The developed "pCold-PDI" vector has potential for overproduction of other scFvs and disulfide-containing proteins in the Origami strains. PMID:22245752

  15. Targeted therapy against human lung cancer in nude mice by high-affinity recombinant antimesothelin single-chain Fv immunotoxin.

    PubMed

    Fan, Dominic; Yano, Seiji; Shinohara, Hisashi; Solorzano, Carmen; Van Arsdall, Melissa; Bucana, Corazon D; Pathak, Sen; Kruzel, Ewa; Herbst, Roy S; Onn, Amir; Roach, Jennifer S; Onda, Masanori; Wang, Qing-cheng; Pastan, Ira; Fidler, Isaiah J

    2002-06-01

    Several tumors, including mesothelioma and ovarian cancer, can overexpress mesothelin, a glycosylphosphatidylinositol-linked differentiation glycoprotein. The membrane-bound type of mesothelin is found in the blood of cancer patients at a very low level, which makes mesothelin a good candidate for targeted therapy of certain cancers. An antimesothelin disulfide-linked Fv (SS1 Fv) was fused to a truncated mutant of Pseudomonas exotoxin A to produce the recombinant immunotoxin SS1(dsFv)-PE38, which has a high binding affinity to mesothelin (Kd = 0.7 nM). Our studies in vitro showed that SS1(dsFv)-PE38 is significantly more cytotoxic to the high-mesothelin-producing NCI-H226 human non-small cell lung cancer cells than to human lung adenocarcinoma PC14PE6 cells, which do not express mesothelin. When administered at a nontoxic dose of 500 microg/kg on days 7, 9, and 11 to nude mice injected i.v. with the two human lung cancer cell lines, SS1(dsFv)-PE38 selectively inhibited experimental lung metastases produced by the mesothelin-producing NCI-H226 cells. Our data indicate that mesothelin-producing squamous cell carcinoma of the lung may be a good target for this immunotoxin. PMID:12479219

  16. Construction of a Single Chain Variable Fragment Antibody (scFv) against Carbaryl and Its Interaction with Carbaryl.

    PubMed

    Xiuyuan, Zhang; Zhihong, Huang; Lixia, Wang; Xiaonan, Liu

    2015-05-01

    Carbaryl is a low molecular weight insecticide that inhibits cholinesterase. Residues of carbaryl in food and the environment have damaged human health. A high-specificity scFv that can identify carbaryl is still lacking. In the present study, an anti-carbaryl scFv gene was prepared by cloning VL and VH genes from hybridoma cells secreting monoclonal antibody, then VH and VL were fused together using splicing by overlap extension (SOE) PCR with a flexible polypeptide linker connector (Gly4Ser)3, and then the scFv-pET-26b recombinant plasmid was constructed and transformed into E. coli BL21 for expression using IPTG as an inducer. The expressed recombinant protein was identified by SDS-PAGE and ELISA. The three-dimensional structure of the anti-carbaryl scFv was constructed by computer modeling, and carbaryl was docked to the scFv model to obtain the structure of the binding complex. The binding site was composed of Ala51, Ser52, Ile51, Gly54, Ser56, Arg98, and Gly100. This helps to understand the mechanism of interaction between anti-carbaryl antibody and antigen. Furthermore, it provides guidance for in vitro affinity maturation of anti-carbaryl antibody. PMID:26071785

  17. GPI-anchored single chain Fv - an effective way to capture transiently-exposed neutralization epitopes on HIV-1 envelope spike

    PubMed Central

    2010-01-01

    Background Identification of broad neutralization epitopes in HIV-1 envelope spikes is paramount for HIV-1 vaccine development. A few broad neutralization epitopes identified so far are present on the surface of native HIV-1 envelope spikes whose recognition by antibodies does not depend on conformational changes of the envelope spikes. However, HIV-1 envelope spikes also contain transiently-exposed neutralization epitopes, which are more difficult to identify. Results In this study, we constructed single chain Fvs (scFvs) derived from seven human monoclonal antibodies and genetically linked them with or without a glycosyl-phosphatidylinositol (GPI) attachment signal. We show that with a GPI attachment signal the scFvs are targeted to lipid rafts of plasma membranes. In addition, we demonstrate that four of the GPI-anchored scFvs, but not their secreted counterparts, neutralize HIV-1 with various degrees of breadth and potency. Among them, GPI-anchored scFv (X5) exhibits extremely potent and broad neutralization activity against multiple clades of HIV-1 strains tested. Moreover, we show that GPI-anchored scFv (4E10) also exhibited more potent neutralization activity than its secretory counterpart. Finally, we demonstrate that expression of GPI-anchored scFv (X5) in the lipid raft of plasma membrane of human CD4+ T cells confers long-term resistance to HIV-1 infection, HIV-1 envelope-mediated cell-cell fusion, and the infection of HIV-1 captured and transferred by human DCs. Conclusions Thus GPI-anchored scFv could be used as a general and effective way to identify antibodies that react with transiently-exposed neutralization epitopes in envelope proteins of HIV-1 and other enveloped viruses. The GPI-anchored scFv (X5), because of its breadth and potency, should have a great potential to be developed into anti-viral agent for HIV-1 prevention and therapy. PMID:20923574

  18. Application of adaptive DO-stat feeding control to Pichia pastoris X33 cultures expressing a single chain antibody fragment (scFv).

    PubMed

    Ferreira, A R; Ataíde, F; von Stosch, M; Dias, J M L; Clemente, J J; Cunha, A E; Oliveira, R

    2012-11-01

    In this study, fed-batch cultures of a Pichia pastoris strain constitutively expressing a single chain antibody fragment (scFv) under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter were performed in a pilot 50 L bioreactor. Due to the very high cell density achieved within the first 75 h, typically between 140 and 160 g-DCW/L of dry cell weight (DCW), most of the scFv is produced under hard oxygen transfer limitation. To improve scFv productivity, a direct adaptive dissolved oxygen (DO)-stat feeding controller that maximizes glycerol feeding under the constraint of available oxygen transfer capacity was developed and applied to this process. The developed adaptive controller enabled to maximize glycerol feeding through the regulation of DO concentration between 3 and 5 % of saturation, thereby improving process productivity. Set-point convergence dynamics are characterized by a fast response upon large perturbations to DO, followed by a slower but very robust convergence in the vicinity of the boundary with almost imperceptible overshoot. Such control performance enabled operating closer to the 0 % boundary for longer periods of time when compared to a traditional proportional-integral-derivative algorithm, which tends to destabilize with increasing cell density. PMID:22610694

  19. Expression of anti-tumor necrosis factor alpha (TNFα) single-chain variable fragment (scFv) in Spirodela punctata plants transformed with Agrobacterium tumefaciens.

    PubMed

    Balaji, Parthasarathy; Satheeshkumar, P K; Venkataraman, Krishnan; Vijayalakshmi, M A

    2016-05-01

    Therapeutic antibodies against tumor necrosis factor alpha (TNFα) have been considered effective for some of the autoimmune diseases such as rheumatoid arthritis, Crohn's diseases, and so on. But associated limitations of the current therapeutics in terms of cost, availability, and immunogenicity have necessitated the need for alternative candidates. Single-chain variable fragment (scFv) can negate the limitations tagged with the anti-TNFα therapeutics to a greater extent. In the present study, Spirodela punctata plants were transformed with anti-TNFα through in planta transformation using Agrobacterium tumefaciens strain, EHA105. Instead of cefotaxime, garlic extract (1 mg/mL) was used to remove the agrobacterial cells after cocultivation. To the best of our knowledge, this report shows for the first time the application of plant extracts in transgenic plant development. 95% of the plants survived screening under hygromycin. ScFv cDNA integration in the plant genomic DNA was confirmed at the molecular level by PCR. The transgenic protein expression was followed up to 10 months. Expression of scFv was confirmed by immunodot blot. Protein expression levels of up to 6.3% of total soluble protein were observed. β-Glucuronidase and green fluorescent protein expressions were also detected in the antibiotic resistant plants. The paper shows the generation of transgenic Spirodela punctuata plants through in planta transformation. PMID:25786575

  20. Generation of a Single Chain Antibody Variable Fragment (scFv) to Sense Selectively RhoB Activation

    PubMed Central

    Chinestra, Patrick; Olichon, Aurélien; Medale-Giamarchi, Claire; Lajoie-Mazenc, Isabelle; Gence, Rémi; Inard, Cyril; Ligat, Laetitia; Faye, Jean-Charles; Favre, Gilles

    2014-01-01

    Determining the cellular level of activated form of RhoGTPases is of key importance to understand their regulatory functions in cell physiopathology. We previously reported scFvC1, that selectively bind to the GTP-bound form of RhoA, RhoB and RhoC. In this present study we generate, by molecular evolution, a new phage library to isolate scFvs displaying high affinity and selectivity to RhoA and RhoB. Using phage display affinity maturation against the GTP-locked mutant RhoAL63, we isolated scFvs against RhoA active conformation that display Kd values at the nanomolar range, which corresponded to an increase of affinity of three orders of magnitude compared to scFvC1. Although a majority of these evolved scFvs remained selective towards the active conformation of RhoA, RhoB and RhoC, we identified some scFvs that bind to RhoA and RhoC but not to RhoB activated form. Alternatively, we performed a substractive panning towards RhoB, and isolated the scFvE3 exhibiting a 10 times higher affinity for RhoB than RhoA activated forms. We showed the peculiar ability of scFvE3 to detect RhoB but not RhoA GTP-bound form in cell extracts overexpressing Guanine nucleotide Exchange Factor XPLN as well as in EGF stimulated HeLa cells. Our results demonstrated the ability of scFvs to distinguish RhoB from RhoA GTP-bound form and provide new selective tools to analyze the cell biology of RhoB GTPase regulation. PMID:25365345

  1. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. PMID:26232710

  2. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  3. Production of recombinant single chain antibodies (scFv) in vegetatively reproductive Kalanchoe pinnata by in planta transformation.

    PubMed

    Jung, Yuchul; Rhee, Yong; Auh, Chung-Kyoon; Shim, Hyekyung; Choi, Jung-Jin; Kwon, Suk-Tae; Yang, Joo-Sung; Kim, Donggiun; Kwon, Myung-Hee; Kim, Yong-Sung; Lee, Sukchan

    2009-10-01

    We developed an asexual reproductive plant, Kalanchoe pinnata, as a new bioreactor for plant-based molecular farming using a newly developed transformation method. Leaf crenate margins were pin-pricked to infect the plant with the Agrobacterium strain LBA4404 and vacuum infiltration was also applied to introduce the target gene into the plants. Subsequently, the young mother leaf produced new clones at the leaf crenate margins without the need for time- and labor-consuming tissue culture procedures. The average transformation rates were approximately 77 and 84% for pin-prickling and vacuum-infiltration methods, respectively. To functionally characterize an introduced target protein, a nucleic acid hydrolyzing recombinant 3D8 scFv was selected and the plant based 3D8 scFv proteins were purified and analyzed. Based on abzyme analysis, the purified protein expressed with this system had catalytic activity and exhibited all of properties of the protein produced in an E. coli system. This result suggested that vegetatively reproductive K. pinnata can be a novel and potent bioreactor for bio-pharmaceutical proteins. PMID:19688214

  4. Single-chain Fv fragment antibodies selected from an intrabody library as effective mono- or bivalent reagents for in vitro protein detection.

    PubMed

    Desplancq, Dominique; Rinaldi, Anne-Sophie; Stoessel, Audrey; Sibler, Annie-Paule; Busso, Didier; Oulad-Abdelghani, Mustapha; Van Regenmortel, Marc H; Weiss, Etienne

    2011-06-30

    In spite of their many potential applications, recombinant antibody molecules selected by phage display are rarely available commercially, one reason being the absence of robust bacterial expression systems that yield sufficient quantities of reagents for routine applications. We previously described the construction and validation of an intrabody library that allows the selection of single-chain Fv (scFv) fragments solubly expressed in the cytoplasm. Here, we show that it is possible to obtain monomeric scFvs binding specifically to human papillomavirus type 16 E6 and cellular gankyrin oncoproteins in quantities higher than 0.5 g/L of shake-flask culture in E. coli cytoplasm after auto-induction. In addition, stable bivalent scFvs of increased avidity were produced by tagging the scFvs with the dimeric glutathione-S-transferase enzyme (GST). These minibody-like molecules were further engineered by fusion with green fluorescent protein (GFPuv), leading to high yield of functional bivalent fluorescent antibody fragments. Our results demonstrate that scFvs selected from an intrabody library can be engineered into cost-effective bivalent reagents suitable for many biomedical and industrial applications. PMID:21501618

  5. In vivo near-infrared fluorescence imaging of FAP-expressing tumors with activatable FAP-targeted, single-chain Fv-immunoliposomes.

    PubMed

    Rüger, Ronny; Tansi, Felista L; Rabenhold, Markus; Steiniger, Frank; Kontermann, Roland E; Fahr, Alfred; Hilger, Ingrid

    2014-07-28

    Molecular and cellular changes that precede the invasive growth of solid tumors include the release of proteolytic enzymes and peptides in the tumor stroma, the recruitment of phagocytic and lymphoid infiltrates and alteration of the extracellular matrix. The reactive tumor stroma consists of a large number of myofibroblasts, characterized by high expression of fibroblast activation protein alpha (FAP). FAP, a type-II transmembrane sialoglycoprotein is an attractive target in diagnosis and therapy of several pathologic disorders especially cancer. In the underlying work, a fluorescence-activatable liposome (fluorescence-quenched during circulation and fluorescence activation upon cellular uptake), bearing specific single-chain Fv fragments directed against FAP (scFv'FAP) was developed, and its potential for use in fluorescence diagnostic imaging of FAP-expressing tumor cells was evaluated by whole body fluorescence imaging. The liposomes termed anti-FAP-IL were prepared via post-insertion of ligand-phospholipid-conjugates into preformed DY-676-COOH-containing liposomes. The anti-FAP-IL revealed a homogeneous size distribution and showed specific interaction and binding with FAP-expressing cells in vitro. The high level of fluorescence quenching of the near-infrared fluorescent dye sequestered in the aqueous interior of the liposomes enables fluorescence imaging exclusively upon uptake and degradation by cells, which results in fluorescence activation. Only FAP-expressing cells were able to take up and activate fluorescence of anti-FAP-IL in vitro. Furthermore, anti-FAP-IL accumulated selectively in FAP-expressing xenograft models in vivo, as demonstrated by blocking experiments using free scFv'FAP. The local tumor fluorescence intensities were in agreement with the intrinsic degree of FAP-expression in different xenograft models. Thus, anti-FAP-IL can serve as a suitable in vivo diagnostic tool for pathological disorders accompanied by high FAP-expression. PMID

  6. Escherichia coli expressing single-chain Fv on the cell surface as a potential prophylactic of porcine epidemic diarrhea virus.

    PubMed

    Pyo, Hyun-Mi; Kim, In-Joong; Kim, Seong-Hee; Kim, Hyun-Soo; Cho, Soo-Dong; Cho, In-Soo; Hyun, Bang-Hun

    2009-03-23

    Porcine epidemic diarrhea virus (PEDV) is a causative agent of severe diarrhea which leads to death in piglets. Because of the high mortality which is up to 100% in suckling piglets, PED is an important porcine disease in Korea. In this study, we developed a prophylactic candidate using single-chain Fvs to prevent the PEDV infection. ScFvs of mouse monoclonal antibody which was verified to neutralize PEDV was expressed in Escherichia coli expression system. After the confirmation of PEDV neutralizing activity of purified recombinant scFvs by VN test, scFvs were expressed on the surface of E. coli cells. The signal sequence and autotransporter beta domain of protease IgA (IgAP) of Neisseria gonorrhoeae were introduced to endow scFvs with the direction to the cell surface and the support as a transmembrane domain. 5x10(6)CFU of E. coli expressing scFvs against PEDV showed promising result of 94% foci reduction compared to wild type E. coli. This result demonstrated that E. coli expressing scFvs on the cell surface retained functional potency of parent antibody and therefore blocked PEDV infection into target cells in vitro. This in vitro assay result proposes the perspective of recombinant E. coli cells expressing scFvs as a novel prophylactic against PEDV infection. PMID:19428826

  7. Expression, purification and characterization of a human single-chain Fv antibody fragment fused with the Fc of an IgG1 targeting a rabies antigen in Pichia pastoris.

    PubMed

    Wang, Ding-ding; Su, Man-man; Sun, Yan; Huang, Shu-lin; Wang, Ju; Yan, Wei-qun

    2012-11-01

    Because the demand for rabies post exposure prophylaxis (PEP) treatment has increased exponentially in recent years, the limited supply of human and equine rabies immunoglobulin (HRIG and ERIG) has failed to provide an adequate amount of the required passive immune component in PEP in countries where canine rabies is endemic. The replacement of HRIG and ERIG with a potentially cheaper and efficacious alternative biological for the treatment of rabies in humans, therefore, remains a high priority. In this study, we set out to assess a human single-chain Fv antibody fragment fused with the Fc of an IgG1 targeting a rabies antigen to develop a product that can be used as a component of the PEP cocktail. We cloned the ScFv fragment from a human ScFv library that was established previously and inserted this fragment into the expression vector pPICZαC/Fc. An active recombinant ScFv-Fc fusion protein was successfully expressed in Pichia pastoris. The production of ScFv-Fc was optimized and scaled up in an 80L fermentor with yields exceeding 60mg/L. The ScFv-Fc protein was purified to more than 95% purity using a two-step scheme: ammonium sulfate fractionation and Protein A Sepharose CL-4B. The ScFv-Fc fusion protein neutralized rabies virus in a standard in vivo neutralization assay in which the virus was incubated with the ScFv-Fc molecules before intracranial inoculation in mice. Our results suggest that functional antibodies can be produced in P. pastoris and that ScFv-Fc fusion proteins have the potential to serve as therapeutic candidates. PMID:22982755

  8. Expression of V(H)-linker-V(L) orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1 in Escherichia coli.

    PubMed

    Liu, Aiping; Ye, Yang; Chen, Weifeng; Wang, Xiaohong; Chen, Fusheng

    2015-02-01

    Aflatoxin B1 (AFB1) is a toxic secondary metabolic product, which threatens human and animal health. Antibody is a key factor for immunoassay against toxic stuff like AFB1, and single-chain Fv antibody fragment (scFv) has become a popular format of genetically engineered antibody. In this study, four hybridoma cell lines against AFB1 were obtained, and then scFvs 2E6 derived from hybridoma cell line 2E6 were constructed in different V(H)/V(L) orientations. Subsequently, scFvs 2E6 were expressed in E. coli BL21(DE3) mainly in the form of inclusion body. SDS-PAGE, Western blot and ELISA were employed to characterize scFvs 2E6. The results revealed that the yield of inclusion body of scFvs 2E6 in either V(H)/V(L) orientation was similar; however, only the scFv in V(H)-linker-V(L) orientation showed anti-AFB1 bioactivity after refolding. The present study underscores the importance of choosing optimal V(H)/V(L) orientation for scFv construction, and scFv may be favorable for immunoassays in food industry. PMID:25540048

  9. Co-expression of Dsb proteins enables soluble expression of a single-chain variable fragment (scFv) against human type 1 insulin-like growth factor receptor (IGF-1R) in E. coli.

    PubMed

    Sun, Xue-Wen; Wang, Xiao-Hua; Yao, Yan-Bing

    2014-12-01

    Type 1 insulin-like growth factor receptor (IGF-1R) is a promising therapeutic target for cancer treatment. A single-chain variable fragment (scFv) against human IGF-1R forms inclusion body when expressed in periplasmic space of E. coli routinely. Here, we described that co-expression of appropriate disulfide bonds (Dsb) proteins known to catalyze the formation and isomerization of Dsb can markedly recover the soluble expression of target scFv in E. coli. A 50 % recovery in solubility of the scFv was observed upon co-expression of DsbC alone, and a maximum solubility (80 %) was obtained when DsbA and DsbC were co-expressed in combination. Furthermore, the soluble scFv present full antigen-binding activity with IGF-1R, suggesting its correct folding. This study also suggested that the selection of Dsb proteins should be tested case-by-case if the approach of co-expression of Dsb system is adopted to address the problem of insoluble expression of proteins carrying Dsb. PMID:25256416

  10. The novel anti-CD19 chimeric antigen receptors with humanized scFv (single-chain variable fragment) trigger leukemia cell killing.

    PubMed

    Qian, Liren; Li, Dan; Ma, Lie; He, Ting; Qi, Feifei; Shen, Jianliang; Lu, Xin-An

    2016-01-01

    The molecular design of CARs (Chimeric Antigen Receptors), especially the scFv, has been a major part to use of CAR-T cells for targeted adoptive immunotherapy. To address this issue, we chose a vector backbone encoding a second-generation CAR based on efficacy of a murine scFv-based CAR. Next, we generated a panel of humanized scFvs and tested in vitro for their ability to direct CAR-T cells to specifically lyse, proliferate, and secrete cytokines in response to antigen-bearing targets. Furthermore, in a xenograft model of lymphoma, human T cells expressing humanized scFvs exhibited the same anti-tumor efficacy as those expressing murine scFv and prolonged survival compared with cells expressing control CAR. Therefore, we uncovered CARs expressing humanized scFv domain that contribute the similar enhanced antileukemic efficacy and survival in tumor bearing mice. These results provide the basis for the future clinical studies of CAR-T cells transduced with humanized scFv directed to CD19. PMID:26996927

  11. Characterization of the Native and Denatured Herceptin by ELISA and QCM using a High-Affinity Single Chain Fragment Variable (scFv) Recombinant Antibody

    PubMed Central

    Shang, Yuqin; Mernaugh, Ray

    2012-01-01

    Herceptin/Trastuzumab is a humanized IgG1κ light chain antibody used to treat some forms of breast cancer. A phage-displayed recombinant antibody library was used to obtain an scFv (designated 2B4) to a linear synthetic peptide representing Herceptin’s heavy chain CDR3. ELISAs and piezoimmunosensor/quartz crystal microbalance (QCM) assays were used to characterize 2B4-binding activity to both native and heat denatured Herceptin. The 2B4 scFv specifically bound to heat denatured Herceptin in a concentration dependent manner over a wide (35–220.5 nM) dynamic range. Herceptin denatures and forms significant amount of aggregates when heated. UV-Vis characterization confirms that Herceptin forms aggregates as the temperature used to heat Herceptin increases. QCM affinity assay shows that binding stoichiometry between 2B4 scFv and Herceptin follows a 1:2 relationship proving that 2B4 scFv binds strongly to the dimers of heat denatured Herceptin aggregates and exhibits an affinity constant of 7.17 × 1013 M−2. The 2B4-based QCM assay was more sensitive than the corresponding ELISA. Combining QCM with ELISA can be used to more fully characterize non-specific binding events in assays. The potential theoretical and clinical implications of these results and the advantages of using QCM to characterize human therapeutic antibodies in samples are also discussed. PMID:22934911

  12. Generation of a naïve human single chain variable fragment (scFv) library for the identification of monoclonal scFv against Salmonella Typhi Hemolysin E antigen.

    PubMed

    Lim, Bee Nar; Chin, Chai Fung; Choong, Yee Siew; Ismail, Asma; Lim, Theam Soon

    2016-07-01

    Antibody phage display is a useful tool for the isolation and identification of monoclonal antibodies. Naive antibody libraries are able to overcome the limitations associated with the traditional hybridoma method for monoclonal antibody generation. Antibody phage display is also a preferred method for antibody generation against toxins as it does not suffer from toxicity mediated complications. Here, we describe a naïve multi ethnic scFv antibody library generated via two-step cloning with an estimated diversity of 2 × 10(9). The antibody library was used to screen for monoclonal antibodies against Hemolysin E antigen, a pore forming toxin produced by Salmonella enterica serovar Typhi. A soluble monoclonal scFv antibody against the HlyE toxin (IgM scFv D7 anti-hlyE) was isolated from the library. This shows the value of the naïve library to generate antibodies against toxin targets in addition to the potential use of the library to isolate antibodies against other immunogenic targets. PMID:27090555

  13. Blocking monocyte transmigration in in vitro system by an anti-CD99 human antibody in single chain fragment variable (scFv) format. Efficient large scale purification of biological active scFv from inclusion bodies in E. coli expression system

    PubMed Central

    Moricoli, Diego; Muller, William A.; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Fiori, Valentina; Watson, Richard; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro

    2015-01-01

    Migration of leukocytes into a site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies under GMP conditions and hence, the absence of toxic reagents utilized for the solubilization and refolding steps of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting we herein describe an efficient and large scale production of the antibody fragments expressed in E.coli as insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signalling. Thanks to the original purification protocol that can be extended to other scFvs that are expressed as inclusion bodies in bacterial systems, the scFv anti-CD99 C7A herein described represents the first step towards the construction of new antibody therapeutic. PMID:24798881

  14. Selection of single chain variable fragment (scFv) antibodies from a hyperimmunized phage display library for the detection of the antibiotic monensin.

    PubMed

    Makvandi-Nejad, Shokouh; Sheedy, Claudia; Veldhuis, Linda; Richard, Gabrielle; Hall, J Christopher

    2010-08-31

    Concerns over the occurrence of the veterinary antibiotic monensin (MW 671Da) in animal food products and water have given rise to the need for a sensitive and rapid detection method. In this study, four monensin-specific single chain variable fragments (scFvs) were isolated from a hyperimmunized phage-displayed library originating from splenocytes of a mouse immunized with monensin conjugated to bovine serum albumin (BSA). The coding sequences of the scFvs were engineered in the order 5'-V(L)-linker-V(H)-3', where the linker encodes for Gly(10)Ser(7)Arg. Three rounds of selection were performed against monensin conjugated to chicken ovalbumin (OVA) and keyhole limpet hemocyanin (KLH), alternately. In the third round of selection, two different strategies, which differed in the number of washes and the concentration of the coating conjugates, were used to select for specific binders to monensin. A total of 376 clones from round two and three were screened for their specific binding to monensin conjugates and positive clones were sequenced. It was found that 80% of clones from round three contained a stop codon. After removing the stop codon by site-directed mutagenesis, ten binders with different amino acid sequences were subcloned into the vector pMED2 for soluble expression in Escherichia coli HB2151. Four of these scFvs bound to free monensin as determined using competitive fluorescence polarization assays (C-FPs). IC(50) values ranged from 0.031 and 231 microM. A cross-reactivity assay against salinomycin, lasalocid A, kanamycin and ampicillin revealed that the two best binders were highly specific to monensin. PMID:20600077

  15. Development and Preclinical Testing of a High Affinity Single Chain Antibody against (+)-Methamphetamine

    PubMed Central

    Peterson, Eric C.; Laurenzana, Elizabeth M.; Atchley, William T.; Hendrickson, Howard; Owens, S. Michael

    2009-01-01

    Chronic or excessive (+)-methamphetamine (METH) use often leads to addiction and toxicity to critical organs like the brain. With medical treatment as a goal, a novel single chain variable fragment (scFv) against METH was engineered from anti-METH monoclonal antibody mAb6H4 (IgG, κ light chain, KD = 11 nM) and found to have similar ligand affinity (KD = 10 nM) and specificity as mAb6H4. The anti-METH scFv (scFv6H4) was cloned, expressed in yeast, purified and formulated as a naturally occurring mixture of monomer (~75%) and dimer (~25%). To test the in vivo efficacy of the scFv6H4, male Sprague Dawley rats (n=5) were implanted with 3-day sc osmotic pumps delivering 3.2 mg/kg/day METH. After reaching steady-state METH concentrations, an i.v. dose of scFv6H4 (36.5 mg/kg, equimolar to the METH body burden) was administered along with a [3H]-scFv6H4 tracer. Serum pharmacokinetic (PCKN) analysis of METH and [3H]-scFv6H4 showed that the scFv6H4 caused an immediate 65-fold increase in the METH concentrations and a 12-fold increase in the serum METH area under the concentration-time curve from 0–480 min after scFv6H4 administration. The scFv6H4 monomer was quickly cleared or converted to multivalent forms with an apparent t1/2λz of 5.8 min. In contrast, the larger scFv6H4 multivalent forms (dimers, trimers, etc.) showed a much longer t1/2λz (228 min), and the significantly increased METH serum molar concentrations correlated directly with scFv6H4 serum molar concentrations. Considered together these data suggested that the scFv6H4 multimers (and not the monomer) were responsible for the prolonged redistribution of METH into the serum. PMID:18192498

  16. Method for preparation of single chain antibodies

    SciTech Connect

    Cheung, Nai-Kong V.; Guo, Hong-fen

    2012-04-03

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  17. Single-Chain Antibody Library

    DOE Data Explorer

    Baird, Cheryl

    Researchers at Pacific Northwest National Laboratory (PNNL) have constructed a nonimmune library consisting of 109 human antibody scFv fragments, which have been cloned and expressed on the surface of yeast. Nanomolar-affinity scFvs are routinely obtained by magnetic bead screening and flow cytometric sorting. The yeast library can be amplified 1010 fold without measurable loss of clonal diversity. This allows for indefinite expansion of the library. All scFv clones can be assessed directly on the yeast cell surface by immunofluorescent labeling and flow cytometry, obviating separate subcloning, expression, and purification steps. The ability to use multiplex library screening demonstrates the utility of this approach for high-throughput antibody isolation for proteomic applications. The yeast library may be used for research projects or teaching performed for U.S. Government purposes only. If you would like to request an aliquot of the single-chain antibody library for your research, please print and fill out the Materials Transfer Agreement (MTA) [PDF, 20K]. The website provides the contact information for mailing the MTA. [copied from http://www.sysbio.org/dataresources/singlechain.stm

  18. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency.

    PubMed

    Turki, Imène; Hammami, Akil; Kharmachi, Habib; Mousli, Mohamed

    2014-02-01

    Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy. PMID:24091293

  19. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  20. Immobilization strategies for single-chain antibody microarrays

    SciTech Connect

    Seurynck-Servoss, Shannon L.; Baird, Cheryl L.; Miller, Keith D.; Pefaur, Noah B.; Gonzalez, Rachel M.; Apiyo, David O.; Engelmann, Heather E.; Srinivastava, Sudhir; Kagan, Jacob; Rodland, Karin D.; Zangar, Richard C.

    2008-06-01

    Sandwich enzyme-linked immunosorbent assay (ELISA) microarrays have great potential for validating biomarkers of disease. ELISA relies on robust affinity reagents that retain activity when immobilized or when labeled for detection. Single-chain antibodies (scFv) are affinity reagents that have greater potential for high-throughput production than traditional immunoglobin G (IgG). Unfortunately, scFv are typically less stabile than IgG and not always suitable for use in sandwich ELISAs. We therefore investigated different immobilization strategies and scFv structural modifications to see if we could develop a more robust scFv reagent. Two promising strategies that emerged from these studies: 1) the precapture of epitope-tagged scFv using an anti-epitope antibody and 2) the direct printing of a thioredoxin/scFv fusion protein on glass slides. The use of either strategy improved the stability of immobilized scFv and increased the sensitivity of the scFv ELISA microarray assays, although the anti-epitope precapture method had a risk of reagent transfer. Using the direct printing method, we show that anti-PSA scFv are highly specific when tested against 21 different IgG-based assays. Finally, the scFv microarray PSA assay gave comparable results (R2 = 0.95) to a commercial 96-well ELISA when tested using serum samples. Overall, these results suggest that minor modifications of the scFv protein structure are sufficiently to produce reagents that are suitable for use in multiplex assay systems.

  1. Methods of preparing and using single chain anti-tumor antibodies

    SciTech Connect

    Cheung, Nai-Kong; Guo, Hong-Fen

    2010-02-23

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  2. Targeting nanodisks via a single chain variable antibody - Apolipoprotein chimera

    SciTech Connect

    Iovannisci, David M.; Beckstead, Jennifer A.; Ryan, Robert O.

    2009-02-06

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that {alpha}-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.

  3. Purification, characterization, and biotinylation of single-chain antibodies.

    PubMed

    Kipriyanov, S M

    1998-01-01

    The variable region (Fv) portion of an antibody is comprised of the antibody V(H) and V(L) domains and is the smallest antibody fragment containing a complete antigen-binding site. To stabilize the association of the recombinant V(H) and V(L) domains, they have been linked in single-chain Fv constructs with a short peptide that bridges the approx 3.5 nm between the carboxy terminus of one domain and the ammo terminus of the other (1-3). An NMR comparison of the unlinked Fv fragment of the antibody McPC603 with the corresponding scFv containing a V(H)-(Gly(4)Ser)(3)-V(L) linker has shown no perturbation of the folding of the variable domains by the linker (4,5). In comparison to the much larger Fab', F(ab')(2), and IgG forms of monoclonal antibody (MAb) from which they are derived, scFvs have lower retention times in nontarget tissues, more rapid blood clearance, and better tumor penetration (6-8). ScFvs, therefore, represent potentially very useful molecules for the targeted delivery of drugs, toxins, or radionuclides to a tumor site. PMID:21390870

  4. Fusion protein of single-chain variable domain fragments for treatment of myasthenia gravis

    PubMed Central

    Li, Fangfang; Meng, Fanping; Jin, Quanxin; Sun, Changyuan; Li, Yingxin; Li, Honghua; Jin, Songzhu

    2014-01-01

    Single-chain variable domain fragment (scFv) 637 is an antigen-specific scFv of myasthenia gravis. In this study, scFv and human serum albumin genes were conjugated and the fusion protein was expressed in Pichia pastoris. The affinity of scFv-human serum albumin fusion protein to bind to acetylcholine receptor at the neuromuscular junction of human intercostal muscles was detected by immunofluorescence staining. The ability of the fusion protein to block myasthenia gravis patient sera binding to acetylcholine receptors and its stability in healthy serum were measured by competitive ELISA. The results showed that the inhibition rate was 2.0-77.4%, and the stability of fusion protein in static healthy sera was about 3 days. This approach suggests the scFv-human serum albumin is a potential candidate for specific immunosuppressive therapy of myasthenia gravis. PMID:25206900

  5. Engineered single-chain variable fragment antibody for immunodiagnosis of groundnut bud necrosis virus infection.

    PubMed

    Maheshwari, Yogita; Vijayanandraj, S; Jain, R K; Mandal, Bikash

    2015-05-01

    Few studies have been done on engineered antibodies for diagnosis of tospovirus infections. The present study was undertaken to develop a single-chain variable fragment (scFv) for specific diagnosis of infection by groundnut bud necrosis virus (GBNV), the most prevalent serogroup IV tospovirus in India. Heavy chain (372 nucleotide [nt]) and light chain (363 nt) variable region clones obtained from a hybridoma were used to make an scFv construct that expressed a ~29-kDa protein in E. coli. The scFv specifically detected GBNV in field samples of cowpea, groundnut, mung bean, and tomato, and it did not recognize watermelon bud necrosis virus, a close relative of GBNV belonging to tospovirus serogroup IV. This study for the first time demonstrated the application of a functional scFv against a serogroup-IV tospovirus. PMID:25698103

  6. Model protocells from single-chain lipids.

    PubMed

    Mansy, Sheref S

    2009-03-01

    Significant progress has been made in the construction of laboratory models of protocells. Most frequently the developed vesicle systems utilize single-chain lipids rather than the double-chain lipids typically found in biological membranes. Although single-chain lipids yield less robust vesicles, their dynamic characteristics are highly exploitable for protocellular functions. Herein the advantages of using single-chain lipids in the construction of protocells are discussed. PMID:19399223

  7. Model Protocells from Single-Chain Lipids

    PubMed Central

    Mansy, Sheref S.

    2009-01-01

    Significant progress has been made in the construction of laboratory models of protocells. Most frequently the developed vesicle systems utilize single-chain lipids rather than the double-chain lipids typically found in biological membranes. Although single-chain lipids yield less robust vesicles, their dynamic characteristics are highly exploitable for protocellular functions. Herein the advantages of using single-chain lipids in the construction of protocells are discussed. PMID:19399223

  8. A novel single-chain antibody redirects adenovirus to IL13Rα2-expressing brain tumors.

    PubMed

    Kim, Julius W; Young, Jacob S; Solomaha, Elena; Kanojia, Deepak; Lesniak, Maciej S; Balyasnikova, Irina V

    2015-01-01

    The generation of a targeting agent that strictly binds to IL13Rα2 will significantly expand the therapeutic potential for the treatment of IL13Rα2-expressing cancers. In order to fulfill this goal, we generated a single-chain antibody (scFv47) from our parental IL13Rα2 monoclonal antibody and tested its binding properties. Furthermore, to demonstrate the potential therapeutic applicability of scFv47, we engineered an adenovirus by incorporating scFv47 as the targeting moiety in the viral fiber and characterized its properties in vitro and in vivo. The scFv47 binds to human recombinant IL13Rα2, but not to IL13Rα1 with a high affinity of 0.9 · 10(-9) M, similar to that of the parental antibody. Moreover, the scFv47 successfully redirects adenovirus to IL13Rα2 expressing glioma cells both in vitro and in vivo. Our data validate scFv47 as a highly selective IL13Rα2 targeting agent and justify further development of scFv47-modified oncolytic adenovirus and other therapeutics for the treatment of IL13Rα2-expressing glioma and other malignancies. PMID:26656559

  9. A novel single-chain antibody redirects adenovirus to IL13Rα2-expressing brain tumors

    PubMed Central

    Kim, Julius W.; Young, Jacob S.; Solomaha, Elena; Kanojia, Deepak; Lesniak, Maciej S.; Balyasnikova, Irina V.

    2015-01-01

    The generation of a targeting agent that strictly binds to IL13Rα2 will significantly expand the therapeutic potential for the treatment of IL13Rα2-expressing cancers. In order to fulfill this goal, we generated a single-chain antibody (scFv47) from our parental IL13Rα2 monoclonal antibody and tested its binding properties. Furthermore, to demonstrate the potential therapeutic applicability of scFv47, we engineered an adenovirus by incorporating scFv47 as the targeting moiety in the viral fiber and characterized its properties in vitro and in vivo. The scFv47 binds to human recombinant IL13Rα2, but not to IL13Rα1 with a high affinity of 0.9 · 10−9 M, similar to that of the parental antibody. Moreover, the scFv47 successfully redirects adenovirus to IL13Rα2 expressing glioma cells both in vitro and in vivo. Our data validate scFv47 as a highly selective IL13Rα2 targeting agent and justify further development of scFv47-modified oncolytic adenovirus and other therapeutics for the treatment of IL13Rα2-expressing glioma and other malignancies. PMID:26656559

  10. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants.

    PubMed

    Brar, Hargeet K; Bhattacharyya, Madan K

    2012-06-01

    Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases. PMID:22397408

  11. Single Chain Antibodies Against gp55 of Human Cytomegalovirus (HCMV) for Prophylaxis and Treatment of HCMV Infections

    PubMed Central

    Moazen, Bahareh; Ebrahimi, Elahe; Nejatollahi, Foroogh

    2016-01-01

    Background: Immunotherapy is a promising prospective new treatment for cytomegalovirus (CMV) infections. Neutralizing effects have been reported using monoclonal antibodies. Recombinant single chain antibodies (scFvs) due to their advantages over monoclonal antibodies are potential alternatives and provide valuable clinical agents. Objectives: The aim of this study was to select specific single chain antibodies against gp55 of CMV and to evaluate their neutralizing effects. In the present study, we selected specific single chain antibodies against glycoprotein 55 (gp55) of CMV for their use in treatment and diagnosis. Materials and Methods: Single chain antibodies specific against an epitope located in the C-terminal part of gp55 were selected from a phage antibody display library. After four rounds of panning, twenty clones were amplified by the polymerase chain reaction (PCR) and fingerprinted by MvaI restriction enzyme. The reactivities of the specific clones were tested by the enzyme-linked immunosorbent assay (ELISA) and the neutralizing effects were evaluated by the plaque reduction assay. Results: Fingerprinting of selected clones revealed three specific single chain antibodies (scFv1, scFv2 and scFv3) with frequencies 25%, 20 and 20%. The clones produced positive ELISA with the corresponding peptide. The percentages of plaque reduction for scFv1, scFv2 and scFv3 were 23.7, 68.8 and 11.6, respectively. Conclusions: Gp55 of human CMV is considered as an important candidate for immunotherapy. In this study, we selected three specific clones against gp55. The scFvs reacted only with the corresponding peptide in a positive ELISA. The scFv2 with 68.8% neutralizing effect showed the potential to be considered for prophylaxis and treatment of CMV infections, especially in solid organ transplant recipients, for whom treatment of CMV is urgently needed. The scFv2 with neutralizing effect of 68.8%, has the potential to be considered for treatment of these patients

  12. Bacterial secretion of soluble and functional trivalent scFv-based N-terminal trimerbodies.

    PubMed

    Blanco-Toribio, Ana; Álvarez-Cienfuegos, Ana; Sainz-Pastor, Noelia; Merino, Nekane; Compte, Marta; Sanz, Laura; Blanco, Francisco J; Álvarez-Vallina, Luis

    2015-12-01

    Recombinant antibodies are used with great success in many different diagnostic and therapeutic applications. A variety of protein expression systems are available, but nowadays almost all therapeutic antibodies are produced in mammalian cell lines due to their complex structure and glycosylation requirements. However, production of clinical-grade antibodies in mammalian cells is very expensive and time-consuming. On the other hand, Escherichia coli (E. coli) is known to be the simplest, fastest and most cost-effective recombinant expression system, which usually achieves higher protein yields than mammalian cells. Indeed, it is one of the most popular host in the industry for the expression of recombinant proteins. In this work, a trivalent single-chain fragment variable (scFv)-based N-terminal trimerbody, specific for native laminin-111, was expressed in human embryonic kidney 293 cells and in E. coli. Mammalian and bacterially produced anti-laminin trimerbody molecules display comparable functional and structural properties, although importantly the yield of trimerbody expressed in E. coli was considerably higher than in human cells. These results demonstrated that E. coli is a versatile and efficient expression system for multivalent trimerbody-based molecules that is suitable for their industrial production. PMID:26239030

  13. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O,O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single-chain variable fragment (scFv) and alkaline phosphatase (AP) fusion protein for detection of O, O-diethyl organophosphorus pesticides (OPs) was produced and characterized. The scFv gene was prepared by cloning VL and VH genes from a hybridoma cell secreting monoclonal antibody with broad-s...

  14. PURE mRNA display for in vitro selection of single-chain antibodies.

    PubMed

    Nagumo, Yu; Fujiwara, Kei; Horisawa, Kenichi; Yanagawa, Hiroshi; Doi, Nobuhide

    2016-05-01

    mRNA display is a method to form a covalent linkage between a cell-free synthesized protein (phenotype) and its encoding mRNA (genotype) through puromycin for in vitro selection of proteins. Although a wheat germ cell-free translation system has been previously used in our mRNA display system, a protein synthesis using recombinant elements (PURE) system is a more attractive approach because it contains no endogenous nucleases and proteases and is optimized for folding of antibodies with disulphide bonds. However, when we used the PURE system for mRNA display of single-chain Fv (scFv) antibodies, the formation efficiency of the mRNA-protein conjugates was quite low. To establish an efficient platform for the PURE mRNA display of scFv, we performed affinity selection of a library of scFv antibodies with a C-terminal random sequence and obtained C-terminal sequences that increased the formation of mRNA-protein conjugates. We also identified unexpected common substitution mutations around the start codon of scFv antibodies, which were inferred to destabilize the mRNA secondary structure. This destabilization causes an increase in protein expression and the efficiency of the formation of mRNA-protein conjugates. We believe these improvements should make the PURE mRNA display more efficient for selecting antibodies for diagnostic and therapeutic applications. PMID:26711234

  15. Optimization of a single-chain antibody fragment overexpression in Escherichia coli using response surface methodology.

    PubMed

    Akbari, V; Sadeghi, H Mir Mohammad; Jafarian-Dehkordi, A; Chou, C Perry; Abedi, D

    2015-01-01

    Human epidermal growth factor receptor (HER) family plays an important role in various types of cancers. As a result, antibodies against HER and the mechanism of antigen-antibody binding action are under active investigation. We previously constructed a single-chain variable fragment (ScFv) against HER2, i.e. anti-Her2 ScFv, for expressing in the Escherichia coli. In the present study, we report the optimization of anti-Her2 ScFv expression in an E. coli host of BL21 (DE3) pLysS using response surface methodology based on tuning of three cultivation variables, including isopropyl-beta-D-thiogalactopyranoside (IPTG) concentration, temperature and post-induction time. A model for protein expression according to the Box-Behnken design predicted a maximal anti-Her2 ScFv expression at 37 °C, a post-induction time of 10.45 h and 0.75 mM IPTG. In addition, strategies based on inclusion body isolation and affinity chromatography were applied to purify anti-Her2 ScFv. The purity of the final product for inclusion bodies isolation and purification by Ni-NTA resin were 70 % and 95 %, respectively. The solubilization of the inclusion bodies was carried out using two denaturant agents, guanidine hydrochloride and urea. The present study showed that guanidine hydrochloride was more effective than urea in solubilizing the inclusion bodies. PMID:26430460

  16. Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B1.

    PubMed

    Min, Won-Ki; Na, Kang-In; Yoon, Jung-Hyun; Heo, Yoon-Jee; Lee, Daesang; Kim, Sung-Gun; Seo, Jin-Ho

    2016-10-15

    Aflatoxin B1 (AFB1) produced in Aspergillus flavus is a major hepatocarcinogen found in foods and feed. For effective immunological detection of AFB1 at low concentrations, the development of high affinity antibody for AFB1 is required. Previously, an affinity-maturated single-chain variable fragment containing 6 mutations (scFv-M37) was isolated from an artificial mutagenic library, which showed a 9-fold higher affinity than its wild type scFv. In this study, the effect of the 6 mutated residues on the affinity improvement was characterized using surface plasmon resonance analysis, which identified a deleterious mutation (VH-A110T) located on a framework region of the scFv-M37. The back mutation of VH-A110T resulted in a 3.2-fold affinity improvement, which was attributed to decrease of dissociation rate constant (kd) in interaction between AFB1 and the back mutant scFv. The biophysical analyses using circular dichroism and gel filtration revealed that the back mutation of VH-A110T caused a subtle conformational change of the scFv toward tighter binding to AFB1. PMID:27173568

  17. Design, expression and evaluation of a novel humanized single chain antibody against epidermal growth factor receptor (EGFR).

    PubMed

    Akbari, Bahman; Farajnia, Safar; Zarghami, Nosratollah; Mahdieh, Nejat; Rahmati, Mohammad; Khosroshahi, Shiva Ahdi; Rahbarnia, Leila

    2016-11-01

    Various strategies have been attempted for targeting of epidermal growth factor receptor (EGFR), as an essential biomarker in a variety of cancers. Several anti-EGFR antibodies including cetuximab are used in clinics for treatment of EGFR-overexpressing colorectal and head and neck cancers but the efficiency of these antibodies is threatened by their large size and chimeric nature. Humanized single chains antibodies (huscFv) are smaller generation of antibodies with lower immunogenicity may overcome these limitations. This article reports production and evaluation of a novel humanized anti-EGFR scFv. The CDRs of cetuximab heavy and light chains were grafted onto human antibody frameworks as framework donors. To maintain the antigen binding affinity of murine antibody, the murine vernier zone residues were retained in framework regions of huscFv. Additionally, two point mutations in CDR-L1 and CDR-L3 and three point mutations in CDR-H2 and CDR-H3 loops of the humanized scFv (huscFv) were introduced to increase affinity of the huscFv to EGFR. Analysis of results demonstrated that the humanness degree of resultant huscFv was increased as 19%. HuscFv was expressed in BL21 (DE3) and affinity purified via Ni-NTA column. The reactivity of huscFv with EGFR was evaluated by ELISA and dot blot techniques. Analysis by ELISA and dot blot showed that the huscFv was able to recognize and react with EGFR. Toxicity analysis by MTT assay indicated an inhibitory effect on growth of EGFR-overexpressing A431 cells. In conclusion, the huscFv produced in this study revealed decreased immunogenicity while retained growth inhibitory effect on EGFR-overexpressing tumor cells. PMID:27298212

  18. Optimization modeling of single-chain antibody against hepatoma based on similarity algorithm.

    PubMed

    Zhao, Zhi-Jun; Chen, Jing-Tao; Yuan, Jia-Ying; Yin, Xiao-Xiang; Song, Hua-Yong; Wang, Xin-Chun

    2015-01-01

    The purposes was to establish optimal modeling of single-chain antibody molecules based on similarity algorithm and seek the connecting peptides that had the minimal effect on the structure and bioactivity of the variable region of heavy chain (VH) and that of light chain (VL) in a single-chain antibody against liver cancer. After the Linker with different lengths (n=0~7) had been added into single chain fragment variable (ScFv), modeling of the overall sequences of VH, VL and ScFv were conducted respectively. Meanwhile, the peptide chain structure of (Gly4Ser)n was adopted for the connecting peptide. Then the spatial spherical shell layer alignment algorithm based on spherical polar coordinates was utilized for comparing the structural similarity of VH and VL before and after adding connecting peptide. Equally, in order to determine the stability of VH and VL, MATLAB was applied for analysis of the fore and aft distances and the diffusion radius. Indirect ELISA method was used to detect single-chain antibody immunological activity of Linker with different lengths. The MTT assay was utilized for the examination of the inhibition rate of single-chain antibody with different lengths of Linker to liver cancer cell. When n=4, the structural similarity between VH together with VL and their original ones was the highest. When n=3, the influence of connecting peptide on the stability of VH and VL was minimum. When n>3, the fore and aft distances changed little due to the increase and fold of the length of peptide chain. The results of ELISA detection showed that when n=4, affinity of single chain antibody to liver cancer cells was much higher. The MTT test also indicated that when n=4, the inhibition rate of the connecting peptide on hepatoma carcinoma cell reached the highest, and that came second when n=3. When n=4, the structural stability and biological functions of anti-hepatoma single-chain antibody were both favorable. This study has provided a basis for the design

  19. Single-Chain Semiconducting Polymer Dots

    PubMed Central

    2015-01-01

    This work describes the preparation and validation of single-chain semiconducting polymer dots (sPdots), which were generated using a method based on surface immobilization, washing, and cleavage. The sPdots have an ultrasmall size of ∼3.0 nm as determined by atomic force microscopy, a size that is consistent with the anticipated diameter calculated from the molecular weight of the single-chain semiconducting polymer. sPdots should find use in biology and medicine as a new class of fluorescent probes. The FRET assay this work presents is a simple and rapid test to ensure methods developed for preparing sPdot indeed produced single-chain Pdots as designed. PMID:25521606

  20. Affinity maturation of single-chain variable fragment specific for aflatoxin B(1) using yeast surface display.

    PubMed

    Min, Won-Ki; Kim, Sung-Gun; Seo, Jin-Ho

    2015-12-01

    As aflatoxin B1 is one of the most toxic mycotoxins, it is important to detect and to quantify aflatoxin B1 accurately by immunological methods. To enhance aflatoxin B1-binding affinity of the single-chain variable fragment, yeast surface display technique combined with fluorescence-activated cell sorting was applied. A randomly mutated scFv library was subjected to 4 rounds of fluorescence-activated cell sorting, resulting in isolation of 5 scFv variants showing an affinity improvement compared to the parental wild type scFv. The best scFv with a 9-fold improvement in affinity for aflatoxin B1 exhibited similar specificity to the monoclonal antibody. Most of the mutations in scFv-M37 were located outside of the canonical antigen-contact loops, suggesting that its affinity improvement might be driven by an allosteric effect inducing scFv-M37 to form a more favorable binding pocket for aflatoxin B1 than the wild type scFv. PMID:26041237

  1. Organizing multivalency in carbohydrate recognition.

    PubMed

    Müller, Christian; Despras, Guillaume; Lindhorst, Thisbe K

    2016-06-01

    The interactions of cell surface carbohydrates as well as of soluble glycoconjugates with their receptor proteins rule fundamental processes in cell biology. One of the supramolecular principles underlying and regulating carbohydrate recognition is multivalency. Many multivalent glycoconjugates have therefore been synthesized to study multivalency effects operative in glycobiology. This review is focused on smaller multivalent structures such as glycoclusters emphasizing carbohydrate-centered and heteromultivalent glycoconjugates. We are discussing primary, secondary and tertiary structural aspects including approaches to organize multivalency. PMID:27146554

  2. Kinetic analysis of a monoclonal therapeutic antibody and its single-chain homolog by surface plasmon resonance.

    PubMed

    Patel, Rekha; Andrien, Bruce A

    2010-01-01

    Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field. PMID:19720041

  3. Cloning and expression of an anti-LDL(-) single-chain variable fragment, and its inhibitory effect on experimental atherosclerosis

    PubMed Central

    Kazuma, Soraya M; Cavalcante, Marcela F; Telles, Andréia ER; Maranhão, Andrea Queiroz; Abdalla, Dulcineia SP

    2013-01-01

    The in vivo modified forms of low-density lipoprotein (LDL) are important for the formation of foam cells and as mediators of the immuno-inflammatory process involved in the progression of atherosclerosis. Electronegative LDL, LDL(-), is a LDL subfraction with pro-inflammatory properties that is present in human blood. To investigate possible atheroprotective effects, an anti-LDL(-) single-chain variable fragment (scFv) was expressed in the methylotrophic yeast Pichia pastoris and its activity was evaluated in vitro against macrophages and in experimental atherosclerosis in Ldlr-/-mice. The recombinant 2C7 scFv was produced in a yield of 9.5 mg of protein/L. The specificity and affinity of purified 2C7 scFv against LDL(-) was confirmed by ELISA. To assess the activity of 2C7 scFv on foam cell formation, RAW 264.7 macrophages were exposed to LDL(-) in the presence or absence of 2C7 scFv. The 2C7 scFv inhibited the uptake of LDL(-) by macrophages in a dose-dependent manner, and internalization of LDL(-) by these cells was found to be mediated by the CD36 and CD14 receptor. In addition, compared with untreated cells, lipid accumulation in macrophages was decreased, and the expression of Cd36, Tlr-4 and Cox-2 was downregulated in macrophages treated with 2C7 scFv. Importantly, compared with untreated mice, the treatment of Ldlr-/- mice with 2C7 scFv decreased the atherosclerotic lesion area at the aortic sinus. In conclusion, our data show that 2C7 scFv inhibits foam cell formation and atherosclerotic plaque development by modulating the expression of genes relevant to atherogenesis. These results encourage further use of this antibody fragment in the development of new therapeutic strategies that neutralize the pro-atherogenic effects of LDL(-). PMID:23924793

  4. [Expression purification and verification of HBscFv-IFNgamma in Pichia pastoris x33].

    PubMed

    Zhou, Shishui; Wang, Xiaoning

    2008-03-01

    In order to effectively cure hepatitis B virus (HBV), we studied on fusion protein HBscFv-IFNgamma, which was connected with single-chain Fv against HBV surface antigen(HBscFv) and gamma-interferon(IFNgamma) of being used in clinic against HBV. Adopting overlap PCR, the hbscfv and the ifngamma were connected into hbscfv-ifngamma. Then the pPICZalphaA/(hbscfv-ifngamma)(1,2,4) of multi-copy recombinant plasmid were constructed and transformed into Pichia pastoris x33. The engineering strain x4 was screened from transformed x33 and could secretively express HBscFv-IFNgamma. The preliminary verification indicates that HBscFv-IFNgamma has the bioactivity of HBscFv and IFNgamma by SDS-PAGE, Western blotting and ELISA. The supernatant of culturing X4 was purified by 14F7 affinity chromatography to HBscFv-IFNgamma with purity of 95%-98%. The HBscFv-IFNgamma is able to bind 27.9% HBV surface antigen (HBsAg) in the serum of HBV transgenic mice, which shows the antibody of HBscFv-IFNgamma has bioactivity in vivo. Therefore HBscFv-IFNgamma can shed light on the development of a new promising HBV-targeted drug. PMID:18589818

  5. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease.

    PubMed

    Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E; Levites, Yona; Rincon-Limas, Diego E

    2015-11-01

    Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732

  6. Expression and characterization of single-chain variable fragment antibody against staphylococcal enterotoxin A in Escherichia coli.

    PubMed

    Chen, Weifeng; Hu, Li; Liu, Aiping; Li, Jinquan; Chen, Fusheng; Wang, Xiaohong

    2014-11-01

    The staphylococcal enterotoxins (SEs) are potent gastrointestinal exotoxins synthesized by Staphylococcus aureus, which is responsible for various diseases including septicemia, food poisoning, and toxic shock syndrome, as well as bovine mastitis. Among them, staphylococcal enterotoxin A (SEA) is one of the most commonly present serotypes in staphylococcal food poisoning cases. In this study, the stable hybridoma 3C12 producing anti-SEA monoclonal antibody was established with an equilibrium dissociation constant (KD) of 1.48 × 10(-8) mol·L(-1), its ScFv-coding genes were obtained and then the anti-SEA single chain variable fragment (ScFv) protein was expressed in Escherichia coli. Characterization of the expressed target ScFv protein was analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis, Western blot, and enzyme-linked immunosorbent assay. The results demonstrated that the recombinant anti-SEA ScFv protein retained a specific binding activity for SEA, and the KD value of the soluble ScFv was about 3.75 × 10(-7) mol·L(-1). The overall yield of bioactive anti-SEA ScFv in E. coli flask culture was more than 10 mg·L(-1). PMID:25322256

  7. Preparation and identification of a single-chain variable fragment antibody against Newcastle diseases virus F48E9.

    PubMed

    Li, Benqiang; Ye, Jiaxin; Lin, Yuan; Wang, Man; Zhu, Jianguo

    2014-10-15

    This article describes a proposed method for convenient and efficient detection of Newcastle diseases virus (NDV) that uses the fusion of single-chain variable fragment (scFv) and pOPE101 vector. In order to select the single chain variable fragment (scFv) against NDV F48E9, the total RNA was extracted from the spleen of immunized chicken, and then was converted into cDNA via the reverse transcription. The scFv was spliced by using splice-overlap extension polymerase chain reaction (SOE-PCR). The scFv gene was cloned into a pOPE101 vector and expressed in E. coli. Under the optimized conditions, antibody affinity was studied by indirect ELISA. One positive clone was selected by ELISA screening, named ZL.6. Based on the positive clone and the germline sequence, the results of sequence analysis showed that there are more variation in CDR of VH and VL. In addition, BHK21 cell culture was conducted to examine the potential antiviral activity of ZL.6. The experimental result demonstrated that ZL.6 was able to neutralize NDV F48E9 which infected BHK21 cells. So ZL.6 will be proved useful for further characterization of NDV as potential diagnostic tool and therapeutic agent. PMID:25183016

  8. Development of an Immunoassay for Chloramphenicol Based on the Preparation of a Specific Single-Chain Variable Fragment Antibody.

    PubMed

    Du, Xin-Jun; Zhou, Xiao-Nan; Li, Ping; Sheng, Wei; Ducancel, Frédéric; Wang, Shuo

    2016-04-13

    Specific antibodies are essential for the immune detection of small molecule contaminants. In the present study, the heavy and light variable regions (VH and VL) of the immunoglobulin genes from a hybridoma secreting a chloramphenicol (CAP)-specific monoclonal antibody (mAb) were cloned and sequenced. In addition, the light and heavy chains obtained from the monoclonal antibody were separated using SDS-PAGE and analyzed using Orbitrap mass spectrometry. The results of DNA sequencing and mass spectrometry analysis were compared, and the VH and VL chains specific for CAP were determined and used to construct a single-chain variable fragment (scFv). This fragment was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein and used to develop a direct competitive ELISA. Compared with the parent mAb, scFv exhibits lower sensitivity but better food matrix resistance. This work highlights the application of engineered antibodies for CAP detection. PMID:27003441

  9. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit

  10. In silico experiments of single-chain antibody fragment against drugs of abuse

    PubMed Central

    Hu, Guodong; Chen, L. Y.

    2010-01-01

    SUMMARY Three sets of in silico experiments have been conducted to elucidate the binding mechanics of two drugs, (+)-methamphetamine (METH) and amphetamine (AMP) to the single-chain variable fragment (scFv) recently engineered from anti-METH monoclonal antibody mAb6H4 (IgG, κ light chain, Kd = 11nM). The first set of in silico experiments are long time equilibration runs of scFv:drug complexes and of drug-free scFv both in solution. They demonstrate how the solution structures of scFv deviate from its crystallographic form with or without drug molecules bound to it. And they lead to the prediction that the Arrhenius activation barrier is nearly zero for transitions from the dissociated state to the bound state. The second set of in silico experiments are nonequilibrium dynamics of pulling the drug molecules out of the binding pocket of scFv and the equilibration runs for drugs to fall back into binding pocket. They demonstrate that extra water molecules (in addition to the two crystallographic waters) exist inside the binding pocket, underneath the drug molecules. These extra waters must have been evaporated from the binding pockets during the crystallization process of the in vitro experiments of structural determination. The third set of in silico experiments are nonequilibrium steered molecular dynamics simulations to determine the absolute binding free energies of METH and AMP to scFv. The center-of-mass of a drug molecule (METH or AMP) is steered (pulled) towards (forward) and away from (reverse) the binding site, sampling forward and reverse pulling paths. Mechanic work is measured along the pulling paths. The work measurements are averaged through the Brownian dynamics fluctuation dissipation theorem to produce the free-energy profiles of the scFv:drug complexes as a function of the drug-scFv separation. These experiments lead to the theoretical prediction of absolute binding energies of METH and AMP that are in agreement with the in vitro experimental

  11. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    SciTech Connect

    Wang, Lin-Xu; Mellon, Michael; Bowder, Dane; Quinn, Meghan; Shea, Danielle; Wood, Charles; Xiang, Shi-Hua

    2015-01-15

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture.

  12. Production and characterization of a biotinylated single-chain variable fragment antibody for detection of parathion-methyl.

    PubMed

    Wang, Huimin; Zhao, Fengchun; Han, Xiao; Yang, Zhengyou

    2016-10-01

    In this article, we reported the development of a biotinylated single-chain variable fragment (scFv) antibody based indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) for parathion-methyl (PM) detection. Firstly, a phage display library was generated using a pre-immunized BALB/C mouse against a specific hapten of PM. After four rounds of panning, the scFv gene fragments were transferred into a secreted expression vector. Then, the scFv antibodies were secreted expressed and screened by IC-ELISA against PM. The selected scFv antibody was fused with a biotin acceptor domain (BAD) and inserted into pET-28a(+) vector for high-level expression in Escherichia coli BL2 (DE3). After optimizing expression conditions, the scFv-BAD antibody was expressed as a soluble protein and biotinylated in vitro by the E. coli biotin ligase (BirA). Subsequently, the biotinylated scFv-BAD antibody was purified with a high yield of 59.2 ± 3.7 mg/L of culture, and was characterized by SDS-PAGE and western blotting. Finally, based on the biotinylated scFv-BAD, a sensitive IC-ELISA for detection of PM was developed, and the 50% inhibition value (IC50) of PM was determined as 14.5 ng/mL, with a limit of detection (LOD, IC10) of 0.9 ng/mL. Cross-reactivity (CR) studies revealed that the scFv antibody showed desirable specificity for PM. PMID:27181246

  13. Inclusion of a furin-sensitive spacer enhances the cytotoxicity of ribotoxin restrictocin containing recombinant single-chain immunotoxins.

    PubMed

    Goyal, A; Batra, J K

    2000-01-15

    Chimaeric toxins have considerable therapeutic potential to treat various malignancies. We have previously used the fungal ribonucleolytic toxin restrictocin to make chimaeric toxins in which the ligand was fused at either the N-terminus or the C-terminus of the toxin. Chimaeric toxins containing ligand at the C-terminus of restrictocin were shown to be more active than those having ligand at the N-terminus of the toxin. Here we describe the further engineering of restrictocin-based chimaeric toxins, anti-TFR(scFv)-restrictocin and restrictocin-anti-TFR(scFv), containing restrictocin and a single chain fragment variable (scFv) of a monoclonal antibody directed at the human transferrin receptor (TFR), to enhance their cell-killing activity. To promote the independent folding of the two proteins in the chimaeric toxin, a linear flexible peptide, Gly-Gly-Gly-Gly-Ser, was inserted between the toxin and the ligand to generate restrictocin-linker-anti-TFR(scFv) and anti-TFR(scFv)-linker-restrictocin. A 12-residue spacer, Thr-Arg-His-Arg-Gln-Pro-Arg-Gly-Trp-Glu-Gln-Leu, containing the recognition site for the protease furin, was incorporated between the toxin and the ligand to generate restrictocin-spacer-anti-TFR(scFv) and anti-TFR(scFv)-spacer-restrictocin. The incorporation of the proteolytically cleavable spacer enhanced the cell-killing activity of both constructs by 2-30-fold depending on the target cell line. However, the introduction of linker improved the cytotoxic activity only for anti-TFR(scFv)-linker-restrictocin. The proteolytically cleavable spacer-containing chimaeric toxins had similar cytotoxic activities irrespective of the location of the ligand on the toxin and they were found to release the restrictocin fragment efficiently on proteolysis in vitro. PMID:10620501

  14. Flow cytometry-based methods for assessing soluble scFv activities and detecting pathogen antigens in solution

    SciTech Connect

    Gray, Sean; Weigel, Kris M.; Miller, Keith D.; Ndung'u, Joseph; Buscher, Philippe; Tran, Thao N.; Baird, Cheryl L.; Cangelosi, Gerard A.

    2010-04-01

    Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. A limiting step in the isolation of scFv from nonimmune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeastdisplayed and secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of its ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv toidentify additional yeast-displayed scFv that bind nonoverlapping or noncompeting epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries.

  15. Fv: Interactive FITS file editor

    NASA Astrophysics Data System (ADS)

    Pence, William; Chai, Pan

    2012-05-01

    Fv is an easy-to-use graphical program for viewing and editing any FITS format image or table. The Fv software is small, completely self-contained and runs on Windows PCs, most Unix platforms and Mac OS-X. Fv also provides a portal into the Hera data analysis service from the HEASARC.

  16. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes.

    PubMed

    Liu, Jiangnan; Yi, Bin; Zhang, Zhe; Cao, Yi

    2016-06-01

    CD176 (Thomsen-Friedenreich antigen) is a tumor-associated carbohydrate epitope (glycotope) functionally involved in blood spread and liver metastasis of cancer cells by mediating the adhesion of cancer cells to endothelial cells and hepatocytes, respectively. CD176 could be a promising target for antitumor immunotherapy. We applied B lymphocytes obtained from mice immunized with CD176 antigen and constructed a phage display library. A positive clone of CD176 single-chain variable antibody fragment (scFv) was successfully screened from this library. The CD176 scFv was expressed in Escherichia coli and purified. The purified scFv can bind to the natural CD176 expressed on the surface of cancer cells. Furthermore, the CD176 scFv inhibits the adhesion of CD176(+) cancer cells to endothelial cells and hepatocytes. This CD176 scFv provides a basis for future development of recombinant CD176-specific antibodies that can be used in therapeutic application. PMID:27090911

  17. Single chain antibody fragment with serine protease inhibitory property capable of neutralizing toxicity of Trimeresurus mucrosquamatus venom.

    PubMed

    Lee, Yu-Ching; Chen, Wang-Chuan; Liang, Meng-Huei; Lee, Chi-Hsin; Tsai, Keng-Chang; Chiang, Jen-Ron; Chiang, Liao-Chun; Chen, Chi-Ching; Chang, Chang-Yu; Lee, Ching-Hsiao; Leu, Sy-Jye; Yang, Yi-Yuan

    2015-05-01

    Trimeresurus mucrosquamatus (TM) is one of majorities of snake envenomation with necrotic and hemorrhagic toxin in Taiwan. In this study, chickens were used as an alternative animal model for immunization with TM venom. Using phage display technology to process four rounds of panning, selected single chain variable fragments (scFv) could specifically recognize TM venom proteins, which were later identified as a group of homogeneous venom serine protease. The specific scFv antibodies showed various inhibitory effects on sheep RBC lysis induced by TM venom using an indirect hemolytic assay in vitro. In addition, the survival times of mice were extended to certain degrees when treated with these scFv antibodies individually or in a combination. To elucidate the inhibitory mechanism, we used molecular modeling to build up the serine protease structure to simulate the possible interactions with scFv antibodies. The results suggested that the CDR-loop of the scFv antibodies (3S10 or 4S1) might bind at the 99-loop of venom serine protease so as to affect substrate access due to the partial collapse of the subsite S2 and the partial movement of the subsite S4. It is hoped these chicken-derived antibodies could be applied to develop diagnostic and therapeutic agents against snakebites. PMID:25769957

  18. Production of a recombinant anti-human CD4 single-chain variable-fragment antibody using phage display technology and its expression in Escherichia coli.

    PubMed

    Babaei, Arash; Zarkesh-Esfahani, Sayyed Hamid; Gharagozloo, Marjan

    2011-05-01

    Single-chain variable fragment (scFv) is a fusion protein of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulin, connected with a short linker peptide of 10 to about 20 amino acids. In this study, the scFv of a monoclonal antibody against the third domain of human CD4 was cloned from OKT4 hybridoma cells using the phage display technique and produced in E. coli. The expression, production, and purification of anti-CD4 scFv were tested using SDS-PAGE and Western blot, and the specificity of anti-CD4 scFv was examined using ELISA. A 31 kDa recombinant anti-CD4 scFv was expressed and produced in bacteria, which was confirmed by SDS-PAGE and Western blot assays. Sequence analysis proved the ScFv structure of the construct. It was able to bind to CD4 in quality ELISA assay. The canonical structure of anti-CD4 scFv antibody was obtained using the SWISS_MODEL bioinformatics tool for comparing with the scFv general structure. To the best of our knowledge, this is the first report for generating scFv against human CD4 antigen. Engineered anti-CD4 scFv could be used in immunological studies, including fluorochrome conjugation, bispecific antibody production, bifunctional protein synthesis, and other genetic engineering manipulations. Since the binding site of our product is domain 3 (D3) of the CD4 molecule and different from the CD4 immunological main domain, including D1 and D2, further studies are needed to evaluate the anti-CD4 scFv potential for diagnostic and therapeutic applications. PMID:21617352

  19. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity

    PubMed Central

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A.; Motamedi-Shad, Neda; Irving, James A.; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J.; Miranda, Elena; Lomas, David A.

    2015-01-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin.—Ordóñez, A., Pérez, J., Tan, L., Dickens, J. A., Motamedi-Shad, N., Irving, J. A., Haq, I., Ekeowa, U., Marciniak, S. J., Miranda, E., Lomas, D. A. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity. PMID:25757566

  20. Genetic Modification of Mesenchymal Stem Cells to Express a Single-Chain Antibody Against EGFRvIII on the Cell Surface

    PubMed Central

    Balyasnikova, Irina V.; Franco-Gou, Rosa; Mathis, J. Michael; Lesniak, Maciej S.

    2010-01-01

    Human adult mesenchymal stem cells (hMSC) are under active investigation as cellular carriers for gene therapy. hMSC possess natural tropism toward tumors, however, the targeting of hMSC to specific cell populations within tumors is unexplored. In the case of glioblastoma multiforme (GBM), at least half of the tumors express EGFRvIII on the cell surface, an ideal target for antibody-mediated gene/drug delivery. In this study, we investigated the feasibility of genetically modifying hMSC to express a single-chain antibody (scFv) to EGFRvIII on their surface. Nucleofection was used to transfect hMSC with cDNA encoding scFv EGFRvIII fused with PDGFR or human B7-1 transmembrane domains. The expression of scFv EGFRvIII on the cell surface was assessed by FACS. A stable population of scFv EGFRvIII-expressing hMSC was selected based on antibiotic resistance and enriched using FACS. We found that nucleofection allows the efficient expression of scFv EGFRvIII on the cell surface of hMSC. hMSCs transfected with the construct encoding scFv EGFRvIII as a fusion with PDGFRtm showed scFv EGFRvIII expression in up to 86% of cells. Most importantly, human MSC expressing scFv against EGFRvIII demonstrated enhanced binding to U87-EGFRvIII cells in vitro and at least 7-fold increased retention in human U87-EGFRvIII expressing tumors in vivo. In summary, we provide the first conclusive evidence of genetic modification of hMSC with a single-chain antibody against an antigen expressed on the surface of tumor cells, thereby opening up a new venue for enhanced delivery of gene therapy applications in the context of malignant brain cancer. PMID:19937911

  1. Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding.

    PubMed

    He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong

    2016-06-15

    Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection. PMID:26772159

  2. Preparation and diagnostic use of a novel recombinant single-chain antibody against rabies virus glycoprotein.

    PubMed

    Yuan, Ruosen; Chen, Xiaoxu; Chen, Yan; Gu, Tiejun; Xi, Hualong; Duan, Ye; Sun, Bo; Yu, Xianghui; Jiang, Chunlai; Liu, Xintao; Wu, Chunlai; Kong, Wei; Wu, Yongge

    2014-02-01

    Rabies virus (RABV) causes a fatal infectious disease, but effective protection may be achieved with the use of rabies immunoglobulin and a rabies vaccine. Virus-neutralizing antibodies (VNA), which play an important role in the prevention of rabies, are commonly evaluated by the RABV neutralizing test. For determining serum VNA levels or virus titers during the RABV vaccine manufacturing process, reliability of the assay method is highly important and mainly dependent on the diagnostic antibody. Most diagnostic antibodies are monoclonal antibodies (mAbs) made from hybridoma cell lines and are costly and time consuming to prepare. Thus, production of a cost-effective mAb for determining rabies VNA levels or RABV titers is needed. In this report, we describe the prokaryotic production of a RABV-specific single-chain variable fragment (scFv) protein with a His-tag (scFv98H) from a previously constructed plasmid in a bioreactor, including the purification and refolding process as well as the functional testing of the protein. The antigen-specific binding characteristics, affinity, and relative affinity of the purified protein were tested. The scFv98H antibody was compared with a commercial RABV nucleoprotein mAb for assaying the VNA level of anti-rabies serum samples from different sources or testing the growth kinetics of RABV strains for vaccine manufactured in China. The results indicated that scFv98H may be used as a novel diagnostic tool to assay VNA levels or virus titers and may be used as an alternative for the diagnostic antibody presently employed for these purposes. PMID:24241896

  3. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    PubMed

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples. PMID:26693887

  4. Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli.

    PubMed

    Akbari, Vajihe; Sadeghi, Hamid Mir Mohammad; Jafarian-Dehkordi, Abbas; Abedi, Daryoush; Chou, C Perry

    2015-12-01

    A novel monoclonal antibody against human epidermal growth factor receptor 2 (HER2), i.e., pertuzumab (Perjeta®) developed by Genentech, has been verified to be effective in treating metastatic HER2-overexpressing breast cancer. The fact that the presence of the Fc region of the anti-HER2 is uncritical for growth inhibition of tumor cells suggests the potential biological activity of the associated antibody fragments. In the present study, we report functional expression of anti-HER2his-scFv, a single-chain variable fragment (scFv) derived from pertuzumab, in the periplasm of Escherichia coli and its purification. Biological activity of the soluble scFv produced in this manner was characterized using immunofluorescent staining, immunocytochemistry, flow cytometry and cytotoxicity assay. The effect of anti-HER2his-scFv on HER2 dimerization was also assessed by tyrosine kinase assay. It was observed that the purified scFv had a high specificity and affinity to HER2 receptors expressed on the surface of tumor cells with a selective cytotoxic effect on HER2-overexpressing SK-OV-3 cells. In addition, anti-HER2his-scFv was able to suppress phosphorylation of HER2 in the presence of heregulin. The results suggest that anti-HER2his-scFv can be a potential candidate for various therapeutic and diagnosis applications. PMID:26166178

  5. [Construction and panning of scFv phage display library against recombinant interleukin 4 receptor].

    PubMed

    Yang, Guangyong; Guo, Haitao; Liu, Ximing; He, Guangzhi; Tian, Weiyi; Cai, Kun; Wang, Ping; Wang, Wenjia

    2016-06-01

    Objective To construct the recombinant human interleukin 4 receptor (rhIL-4R) single-chain Fv (scFv) antibody library by phage display technique to obtain the anti-IL-4R scFv clones selected from the library. Methods Total RNA was extracted from splenocytes of the BALB/c mice immunized with rhIL-4R. Complementary DNA fragments of variable heavy (VH) and variable light (VL) chains of the antibodies were prepared by reverse transcription PCR and assembled into scFv by splice overlap extension PCR (SOE-PCR). Both scFv and the pCANTAB5E vector were respectively double-digested with restriction endonuclease Sfi I and Not I, connected with T4 ligase, and then transformed into the competent cells E.coli TG1; it was cultured in medium to obtain the phage scFv antibody library; after three rounds of enrichment and panning, the specific antigen scFv with high affinity was selected for the sequencing. Results After three rounds of panning, we obtained a diversity of approximately 2×10(8) anti-rhIL-4R scFv antibody library. Sequencing analysis of one positive clone showed that the anti-rhIL-4R scFv was 741 bp and coded 247 amino acids. The analysis of VBASE2 database indicated that VH and VL gene sequences of anti-rhIL-4R protein all had three complementarity determining regions and four backbone areas.Conclusion The anti-rhIL-4R scFv was obtained from the scFv antibody library. PMID:27371853

  6. High-level expression, purification, and characterization of bifunctional ScFv-9R fusion protein.

    PubMed

    Zhang, Xiguang; Xie, Jiasen; Sun, Yan; Xu, Huijing; Du, Tonghua; Liu, Zixuan; Chen, Jinhui; Zheng, Zhong; Liu, Keqiang; Zhang, Jizhou; Kan, Mujie; Li, Xiaokun; Xiao, Yechen

    2014-06-01

    Fibroblast growth factor receptor 3 (FGFR3) is a noted proto-oncogene involved in the pathogenesis of many tumors, so more and more studies focus on the potential use of receptor kinase inhibitor and therapeutic antibodies against FGFR3. In this study, we designed a novel fusion protein containing the single-chain Fv (ScFv) against FGFR3 and 9-arginine, denoted as ScFv-9R. To achieve the high-level production and soluble expression, ScFv and ScFv-9R were fused with small ubiquitin-related modifier (Sumo) by polymerase chain reaction and expressed in Escherichia coli BL21 (DE3). The recombinant bacteria was induced by 0.5 mM isopropyl-β-D-thiogalactopyranoside for 20 h at 20 °C; supernatants of Sumo-ScFv was harvested and purified by DEAE Sepharose FF and Ni-NTA orderly, and supernatants of Sumo-ScFv-9R was harvested and purified by Ni-NTA. After cleaved by the Sumo protease, the recombinant ScFv or ScFv-9R was released from the fusion protein, respectively. The purity of ScFv or ScFV-9R was shown to be higher than 90 %, and their yield reached 3-5 mg per liter of bacterial culture. In vitro data showed that ScFV-9R can attenuate the phosphorylation of FGFR3 and ERK in the absence or presence of FGF9. Gel retardation assay showed that 1 μg of ScFv-9R could efficiently bind to about 4 pmol siRNA. Fluorescent microscope analysis showed that ScFv-9R can efficiently bind and deliver siRNA into RT112 cells. In conclusion, we use Sumo fusion system to acquire high-level production, soluble expression, and bifunctional activity of ScFv-9R in E. coli. Our results also revealed that ScFv-9R, as a novel carrier, may have potential applications in antitumor studies and pharmaceutical development. PMID:24519456

  7. Screening, expression, and characterization of an anti-human oxidized low-density lipoprotein single-chain variable fragment.

    PubMed

    Kumano-Kuramochi, Miyuki; Fujimura, Takashi; Komba, Shiro; Maeda-Yamamoto, Mari; Machida, Sachiko

    2016-09-01

    Increased levels of oxidized low-density lipoprotein (OxLDL) in the blood circulation are correlated with atherosclerosis. Monoclonal antibody-based detection systems have been reported for OxLDL. We identified novel single-chain variable fragments (scFvs) having affinity for human OxLDL and related ligands. We constructed an scFv library from nonimmunized human spleen mRNA. Two types (γ+κ and μ+λ) of scFv phage libraries were enriched by biopanning, and five scFv clones with affinity for OxLDL were identified. The γκ5 scFv, which showed the highest affinity for OxLDL, was cloned into pET-22b(+) and expressed in Escherichia coli BL21(DE3). γκ5, expressed as an inclusion body in BL21(DE3), was refolded and purified. The specificity and sensitivity of γκ5 were analyzed using enzyme-linked immunosorbent assays (ELISAs). The γκ5 scFv showed affinity for OxLDL and acetylated LDL. The sensitivity of γκ5 to low concentrations (1-2 μg/mL) of OxLDL was higher than that to AcLDL and LDL. Finally, we developed a sandwich ELISA using γκ5 and CTLD14 (a lectin-like OxLDL receptor-1 ligand recognition region), which allowed specific detection of OxLDL at a level below 0.1 μg/mL. Our results indicated that the γκ5 scFv was a promising molecule for the detection of modified LDL at very low concentrations. PMID:27038672

  8. Expression, characterization, and evaluation of a RANK-binding single chain fraction variable: an osteoclast targeting drug delivery strategy.

    PubMed

    Newa, Madhuri; Lam, Michael; Bhandari, Krishna Hari; Xu, Biwen; Doschak, Michael R

    2014-01-01

    A single chain Fraction variable (scFv) employs antibody-like target recognition specificity. Osteoclasts, responsible for bone resorption, express Receptor Activator of Nuclear factor Kappa B (RANK) receptors. This study aimed to express, characterize, and evaluate scFv against RANK receptors that may serve as a platform to target osteoclasts. Using phage display technology, scFv against RANK receptor was expressed and characterized by DNA sequencing, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption-ionization time-of-flight (MALDI TOF), enzyme-linked immunosorbent assay (ELISA), Western blot, and immunocytochemistry. The potential for cytotoxicity was evaluated using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay, and its cross reactivity was evaluated using ELISA. Osteoclast-like cells were generated from RAW 264.7 cells, and the osteoclast targeting ability of scFv was evaluated using immunocytochemistry. ScFv's antiresorptive efficacy was studied using a tartrate-resistant acid phosphatase (TRAP) assay and resorption assay. Anti-RANK scFv was successfully expressed and characterized. No cross reactivity with other tumor necrosis factor receptor (TNFR) members and no cytotoxic effect on a non-RANK bearing cell line were observed. It showed specificity toward a RANK receptor and an inhibitory effect on osteoclast activity. With the increase in development trends for biologics as therapeutics and growing knowledge on the importance of osteoclast targeted therapy, this study may provide a drug delivery strategy to target osteoclasts, thereby leading to a promising therapy for resorptive bone diseases. PMID:24171467

  9. Single Chain Variable Fragment Against Aβ Expressed in Baculovirus Inhibits Abeta Fibril Elongation and Promotes its Disaggregation

    PubMed Central

    Fang, Fang; Song, Lin-Lin; Jiao, Yue-Ying; Wang, He; Peng, Xiang-Lei; Zheng, Yan-Peng; Wang, Jun; He, Jin-Sheng; Hung, Tao

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of age-related dementia, and the most urgent problem is that it is currently incurable. Amyloid-β (Aβ) peptide is believed to play a major role in the pathogenesis of AD. We previously reported that an Aβ N-terminal amino acid targeting monoclonal antibody (MAb), A8, inhibits Aβ fibril formation and has potential as an immunotherapy for AD based on a mouse model. To further study the underlying mechanisms, we tested our hypothesis that the single chain fragment variable (scFv) without the Fc fragment is capable of regulating either Aβ aggregation or disaggregation in vitro. Here, a model of cell-free Aβ “on-pathway” aggregation was established and identified using PCR, Western blot, ELISA, transmission electron microscopy (TEM) and thioflavin T (ThT) binding analyses. His-tagged A8 scFvs was cloned and solubly expressed in baculovirus. Our data demonstrated that the Ni-NTA agarose affinity-purified A8 scFv inhibited the forward reaction of “on-pathway” aggregation and Aβ fibril maturation. The effect of A8 scFv on Aβ fibrillogenesis was markedly more significant when administered at the start of the Aβ folding reaction. Furthermore, the results also showed that pre-formed Aβ fibrils could be disaggregated via incubation with purified A8 scFv, which suggested that A8 scFv is involved in the reverse reaction of Aβ aggregation. Therefore, A8 scFv was capable of both inhibiting fibrillogenesis and disaggregating matured fibrils. Our present study provides valuable insight into the regulators of ultrastructural dynamics of cell-free “on-pathway” Aβ aggregation and will assist in the development of therapeutic strategies for AD. PMID:25919299

  10. Phase analysis in single-chain variable fragment production by recombinant Pichia pastoris based on proteomics combined with multivariate statistics.

    PubMed

    Fujiki, Yuya; Kumada, Yoichi; Kishimoto, Michimasa

    2015-08-01

    The proteomics technique, which consists of two-dimensional gel electrophoresis (2-DE), peptide mass fingerprinting (PMF), gel image analysis, and multivariate statistics, was applied to the phase analysis of a fed-batch culture for the production of a single-chain variable fragment (scFv) of an anti-C-reactive protein (CRP) antibody by Pichia pastoris. The time courses of the fed-batch culture were separated into three distinct phases: the growth phase of the batch process, the growth phase of the fed-batch process, and the production phase of the fed-batch process. Multivariate statistical analysis using 2-DE gel image analysis data clearly showed the change in the culture phase and provided information concerning the protein expression, which suggested a metabolic change related to cell growth and production during the fed-batch culture. Furthermore, specific proteins, such as alcohol oxidase, which is strongly related to scFv expression, and proteinase A, which could biodegrade scFv in the latter phases of production, were identified via the PMF method. The proteomics technique provided valuable information about the effect of the methanol concentration on scFv production. PMID:25636980

  11. A chimera of green fluorescent protein with single chain variable fragment antibody against ginsenosides for fluorescence-linked immunosorbent assay.

    PubMed

    Sakamoto, Seiichi; Tanizaki, Yusuke; Pongkitwitoon, Benyakan; Tanaka, Hiroyuki; Morimoto, Satoshi

    2011-05-01

    A chimera of green fluorescent protein extracted from Aequorea coerulescens (AcGFP), a mutant that has been codon optimized for mammalian expression, with single-chain variable fragment (scFv) antibody against ginsenoside Re (GRe-scFv), named fluobody, has been successfully expressed in Escherichia coli (E. coli) to develop simple, speedy, and sensitive fluorescence-linked immunosorbent assay (FLISA). Two chimera proteins were constructed to contain GRe-scFv at the C-terminus of AcGFP (C-fluobody) and at the N-terminus of AcGFP (N-fluobody). These fluobodies were then purified by ion metal affinity chromatography and refolded by stepwise dialysis. The characterization of both fluobodies revealed that C-fluobody was found to be appropriate probe for FLISA as compare with N-fluobody. Furthermore, improvement of limit of detection (LOD) was observed in FLISA using C-fluobody (10 ng/mL) due to its strong fluorescence intensity of AcGFP compared with conventional enzyme-linked immunosorbent assay (ELISA) using parental monoclonal antibody against ginsenoside Re (G-Re), MAb-4G10 (100 ng/mL). Since some steps required in ELISA can be avoided in this present FLISA, speedy and sensitive immunoassay also could be performed using fluobody instead of monoclonal antibody and scFv. PMID:21277981

  12. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    PubMed Central

    Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.

    2016-01-01

    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768

  13. A functional recombinant single-chain T cell receptor fragment capable of selectively targeting antigen-presenting cells.

    PubMed

    Epel, Malka; Ellenhorn, Joshua D; Diamond, Don J; Reiter, Yoram

    2002-11-01

    Specificity in the immune system is dictated and regulated by specific recognition of peptide/major histocompatibility complexes (MHC) by the T cell receptor (TCR). Such peptide/MHC complexes are a desirable target for novel approaches in immunotherapy because of their highly restricted fine specificity. Recently a potent anti-human p53 CD8(+) cytotoxic T lymphocyte (CTL) response has been developed in HLA-A2 transgenic mice after immunization with peptides corresponding to HLA-A2 motifs from human p53. An alpha/beta T-cell receptor was cloned from such CTL which exhibited a moderately high affinity to the human p53(149-157) peptide. In this report, we investigated the possibility of using a recombinant tumor-specific TCR for antigen-specific elimination of cells that express the specific MHC-peptide complex. To this end, we constructed a functional single-chain Fv fragment from the cloned TCR and fused it to a very potent cytotoxic molecule, a truncated form of Pseudomonas exotoxin A (PE38). The p53 TCR scFv-P38 fusion protein was generated by in vitro refolding from bacterially-expressed inclusion bodies, and was found to be functional by its ability to bind antigen-presenting cells (APC) which express the specific p53-derived peptide. Moreover, we have shown that the p53-specific TCR scFv-PE38 molecule specifically kills APC in a peptide-dependent manner. These results represent the first time that a TCR-derived recombinant single-chain Fv fragment has been used as a targeting moiety to deliver a cytotoxic effector molecule to cells and has been able to mediate the efficient killing of the particular cell population that expresses the specific MHC/peptide complex. Similarly to antibody-based targeting approaches, TCR with tumor cell specificity represent attractive candidates for generating new, very specific targeting moieties for various modes of cancer immunotherapy. PMID:12384808

  14. Novel immunocytokine IL12-SS1 (Fv) inhibits mesothelioma tumor growth in nude mice.

    PubMed

    Kim, Heungnam; Gao, Wei; Ho, Mitchell

    2013-01-01

    Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12) and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv), was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG). The single-chain IL12-SS1 (Fv) immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226) and ovarian (OVCAR-3) cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226) grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv) is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies. PMID:24260587

  15. High throughput screening of scFv antibodies against viral hemorrhagic septicaemia virus by flow cytometry.

    PubMed

    Zhou, Yao; Xie, Zhi-Gang

    2015-07-01

    Viral hemorrhagic septicaemia (VHS) is an economically important disease that affects salmon and trout worldwide. In this study, a recombinant single chain variable fragment (scFv) antibody library derived from rainbow trout immunized with purified viral hemorrhagic septicaemia virus (VHSV) was constructed. The library was subjected to three rounds of screening by flow cytometry (FCM) against VHSV through a bacteria display technology, resulting in the enrichment of scFv. Four scFv clones with different fluorescence intensity were obtained by colony pick up at random following three rounds of screening. The isolated scFv antibodies were expressed and purified. Relative affinity assay showed the four clones had different sensitivity to VHSV, in accordance with FCM. The potential use of the selected VHSV-specific scFv antibodies was demonstrated by the successful application in Western blotting assay, ELISA and immunofluorescence antibody test (IFAT), and one of the isolated scFv molecular showed excellent in vitro and in vivo blocking activities against VHSV. scFv isolated in this study can be promising diagnostic and/or therapeutic reagents for VHS. This study provides powerful strategies for screening antibodies against new diseases. PMID:25813596

  16. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    PubMed

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein. PMID:24647109

  17. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    SciTech Connect

    Bradbury, Andrew M; Velappan, Nileena; Schmidt, Jurgen G

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  18. Chaperone-Assisted Soluble Expression of a Humanized Anti-EGFR ScFv Antibody in E. Coli

    PubMed Central

    Veisi, Kamal; Farajnia, Safar; Zarghami, Nosratollah; Khoram Khorshid, Hamid Reza; Samadi, Nasser; Ahdi Khosroshahi, Shiva; Zarei Jaliani, Hossein

    2015-01-01

    Purpose: Formation of inclusion bodies is a considerable obstacle threatening the advantages of E. coli expression system to serve as the most common and easiest system in recombinant protein production. To solve this problem, several strategies have been proposed among which application of molecular chaperones is of remarkable consideration. The aim of this study was to evaluate the effects of molecular chaperones on soluble expression of aggregation-prone humanized single chain antibody. Methods: To increase the solubility of a humanized single chain antibody (hscFv), different chaperone plasmids including PG-tf2 (GroES- GroEL- tig), ptf16 (tig) and pGro7 (GroES- GroEL) were co-expressed in BL21 cells containing pET-22b- hscFv construct. The solubility of recombinant hscFv was analyzed by SDS-PAGE. After purification of soluble hscFv by Ni-NTA column, the biological activity and cytotoxicity of the recombinant protein were tested by ELISA and MTT assay, respectively. Results: SDS-PAGE analysis of the hscFv revealed that chaperone utility remarkably increased (up to 50%) the solubility of the protein. ELISA test and MTT assay analyses also confirmed the biological activity of the gained hscFv in reaction with A431 cells (OD value: 2.6) and inhibition of their proliferation, respectively. Conclusion: The results of this study revealed that co-expression of chaperones with hscFv leads to remarkable increase in the solubility of the recombinant hscFv, which could be of great consideration for large scale production of recombinant single chain antibodies. PMID:26793607

  19. Investigation of the structure of anti-human seminal plasma protein single-chain antibody and its association with linker peptide length

    PubMed Central

    JIANG, XIN; ZHAI, JUN; SONG, DONGKUI; QU, QINGSHAN; LI, MING; XING, LI; MIAO, SHUZHAI

    2015-01-01

    To enhance the activity of seminoprotein single-chain variable fragment (γ-Sm-ScFv) antibodies, modulation of the length of the linker peptide, which connects the variable region of the heavy chain (VH) and the light chain (VL) of single-chain antibodies, was performed in the present study. Homologous modeling of single VH and VL were performed, respectively. Subsequently, modeling of the whole ScFv sequence, which was previously modified with added linkers of different lengths was also performed, and the (Gly4Ser)n peptide chain structure was used as the linker. The similarities between VH and VL prior to and following the addition of the linker were compared by applying the algorithm of protein similarity, based on spherical coordinates layering. In addition, changes in the fore and aft distance, and diffusion radius were calculated using a MATLAB tool, based on which changes in structural stability were analyzed. Finally, the single-chain antibody was assessed in a nude mouse model. When n=3 or n=6, the similarity between the original distance and VH and VL were the highest, and the fore and aft distance and diffusion radius were relatively close. In addition, the nude mouse model indicated that, when n=3 or n=6, the inhibitory rate of the single-chain antibody against tumor cells was significantly higher, compared with the other linker peptides of different lengths. The effect of structural changes of the linker peptides in the single-chain antibodies on the whole antibody molecule was examined at different levels using a combination of mathematical modeling, bioinformatics methods and biological experiments. The findings of the present study may provide a foundation for further investigation into the preparation of single-chain antibodies. PMID:26099852

  20. Purification and on-column refolding of a single-chain antibody fragment against rabies virus glycoprotein expressed in Escherichia coli.

    PubMed

    Xi, Hualong; Yuan, Ruosen; Chen, Xiaoxu; Gu, Tiejun; Cheng, Yue; Li, Zhuang; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2016-10-01

    An anti-rabies virus single-chain antibody fragment of an anti-glycoprotein with the VL-linker-VH orientation, designated scFv57RN, was successfully and conveniently prepared in this study. The scFv57RN protein was mainly expressed in inclusion bodies in Escherichia coli. After washing and purification, the inclusion bodies were finally obtained with an on-column refolding procedure. Further purification by gel exclusion chromatography was performed to remove inactive multimers. About 360 mg of final product was recovered from 1 L of bacterial culture. The final product showed a high neutralizing titer of 950 IU/mg to the CVS-11 strain as measured using the rapid fluorescent focus inhibition test. Our study demonstrated a highly efficient method to mass produce scFV57RN with activity from inclusion bodies, which may be applied in the purification of other insoluble proteins. PMID:27157441

  1. Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems

    PubMed Central

    Galeffi, Patrizia; Lombardi, Alessio; Pietraforte, Immacolata; Novelli, Flavia; Di Donato, Monica; Sperandei, Maria; Tornambé, Andrea; Fraioli, Rocco; Martayan, Aline; Natali, Pier Giorgio; Benevolo, Maria; Mottolese, Marcella; Ylera, Francisco; Cantale, Cristina; Giacomini, Patrizio

    2006-01-01

    Background Aberrant signaling by ErbB-2 (HER 2, Neu), a member of the human Epidermal Growth Factor (EGF) receptor family, is associated with an aggressive clinical behaviour of carcinomas, particularly breast tumors. Antibodies targeting the ErbB-2 pathway are a preferred therapeutic option for patients with advanced breast cancer, but a worldwide deficit in the manufacturing capacities of mammalian cell bioreactors is foreseen. Methods Herein, we describe a multi-platform approach for the production of recombinant Single chain Fragments of antibody variable regions (ScFvs) to ErbB-2 that involves their functional expression in (a) bacteria, (b) transient as well as stable transgenic tobacco plants, and (c) a newly developed cell-free transcription-translation system. Results An ScFv (ScFv800E6) was selected by cloning immunoglobulin sequences from murine hybridomas, and was expressed and fully functional in all the expression platforms, thereby representing the first ScFv to ErbB-2 produced in hosts other than bacteria and yeast. ScFv800E6 was optimized with respect to redox synthesis conditions. Different tags were introduced flanking the ScFv800E6 backbone, with and without spacer arms, including a novel Strep II tag that outperforms conventional streptavidin-based detection systems. ScFv800E6 was resistant to standard chemical radiolabeling procedures (i.e. Chloramine T), displayed a binding ability extremely similar to that of the parental monovalent Fab' fragment, as well as a flow cytometry performance and an equilibrium binding affinity (Ka approximately 2 × 108 M-1) only slightly lower than those of the parental bivalent antibody, suggesting that its binding site is conserved as compared to that of the parental antibody molecule. ScFv800E6 was found to be compatible with routine reagents for immunohistochemical staining. Conclusion ScFv800E6 is a useful reagent for in vitro biochemical and immunodiagnostic applications in oncology, and a candidate for

  2. Purification of single-chain antibody fragments exploiting pH-gradients in simulated moving bed chromatography.

    PubMed

    Martínez Cristancho, Carlos Andrés; Seidel-Morgenstern, Andreas

    2016-02-19

    This paper deals with the theoretical design and experimental validation of an affinity-based continuous multi-column chromatography process for the purification of single-chain Fragment variable (scFv) antibodies. An open-loop 3-zone pH-gradient simulated moving bed (SMB) process was investigated exploiting the highly specific affinity of metal ions toward histidine-tagged recombinant proteins. The separation problem was simplified by considering the cell culture supernatant as a pseudo-binary mixture. The influence of mobile phase pH on the adsorption isotherm parameters was estimated by the inverse method using recorded pH-gradient batch elution profiles. Suitable operating parameters for the SMB process were identified using an equilibrium stage model and subsequently validated in a lab-scale SMB unit. Finally, the performance of the pH-gradient SMB process was compared against a non-optimized batch process. Biologically active single-chain Fragment variable antibody formats were purified continuously with 9% more recovery, 11 times more productivity (576 mg of purified scFv per day and liter stationary phase in SMB) and enriched by a factor of 2.5 compared to those obtained in the non-optimized batch process. PMID:26810806

  3. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity.

    PubMed

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A; Motamedi-Shad, Neda; Irving, James A; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J; Miranda, Elena; Lomas, David A

    2015-06-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin. PMID:25757566

  4. A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment.

    PubMed

    Li, Zhuang; Cheng, Yue; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2015-12-01

    Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency. PMID:26325475

  5. Improved soluble expression of a single-chain antibody fragment in E. coli for targeting CA125 in epithelial ovarian cancer.

    PubMed

    Sharma, Sai Kiran; Suresh, Mavanur R; Wuest, Frank R

    2014-10-01

    Production of antibody fragments in heterologous hosts such as Escherichiacoli provides a unique and cost-effective method to develop engineered vectors for tumor targeting. A single-chain Fragment variable (scFv) of the murine monoclonal antibody MAb-B43.13 targeting CA125 in epithelial ovarian cancer was previously developed, expressed, purified and proposed as a functional targeting entity for biomedical applications. However, the yields from its soluble expression in heterologous systems were very low for any practical use in preclinical translational research; leave alone the defeated objective of convenient and cost-effective production. In the present work, the anti-CA125 scFv gene was re-organized and sub-cloned into pET-22b(+) vector to be in frame with the pelB leader peptide for periplasmic localization and C-terminal hexa-histidine tag to facilitate downstream purification. Six variants of the scFv were constructed to investigate the impact of variable domain orientations, inter-domain peptide linker sequences and codon optimization on the soluble expression of the scFv using Rosetta 2(DE3) as the E. coli host supplemented with tRNAs for rare codons. Expression in shake flask cultures under the control of an inducible T7 promoter and subsequent purification by cobalt based immobilized metal affinity chromatography yielded differential amounts of high purity scFv for all constructs. Here, we report up to 14-fold increase in the soluble expression of the scFv primarily as a result of codon optimization with minor effects from inter-domain peptide linkers and variable domain orientation in the anti-CA125 scFv molecule. All the scFv constructs expressed and purified were found to be immunoreactive for in vitro targeting of CA125 antigen. PMID:25079010

  6. Expression and purification of a novel therapeutic single-chain variable fragment antibody against BNP from inclusion bodies of Escherichia coli.

    PubMed

    Bu, Dawei; Zhou, Yuwei; Tang, Jian; Jing, Fang; Zhang, Wei

    2013-12-01

    Abnormal brain natriuretic peptide (BNP) secretion is regarded as the dominating mechanism of cerebral salt wasting syndrome (CSW), which results from a renal loss of sodium and water during intracranial disease leading to hyponatremia. Scale preparation of therapeutic single-chain variable fragment (scFv) that can neutralize elevated circulating BNP may have potential value for clinical use. In this report, we used a recently isolated humanized anti-BNP scFv fragment (3C1) as model antibody (Ab) to evaluate the potential of scale production of this therapeutic protein. The truncated gene encoding for scFv fragment cloned in pET22b (+) was mainly overexpressed as inclusion bodies in Escherichia coli (E. coli) Rosetta (DE3) pLysS cells. The insoluble fragment was solubilized and purified by Ni-NTA agarose resin under denaturation conditions, and recovered via an effective refolding buffer containing 50 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM EDTA, 0.5 M arginine, 2 mM GSH, 1 mM GSSG, and 5% glycerol. The refolded scFv fragment was concentrated by PEG20000, and dialyzed in PBS (containing 5% glycerol, pH 7.4). The final yield was approximately 10.2 mg active scFv fragment per liter of culture (3.4 g wet weight cells). The scFv fragment was more than 95% pure assessed by SDS-PAGE assay. Recombinant scFv fragment with His tag displayed its immunoreactivity with anti-His tag Ab by western blotting. ELISA showed the scFv fragment specifically bound to BNP, and it displayed similar activity as the traditional anti-BNP monoclonal Ab (mAb). Thus, the current strategy allows convenient small-scale production of this therapeutic protein. PMID:24128692

  7. Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes

    SciTech Connect

    Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.; Marks, James D.; Baird, Cheryl L.; Cangelosi, Gerard A.; Miller, Keith D.; Feldhaus, Michael J.

    2011-10-01

    A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that the three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.

  8. Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone Skp.

    PubMed

    Wang, Rongzhi; Xiang, Shuangshuang; Feng, Youjun; Srinivas, Swaminath; Zhang, Yonghui; Lin, Mingshen; Wang, Shihua

    2013-01-01

    Single-chain variable fragment (scFv) is a class of engineered antibodies generated by the fusion of the heavy (VH) and light chains (VL) of immunoglobulins through a short polypeptide linker. ScFv play a critical role in therapy and diagnosis of human diseases, and may in fact also be developed into a potential diagnostic and/or therapeutic agent. However, the fact that current scFv antibodies have poor stability, low solubility, and affinity, seriously limits their diagnostic and clinical implication. Here we have developed four different expression vectors, and evaluated their abilities to express a soluble scFv protein. The solubility and binding activity of the purified proteins were determined using both SDS-PAGE and ELISA. Amongst the four purified proteins, the Skp co-expressed scFv showed the highest solubility, and the binding activity to antigen TLH was 3-4 fold higher than the other three purified scFv. In fact, this scFv is specific for TLH and does not cross-react with other TLH-associated proteins and could be used to detect TLH directly in real samples. These results suggest that the pACYC-Duet-skp co-expression vector might be a useful tool for the production of soluble and functional scFv antibody. PMID:24224158

  9. Efficient silkworm expression of single-chain variable fragment antibody against ginsenoside Re using Bombyx mori nucleopolyhedrovirus bacmid DNA system and its application in enzyme-linked immunosorbent assay for quality control of total ginsenosides.

    PubMed

    Sakamoto, Seiichi; Pongkitwitoon, Benyakan; Nakamura, Seiko; Maenaka, Katsumi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2010-09-01

    A single-chain variable fragment (scFv) antibody against ginsenoside Re (G-Re) have been successfully expressed in the silkworm larvae using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. The baculovirus donor vector for expression of scFv against G-Re (GRe-scFv) was constructed to contain honeybee melittin signal sequence to accelerate secretion of the recombinant GRe-scFv into the haemolymph of silkworm larvae. Functional recombinant GRe-scFv was purified by cation exchange chromatography followed by immobilized metal ion affinity chromatography. The yield of purified GRe-scFv was 6.5 mg per 13 silkworm larvae, which is equivalent to 650 mg/l of the haemolymph, exhibiting extremely higher yield than that expressed in Escherichia coli (1.7 mg/l of culture medium). It was revealed from characterization that GRe-scFv retained similar characteristic of the parental monoclonal antibody (MAb) against G-Re (MAb-4G10), making it possible to develop indirect competitive enzyme-linked immunosorbent assay (icELISA) for quality control of total ginsenosides in various ginsengs. The detectable range for calibration of G-Re by developed icELISA shows 0.05-10 microg/ml. These results clearly suggested that the silkworm expression system is quite useful for the expression of functional scFv that frequently required time- and cost-consuming re-folding when it expressed in E. coli. PMID:20592135

  10. Bacterial expression and characterization of a novel human anti-IgE scFv fragment.

    PubMed

    Wang, MingRong; Zhang, YongXia; Du, TianFei; Dai, YunJian; He, YongZhi; Yu, Xin; Cong, Cong; He, MingYue

    2011-01-01

    Antibodies highly specific to human immunoglobulin (Ig) E are capable of selectively blocking the IgE interaction or eliminating IgE-producing cells, thus providing valuable agents for diagnostics and treatment of various allergic illness. An example is omalizumab, a humanized monoclonal anti-IgE antibody that is approved for the treatment of patients with moderate-to-severe allergic diseases in the United States, European Union and other countries. Here, we describe the generation and characterization of a novel human anti-IgE as a single-chain antibody fragment (scFv). The bacterially-synthesized scFv showed high affinity (86 nM) and specificity to the Fc region of human IgE. To our knowledge, this is the first report of the production of a human anti-IgE scFv in E. coli. Its further development as a potential candidate for medical applications is discussed. PMID:21785278

  11. Genetic fusion of single-chain variable fragments to partial spider silk improves target detection in micro- and nanoarrays.

    PubMed

    Thatikonda, Naresh; Delfani, Payam; Jansson, Ronnie; Petersson, Linn; Lindberg, Diana; Wingren, Christer; Hedhammar, My

    2016-03-01

    Immobilizing biomolecules with retained functionality and stability on solid supports is crucial for generation of sensitive immunoassays. However, upon use of conventional immobilization strategies, a major portion of the biomolecules (e.g. antibodies) frequently tends to lose their bioactivity. In this study, we describe a procedure to immobilize human single-chain variable fragment (scFv) via genetic fusion to partial spider silk, which have a high tendency to adhere to solid supports. Two scFvs, directed towards serum proteins, were genetically fused to partial spider silk proteins and expressed as silk fusion proteins in E. coli. Antigen binding ability of scFvs attached to a partial silk protein denoted RC was investigated using microarray analysis, whereas scFvs fused to the NC silk variant were examined using nanoarrays. Results from micro- and nanoarrays confirmed the functionality of scFvs attached to both RC and NC silk, and also for binding of targets in crude serum. Furthermore, the same amount of added scFv gives higher signal intensity when immobilized via partial spider silk compared to when immobilized alone. Together, the results suggest that usage of scFv-silk fusion proteins in immunoassays could improve target detection, in the long run enabling novel biomarkers to be detected in crude serum proteomes. PMID:26470853

  12. Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody.

    PubMed

    Piazza, Tiziana; Cha, Emanuela; Bongarzone, Italia; Canevari, Silvana; Bolognesi, Andrea; Polito, Letizia; Bargellesi, Antonio; Sassi, Francesca; Ferrini, Silvano; Fabbi, Marina

    2005-04-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166), a member of the immunoglobulin superfamily with five extracellular immunoglobulin-like domains, promotes heterophilic (ALCAM-CD6) and homophilic (ALCAM-ALCAM) cell-cell interactions. Here we describe a fully human single-chain antibody fragment (scFv) directed to ALCAM/CD166. We selected the I/F8 scFv from a phage display library of human V-gene segments by cell panning and phage internalization into IGROV-I human ovary carcinoma cells. The I/F8 specificity was identified as ALCAM/CD166 by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) peptide mass fingerprinting of the I/F8-immunoprecipitated protein. The I/F8 scFv reacts with the human, monkey and murine ALCAM/CD166 molecule, indicating that the recognized epitope is highly conserved. The I/F8 scFv completely abolished binding of both ALCAM/Fc and CD6/Fc soluble ligands, whereas it did not compete with the anti-ALCAM/CD166 murine monoclonal antibodies J4-81 and 3A6 and therefore recognizes a different epitope. Engagement through I/F8 scFv, 3A6 monoclonal antibody or CD6/Fc ligand induced ALCAM/CD166 internalization, with a kinetics slower than that of transferrin in the same cells. Newly internalized I/F8-ALCAM complexes colocalized with clathrin but not with caveolin and we demonstrated, using surface biotinylation and recycling assays, that endocytosed ALCAM/CD166 recycles back to the cell surface. Such an endocytic pathway allows the efficient delivery of an I/F8 scFv-saporin immunotoxin into tumor cells, as the conjugates are able to selectively kill cell lines expressing ALCAM/CD166. Altogether these data provide evidence of the suitability of the I/F8 scFv for further functional analysis of ALCAM/CD166 and intracellular delivery of effector moieties. PMID:15769845

  13. Targeting Prostate Cancer Cells In Vivo Using a Rapidly Internalizing Novel Human Single-Chain Antibody Fragment

    PubMed Central

    He, Jiang; Wang, Yong; Feng, Jinjin; Zhu, Xiaodong; Lan, Xiaoli; Iyer, Arun K.; Zhang, Niu; Seo, Youngho; VanBrocklin, Henry F.; Liu, Bin

    2010-01-01

    Human antibodies targeting prostate cancer cell surface epitopes may be useful for imaging and therapy. The objective of this study was to evaluate the tumor targeting of an internalizing human antibody fragment, a small-size platform, to provide high contrast in a mouse model of human prostate carcinoma. Methods A prostate tumor-targeting single-chain antibody fragment (scFv), UA20, along with a nonbinding control scFv, N3M2, were labeled with 99mTc and evaluated for binding and rapid internalization into human prostate tumor cells in vitro and tumor homing in vivo using xenograft models. For the in vitro studies, the labeled UA20 scFv was incubated at 37°C for 1 h with metastatic prostate cancer cells (DU145) to assess the total cellular uptake versus intracellular uptake. For the animal studies, labeled UA20 and N3M2 scFvs were administered to athymic mice implanted subcutaneously with DU145 cells. Mice were imaged with small-animal SPECT/CT with concomitant biodistribution at 1 and 3 h after injection. Results The UA20 scFv was labeled in 55%–65% yield and remained stable in phosphate buffer within 24 h. The labeled UA20 scFv was taken up specifically by prostate tumor cells. Internalization was rapid, because incubation at 37°C for less than 1 h resulted in 93% internalization of total cell-associated scFvs. In animal studies, SPECT/CT showed significant tumor uptake as early as 1 h after injection. At 3 h after injection, tumor uptake was 4.4 percentage injected dose per gram (%ID/g), significantly greater than all organs or tissues studied (liver, 2.7 %ID/g; other organs or tissues, <1 %ID/g), except the kidneys (81.4 %ID/g), giving tumor-to-blood and tumor-to-muscle ratios of 12:1 and 70:1, respectively. In contrast, the control antibody exhibited a tumor uptake of only 0.26 %ID/g, similar to that of muscle and fat. Tumor-specific targeting was evidenced by reduced tumor uptake of nearly 70% on administration of a 10-fold excess of unlabeled UA20 scFv

  14. A Gelatinases-targeting scFv-based Fusion Protein Shows Enhanced Antitumour Activity with Endostar against Hepatoma.

    PubMed

    Gao, Ruijuan; Li, Liang; Shang, Boyang; Zhao, Chunyan; Sheng, Weijin; Li, Diandong

    2015-08-01

    Gelatinases play important roles in tumour invasion and metastasis and are thus considered promising targets for cancer therapy. In this study, a new single-chain variable fragment (scFv)-based fusion protein Fv-LDP, composed of the anti-gelatinases scFv and lidamycin apoprotein (LDP), was prepared, and its combination with angiogenesis inhibitor Endostar was then investigated. The fusion protein Fv-LDP specifically bound to various tumour cells, and its binding capability to human pulmonary giant cell carcinoma (PG) cells was higher than that of LDP. Fv-LDP inhibited the expression and secretion of gelatinases and could be internalized into tumour cells via endocytosis. Fv-LDP also suppressed the growth of human hepatoma cells and murine hepatoma 22 transplanted in Kunming mice in various degrees. In addition, Endostar could enhance the synergistic or additive inhibition of Fv-LDP on the growth, migration or invasion of human hepatoma cells shown by a colony formation assay and a transwell-based migration or invasion assay, respectively. In vivo, Fv-LDP/Endostar combination showed a significantly synergistic effect on the growth of a human hepatoma xenograft, with an inhibition rate of 80.8% compared with the Fv-LDP (44.1%) or Endostar (8.9%)-treated group. The above-mentioned results indicate that the fusion protein Fv-LDP is effective against transplantable hepatoma in mice and human hepatoma xenografts in athymic mice. Moreover, Endostar can potentiate the inhibition effect of Fv-LDP on the growth of human hepatoma cells and xenografts. These data will provide a new combined strategy for improving the therapeutic efficacy of treatments for hepatoma or other gelatinase-overexpressing tumours. PMID:25615234

  15. ESCRT-mediated Uptake and Degradation of Brain-targeted α-synuclein Single Chain Antibody Attenuates Neuronal Degeneration In Vivo

    PubMed Central

    Spencer, Brian; Emadi, Sharareh; Desplats, Paula; Eleuteri, Simona; Michael, Sarah; Kosberg, Kori; Shen, Jay; Rockenstein, Edward; Patrick, Christina; Adame, Anthony; Gonzalez, Tania; Sierks, Michael; Masliah, Eliezer

    2014-01-01

    Parkinson's disease and dementia with Lewy bodies are neurodegenerative disorders characterized by accumulation of α-synuclein (α-syn). Recently, single-chain fragment variables (scFVs) have been developed against individual conformational species of α-syn. Unlike more traditional monoclonal antibodies, these scFVs will not activate or be endocytosed by Fc receptors. For this study, we investigated an scFV directed against oligomeric α-syn fused to the LDL receptor-binding domain from apolipoprotein B (apoB). The modified scFV showed enhanced brain penetration and was imported into neuronal cells through the endosomal sorting complex required for transport (ESCRT) pathway, leading to lysosomal degradation of α-syn aggregates. Further analysis showed that the scFV was effective at ameliorating neurodegenerative pathology and behavioral deficits observed in the mouse model of dementia with Lewy bodies/Parkinson's disease. Thus, the apoB modification had the effect of both increasing accumulation of the scFV in the brain and directing scFV/α-syn complexes for degradation through the ESCRT pathway, leading to improved therapeutic potential of immunotherapy. PMID:25008355

  16. A strategy for high-level expression of a single-chain variable fragment against TNFα by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220.

    PubMed

    Yang, Tao; Yang, Lijun; Chai, Weiran; Li, Renke; Xie, Jun; Niu, Bo

    2011-03-01

    A phage display single-chain variable fragment (scFv) library against TNFα was constructed using a recombinant phage antibody system (RPAS). The cloned scFv gene was introduced into the phage display vector pCANTAB 5E and expressed in Escherichia coli (E. coli) with a yield of up to 0.15 mg/l of total protein. With the attempt to improve the expression level of TNF-scFv, a strategy was established for subcloning the scFv gene from pCANTAB 5E into the plasmid pBV220. Under the control of a highly efficient tandem P(R)P(L) promoter system, scFv production was increased to 30% of total protein as inclusion bodies. After extraction from the cell pellet by sonication, the inclusion bodies were solubilized and denatured in the presence of 8M urea. Purification of denatured scFv was performed using nickel column chromatography followed by renaturation. The purity and activity of the refolded scFv were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting and by an enzyme-linked immunoabsorbent assay (ELISA). The results reveal that the overall yield of bioactive TNF-scFv from E. coli flask cultures was more than 45 mg/l culture medium and 15 mg/g wet weight cells. The renatured scFv exhibited binding activity similarly to soluble scFv. In conclusion we developed a method to over-express TNF-scFv, which have biological function after purification and renaturation. PMID:20951213

  17. Single-Chain Probes for Illuminating Androgenicity of Chemicals.

    PubMed

    Kim, Sung-Bae; Tao, Hiroaki

    2016-01-01

    The present protocol introduces a single-chain probe carrying a functional peptide in the N-terminal domain of the androgen receptor (AR NTD) for illuminating androgenicity of ligands. In the single-chain probe, a functional peptide in the AR NTD was genetically fused to the ligand-binding domain of AR (AR LBD) via a flexible linker, and then sandwiched between the N- and C-terminal fragments of split-firefly luciferase (FLuc) dissected at D415. This single-chain probe exerts (1) a high signal-to-background ratio and (2) sensitive discrimination between agonists and antagonists, where the dimerization of AR LBD is not involved. The present protocol guides a fundamental methodology on how to discriminate weak protein-protein (peptide) binding, and provides a new insight into the intramolecular folding inside monomeric AR. PMID:27424901

  18. Synthesis and pre-clinical evaluation of an 18F-labeled single-chain antibody fragment for PET imaging of epithelial ovarian cancer

    PubMed Central

    Sharma, Sai Kiran; Wuest, Melinda; Way, Jenilee D; Bouvet, Vincent R; Wang, Monica; Wuest, Frank R

    2016-01-01

    Anti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an 18F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models. Anti-CA125 scFv was derived from MAb-B43.13 by recombinant expression of the fragment in E.coli. Fragment scFv-B43.13 was purified via immobilized metal affinity chromatography and characterized for antigen binding via immuno-staining and flow cytometry. Prosthetic group N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) was used for radiolabeling of scFv-B43.13. Preclinical ovarian cancer models were developed based on ovarian cancer cell lines OVCAR3 (CA125-positive) and SKOV3 (CA125-negative) in NIH-III mice. The radiopharmacological profile of 18F-labeled scFv-B43.13 ([18F]FBz-scFv-B43.13) was studied with PET. [18F]FBz-scFv-B43.13 was prepared in radiochemical yields of 3.7 ± 1.8% (n = 5) at an effective specific activity of 3.88 ± 0.76 GBq/µmol (n = 5). The radiotracer demonstrated selective uptake in CA125-positive OVCAR3 cells and virtually no uptake in CA125-negative SKOV3 cells. Standardized uptake values (SUV) of radioactivity uptake in OVCAR3 tumors was 0.5 (n = 3) and 0.3 (n = 2) in SKOV3 tumors after 60 min post injection (p.i.). PMID:27508105

  19. Synthesis and pre-clinical evaluation of an (18)F-labeled single-chain antibody fragment for PET imaging of epithelial ovarian cancer.

    PubMed

    Sharma, Sai Kiran; Wuest, Melinda; Way, Jenilee D; Bouvet, Vincent R; Wang, Monica; Wuest, Frank R

    2016-01-01

    Anti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an (18)F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models. Anti-CA125 scFv was derived from MAb-B43.13 by recombinant expression of the fragment in E.coli. Fragment scFv-B43.13 was purified via immobilized metal affinity chromatography and characterized for antigen binding via immuno-staining and flow cytometry. Prosthetic group N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB) was used for radiolabeling of scFv-B43.13. Preclinical ovarian cancer models were developed based on ovarian cancer cell lines OVCAR3 (CA125-positive) and SKOV3 (CA125-negative) in NIH-III mice. The radiopharmacological profile of (18)F-labeled scFv-B43.13 ([(18)F]FBz-scFv-B43.13) was studied with PET. [(18)F]FBz-scFv-B43.13 was prepared in radiochemical yields of 3.7 ± 1.8% (n = 5) at an effective specific activity of 3.88 ± 0.76 GBq/µmol (n = 5). The radiotracer demonstrated selective uptake in CA125-positive OVCAR3 cells and virtually no uptake in CA125-negative SKOV3 cells. Standardized uptake values (SUV) of radioactivity uptake in OVCAR3 tumors was 0.5 (n = 3) and 0.3 (n = 2) in SKOV3 tumors after 60 min post injection (p.i.). PMID:27508105

  20. Novel human single chain antibody fragments that are rapidly interalizing effectively target epithelioid and sarcomatoid mesotheliomas

    PubMed Central

    Iyer, Arun K.; Lan, Xiaoli; Zhu, Xiaodong; Su, Yang; Feng, Jinjin; Zhang, Xiaoju; Gao, Dongwei; Seo, Youngho; VanBrocklin, Henry F.; Broaddus, V. Courtney; Liu, Bin; He, Jiang

    2011-01-01

    Human antibodies targeting all subtypes of mesothelioma could be useful to image and treat this deadly disease. Here we report tumor targeting of a novel internalizing human single chain antibody fragment (scFv) labeled with 99mTc (99mTc-M40) in murine models of mesothelioma of both epithelioid (M28) and sarcomatoid (VAMT-1) origins. 99mTc-M40 was taken up rapidly and specifically by both subtype tumor cells in vitro, with 68–92% internalized within 1h. The specificity of binding was evidenced by blocking (up to 95%) with 10-fold excess of unlabeled M40. In animal studies, tumors of both subtypes were clearly visualized by SPECT/CT as early as 1h post-injection of 99mTc-M40. Tumor uptake measured as percent of injected dose per gram tissue (%ID/g) at 3h was 4.38 and 5.84 for M28 and VAMT-1 tumors respectively, significantly greater than all organs or tissues studied (liver, 2.62%ID/g; other organs or tissues <1.7%ID/g), except the kidneys (130.7%ID/g), giving tumor-to-blood ratios of 5:1 and 7:1 and tumor-to-muscle ratios of 45:1 and 60:1, for M28 and VAMT-1 respectively. The target-mediated uptake was confirmed by a nearly 70% reduction in tumor activity following administration of 10-fold excess of unlabeled scFv. Taken together, these results indicate that M40 can rapidly and specifically target epithelioid and sarcomatoid tumor cells, demonstrating the potential of this agent as a versatile targeting ligand for imaging and therapy of all subtypes of mesothelioma. PMID:21447742

  1. Identification of internalizing human single chain antibodies targeting brain tumor sphere cells

    PubMed Central

    Zhu, Xiaodong; Bidlingmaier, Scott; Hashizume, Rintaro; James, C. David; Berger, Mitchel S.; Liu, Bin

    2010-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor and there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease, and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive media, and exhibit enhanced tumor initiating ability and resistance to therapy. We report here the identification of internalizing human single chain antibodies (scFvs) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly, as well as scFvs that target the CD133 positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular non-selective media. Taken together, these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library, which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment. PMID:20587664

  2. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Xylella fastidiosa subsp pauca causes citrus variegat...

  3. Single chain FV constructs of anti-ganglioside GD2 antibodies for radioimaging and radioimmumotheraphy. Progress report

    SciTech Connect

    Cheung, N.K.V.; Larson, S.M.

    1993-11-01

    For the past several years, we have studied the anti-G{sub D2} murine monoclonal antibody, 3F8, in radiolabeled form, for diagnosis and therapy of neuroblastoma. The targeting properties of this antibody/antigen system are exceptional, with uptakes consistently in the highest range of reported results for in vivo human studies. The radioiodinated antibody 3F8 is now used by us as our criteria for diagnosis and staging of advanced neuroblastoma. This antibody is showing considerable promise also in our Phase I trials in Stage 4 neuroblastoma, and major responses are being seen at current dose level, with manageable marrow toxicity, but no limiting organ toxicity.

  4. Selection of single chain variable fragments (scFv) against Xylella fastidiosa subsp. pauca by phage display

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylella fastidiosa is a gram-negative member of the gamma proteobacteria. Xylella fastidiosa subsp pauca causes citrus variegated chlorosis in Brazil and enjoys ‘select agent’ status in the United States. Antibody based detection assays are commercially available for Xylella fastidiosa, and are ef...

  5. Expression and secretion of a CB4-1 scFv-GFP fusion protein by fission yeast.

    PubMed

    Naumann, Julia Maria; Küttner, Gabriele; Bureik, Matthias

    2011-01-01

    There is a rapidly growing demand for fluorescent single-chain Fv (scFv) antibody fragments for many applications. Yeasts have developed into attractive hosts for recombinant production of these functionalized proteins because they provide several advantages over prokaryotes and higher eukaryotes as expression systems, e.g., being capable of high-level secretion of heterologous proteins. In this study, we report Schizosaccharomyces pombe as a new host organism for secretory production of scFv-green fluorescent protein (GFP) fusions and compare it with previously described yeast expression systems. We cloned a plasmid for the expression and secretion of the anti-p24 (human immunodeficiency virus 1) CB4-1 scFv fused to GFP. After expression of the scFv-GFP fused to an N-terminal Cpy1 secretion signal sequence, fluorescence microscopy of living yeast cells indicated that the heterologous protein entered the secretory pathway. Western blot analysis of cell-free culture supernatants confirmed that the scFv-GFP was efficiently secreted with yields up to 5 mg/L. In addition, fluorescence measurements of culture supernatants demonstrated that the GFP moiety of the scFv-GFP protein is fully functional after secretion. Our data suggest that S. pombe has the potential for being used as alternative expression host in recombinant antibody fragment production by ensuring efficient protein processing and secretion. PMID:20617397

  6. Pathogen Inhibition by Multivalent Ligand Architectures.

    PubMed

    Bhatia, Sumati; Camacho, Luis Cuellar; Haag, Rainer

    2016-07-20

    Interfacial multivalent interactions at pathogen-cell interfaces can be competitively inhibited by multivalent scaffolds that prevent pathogen adhesion to the cells during the initial stages of infection. The lack of understanding of complex biological systems makes the design of an efficient multivalent inhibitor a toilsome task. Therefore, we have highlighted the main issues and concerns associated with blocking pathogen at interfaces, which are dependent on the nature and properties of both multivalent inhibitors and pathogens, such as viruses and bacteria. The challenges associated with different cores or carrier scaffolds of multivalent inhibitors are concisely discussed with selected examples. PMID:27341003

  7. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe

    PubMed Central

    Mazzocco, Claire; Fracasso, Giulio; Germain-Genevois, Coralie; Dugot-Senant, Nathalie; Figini, Mariangela; Colombatti, Marco; Grenier, Nicolas; Couillaud, Franck

    2016-01-01

    We aimed to evaluate a fluorescent-labeled single chain variable fragment (scFv) of the anti-PSMA antibody as a specific probe for the detection of prostate cancer by in vivo fluorescence imaging. An orthotopic model of prostate cancer was generated by injecting LNCaP cells into the prostate lobe. ScFvD2B, a high affinity anti-PSMA antibody fragment, was labeled using a near-infrared fluorophore to generate a specific imaging probe (X770-scFvD2B). PSMA-unrelated scFv-X770 was used as a control. Probes were injected intravenously into mice with prostate tumors and fluorescence was monitored in vivo by fluorescence molecular tomography (FMT). In vitro assays showed that X770-scFvD2B specifically bound to PSMA and was internalized in PSMA-expressing LNCaP cells. After intravenous injection, X770-scFvD2B was detected in vivo by FMT in the prostate region. On excised prostates the scFv probe co-localized with the cancer cells and was found in PSMA-expressing cells. The PSMA-unrelated scFv used as a control did not label the prostate cancer cells. Our data demonstrate that scFvD2B is a high affinity contrast agent for in vivo detection of PSMA-expressing cells in the prostate. NIR-labeled scFvD2B could thus be further developed as a clinical probe for imaging-guided targeted biopsies. PMID:26996325

  8. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe.

    PubMed

    Mazzocco, Claire; Fracasso, Giulio; Germain-Genevois, Coralie; Dugot-Senant, Nathalie; Figini, Mariangela; Colombatti, Marco; Grenier, Nicolas; Couillaud, Franck

    2016-01-01

    We aimed to evaluate a fluorescent-labeled single chain variable fragment (scFv) of the anti-PSMA antibody as a specific probe for the detection of prostate cancer by in vivo fluorescence imaging. An orthotopic model of prostate cancer was generated by injecting LNCaP cells into the prostate lobe. ScFvD2B, a high affinity anti-PSMA antibody fragment, was labeled using a near-infrared fluorophore to generate a specific imaging probe (X770-scFvD2B). PSMA-unrelated scFv-X770 was used as a control. Probes were injected intravenously into mice with prostate tumors and fluorescence was monitored in vivo by fluorescence molecular tomography (FMT). In vitro assays showed that X770-scFvD2B specifically bound to PSMA and was internalized in PSMA-expressing LNCaP cells. After intravenous injection, X770-scFvD2B was detected in vivo by FMT in the prostate region. On excised prostates the scFv probe co-localized with the cancer cells and was found in PSMA-expressing cells. The PSMA-unrelated scFv used as a control did not label the prostate cancer cells. Our data demonstrate that scFvD2B is a high affinity contrast agent for in vivo detection of PSMA-expressing cells in the prostate. NIR-labeled scFvD2B could thus be further developed as a clinical probe for imaging-guided targeted biopsies. PMID:26996325

  9. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones. PMID:26271437

  10. A neutralizing scFv antibody against infectious bursal disease virus screened by flow cytometry.

    PubMed

    Zhou, Yao; Xie, Zhi-Gang

    2015-09-01

    Infectious bursal disease (IBD) is considered a vital viral disease that threatens the poultry industry worldwide. In this study, a recombinant single chain variable fragment (scFv) antibody library derived from chickens immunized with VP2 protein of infectious bursal disease virus (IBDV) was constructed. The library was subjected to three rounds of screening by flow cytometry (FCM) against VP2/IBDV through a bacteria display technology, resulting in the enrichment of scFvs. Three scFv clones with different fluorescence intensity were obtained by colony pick up at random. The obtained scFv antibodies were expressed and purified. Relative affinity assay showed the three clones had different sensitivity to VP2, in accordance with fluorescence activity cell sorting analysis (FACS). The potential use of the isolated IBDV-specific scFv antibodies was demonstrated by the successful application of these antibodies in Western blotting and ELISA assay. What's more, in vitro neutralization measurement showed that one of the three isolated antibodies possessed the neutralization function against IBDV. This study provides new strategies for screening of antibody library, and scFv antibodies isolated in this study may be utilized as lead candidates for further development of diagnostic or therapeutic antibodies for detection and treatment of IBDV infection. PMID:26003676

  11. Therapeutic Strategy for the Prevention of Pseudorabies Virus Infection in C57BL/6 Mice by 3D8 scFv with Intrinsic Nuclease Activity

    PubMed Central

    Lee, Gunsup; Cho, SeungChan; Hoang, Phuong Mai; Kim, Dongjun; Lee, Yongjun; Kil, Eui-Joon; Byun, Sung-June; Lee, Taek-Kyun; Kim, Dae-Hyun; Kim, Sunghan; Lee, Sukchan

    2015-01-01

    3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and 10 μg 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 LD50 PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% (5 μg) and 47% (10 μg). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models. PMID:26255831

  12. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  13. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain.

    PubMed

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10(-10) M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  14. Improved fluoroquinolone detection in ELISA through engineering of a broad-specific single-chain variable fragment binding simultaneously to 20 fluoroquinolones.

    PubMed

    Wen, Kai; Nölke, Greta; Schillberg, Stefan; Wang, Zhanhui; Zhang, Suxia; Wu, Congming; Jiang, Haiyang; Meng, Hui; Shen, Jianzhong

    2012-07-01

    Fluoroquinolones (FQs) are a group of synthetic, broad-spectrum antibacterial agents. Due to its extensive use in animal industry and aquaculture, residues of these antibiotics and the emergence of bacteria resistant to FQs have become a major public health issue. To prepare a generic antibody capable of recognizing nearly all FQs, a single-chain variable fragment (scFv) was generated from the murine hybridoma cells C49H1 producing a FQ-specific monoclonal antibody. This scFv was characterized by indirect competitive enzyme-linked immunosorbent assay (ciELISA), and it showed identical binding properties to parental monoclonal antibody: it was capable of recognizing 17 of 20 targeted FQs below maximum residue limits, except for sarafloxacin (SAR), difloxacin (DIF), and trovafloxacin (TRO) which are highly concerned members in the FQs family. In order to broaden the specificity of this scFv to SAR and its analogues (DIF and TRO), protein homology modeling and antibody-ligands docking analysis were employed to identify the potential key amino acid residues involved in hapten antibody. A mutagenesis phage display library was generated by site directed mutagenesis randomizing five aminoacid residues in the third heavy-chain complementarity determining region. After one round of panning against biotinylated norfloxacin (NOR) and four rounds of panning against biotinylated SAR, scFv variants we screened showed up to 10-fold improved IC(50) against SAR, DIF, and TRO in ciELISA while the specificity against other FQs was fully retained. PMID:22549819

  15. Development of a biotinylated broad-specificity single-chain variable fragment antibody and a sensitive immunoassay for detection of organophosphorus pesticides.

    PubMed

    Zhao, Fengchun; Tian, Yuan; Wang, Huimin; Liu, Jiye; Han, Xiao; Yang, Zhengyou

    2016-09-01

    Organophosphorus pesticides (OPs) are the most widely used pesticides in agriculture, and OP residues have been broadly reported in food and environmental samples. The aim of this study is to develop a recombinant antibody-based broad-specificity immunoassay for OPs. A phage display library was prepared from a mouse pre-immunized with a generic immunogen of OPs, and a single-chain variable fragment (scFv) antibody was selected. The selected scFv antibody was fused with biotin acceptor domain (BAD) and overexpressed as an inclusion body in Escherichia coli BL21 (DE3). Then, the protein was refolded by stepwise urea gradient dialysis and biotinylated in vitro by E. coli biotin ligase (BirA). Subsequently, the scFv-BAD protein was purified from the biotinylated system with high yield (66.7 mg L(-1)) and confirmed by SDS-PAGE and Western blot. Based on the biotinylated scFv-BAD, a sensitive and broad-specificity competitive indirect enzyme-linked immunosorbent assay (ciELISA) for detection of OPs was developed. The cross-reactivity (CR) studies demonstrated that the ciELISA described here exhibited the broadest detection spectrum for OPs up to now, and 30 OPs could be determined with 50 % inhibition value (IC50) values ranging from 19.4 to 515.2 ng mL(-1). Moreover, the developed ciELISA was used for the recovery study of the spiked samples and showed satisfactory recoveries. Graphical Abstract Schematic diagram of the development of biotinylated broad-specificity single-chain variable fragment antibody-based immunoassay for organophosphorus pesticides. PMID:27411546

  16. Efficient expression of single chain variable fragment antibody against paclitaxel using the Bombyx mori nucleopolyhedrovirus bacmid DNA system and its characterizations.

    PubMed

    Yusakul, Gorawit; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2016-07-01

    A single chain variable fragment (scFv), the smallest unit of functional recombinant antibody, is an attractive format of recombinant antibodies for various applications due to its small fragment and possibility of genetic engineering. Hybridoma clone 3A3 secreting anti-paclitaxel monoclonal antibody was used to construct genes encoding its variable domains of heavy (VH) and light (VL) chains. The VH and VL domains were linked to be the PT-scFv3A3 using flexible peptide linker in a format of VH-(GGGGS)5-VL. The PT-scFv3A3 was primarily expressed using the pET28a(+) vector in the Escherichia coli system, and was then further expressed by using the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. Interestingly, the reactivity of PT-scFv3A3 expressed in the hemolymph of B. mori using the BmNPV bacmid DNA system was much higher than that expressed in the E. coli system. Using indirect competitive enzyme-linked immunosorbent assay (icELISA), the PT-scFv3A3 (B. mori) reacted not only with immobilized paclitaxel, but also with free paclitaxel in a concentration-dependent manner, with the linear range of free paclitaxel between 0.156 and 5.00 µg/ml. The PT-scFv3A3 (B. mori) exhibited less cross-reactivity (%) than its parental MAb clone 3A3 against paclitaxel-related compounds, including docetaxel (31.1 %), 7-xylosyltaxol (22.1 %), baccatin III (<0.68 %), 10-deacetylbaccatin III (<0.68 %), 1-hydroxybaccatin I (<0.68 %), and 1-acetoxy-5-deacetylbaccatin I (<0.68 %). With the exception of cephalomannine, the cross-reactivity was slightly increased to 8.50 %. The BmNPV bacmid DNA system was a highly efficient expression system of active PT-scFv3A3, which is applicable for PT-scFv3A3-based immunoassay of paclitaxel. In addition, the PT-scFv3A3 can be applied to evaluate its neutralizing property of paclitaxel or docetaxel toxicity. PMID:26940321

  17. Reducing heterophilic antibody interference in immunoassays using single chain antibodies

    SciTech Connect

    Baird, Cheryl L.; Tan, Ruimin; Fischer, Christopher J.; Victry, Kristin D.; Zangar, Richard C.; Rodland, Karin D.

    2011-12-15

    Sandwich ELISA microarrays have the potential to simultaneously quantify the levels of multiple diagnostic targets in a biological sample. However, as seen with traditional ELISA diagnostics, heterophilic antibodies (HA) in patient sera have the potential to cause interference in these assays. We demonstrate here that reducing the diagnostic capture antibody to its minimal functional unit, the variable heavy and light domains artificially connected with a short polypeptide linker (scFv), is an effective strategy for reducing the HA assay interference.

  18. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli.

    SciTech Connect

    Miller, Keith D.; Feldhaus, Jane M.; Gray, Sean A.; Siegel, Robert W.; Feldhaus, Michael J.

    2005-08-01

    Single chain (scFv) antibodies are used as affinity reagents for diagnostics, therapeutics, and proteomic analyses. The antibody discovery platform we use to identify novel antigen binders involves discovery, characterization, and production. The discovery and characterization components have previously been characterized but in order to fully utilize the capabilities of affinity reagents from our yeast surface display library, efforts were focused on developing a production component to obtain purified, soluble, and active scFvs. Instead of optimizing conditions to achieve maximum yield, efforts were focused on using a system that could quickly and easily produce and process hundreds of scFv antibodies. Heterologous protein expression in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli were evaluated for their ability to rapidly, efficaciously, and consistently produce scFv antibodies for use in downstream proteomic applications. Following purification, the binding activity of several scFv antibodies were quantified using a novel Biacore assay. All three systems produced soluble scFv antibodies which ranged in activity from 0-99%. scFv antibody yields from Saccharomyces, Pichia, and E. coli were 1.5-4.2, 0.4-7.3, and 0.63-16.4 mg L-1 culture, respectively. For our purposes, expression in E. coli proved to be the quickest and most consistent way to obtain and characterize purified scFv for downstream applications. The E. coli expression system was also used to compare scFv production levels from the periplasm, inclusion bodies, and culture media. The E. coli production system was then used to produce variants of several scFv to determine structure function relationships.

  19. Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody

    PubMed Central

    Saeed, Mesha; van Brakel, Mandy; Zalba, Sara; Schooten, Erik; Rens, Joost AP; Koning, Gerben A; Debets, Reno; ten Hagen, Timo LM

    2016-01-01

    Therapy of melanoma using T-cells with genetically introduced T-cell receptors (TCRs) directed against a tumor-selective cancer testis antigen (CTA) NY-ESO1 demonstrated clear antitumor responses in patients without side effects. Here, we exploited the concept of TCR-mediated targeting through introduction of single-chain variable fragment (scFv) antibodies that mimic TCRs in binding major histocompatibility complex-restricted CTA. We produced scFv antibodies directed against Melanoma AntiGEn A1 (MAGE A1) presented by human leukocyte antigen A1 (HLA-A1), in short M1/A1, and coupled these TCR-like antibodies to liposomes to achieve specific melanoma targeting. Two anti-M1/A1 antibodies with different ligand-binding affinities were derived from a phage-display library and reformatted into scFvs with an added cysteine at their carboxyl termini. Protein production conditions, ie, bacterial strain, temperature, time, and compartments, were optimized, and following production, scFv proteins were purified by immobilized metal ion affinity chromatography. Batches of pure scFvs were validated for specific binding to M1/A1-positive B-cells by flow cytometry. Coupling of scFvs to liposomes was conducted by employing different conditions, and an optimized procedure was achieved. In vitro experiments with immunoliposomes demonstrated binding of M1/A1-positive B-cells as well as M1/A1-positive melanoma cells and internalization by these cells using flow cytometry and confocal microscopy. Notably, the scFv with nonenhanced affinity of M1/A1, but not the one with enhanced affinity, was exclusively bound to and internalized by melanoma tumor cells expressing M1/A1. Taken together, antigen-mediated targeting of tumor cells as well as promoting internalization of nanoparticles by these tumor cells is mediated by TCR-like scFv and can contribute to melanoma-specific targeting. PMID:27022262

  20. An assay for the detection of grapevine leafroll-associated virus 3 using a single-chain fragment variable antibody.

    PubMed

    Cogotzi, Laura; Giampetruzzi, Annalisa; Nölke, Greta; Orecchia, Martin; Elicio, Vito; Castellano, Maria Antonietta; Martelli, Giovanni P; Fischer, Rainer; Schillberg, Stefan; Saldarelli, Pasquale

    2009-01-01

    Grapevine leafroll-associated virus 3 (GLRaV-3) is a major pathogen of grapevine. A previously described single-chain fragment variable (scFv) antibody (scFvLR3), directed against the coat protein (CP) of GLRaV-3, was expressed in Escherichia coli and used to develop a diagnostic ELISA kit. The antibody was fused to the light chain constant domain of human immunoglobulin to create the bivalent reagent C(L)-LR3, which was purified from the periplasmic fraction, giving a yield of ~5 mg/l. The sensitivity of the reagent against recombinant GLRaV-3 CP was 0.1 ng. The sensitivity, specificity and durability of the reagent was similar to a commercial kit. The C(L)-LR3 showed a weak cross-reaction in immune electron microscopy assays to GLRaV-1 and -7, but not with the phylogenetically more distant GLRaV-2. A fully recombinant kit was developed with the inclusion of a recombinant GLRaV-3 CP expressed in bacteria, thus avoiding problems associated with virus propagation and purification. This system represents a rapid, simple, sensitive and standardized diagnostic protocol for GLRaV-3 detection. PMID:19082687

  1. The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma

    PubMed Central

    Iyer, Arun K.; Su, Yang; Feng, Jinjin; Lan, Xiaoli; Zhu, Xiaodong; Liu, Yue; Gao, Dongwei; Seo, Youngho; VanBrocklin, Henry F.; Broaddus, V. Courtney; Liu, Bin; He, Jiang

    2011-01-01

    Immunoliposomes (ILs) anchored with internalizing human antibodies capable of targeting all subtypes of mesothelioma can be useful for targeted imaging and therapy of this malignant disease. The objectives of this study were to evaluate both the in vitro and in vivo tumor targeted internalization of novel internalizing human single chain antibody (scFv) anchored ILs on both epithelioid (M28) and sarcomatoid (VAMT-1) subtypes of human mesothelioma. ILs were prepared by post-insertion of mesothelioma-targeting human scFv (M1) onto preformed liposomes and radiolabeled with 111In (111In-IL-M1), along with control non-targeted liposomes (111In-CL). Incubation of 111In-IL-M1 with M28, VAMT-1, and a control non-tumorigenic cell-line (BPH-1) at 37°C for 24 h revealed efficient binding and rapid internalization of ILs into both subtypes of tumor cells but not into the BPH-1 cells; internalization accounted for approximately 81-94% of total cell accumulation in mesothelioma cells compared to 37-55% in control cells. In tumor bearing mice intravenous (i.v.) injection of 111In-IL-M1 led to remarkable tumor accumulation: 4 % and 4.7% injected dose per gram (% ID/g) for M28 and VAMT-1 tumors, respectively, 48 h after injection. Furthermore, tumor uptake of 111In-IL-M1 in live xenograft animal models was verified by single photon emission computed tomography (SPECT/CT). In contrast, i.v. injection of 111In-CL in tumor-bearing mice revealed very low uptake in both subtypes of mesothelioma, 48 h after injection. In conclusion, M1 scFv-anchored ILs showed selective tumor targeting and rapid internalization into both epithelioid and sarcomatoid subtypes of human mesothelioma, demonstrating its potential as a promising vector for enhanced tumor drug targeting. PMID:21255833

  2. Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean.

    PubMed

    Wang, Bing; Swaminathan, Sivakumar; Bhattacharyya, Madan K

    2015-01-01

    Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed. PMID:26709700

  3. Production and characterization of a recombinant anti-MUC1 scFv reactive with human carcinomas.

    PubMed Central

    Denton, G.; Sekowski, M.; Spencer, D. I.; Hughes, O. D.; Murray, A.; Denley, H.; Tendler, S. J.; Price, M. R.

    1997-01-01

    Recombinant single-chain fragments (scFv) of the murine anti-MUC1 monoclonal antibody C595 have been produced using the original hybridoma cells as a source of variable heavy (V(H))- and variable light (V(L))-chain-encoding antibody genes. The use of the polymerase chain reaction (PCR), bacteriophage (phage) display technology and gene expression systems in E. coli has led to the production of soluble C595 scFv. The scFv has been purified from the bacterial supernatant by peptide epitope affinity chromatography, leading to the recovery of immunoreactive C595 scFv, which was similar in activity to the C595 parent antibody. Analysis by DNA sequencing, SDS-PAGE and Western blotting has demonstrated the integrity of the scFv, while ELISA, FACScan analysis, fluorescence quenching, quantitative immunoreactivity experiments and immunohistochemistry confirm that the activity of the scFv compares favourably with that of the parent antibody. The retention of binding activity to MUC1 antigen on human bladder and breast carcinoma tissue specimens illustrates the potential application of this novel product as an immunodiagnostic and immunotherapeutic reagent. Images Figure 1 Figure 2 Figure 3 Figure 7 PMID:9303360

  4. Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean

    PubMed Central

    Wang, Bing; Swaminathan, Sivakumar; Bhattacharyya, Madan K.

    2015-01-01

    Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed. PMID:26709700

  5. Anti-ABCG2 scFv antibody of lung adenocarcinoma increases chemosensitivity and induces apoptosis through the activation of mitochondrial pathway

    PubMed Central

    Zhao, Wen-Si; Luo, Yi; Li, Bo-Yi; Zhou, Han-Jing; Zhang, Tao

    2016-01-01

    ABCG2 is a multidrug resistance efflux pump expressed in many diverse tumors. The overexpression of ABCG2 is associated with resistance to a wide variety of anticancer agents, providing a noticeable setback to successful cancer therapy. Therapies targeting ABCG2 may therefore be a promising candidate for reversal of chemoresistance. The anti-ABCG2 single-chain variable fragment (scFv) antibody was constructed by phage display peptide library technology. Immunoblotting, ELISA and immunocytochemistry were used to evaluate the soluble expression and immunoreactivity of the scFv. The effects of scFv on cell function and chemosensitization were confirmed by colony formation, cell migration and CCK-8 assays. Flow cytometry was used to analyse the cell cycle and apoptosis. Radioimmunoimaging and nude mouse tumorigenicity assays were taken to determine the biodistribution and antitumor capacity of the scFv antibody. We have successfully screened out the candidate scFv antibody with an apparent molecular weight of 34 kDa. The scFv demonstrated favourable binding ability to lung adenocarcinoma cells and ABCG2 antigen, and the radioactivity was specifically aggregated at the tumor location. Furthermore, the internalized scFv resulted in antibody-mediated downregulation of ABCG2, proliferation inhibition, apoptosis and cisplatin (DDP) sensitivity. The anti-ABCG2 scFv antibody possesses good tumoraffin and antitumor activity and may therefore be an effective therapeutic agent for lung adenocarcinoma that is dependent on ABCG2 for drug resistance and survival. PMID:27293996

  6. Soluble Expression and Characterization of a New scFv Directed to Human CD123.

    PubMed

    Moradi-Kalbolandi, Shima; Davani, Dariush; Golkar, Majid; Habibi-Anbouhi, Mahdi; Abolhassani, Mohsen; Shokrgozar, Mohammad Ali

    2016-04-01

    Leukemic cancer stem cells (LSCs), as a unique cell population in acute myeloid leukemia (AML) marked by CD123 overexpression, are thought to play a key role in relapsed AML after chemotherapy. Thus, CD123 is considered as a particularly important target candidate for antibody-derived diagnosis and therapy. In the present work, we constructed an immunized murine antibody phage display library and isolated the functional anti-CD123 Single-chain fragment variable (scFv) clones. We also introduced fusing variable light (VL) and heavy (VH) chains with a new 18-amino acid residue linker as an alternative to conventional linkers. CD123-specific phage clones were progressively enriched through 4 rounds of biopanning, validated by phage ELISA, and anti-CD123 scFv clones with highest affinity were produced in Escherichia coli. The expression and purification of soluble scFv were verified by Western blot, and the results were indicative of the functionality of our proposed linker. The purified scFv specifically recognized CD123 by ELISA and flow cytometry, without any cross-reactivity with other related cell markers. Affinity of anti-CD123 scFv was measured to be 6.9 × 10(-7) M, using the competitive ELISA. Our work, therefore, provides a framework for future studies involving biological functions and applications of our anti-CD123 scFv. It also reveals the feasibility of high throughput methods to isolate biomarker-specific scFvs. PMID:26749295

  7. Mesenchymal Stem Cells Modified with a Single-Chain Antibody against EGFRvIII Successfully Inhibit the Growth of Human Xenograft Malignant Glioma

    PubMed Central

    Balyasnikova, Irina V.; Ferguson, Sherise D.; Sengupta, Sadhak; Han, Yu; Lesniak, Maciej S.

    2010-01-01

    Background Glioblastoma multiforme is the most lethal brain tumor with limited therapeutic options. Antigens expressed on the surface of malignant cells are potential targets for antibody-mediated gene/drug delivery. Principal Findings In this study, we investigated the ability of genetically modified human mesenchymal stem cells (hMSCs) expressing a single-chain antibody (scFv) on their surface against a tumor specific antigen, EGFRvIII, to enhance the therapy of EGFRvIII expressing glioma cells in vivo. The growth of U87-EGFRvIII was specifically delayed in co-culture with hMSC-scFvEGFRvIII. A significant down-regulation was observed in the expression of pAkt in EGFRvIII expressing glioma cells upon culture with hMSC-scFvEGFRvIII vs. controls as well as in EGFRvIII expressing glioma cells from brain tumors co-injected with hMSC-scFvEGFRvIII in vivo. hMSC expressing scFvEGFRvIII also demonstrated several fold enhanced retention in EGFRvIII expressing flank and intracranial glioma xenografts vs. control hMSCs. The growth of U87-EGFRvIII flank xenografts was inhibited by 50% in the presence of hMSC-scFvEGFRvIII (p<0.05). Moreover, animals co-injected with U87-EGFRvIII and hMSC-scFvEGFRvIII intracranially showed significantly improved survival compared to animals injected with U87-EGFRvIII glioma cells alone or with control hMSCs. This survival was further improved when the same animals received an additional dosage of hMSC-scFvEGFRvIII two weeks after initial tumor implantation. Of note, EGFRvIII expressing brain tumors co-injected with hMSCs had a lower density of CD31 expressing blood vessels in comparison with control tumors, suggesting a possible role in tumor angiogenesis. Conclusions/Significance The results presented in this study illustrate that genetically modified MSCs may function as a novel therapeutic vehicle for malignant brain tumors. PMID:20305783

  8. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope.

    PubMed

    Bublin, Merima; Kostadinova, Maria; Fuchs, Julian E; Ackerbauer, Daniela; Moraes, Adolfo H; Almeida, Fabio C L; Lengger, Nina; Hafner, Christine; Ebner, Christof; Radauer, Christian; Liedl, Klaus R; Valente, Ana Paula; Breiteneder, Heimo

    2015-01-01

    Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes. PMID:26579717

  9. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope

    PubMed Central

    Fuchs, Julian E.; Ackerbauer, Daniela; Moraes, Adolfo H.; Almeida, Fabio C. L.; Lengger, Nina; Hafner, Christine; Ebner, Christof; Radauer, Christian; Liedl, Klaus R.; Valente, Ana Paula; Breiteneder, Heimo

    2015-01-01

    Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients’ sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes. PMID:26579717

  10. Human monoclonal ScFv specific to NS1 protein inhibits replication of influenza viruses across types and subtypes.

    PubMed

    Yodsheewan, Rungrueang; Maneewatch, Santi; Srimanote, Potjanee; Thueng-In, Kanyarat; Songserm, Thaweesak; Dong-Din-On, Fonthip; Bangphoomi, Kunan; Sookrung, Nitat; Choowongkomon, Kiattawee; Chaicumpa, Wanpen

    2013-10-01

    Currently, there is a need of new anti-influenza agents that target influenza virus proteins other than ion channel M2 and neuraminidase. Non-structural protein-1 (NS1) is a highly conserved multifunctional protein which is indispensable for the virus replication cycle. In this study, fully human single chain antibody fragments (HuScFv) that bound specifically to recombinant and native NS1 were produced from three huscfv-phagemid transformed Escherichia coli clones (nos. 3, 10 and 11) selected from a human ScFv phage display library. Western blot analysis, mimotope searching/epitope identification, homology modeling/molecular docking and phage mimotope ELISA inhibition indicated that HuScFv of clone no. 3 reacted with NS1 R domain important for host innate immunity suppression; HuScFv of clone nos. 10 and 11 bound to E domain sites necessary for NS1 binding to the host eIF4GI and CPSF30, respectively. The HuScFv of all clones could enter the influenza virus infected cells and interfered with the NS1 activities leading to replication inhibition of viruses belonging to various heterologous A subtypes and type B by 2-64-fold as semi-quantified by hemagglutination assay. Influenza virus infected cells treated with representative HuScFv (clone 10) had up-expression of IRF3 and IFN-β genes by 14.75 and 4.95-fold, respectively, in comparison with the controls, indicating that the antibodies could restore the host innate immune response. The fully human single chain antibodies have high potential for developing further as a safe (adjunctive) therapeutic agent for mitigating, if not abrogating, severe symptoms of influenza. PMID:23928258

  11. Discovery of Hapten-Specific scFv from a Phage Display Library and Applications for HER2-Positive Tumor Imaging

    PubMed Central

    2015-01-01

    In this study, an anti-hapten antibody (single chain Fv, scFv) against a hapten probe was developed as a unique reporter system for molecular imaging or therapy. The hapten peptide (histamine-succinyl-GSYK, Him) was synthesized for phage displayed scFv affinity selection and for conjugation with cypate (Cy-Him) for in vivo near-infrared (NIR) optical imaging. Hapten-specific scFvs were affinity selected from the human single fold phage display scFv libraries (Tomlinson I + J) with high specificity and affinity. Utilizing HER2 targeting as a model system, the highest affinity scFv (clone J42) was recombinantly fused to an anti-HER2 affibody (scFv-L-Aff) with no loss of affinity of either protein. The functionality of the hapten-scFv reporter system was tested in vitro with a HER2-positive human breast cancer cell line, SK-BR3, and in vivo with SK-BR3 xenografts. ScFv-L-Aff mediated the binding of the hapten to HER2 on SK-BR3 cells and from tissue from the SK-BR3 xenograft; however, scFv-L-Aff did not mediate uptake of the hapten in the SK-BR3 xenografted tumors, presumably due to rapid internalization of the HER2/scFv-L-Aff complex. Our results suggest that this hapten-peptide and anti-hapten scFv can be a universal reporter system in a wide range of imaging and therapeutic applications. PMID:24898150

  12. Production of stabilized scFv antibody fragments in the E. coli bacterial cytoplasm.

    PubMed

    Vaks, Lilach; Benhar, Itai

    2014-01-01

    Monoclonal antibodies (mAbs) are currently the fastest growing class of therapeutic proteins. Parallel to full-length IgG format the development of recombinant technologies provided the production of smaller recombinant antibody variants. The single-chain variable fragment (scFv) antibody is a minimal form of functional antibody comprised of the variable domains of immunoglobulin light and heavy chains connected by a flexible linker. In most cases, scFvs are expressed in the bacterium E. coli. The production of soluble scFvs under the reducing conditions of the E. coli bacterial cytoplasm is inefficient because of the inability of the disulfide bonds to form. Hence, scFvs are either secreted to the periplasm as soluble proteins or expressed in the cytoplasm as insoluble inclusion bodies and recovered by refolding. The cytoplasmic expression of scFvs as a C-terminal fusion to maltose-binding protein (MBP) provided the high-level production of stable, soluble, and functional fusion protein. The below protocol provides the detailed description of MBP-scFv production in E. coli utilizing two expression systems: pMalc-TNN and pMalc-NHNN. Although the MBP tag does not disrupt the most of antibody activities, the MBP-TNN-scFv product can be cleaved by TEV protease in order to obtain untagged scFv. PMID:24037842

  13. Insilico analysis of three different tag polypeptides with dual roles in scFv antibodies.

    PubMed

    Mohammadi, Mozafar; Nejatollahi, Foroogh; Sakhteman, Amirhossein; Zarei, Neda

    2016-08-01

    Single chain fragment variable (scFv) antibodies are composed of variable heavy (VH) and variable light (VL) domains that are joined by a polypeptide linker. Typically, [(Gly4Ser) n] sequence is used as a linker to retain the integrity of the antigen-binding domain. Due to its low immunogenicity, this sequence cannot be used as a tag for scFv detection and purification. Several evidences have shown that the addition of an N or C-terminal tag for scFv detection and purification will result in the decreased expression and binding capacity of this antibody fragment. In this study, we substituted the traditional linker (GGGGS) with His-tag, C-myc or E-tag sequences through molecular modeling. Stability and integrity of all models were assessed by molecular dynamic (MD) simulation. Based on MD simulation analysis, the model containing E-tag sequence as a linker indicated more stability compared to other molecules. The results suggest that E-tag not only can be substituted for the traditional linker, also eliminates the necessity of using additional tag for scFv detection and purification. PMID:27113782

  14. Humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity.

    PubMed

    Xiangbao, Yin; Linquan, Wu; Mingwen, Huang; Fan, Zhou; Kai, Wang; Xin, Yu; Kaiyang, Wang; Huaqun, Fu

    2014-06-01

    Low sensitivity of tumor tissue, targeting and sustained release of the drug are bottlenecks of the effect of chemotherapy on hepatocellular carcinoma. In this study, we used the ribosome display technology to screen human anti-VEGFR 2-single-chain antibody (ScFv) that could target directly to VEGFR2, and nanotechnology to prepare As2O3-nanoparticles. Then we built anti-VEGFR-2ScFv-As2O3-stealth nanoparticles using molecular coupling technology, which significantly increased anti-tumor effect while reducing toxicity. The in vivo tissue targeting distribution and anti-tumor effects of the anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles were investigated. Our results showed that anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles could inhibit the development of liver cancer xenograft as a targeting agent and also significantly inhibit angiogenesis. PMID:24855034

  15. A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains.

    PubMed

    Hu, Zu-Quan; Li, He-Ping; Zhang, Jing-Bo; Huang, Tao; Liu, Jin-Long; Xue, Sheng; Wu, Ai-Bo; Liao, Yu-Cai

    2013-02-18

    Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv-AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusion's parental scFv antibody. Immunoblot analyses showed that the fusion had good binding capacity to the components from SCWPs of F. verticillioides, and enzyme-linked immunosorbent assays revealed that the detection limit of the fungus was below 10(-2) μg mL(-1), superior to the scFv antibody. The fusion protein was able to detect fungal concentrations as low as 10(-3) mg g(-1) of maize grains in both naturally and artificially contaminated samples. Thus, the fusion can be applied in rapid and simple diagnosis of Fusarium contamination in field and stored grain or in food. PMID:23374219

  16. Control of Established Colon Cancer Xenografts Using a Novel Humanized Single Chain Antibody-Streptococcal Superantigen Fusion Protein Targeting the 5T4 Oncofetal Antigen

    PubMed Central

    Patterson, Kelcey G.; Dixon Pittaro, Jennifer L.; Bastedo, Peter S.; Hess, David A.; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy. PMID:24736661

  17. Control of established colon cancer xenografts using a novel humanized single chain antibody-streptococcal superantigen fusion protein targeting the 5T4 oncofetal antigen.

    PubMed

    Patterson, Kelcey G; Dixon Pittaro, Jennifer L; Bastedo, Peter S; Hess, David A; Haeryfar, S M Mansour; McCormick, John K

    2014-01-01

    Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as 'next-generation' TTSs for cancer immunotherapy. PMID:24736661

  18. Suppression of pancreatic tumor growth by targeted arsenic delivery with anti-CD44v6 single chain antibody conjugated nanoparticles.

    PubMed

    Qian, Chenchen; Wang, Yong; Chen, Yinting; Zeng, Linjuan; Zhang, Qiubo; Shuai, Xintao; Huang, Kaihong

    2013-08-01

    Arsenic trioxide (As2O3) is a promising anticancer agent for solid tumors. However, the high toxicity to normal tissues resulting from the lack of tumor specificity remains a huge challenge in its systemic application. Targeted vectors enabling drug delivery to specific cancer cells bring about great potential for better therapeutic efficacy whereas low side effects in cancer treatments. Our previous work has demonstrated that the anti-CD44v6 single chain variable fragment (scFv(CD44v6)) screened out from the human phage-displayed scFv library possesses high specificity and affinity to membrane antigen CD44v6 over-expressing in a subset of epithelium-derived cancers, such as pancreatic, hepatocellular, colorectal and gastric cancers. Herein, a maleimide-functionalized amphiphilic diblock copolymer of poly (ethylene glycol) and poly (D, L-lactide) (mal-PEG-PDLLA) was synthesized and assembled to vesicles with arsenite ion (As) encapsulated in their cores (As-NPs). Conjugation of scFv(CD44v6) with mal-PEG-PDLLA (scFv-As-NPs) enabled more efficient delivery of As and exhibited higher cytotoxic activity than non-targeted ones (As-NPs) in human pancreatic cancer cells PANC-1. Furthermore, the targeted delivery of As induced more significant gene suppression in terms of the expression of anti-apoptotic Bcl-2 protein. Consequently, the expression level of cleaved caspase-3 which is a molecular indicator of cell apoptosis was remarkably elevated. In animal tests, scFv-As-NPs were found to greatly increase accumulation of drug in tumor site and potentiate the efficacy of As in inhibiting tumor growth owing to the enhanced cell apoptosis. These results imply that our tumor specific nanocarriers provide a highly efficient and safe platform for pancreatic cancer therapy. PMID:23721794

  19. [Stable expression of human anti-IL-33 scFv-IgG1Fc fusion protein in CHO k1 cells].

    PubMed

    Ye, Yingchun; Nian, Siji; Wang, Xu; Wu, Tong; Xu, Wenfeng; Yuan, Qing

    2016-05-01

    Objective To construct two different eukaryotic expression vectors of human anti-interleukin 33 (IL-33) single-chain antibody fragment (scFv-Fc) to transfect Chinese hamster ovary (CHO) k1 cells and select the stably and high-level expressed cell lines to improve the expression level of the fusion protein. Methods The previously constructed recombinant plasmid pcDNA3.1/SP-scFv-Fc was digested to obtain SP-scFv-Fc fragments, and the fragments were inserted into the plasmid PMH3(EN) to construct recombinant plasmid PMH3(EN)/SP-scFv-Fc. The plasmids PMH3(EN)/SP-scFv-Fc and pcDNA3.1/SP-scFv-Fc were separately transfected into CHO k1 cells. The transcription and translation level of the SP-scFv-Fc were detected by reverse transcription PCR (RT-PCR) and Western blotting, respectively. The stably and high-level expressed cell lines were screened by Dot blotting. The expression level and binding activity of the expressed scFv-Fc were measured by ELISA. Results The recombinant plasmid PMH3(EN)/SP-scFv-Fc was successfully constructed and the size of the inserted SP-scFv-Fc was about 1560 bp. The RT-PCR results showed that the SP-scFv-Fc was successfully transfected into CHO k1 cells. The scFv-Fc proteins could be secreted into the cultural supernatant and specifically bind to human IL-33 and anti human IgG1 Fc antibody. The expression level of scFv-Fc in plasmid PMH3(EN) was higher than that in plasmid pcDNA3.1. After four rounds of screening, the stably and high-level expressed cell strains were obtained. The expression level of the scFv-Fc was about 10 mg/L. The competitive ELISA results showed that the expressed scFv-Fc fusion proteins could inhibit the binding of IL-33 to ST2. Conclusion The anti-IL-33 scFv-Fc proteins were highly expressed in CHO k1 cells. PMID:27126936

  20. Single chain stochastic polymer modeling at high strain rates.

    SciTech Connect

    Harstad, E. N.; Harlow, Francis Harvey,; Schreyer, H. L.

    2001-01-01

    Our goal is to develop constitutive relations for the behavior of a solid polymer during high-strain-rate deformations. In contrast to the classic thermodynamic techniques for deriving stress-strain response in static (equilibrium) circumstances, we employ a statistical-mechanics approach, in which we evolve a probability distribution function (PDF) for the velocity fluctuations of the repeating units of the chain. We use a Langevin description for the dynamics of a single repeating unit and a Lioville equation to describe the variations of the PDF. Moments of the PDF give the conservation equations for a single polymer chain embedded in other similar chains. To extract single-chain analytical constitutive relations these equations have been solved for representative loading paths. By this process we discover that a measure of nonuniform chain link displacement serves this purpose very well. We then derive an evolution equation for the descriptor function, with the result being a history-dependent constitutive relation.

  1. Single-chain technology using discrete synthetic macromolecules

    NASA Astrophysics Data System (ADS)

    Ouchi, Makoto; Badi, Nezha; Lutz, Jean-François; Sawamoto, Mitsuo

    2011-12-01

    Fundamental polymer science is undergoing a profound transformation. As a result of recent progress in macromolecular chemistry and physics, synthetic polymer chains are becoming much more than just the modest building blocks of traditional 'plastics'. Promising options for controlling the primary and secondary structures of synthetic polymers have been proposed and, therefore, similarly to biopolymers, synthetic macromolecules may now be exploited as discrete objects with carefully engineered structures and functions. Although it is not possible today to reach the high level of complexity found in biomaterials, these new chemical possibilities open interesting avenues for applications in microelectronics, photovoltaics, catalysis and biotechnology. Here, we describe in detail these recent advances in macromolecular science and emphasize the possible emergence of technologies based on single-chain devices.

  2. Entropic forces of single-chain confinement in spherical cavities.

    PubMed

    Jin, Zhehui; Zhao, Shuangliang; Wu, Jianzhong

    2010-10-01

    Thermodynamic properties of a single chain in a confined space have been studied before with the polymer scaling theory and computer simulations. However, a comprehensive understanding of the entropic effects due to the molecular excluded volume and chain connectivity is emerging only recently, especially in the limit of large polymer packing densities as often encountered in biological systems. In this work, we propose a polymer density functional theory (DFT) to study the entropic forces for the confinement of single polymer chains in spherical cavities. At conditions accessible to Monte Carlo simulations, we show that the DFT predictions are in excellent agreement with the simulation results for the distributions of polymer segments as well as the free energy of confinement. The numerical efficiency of the DFT allows us to unify key conclusions from various theoretical analyses and experimental observations. PMID:21230306

  3. Structural Basis of Neutralization of the Major Toxic Component from the Scorpion Centruroides noxius Hoffmann by a Human-derived Single-chain Antibody Fragment

    SciTech Connect

    Canul-Tec, Juan Carlos; Riaño-Umbarila, Lidia; Rudiño-Piñera, Enrique; Becerril, Baltazar; Possani, Lourival D.; Torres-Larios, Alfredo

    2011-08-09

    It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 {angstrom} resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complex reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of {beta}-toxins to its Na+ channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.

  4. Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water.

    PubMed

    Zhang, Xiuyuan; He, Kuo; Zhao, Ruiping; Wang, Lixia; Jin, Yandan

    2016-10-01

    Single chain variable fragment (scFv), containing of heavy and light chains (VH and VL) joined by a short peptide linker, has been used widely for immunodetection. Nevertheless, cloning functional variable genes is still a bottle neck for the scFv generation technology. Here, a rational strategy for cloning and selecting variable region genes from an anti-microcystin-LR hybridoma was devised, then the functional VH and VL genes were recloned and assembled to scFv using splicing overlap extension PCR. The resulting scFv gene was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein (scFv-AP) by vector PLIP6/GN. Then an indirect competitive chemiluminescent enzyme immunoassay (ic-CLEIA) for detection of microcystin-LR was developed. The half-maximum inhibition concentrations (IC50) and limits of detection (LODs, IC15) were 0.81 ± 0.04 μgL(-1) and 0.13 ± 0.03 μgL(-1), respectively. With the mean coefficient of variation lowing 8%, the mean recovery in intra-assay and inter-assay were 100.06% and 96.46%, The proposed strategy should be useful for generation scFv in a rapid and simple way. PMID:27380224

  5. Multiparameter optimization method and enhanced production of secreted recombinant single-chain variable fragment against the HIV-1 P17 protein from Escherichia coli by fed-batch fermentation.

    PubMed

    Paopang, Porntip; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Seesuriyachan, Phisit; Butr-Indr, Bordin

    2016-04-01

    The single-chain fragment variable (scFv) was used to produce a completely functional antigen-binding fragment in bacterial systems. The advancements in antibody engineering have simplified the method of producing Fv fragments and made it more efficient and generally relevant. In a previous study, the scFv anti HIV-1 P17 protein was produced by a batch production system, optimized by the sequential simplex optimization method. This study continued that work in order to enhance secreted scFv production by fed-batch cultivation, which supported high volumetric productivity and provided a large amount of scFvs for diagnostic and therapeutic research. The developments in cell culture media and process parameter settings were required to realize the maximum production of cells. This study investigated the combined optimization methods, Plackett-Burman design (PBD) and sequential simplex optimization, with the aim of optimize feed medium. Fed-batch cultivation with an optimal feeding rate was determined. The result demonstrated that a 20-mL/hr feeding rate of the optimized medium can increase cell growth, total protein production, and scFv anti-p17 activity by 4.43, 1.48, and 6.5 times more than batch cultivation, respectively. The combined optimization method demonstrated novel power tools for the optimization strategy of multiparameter experiments. PMID:25831436

  6. Functional Characteristics and Molecular Mechanism of a New scFv Antibody Against Aβ42 Oligomers and Immature Protofibrils.

    PubMed

    Zhang, Yuan; Sun, Yuanhong; Huai, Yangyang; Zhang, Ying-Jiu

    2015-12-01

    Amyloid β peptide (Aβ42) is a major determinant of Alzheimer's disease (AD). In this study, we studied a novel single-chain variable fragment (scFv), AS, generated from an antibody library of AD patients, which recognized and bound specifically to medium-size amyloid β peptide (Aβ42) oligomers and immature protofibrils (25-55 kDa) and, more importantly, reduced their level by blocking their formation or inducing their disassembly. Consequently, scFv AS ameliorated or prevented their cytotoxicity and protected SH-SY5Y cells and primary cultured neurons in vitro from their damage in a concentration-dependent manner. Comparison of its cytotoxicity-inhibiting and cytotoxicity-neutralizing activities indicated that scFv AS displayed its protective effect on target cells mainly due to its cytotoxicity-inhibitory activity though it could also neutralize the cytotoxicity. We also found that scFv AS could efficiently cross the in vitro BBB model with a delivery efficiency of over 70% after a 60-min post-administration. The scFv AS was a monovalent antibody with an affinity constant (KD) of 5.5 × 10(-6) M and a binding threshold of 6.25 × 10(-4) μM for Aβ42 oligomers. The molecular docking simulations of Aβ42 to scFv AS revealed that scFv AS tends to approached Aβ42 oligomers and immature protofibrils mainly by their hydrophobic interaction and then drew Aβ42 molecule into the gap between VL and VH domains of scFv AS by hydrophilic interaction between scFv AS and the N-terminal region (residues 1-15) of Aβ42 and the hydrophobic interactions between scFv AS and the middle region (residues 20-33) of Aβ42. The combination of scFv AS with Aβ42 was realized likely through an induced-fit process. PMID:25330935

  7. Development of Human-Like scFv-Fc Neutralizing Botulinum Neurotoxin E

    PubMed Central

    Miethe, Sebastian; Rasetti-Escargueil, Christine; Avril, Arnaud; Liu, Yvonne; Chahboun, Siham; Korkeala, Hannu; Mazuet, Christelle; Popoff, Michel-Robert; Pelat, Thibaut; Thullier, Philippe; Sesardic, Dorothea; Hust, Michael

    2015-01-01

    Background Botulinum neurotoxins (BoNTs) are considered to be the most toxic substances known on earth and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food-poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agent by the Centers of Disease Control and Prevention (CDC) and are listed among the six agents with the highest risk to be used as bioweapons. Neutralizing antibodies are required for the development of effective anti-botulism therapies to deal with the potential risk of exposure. Results In this study, a macaque (Macaca fascicularis) was immunized with recombinant light chain of BoNT/E3 and an immune phage display library was constructed. After a multi-step panning, several antibody fragments (scFv, single chain fragment variable) with nanomolar affinities were isolated, that inhibited the endopeptidase activity of pure BoNT/E3 in vitro by targeting its light chain. Furthermore, three scFv were confirmed to neutralize BoNT/E3 induced paralysis in an ex vivo mouse phrenic nerve-hemidiaphragm assay. The most effective neutralization (20LD50/mL, BoNT/E3) was observed with scFv ELC18, with a minimum neutralizing concentration at 0.3 nM. Furthermore, ELC18 was highly effective in vivo when administered as an scFv-Fc construct. Complete protection of 1LD50 BoNT/E3 was observed with 1.6 ng/dose in the mouse flaccid paralysis assay. Conclusion These scFv-Fcs antibodies are the first recombinant antibodies neutralizing BoNT/E by targeting its light chain. The human-like nature of the isolated antibodies is predicting a good tolerance for further clinical development. PMID:26440796

  8. Comparison of three microbial hosts for the expression of an active catalytic scFv.

    PubMed

    Robin, Sylvain; Petrov, Kliment; Dintinger, Thierry; Kujumdzieva, Anna; Tellier, Charles; Dion, Michel

    2003-01-01

    Antibodies represent an interesting protein framework on which catalytic functions can be grafted. In previous studies, we have reported the characterization of the catalytic antibody 4B2 obtained on the basis of the "bait and switch" strategy which catalyzes two different chemical reactions: the allylic isomerization of beta,gamma-unsaturated ketones and the Kemp elimination. We have cloned the antibody 4B2 and expressed it as a single-chain Fv (scFv) fragment in different expression systems, Escherichia coli and two yeasts species, in order to elicit the most suitable system to study its catalytic activity. The scFv4B2 was secreted as an active form in the culture medium of Pichia pastoris and Kluyveromyces lactis, which led respectively to 4 and 1.3mg/l after purification. In E. coli, different strategies were investigated to increase the cytoplasmic soluble fraction, which resulted, in all cases, in the expression of a low amount of functional antibodies. By contrast, substantial amount of scFv4B2 could be purified when it was expressed as inclusion bodies (12mg/l) and submitted to an in vitro refolding process. Its catalytic activity was measured and proved to be comparable to that of the whole IgG. However, the instability of the scFv4B2 in solution prevented from an exhaustive characterization of its activity and stabilization of this protein appears to be essential before designing strategies to improve its catalytic activity. PMID:12531284

  9. Multivalent glycoconjugates as anti-pathogenic agents†

    PubMed Central

    Bernardi, Anna; Jiménez-Barbero, Jesus; Casnati, Alessandro; De Castro, Cristina; Darbre, Tamis; Fieschi, Franck; Finne, Jukka; Funken, Horst; Jaeger, Karl-Erich; Lahmann, Martina; Lindhorst, Thisbe K.; Marradi, Marco; Messner, Paul; Molinaro, Antonio; Murphy, Paul V.; Nativi, Cristina; Oscarson, Stefan; Penadés, Soledad; Peri, Francesco; Pieters, Roland J.; Renaudet, Olivier; Reymond, Jean-Louis; Richichi, Barbara; Rojo, Javier; Sansone, Francesco; Schäffer, Christina; Turnbull, W. Bruce; Velasco-Torrijos, Trinidad; Vidal, Sébastien; Vincent, Stéphane; Wennekes, Tom; Zuilhof, Han; Imberty, Anne

    2015-01-01

    Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein–glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategies. PMID:23254759

  10. Single-chain urokinase in empyema induced by Pasturella multocida.

    PubMed

    Idell, Steven; Jun Na, Moon; Liao, Huai; Gazar, A E; Drake, Wonder; Lane, Kirk B; Koenig, Kathy; Komissarov, Andrey; Tucker, Torry; Light, Richard W

    2009-10-01

    Intrapleural fibrin deposition and subsequent fibrosis characterize evolving empyema and contribute to the morbidity associated with this condition. Single-chain urokinase (scuPA) is proenzyme form of the urokinase plasminogen activator, which has recently been shown to effectively clear intrapleural loculation in tetracycline-induced pleurodesis in rabbits. The authors therefore hypothesized that scuPA could likewise improve intrapleural injury associated with empyema. The authors used a rabbit model of empyema induced by intrapleural administration of Pasturella multocida to test this hypothesis and determined the effects of intrapleural scuPA on pleural fluids indices of inflammation and intrapleural fibrosis. The authors found that intrapleural administration of scuPA was well tolerated, generated readily detectable fibrinolytic activity in the empyema fluids and did not induce intrapleural or systemic bleeding. Pleural fluid volume, intrapleural protein, and D-dimer concentrations were increased at 24 and 48 hours (P < .01, respectively) after induction of empyema. Intrapleural loculation did not occur in the scuPA- or vehicle control-treated animals and there was no significant change in the pleural empyema or thickening scores. These findings confirm that intrapleural scuPA generates fibrinolysis in empyema fluids but does not alter fibrotic repair at the pleural surface or the intensity of intrapleural inflammation in this empyema model. PMID:19895321

  11. Construction and functional analysis of an anti-human cervical carcinoma/anti-human CD3 single-chain bispecific antibody.

    PubMed

    Wu, Hong; Yao, Li; Chou, Lin; Yang, Jin-Hua; Zhang, Yun-Xiu; Li, Xiao-Li; Shan, Bo-Er

    2016-07-01

    The aim of the present study was to construct a single-chain bispecific antibody (scBsAb) against cervical carcinoma and to investigate its biological activities. The scBsAb was constructed using a genetic cloning technique and antigen binding activities were detected by ELISA. The iodogen method was used to analyze the pharmacokinetics. The Rosette formation test was used to detect the binding ability between peripheral blood lymphocytes (PBLs) and Cs1213 cervical cancer cells. In addition, the MTT method was performed to detect the killing effect of PBLs. The molecular weight of the scBsAb was ~60 kDa. The antigen binding activities of scBsAbs were compared with the anti‑human cervical carcinoma antibody single‑chain Fv fragment (CSAs‑1 scFv) and anti‑cluster of differentiation (CD)3 scFv (P>0.05). In addition, a pharmacokinetics assay demonstrated that compared with the two corresponding scFvs, scBsAbs exhibited a significantly prolonged retention time in the body (P<0.01). In addition, the number of rosettes formed by PBLs and Cs1213 cells in the scBsAb group was markedly greater than that in the scFv groups or the RPMI‑1640 group (P<0.05 and P<0.01, respectively). The killing activity of PBLs against scBsAb‑mediated Cs1213 cells was significantly greater than that mediated by the other antibodies (P<0.05). When the concentration of scBsAb was 40 µg/ml, the killing rate was 64.5%. Thus, anti‑human cervical carcinoma/anti‑CD3 scBsAbs may possess two types of antigen binding activity, prolong the duration in vivo and improve the killing activity of PBLs against cancer cells. PMID:27220396

  12. The antitumor efficacy of a novel adenovirus-mediated anti-p21Ras single chain fragment variable antibody on human cancers in vitro and in vivo.

    PubMed

    Yang, Ju-Lun; Pan, Xin-Yan; Zhao, Wen-Xing; Hu, Qi-Chan; Ding, Feng; Feng, Qiang; Li, Gui-Yun; Luo, Ying

    2016-03-01

    Activated ras genes are found in a large number of human tumors, and therefore are one of important targets for cancer therapy. This study investigated the antitumor effects of a novel single chain fragment variable antibody (scFv) against ras protein, p21Ras. The anti-p21Ras scFv gene was constructed by phage display library from hybridoma KGHR1, and then subcloned into replication-defective adenovirus vector to obtain recombinant adenovirus KGHV100. Human tumor cell lines with high expression of p21Ras SW480, MDA-MB‑231, OVCAR-3, BEL-7402, as well as tumor cell line with low expression of p21Ras, SKOV3, were employed to investigate antitumor effects in vitro and in vivo. Fluorescence microscopy demonstrated that KGHV100 was able to express intracellularly anti-p21Ras scFv antibody in cultured tumor cells and in transplantation tumor cells. MTT, Transwell, colony formation, and flow cytometry analysis showed that KGHV100 led to significant growth arrest in tumor cells with high p21Ras expression, and induced G0/G1 cell cycle arrest in the studied tumor cell lines. In vivo, KGHV100 significantly inhibited tumor growth following intratumoral injection, and the survival rates of the mice were higher than the control group. These results indicate that the adenovirus-mediated intracellular expression of the novel anti-p21Ras scFv exerted strong antitumoral effects, and may be a potential method for therapy of cancers with p21Ras overexpression. PMID:26780944

  13. Expression and purification of a human anti-cyclin D1 single-chain variable fragment antibody AD5 and its characterization.

    PubMed

    Wu, Yan; Zou, Desheng; Cao, Yuhua; Yao, Nannan; Wang, Junye; Wang, Wenhan; Jiang, Hongyu; Li, Guiying

    2013-12-01

    Cyclin D1 plays an important role in cell cycle progression. Increasing evidence indicates that cyclin D1 is overexpressed in the majority of tumor cells and has become a potential target for tumor therapy. However, little research has been done on the specific inhibition of cyclin D1 for cancer therapy. With the rapid development of the phage display antibody library technique, single-chain variable fragment (scFv) antibodies have emerged, which have tremendous application prospects in cancer therapy and diagonosis. In this study, a human scFv binding specifically to cyclin D1 (AD5) that was derived from a human semi-synthetic scFv phage library was expressed in the soluble form in Escherichia coli (E. coli) HB2151 cells. To characterize AD5, soluble AD5 was purified successfully through ammonium sulfate precipitation and affinity chromatography from the culture supernatant of AD5/HB2151. ELISA assay revealed that purified soluble AD5 could specifically bind to human recombinant cyclin D1 with approximately (1.19±0.056) x 107 M-1 affinity constant and showed approximately 52% competitive inhibition with the anti-cyclin D1 polyclonal antibody for binding to cyclin D1 in vitro. These results suggest that the scFv antibody against cyclin D1 may be a novel potential tool for targeting cyclin D1 in cancer therapy and diagnosis. PMID:24127128

  14. Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4.

    PubMed

    Shaw, D M; Embleton, M J; Westwater, C; Ryan, M G; Myers, K A; Kingsman, S M; Carroll, M W; Stern, P L

    2000-12-15

    The oncofoetal antigen 5T4 is a 72 kDa glycoprotein expressed at the cell surface. It is defined by a monoclonal antibody, mAb5T4, that recognises a conformational extracellular epitope in the molecule. Overexpression of 5T4 antigen by tumours of several types has been linked with disease progression and poor clinical outcome. Its restricted expression in non-malignant tissue makes 5T4 antigen a suitable target for the development of antibody directed therapies. The use of murine monoclonal antibodies for targeted therapy allows the tumour specific delivery of therapeutic agents. However, their use has several drawbacks, including a strong human anti-mouse immune (HAMA) response and limited tumour penetration due to the size of the molecules. The use of antibody fragments leads to improved targeting, pharmacokinetics and a reduced HAMA. A single chain antibody (scFv) comprising the variable regions of the mAb5T4 heavy and light chains has been expressed in Escherichia coli. The addition of a eukaryotic leader sequence allowed production in mammalian cells. The two 5T4 single chain antibodies, scFv5T4WT19 and LscFv5T4, described the same pattern of 5T4 antigen expression as mAb5T4 in normal human placenta and by FACS. Construction of a 5T4 extracellular domain-IgGFc fusion protein and its expression in COS-7 cells allowed the relative affinities of the antibodies to be compared by ELISA and measured in real time using a biosensor based assay. MAb5T4 has a high affinity, K(D)=1.8x10(-11) M, as did both single chain antibodies, scFv5T4WT19 K(D)=2.3x10(-9) M and LscFv5T4 K(D)=7.9x10(-10) M. The small size of this 5T4 specific scFv should allow construction of fusion proteins with a range of biological response modifiers to be prepared whilst retaining the improved pharmacokinetic properties of scFvs. PMID:11113573

  15. Improved expression of single-chain antibodies in Ustilago maydis.

    PubMed

    Sarkari, Parveen; Reindl, Michèle; Stock, Janpeter; Müller, Olaf; Kahmann, Regine; Feldbrügge, Michael; Schipper, Kerstin

    2014-12-10

    To produce the full repertoire of biopharmaceutical proteins, alternative expression platforms are required. Systems that enable secretion of the target protein are favored because this facilitates downstream processing. Ustilago maydis is a promising fungal model organism for future applications in protein expression. Recently, we described the exploitation of a novel unconventional secretion mechanism for the export of heterologous proteins. In this mode of secretion, the endochitinase Cts1 functions as a carrier for export with the main advantage of avoiding potentially harmful N-glycosylation. The major limitation until now was a low yield of secreted full-length protein. For optimization, we identified two bottlenecks: mRNA amount and extracellular proteolytic activity. By generating novel expression vectors harboring a strong constitutive promoter as well as eliminating harmful proteases, yields were increased significantly. A scFv antibody fragment against the cMyc epitope served as proof-of-principle and could be purified in its active, full-length form from the culture supernatant. Thus, we improved the novel expression system in U. maydis such that it can now be investigated with respect to other targets with potential applications for instance in diagnostics and medicine. PMID:24997354

  16. Production, purification, and characterization of scFv TNF ligand fusion proteins.

    PubMed

    Fick, Andrea; Wyzgol, Agnes; Wajant, Harald

    2012-01-01

    Single-chain variable fragments (scFvs) specific for tumor-associated cell surface antigens are the most broadly used reagents to direct therapeutic or diagnostic effector molecules, such as toxins, radioisotopes, and CD3-stimulating scFvs, to tumors. One novel class of effector molecules that can be targeted to tumors by scFvs are ligands of the tumor necrosis factor (TNF) family. Typically, these molecules have apoptosis inducing and/or immune stimulating properties and are therefore highly attractive for cancer treatment. N-terminal fusion of scFvs does not interfere with the receptor binding capabilities of TNF ligands and thus allows the straightforward generation of scFv TNF ligand fusion proteins. We report here a protocol for the purification of eukaryotically produced scFv TNF ligand fusion proteins based on affinity chromatography on anti-Flag agarose and further describe assays for the determination of the targeting index of this type of scFv-targeted proteins. PMID:22907375

  17. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine

    PubMed Central

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A.; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R.

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  18. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine.

    PubMed

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  19. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    NASA Astrophysics Data System (ADS)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  20. PSYCHOSOCIAL AND BEHAVIORAL MODEL PREDICTING HOME FV AVAILABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Fruit and vegetable (FV) consumption has been inversely related with the incidence of several cancers, heart disease, obesity, and other chronic ailments. Children tend to eat more FV when they live in homes with more FV available. Home FV availability is necessarily a function of how the c...

  1. Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library.

    PubMed

    Sun, Yanan; Ning, Baoan; Liu, Ming; Gao, Xianjun; Fan, Xianjun; Liu, Jianqing; Gao, Zhixian

    2012-01-01

    Single chain variable fragments (scFvs) against diethylstilbestrol (DES) were selected from the splenocytes of non-immunized mice by ribosome display technology. A naive library was constructed and engineered to allow in vitro transcription and translation using an E. coli lysate system. Alternating selection in solution and immobilization in microtiter wells was used to pan mRNA-ribosome-antibody (ARM) complexes. After seven rounds of ribosome display, the expression vector pTIG-TRX containing the selected specific scFv DNAs were transformed into Escherichia coli BL21 (DE3) for expression. Twenty-six positive clones were screened and five clones had high antibody affinity and specificity to DES as evidenced by indirect competitive ELISA. Sequence analysis showed that these five DES-specific scFvs had different amino acid sequences, but the CDRs were highly similar. Surface plasmon resonance (SPR) analysis was used to determine binding kinetics of one clone (30-1). The measured K(D) was 3.79 µM. These results indicate that ribosome display technology can be used to efficiently isolate hapten-specific antibody (Ab) fragments from a naive library; this study provides a methodological framework for the development of novel immunoassays for multiple environmental pollutants with low molecular weight detection using recombinant antibodies. PMID:22427984

  2. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    NASA Astrophysics Data System (ADS)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  3. Functional Characterization of an scFv-Fc Antibody that Immunotherapeutically Targets the Common Cancer Cell Surface Proteoglycan CSPG4

    PubMed Central

    Wang, Xinhui; Katayama, Akihiro; Wang, Yangyang; Yu, Ling; Favoino, Elvira; Sakakura, Koichi; Favole, Alessandra; Tsuchikawa, Takahiro; Silver, Susan; Watkins, Simon C.; Kageshita, Toshiro; Ferrone, Soldano

    2012-01-01

    Cell surface chondroitin sulfate proteoglycan 4 (CSPG4) is an attractive target for antibody-based cancer immunotherapy because of its role in tumor cell biology, its high expression on malignant cells including cancer-initiating cells, and its restricted distribution in normal tissues. The clinical use of CSPG4 has been hampered by the lack of a CSPG4-specific chimeric, humanized, or fully human monoclonal antibody. To overcome this limitation, we generated a CSPG4-specific fully human single-chain antibody termed scFv-FcC21 and characterized its specificity and antitumor activity. Viable CSPG4+ melanoma cells were used in a screen of a human scFv phage display library that included CDR3 engineered to optimize antibody binding sites. The scFv antibody isolated was then recombinantly engineered with a human immunoglobulin G1 Fc region to construct the fully human antibody scFv-FcC21, which recognized tumors of neuroectodermal origin, various types of carcinomas, mesotheliomas, and sarcomas as well as myeloid leukemias. scFv-FcC21 inhibited in vitro growth and migration of tumor cells and in vivo growth of human tumor xenografts. These effects were mediated by inhibition of the activation of extracellular signal-regulated kinase and focal adhesion kinase signaling pathways that are critical for tumor cell growth and migration, respectively. Our findings define the CSPG4-specific fully human scFv-FcC21 antibody as a candidate therapeutic agent to target the many types of tumors that express CSPG4. PMID:22021902

  4. Designing multivalent probes for tunable superselective targeting

    PubMed Central

    Curk, Tine; Auzély-Velty, Rachel; Frenkel, Daan; Richter, Ralf P.

    2015-01-01

    Specific targeting is common in biology and is a key challenge in nanomedicine. It was recently demonstrated that multivalent probes can selectively target surfaces with a defined density of surface binding sites. Here we show, using a combination of experiments and simulations on multivalent polymers, that such “superselective” binding can be tuned through the design of the multivalent probe, to target a desired density of binding sites. We develop an analytical model that provides simple yet quantitative predictions to tune the polymer’s superselective binding properties by its molecular characteristics such as size, valency, and affinity. This work opens up a route toward the rational design of multivalent probes with defined superselective targeting properties for practical applications, and provides mechanistic insight into the regulation of multivalent interactions in biology. To illustrate this, we show how the superselective targeting of the extracellular matrix polysaccharide hyaluronan to its main cell surface receptor CD44 is controlled by the affinity of individual CD44–hyaluronan interactions. PMID:25901321

  5. Conversion of scFv peptide-binding specificity for crystal chaperone development

    SciTech Connect

    Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.

    2012-02-07

    In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 {angstrom} resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a {approx}52 {angstrom} channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries.

  6. Generation of scFv specific to human VEGFR-3 from the neutralizing mAb BDD073.

    PubMed

    Chen, Hao; Wang, Chaoqun; Gao, Yuan; Gao, Jianen; Zhou, Xiaping; Cai, Zhiming; Sun, Qihong

    2015-01-01

    In our previous study, we have produced a neutralizing mAb of vascular endothelial growth factor receptor 3 (VEGFR-3), specifically BDD073, which could inhibit angiogenesis in the CAM model. However, the clinical application of BDD073 is restricted due to its mouse origin, which might cause human anti-mouse antibody reactions. Herein, we generated functional recombinant single-chain variable fragments (scFv) from mAb BDD073 producing mouse hybridoma cells. The scFv gene containing variable regions of heavy and light chains of BDD073 was cloned into an expression vector with trx tag and expressed in Escherichia coli BL21 (DE3). The recombinant scFv was purified and refolded with Ni-NTA agarose metal affinity column. The bacterially expressed scFv showed moderate potency and specificity to the human VEGFR-3. It may serve as a potential candidate of anti-VEGFR3 treatment for biotechnological and therapeutic applications. PMID:25428897

  7. Structural and functional characterization of a novel scFv anti-HSP60 of Strongyloides sp.

    PubMed Central

    Levenhagen, Marcelo Arantes; de Almeida Araújo Santos, Fabiana; Fujimura, Patrícia Tiemi; Caneiro, Ana Paula; Costa-Cruz, Julia Maria; Goulart, Luiz Ricardo

    2015-01-01

    Phage display is a powerful technology that selects specific proteins or peptides to a target. We have used Phage Display to select scFv (single-chain variable fragment) clones from a combinatorial library against total proteins of Strongyloides venezuelensis. After scFv characterization, further analysis demonstrated that this recombinant fragment of antibody was able to bind to an S. venezuelensis antigenic fraction of ~65 kDa, present in the body periphery and digestive system of infective larvae (L3), as demonstrated by immunofluorescence. Mass spectrometry results followed by bioinformatics analysis showed that this antigenic fraction was a heat shock protein 60 (HSP60) of Strongyloides sp. The selected scFv was applied in serodiagnosis by immune complexes detection in serum samples from individuals with strongyloidiasis using a sandwich enzyme-linked immunosorbent assay (ELISA), showing sensitivity of 97.5% (86.84–99.94), specificity of 98.81 (93.54–99.97), positive likelihood ratio of 81.60 and an area under the curve of 0.9993 (0.9973–1.000). Our study provided a novel monoclonal scFv antibody fragment which specifically bound to HSP60 of Strongyloides sp. and was applied in the development of an innovative serodiagnosis method for the human strongyloidiasis. PMID:25994608

  8. EM Algorithm for Mapping Quantitative Trait Loci in Multivalent Tetraploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multivalent tetraploids that include many plant species, such as potato, sugarcane and rose, are of paramount importance to agricultural production and biological research. Quantitative trait locus (QTL) mapping in multivalent tetraploids is challenged by their unique cytogenetic properties, such ...

  9. Effect of radiochemical modification on biodistribution of scFvD2B antibody fragment recognising prostate specific membrane antigen.

    PubMed

    Frigerio, Barbara; Benigni, Fabio; Luison, Elena; Seregni, Ettore; Pascali, Claudio; Fracasso, Giulio; Morlino, Sara; Valdagni, Riccardo; Mezzanzanica, Delia; Canevari, Silvana; Figini, Mariangela

    2015-11-01

    Antibody-based reagents represent a promising strategy as clinical diagnostic tools. Prostate cancer (PCa) is the second-leading cause of death in males in the Western population. There is a presently unmet need for accurate diagnostic tool to localize and define the extent of both primary PCa and occult recurrent disease. One of the most suitable targets for PCa is the prostate-specific membrane antigen (PSMA) recognised by the monoclonal antibody D2B that we re-shaped into the single chain Fv (scFv format). Aim of this study was to evaluate in preclinical in vivo models the target specificity of scFvD2B after labelling with different radionuclides. (111)In radiolabelling was performed via the chelator Bz-NOTA, and (131)I radioiodination was performed using iodogen. The potential for molecular imaging and the biological behaviour of the radiolabelled scFvD2B were evaluated in mice bearing two subcutaneous PCa isogenic cell lines that differed only in PSMA expression. Biodistribution studies were performed at 3, 9, 15 and 24h after injection to determine the optimal imaging time point. A significant kidney accumulation, as percentage of injected dose of tissue (%ID/g), was observed for (111)In-scFvD2B at 3h after injection (45%ID/g) and it was maintained up to 24h (26%ID/g). By contrast, kidney accumulation of (131)I-scFvD2B was only marginally (0.3%ID/g at 24h). At the optimal time point defined between 15h and 24h, regardless of the radionuclide used, the scFvD2B was able to localize significantly better in the PSMA expressing tumours compared to the negative control; with (131)I-scFvD2B yielding a significantly better target/background ratio compared to (111)In-scFvD2B. These data suggest that, besides antigen specificity, chemical modification may affect antibody fragment biodistribution. PMID:26404855

  10. Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv.

    PubMed

    Newton, D L; Nicholls, P J; Rybak, S M; Youle, R J

    1994-10-28

    The gene for the human recombinant eosinophil-derived neurotoxin (rEDN) was synthesized and fused to the gene encoding a single chain antibody (sFv) to the human transferrin receptor (EDNsFv). Both rEDN and EDNsFv were expressed as insoluble proteins in inclusion bodies in Escherichia coli BL21(DE3). Following denaturation and renaturation, EDN and EDNsFv were partially purified by chromatography on heparin-Sepharose. Final purification of EDN was achieved by Sephadex G-100, whereas EDNsFv which contained a 6-histidyl residue carboxyl terminus was highly purified using the metal chelate resin, Ni(2+)-nitriloacetic acid. Whereas the recombinant EDN had ribonuclease activity that was similar to the native protein, the fusion protein had enzymatic activity that was 6-13% that of native EDN. The fusion protein was able to bind to the human transferrin receptor. In contrast to rEDN that had no inherent cytotoxicity to human tumor cells, the EDNsFv fusion protein was cytotoxic to human leukemia cells that express the human transferrin receptor with an IC50, 0.2-1 nM. At 1.3 nM EDNsFv, no cytotoxicity was observed on cells that lack the human transferrin receptor. Free antibody to the human transferrin receptor, E6, inhibited the cytotoxicity of the EDNsFv. Human enzymes may be engineered to acquire cytotoxic properties by fusing them to antibodies. Thus, they may be candidates for the construction of immunofusion proteins that may be less immunogenic than immunotoxins containing bacterial- or plant-derived toxin moieties. PMID:7929408

  11. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli

    PubMed Central

    Andrade, Fernanda B.; Nepomuceno, Roberto; Silva, Anderson; Munhoz, Danielle D.; Yamamoto, Bruno B.; Luz, Daniela; Abreu, Patrícia A. E.; Horton, Denise S. P. Q.; Elias, Waldir P.; Ramos, Oscar H. P.; Piazza, Roxane M. F.

    2015-01-01

    Background Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC) strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv) that were produced in E. coli against enterotoxins of ETEC strains. Methods and Findings Recombinant scFv were developed against ETEC heat-labile toxin (LT) and heat-stable toxin (ST), from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains. Conclusion The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis. PMID:26154103

  12. Molecular engineering of high affinity single-chain antibody fragment for endothelial targeting of proteins and nanocarriers in rodents and humans.

    PubMed

    Greineder, Colin F; Hood, Elizabeth D; Yao, Anning; Khoshnejad, Makan; Brenner, Jake S; Johnston, Ian H; Poncz, Mortimer; Gottstein, Claudia; Muzykantov, Vladimir R

    2016-03-28

    Endothelial cells (EC) represent an important target for pharmacologic intervention, given their central role in a wide variety of human pathophysiologic processes. Studies in lab animal species have established that conjugation of drugs and carriers with antibodies directed to surface targets like the Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1, a highly expressed endothelial transmembrane protein) help to achieve specific therapeutic interventions in ECs. To translate such "vascular immunotargeting" to clinical practice, it is necessary to replace antibodies by advanced ligands that are more amenable to use in humans. We report the molecular design of a single chain variable antibody fragment (scFv) that binds with high affinity to human PECAM-1 and cross-reacts with its counterpart in rats and other animal species, allowing parallel testing in vivo and in human endothelial cells in microfluidic model. Site-specific modification of the scFv allows conjugation of protein cargo and liposomes, enabling their endothelial targeting in these models. This study provides a template for molecular engineering of ligands, enabling studies of drug targeting in animal species and subsequent use in humans. PMID:26855052

  13. Single Chain Antibodies as Tools to Study transforming growth factor-β-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens.

    PubMed

    Blokzijl, Andries; Zieba, Agata; Hust, Michael; Schirrmann, Thomas; Helmsing, Saskia; Grannas, Karin; Hertz, Ellen; Moren, Anita; Chen, Lei; Söderberg, Ola; Moustakas, Aristidis; Dübel, Stefan; Landegren, Ulf

    2016-06-01

    The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-β signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-β signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-β signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors

  14. Dynamics of Single Chains of Suspended Ferrofluid Particles

    NASA Technical Reports Server (NTRS)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  15. Preparation and Identification of a Single-chain Variable Fragment Antibody Against Canine Distemper Virus.

    PubMed

    Yi, Li; Cheng, Shipeng

    2015-08-01

    The variable regions of the heavy chain (VH) and light chain (VL) were amplified by RT-PCR from the hybridoma 1N8, which secretes the monoclonal antibody against CDV N protein (aa 277-471). The VL and VH amplicons were combined using SOE-PCR by a 12 amino acid flexible linker (SSGGGGSGGGGS), which produced the scFv gene (named scFv/1N8). After sequence analysis, the scFv/1N8 gene was cloned into the prokaryotic expression vector PET32a with a His-tag. The recombinant scFv/1N8 protein was successfully expressed in recombinant Escherichia coli by IPTG induction. Moreover, the binding activity and specificity of the scFv were determined by indirect ELISA (His-tag) and competitive ELISA. The recombinant scFv/1N8 protein reported here will provide some basis for further antiviral drug research based on the scFv molecule. PMID:26301925

  16. Dynamics of Single Chains of Suspended Ferrofluid Particles

    NASA Technical Reports Server (NTRS)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  17. Targeting immune effector molecules to human tumor cells through genetic delivery of 5T4-specific scFv fusion proteins.

    PubMed

    Myers, Kevin A; Ryan, Matthew G; Stern, Peter L; Shaw, David M; Embleton, M Jim; Kingsman, Susan M; Carroll, Miles W

    2002-11-01

    Although several clinical trials have shown beneficial effects by targeting tumor-associated antigens (TAAs) with monoclonal antibodies, a number of issues, including poor penetration of the tumor mass and human antimouse antibody responses, remain. The use of recombinant single-chain Fv (scFv) fragments has the potential to address these and other issues while allowing the addition of different effector functions. To develop therapeutic strategies that recruit both humoral and cellular arms of the immune response, we have constructed chimeric proteins linking either the human IgG1 Fc domain or the extracellular domain of murine B7.1 to a scFv specific for the oncofetal glycoprotein, 5T4. This TAA is expressed by a wide variety of carcinomas and is associated with metastasis and poorer clinical outcome. We have engineered retroviral constructs that produce fusion proteins able to interact simultaneously with both 5T4-positive cells and with the receptor/ligands of the immune effector moieties. Genetic delivery through a murine leukemia virus vector to 5T4-positive tumor cells results in the secreted scFv fusion protein binding to the cell surface. Furthermore, the scFv-HIgG1 fusion protein is able to direct lysis of 5T4-expressing human tumor cell lines through antibody-dependent cell cytotoxicity, indicating its potential as a gene therapy for human cancers. PMID:12386827

  18. Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes N-glycan phosphorylation in a branch-specific manner†.

    PubMed

    Blackler, Ryan J; Evans, Dylan W; Smith, David F; Cummings, Richard D; Brooks, Cory L; Braulke, Thomas; Liu, Xinyu; Evans, Stephen V; Müller-Loennies, Sven

    2016-02-01

    The acquisition of mannose 6-phosphate (Man6P) on N-linked glycans of lysosomal enzymes is a structural requirement for their transport from the Golgi apparatus to lysosomes mediated by the mannose 6-phosphate receptors, 300 kDa cation-independent mannose 6-phosphate receptor (MPR300) and 46 kDa cation-dependent mannose 6-phosphate receptor (MPR46). Here we report that the single-chain variable domain (scFv) M6P-1 is a unique antibody fragment with specificity for Man6P monosaccharide that, through an array-screening approach against a number of phosphorylated N-glycans, is shown to bind mono- and diphosphorylated Man6 and Man7 glycans that contain terminal αMan6P(1 → 2)αMan(1 → 3)αMan. In contrast to MPR300, scFv M6P-1 does not bind phosphodiesters, monophosphorylated Man8 or mono- or diphosphorylated Man9 structures. Single crystal X-ray diffraction analysis to 2.7 Å resolution of Fv M6P-1 in complex with Man6P reveals that specificity and affinity is achieved via multiple hydrogen bonds to the mannose ring and two salt bridges to the phosphate moiety. In common with both MPRs, loss of binding was observed for scFv M6P-1 at pH values below the second pKa of Man6P (pKa = 6.1). The structures of Fv M6P-1 and the MPRs suggest that the change of the ionization state of Man6P is the main driving force for the loss of binding at acidic lysosomal pH (e.g. lysosome pH ∼ 4.6), which provides justification for the evolution of a lysosomal enzyme transport pathway based on Man6P recognition. PMID:26503547

  19. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses.

    PubMed

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An; Chang, Ya-Chun

    2015-10-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  20. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses

    PubMed Central

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An

    2015-01-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  1. ScFv-decorated PEG-PLA-based nanoparticles for enhanced siRNA delivery to Her2⁺ breast cancer.

    PubMed

    Dou, Shuang; Yang, Xian-Zhu; Xiong, Meng-Hua; Sun, Chun-Yang; Yao, Yan-Dan; Zhu, Yan-Hua; Wang, Jun

    2014-11-01

    Patients with Her2-overexpressing (Her2(+)) breast cancers generally have a poorer prognosis due to the high aggressiveness and chemoresistance of the disease. Small interfering RNA (siRNA) targeting the gene encoding polo-like kinase 1 (Plk1; siPlk1) has emerged as an efficient therapeutic agent for Her2(+) breast cancers. Poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-PLA)-based nanoparticles for siRNA delivery were previously developed and optimized. In this study, for targeted delivery of siPlk1 to Her2(+) breast cancer, anti-Her2 single-chain variable fragment antibody (ScFv(Her2))-decorated PEG-PLA-based nanoparticles with si Plk1 encapsulation (ScFv(Her2)-NP(si) Plk1) are developed. With the rationally designed conjugation site, ScFv(Her2)-NP(siRNA) can specifically bind to the Her2 antigen overexpressed on the surface of Her2(+) breast cancer cells. Therefore, ScFv(Her2)-NP(si) Plk1 exhibits improved cellular uptake, promoted Plk1 silencing efficiency, and induced enhanced tumor cell apoptosis in Her2(+) breast cancer cells, when compared with nontargeted NP(si) Plk1. More importantly, ScFv(Her2)-NP(siRNA) markedly enhances the accumulation of siRNA in Her2(+) breast tumor tissue, and remarkably improves the efficacy of tumor suppression. Dose-dependent anti-tumor efficacy further demonstrates that ScFvHer2 -decorated PEG-PLA-based nanoparticles with siPlk1 encapsulation can significantly enhance the inhibition of Her2(+) breast tumor growth and reduce the dose of injected siRNA. These results suggest that ScFvHer2 -decorated PEG-PLA-based nanoparticles show great potential for targeted RNA interference therapy of Her2(+) breast tumor. PMID:24947820

  2. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display

    PubMed Central

    Keller, Thomas; Kalt, Romana; Raab, Ingrid; Schachner, Helga; Mayrhofer, Corina; Kerjaschki, Dontscho; Hantusch, Brigitte

    2015-01-01

    The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers. PMID:25993332

  3. Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment.

    PubMed

    Tao, Xiaoqi; Chen, Min; Jiang, Haiyang; Shen, Jianzhong; Wang, Zhanhui; Wang, Xia; Wu, Xiaoping; Wen, Kai

    2013-09-01

    A chemiluminescent competitive indirect enzyme-linked immunosorbent assay, based on a mutant single-chain variable fragment (scFv), was developed to detect a broad range of fluoroquinolones (FQs) in fish and shrimp matrices. In this study, the best scFvC4A9H1_mut2 was adopted, which showed 10-fold improved affinity to sarafloxacin (SAR), difloxacin (DIF), and trovafloxacin (TRO), while the affinity to other FQs was fully inherited from wild-type scFvC4A9H1. In the optimized generic test, scFvC4A9H1_mut2 in combination with norfloxacin-ovalbumin conjugate and horseradish peroxidase-labeled anti-c-myc 9E10 antibody showed 50 % binding inhibition (IC50) at 0.12 μg kg(-1) for norfloxacin in buffer. Screening for the class of FQ antibiotics is accomplished using a simple, rapid extraction carried out with ethanol/acetic acid (99:1, v/v). This common extraction was able to detect 20 FQ residues such as s ciprofloxacin (CIP), danofloxacin, DIF, enoxacin, enrofloxacin (ENR), fleroxacin, amifloxacin, flumequine, levofloxacin, lomefloxacin hydrochloride, marbofloxacin, norfloxacin (NOR), ofloxacin, orbifloxacin, pazufloxacin, pefloxacin-d5 (PEF), prulifloxacin, SAR, sparfloxacin, and TRO in fish and shrimp. The limit of detection (LOD) for NOR was 0.2 μg kg(-1) and the LODs for CIP and ENR were all <0.2 μg kg(-1). Values of LODs inferred from the cross-reactivity data will range from approximately 0.23 μg kg(-1) for PEF to 2.1 μg kg(-1) for TRO. Field fish and shrimp samples were analyzed and compared to the results obtained from liquid chromatography tandem mass spectrometric method. All five instances (from 0.25 to 15.6 μg kg(-1)) in which FQs were present at concentrations near or above the assay LOD were identified as positive by the newly developed assay, demonstrating the usefulness of this assay as a screening tool. PMID:23842902

  4. Construction of scFv that bind both fibronectin-binding protein A and clumping factor A of Stapylococcus aureus.

    PubMed

    Wang, Man; Zhang, Yan; Li, Benqiang; Zhu, Jianguo

    2015-06-01

    Bovine mastitis (BM) causes significant losses to the dairy industry. Vaccines against the causative agent of BM, Staphylococcus aureus, do not confer adequate protection. Because passive immunization with antibodies permits disease prevention, we constructed a recombinant single-chain antibody (scFv) against fibronectin-binding protein A (FnBPA) and clumping factor A (ClfA), two important virulence factors in S. aureus infection. The DNA coding sequences of the variable heavy (VH) and variable light (VL) domains of antibodies produced in the peripheral blood lymphocytes of cows with S. aureus-induced mastitis were obtained using reverse transcription and polymerase chain reaction, and the VH and VL cDNAs were assembled in-tandem using a DNA sequence encoding a (Gly4Ser)3 peptide linker. The scFv cDNAs were cloned into the pOPE101 plasmid for the expression of soluble scFv protein in Escherichia coli. The binding of the scFvs to both FnBPA and ClfA was confirmed using an indirect ELISA and Western blotting. The DNA sequences of the framework regions of the VH and VL domains were highly conserved, and the complementarity-determining regions displayed significant diversity, especially in CDR3 of the VH domain. These novel bovine antibody fragments may be useful as a therapeutic candidate for the prevention and treatment of S. aureus-induced bovine mastitis. PMID:25910693

  5. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation

    PubMed Central

    Tillotson, Benjamin J.; Goulatis, Loukas I.; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V.

    2015-01-01

    The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes. PMID:26713870

  6. Primary structure and functional scFv antibody expression of an antibody against the human protooncogen c-myc.

    PubMed

    Fuchs, P; Breitling, F; Little, M; Dübel, S

    1997-06-01

    The immunoglobulin heavy- and light-chain variable region (Vh and Vl) genes were isolated from Myc1-9E10 hybridoma cells, which secreted monoclonal antibody against human oncogen c-myc. The expression vector pOPE52-c-myc was constructed for the recombinant production in E. coli. A 30 kDa single chain fragment (scFv) expression product was found in the periplasmic space by SDS-PAGE and immunoblotting. A significant fraction was processed correctly as demonstrated with an antiserum recognizing the processed aminoterminus only. The specific binding of the scFv fragment to the peptide epitope of the maternal monoclonal antibody was demonstrated and the primary sequence of the variable regions was determined. Sequence comparison with previously published partial Vh and Vl sequences from this hybridoma cell line revealed a genetic heterogeneity for the light chain variable region. The potential use of this scFv as a new tool for detection and purification of tagged proteins, for adding costimulatory signals to the surface of cancer cells as well as for analyzing c-myc function in the living cell by cytoplasmic expression is discussed. PMID:9219032

  7. Biotinylated multivalent glycoconjugates for surface coating.

    PubMed

    Chinarev, Alexander A; Galanina, Oxana E; Bovin, Nicolai V

    2010-01-01

    Systematic studying of biological processes driven by multipoint high-cooperative carbohydrate recognition requires application of multivalent carbohydrates as tools. In this regard polyacrylamides with various pendant carbohydrate residues and labels are probably the most well advanced class of carbohydrate multimerics. Here we describe a synthetic approach to polyacrylamide-based glycoconjugates with biotin tag, with special emphasis to development of carbohydrate biosensors and arrays. PMID:19882121

  8. Supramolecular Nanoparticles via Single-Chain Folding Driven by Ferrous Ions.

    PubMed

    Wang, Fei; Pu, Hongting; Jin, Ming; Wan, Decheng

    2016-02-01

    Single-chain nanoparticles can be obtained via single-chain folding assisted by intramolecular crosslinking reversibly or irreversibly. Single-chain folding is also an efficient route to simulate biomacromolecules. In present study, poly(N-hydroxyethylacrylamide-co-4'-(propoxy urethane ethyl acrylate)-2,2':6',2''-terpyridine) (P(HEAm-co-EMA-Tpy)) is synthesized via reversible addition fragmentation chain transfer polymerization. Single-chain folding and intramolecular crosslinking of P(HEAm-co-EMA-Tpy) are achieved via metal coordination chemistry. The intramolecular interaction is characterized on ultraviolet/visible spectrophotometer (UV-vis spectroscopy), proton nuclear magnetic resonance ((1)H NMR), and differential scanning calorimetry (DSC). The supramolecular crosslinking mediated by Fe(2+) plays an important role in the intramolecular collapsing of the single-chain and the formation of the nanoparticles. The size and morphology of the nanoparticles can be controlled reversibly via metal coordination chemistry, which can be characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic force microscope (AFM). PMID:26748641

  9. Quantitatively Resolving Multivalent Interactions on Macroscopic Scale Using Force Spectroscopy

    PubMed Central

    Hu, Qiongzheng; Yang, Haopeng; Wang, Yuhong; Xu, Shoujun

    2016-01-01

    Multivalent interactions remain difficult to be characterized and consequently controlled, particularly on a macroscopic scale. Using force-induced remnant magnetization spectroscopy (FIRMS), we have resolved the single-, double-, and triple- biotin—streptavidin interactions, multivalent DNA interactions and CXCL12-CXCR4 interactions, on millimetre-scale surfaces. Our results establish FIRMS as a viable method for systematic resolution and controlled formation of multivalent interactions. PMID:26864087

  10. Synthesis of carbohydrate-scaffolded thymine glycoconjugates to organize multivalency

    PubMed Central

    Ciuk, Anna K

    2015-01-01

    Summary Multivalency effects are essential in carbohydrate recognition processes as occurring on the cell surface. Thus many synthetic multivalent glycoconjugates have been developed as important tools for glycobiological research. We are expanding this collection of molecules by the introduction of carbohydrate-scaffolded divalent glycothymine derivatives that can be intramolecularily dimerized by [2 + 2] photocycloaddition. Thus, thymine functions as a control element that allows to restrict the conformational flexibility of the scaffolded sugar ligands and thus to “organize” multivalency. With this work we add a parameter to multivalency studies additional to valency. PMID:26124869

  11. Synthesis of carbohydrate-scaffolded thymine glycoconjugates to organize multivalency.

    PubMed

    Ciuk, Anna K; Lindhorst, Thisbe K

    2015-01-01

    Multivalency effects are essential in carbohydrate recognition processes as occurring on the cell surface. Thus many synthetic multivalent glycoconjugates have been developed as important tools for glycobiological research. We are expanding this collection of molecules by the introduction of carbohydrate-scaffolded divalent glycothymine derivatives that can be intramolecularily dimerized by [2 + 2] photocycloaddition. Thus, thymine functions as a control element that allows to restrict the conformational flexibility of the scaffolded sugar ligands and thus to "organize" multivalency. With this work we add a parameter to multivalency studies additional to valency. PMID:26124869

  12. Identification of Novel Single Chain Fragment Variable Antibodies Against TNF-α Using Phage Display Technology

    PubMed Central

    Alizadeh, Ali Akbar; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2015-01-01

    Purpose: Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine, involved in both physiological and pathological pathways. Because of central role of TNF-α in pathogenesis of inflammatory diseases, in the current study, we aimed to identify novel scFv antibodies against TNF-α using phage display technology. Methods: Using libraries composed of phagemid displaying scFv antibodies, four rounds of biopanning against TNF-α were carried out, which led to identification of scFvs capable of binding to TNF-α. The scFv antibody with appropriate binding affinity towards TNF-α, was amplified and used in ELISA experiment. Results: Titration of phage achieved from different rounds of biopanning showed an enrichment of specific anti-TNF-α phages during biopanning process. Using ELISA experiment, a binding constant (Kd) of 1.11 ± 0.32 nM was determined for the phage displaying J48 scFv antibody. Conclusion: The findings in the current work revealed that the identified novel scFv antibody displayed at the N-terminal of minor coat proteins of phagemid binds TNF-α with suitable affinity. However, the soluble form of the antibody is needed to be produced and evaluated in more details regarding its binding properties to TNF-α. PMID:26793613

  13. Production and Purification of a Novel Anti-TNF-α Single Chain Fragment Variable Antibody

    PubMed Central

    Alizadeh, Ali Akbar; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2015-01-01

    Purpose: TNF-α is an inflammatory cytokine with a key role in initiation of inflammatory responses. Anti-TNF-α antibodies are being used in clinic for the purpose of diagnosis and treatment due to their high specificity. The objective of the current study was to express and purify an anti-TNF-α scFv antibody identified by phage display technology. Methods: The DNA coding sequence of the identified scFv was cloned into pET28a vector and the corresponding protein was expressed as 6×His tagged using E.coli BL21 (DE3) pLysS expression system followed by affinity purification on Ni-Sepharose affinity column. Results: The J44 scFv antibody was cloned into the expression vector and successfully expressed and purified. The purity of the scFv fraction was confirmed using SDS-PAGE analysis. Western blotting technique was used to detect expression of 6×His tagged protein. Conclusion: In the current study an anti-TNF-α scFv antibody was successfully expressed in bacterial expression system and purified on affinity column. The purified protein can be used in different in vitro and in vivo experiments in order to elucidate its functionality. PMID:26793614

  14. Structural and Functional Characterization of a Single-Chain Form of the Recognition Domain of Complement Protein C1q

    PubMed Central

    Moreau, Christophe; Bally, Isabelle; Chouquet, Anne; Bottazzi, Barbara; Ghebrehiwet, Berhane; Gaboriaud, Christine; Thielens, Nicole

    2016-01-01

    Complement C1q is a soluble pattern recognition molecule comprising six heterotrimeric subunits assembled from three polypeptide chains (A–C). Each heterotrimer forms a collagen-like stem prolonged by a globular recognition domain. These recognition domains sense a wide variety of ligands, including pathogens and altered-self components. Ligand recognition is either direct or mediated by immunoglobulins or pentraxins. Multivalent binding of C1q to its targets triggers immune effector mechanisms mediated via its collagen-like stems. The induced immune response includes activation of the classical complement pathway and enhancement of the phagocytosis of the recognized target. We report here, the first production of a single-chain recombinant form of human C1q globular region (C1q-scGR). The three monomers have been linked in tandem to generate a single continuous polypeptide, based on a strategy previously used for adiponectin, a protein structurally related to C1q. The resulting C1q-scGR protein was produced at high yield in stably transfected 293-F mammalian cells. Recombinant C1q-scGR was correctly folded, as demonstrated by its X-ray crystal structure solved at a resolution of 1.35 Å. Its interaction properties were assessed by surface plasmon resonance analysis using the following physiological C1q ligands: the receptor for C1q globular heads, the long pentraxin PTX3, calreticulin, and heparin. The 3D structure and the binding properties of C1q-scGR were similar to those of the three-chain fragment generated by collagenase digestion of serum-derived C1q. Comparison of the interaction properties of the fragments with those of native C1q provided insights into the avidity component associated with the hexameric assembly of C1q. The interest of this functional recombinant form of the recognition domains of C1q in basic research and its potential biomedical applications are discussed. PMID:26973654

  15. High-level production in Pichia pastoris of an anti-p185HER-2 single-chain antibody fragment using an alternative secretion expression vector.

    PubMed

    Gurkan, Cemal; Symeonides, Stefan N; Ellar, David J

    2004-02-01

    The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the recombinant production of a wide variety of proteins. Initial success with this system was greatly facilitated by the development of versatile expression vectors that were almost exclusively based on the strong, tightly regulated promoter of the P. pastoris major alcohol oxidase gene ( AOX1 ). For example, pIB4 is an Escherichia coli - P. pastoris shuttle vector that also uses the AOX1 promoter to allow intracellular expression of endogenous and foreign genes in the latter organism. Since the eukaryotic advantages of P. pastoris would be best harnessed through the secretory targeting of the recombinant proteins, we modified the pIB4 vector by adding the Saccharomyces cerevisiae alpha-factor secretion signal immediately upstream of its multiple cloning site. Here we describe the construction of this modified vector, pIB4alpha, and its successful use for the high-level expression and secretion of a functional single-chain antibody fragment (scFv), C6.5, which targets p185(HER-2), a cell-surface glycoprotein overexpressed in about 30% of human breast and ovarian cancers. The PCR strategy used for the subcloning of the C6.5 construct into pIB4alpha also introduced a short DNA sequence coding for a C-terminal hexahistidine tag, which allowed subsequent purification of the secreted scFv, by immobilized-metal-affinity chromatography, to a yield of 70 mg x l(-1) of shake-flask culture. In conclusion, our results suggest that the secretion expression vector pIB4alpha not only complements the original pIB4 vector for intracellular expression in P. pastoris, but might also constitute an attractive alternative to the commercially available secretion expression vectors. PMID:12962542

  16. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    PubMed

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  17. Potent and broad neutralizing activity of a single chain antibody fragment against cell-free and cell-associated HIV-1

    PubMed Central

    Borges, Andrew Rosa; Ptak, Roger G; Wang, Yanping; Dimitrov, Antony S; Alam, S. Munir; Wieczorek, Lindsay; Bouma, Peter; Fouts, Timothy; Jiang, Shibo; Polonis, Victoria R; Haynes, Barton F; Quinnan, Gerald V; Montefiori, David C; Dimitrov, Dimiter S

    2010-01-01

    Several human monoclonal antibodies (hmAbs) exhibit relatively potent and broad neutralizing activity against HIV-1, but there has not been much success in using them as potential therapeutics. We have previously hypothesized and demonstrated that small engineered antibodies can target highly conserved epitopes that are not accessible by full-size antibodies. However, their potency has not been comparatively evaluated with known HIV-1-neutralizing hmAbs against large panels of primary isolates. We report here the inhibitory activity of an engineered single chain antibody fragment (scFv), m9, against several panels of primary HIV-1 isolates from group M (clades A–G) using cell-free and cell-associated virus in cell line-based assays. M9 was much more potent than scFv 17b, and more potent than or comparable to the best-characterized broadly neutralizing hmAbs IgG1 b12, 2G12, 2F5 and 4e10. It also inhibited cell-to-cell transmission of HIV-1 with higher potency than enfuvirtide (t-20, Fuzeon). M9 competed with a sulfated CCR5 N-terminal peptide for binding to gp120-CD4 complex, suggesting an overlapping epitope with the coreceptor binding site. M9 did not react with phosphatidylserine (pS) and cardiolipin (CL), nor did it react with a panel of autoantigens in an antinuclear autoantibody (ANA) assay. We further found that escape mutants resistant to m9 did not emerge in an immune selection assay. these results suggest that m9 is a novel anti-HIV-1 candidate with potential therapeutic or prophylactic properties, and its epitope is a new target for drug or vaccine development. PMID:20305395

  18. Recruitment of Oligoclonal Viral-Specific T cells to Kill Human Tumor Cells Using Single-Chain Antibody-Peptide-HLA Fusion Molecules.

    PubMed

    Noy, Roy; Haus-Cohen, Maya; Oved, Kfir; Voloshin, Tali; Reiter, Yoram

    2015-06-01

    Tumor progression is often associated with the development of diverse immune escape mechanisms. One of the main tumor escape mechanism is HLA loss, in which human solid tumors exhibit alterations in HLA expression. Moreover, tumors that present immunogenic peptides via class I MHC molecules are not susceptible to CTL-mediated lysis, because of the relatively low potency of the tumor-specific CLTs. Here, we present a novel cancer immunotherapy approach that overcomes these problems by using the high affinity and specificity of antitumor antibodies to recruit potent antiviral memory CTLs to attack tumor cells. We constructed a recombinant molecule by genetic fusion of a cytomegalovirus (CMV)-derived peptide pp65 (NLVPMVATV) to scHLA-A2 molecules that were genetically fused to a single-chain Fv Ab fragment specific for the tumor cell surface antigen mesothelin. This fully covalent fusion molecule was expressed in E. coli as inclusion bodies and refolded in vitro. The fusion molecules could specifically bind mesothelin-expressing cells and mediate their lysis by NLVPMVATV-specific HLA-A2-restricted human CTLs. More importantly, these molecules exhibited very potent antitumor activity in vivo in a nude mouse model bearing preestablished human tumor xenografts that were adoptively transferred along with human memory CTLs. These results represent a novel and powerful approach to immunotherapy for solid tumors, as demonstrated by the ability of the CMV-scHLA-A2-SS1(scFv) fusion molecule to mediate specific and efficient recruitment of CMV-specific CTLs to kill tumor cells. PMID:25852061

  19. Anti-CD20 single chain variable antibody fragment–apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas

    PubMed Central

    Crosby, Natasha M.; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A.; Kamei, Ayako; Simonsen, Jens B.; Luo, Bing; Gordon, Leo I.; Forte, Trudy M.; Ryan, Robert O.

    2015-01-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  20. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development.

    PubMed

    Hosking, Christopher G; McWilliam, Hamish E G; Driguez, Patrick; Piedrafita, David; Li, Yuesheng; McManus, Donald P; Ilag, Leodevico L; Meeusen, Els N T; Veer, Michael J de

    2015-12-01

    The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11-12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test. PMID:26684756

  1. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development

    PubMed Central

    Hosking, Christopher G.; McWilliam, Hamish E. G.; Driguez, Patrick; Piedrafita, David; Li, Yuesheng; McManus, Donald P.; Ilag, Leodevico L.; Meeusen, Els N. T.; de Veer, Michael J.

    2015-01-01

    The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11–12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test. PMID:26684756

  2. Gigantoxin-4-4D5 scFv is a novel recombinant immunotoxin with specific toxicity against HER2/neu-positive ovarian carcinoma cells.

    PubMed

    Lv, Xinxin; Zhang, Jian; Xu, Rui; Dong, Yuguo; Sun, Aiyou; Shen, Yaling; Wei, Dongzhi

    2016-07-01

    Immunotoxins are a new class of antibody-targeted therapy in clinical development. Traditional immunotoxins that are constructed from the toxins of plants or bacteria need to be internalized to the cytoplasm and thus have limited antitumor efficacy. In the present study, we combined a recently reported sea anemone cytolysin Gigantoxin-4 with an anti-HER2/neu single-chain variable fragment 4D5 scFv to construct a novel immunotoxin. We fused a SUMO tag to the N-terminus of Gigantoxin-4-4D5 scFv and it was successfully expressed in Escherichia coli strain BL21 (DE3) in a soluble form. After purification, the purity of Gigantoxin-4-4D5 scFv reached 96 % and the yield was 14.3 mg/L. Our results demonstrated that Gigantoxin-4-4D5 scFv exerted a highly cytotoxic effect on the HER2/neu-positive ovarian carcinoma SK-OV-3 cell line. And the hemolytic activity was weaker, making it safe for normal cells. The results of immunofluorescence analysis showed that this novel immunotoxin could specifically bind to SK-OV-3 cells with no recognition of human embryonic kidney 293 cells. Scanning electron microscope observations and extracellular lactate dehydrogenase activity indicated that it could induce necrosis in SK-OV-3 cells by disrupting the cell membrane. Moreover, it could also mediate apoptosis of SK-OV-3 cells. PMID:27063011

  3. Evaluation of anti-HER2 scFv-conjugated PLGA-PEG nanoparticles on 3D tumor spheroids of BT474 and HCT116 cancer cells

    NASA Astrophysics Data System (ADS)

    Thuy Duong Le, Thi; Pham, Thu Hong; Nghia Nguyen, Trong; Giang Ngo, Thi Hong; Nhung Hoang, Thi My; Huan Le, Quang

    2016-06-01

    Three-dimensional culture cells (spheroids) are one of the multicellular culture models that can be applied to anticancer chemotherapeutic development. Multicellular spheroids more closely mimic in vivo tumor-like patterns of physiologic environment and morphology. In previous research, we designed docetaxel-loaded pegylated poly(D, L-lactide-co-glycolide) nanoparticles conjugated with anti-HER2 single chain antibodies (scFv-Doc-PLGA-PEG) and evaluated them in 2D cell culture. In this study, we continuously evaluate the cellular uptake and cytotoxic effect of scFv-Doc-PLGA-PEG on a 3D tumor spheroid model of BT474 (HER2-overexpressing) and HCT116 (HER2-underexpressing) cancer cells. The results showed that the nanoparticle formulation conjugated with scFv had a significant internalization effect on the spheroids of HER2-overexpressing cancer cells as compared to the spheroids of HER2-underexpressing cancer cells. Therefore, cytotoxic effects of targeted nanoparticles decreased the size and increased necrotic score of HER2-overexpressing tumor spheroids. Thus, these scFv-Doc-PLGA-PEG nanoparticles have potential for active targeting for HER2-overexpressing cancer therapy. In addition, BT474 and HCT116 spheroids can be used as a tumor model for evaluation of targeting therapies.

  4. Effects of Environmental Factors on Soluble Expression of a Humanized Anti-TNF-α scFv Antibody in Escherichia coli

    PubMed Central

    Sina, Mohammad; Farajzadeh, Davoud; Dastmalchi, Siavoush

    2015-01-01

    Purpose: The bacterial cultivation conditions for obtaining anti-TNF-α single chain variable fragment (scFv) antibody as the soluble product in E. coli was investigated. Methods: To avoid the production of inclusion bodies, the effects of lactose, IPTG, incubation time, temperature, shaking protocol, medium additives (Mg+2, sucrose), pH, osmotic and heat shocks were examined. Samples from bacterial growth conditions with promising results of soluble expression of GST-hD2 scFv were affinity purified and quantified by SDS-PAGE and image processing for further evaluation. Results: The results showed that cultivation in LB medium under induction by low concentrations of lactose and incubation at 10 °C led to partial solubilization of the expressed anti-TNF-α scFv (GST-hD2). Other variables which showed promising increase in soluble expression of GST-hD2 were osmotic shock and addition of magnesium chloride. Furthermore, addition of sucrose to medium suppressed the expression of scFv completely. The other finding was that the addition of sorbitol decreased the growth rate of bacteria. Conclusion: It can be concluded that low cultivation temperature in the presence of low amount of inducer under a long incubation time or addition of magnesium chloride are the most effective environmental factors studied for obtaining the maximum solubilization of GST-hD2 recombinant protein. PMID:26819916

  5. An Entirely Cell-based System to Generate Single-Chain Antibodies Against Cell Surface Receptors

    PubMed Central

    Lipes, Barbara D.; Chen, Yu-Hsun; Ma, HongZheng; Staats, Herman F.; Kenan, Daniel J.; Gunn, Michael Dee

    2008-01-01

    Summary The generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen (Ag). Traditionally, the generation of single chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single chain Abs that does not require the use of recombinant protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high throughput screening of arrayed phage clones, and characterization of recombinant single chain variable regions (scFvs). This strategy was used to generate a panel of single chain Abs specific for the innate immunity receptor Toll-like receptor 2 (TLR2). Once generated, individual scFvs were subcloned into an expression vector allowing the production of recombinant Abs in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell-based system efficiently generates Abs that bind to native molecules on the cell surface, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination. PMID:18455737

  6. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli.

    PubMed

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1-14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1-14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1-14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1-14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  7. Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the oncofetal protein claudin 6

    PubMed Central

    Stadler, Christiane R.; Bähr-Mahmud, Hayat; Plum, Laura M.; Schmoldt, Kathrin; Kölsch, Anne C.; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    abstract The fetal tight junction molecule claudin 6 (CLDN6) is virtually absent from any normal tissue, whereas it is aberrantly and frequently expressed in various cancers of high medical need. We engineered 6PHU3, a T-cell-engaging bispecific single chain molecule (bi-(scFv)2) with anti-CD3/anti-CLDN6 specificities, and characterized its pharmacodynamic properties. Our data show that upon engagement by 6PHU3, T cells strongly upregulate cytotoxicity and activation markers, proliferate and acquire an effector phenotype. 6PHU3 exerts potent killing of cancer cells in vitro with EC50 values in the pg/mL range. Subcutaneous xenograft tumors in NSG mice engrafted with human PBMCs are eradicated by 6PHU3 treatment and survival of mice is significantly prolonged. Tumors of 6PHU3-treated mice are strongly infiltrated with activated CD4+, CD8+ T cells and TEM type cells but not Tregs and display a general activation of a mostly inflammatory phenotype. These effects are only observed upon bispecific but not monospecific engagement of 6PHU3. Together with the exceptionally cancer cell selective expression of the oncofetal tumor marker CLDN6, this provides a safeguard with regard to toxicity. In summary, our data shows that the concept of T-cell redirection combined with that of highly selective targeting of CLDN6-positive solid tumors is effective. Thus, exploring 6PHU3 for clinical therapy is warranted. PMID:27141353

  8. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli

    PubMed Central

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  9. Blood Clotting-Inspired Control of Single-Chain Molecules in Flows

    NASA Astrophysics Data System (ADS)

    Sing, Charles; Alexander-Katz, Alfredo

    2011-03-01

    Recent experimental evidence has demonstrated a clear link between mechanical stimuli and the activation of von Willebrand Factor (vWF), a protein that plays a critical role in the blood clotting cascade. This protein exhibits counter-intuitive conformational and adsorption responses that suggest novel ways of controlling the single-chain dynamics of polymer chains. Specifically, we are using simulation and theoretical approaches to elucidate the fundamental physics that govern globule-stretch transitions in collapsed polymers due to the effect of fluid flows. We begin to extend this general approach to the case of globule adsorption-desorption transitions in the presence of fluid flows, and demonstrate how kinetic considerations must be taken into account to describe the basic features of these transitions. We expect that these results will both allow the development of novel techniques for single-chain targeting and assembly and offer insight into the physiological behavior of vWF.

  10. Affinity measurement of single chain antibodies: a mathematical method facilitated by statistical software SigmaPlot.

    PubMed

    Safdari, Yaghoub; Farajnia, Safar; Asgharzadeh, Mohammad; Khalili, Masoumeh; Jaliani, Hossein Zarei

    2014-02-01

    Because they are monovalent for antigen, single chain antibodies display a different antibody-antigen interaction pattern from that of full-length antibodies. Using the law of mass action and considering the antibody-antigen binding pattern at OD-100% and OD-50% points, we introduced a formula for estimating single chain antibody affinity. Sigmoid curves of optical density values versus antibody concentrations were drawn and used to determine antibody concentrations at OD-50% points using statistical software SigmaPlot. The OD-50% points were then used to calculate the affinity via the mathematical formula. A software-adapted format of the equation is also presented for further facilitation of the calculation process. The accuracy of this method for affinity calculation was proved by surface plasma resonance. This method offers a precise evaluation of antibody affinity without requiring special material or apparatus, making it possible to be performed in any biological laboratory with minimum facilities. PMID:24555931