Science.gov

Sample records for multivariate event time

  1. A new multivariate time series data analysis technique: Automated detection of flux transfer events using Cluster data

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Sipes, T. B.; Wang, Y.; Lavraud, B.; Roberts, A.

    2009-06-01

    A new data mining technique called MineTool-TS is introduced which captures the time-lapse information in multivariate time series data through extraction of global features and metafeatures. This technique is developed into a JAVA-based data mining software which automates all the steps in the model building to make it more accessible to nonexperts. As its first application in space sciences, MineTool-TS is used to develop a model for automated detection of flux transfer events (FTEs) at Earth's magnetopause in the Cluster spacecraft time series data. The model classifies a given time series into one of three categories of non-FTE, magnetosheath FTE, or magnetospheric FTE. One important feature of MineTool-TS is the ability to explore the importance of each variable or combination of variables as indicators of FTEs. FTEs have traditionally been identified on the basis of their magnetic field signatures, but here we find that some plasma variables can also be effective indicators of FTEs. For example, the perpendicular ion temperature yields a model accuracy of ˜93%, while a model based solely on the normal magnetic field BN yields an accuracy of ˜95%. This opens up the possibility of searching for more unusual FTEs that may, for example, have no clear BN signature and create a more comprehensive and less biased list of FTEs for statistical studies. We also find that models using GSM coordinates yield comparable accuracy to those using boundary normal coordinates. This is useful since there are regions where magnetopause models are not accurate. Another surprising result is the finding that the algorithm can largely detect FTEs, and even distinguish between magnetosheath and magnetospheric FTEs, solely on the basis of models built from single parameters, something that experts may not do so straightforwardly on the basis of short time series intervals. The most accurate models use a combination of plasma and magnetic field variables and achieve a very high

  2. Multivariate Time Series Similarity Searching

    PubMed Central

    Wang, Jimin; Zhu, Yuelong; Li, Shijin; Wan, Dingsheng; Zhang, Pengcheng

    2014-01-01

    Multivariate time series (MTS) datasets are very common in various financial, multimedia, and hydrological fields. In this paper, a dimension-combination method is proposed to search similar sequences for MTS. Firstly, the similarity of single-dimension series is calculated; then the overall similarity of the MTS is obtained by synthesizing each of the single-dimension similarity based on weighted BORDA voting method. The dimension-combination method could use the existing similarity searching method. Several experiments, which used the classification accuracy as a measure, were performed on six datasets from the UCI KDD Archive to validate the method. The results show the advantage of the approach compared to the traditional similarity measures, such as Euclidean distance (ED), cynamic time warping (DTW), point distribution (PD), PCA similarity factor (SPCA), and extended Frobenius norm (Eros), for MTS datasets in some ways. Our experiments also demonstrate that no measure can fit all datasets, and the proposed measure is a choice for similarity searches. PMID:24895665

  3. Multivariate time series similarity searching.

    PubMed

    Wang, Jimin; Zhu, Yuelong; Li, Shijin; Wan, Dingsheng; Zhang, Pengcheng

    2014-01-01

    Multivariate time series (MTS) datasets are very common in various financial, multimedia, and hydrological fields. In this paper, a dimension-combination method is proposed to search similar sequences for MTS. Firstly, the similarity of single-dimension series is calculated; then the overall similarity of the MTS is obtained by synthesizing each of the single-dimension similarity based on weighted BORDA voting method. The dimension-combination method could use the existing similarity searching method. Several experiments, which used the classification accuracy as a measure, were performed on six datasets from the UCI KDD Archive to validate the method. The results show the advantage of the approach compared to the traditional similarity measures, such as Euclidean distance (ED), cynamic time warping (DTW), point distribution (PD), PCA similarity factor (SPCA), and extended Frobenius norm (Eros), for MTS datasets in some ways. Our experiments also demonstrate that no measure can fit all datasets, and the proposed measure is a choice for similarity searches. PMID:24895665

  4. Multivariate cluster analysis of forest fire events in Portugal

    NASA Astrophysics Data System (ADS)

    Tonini, Marj; Pereira, Mario; Vega Orozco, Carmen; Parente, Joana

    2015-04-01

    Portugal is one of the major fire-prone European countries, mainly due to its favourable climatic, topographic and vegetation conditions. Compared to the other Mediterranean countries, the number of events registered here from 1980 up to nowadays is the highest one; likewise, with respect to the burnt area, Portugal is the third most affected country. Portuguese mapped burnt areas are available from the website of the Institute for the Conservation of Nature and Forests (ICNF). This official geodatabase is the result of satellite measurements starting from the year 1990. The spatial information, delivered in shapefile format, provides a detailed description of the shape and the size of area burnt by each fire, while the date/time information relate to the ignition fire is restricted to the year of occurrence. In terms of a statistical formalism wildfires can be associated to a stochastic point process, where events are analysed as a set of geographical coordinates corresponding, for example, to the centroid of each burnt area. The spatio/temporal pattern of stochastic point processes, including the cluster analysis, is a basic procedure to discover predisposing factorsas well as for prevention and forecasting purposes. These kinds of studies are primarily focused on investigating the spatial cluster behaviour of environmental data sequences and/or mapping their distribution at different times. To include both the two dimensions (space and time) a comprehensive spatio-temporal analysis is needful. In the present study authors attempt to verify if, in the case of wildfires in Portugal, space and time act independently or if, conversely, neighbouring events are also closer in time. We present an application of the spatio-temporal K-function to a long dataset (1990-2012) of mapped burnt areas. Moreover, the multivariate K-function allowed checking for an eventual different distribution between small and large fires. The final objective is to elaborate a 3D

  5. Network structure of multivariate time series.

    PubMed

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-01-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail. PMID:26487040

  6. Network structure of multivariate time series

    PubMed Central

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-01-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail. PMID:26487040

  7. Network structure of multivariate time series

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-01

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  8. Multivariate Statistical Modelling of Drought and Heat Wave Events

    NASA Astrophysics Data System (ADS)

    Manning, Colin; Widmann, Martin; Vrac, Mathieu; Maraun, Douglas; Bevaqua, Emanuele

    2016-04-01

    Multivariate Statistical Modelling of Drought and Heat Wave Events C. Manning1,2, M. Widmann1, M. Vrac2, D. Maraun3, E. Bevaqua2,3 1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK 2. Laboratoire des Sciences du Climat et de l'Environnement, (LSCE-IPSL), Centre d'Etudes de Saclay, Gif-sur-Yvette, France 3. Wegener Center for Climate and Global Change, University of Graz, Brandhofgasse 5, 8010 Graz, Austria Compound extreme events are a combination of two or more contributing events which in themselves may not be extreme but through their joint occurrence produce an extreme impact. Compound events are noted in the latest IPCC report as an important type of extreme event that have been given little attention so far. As part of the CE:LLO project (Compound Events: muLtivariate statisticaL mOdelling) we are developing a multivariate statistical model to gain an understanding of the dependence structure of certain compound events. One focus of this project is on the interaction between drought and heat wave events. Soil moisture has both a local and non-local effect on the occurrence of heat waves where it strongly controls the latent heat flux affecting the transfer of sensible heat to the atmosphere. These processes can create a feedback whereby a heat wave maybe amplified or suppressed by the soil moisture preconditioning, and vice versa, the heat wave may in turn have an effect on soil conditions. An aim of this project is to capture this dependence in order to correctly describe the joint probabilities of these conditions and the resulting probability of their compound impact. We will show an application of Pair Copula Constructions (PCCs) to study the aforementioned compound event. PCCs allow in theory for the formulation of multivariate dependence structures in any dimension where the PCC is a decomposition of a multivariate distribution into a product of bivariate components modelled using copulas. A

  9. Time varying, multivariate volume data reduction

    SciTech Connect

    Ahrens, James P; Fout, Nathaniel; Ma, Kwan - Liu

    2010-01-01

    Large-scale supercomputing is revolutionizing the way science is conducted. A growing challenge, however, is understanding the massive quantities of data produced by large-scale simulations. The data, typically time-varying, multivariate, and volumetric, can occupy from hundreds of gigabytes to several terabytes of storage space. Transferring and processing volume data of such sizes is prohibitively expensive and resource intensive. Although it may not be possible to entirely alleviate these problems, data compression should be considered as part of a viable solution, especially when the primary means of data analysis is volume rendering. In this paper we present our study of multivariate compression, which exploits correlations among related variables, for volume rendering. Two configurations for multidimensional compression based on vector quantization are examined. We emphasize quality reconstruction and interactive rendering, which leads us to a solution using graphics hardware to perform on-the-fly decompression during rendering. In this paper we present a solution which addresses the need for data reduction in large supercomputing environments where data resulting from simulations occupies tremendous amounts of storage. Our solution employs a lossy encoding scheme to acrueve data reduction with several options in terms of rate-distortion behavior. We focus on encoding of multiple variables together, with optional compression in space and time. The compressed volumes can be rendered directly with commodity graphics cards at interactive frame rates and rendering quality similar to that of static volume renderers. Compression results using a multivariate time-varying data set indicate that encoding multiple variables results in acceptable performance in the case of spatial and temporal encoding as compared to independent compression of variables. The relative performance of spatial vs. temporal compression is data dependent, although temporal compression has the

  10. Visual Data Mining of Large, Multivariate Space-Time Data

    NASA Astrophysics Data System (ADS)

    Cook, D.

    2001-12-01

    Interest in understanding global climate change is generating monitoring efforts that yield a huge amount of multivariate space-time data. While analytical methods for univariate space-time data may be mature and substantial, methods for multivariate space-time data analysis are still in their infancy. The urgency of understanding climate change on a global scale begs for input from data analysts, and to work effectively they need new tools to explore multivariate aspects of climate. This talk describes interactive and dynamic visual tools for mining information from multivariate space-time data. Methods for small amounts of data will be discussed, followed by approaches to scaling up methods for large quantities of data. We focus on the ``multiple views'' approach for viewing multivariate data, and how these extend to include space-time contextual information. We also will describe dynamic graphics methods such as tours in the space-time context. Data mining is the current terminology for exploratory analyses of data, typically associated with large databases. Exploratory analysis has a goal of finding anomalies, quirks and deviations from a trend, and basically extracting unexpected information from data. It oft-times emphasizes model-free methods, although model-based approaches are also integral components to the analysis process. Visual data mining concentrates on the use of visual tools in the exploratory process. As such it often involves highly interactive and dynamic graphics environments which facilitate quick queries and visual responses. Visual methods are especially important in exploratory analysis because they provide an interface for using the human eye to digest complex information. A good plot can convey far more information than a numerical summary. Visual tools enhance the chances of discovering the unexpected, and detecting the anomalous events.

  11. Segmentation of biological multivariate time-series data

    NASA Astrophysics Data System (ADS)

    Omranian, Nooshin; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2015-03-01

    Time-series data from multicomponent systems capture the dynamics of the ongoing processes and reflect the interactions between the components. The progression of processes in such systems usually involves check-points and events at which the relationships between the components are altered in response to stimuli. Detecting these events together with the implicated components can help understand the temporal aspects of complex biological systems. Here we propose a regularized regression-based approach for identifying breakpoints and corresponding segments from multivariate time-series data. In combination with techniques from clustering, the approach also allows estimating the significance of the determined breakpoints as well as the key components implicated in the emergence of the breakpoints. Comparative analysis with the existing alternatives demonstrates the power of the approach to identify biologically meaningful breakpoints in diverse time-resolved transcriptomics data sets from the yeast Saccharomyces cerevisiae and the diatom Thalassiosira pseudonana.

  12. Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models

    ERIC Educational Resources Information Center

    Price, Larry R.

    2012-01-01

    The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…

  13. Interpretable Early Classification of Multivariate Time Series

    ERIC Educational Resources Information Center

    Ghalwash, Mohamed F.

    2013-01-01

    Recent advances in technology have led to an explosion in data collection over time rather than in a single snapshot. For example, microarray technology allows us to measure gene expression levels in different conditions over time. Such temporal data grants the opportunity for data miners to develop algorithms to address domain-related problems,…

  14. Assessment of Critical Events Corridors through Multivariate Cascading Outages Analysis

    SciTech Connect

    Makarov, Yuri V.; Samaan, Nader A.; Diao, Ruisheng; Kumbale, Murali; Chen, Yousu; Singh, Ruchi; Green, Irina; Morgan, Mark P.

    2011-10-17

    Massive blackouts of electrical power systems in North America over the past decade has focused increasing attention upon ways to identify and simulate network events that may potentially lead to widespread network collapse. This paper summarizes a method to simulate power-system vulnerability to cascading failures to a supplied set of initiating events synonymously termed as Extreme Events. The implemented simulation method is currently confined to simulating steady state power-system response to a set of extreme events. The outlined method of simulation is meant to augment and provide a new insight into bulk power transmission network planning that at present remains mainly confined to maintaining power system security for single and double component outages under a number of projected future network operating conditions. Although one of the aims of this paper is to demonstrate the feasibility of simulating network vulnerability to cascading outages, a more important goal has been to determine vulnerable parts of the network that may potentially be strengthened in practice so as to mitigate system susceptibility to cascading failures. This paper proposes to demonstrate a systematic approach to analyze extreme events and identify vulnerable system elements that may be contributing to cascading outages. The hypothesis of critical events corridors is proposed to represent repeating sequential outages that can occur in the system for multiple initiating events. The new concept helps to identify system reinforcements that planners could engineer in order to 'break' the critical events sequences and therefore lessen the likelihood of cascading outages. This hypothesis has been successfully validated with a California power system model.

  15. [Anomaly Detection of Multivariate Time Series Based on Riemannian Manifolds].

    PubMed

    Xu, Yonghong; Hou, Xiaoying; Li Shuting; Cui, Jie

    2015-06-01

    Multivariate time series problems widely exist in production and life in the society. Anomaly detection has provided people with a lot of valuable information in financial, hydrological, meteorological fields, and the research areas of earthquake, video surveillance, medicine and others. In order to quickly and efficiently find exceptions in time sequence so that it can be presented in front of people in an intuitive way, we in this study combined the Riemannian manifold with statistical process control charts, based on sliding window, with a description of the covariance matrix as the time sequence, to achieve the multivariate time series of anomaly detection and its visualization. We made MA analog data flow and abnormal electrocardiogram data from MIT-BIH as experimental objects, and verified the anomaly detection method. The results showed that the method was reasonable and effective. PMID:26485975

  16. Regularly timed events amid chaos.

    PubMed

    Blakely, Jonathan N; Cooper, Roy M; Corron, Ned J

    2015-11-01

    We show rigorously that the solutions of a class of chaotic oscillators are characterized by regularly timed events in which the derivative of the solution is instantaneously zero. The perfect regularity of these events is in stark contrast with the well-known unpredictability of chaos. We explore some consequences of these regularly timed events through experiments using chaotic electronic circuits. First, we show that a feedback loop can be implemented to phase lock the regularly timed events to a periodic external signal. In this arrangement the external signal regulates the timing of the chaotic signal but does not strictly lock its phase. That is, phase slips of the chaotic oscillation persist without disturbing timing of the regular events. Second, we couple the regularly timed events of one chaotic oscillator to those of another. A state of synchronization is observed where the oscillators exhibit synchronized regular events while their chaotic amplitudes and phases evolve independently. Finally, we add additional coupling to synchronize the amplitudes, as well, however in the opposite direction illustrating the independence of the amplitudes from the regularly timed events. PMID:26651759

  17. A Method for Comparing Multivariate Time Series with Different Dimensions

    PubMed Central

    Tapinos, Avraam; Mendes, Pedro

    2013-01-01

    In many situations it is desirable to compare dynamical systems based on their behavior. Similarity of behavior often implies similarity of internal mechanisms or dependency on common extrinsic factors. While there are widely used methods for comparing univariate time series, most dynamical systems are characterized by multivariate time series. Yet, comparison of multivariate time series has been limited to cases where they share a common dimensionality. A semi-metric is a distance function that has the properties of non-negativity, symmetry and reflexivity, but not sub-additivity. Here we develop a semi-metric – SMETS – that can be used for comparing groups of time series that may have different dimensions. To demonstrate its utility, the method is applied to dynamic models of biochemical networks and to portfolios of shares. The former is an example of a case where the dependencies between system variables are known, while in the latter the system is treated (and behaves) as a black box. PMID:23393554

  18. Multivariate optimization of production systems: The time dimension

    SciTech Connect

    Ravindran, N.; Horne, R.N.

    1993-04-01

    Traditional analysis of oil and gas production systems treats individual nodes one at a time. This only calculates a feasible solution which is not necessarily optimal. Multivariate optimization is able to determine the most profitable configuration, including all variables simultaneously. The optimization can also find the optimal recovery over a period of time, rather than just at a single instant as in traditional methods. This report describes the development of multivariate optimization for situations in which the decision variables may change as a function of time. For example, instead of estimating a tubing size which is optimal over the life of the project, this approach determines a series of optimal tubing sizes which may change from year to year. Examples show that under an optimal strategy, tubing size can be changed only infrequently while still increasing profitability of a project. The methods used in this work considered the special requirements of objectives which are not smooth functions of their decision variables. The physical problems considered included artificial lift production systems.

  19. Impact of dose intensity of ponatinib on selected adverse events: Multivariate analyses from a pooled population of clinical trial patients.

    PubMed

    Dorer, David J; Knickerbocker, Ronald K; Baccarani, Michele; Cortes, Jorge E; Hochhaus, Andreas; Talpaz, Moshe; Haluska, Frank G

    2016-09-01

    Ponatinib is approved for adults with refractory chronic myeloid leukemia or Philadelphia chromosome-positive acute lymphoblastic leukemia, including those with the T315I BCR-ABL1 mutation. We pooled data from 3 clinical trials (N=671) to determine the impact of ponatinib dose intensity on the following adverse events: arterial occlusive events (cardiovascular, cerebrovascular, and peripheral vascular events), venous thromboembolic events, cardiac failure, thrombocytopenia, neutropenia, hypertension, pancreatitis, increased lipase, increased alanine aminotransferase, increased aspartate aminotransferase, rash, arthralgia, and hypertriglyceridemia. Multivariate analyses allowed adjustment for covariates potentially related to changes in dosing or an event. Logistic regression analysis identified significant associations between dose intensity and most events after adjusting for covariates. Pancreatitis, rash, and cardiac failure had the strongest associations with dose intensity (odds ratios >2). Time-to-event analyses showed significant associations between dose intensity and risk of arterial occlusive events and each subcategory. Further, these analyses suggested that a lag exists between a change in dose and the resulting change in event risk. No significant association between dose intensity and risk of venous thromboembolic events was evident. Collectively, these findings suggest a potential causal relationship between ponatinib dose and certain adverse events and support prospective investigations of approaches to lower average ponatinib dose intensity. PMID:27505637

  20. The LCLS Timing Event System

    SciTech Connect

    Dusatko, John; Allison, S.; Browne, M.; Krejcik, P.; /SLAC

    2012-07-23

    The Linac Coherent Light Source requires precision timing trigger signals for various accelerator diagnostics and controls at SLAC-NAL. A new timing system has been developed that meets these requirements. This system is based on COTS hardware with a mixture of custom-designed units. An added challenge has been the requirement that the LCLS Timing System must co-exist and 'know' about the existing SLC Timing System. This paper describes the architecture, construction and performance of the LCLS timing event system.

  1. Optimal model-free prediction from multivariate time series.

    PubMed

    Runge, Jakob; Donner, Reik V; Kurths, Jürgen

    2015-05-01

    Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation. PMID:26066231

  2. Fast and Flexible Multivariate Time Series Subsequence Search

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Oza, Nikunj C.; Zhu, Qiang; Srivastava, Ashok N.

    2010-01-01

    Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which often contain several gigabytes of data. Surprisingly, research on MTS search is very limited. Most of the existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two algorithms to solve this problem (1) a List Based Search (LBS) algorithm which uses sorted lists for indexing, and (2) a R*-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences. Both algorithms guarantee that all matching patterns within the specified thresholds will be returned (no false dismissals). The very few false alarms can be removed by a post-processing step. Since our framework is also capable of Univariate Time-Series (UTS) subsequence search, we first demonstrate the efficiency of our algorithms on several UTS datasets previously used in the literature. We follow this up with experiments using two large MTS databases from the aviation domain, each containing several millions of observations. Both these tests show that our algorithms have very high prune rates (>99%) thus needing actual disk access for only less than 1% of the observations. To the best of our knowledge, MTS subsequence search has never been attempted on datasets of the size we have used in this paper.

  3. F100 multivariable control synthesis program: Evaluation of a multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Soeder, J. F.; Seldner, K.; Cwynar, D. S.

    1977-01-01

    The design, evaluation, and testing of a practical, multivariable, linear quadratic regulator control for the F100 turbofan engine were accomplished. NASA evaluation of the multivariable control logic and implementation are covered. The evaluation utilized a real time, hybrid computer simulation of the engine. Results of the evaluation are presented, and recommendations concerning future engine testing of the control are made. Results indicated that the engine testing of the control should be conducted as planned.

  4. Optimizing Functional Network Representation of Multivariate Time Series

    NASA Astrophysics Data System (ADS)

    Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco Del; Menasalvas, Ernestina; Boccaletti, Stefano

    2012-09-01

    By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.

  5. Optimizing Functional Network Representation of Multivariate Time Series

    PubMed Central

    Zanin, Massimiliano; Sousa, Pedro; Papo, David; Bajo, Ricardo; García-Prieto, Juan; Pozo, Francisco del; Menasalvas, Ernestina; Boccaletti, Stefano

    2012-01-01

    By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks. PMID:22953051

  6. Multivariate Sensitivity Analysis of Time-of-Flight Sensor Fusion

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Sjöström, Mårten; Olsson, Roger

    2014-09-01

    Obtaining three-dimensional scenery data is an essential task in computer vision, with diverse applications in various areas such as manufacturing and quality control, security and surveillance, or user interaction and entertainment. Dedicated Time-of-Flight sensors can provide detailed scenery depth in real-time and overcome short-comings of traditional stereo analysis. Nonetheless, they do not provide texture information and have limited spatial resolution. Therefore such sensors are typically combined with high resolution video sensors. Time-of-Flight Sensor Fusion is a highly active field of research. Over the recent years, there have been multiple proposals addressing important topics such as texture-guided depth upsampling and depth data denoising. In this article we take a step back and look at the underlying principles of ToF sensor fusion. We derive the ToF sensor fusion error model and evaluate its sensitivity to inaccuracies in camera calibration and depth measurements. In accordance with our findings, we propose certain courses of action to ensure high quality fusion results. With this multivariate sensitivity analysis of the ToF sensor fusion model, we provide an important guideline for designing, calibrating and running a sophisticated Time-of-Flight sensor fusion capture systems.

  7. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series.

    PubMed

    Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in

  8. A statistical approach for segregating cognitive task stages from multivariate fMRI BOLD time series

    PubMed Central

    Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M.; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in

  9. Evaluating multivariate visualizations on time-varying data

    NASA Astrophysics Data System (ADS)

    Livingston, Mark A.; Decker, Jonathan W.; Ai, Zhuming

    2013-01-01

    Multivariate visualization techniques have been applied to a wide variety of visual analysis tasks and a broad range of data types and sources. Their utility has been evaluated in a modest range of simple analysis tasks. In this work, we extend our previous task to a case of time-varying data. We implemented ve visualizations of our synthetic test data: three previously evaluated techniques (Data-driven Spots, Oriented Slivers, and Attribute Blocks), one hybrid of the rst two that we call Oriented Data-driven Spots, and an implementation of Attribute Blocks that merges the temporal slices. We conducted a user study of these ve techniques. Our previous nding (with static data) was that users performed best when the density of the target (as encoded in the visualization) was either highest or had the highest ratio to non-target features. The time-varying presentations gave us a wider range of density and density gains from which to draw conclusions; we now see evidence for the density gain as the perceptual measure, rather than the absolute density.

  10. Mulstiscale Stochastic Generator of Multivariate Met-Ocean Time Series

    NASA Astrophysics Data System (ADS)

    Guanche, Yanira; Mínguez, Roberto; Méndez, Fernando J.

    2013-04-01

    The design of maritime structures requires information on sea state conditions that influence its behavior during its life cycle. In the last decades, there has been a increasing development of sea databases (buoys, reanalysis, satellite) that allow an accurate description of the marine climate and its interaction with a given structure in terms of functionality and stability. However, these databases have a limited timelength, and its appliance entails an associated uncertainty. To avoid this limitation, engineers try to sample synthetically generated time series, statistically consistent, which allow the simulation of longer time periods. The present work proposes a hybrid methodology to deal with this issue. It is based in the combination of clustering algorithms (k-means) and an autoregressive logistic regression model (logit). Since the marine climate is directly related to the atmospheric conditions at a synoptic scale, the proposed methodology takes both systems into account; generating simultaneously circulation patterns (weather types) time series and the sea state time series related. The generation of these time series can be summarized in three steps: (1) By applying the clustering technique k-means the atmospheric conditions are classified into a representative number of synoptical patterns (2) Taking into account different covariates involved (such as seasonality, interannual variability, trends or autoregressive term) the autoregressive logistic model is adjusted (3) Once the model is able to simulate weather types time series the last step is to generate multivariate hourly metocean parameters related to these weather types. This is done by an autoregressive model (ARMA) for each variable, including cross-correlation between them. To show the goodness of the proposed method the following data has been used: Sea Level Pressure (SLP) databases from NCEP-NCAR and Global Ocean Wave (GOW) reanalysis from IH Cantabria. The synthetical met-ocean hourly

  11. A Framework and Algorithms for Multivariate Time Series Analytics (MTSA): Learning, Monitoring, and Recommendation

    ERIC Educational Resources Information Center

    Ngan, Chun-Kit

    2013-01-01

    Making decisions over multivariate time series is an important topic which has gained significant interest in the past decade. A time series is a sequence of data points which are measured and ordered over uniform time intervals. A multivariate time series is a set of multiple, related time series in a particular domain in which domain experts…

  12. Memory for time: how people date events.

    PubMed

    Janssen, Steve M J; Chessa, Antonio G; Murre, Jaap M J

    2006-01-01

    The effect of different formats on the accuracy of dating news and the distribution of personal events was examined in four conditions. In the first, participants had to date events in the absolute time format (e.g., "July 2004"), and in the second, they had to date events in the relative time format (e.g., "3 weeks ago"). In the other conditions, they were asked to choose between the two formats. We found a small backward telescoping effect for recent news events and a large forward telescoping effect for remote events. Events dated in the absolute time format were more accurate than those dated in the relative time format. Furthermore, participants preferred to date news events with the relative time format and personal events with the absolute time format, as well as preferring to date remote events in the relative time format and recent events in the absolute time format. PMID:16686113

  13. Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.

    PubMed

    Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence

    2012-12-01

    A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA. PMID:23741284

  14. A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding

    NASA Astrophysics Data System (ADS)

    Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.

    2015-04-01

    Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of

  15. Multivariate space - time analysis of PRE-STORM precipitation

    NASA Technical Reports Server (NTRS)

    Polyak, Ilya; North, Gerald R.; Valdes, Juan B.

    1994-01-01

    This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.

  16. When univariate model-free time series prediction is better than multivariate

    NASA Astrophysics Data System (ADS)

    Chayama, Masayoshi; Hirata, Yoshito

    2016-07-01

    The delay coordinate method is known to be a practically useful technique for reconstructing the states of an observed system. While this method is theoretically supported by Takens' embedding theorem concerning observations of a scalar time series, we can extend the method to include a multivariate time series. It is often assumed that a better prediction can be obtained using a multivariate time series than by using a scalar time series. However, multivariate time series contains various types of information, and it may be difficult to extract information that is useful for predicting the states. Thus, univariate prediction may sometimes be superior to multivariate prediction. Here, we compare univariate model-free time series predictions with multivariate ones, and demonstrate that univariate model-free prediction is better than multivariate one when the prediction steps are small, while multivariate prediction performs better when the prediction steps become larger. We show the validity of the former finding by using artificial datasets generated from the Lorenz 96 models and a real solar irradiance dataset. The results indicate that it is possible to determine which method is the best choice by considering how far into the future we want to predict.

  17. A multi-variance analysis in the time domain

    NASA Technical Reports Server (NTRS)

    Walter, Todd

    1993-01-01

    Recently a new technique for characterizing the noise processes affecting oscillators was introduced. This technique minimizes the difference between the estimates of several different variances and their values as predicted by the standard power law model of noise. The method outlined makes two significant advancements: it uses exclusively time domain variances so that deterministic parameters such as linear frequency drift may be estimated, and it correctly fits the estimates using the chi-square distribution. These changes permit a more accurate fitting at long time intervals where there is the least information. This technique was applied to both simulated and real data with excellent results.

  18. Scaling analysis of multi-variate intermittent time series

    NASA Astrophysics Data System (ADS)

    Kitt, Robert; Kalda, Jaan

    2005-08-01

    The scaling properties of the time series of asset prices and trading volumes of stock markets are analysed. It is shown that similar to the asset prices, the trading volume data obey multi-scaling length-distribution of low-variability periods. In the case of asset prices, such scaling behaviour can be used for risk forecasts: the probability of observing next day a large price movement is (super-universally) inversely proportional to the length of the ongoing low-variability period. Finally, a method is devised for a multi-factor scaling analysis. We apply the simplest, two-factor model to equity index and trading volume time series.

  19. It's T time: A study on the return period of multivariate problems

    NASA Astrophysics Data System (ADS)

    Michailidi, Eleni Maria; Balistrocchi, Matteo; Bacchi, Baldassare

    2016-04-01

    variables: hydrograph's peak flow, volume and shape. Consequently, a multivariate framework is needed for a more realistic view of the matter at hand. In recent years, the application of copula functions has facilitated overcoming the inadequacies of multivariate distributions as the problem is handled from two non-interwinding aspects: the dependence structure of the pair of variables and the marginal distributions. The main objective of this study is to investigate whether it is possible to find, in a multivariate space, a region where all the multivariate events produce 'risk' lower or greater than a fixed mean inter-occurrence of failures of one time every T-years. Preliminary results seem to confirm that it is impossible to obtain uniqueness in the definition.

  20. Decoupling in linear time-varying multivariable systems

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1973-01-01

    The necessary and sufficient conditions for the decoupling of an m-input, m-output, linear time varying dynamical system by state variable feedback is described. The class of feedback matrices which decouple the system are illustrated. Systems which do not satisfy these results are described and systems with disturbances are considered. Some examples are illustrated to clarify the results.

  1. A wireless time synchronized event control system

    NASA Astrophysics Data System (ADS)

    Klug, Robert; Williams, Jonathan; Scheffel, Peter

    2014-05-01

    McQ has developed a wireless, time-synchronized, event control system to control, monitor, and record events with precise timing over large test sites for applications such as high speed rocket sled payload testing. Events of interest may include firing rocket motors and launch sleds, initiating flares, ejecting bombs, ejecting seats, triggering high speed cameras, measuring sled velocity, and triggering events based on a velocity window or other criteria. The system consists of Event Controllers, a Launch Controller, and a wireless network. The Event Controllers can be easily deployed at areas of interest within the test site and maintain sub-microsecond timing accuracy for monitoring sensors, electronically triggering other equipment and events, and providing timing signals to other test equipment. Recorded data and status information is reported over the wireless network to a server and user interface. Over the wireless network, the user interface configures the system based on a user specified mission plan and provides real time command, control, and monitoring of the devices and data. An overview of the system, its features, performance, and potential uses is presented.

  2. Event Discovery in Astronomical Time Series

    NASA Astrophysics Data System (ADS)

    Preston, D.; Protopapas, P.; Brodley, C.

    2009-09-01

    The discovery of events in astronomical time series data is a non-trival problem. Existing methods address the problem by requiring a fixed-sized sliding window which, given the varying lengths of events and sampling rates, could overlook important events. In this work, we develop probability models for finding the significance of an arbitrary-sized sliding window, and use these probabilities to find areas of significance. In addition, we present our analyses of major surveys archived at the Time Series Center, part of the Initiative in Innovative Computing at Harvard University. We applied our method to the time series data in order to discover events such as microlensing or any non-periodic events in the MACHO, OGLE and TAOS surveys. The analysis shows that the method is an effective tool for filtering out nearly 99% of noisy and uninteresting time series from a large set of data, but still provides full recovery of all known variable events (microlensing, blue star events, supernovae etc.). Furthermore, due to its efficiency, this method can be performed on-the-fly and will be used to analyze upcoming surveys, such as Pan-STARRS.

  3. A Sandwich-Type Standard Error Estimator of SEM Models with Multivariate Time Series

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Chow, Sy-Miin; Ong, Anthony D.

    2011-01-01

    Structural equation models are increasingly used as a modeling tool for multivariate time series data in the social and behavioral sciences. Standard error estimators of SEM models, originally developed for independent data, require modifications to accommodate the fact that time series data are inherently dependent. In this article, we extend a…

  4. Asymmetric Time Evolution and Indistinguishable Events

    SciTech Connect

    Bryant, P. W.

    2010-11-25

    With a time asymmetric theory, in which quantum mechanical time evolution is given by a semigroup of operators rather than by a group, the states of open systems are represented by density operators exhibiting a branching behavior. To treat the indistinguishably of the members of experimental ensembles, we hypothesize that environmental interference occurs during events that are themselves fundamentally indistinguishable.

  5. Discrete Events as Units of Perceived Time

    ERIC Educational Resources Information Center

    Liverence, Brandon M.; Scholl, Brian J.

    2012-01-01

    In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…

  6. Learning a Mahalanobis Distance-Based Dynamic Time Warping Measure for Multivariate Time Series Classification.

    PubMed

    Mei, Jiangyuan; Liu, Meizhu; Wang, Yuan-Fang; Gao, Huijun

    2016-06-01

    Multivariate time series (MTS) datasets broadly exist in numerous fields, including health care, multimedia, finance, and biometrics. How to classify MTS accurately has become a hot research topic since it is an important element in many computer vision and pattern recognition applications. In this paper, we propose a Mahalanobis distance-based dynamic time warping (DTW) measure for MTS classification. The Mahalanobis distance builds an accurate relationship between each variable and its corresponding category. It is utilized to calculate the local distance between vectors in MTS. Then we use DTW to align those MTS which are out of synchronization or with different lengths. After that, how to learn an accurate Mahalanobis distance function becomes another key problem. This paper establishes a LogDet divergence-based metric learning with triplet constraint model which can learn Mahalanobis matrix with high precision and robustness. Furthermore, the proposed method is applied on nine MTS datasets selected from the University of California, Irvine machine learning repository and Robert T. Olszewski's homepage, and the results demonstrate the improved performance of the proposed approach. PMID:25966490

  7. Reinforcement genetic approach to coefficient estimation for multivariable nonlinear discrete-time dynamical systems

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Der; Yan, Jun-Juh

    2006-10-01

    In this paper, we propose a novel genetic algorithm (GA) with a multi-crossover fashion to estimate the associated coefficients for a class of nonlinear discrete-time multivariable dynamical systems. Unlike the traditional crossover method of using two chromosomes, the proposed method uses three chromosomes to achieve a crossover. According to the adjusting direction by crossing three chromosomes, more excellent offspring can be produced. To solve the identification problem of multivariable nonlinear discrete-time systems, each of estimated system coefficients represents a gene, and a collection of genes is referred to as a chromosome in the view of GA. The chromosomes in the population are then evolved using the proposed multi-crossover method. An illustrative example of multivariable nonlinear systems is given to demonstrate the effectiveness, as compared with the traditional crossover method, of the proposed method.

  8. Multivariable Model for Time to First Treatment in Patients With Chronic Lymphocytic Leukemia

    PubMed Central

    Wierda, William G.; O'Brien, Susan; Wang, Xuemei; Faderl, Stefan; Ferrajoli, Alessandra; Do, Kim-Anh; Garcia-Manero, Guillermo; Cortes, Jorge; Thomas, Deborah; Koller, Charles A.; Burger, Jan A.; Lerner, Susan; Schlette, Ellen; Abruzzo, Lynne; Kantarjian, Hagop M.; Keating, Michael J.

    2011-01-01

    Purpose The clinical course for patients with chronic lymphocytic leukemia (CLL) is diverse; some patients have indolent disease, never needing treatment, whereas others have aggressive disease requiring early treatment. We continue to use criteria for active disease to initiate therapy. Multivariable analysis was performed to identify prognostic factors independently associated with time to first treatment for patients with CLL. Patients and Methods Traditional laboratory, clinical prognostic, and newer prognostic factors such as fluorescent in situ hybridization (FISH), IGHV mutation status, and ZAP-70 expression evaluated at first patient visit to MD Anderson Cancer Center were correlated by multivariable analysis with time to first treatment. This multivariable model was used to develop a nomogram—a weighted tool to calculate 2- and 4-year probability of treatment and estimate median time to first treatment. Results There were 930 previously untreated patients who had traditional and new prognostic factors evaluated; they did not have active CLL requiring initiation of treatment within 3 months of first visit and were observed for time to first treatment. The following were independently associated with shorter time to first treatment: three involved lymph node sites, increased size of cervical lymph nodes, presence of 17p deletion or 11q deletion by FISH, increased serum lactate dehydrogenase, and unmutated IGHV mutation status. Conclusion We developed a multivariable model that incorporates traditional and newer prognostic factors to identify patients at high risk for progression to treatment. This model may be useful to identify patients for early interventional trials. PMID:21969505

  9. Copula based flexible modeling of associations between clustered event times.

    PubMed

    Geerdens, Candida; Claeskens, Gerda; Janssen, Paul

    2016-07-01

    Multivariate survival data are characterized by the presence of correlation between event times within the same cluster. First, we build multi-dimensional copulas with flexible and possibly symmetric dependence structures for such data. In particular, clustered right-censored survival data are modeled using mixtures of max-infinitely divisible bivariate copulas. Second, these copulas are fit by a likelihood approach where the vast amount of copula derivatives present in the likelihood is approximated by finite differences. Third, we formulate conditions for clustered right-censored survival data under which an information criterion for model selection is either weakly consistent or consistent. Several of the familiar selection criteria are included. A set of four-dimensional data on time-to-mastitis is used to demonstrate the developed methodology. PMID:26210669

  10. Arbitrary eigenvalue assignments for linear time-varying multivariable control systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.

    1987-01-01

    The problem of eigenvalue assignments for a class of linear time-varying multivariable systems is considered. Using matrix operators and canonical transformations, it is shown that a time-varying system that is 'lexicography-fixedly controllable' can be made via state feedback to be equivalent to a time-invariant system whose eigenvalues are arbitrarily assignable. A simple algorithm for the design of the state feedback is provided.

  11. Extracting tidal frequencies using multivariate harmonic analysis of sea level height time series

    NASA Astrophysics Data System (ADS)

    Amiri-Simkooei, A. R.; Zaminpardaz, S.; Sharifi, M. A.

    2014-10-01

    This contribution is seen as a first attempt to extract the tidal frequencies using a multivariate spectral analysis method applied to multiple time series of tide-gauge records. The existing methods are either physics-based in which the ephemeris of Moon, Sun and other planets are used, or are observation-based in which univariate analysis methods—Fourier and wavelet for instance—are applied to tidal observations. The existence of many long tide-gauge records around the world allows one to use tidal observations and extract the main tidal constituents for which efficient multivariate methods are to be developed. This contribution applies the multivariate least-squares harmonic estimation (LS-HE) to the tidal time series of the UK tide-gauge stations. The first 413 harmonics of the tidal constituents and their nonlinear components are provided using the multivariate LS-HE. A few observations of the research are highlighted: (1) the multivariate analysis takes information of multiple time series into account in an optimal least- squares sense, and thus the tidal frequencies have higher detection power compared to the univariate analysis. (2) Dominant tidal frequencies range from the long-term signals to the sixth-diurnal species interval. Higher frequencies have negligible effects. (3) The most important tidal constituents (the first 50 frequencies) ordered from their amplitudes range from 212 cm (M2) to 1 cm (OQ2) for the data set considered. There are signals in this list that are not available in the 145 main tidal frequencies of the literature. (4) Tide predictions using different lists of tidal frequencies on five different data sets around the world are compared. The prediction results using the first significant 50 constituents provided promising results on these locations of the world.

  12. Multivariate time series modeling of short-term system scale irrigation demand

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; George, Biju; Nawarathna, Bandara

    2015-12-01

    Travel time limits the ability of irrigation system operators to react to short-term irrigation demand fluctuations that result from variations in weather, including very hot periods and rainfall events, as well as the various other pressures and opportunities that farmers face. Short-term system-wide irrigation demand forecasts can assist in system operation. Here we developed a multivariate time series (ARMAX) model to forecast irrigation demands with respect to aggregated service points flows (IDCGi, ASP) and off take regulator flows (IDCGi, OTR) based across 5 command areas, which included area covered under four irrigation channels and the study area. These command area specific ARMAX models forecast 1-5 days ahead daily IDCGi, ASP and IDCGi, OTR using the real time flow data recorded at the service points and the uppermost regulators and observed meteorological data collected from automatic weather stations. The model efficiency and the predictive performance were quantified using the root mean squared error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), anomaly correlation coefficient (ACC) and mean square skill score (MSSS). During the evaluation period, NSE for IDCGi, ASP and IDCGi, OTR across 5 command areas were ranged 0.98-0.78. These models were capable of generating skillful forecasts (MSSS ⩾ 0.5 and ACC ⩾ 0.6) of IDCGi, ASP and IDCGi, OTR for all 5 lead days and IDCGi, ASP and IDCGi, OTR forecasts were better than using the long term monthly mean irrigation demand. Overall these predictive performance from the ARMAX time series models were higher than almost all the previous studies we are aware. Further, IDCGi, ASP and IDCGi, OTR forecasts have improved the operators' ability to react for near future irrigation demand fluctuations as the developed ARMAX time series models were self-adaptive to reflect the short-term changes in the irrigation demand with respect to various pressures and opportunities that farmers' face, such as

  13. A discrete-time Multiple Event Process Survival Mixture (MEPSUM) model.

    PubMed

    Dean, Danielle O; Bauer, Daniel J; Shanahan, Michael J

    2014-06-01

    Traditional survival analysis was developed to investigate the occurrence and timing of a single event, but researchers have recently begun to ask questions about the order and timing of multiple events. A multiple event process survival mixture model is developed here to analyze nonrepeatable events measured in discrete-time that may occur at the same point in time. Building on both traditional univariate survival analysis and univariate survival mixture analysis, the model approximates the underlying multivariate distribution of hazard functions via a discrete-point finite mixture in which the mixing components represent prototypical patterns of event occurrence. The model is applied in an empirical analysis concerning transitions to adulthood, where the events under study include parenthood, marriage, beginning full-time work, and obtaining a college degree. Promising opportunities, as well as possible limitations of the model and future directions for research, are discussed. PMID:24079930

  14. Multivariate spatial analysis of a heavy rain event in a densely populated delta city

    NASA Astrophysics Data System (ADS)

    Gaitan, Santiago; ten Veldhuis, Marie-claire; Bruni, Guenda; van de Giesen, Nick

    2014-05-01

    Delta cities account for half of the world's population and host key infrastructure and services for the global economic growth. Due to the characteristic geography of delta areas, these cities face high vulnerability to extreme weather and pluvial flooding risks, that are expected to increase as climate change drives heavier rain events. Besides, delta cities are subjected to fast urban densification processes that progressively make them more vulnerable to pluvial flooding. Delta cities need to be adapted to better cope with this threat. The mechanism leading to damage after heavy rains is not completely understood. For instance, current research has shown that rain intensities and volumes can only partially explain the occurrence and localization of rain-related insurance claims (Spekkers et al., 2013). The goal of this paper is to provide further insights into spatial characteristics of the urban environment that can significantly be linked to pluvial-related flooding impacts. To that end, a study-case has been selected: on October 12 to 14 2013, a heavy rain event triggered pluvial floods in Rotterdam, a densely populated city which is undergoing multiple climate adaptation efforts and is located in the Meuse river Delta. While the average yearly precipitation in this city is around 800 mm, local rain gauge measurements ranged from aprox. 60 to 130 mm just during these three days. More than 600 citizens' telephonic complaints reported impacts related to rainfall. The registry of those complaints, which comprises around 300 calls made to the municipality and another 300 to the fire brigade, was made available for research. Other accessible information about this city includes a series of rainfall measurements with up to 1 min time-step at 7 different locations around the city, ground-based radar rainfall data (1 Km^2 spatial resolution and 5 min time-step), a digital elevation model (50 cm of horizontal resolution), a model of overland-flow paths, cadastral

  15. Applying the multivariate time-rescaling theorem to neural population models

    PubMed Central

    Gerhard, Felipe; Haslinger, Robert; Pipa, Gordon

    2011-01-01

    Statistical models of neural activity are integral to modern neuroscience. Recently, interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov tests based upon the time-rescaling theorem have proven to be useful for evaluating point-process-based statistical models of single-neuron spike trains. Here we discuss the extension of the time-rescaling theorem to the multivariate (neural population) case. We show that even in the presence of strong correlations between spike trains, models which neglect couplings between neurons can be erroneously passed by the univariate time-rescaling test. We present the multivariate version of the time-rescaling theorem, and provide a practical step-by-step procedure for applying it towards testing the sufficiency of neural population models. Using several simple analytically tractable models and also more complex simulated and real data sets, we demonstrate that important features of the population activity can only be detected using the multivariate extension of the test. PMID:21395436

  16. Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing.

    PubMed

    Hess, Jon E; Zendt, Joseph S; Matala, Amanda R; Narum, Shawn R

    2016-05-11

    Migration traits are presumed to be complex and to involve interaction among multiple genes. We used both univariate analyses and a multivariate random forest (RF) machine learning algorithm to conduct association mapping of 15 239 single nucleotide polymorphisms (SNPs) for adult migration-timing phenotype in steelhead (Oncorhynchus mykiss). Our study focused on a model natural population of steelhead that exhibits two distinct migration-timing life histories with high levels of admixture in nature. Neutral divergence was limited between fish exhibiting summer- and winter-run migration owing to high levels of interbreeding, but a univariate mixed linear model found three SNPs from a major effect gene to be significantly associated with migration timing (p < 0.000005) that explained 46% of trait variation. Alignment to the annotated Salmo salar genome provided evidence that all three SNPs localize within a 46 kb region overlapping GREB1-like (an oestrogen target gene) on chromosome Ssa03. Additionally, multivariate analyses with RF identified that these three SNPs plus 15 additional SNPs explained up to 60% of trait variation. These candidate SNPs may provide the ability to predict adult migration timing of steelhead to facilitate conservation management of this species, and this study demonstrates the benefit of multivariate analyses for association studies. PMID:27170720

  17. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    NASA Astrophysics Data System (ADS)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be

  18. Supporting the Process of Exploring and Interpreting Space–Time Multivariate Patterns: The Visual Inquiry Toolkit

    PubMed Central

    Chen, Jin; MacEachren, Alan M.; Guo, Diansheng

    2009-01-01

    While many data sets carry geographic and temporal references, our ability to analyze these datasets lags behind our ability to collect them because of the challenges posed by both data complexity and tool scalability issues. This study develops a visual analytics approach that leverages human expertise with visual, computational, and cartographic methods to support the application of visual analytics to relatively large spatio-temporal, multivariate data sets. We develop and apply a variety of methods for data clustering, pattern searching, information visualization, and synthesis. By combining both human and machine strengths, this approach has a better chance to discover novel, relevant, and potentially useful information that is difficult to detect by any of the methods used in isolation. We demonstrate the effectiveness of the approach by applying the Visual Inquiry Toolkit we developed to analyze a data set containing geographically referenced, time-varying and multivariate data for U.S. technology industries. PMID:19960096

  19. Constructing networks from a dynamical system perspective for multivariate nonlinear time series

    NASA Astrophysics Data System (ADS)

    Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael

    2016-03-01

    We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.

  20. A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP)

    PubMed Central

    Guo, Diansheng; Chen, Jin; MacEachren, Alan M.; Liao, Ke

    2011-01-01

    The research reported here integrates computational, visual, and cartographic methods to develop a geovisual analytic approach for exploring and understanding spatio-temporal and multivariate patterns. The developed methodology and tools can help analysts investigate complex patterns across multivariate, spatial, and temporal dimensions via clustering, sorting, and visualization. Specifically, the approach involves a self-organizing map, a parallel coordinate plot, several forms of reorderable matrices (including several ordering methods), a geographic small multiple display, and a 2-dimensional cartographic color design method. The coupling among these methods leverages their independent strengths and facilitates a visual exploration of patterns that are difficult to discover otherwise. The visualization system we developed supports overview of complex patterns and, through a variety of interactions, enables users to focus on specific patterns and examine detailed views. We demonstrate the system with an application to the IEEE InfoVis 2005 Contest data set, which contains time-varying, geographically referenced, and multivariate data for technology companies in the US. PMID:17073369

  1. A multivariate based event detection method and performance comparison with two baseline methods.

    PubMed

    Liu, Shuming; Smith, Kate; Che, Han

    2015-09-01

    Early warning systems have been widely deployed to protect water systems from accidental and intentional contamination events. Conventional detection algorithms are often criticized for having high false positive rates and low true positive rates. This mainly stems from the inability of these methods to determine whether variation in sensor measurements is caused by equipment noise or the presence of contamination. This paper presents a new detection method that identifies the existence of contamination by comparing Euclidean distances of correlation indicators, which are derived from the correlation coefficients of multiple water quality sensors. The performance of the proposed method was evaluated using data from a contaminant injection experiment and compared with two baseline detection methods. The results show that the proposed method can differentiate between fluctuations caused by equipment noise and those due to the presence of contamination. It yielded higher possibility of detection and a lower false alarm rate than the two baseline methods. With optimized parameter values, the proposed method can correctly detect 95% of all contamination events with a 2% false alarm rate. PMID:25996758

  2. A pairwise likelihood-based approach for changepoint detection in multivariate time series models

    PubMed Central

    Ma, Ting Fung; Yau, Chun Yip

    2016-01-01

    This paper develops a composite likelihood-based approach for multiple changepoint estimation in multivariate time series. We derive a criterion based on pairwise likelihood and minimum description length for estimating the number and locations of changepoints and for performing model selection in each segment. The number and locations of the changepoints can be consistently estimated under mild conditions and the computation can be conducted efficiently with a pruned dynamic programming algorithm. Simulation studies and real data examples demonstrate the statistical and computational efficiency of the proposed method. PMID:27279666

  3. Multivariable time series prediction for the icing process on overhead power transmission line.

    PubMed

    Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling

    2014-01-01

    The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653

  4. Multivariable Time Series Prediction for the Icing Process on Overhead Power Transmission Line

    PubMed Central

    Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling

    2014-01-01

    The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653

  5. A Multivariate Statistical Approach based on a Dynamic Moving Storms (DMS) Generator for Estimating the Frequency of Extreme Storm Events

    NASA Astrophysics Data System (ADS)

    Fang, N. Z.; Gao, S.

    2015-12-01

    Challenges of fully considering the complexity among spatially and temporally varied rainfall always exist in flood frequency analysis. Conventional approaches that simplify the complexity of spatiotemporal interactions generally undermine their impacts on flood risks. A previously developed stochastic storm generator called Dynamic Moving Storms (DMS) aims to address the highly-dependent nature of precipitation field: spatial variability, temporal variability, and movement of the storm. The authors utilize a multivariate statistical approach based on DMS to estimate the occurrence probability or frequency of extreme storm events. Fifteen years of radar rainfall data is used to generate a large number of synthetic storms as basis for statistical assessment. Two parametric retrieval algorithms are developed to recognize rain cells and track storm motions respectively. The resulted parameters are then used to establish probability density functions (PDFs), which are fitted to parametric distribution functions for further Monte Carlo simulations. Consequently, over 1,000,000 synthetic storms are generated based on twelve retrieved parameters for integrated risk assessment and ensemble forecasts. Furthermore, PDFs for parameters are used to calculate joint probabilities based on 2-dimensional Archimedean-Copula functions to determine the occurrence probabilities of extreme events. The approach is validated on the Upper Trinity River watershed and the generated results are compared with those from traditional rainfall frequency studies (i.e. Intensity-Duration-Frequency curves, and Areal Reduction Factors).

  6. Uniform approach to linear and nonlinear interrelation patterns in multivariate time series

    NASA Astrophysics Data System (ADS)

    Rummel, Christian; Abela, Eugenio; Müller, Markus; Hauf, Martinus; Scheidegger, Olivier; Wiest, Roland; Schindler, Kaspar

    2011-06-01

    Currently, a variety of linear and nonlinear measures is in use to investigate spatiotemporal interrelation patterns of multivariate time series. Whereas the former are by definition insensitive to nonlinear effects, the latter detect both nonlinear and linear interrelation. In the present contribution we employ a uniform surrogate-based approach, which is capable of disentangling interrelations that significantly exceed random effects and interrelations that significantly exceed linear correlation. The bivariate version of the proposed framework is explored using a simple model allowing for separate tuning of coupling and nonlinearity of interrelation. To demonstrate applicability of the approach to multivariate real-world time series we investigate resting state functional magnetic resonance imaging (rsfMRI) data of two healthy subjects as well as intracranial electroencephalograms (iEEG) of two epilepsy patients with focal onset seizures. The main findings are that for our rsfMRI data interrelations can be described by linear cross-correlation. Rejection of the null hypothesis of linear iEEG interrelation occurs predominantly for epileptogenic tissue as well as during epileptic seizures.

  7. Investigation of time and weather effects on crash types using full Bayesian multivariate Poisson lognormal models.

    PubMed

    El-Basyouny, Karim; Barua, Sudip; Islam, Md Tazul

    2014-12-01

    Previous research shows that various weather elements have significant effects on crash occurrence and risk; however, little is known about how these elements affect different crash types. Consequently, this study investigates the impact of weather elements and sudden extreme snow or rain weather changes on crash type. Multivariate models were used for seven crash types using five years of daily weather and crash data collected for the entire City of Edmonton. In addition, the yearly trend and random variation of parameters across the years were analyzed by using four different modeling formulations. The proposed models were estimated in a full Bayesian context via Markov Chain Monte Carlo simulation. The multivariate Poisson lognormal model with yearly varying coefficients provided the best fit for the data according to Deviance Information Criteria. Overall, results showed that temperature and snowfall were statistically significant with intuitive signs (crashes decrease with increasing temperature; crashes increase as snowfall intensity increases) for all crash types, while rainfall was mostly insignificant. Previous snow showed mixed results, being statistically significant and positively related to certain crash types, while negatively related or insignificant in other cases. Maximum wind gust speed was found mostly insignificant with a few exceptions that were positively related to crash type. Major snow or rain events following a dry weather condition were highly significant and positively related to three crash types: Follow-Too-Close, Stop-Sign-Violation, and Ran-Off-Road crashes. The day-of-the-week dummy variables were statistically significant, indicating a possible weekly variation in exposure. Transportation authorities might use the above results to improve road safety by providing drivers with information regarding the risk of certain crash types for a particular weather condition. PMID:25190632

  8. Ecological prediction with nonlinear multivariate time-frequency functional data models

    USGS Publications Warehouse

    Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.

    2013-01-01

    Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.

  9. Multi-variate models are essential for understanding vertebrate diversification in deep time

    PubMed Central

    Benson, Roger B. J.; Mannion, Philip D.

    2012-01-01

    Statistical models are helping palaeontologists to elucidate the history of biodiversity. Sampling standardization has been extensively applied to remedy the effects of uneven sampling in large datasets of fossil invertebrates. However, many vertebrate datasets are smaller, and the issue of uneven sampling has commonly been ignored, or approached using pairwise comparisons with a numerical proxy for sampling effort. Although most authors find a strong correlation between palaeodiversity and sampling proxies, weak correlation is recorded in some datasets. This has led several authors to conclude that uneven sampling does not influence our view of vertebrate macroevolution. We demonstrate that multi-variate regression models incorporating a model of underlying biological diversification, as well as a sampling proxy, fit observed sauropodomorph dinosaur palaeodiversity best. This bivariate model is a better fit than separate univariate models, and illustrates that observed palaeodiversity is a composite pattern, representing a biological signal overprinted by variation in sampling effort. Multi-variate models and other approaches that consider sampling as an essential component of palaeodiversity are central to gaining a more complete understanding of deep time vertebrate diversification. PMID:21697163

  10. Determining mixed linear-nonlinear coupled differential equations from multivariate discrete time series sequences

    NASA Astrophysics Data System (ADS)

    Irving, A. D.; Dewson, T.

    1997-02-01

    A new method is described for extracting mixed linear-nonlinear coupled differential equations from multivariate discrete time series data. It is assumed in the present work that the solution of the coupled ordinary differential equations can be represented as a multivariate Volterra functional expansion. A tractable hierarchy of moment equations is generated by operating on a suitably truncated Volterra functional expansion. The hierarchy facilitates the calculation of the coefficients of the coupled differential equations. In order to demonstrate the method's ability to accurately estimate the coefficients of the governing differential equations, it is applied to data derived from the numerical solution of the Lorenz equations with additive noise. The method is then used to construct a dynamic global mid- and high-magnetic latitude ionospheric model where nonlinear phenomena such as period doubling and quenching occur. It is shown that the estimated inhomogeneous coupled second-order differential equation model for the ionospheric foF2 peak plasma density can accurately forecast the future behaviour of a set of ionosonde stations which encompass the earth. Finally, the method is used to forecast the future behaviour of a portfolio of Japanese common stock prices. The hierarchy method can be used to characterise the observed behaviour of a wide class of coupled linear and mixed linear-nonlinear phenomena.

  11. Reconstructing causal pathways and optimal prediction from multivariate time series using the Tigramite package

    NASA Astrophysics Data System (ADS)

    Runge, Jakob

    2016-04-01

    Causal reconstruction techniques from multivariate time series have become a popular approach to analyze interactions in complex systems such as the Earth. These approaches allow to exclude effects of common drivers and indirect influences. Practical applications are, however, especially challenging if nonlinear interactions are taken into account and for typically strongly autocorrelated climate time series. Here we discuss a new reconstruction approach with accompanying software package (Tigramite) and focus on two applications: (1) Information or perturbation transfer along causal pathways. This method allows to detect and quantify which intermediate nodes are important mediators of an interaction mechanism and is illustrated to disentangle pathways of atmospheric flow over Europe and for the ENSO - Indian Monsoon interaction mechanism. (2) A nonlinear model-free prediction technique that efficiently utilizes causal drivers and can be shown to yield information-theoretically optimal predictors avoiding over-fitting. The performance of this framework is illustrated on a climatological index of El Nino Southern Oscillation. References: Runge, J. (2015). Quantifying information transfer and mediation along causal pathways in complex systems. Phys. Rev. E, 92(6), 062829. doi:10.1103/PhysRevE.92.062829 Runge, J., Donner, R. V., & Kurths, J. (2015). Optimal model-free prediction from multivariate time series. Phys. Rev. E, 91(5), 052909. doi:10.1103/PhysRevE.91.052909 Runge, J., Petoukhov, V., Donges, J. F., Hlinka, J., Jajcay, N., Vejmelka, M., … Kurths, J. (2015). Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications, 6, 8502. doi:10.1038/ncomms9502

  12. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.

    2016-03-01

    A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.

  13. Multivariate Analyses of Small Theropod Dinosaur Teeth and Implications for Paleoecological Turnover through Time

    PubMed Central

    Larson, Derek W.; Currie, Philip J.

    2013-01-01

    Isolated small theropod teeth are abundant in vertebrate microfossil assemblages, and are frequently used in studies of species diversity in ancient ecosystems. However, determining the taxonomic affinities of these teeth is problematic due to an absence of associated diagnostic skeletal material. Species such as Dromaeosaurus albertensis, Richardoestesia gilmorei, and Saurornitholestes langstoni are known from skeletal remains that have been recovered exclusively from the Dinosaur Park Formation (Campanian). It is therefore likely that teeth from different formations widely disparate in age or geographic position are not referable to these species. Tooth taxa without any associated skeletal material, such as Paronychodon lacustris and Richardoestesia isosceles, have also been identified from multiple localities of disparate ages throughout the Late Cretaceous. To address this problem, a dataset of measurements of 1183 small theropod teeth (the most specimen-rich theropod tooth dataset ever constructed) from North America ranging in age from Santonian through Maastrichtian were analyzed using multivariate statistical methods: canonical variate analysis, pairwise discriminant function analysis, and multivariate analysis of variance. The results indicate that teeth referred to the same taxon from different formations are often quantitatively distinct. In contrast, isolated teeth found in time equivalent formations are not quantitatively distinguishable from each other. These results support the hypothesis that small theropod taxa, like other dinosaurs in the Late Cretaceous, tend to be exclusive to discrete host formations. The methods outlined have great potential for future studies of isolated teeth worldwide, and may be the most useful non-destructive technique known of extracting the most data possible from isolated and fragmentary specimens. The ability to accurately assess species diversity and turnover through time based on isolated teeth will help illuminate

  14. Nonparametric estimation of the survival function for ordered multivariate failure time data: A comparative study.

    PubMed

    Meira-Machado, Luís; Sestelo, Marta; Gonçalves, Andreia

    2016-05-01

    In longitudinal studies of disease, patients may experience several events through a follow-up period. In these studies, the sequentially ordered events are often of interest and lead to problems that have received much attention recently. Issues of interest include the estimation of bivariate survival, marginal distributions, and the conditional distribution of gap times. In this work, we consider the estimation of the survival function conditional to a previous event. Different nonparametric approaches will be considered for estimating these quantities, all based on the Kaplan-Meier estimator of the survival function. We explore the finite sample behavior of the estimators through simulations. The different methods proposed in this article are applied to a dataset from a German Breast Cancer Study. The methods are used to obtain predictors for the conditional survival probabilities as well as to study the influence of recurrence in overall survival. PMID:26455826

  15. A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2015-01-01

    Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS’s hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs’ spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets. PMID:25905027

  16. Circuit for measuring time differences among events

    DOEpatents

    Romrell, Delwin M.

    1977-01-01

    An electronic circuit has a plurality of input terminals. Application of a first input signal to any one of the terminals initiates a timing sequence. Later inputs to the same terminal are ignored but a later input to any other terminal of the plurality generates a signal which can be used to measure the time difference between the later input and the first input signal. Also, such time differences may be measured between the first input signal and an input signal to any other terminal of the plurality or the circuit may be reset at any time by an external reset signal.

  17. Bicomponent Trend Maps: A Multivariate Approach to Visualizing Geographic Time Series

    PubMed Central

    Schroeder, Jonathan P.

    2012-01-01

    The most straightforward approaches to temporal mapping cannot effectively illustrate all potentially significant aspects of spatio-temporal patterns across many regions and times. This paper introduces an alternative approach, bicomponent trend mapping, which employs a combination of principal component analysis and bivariate choropleth mapping to illustrate two distinct dimensions of long-term trend variations. The approach also employs a bicomponent trend matrix, a graphic that illustrates an array of typical trend types corresponding to different combinations of scores on two principal components. This matrix is useful not only as a legend for bicomponent trend maps but also as a general means of visualizing principal components. To demonstrate and assess the new approach, the paper focuses on the task of illustrating population trends from 1950 to 2000 in census tracts throughout major U.S. urban cores. In a single static display, bicomponent trend mapping is not able to depict as wide a variety of trend properties as some other multivariate mapping approaches, but it can make relationships among trend classes easier to interpret, and it offers some unique flexibility in classification that could be particularly useful in an interactive data exploration environment. PMID:23504193

  18. Young Children's Memory for the Times of Personal Past Events

    PubMed Central

    Pathman, Thanujeni; Larkina, Marina; Burch, Melissa; Bauer, Patricia J.

    2012-01-01

    Remembering the temporal information associated with personal past events is critical for autobiographical memory, yet we know relatively little about the development of this capacity. In the present research, we investigated temporal memory for naturally occurring personal events in 4-, 6-, and 8-year-old children. Parents recorded unique events in which their children participated during a 4-month period. At test, children made relative recency judgments and estimated the time of each event using conventional time-scales (time of day, day of week, month of year, and season). Children also were asked to provide justifications for their time-scale judgments. Six- and 8-year-olds, but not 4-year-olds, accurately judged the order of two distinct events. There were age-related improvements in children's estimation of the time of events using conventional time-scales. Older children provided more justifications for their time-scale judgments compared to younger children. Relations between correct responding on the time-scale judgments and provision of meaningful justifications suggest that children may use that information to reconstruct the times associated with past events. The findings can be used to chart a developmental trajectory of performance in temporal memory for personal past events, and have implications for our understanding of autobiographical memory development. PMID:23687467

  19. Detection of flood events in hydrological discharge time series

    NASA Astrophysics Data System (ADS)

    Seibert, S. P.; Ehret, U.

    2012-04-01

    The shortcomings of mean-squared-error (MSE) based distance metrics are well known (Beran 1999, Schaeffli & Gupta 2007) and the development of novel distance metrics (Pappenberger & Beven 2004, Ehret & Zehe 2011) and multi-criteria-approaches enjoy increasing popularity (Reusser 2009, Gupta et al. 2009). Nevertheless, the hydrological community still lacks metrics which identify and thus, allow signature based evaluations of hydrological discharge time series. Signature based information/evaluations are required wherever specific time series features, such as flood events, are of special concern. Calculation of event based runoff coefficients or precise knowledge on flood event characteristics (like onset or duration of rising limp or the volume of falling limp, etc.) are possible applications. The same applies for flood forecasting/simulation models. Directly comparing simulated and observed flood event features may reveal thorough insights into model dynamics. Compared to continuous space-and-time-aggregated distance metrics, event based evaluations may provide answers like the distributions of event characteristics or the percentage of the events which were actually reproduced by a hydrological model. It also may help to provide information on the simulation accuracy of small, medium and/or large events in terms of timing and magnitude. However, the number of approaches which expose time series features is small and their usage is limited to very specific questions (Merz & Blöschl 2009, Norbiato et al. 2009). We believe this is due to the following reasons: i) a generally accepted definition of the signature of interest is missing or difficult to obtain (in our case: what makes a flood event a flood event?) and/or ii) it is difficult to translate such a definition into a equation or (graphical) procedure which exposes the feature of interest in the discharge time series. We reviewed approaches which detect event starts and/or ends in hydrological discharge time

  20. ETARA - EVENT TIME AVAILABILITY, RELIABILITY ANALYSIS

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1994-01-01

    The ETARA system was written to evaluate the performance of the Space Station Freedom Electrical Power System, but the methodology and software can be modified to simulate any system that can be represented by a block diagram. ETARA is an interactive, menu-driven reliability, availability, and maintainability (RAM) simulation program. Given a Reliability Block Diagram representation of a system, the program simulates the behavior of the system over a specified period of time using Monte Carlo methods to generate block failure and repair times as a function of exponential and/or Weibull distributions. ETARA can calculate availability parameters such as equivalent availability, state availability (percentage of time at a particular output state capability), continuous state duration and number of state occurrences. The program can simulate initial spares allotment and spares replenishment for a resupply cycle. The number of block failures are tabulated both individually and by block type. ETARA also records total downtime, repair time, and time waiting for spares. Maintenance man-hours per year and system reliability, with or without repair, at or above a particular output capability can also be calculated. The key to using ETARA is the development of a reliability or availability block diagram. The block diagram is a logical graphical illustration depicting the block configuration necessary for a function to be successfully accomplished. Each block can represent a component, a subsystem, or a system. The function attributed to each block is considered for modeling purposes to be either available or unavailable; there are no degraded modes of block performance. A block does not have to represent physically connected hardware in the actual system to be connected in the block diagram. The block needs only to have a role in contributing to an available system function. ETARA can model the RAM characteristics of systems represented by multilayered, nesting block diagrams

  1. Balance characteristics of multivariate background error covariance for rainy and dry seasons and their impact on precipitation forecasts of two rainfall events

    NASA Astrophysics Data System (ADS)

    Chen, Yaodeng; Xia, Xue; Min, Jinzhong; Huang, Xiang-Yu; Rizvi, Syed R. H.

    2016-02-01

    Atmospheric moisture content or humidity is an important analysis variable of any meteorological data assimilation system. The humidity analysis can be univariate, using humidity background (normally short-range numerical forecasts) and humidity observations. However, more and more data assimilation systems are multivariate, analyzing humidity together with wind, temperature and pressure. Background error covariances, with unbalanced velocity potential and humidity in the multivariate formulation, are generated from weather research and forecasting model forecasts, collected over a summer rainy season and a winter dry season. The unbalanced velocity potential and humidity related correlations are shown to be significantly larger, indicating more important roles unbalanced velocity potential and humidity play, in the rainy season than that in the dry season. Three cycling data assimilation experiments of two rainfall events in the middle and lower reaches of the Yangtze River are carried out. The experiments differ in the formulation of the background error covariances. Results indicate that only including unbalanced velocity potential in the multivariate background error covariance improves wind analyses, but has little impact on temperature and humidity analyses. In contrast, further including humidity in the multivariate background error covariance although has a slight negative effect on wind analyses and a neutral effect on temperature analyses, but significantly improves humidity analyses, leading to precipitation forecasts more consistent with China Hourly Merged Precipitation Analysis.

  2. Dynamic Modelling and Statistical Analysis of Event Times

    PubMed Central

    Peña, Edsel A.

    2006-01-01

    This review article provides an overview of recent work in the modelling and analysis of recurrent events arising in engineering, reliability, public health, biomedical, and other areas. Recurrent event modelling possesses unique facets making it different and more difficult to handle than single event settings. For instance, the impact of an increasing number of event occurrences needs to be taken into account, the effects of covariates should be considered, potential association among the inter-event times within a unit cannot be ignored, and the effects of performed interventions after each event occurrence need to be factored in. A recent general class of models for recurrent events which simultaneously accommodates these aspects is described. Statistical inference methods for this class of models are presented and illustrated through applications to real data sets. Some existing open research problems are described. PMID:17906740

  3. Nuclear event zero-time calculation and uncertainty evaluation.

    PubMed

    Pan, Pujing; Ungar, R Kurt

    2012-04-01

    It is important to know the initial time, or zero-time, of a nuclear event such as a nuclear weapon's test, a nuclear power plant accident or a nuclear terrorist attack (e.g. with an improvised nuclear device, IND). Together with relevant meteorological information, the calculated zero-time is used to help locate the origin of a nuclear event. The zero-time of a nuclear event can be derived from measured activity ratios of two nuclides. The calculated zero-time of a nuclear event would not be complete without an appropriately evaluated uncertainty term. In this paper, analytical equations for zero-time and the associated uncertainty calculations are derived using a measured activity ratio of two nuclides. Application of the derived equations is illustrated in a realistic example using data from the last Chinese thermonuclear test in 1980. PMID:22305002

  4. Family Events and the Timing of Intergenerational Transfers

    ERIC Educational Resources Information Center

    Leopold, Thomas; Schneider, Thorsten

    2011-01-01

    This research investigates how family events in adult children's lives influence the timing of their parents' financial transfers. We draw on retrospective data collected by the German Socio-Economic Panel Study and use event history models to study the effects of marriage, divorce and childbirth on the receipt of large gifts from parents. We find…

  5. Sensor-Generated Time Series Events: A Definition Language

    PubMed Central

    Anguera, Aurea; Lara, Juan A.; Lizcano, David; Martínez, Maria Aurora; Pazos, Juan

    2012-01-01

    There are now a great many domains where information is recorded by sensors over a limited time period or on a permanent basis. This data flow leads to sequences of data known as time series. In many domains, like seismography or medicine, time series analysis focuses on particular regions of interest, known as events, whereas the remainder of the time series contains hardly any useful information. In these domains, there is a need for mechanisms to identify and locate such events. In this paper, we propose an events definition language that is general enough to be used to easily and naturally define events in time series recorded by sensors in any domain. The proposed language has been applied to the definition of time series events generated within the branch of medicine dealing with balance-related functions in human beings. A device, called posturograph, is used to study balance-related functions. The platform has four sensors that record the pressure intensity being exerted on the platform, generating four interrelated time series. As opposed to the existing ad hoc proposals, the results confirm that the proposed language is valid, that is generally applicable and accurate, for identifying the events contained in the time series.

  6. Real-time measurements, rare events and photon economics

    NASA Astrophysics Data System (ADS)

    Jalali, B.; Solli, D. R.; Goda, K.; Tsia, K.; Ropers, C.

    2010-07-01

    Rogue events otherwise known as outliers and black swans are singular, rare, events that carry dramatic impact. They appear in seemingly unconnected systems in the form of oceanic rogue waves, stock market crashes, evolution, and communication systems. Attempts to understand the underlying dynamics of such complex systems that lead to spectacular and often cataclysmic outcomes have been frustrated by the scarcity of events, resulting in insufficient statistical data, and by the inability to perform experiments under controlled conditions. Extreme rare events also occur in ultrafast physical sciences where it is possible to collect large data sets, even for rare events, in a short time period. The knowledge gained from observing rare events in ultrafast systems may provide valuable insight into extreme value phenomena that occur over a much slower timescale and that have a closer connection with human experience. One solution is a real-time ultrafast instrument that is capable of capturing singular and randomly occurring non-repetitive events. The time stretch technology developed during the past 13 years is providing a powerful tool box for reaching this goal. This paper reviews this technology and discusses its use in capturing rogue events in electronic signals, spectroscopy, and imaging. We show an example in nonlinear optics where it was possible to capture rare and random solitons whose unusual statistical distribution resemble those observed in financial markets. The ability to observe the true spectrum of each event in real time has led to important insight in understanding the underlying process, which in turn has made it possible to control soliton generation leading to improvement in the coherence of supercontinuum light. We also show a new class of fast imagers which are being considered for early detection of cancer because of their potential ability to detect rare diseased cells (so called rogue cells) in a large population of healthy cells.

  7. Moving Events in Time: Time-Referent Hand-Arm Movements Influence Perceived Temporal Distance to Past Events

    ERIC Educational Resources Information Center

    Blom, Stephanie S. A. H.; Semin, Gun R.

    2013-01-01

    We examine and find support for the hypothesis that time-referent hand-arm movements influence temporal judgments. In line with the concept of "left is associated with earlier times, and right is associated with later times," we show that performing left (right) hand-arm movements while thinking about a past event increases (decreases) the…

  8. Visualization-by-Sketching: An Artist's Interface for Creating Multivariate Time-Varying Data Visualizations.

    PubMed

    Schroeder, David; Keefe, Daniel F

    2016-01-01

    We present Visualization-by-Sketching, a direct-manipulation user interface for designing new data visualizations. The goals are twofold: First, make the process of creating real, animated, data-driven visualizations of complex information more accessible to artists, graphic designers, and other visual experts with traditional, non-technical training. Second, support and enhance the role of human creativity in visualization design, enabling visual experimentation and workflows similar to what is possible with traditional artistic media. The approach is to conceive of visualization design as a combination of processes that are already closely linked with visual creativity: sketching, digital painting, image editing, and reacting to exemplars. Rather than studying and tweaking low-level algorithms and their parameters, designers create new visualizations by painting directly on top of a digital data canvas, sketching data glyphs, and arranging and blending together multiple layers of animated 2D graphics. This requires new algorithms and techniques to interpret painterly user input relative to data "under" the canvas, balance artistic freedom with the need to produce accurate data visualizations, and interactively explore large (e.g., terabyte-sized) multivariate datasets. Results demonstrate a variety of multivariate data visualization techniques can be rapidly recreated using the interface. More importantly, results and feedback from artists support the potential for interfaces in this style to attract new, creative users to the challenging task of designing more effective data visualizations and to help these users stay "in the creative zone" as they work. PMID:26529734

  9. Effects of alcohol intake on time-based event expectations.

    PubMed

    Kunchulia, Marina; Thomaschke, Roland

    2016-04-01

    Previous evidence suggests that alcohol affects various forms of temporal cognition. However, there are presently no studies investigating whether and how alcohol affects on time-based event expectations. Here, we investigated the effects of alcohol on time-based event expectations. Seventeen healthy volunteers, aged between 19 and 36 years, participated. We employed a variable foreperiod paradigm with temporally predictable events, mimicking a computer game. Error rate and reaction time were analyzed in placebo (0 g/kg), low dose (0.2 g/kg) and high dose (0.6 g/kg) conditions. We found that alcohol intake did not eliminate, but substantially reduced, the formation of time-based expectancy. This effect was stronger for high doses, than for low doses, of alcohol. As a result of our studies, we have evidence that alcohol intake impairs time-based event expectations. The mechanism by which the level of alcohol impairs time-based event expectations needs to be clarified by future research. PMID:26680768

  10. Asynchronous visual event-based time-to-contact.

    PubMed

    Clady, Xavier; Clercq, Charles; Ieng, Sio-Hoi; Houseini, Fouzhan; Randazzo, Marco; Natale, Lorenzo; Bartolozzi, Chiara; Benosman, Ryad

    2014-01-01

    Reliable and fast sensing of the environment is a fundamental requirement for autonomous mobile robotic platforms. Unfortunately, the frame-based acquisition paradigm at the basis of main stream artificial perceptive systems is limited by low temporal dynamics and redundant data flow, leading to high computational costs. Hence, conventional sensing and relative computation are obviously incompatible with the design of high speed sensor-based reactive control for mobile applications, that pose strict limits on energy consumption and computational load. This paper introduces a fast obstacle avoidance method based on the output of an asynchronous event-based time encoded imaging sensor. The proposed method relies on an event-based Time To Contact (TTC) computation based on visual event-based motion flows. The approach is event-based in the sense that every incoming event adds to the computation process thus allowing fast avoidance responses. The method is validated indoor on a mobile robot, comparing the event-based TTC with a laser range finder TTC, showing that event-based sensing offers new perspectives for mobile robotics sensing. PMID:24570652

  11. Asynchronous visual event-based time-to-contact

    PubMed Central

    Clady, Xavier; Clercq, Charles; Ieng, Sio-Hoi; Houseini, Fouzhan; Randazzo, Marco; Natale, Lorenzo; Bartolozzi, Chiara; Benosman, Ryad

    2014-01-01

    Reliable and fast sensing of the environment is a fundamental requirement for autonomous mobile robotic platforms. Unfortunately, the frame-based acquisition paradigm at the basis of main stream artificial perceptive systems is limited by low temporal dynamics and redundant data flow, leading to high computational costs. Hence, conventional sensing and relative computation are obviously incompatible with the design of high speed sensor-based reactive control for mobile applications, that pose strict limits on energy consumption and computational load. This paper introduces a fast obstacle avoidance method based on the output of an asynchronous event-based time encoded imaging sensor. The proposed method relies on an event-based Time To Contact (TTC) computation based on visual event-based motion flows. The approach is event-based in the sense that every incoming event adds to the computation process thus allowing fast avoidance responses. The method is validated indoor on a mobile robot, comparing the event-based TTC with a laser range finder TTC, showing that event-based sensing offers new perspectives for mobile robotics sensing. PMID:24570652

  12. Time Separation Between Events in a Sequence: a Regional Property?

    NASA Astrophysics Data System (ADS)

    Muirwood, R.; Fitzenz, D. D.

    2013-12-01

    Earthquake sequences are loosely defined as events occurring too closely in time and space to appear unrelated. Depending on the declustering method, several, all, or no event(s) after the first large event might be recognized as independent mainshocks. It can therefore be argued that a probabilistic seismic hazard assessment (PSHA, traditionally dealing with mainshocks only) might already include the ground shaking effects of such sequences. Alternatively all but the largest event could be classified as an ';aftershock' and removed from the earthquake catalog. While in PSHA the question is only whether to keep or remove the events from the catalog, for Risk Management purposes, the community response to the earthquakes, as well as insurance risk transfer mechanisms, can be profoundly affected by the actual timing of events in such a sequence. In particular the repetition of damaging earthquakes over a period of weeks to months can lead to businesses closing and families evacuating from the region (as happened in Christchurch, New Zealand in 2011). Buildings that are damaged in the first earthquake may go on to be damaged again, even while they are being repaired. Insurance also functions around a set of critical timeframes - including the definition of a single 'event loss' for reinsurance recoveries within the 192 hour ';hours clause', the 6-18 month pace at which insurance claims are settled, and the annual renewal of insurance and reinsurance contracts. We show how temporal aspects of earthquake sequences need to be taken into account within models for Risk Management, and what time separation between events are most sensitive, both in terms of the modeled disruptions to lifelines and business activity as well as in the losses to different parties (such as insureds, insurers and reinsurers). We also explore the time separation between all events and between loss causing events for a collection of sequences from across the world and we point to the need to

  13. Identifying multiple periodicities in sparse photon event time series

    NASA Astrophysics Data System (ADS)

    Koen, Chris

    2016-07-01

    The data considered are event times (e.g. photon arrival times, or the occurrence of sharp pulses). The source is multiperiodic, or the data could be multiperiodic because several unresolved sources contribute to the time series. Most events may be unobserved, either because the source is intermittent, or because some events are below the detection limit. The data may also be contaminated by spurious pulses. The problem considered is the determination of the periods in the data. A two-step procedure is proposed: in the first, a likely period is identified; in the second, events associated with this periodicity are removed from the time series. The steps are repeated until the remaining events do not exhibit any periodicity. A number of period-finding methods from the literature are reviewed, and a new maximum likelihood statistic is also introduced. It is shown that the latter is competitive compared to other techniques. The proposed methodology is tested on simulated data. Observations of two rotating radio transients are discussed, but contrary to claims in the literature, no evidence for multiperiodicity could be found.

  14. Identifying Multiple Periodicities in Sparse Photon Event Time Series

    NASA Astrophysics Data System (ADS)

    Koen, Chris

    2016-04-01

    The data considered are event times (e.g. photon arrival times, or the occurrence of sharp pulses). The source is multiperiodic, or the data could be multiperiodic because several unresolved sources contribute to the time series. Most events may be unobserved, either because the source is intermittent, or because some events are below the detection limit. The data may also be contaminated by spurious pulses. The problem considered is the determination of the periods in the data. A two-step procedure is proposed: in the first, a likely period is identified; in the second, events associated with this periodicity are removed from the time series. The steps are repeated until the remaining events do not exhibit any periodicity. A number of period-finding methods from the literature are reviewed, and a new maximum likelihood statistic is also introduced. It is shown that the latter is competitive compared to other techniques. The proposed methodology is tested on simulated data. Observations of two rotating radio transients are discussed, but contrary to claims in the literature, no evidence for multiperiodicity could be found.

  15. Statistical issues in the analysis of adverse events in time-to-event data.

    PubMed

    Allignol, Arthur; Beyersmann, Jan; Schmoor, Claudia

    2016-07-01

    The aim of this work is to shed some light on common issues in the statistical analysis of adverse events (AEs) in clinical trials, when the main outcome is a time-to-event endpoint. To begin, we show that AEs are always subject to competing risks. That is, the occurrence of a certain AE may be precluded by occurrence of the main time-to-event outcome or by occurrence of another (fatal) AE. This has raised concerns on 'informative' censoring. We show that, in general, neither simple proportions nor Kaplan-Meier estimates of AE occurrence should be used, but common survival techniques for hazards that censor the competing event are still valid, but incomplete analyses. They must be complemented by an analogous analysis of the competing event for inference on the cumulative AE probability. The commonly used incidence rate (or incidence density) is a valid estimator of the AE hazard assuming it to be time constant. An estimator of the cumulative AE probability can be derived if the incidence rate of AE is combined with an estimator of the competing hazard. We discuss less restrictive analyses using non-parametric and semi-parametric approaches. We first consider time-to-first-AE analyses and then briefly discuss how they can be extended to the analysis of recurrent AEs. We will give a practical presentation with illustration of the methods by a simple example. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26929180

  16. A real-time assessment of factors influencing medication events.

    PubMed

    Dollarhide, Adrian W; Rutledge, Thomas; Weinger, Matthew B; Fisher, Erin Stucky; Jain, Sonia; Wolfson, Tanya; Dresselhaus, Timothy R

    2014-01-01

    Reducing medical error is critical to improving the safety and quality of healthcare. Physician stress, fatigue, and excessive workload are performance-shaping factors (PSFs) that may influence medical events (actual administration errors and near misses), but direct relationships between these factors and patient safety have not been clearly defined. This study assessed the real-time influence of emotional stress, workload, and sleep deprivation on self-reported medication events by physicians in academic hospitals. During an 18-month study period, 185 physician participants working at four university-affiliated teaching hospitals reported medication events using a confidential reporting application on handheld computers. Emotional stress scores, perceived workload, patient case volume, clinical experience, total sleep, and demographic variables were also captured via the handheld computers. Medication event reports (n = 11) were then correlated with these demographic and PSFs. Medication events were associated with 36.1% higher perceived workload (p < .05), 38.6% higher inpatient caseloads (p < .01), and 55.9% higher emotional stress scores (p < .01). There was a trend for reported events to also be associated with less sleep (p = .10). These results confirm the effect of factors influencing medication events, and support attention to both provider and hospital environmental characteristics for improving patient safety. PMID:23551380

  17. Events in time: Basic analysis of Poisson data

    SciTech Connect

    Engelhardt, M.E.

    1994-09-01

    The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given.

  18. Deconstructing events: The neural bases for space, time, and causality

    PubMed Central

    Kranjec, Alexander; Cardillo, Eileen R.; Lehet, Matthew; Chatterjee, Anjan

    2013-01-01

    Space, time, and causality provide a natural structure for organizing our experience. These abstract categories allow us to think relationally in the most basic sense; understanding simple events require one to represent the spatial relations among objects, the relative durations of actions or movements, and links between causes and effects. The present fMRI study investigates the extent to which the brain distinguishes between these fundamental conceptual domains. Participants performed a one-back task with three conditions of interest (SPACE, TIME and CAUSALITY). Each condition required comparing relations between events in a simple verbal narrative. Depending on the condition, participants were instructed to either attend to the spatial, temporal, or causal characteristics of events, but between participants, each particular event relation appeared in all three conditions. Contrasts compared neural activity during each condition against the remaining two and revealed how thinking about events is deconstructed neurally. Space trials recruited neural areas traditionally associated with visuospatial processing, primarily bilateral frontal and occipitoparietal networks. Causality trials activated areas previously found to underlie causal thinking and thematic role assignment, such as left medial frontal, and left middle temporal gyri, respectively. Causality trials also produced activations in SMA, caudate, and cerebellum; cortical and subcortical regions associated with the perception of time at different timescales. The TIME contrast however, produced no significant effects. This pattern, indicating negative results for TIME trials, but positive effects for CAUSALITY trials in areas important for time perception, motivated additional overlap analyses to further probe relations between domains. The results of these analyses suggest a closer correspondence between time and causality than between time and space. PMID:21861674

  19. Estimating time-varying effects for overdispersed recurrent events data with treatment switching

    PubMed Central

    CHEN, QINGXIA; ZENG, DONGLIN; IBRAHIM, JOSEPH G.; AKACHA, MOUNA; SCHMIDLI, HEINZ

    2014-01-01

    Summary In the analysis of multivariate event times, frailty models assuming time-independent regression coefficients are often considered, mainly due to their mathematical convenience. In practice, regression coefficients are often time dependent and the temporal effects are of clinical interest. Motivated by a phase III clinical trial in multiple sclerosis, we develop a semiparametric frailty modelling approach to estimate time-varying effects for overdispersed recurrent events data with treatment switching. The proposed model incorporates the treatment switching time in the time-varying coefficients. Theoretical properties of the proposed model are established and an efficient expectation-maximization algorithm is derived to obtain the maximum likelihood estimates. Simulation studies evaluate the numerical performance of the proposed model under various temporal treatment effect curves. The ideas in this paper can also be used for time-varying coefficient frailty models without treatment switching as well as for alternative models when the proportional hazard assumption is violated. A multiple sclerosis dataset is analysed to illustrate our methodology. PMID:24465031

  20. Comparing and Combining Biomarkers as Principle Surrogates for Time-to-Event Clinical Endpoints

    PubMed Central

    Gabriel, Erin E.; Sachs, Michael C.; Gilbert, Peter B.

    2016-01-01

    Principal surrogate endpoints are useful as targets for Phase I and II trials. In many recent trials, multiple post-randomization biomarkers are measured. However, few statistical methods exist for comparison of or combination of biomarkers as principal surrogates and none of these methods to our knowledge utilize time-to-event clinical endpoint information. We propose a Weibull model extension of the semi-parametric estimated maximum likelihood method of Huang and Gilbert [1] that allows for the inclusion of multiple biomarkers in the same risk model as multivariate candidate principal surrogates. We propose several methods for comparing candidate principal surrogates and evaluating multivariate principal surrogates. These include the time-dependent and surrogate-dependent true and false positive fraction, the time-dependent and the integrated standardized total gain and the cumulative distribution function of the risk difference. We illustrate the operating characteristics of our proposed methods in simulations and outline how these statistics can be used to evaluate and compare candidate principal surrogates. We use these methods to investigate candidate surrogates in the Diabetes Control and Complications Trial. PMID:25352131

  1. Absolute GPS Time Event Generation and Capture for Remote Locations

    NASA Astrophysics Data System (ADS)

    HIRES Collaboration

    The HiRes experiment operates fixed location and portable lasers at remote desert locations to generate calibration events. One physics goal of HiRes is to search for unusual showers. These may appear similar to upward or horizontally pointing laser tracks used for atmospheric calibration. It is therefore necessary to remove all of these calibration events from the HiRes detector data stream in a physics blind manner. A robust and convenient "tagging" method is to generate the calibration events at precisely known times. To facilitate this tagging method we have developed the GPSY (Global Positioning System YAG) module. It uses a GPS receiver, an embedded processor and additional timing logic to generate laser triggers at arbitrary programmed times and frequencies with better than 100nS accuracy. The GPSY module has two trigger outputs (one microsecond resolution) to trigger the laser flash-lamp and Q-switch and one event capture input (25nS resolution). The GPSY module can be programmed either by a front panel menu based interface or by a host computer via an RS232 serial interface. The latter also allows for computer logging of generated and captured event times. Details of the design and the implementation of these devices will be presented. 1 Motivation Air Showers represent a small fraction, much less than a percent, of the total High Resolution Fly's Eye data sample. The bulk of the sample is calibration data. Most of this calibration data is generated by two types of systems that use lasers. One type sends light directly to the detectors via optical fibers to monitor detector gains (Girard 2001). The other sends a beam of light into the sky and the scattered light that reaches the detectors is used to monitor atmospheric effects (Wiencke 1998). It is important that these calibration events be cleanly separated from the rest of the sample both to provide a complete set of monitoring information, and more

  2. Reading Times and the Detection of Event Shift Processing

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Copeland, David E.

    2010-01-01

    When people read narratives, they often need to update their situation models as the described events change. Previous research has shown little to no increases in reading times for spatial shifts but consistent increases for temporal shifts. On this basis, researchers have suggested that spatial updating does not regularly occur, whereas temporal…

  3. Conceptualization of Collective Behavior Events in the New York "Times."

    ERIC Educational Resources Information Center

    Blake, Joseph A.; And Others

    1978-01-01

    Reports that most collective behavior events reported in the New York "Times" are described in terms of emotionality and anonymity of membership and are alleged to be violent and spontaneous, and that there are significant rank-order correlations between the reported presence of control agents, reported violence, and attributions of spontaneity.…

  4. Off-Time Events and Life Quality of Older Adults.

    ERIC Educational Resources Information Center

    Goodhart, Darlene; Zautra, Alex

    Many previous studies have found that daily life events influence community residents' perceived quality of life, which refers to the relative goodness of life as evaluated subjectively. A subsample population of 539 older residents, aged 55 and over, were interviewed in their homes. A 60-item scale was devised to measure the effects of "off-time"…

  5. SQL Triggers Reacting on Time Events: An Extension Proposal

    NASA Astrophysics Data System (ADS)

    Behrend, Andreas; Dorau, Christian; Manthey, Rainer

    Being able to activate triggers at timepoints reached or after time intervals elapsed has been acknowledged by many authors as a valuable functionality of a DBMS. Recently, the interest in time-based triggers has been renewed in the context of data stream monitoring. However, up till now SQL triggers react to data changes only, even though research proposals and prototypes have been supporting several other event types, in particular time-based ones, since long. We therefore propose a seamless extension of the SQL trigger concept by time-based triggers, focussing on semantic issues arising from such an extension.

  6. Established time series measure occurrence and frequency of episodic events.

    NASA Astrophysics Data System (ADS)

    Pebody, Corinne; Lampitt, Richard

    2015-04-01

    Established time series measure occurrence and frequency of episodic events. Episodic flux events occur in open oceans. Time series making measurements over significant time scales are one of the few methods that can capture these events and compare their impact with 'normal' flux. Seemingly rare events may be significant on local scales, but without the ability to measure the extent of flux on spatial and temporal scales and combine with the frequency of occurrence, it is difficult to constrain their impact. The Porcupine Abyssal Plain Sustained Observatory (PAP-SO) in the Northeast Atlantic (49 °N 16 °W, 5000m water depth) has measured particle flux since 1989 and zooplankton swimmers since 2000. Sediment traps at 3000m and 100 metres above bottom, collect material year round and we have identified close links between zooplankton and particle flux. Some of these larger animals, for example Diacria trispinosa, make a significant contribution to carbon flux through episodic flux events. D. trispinosa is a euthecosome mollusc which occurs in the Northeast Atlantic, though the PAP-SO is towards the northern limit of its distribution. Pteropods are comprised of aragonite shell, containing soft body parts excepting the muscular foot which extends beyond the mouth of the living animal. Pteropods, both live-on-entry animals and the empty shells are found year round in the 3000m trap. Generally the abundance varies with particle flux, but within that general pattern there are episodic events where significant numbers of these animals containing both organic and inorganic carbon are captured at depth and therefore could be defined as contributing to export flux. Whether the pulse of animals is as a result of the life cycle of D. trispinosa or the effects of the physics of the water column is unclear, but the complexity of the PAP-SO enables us not only to collect these animals but to examine them in parallel to the biogeochemical and physical elements measured by the

  7. The Time of Our Lives: Life Span Development of Timing and Event Tracking

    ERIC Educational Resources Information Center

    McAuley, J. Devin; Jones, Mari Riess; Holub, Shayla; Johnston, Heather M.; Miller, Nathaniel S.

    2006-01-01

    Life span developmental profiles were constructed for 305 participants (ages 4-95) for a battery of paced and unpaced perceptual-motor timing tasks that included synchronize-continue tapping at a wide range of target event rates. Two life span hypotheses, derived from an entrainment theory of timing and event tracking, were tested. A preferred…

  8. Initial Time Dependence of Abundances in Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ny, C. K.; Tylka, A. J.

    1999-01-01

    We compare the initial behavior of Fe/O and He/H abundance ratios and their relationship to the evolution of the proton energy spectra in "small" and "large" gradual solar energetic particle (SEP) events. The results are qualitatively consistent with the behavior predicted by the theory of Ng et al. (1999a, b). He/H ratios that initially rise with time are a signature of scattering by non-Kolmogorov Alfven wave spectra generated by intense beams of shock-accelerated protons streaming outward in large gradual SEP events.

  9. The rotating spot method of timing subjective events.

    PubMed

    Pockett, Susan; Miller, Arden

    2007-06-01

    The rotating spot method of timing subjective events involves the subject's watching a rotating spot on a computer and reporting the position of the spot at the instant when the subjective event of interest occurs. We conducted an experiment to investigate factors that may impact on the results produced by this method, using the subject's perception of when they made a simple finger movement as the subjective event to be timed. Seven aspects of the rotating spot method were investigated, using a factorial experiment. Four of these aspects altered the physical characteristics of the computer generated spot or clock face and the remaining three altered the instructions given to the participant. We found compelling evidence that one factor, whether the subject was instructed to report the instant when the finger movement was initiated or the instant when it was completed, resulted in a systematic shift in the response. Evidence that three other factors affect the observed variability in the response was also found. In addition, we observed that there are substantial systematic differences in the responses made by different subjects. We discuss the implications of our findings and make recommendations about the optimal way of conducting future experiments using the rotating spot method. Our overall conclusion is that our results strongly validate the rotating spot method of timing at least the studied variety of subjective event. PMID:17049882

  10. Four Simultaneous Component Models for the Analysis of Multivariate Time Series from More Than One Subject To Model Intraindividual and Interindividual Differences.

    ERIC Educational Resources Information Center

    Timmerman, Marieke E.; Kiers, Henk A. L.

    2003-01-01

    Discusses a class of four simultaneous component models for the explanatory analysis of multivariate time series collected from more than one subject simultaneously. Shows how the models can be ordered hierarchically and illustrates their use through an empirical example. (SLD)

  11. Encoding of event timing in the phase of neural oscillations.

    PubMed

    Kösem, Anne; Gramfort, Alexandre; van Wassenhove, Virginie

    2014-05-15

    Time perception is a critical component of conscious experience. To be in synchrony with the environment, the brain must deal not only with differences in the speed of light and sound but also with its computational and neural transmission delays. Here, we asked whether the brain could actively compensate for temporal delays by changing its processing time. Specifically, can changes in neural timing or in the phase of neural oscillation index perceived timing? For this, a lag-adaptation paradigm was used to manipulate participants' perceived audiovisual (AV) simultaneity of events while they were recorded with magnetoencephalography (MEG). Desynchronized AV stimuli were presented rhythmically to elicit a robust 1 Hz frequency-tagging of auditory and visual cortical responses. As participants' perception of AV simultaneity shifted, systematic changes in the phase of entrained neural oscillations were observed. This suggests that neural entrainment is not a passive response and that the entrained neural oscillation shifts in time. Crucially, our results indicate that shifts in neural timing in auditory cortices linearly map participants' perceived AV simultaneity. To our knowledge, these results provide the first mechanistic evidence for active neural compensation in the encoding of sensory event timing in support of the emergence of time awareness. PMID:24531044

  12. Prediction problem for target events based on the inter-event waiting time

    NASA Astrophysics Data System (ADS)

    Shapoval, A.

    2010-11-01

    In this paper we address the problem of forecasting the target events of a time series given the distribution ξ of time gaps between target events. Strong earthquakes and stock market crashes are the two types of such events that we are focusing on. In the series of earthquakes, as McCann et al. show [W.R. Mc Cann, S.P. Nishenko, L.R. Sykes, J. Krause, Seismic gaps and plate tectonics: seismic potential for major boundaries, Pure and Applied Geophysics 117 (1979) 1082-1147], there are well-defined gaps (called seismic gaps) between strong earthquakes. On the other hand, usually there are no regular gaps in the series of stock market crashes [M. Raberto, E. Scalas, F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study, Physica A 314 (2002) 749-755]. For the case of seismic gaps, we analytically derive an upper bound of prediction efficiency given the coefficient of variation of the distribution ξ. For the case of stock market crashes, we develop an algorithm that predicts the next crash within a certain time interval after the previous one. We show that this algorithm outperforms random prediction. The efficiency of our algorithm sets up a lower bound of efficiency for effective prediction of stock market crashes.

  13. Life Events and Depressive Symptoms in African American Adolescents: Do Ecological Domains and Timing of Life Events Matter?

    ERIC Educational Resources Information Center

    Sanchez, Yadira M.; Lambert, Sharon F.; Ialongo, Nicholas S.

    2012-01-01

    Considerable research has documented associations between adverse life events and internalizing symptoms in adolescents, but much of this research has focused on the number of events experienced, with less attention to the ecological context or timing of events. This study examined life events in three ecological domains relevant to adolescents…

  14. Space-Time Characteristic Functions in Multivariate Logic and Possible Interpretation of Entanglement

    NASA Astrophysics Data System (ADS)

    Gaudeau de Gerlicz, Claude; Sechpine, Pierre; Bobola, Philippe; Antoine, Mathias

    The knowledge about hidden variables in physics, (Bohr's-Schrödinger theories) and their developments, boundaries seem more and more fuzzy at physical scales. Also some other new theories give to both time and space as much fuzziness. The classical theory, (school of Copenhagen's) and also Heisenberg and Louis de Broglie give us the idea of a dual wave and particle parts such the way we observe. Thus, the Pondichery interpretation recently developed by Cramer and al. gives to the time part this duality. According Cramer, there could be a little more to this duality, some late or advanced waves of time that have been confirmed and admitted as possible solutions with the Maxwell's equations. We developed here a possible pattern that could matched in the sequence between Space and both retarded and advanced time wave in the "Cramer handshake" in locality of the present when the observation is made everything become local.

  15. Time-quefrency analysis of overlapping similar microseismic events

    NASA Astrophysics Data System (ADS)

    Nagano, Koji

    2016-05-01

    In this paper, I describe a new technique to determine the interval between P-waves in similar, overlapping microseismic events. The similar microseismic events that occur with overlapping waveforms are called `proximate microseismic doublets' herein. Proximate microseismic doublets had been discarded in previous studies because we had not noticed their usefulness. Analysis of similar events can show relative locations of sources between them. Analysis of proximate microseismic doublets can provide more precise relative source locations because variation in the velocity structure has little influence on their relative travel times. It is necessary to measure the interval between the P-waves in the proximate microseismic doublets to determine their relative source locations. A `proximate microseismic doublet' is a pair of microseismic events in which the second event arrives before the attenuation of the first event. Cepstrum analysis can provide the interval even though the second event overlaps the first event. However, a cepstrum of a proximate microseismic doublet generally has two peaks, one representing the interval between the arrivals of the two P-waves, and the other representing the interval between the arrivals of the two S-waves. It is therefore difficult to determine the peak that represents the P-wave interval from the cepstrum alone. I used window functions in cepstrum analysis to isolate the first and second P-waves and to suppress the second S-wave. I change the length of the window function and calculate the cepstrum for each window length. The result is represented in a three-dimensional contour plot of length-quefrency-cepstrum data. The contour plot allows me to identify the cepstrum peak that represents the P-wave interval. The precise quefrency can be determined from a two-dimensional quefrency-cepstrum graph, provided that the length of the window is appropriately chosen. I have used both synthetic and field data to demonstrate that this

  16. A diary after dinner: How the time of event recording influences later accessibility of diary events.

    PubMed

    Szőllősi, Ágnes; Keresztes, Attila; Conway, Martin A; Racsmány, Mihály

    2015-01-01

    Recording the events of a day in a diary may help improve their later accessibility. An interesting question is whether improvements in long-term accessibility will be greater if the diary is completed at the end of the day, or after a period of sleep, the following morning. We investigated this question using an internet-based diary method. On each of five days, participants (n = 109) recorded autobiographical memories for that day or for the previous day. Recording took place either in the morning or in the evening. Following a 30-day retention interval, the diary events were free recalled. We found that participants who recorded their memories in the evening before sleep had best memory performance. These results suggest that the time of reactivation and recording of recent autobiographical events has a significant effect on the later accessibility of those diary events. We discuss our results in the light of related findings that show a beneficial effect of reduced interference during sleep on memory consolidation and reconsolidation. PMID:26088958

  17. Real-Time Multimission Event Notification System for Mars Relay

    NASA Technical Reports Server (NTRS)

    Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Wang, Paul; Hy, Franklin H.

    2013-01-01

    As the Mars Relay Network is in constant flux (missions and teams going through their daily workflow), it is imperative that users are aware of such state changes. For example, a change by an orbiter team can affect operations on a lander team. This software provides an ambient view of the real-time status of the Mars network. The Mars Relay Operations Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay Network. As part of MaROS, a feature set was developed that operates on several levels of the software architecture. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. The result is a real-time event notification and management system, so mission teams can track and act upon events on a moment-by-moment basis. This software retrieves events from MaROS and displays them to the end user. Updates happen in real time, i.e., messages are pushed to the user while logged into the system, and queued when the user is not online for later viewing. The software does not do away with the email notifications, but augments them with in-line notifications. Further, this software expands the events that can generate a notification, and allows user-generated notifications. Existing software sends a smaller subset of mission-generated notifications via email. A common complaint of users was that the system-generated e-mails often "get lost" with other e-mail that comes in. This software allows for an expanded set (including user-generated) of notifications displayed in-line of the program. By separating notifications, this can improve a user's workflow.

  18. An introduction to real-time graphical techniques for analyzing multivariate data

    NASA Astrophysics Data System (ADS)

    Friedman, Jerome H.; McDonald, John Alan; Stuetzle, Werner

    1987-08-01

    Orion I is a graphics system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems, whose most striking common feature is the use of real-time motion graphics to display three dimensional scatterplots. Orion I differs from earlier Prim systems through the use of modern and relatively inexpensive raster graphics and microprocessor technology. It also delivers more computing power to its user; Orion I can perform more sophisticated real-time computations than were possible on previous such systems. We demonstrate some of Orion I's capabilities in our film: "Exploring data with Orion I".

  19. Active movement restores veridical event-timing after tactile adaptation.

    PubMed

    Tomassini, Alice; Gori, Monica; Burr, David; Sandini, Giulio; Morrone, Maria Concetta

    2012-10-01

    Growing evidence suggests that time in the subsecond range is tightly linked to sensory processing. Event-time can be distorted by sensory adaptation, and many temporal illusions can accompany action execution. In this study, we show that adaptation to tactile motion causes a strong contraction of the apparent duration of tactile stimuli. However, when subjects make a voluntary motor act before judging the duration, it annuls the adaptation-induced temporal distortion, reestablishing veridical event-time. The movement needs to be performed actively by the subject: passive movement of similar magnitude and dynamics has no effect on adaptation, showing that it is the motor commands themselves, rather than reafferent signals from body movement, which reset the adaptation for tactile duration. No other concomitant perceptual changes were reported (such as apparent speed or enhanced temporal discrimination), ruling out a generalized effect of body movement on somatosensory processing. We suggest that active movement resets timing mechanisms in preparation for the new scenario that the movement will cause, eliminating inappropriate biases in perceived time. Our brain seems to utilize the intention-to-move signals to retune its perceptual machinery appropriately, to prepare to extract new temporal information. PMID:22832572

  20. Putting Predictive Models to Use: Scoring of Unseen Streaming Data using a Multivariate Time Series Classification Tool

    NASA Astrophysics Data System (ADS)

    Sipes, T.; Karimabadi, H.; Imber, S. M.; Slavin, J. A.; Pothier, N. M.; Coeli, R.

    2013-12-01

    Advances in data collection and data storage technologies have made the assembly of multivariate time series data more common. Data analysis and extraction of knowledge from such massive and complex datasets encountered in space physics today present a major obstacle to fully utilizing our vast data repositories and to scientific progress. In the previous years we introduced a time series classification tool MineTool-TS [Karimabadi et al, 2009] and its extension to simulation and streaming data [Sipes& Karimabadi, 2012, 2013]. In this work we demonstrate the applicability and real world utility of the predictive models created using the tool to scoring and labeling of a large dataset of unseen, streaming data. Predictive models that are created are based on the assumption that the training data used to create them is a true representative of the population. Multivariate time series datasets are also characterized by large amounts of variability and potential background noise. Moreover, there are multiple issues being raised by the streaming nature of the data. In this work we illustrate how we dealt with these challenges and demonstrate the results in a study of flux ropes in the plasma sheet. We have used an iterative process of building a predictive model using the original labeled training set, tested it on a week worth of streaming data, had the results checked by a scientific expert in the domain, and fed the results and the labels back into the training set, creating a large training set and using it to produce the final model. This final model was then put to use to predict a very large, unseen, six month period of streaming data. In this work we present the results of our machine learning approach to automatically detect flux ropes in spacecraft data.

  1. Classification of broiler breast filets according to deboning time using near infrared spectroscopy and multivariate analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken breast filets were deboned and NIR spectra were collected after 2, 4, and 24 hours. The deboning was performed on pairs of filets to minimize differences due only to the meat and not the deboning time (i.e. right at 2 hours, left at 24; right at 2, left at 4; right at 4, left at 24 hrs). The...

  2. MULTIVARIATE STATISTICAL MODELS FOR EFFECTS OF PM AND COPOLLUTANTS IN A DAILY TIME SERIES EPIDEMIOLOGY STUDY

    EPA Science Inventory

    Most analyses of daily time series epidemiology data relate mortality or morbidity counts to PM and other air pollutants by means of single-outcome regression models using multiple predictors, without taking into account the complex statistical structure of the predictor variable...

  3. Cardiorespiratory Dynamic Response to Mental Stress: A Multivariate Time-Frequency Analysis

    PubMed Central

    Orini, Michele; Van Huffel, Sabine

    2013-01-01

    Mental stress is a growing problem in our society. In order to deal with this, it is important to understand the underlying stress mechanisms. In this study, we aim to determine how the cardiorespiratory interactions are affected by mental arithmetic stress and attention. We conduct cross time-frequency (TF) analyses to assess the cardiorespiratory coupling. In addition, we introduce partial TF spectra to separate variations in the RR interval series that are linearly related to respiration from RR interval variations (RRV) that are not related to respiration. The performance of partial spectra is evaluated in two simulation studies. Time-varying parameters, such as instantaneous powers and frequencies, are derived from the computed spectra. Statistical analysis is carried out continuously in time to evaluate the dynamic response to mental stress and attention. The results show an increased heart and respiratory rate during stress and attention, compared to a resting condition. Also a fast reduction in vagal activity is noted. The partial TF analysis reveals a faster reduction of RRV power related to (3 s) than unrelated to (30 s) respiration, demonstrating that the autonomic response to mental stress is driven by mechanisms characterized by different temporal scales. PMID:24386006

  4. A rank test for bivariate time-to-event outcomes when one event is a surrogate.

    PubMed

    Shaw, Pamela A; Fay, Michael P

    2016-08-30

    In many clinical settings, improving patient survival is of interest but a practical surrogate, such as time to disease progression, is instead used as a clinical trial's primary endpoint. A time-to-first endpoint (e.g., death or disease progression) is commonly analyzed but may not be adequate to summarize patient outcomes if a subsequent event contains important additional information. We consider a surrogate outcome very generally as one correlated with the true endpoint of interest. Settings of interest include those where the surrogate indicates a beneficial outcome so that the usual time-to-first endpoint of death or surrogate event is nonsensical. We present a new two-sample test for bivariate, interval-censored time-to-event data, where one endpoint is a surrogate for the second, less frequently observed endpoint of true interest. This test examines whether patient groups have equal clinical severity. If the true endpoint rarely occurs, the proposed test acts like a weighted logrank test on the surrogate; if it occurs for most individuals, then our test acts like a weighted logrank test on the true endpoint. If the surrogate is a useful statistical surrogate, our test can have better power than tests based on the surrogate that naively handles the true endpoint. In settings where the surrogate is not valid (treatment affects the surrogate but not the true endpoint), our test incorporates the information regarding the lack of treatment effect from the observed true endpoints and hence is expected to have a dampened treatment effect compared with tests based on the surrogate alone. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. PMID:27059817

  5. Time course of salinity adaptation in a strongly euryhaline estuarine teleost, fundulus heteroclitus: A multivariable approach

    USGS Publications Warehouse

    Marshall, W.S.; Emberley, T.R.; Singer, T.D.; Bryson, S.E.; McCormick, S.D.

    1999-01-01

    Freshwater-adapted killifish (Fundulus heteroclitus) were transferred directly from soft fresh water to full-strength sea water for periods of 1h, 3h, 8h and 1, 2, 7, 14 and 30 days. Controls were transferred to fresh water for 24 h. Measured variables included: blood [Na+], osmolality, glucose and cortisol levels, basal and stimulated rates of ion transport and permeability of in vitro opercular epithelium, gill Na+/K+-ATPase and citrate synthase activity and chloride cell ultrastructure. These data were compared with previously published killifish cystic fibrosis transmembrane conductance regulator (kfCFTR) expression in the gills measured over a similar time course. Plasma cortisol levels peaked at 1 h, coincident with a rise in plasma [Na+]. At 8 h after transfer to sea water, a time at which previous work has shown kfCFTR expression to be elevated, blood osmolality and [Na+] were high, and cortisol levels and opercular membrane short-circuit current (I(SC); a measure of Cl- secretion rate) were low. The 24h group, which showed the highest level of kfCFTR expression, had the highest plasma [Na+] and osmolality, elevated plasma cortisol levels, significantly lower opercular membrane resistance, an increased opercular membrane ion secretion rate and collapsed tubule inclusions in mitochondria-rich cells, but no change in gill Na+/K+-ATPase and citrate synthase activity or plasma glucose levels. Apparently, killifish have a rapid (<1h) cortisol response to salinity coupled to subsequent (8-48 h) expression of kfCFTR anion channel proteins in existing mitochondria-rich cells that convert transport from ion uptake to ion secretion.

  6. Predicting analysis time in events-driven clinical trials using accumulating time-to-event surrogate information.

    PubMed

    Wang, Jianming; Ke, Chunlei; Yu, Zhinuan; Fu, Lei; Dornseif, Bruce

    2016-05-01

    For clinical trials with time-to-event endpoints, predicting the accrual of the events of interest with precision is critical in determining the timing of interim and final analyses. For example, overall survival (OS) is often chosen as the primary efficacy endpoint in oncology studies, with planned interim and final analyses at a pre-specified number of deaths. Often, correlated surrogate information, such as time-to-progression (TTP) and progression-free survival, are also collected as secondary efficacy endpoints. It would be appealing to borrow strength from the surrogate information to improve the precision of the analysis time prediction. Currently available methods in the literature for predicting analysis timings do not consider utilizing the surrogate information. In this article, using OS and TTP as an example, a general parametric model for OS and TTP is proposed, with the assumption that disease progression could change the course of the overall survival. Progression-free survival, related both to OS and TTP, will be handled separately, as it can be derived from OS and TTP. The authors seek to develop a prediction procedure using a Bayesian method and provide detailed implementation strategies under certain assumptions. Simulations are performed to evaluate the performance of the proposed method. An application to a real study is also provided. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26689725

  7. Detecting and characterising ramp events in wind power time series

    NASA Astrophysics Data System (ADS)

    Gallego, Cristóbal; Cuerva, Álvaro; Costa, Alexandre

    2014-12-01

    In order to implement accurate models for wind power ramp forecasting, ramps need to be previously characterised. This issue has been typically addressed by performing binary ramp/non-ramp classifications based on ad-hoc assessed thresholds. However, recent works question this approach. This paper presents the ramp function, an innovative wavelet- based tool which detects and characterises ramp events in wind power time series. The underlying idea is to assess a continuous index related to the ramp intensity at each time step, which is obtained by considering large power output gradients evaluated under different time scales (up to typical ramp durations). The ramp function overcomes some of the drawbacks shown by the aforementioned binary classification and permits forecasters to easily reveal specific features of the ramp behaviour observed at a wind farm. As an example, the daily profile of the ramp-up and ramp-down intensities are obtained for the case of a wind farm located in Spain.

  8. Empirical reconstruction of storm-time steady magnetospheric convection events

    NASA Astrophysics Data System (ADS)

    Stephens, G. K.; Sitnov, M. I.; Kissinger, J.; Tsyganenko, N. A.; McPherron, R. L.; Korth, H.; Anderson, B. J.

    2013-12-01

    We investigate the storm-scale morphology of the magnetospheric magnetic field as well as underlying distributions of electric currents, equatorial plasma pressure and entropy for four Steady Magnetospheric Convection (SMC) events that occurred during the May 2000 and October 2011 magnetic storms. The analysis is made using the empirical geomagnetic field model TS07D, in which the structure of equatorial currents is not predefined and it is dictated by data. The model also combines the strengths of statistical and event-oriented approaches in mining data for the reconstruction of the magnetic field. The formation of a near-Earth minimum of the equatorial magnetic field in the midnight sector is inferred from data without ad hoc assumptions of a special current system postulated in earlier empirical reconstructions. In addition, a new SMC class is discovered where the minimum equatorial field is substantially larger and located closer to Earth. The magnetic field tailward of the minimum is also much larger, and the corresponding region of accumulated magnetic flux may occupy a very short tail region. The equatorial current and plasma pressure are found to be strongly enhanced far beyond geosynchronous orbit and in a broad local time interval covering the whole nightside region. This picture is consistent with independent recent statistical studies of the SMC pressure distributions, global MHD and kinetic RCM-E simulations. Distributions of the flux tube volume and entropy inferred from data reveal different mechanisms of the magnetotail convection crisis resolution for two classes of SMC events.

  9. Marking of Fluid Timed Events Graphs with Multipliers for a desired cycle time

    NASA Astrophysics Data System (ADS)

    Hamaci, S.; Labadi, K.

    2009-03-01

    We study fluid analogues of a subclass of petri nets, called Fluid Timed Event Graphs with Multipliers, which are a time extension of weighted T-Systems studied in the Petri Net literature. These event graphs can be studied in the algebraic structure called (min, +) algebra. In this paper we deal with the problem of allocating an initial marking in a Fluid Timed Event Graphs with Multipliers for a desired cycle time. for that, to calculate the marking of some places, we proceed by linearization of the mathematical model reflecting the behavior of a FGETM in order to obtain a model (min, +) linear. From the latter, we determine the marking which satisfiers the desired cycle time .

  10. What controls the local time extent of flux transfer events?

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Imber, S. M.; Carter, J. A.; Walach, M.-T.; Hubert, B.

    2016-02-01

    Flux transfer events (FTEs) are the manifestation of bursty and/or patchy magnetic reconnection at the magnetopause. We compare two sequences of the ionospheric signatures of flux transfer events observed in global auroral imagery and coherent ionospheric radar measurements. Both sequences were observed during very similar seasonal and interplanetary magnetic field (IMF) conditions, though with differing solar wind speed. A key observation is that the signatures differed considerably in their local time extent. The two periods are 26 August 1998, when the IMF had components BZ≈-10 nT and BY≈9 nT and the solar wind speed was VX≈650 km s-1, and 31 August 2005, IMF BZ≈-7 nT, BY≈17 nT, and VX≈380 km s-1. In the first case, the reconnection rate was estimated to be near 160 kV, and the FTE signatures extended across at least 7 h of magnetic local time (MLT) of the dayside polar cap boundary. In the second, a reconnection rate close to 80 kV was estimated, and the FTEs had a MLT extent of roughly 2 h. We discuss the ramifications of these differences for solar wind-magnetosphere coupling.

  11. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  12. An update on multivariate return periods in hydrology

    NASA Astrophysics Data System (ADS)

    Gräler, Benedikt; Petroselli, Andrea; Grimaldi, Salvatore; De Baets, Bernard; Verhoest, Niko

    2016-05-01

    Many hydrological studies are devoted to the identification of events that are expected to occur on average within a certain time span. While this topic is well established in the univariate case, recent advances focus on a multivariate characterization of events based on copulas. Following a previous study, we show how the definition of the survival Kendall return period fits into the set of multivariate return periods.Moreover, we preliminary investigate the ability of the multivariate return period definitions to select maximal events from a time series. Starting from a rich simulated data set, we show how similar the selection of events from a data set is. It can be deduced from the study and theoretically underpinned that the strength of correlation in the sample influences the differences between the selection of maximal events.

  13. Detection of intermittent events in atmospheric time series

    NASA Astrophysics Data System (ADS)

    Paradisi, P.; Cesari, R.; Palatella, L.; Contini, D.; Donateo, A.

    2009-04-01

    The modeling approach in atmospheric sciences is based on the assumption that local fluxes of mass, momentum, heat, etc... can be described as linear functions of the local gradient of some intensive property (concentration, flow strain, temperature,...). This is essentially associated with Gaussian statistics and short range (exponential) correlations. However, the atmosphere is a complex dynamical system displaying a wide range of spatial and temporal scales. A global description of the atmospheric dynamics should include a great number of degrees of freedom, strongly interacting on several temporal and spatial scales, thus generating long range (power-law) correlations and non-Gaussian distribution of fluctuations (Lévy flights, Lévy walks, Continuous Time Random Walks) [1]. This is typically associated with anomalous diffusion and scaling, non-trivial memory features and correlation decays and, especially, with the emergence of flux-gradient relationships that are non-linear and/or non-local in time and/or space. Actually, the local flux-gradient relationship is greatly preferred due to a more clear physical meaning, allowing to perform direct comparisons with experimental data, and, especially, to smaller computational costs in numerical models. In particular, the linearity of this relationship allows to define a transport coefficient (e.g., turbulent diffusivity) and the modeling effort is usually focused on this coefficient. However, the validity of the local (and linear) flux-gradient model is strongly dependent on the range of spatial and temporal scales represented by the model and, consequently, by the sub-grid processes included in the flux-gradient relationship. In this work, in order to check the validity of local and linear flux-gradient relationships, an approach based on the concept of renewal critical events [2] is introduced. In fact, in renewal theory [2], the dynamical origin of anomalous behaviour and non-local flux-gradient relation is

  14. UNCERTAINTY IN PHASE ARRIVAL TIME PICKS FOR REGIONAL SEISMIC EVENTS: AN EXPERIMENTAL DESIGN

    SciTech Connect

    A. VELASCO; ET AL

    2001-02-01

    The detection and timing of seismic arrivals play a critical role in the ability to locate seismic events, especially at low magnitude. Errors can occur with the determination of the timing of the arrivals, whether these errors are made by automated processing or by an analyst. One of the major obstacles encountered in properly estimating travel-time picking error is the lack of a clear and comprehensive discussion of all of the factors that influence phase picks. This report discusses possible factors that need to be modeled to properly study phase arrival time picking errors. We have developed a multivariate statistical model, experimental design, and analysis strategy that can be used in this study. We have embedded a general form of the International Data Center(IDC)/U.S. National Data Center (USNDC) phase pick measurement error model into our statistical model. We can use this statistical model to optimally calibrate a picking error model to regional data. A follow-on report will present the results of this analysis plan applied to an implementation of an experiment/data-gathering task.

  15. Event coincidence analysis for quantifying statistical interrelationships between event time series. On the role of flood events as triggers of epidemic outbreaks

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Schleussner, C.-F.; Siegmund, J. F.; Donner, R. V.

    2016-05-01

    Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.

  16. Predictive modeling in Clostridium acetobutylicum fermentations employing Raman spectroscopy and multivariate data analysis for real-time culture monitoring

    NASA Astrophysics Data System (ADS)

    Zu, Theresah N. K.; Liu, Sanchao; Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Mackie, David M.; Sund, Christian J.

    2016-05-01

    The coupling of optical fibers with Raman instrumentation has proven to be effective for real-time monitoring of chemical reactions and fermentations when combined with multivariate statistical data analysis. Raman spectroscopy is relatively fast, with little interference from the water peak present in fermentation media. Medical research has explored this technique for analysis of mammalian cultures for potential diagnosis of some cancers. Other organisms studied via this route include Escherichia coli, Saccharomyces cerevisiae, and some Bacillus sp., though very little work has been performed on Clostridium acetobutylicum cultures. C. acetobutylicum is a gram-positive anaerobic bacterium, which is highly sought after due to its ability to use a broad spectrum of substrates and produce useful byproducts through the well-known Acetone-Butanol-Ethanol (ABE) fermentation. In this work, real-time Raman data was acquired from C. acetobutylicum cultures grown on glucose. Samples were collected concurrently for comparative off-line product analysis. Partial-least squares (PLS) models were built both for agitated cultures and for static cultures from both datasets. Media components and metabolites monitored include glucose, butyric acid, acetic acid, and butanol. Models were cross-validated with independent datasets. Experiments with agitation were more favorable for modeling with goodness of fit (QY) values of 0.99 and goodness of prediction (Q2Y) values of 0.98. Static experiments did not model as well as agitated experiments. Raman results showed the static experiments were chaotic, especially during and shortly after manual sampling.

  17. Detecting Rare Events in the Time-Domain

    SciTech Connect

    Rest, A; Garg, A

    2008-10-31

    One of the biggest challenges in current and future time-domain surveys is to extract the objects of interest from the immense data stream. There are two aspects to achieving this goal: detecting variable sources and classifying them. Difference imaging provides an elegant technique for identifying new transients or changes in source brightness. Much progress has been made in recent years toward refining the process. We discuss a selection of pitfalls that can afflict an automated difference imagine pipeline and describe some solutions. After identifying true astrophysical variables, we are faced with the challenge of classifying them. For rare events, such as supernovae and microlensing, this challenge is magnified because we must balance having selection criteria that select for the largest number of objects of interest against a high contamination rate. We discuss considerations and techniques for developing classification schemes.

  18. Relative timing of deglacial climate events in Antarctica and Greenland.

    PubMed

    Morgan, Vin; Delmotte, Marc; van Ommen, Tas; Jouzel, Jean; Chappellaz, Jérôme; Woon, Suenor; Masson-Delmotte, Valérie; Raynaud, Dominique

    2002-09-13

    The last deglaciation was marked by large, hemispheric, millennial-scale climate variations: the Bølling-Allerød and Younger Dryas periods in the north, and the Antarctic Cold Reversal in the south. A chronology from the high-accumulation Law Dome East Antarctic ice core constrains the relative timing of these two events and provides strong evidence that the cooling at the start of the Antarctic Cold Reversal did not follow the abrupt warming during the northern Bølling transition around 14,500 years ago. This result suggests that southern changes are not a direct response to abrupt changes in North Atlantic thermohaline circulation, as is assumed in the conventional picture of a hemispheric temperature seesaw. PMID:12228715

  19. Simplifying Facility and Event Scheduling: Saving Time and Money.

    ERIC Educational Resources Information Center

    Raasch, Kevin

    2003-01-01

    Describes a product called the Event Management System (EMS), a computer software program to manage facility and event scheduling. Provides example of the school district and university uses of EMS. Describes steps in selecting a scheduling-management system. (PKP)

  20. Time in Language: Event Duration in Language Comprehension

    ERIC Educational Resources Information Center

    Coll-Florit, Marta; Gennari, Silvia P.

    2011-01-01

    This work investigates how we process and represent event duration in on-line language comprehension. Specifically, it examines how events of different duration are processed and what type of knowledge underlies their representations. Studies 1-4 examined verbs and phrases in different contexts. They showed that durative events took longer to…

  1. Dynamic ultrasound imaging—A multivariate approach for the analysis and comparison of time-dependent musculoskeletal movements

    PubMed Central

    2012-01-01

    Background Muscle functions are generally assumed to affect a wide variety of conditions and activities, including pain, ischemic and neurological disorders, exercise and injury. It is therefore very desirable to obtain more information on musculoskeletal contributions to and activity during clinical processes such as the treatment of muscle injuries, post-surgery evaluations, and the monitoring of progressive degeneration in neuromuscular disorders. The spatial image resolution achievable with ultrasound systems has improved tremendously in the last few years and it is nowadays possible to study skeletal muscles in real-time during activity. However, ultrasound imaging has an inherent problem that makes it difficult to compare different measurement series or image sequences from two or more subjects. Due to physiological differences between different subjects, the ultrasound sequences will be visually different – partly because of variation in probe placement and partly because of the difficulty of perfectly reproducing any given movement. Methods Ultrasound images of the biceps and calf of a single subject were transformed to achieve congruence and then efficiently compressed and stacked to facilitate analysis using a multivariate method known as O2PLS. O2PLS identifies related and unrelated variation in and between two sets of data such that different phases of the studied movements can be analysed. The methodology was used to study the dynamics of the Achilles tendon and the calf and also the Biceps brachii and upper arm. The movements of these parts of the body are both of interest in clinical orthopaedic research. Results This study extends the novel method of multivariate analysis of congruent images (MACI) to facilitate comparisons between two series of ultrasound images. This increases its potential range of medical applications and its utility for detecting, visualising and quantifying the dynamics and functions of skeletal muscle. Conclusions The most

  2. Time to tenure in Spanish universities: an event history analysis.

    PubMed

    Sanz-Menéndez, Luis; Cruz-Castro, Laura; Alva, Kenedy

    2013-01-01

    Understanding how institutional incentives and mechanisms for assigning recognition shape access to a permanent job is important. This study, based on data from questionnaire survey responses and publications of 1,257 university science, biomedical and engineering faculty in Spain, attempts to understand the timing of getting a permanent position and the relevant factors that account for this transition, in the context of dilemmas between mobility and permanence faced by organizations. Using event history analysis, the paper looks at the time to promotion and the effects of some relevant covariates associated to academic performance, social embeddedness and mobility. We find that research productivity contributes to career acceleration, but that other variables are also significantly associated to a faster transition. Factors associated to the social elements of academic life also play a role in reducing the time from PhD graduation to tenure. However, mobility significantly increases the duration of the non-tenure stage. In contrast with previous findings, the role of sex is minor. The variations in the length of time to promotion across different scientific domains is confirmed, with faster career advancement for those in the Engineering and Technological Sciences compared with academics in the Biological and Biomedical Sciences. Results show clear effects of seniority, and rewards to loyalty, in addition to some measurements of performance and quality of the university granting the PhD, as key elements speeding up career advancement. Findings suggest the existence of a system based on granting early permanent jobs to those that combine social embeddedness and team integration with some good credentials regarding past and potential future performance, rather than high levels of mobility. PMID:24116199

  3. Time to Tenure in Spanish Universities: An Event History Analysis

    PubMed Central

    Sanz-Menéndez, Luis; Cruz-Castro, Laura; Alva, Kenedy

    2013-01-01

    Understanding how institutional incentives and mechanisms for assigning recognition shape access to a permanent job is important. This study, based on data from questionnaire survey responses and publications of 1,257 university science, biomedical and engineering faculty in Spain, attempts to understand the timing of getting a permanent position and the relevant factors that account for this transition, in the context of dilemmas between mobility and permanence faced by organizations. Using event history analysis, the paper looks at the time to promotion and the effects of some relevant covariates associated to academic performance, social embeddedness and mobility. We find that research productivity contributes to career acceleration, but that other variables are also significantly associated to a faster transition. Factors associated to the social elements of academic life also play a role in reducing the time from PhD graduation to tenure. However, mobility significantly increases the duration of the non-tenure stage. In contrast with previous findings, the role of sex is minor. The variations in the length of time to promotion across different scientific domains is confirmed, with faster career advancement for those in the Engineering and Technological Sciences compared with academics in the Biological and Biomedical Sciences. Results show clear effects of seniority, and rewards to loyalty, in addition to some measurements of performance and quality of the university granting the PhD, as key elements speeding up career advancement. Findings suggest the existence of a system based on granting early permanent jobs to those that combine social embeddedness and team integration with some good credentials regarding past and potential future performance, rather than high levels of mobility. PMID:24116199

  4. Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant cha...

  5. Real-time interpretation of novel events across childhood

    PubMed Central

    Borovsky, Arielle; Sweeney, Kim; Elman, Jeffrey L.; Fernald, Anne

    2014-01-01

    Despite extensive evidence that adults and children rapidly integrate world knowledge to generate expectancies for upcoming language, little work has explored how this knowledge is initially acquired and used. We explore this question in 3- to 10-year-old children and adults by measuring the degree to which sentences depicting recently learned connections between agents, actions and objects lead to anticipatory eye-movements to the objects. Combinatory information in sentences about agent and action elicited anticipatory eye-movements to the Target object in adults and older children. Our findings suggest that adults and school-aged children can quickly activate information about recently exposed novel event relationships in real-time language processing. However, there were important developmental differences in the use of this knowledge. Adults and school-aged children used the sentential agent and action to predict the sentence final theme, while preschool children’s fixations reflected a simple association to the currently spoken item. We consider several reasons for this developmental difference and possible extensions of this paradigm. PMID:24976677

  6. Time-Lapse Photography in Recording Classroom Events.

    ERIC Educational Resources Information Center

    Walker, Rob; Adelman, Clem

    An observational recording system was devised to record and to replay the stream of classroom events--nonverbal events, as well as verbal. Although videotape recording/closed circuit television has been used in similar systems, the one here used selected 35mm. stills made from 16mm. film. The stills were then synchronized with tape recordings and…

  7. Young Children's Memory for the Times of Personal Past Events

    ERIC Educational Resources Information Center

    Pathman, Thanujeni; Larkina, Marina; Burch, Melissa M.; Bauer, Patricia J.

    2013-01-01

    Remembering the temporal information associated with personal past events is critical for autobiographical memory, yet we know relatively little about the development of this capacity. In the present research, we investigated temporal memory for naturally occurring personal events in 4-, 6-, and 8-year-old children. Parents recorded unique events…

  8. Dead-time correction for time-of-flight secondary-ion mass spectral images: a critical issue in multivariate image analysis.

    PubMed

    Tyler, Bonnie J; Peterson, Richard E

    2013-01-01

    Dead-time effects result in a non-linear detector response in the common time-of-flight secondary-ion mass spectrometry instruments. This can result in image artifacts that can often be misinterpreted. Although the Poisson correction procedure has been shown to effectively eliminate this non-linearity in spectra, applying the correction to images presents difficulties because the low number of counts per pixel can create large statistical errors. The efficacy of three approaches to dead-time correction in images has been explored. These approaches include: pixel binning, image segmentation and a binomial statistical correction. When few pixels are fully saturated, all three approaches work satisfactorily. When a large number of pixels are fully saturated, the statistical approach fails to remove the dead-time artifacts revealed by multivariate analysis. Pixel binning is accurate at higher levels of saturation so long as the bin size is much smaller than the feature size. The segmentation approach works well independent of feature size or the number of fully saturated pixels but requires an accurate segmentation algorithm. It is recommended that images be collected under conditions that minimize the number of fully saturated pixels. When this is impractical and small features are present in the image, segmentation can provide an accurate way to correct for the detector saturation effect. PMID:24707067

  9. Modality transition-based network from multivariate time series for characterizing horizontal oil-water flow patterns

    NASA Astrophysics Data System (ADS)

    Ding, Mei-Shuang; Jin, Ning-De; Gao, Zhong-Ke

    2015-11-01

    The simultaneous flow of oil and water through a horizontal pipe is a common occurrence during petroleum industrial processes. Characterizing the flow behavior underlying horizontal oil-water flows is a challenging problem of significant importance. In order to solve this problem, we carry out experiment to measure multivariate signals from different flow patterns and then propose a novel modality transition-based network to analyze the multivariate signals. The results suggest that the local betweenness centrality and weighted shortest path of the constructed network can characterize the transitions of flow conditions and further allow quantitatively distinguishing and uncovering the dynamic flow behavior underlying different horizontal oil-water flow patterns.

  10. A new pseudodeterministic multivariate receptor model for individual source apportionment using highly time-resolved ambient concentration measurements

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Pancras, J. Patrick; Ondov, John; Poor, Noreen

    2005-04-01

    A new multivariate pseudodeterministic receptor model (PDRM), combining mass balance and Gaussian plume dispersion equations, was developed to exploit highly time-resolved ambient measurements of SO2 and particulate pollutants influencing air quality at a site in Sydney, Florida, during the Tampa Bay Regional Aerosol Chemistry Experiment (BRACE) in May 2002. The PDRM explicitly exploits knowledge of the number and locations of major stationary sources, source and transport wind directions, stack gas emission parameters, and meteorological plume dispersion parameters during sample collections to constrain solutions for individual sources. Model outputs include average emission rates and time-resolved ambient concentrations for each of the measured species and time-resolved meteorological dispersion factors for each of the sources. The model was applied to ambient Federal Reference Method SO2 and 30-min elemental measurements during an 8.5-hour period when winds swept a 70° sector containing six large stationary sources. Agreement between predicted and observed ambient SO2 concentrations was extraordinarily good: The correlation coefficient (R2) was 0.97, their ratio was 1.00 ± 0.18, and predicted SO2 emission rates for each of four large utility sources lie within 8% of their average continuous emission monitor values. Mean fractional bias, normalized mean square error, and the fractions of the predictions within a factor of 2 of the observed values are -2.7, 0.9, and 94%, respectively. For elemental markers of coal-fired (As and Se) and oil-fired (Ni) power plant emissions the average ratio of predicted and observed concentrations was 1.02 ± 0.18 for As, 0.96 ± 0.17 for Se, and 0.99 ± 0.41 for Ni, indicating that the six sources located in the wind sector between approximately 200° and 260° well accounted for background-corrected concentrations measured at the sampling site. Model results were relatively insensitive to the choice of upper bound used to

  11. Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy

    NASA Astrophysics Data System (ADS)

    Runge, Jakob; Heitzig, Jobst; Marwan, Norbert; Kurths, Jürgen

    2012-12-01

    While it is an important problem to identify the existence of causal associations between two components of a multivariate time series, a topic addressed in Runge, Heitzig, Petoukhov, and Kurths [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.258701 108, 258701 (2012)], it is even more important to assess the strength of their association in a meaningful way. In the present article we focus on the problem of defining a meaningful coupling strength using information-theoretic measures and demonstrate the shortcomings of the well-known mutual information and transfer entropy. Instead, we propose a certain time-delayed conditional mutual information, the momentary information transfer (MIT), as a lag-specific measure of association that is general, causal, reflects a well interpretable notion of coupling strength, and is practically computable. Rooted in information theory, MIT is general in that it does not assume a certain model class underlying the process that generates the time series. As discussed in a previous paper [Runge, Heitzig, Petoukhov, and Kurths, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.258701 108, 258701 (2012)], the general framework of graphical models makes MIT causal in that it gives a nonzero value only to lagged components that are not independent conditional on the remaining process. Further, graphical models admit a low-dimensional formulation of conditions, which is important for a reliable estimation of conditional mutual information and, thus, makes MIT practically computable. MIT is based on the fundamental concept of source entropy, which we utilize to yield a notion of coupling strength that is, compared to mutual information and transfer entropy, well interpretable in that, for many cases, it solely depends on the interaction of the two components at a certain lag. In particular, MIT is, thus, in many cases able to exclude the misleading influence of autodependency within a process in an information-theoretic way

  12. Handling time misalignment and rank deficiency in liquid chromatography by multivariate curve resolution: Quantitation of five biogenic amines in fish.

    PubMed

    Pinto, Licarion; Díaz Nieto, César Horacio; Zón, María Alicia; Fernández, Héctor; de Araujo, Mario Cesar Ugulino

    2016-01-01

    Biogenic amines (BAs) are used for identifying spoilage in food. The most common are tryptamine (TRY), 2-phenylethylamine (PHE), putrescine (PUT), cadaverine (CAD) and histamine (HIS). Due to lack of chromophores, chemical derivatization with dansyl was employed to analyze these BAs using high performance liquid chromatography with a diode array detector (HPLC-DAD). However, the derivatization reaction occurs with any primary or secondary amine, leading to co-elution of analytes and interferents with identical spectral profiles, and thus causing rank deficiency. When the spectral profile is the same and peak misalignment is present on the chromatographic runs, it is not possible to handle the data only with Multivariate Curve Resolution and Alternative Least Square (MCR-ALS), by augmenting the time, or the spectral mode. A way to circumvent this drawback is to receive information from another detector that leads to a selective profile for the analyte. To overcome both problems, (tri-linearity break in time, and spectral mode), this paper proposes a new analytical methodology for fast quantitation of these BAs in fish with HPLC-DAD by using the icoshift algorithm for temporal misalignment correction before MCR-ALS spectral mode augmented treatment. Limits of detection, relative errors of prediction (REP) and average recoveries, ranging from 0.14 to 0.50 µg mL(-1), 3.5-8.8% and 88.08%-99.68%, respectively. These are outstanding results obtained, reaching quantification limits for the five BAs much lower than those established by the Food and Agriculture Organization of the United Nations and World Health Organization (FAO/WHO), and the European Food Safety Authority (EFSA), all without any pre-concentration steps. The concentrations of BAs in fish samples ranged from 7.82 to 29.41 µg g(-1), 8.68-25.95 µg g(-1), 4.76-28.54 µg g(-1), 5.18-39.95 µg g(-1) and 1.45-52.62 µg g(-1) for TRY, PHE, PUT, CAD, and HIS, respectively. In addition, the proposed method spends

  13. Large Time Projection Chambers for Rare Event Detection

    SciTech Connect

    Heffner, M

    2009-11-03

    The Time Projection Chamber (TPC) concept [add ref to TPC section] has been applied to many projects outside of particle physics and the accelerator based experiments where it was initially developed. TPCs in non-accelerator particle physics experiments are principally focused on rare event detection (e.g. neutrino and darkmater experiments) and the physics of these experiments can place dramatically different constraints on the TPC design (only extensions to the traditional TPCs are discussed here). The drift gas, or liquid, is usually the target or matter under observation and due to very low signal rates a TPC with the largest active mass is desired. The large mass complicates particle tracking of short and sometimes very low energy particles. Other special design issues include, efficient light collection, background rejection, internal triggering and optimal energy resolution. Backgrounds from gamma-rays and neutrons are significant design issues in the construction of these TPCs. They are generally placed deep underground to shield from cosmogenic particles and surrounded with shielding to reduce radiation from the local surroundings. The construction materials have to be carefully screened for radiopurity as they are in close contact with the active mass and can be a signification source of background events. The TPC excels in reducing this internal background because the mass inside the fieldcage forms one monolithic volume from which fiducial cuts can be made ex post facto to isolate quiet drift mass, and can be circulated and purified to a very high level. Self shielding in these large mass systems can be significant and the effect improves with density. The liquid phase TPC can obtain a high density at low pressure which results in very good self-shielding and compact installation with a lightweight containment. The down sides are the need for cryogenics, slower charge drift, tracks shorter than the typical electron diffusion, lower energy resolution (e

  14. Estimation of Maximum Likelihood of the Unextendable Dead Time Period in a Flow of Physical Events

    NASA Astrophysics Data System (ADS)

    Gortsev, A. M.; Solov'ev, A. A.

    2016-03-01

    A flow of physical events (photons, electrons, etc.) is studied. One of the mathematical models of such flows is the MAP-flow of events. The flow circulates under conditions of the unextendable dead time period, when the dead time period is unknown. The dead time period is estimated by the method of maximum likelihood from observations of arrival instants of events.

  15. Real-time detection of traffic events using smart cameras

    NASA Astrophysics Data System (ADS)

    Macesic, M.; Jelaca, V.; Niño-Castaneda, J. O.; Prodanovic, N.; Panic, M.; Pizurica, A.; Crnojevic, V.; Philips, W.

    2012-01-01

    With rapid increase of number of vehicles on roads it is necessary to maintain close monitoring of traffic. For this purpose many surveillance cameras are placed along roads and on crossroads, creating a huge communication load between the cameras and the monitoring center. Therefore, the data needs to be processed on site and transferred to the monitoring centers in form of metadata or as a set of selected images. For this purpose it is necessary to detect events of interest already on the camera side, which implies using smart cameras as visual sensors. In this paper we propose a method for tracking of vehicles and analysis of vehicle trajectories to detect different traffic events. Kalman filtering is used for tracking, combining foreground and optical flow measurements. Obtained vehicle trajectories are used to detect different traffic events. Every new trajectory is compared with collection of normal routes and clustered accordingly. If the observed trajectory differs from all normal routes more than a predefined threshold, it is marked as abnormal and the alarm is raised. The system was developed and tested on Texas Instruments OMAP platform. Testing was done on four different locations, two locations in the city and two locations on the open road.

  16. Time Scales of Solar Energetic Particle Events and Speeds of Source CMEs

    NASA Astrophysics Data System (ADS)

    Kahler, S.

    2004-05-01

    Solar Energetic Particle (SEP) events are characterized primarily by their peak intensities or fluences. Event temporal characteristics and their associations with solar phenomena are less frequently considered. We measure the times to SEP event onsets, rise times and event durations of E = 20 MeV solar proton events observed with the NASA/GSFC Epact instrument on the Wind spacecraft. The approximately 140 SEP events, observed from 1998 through 2002, were accompanied by associated coronal mass ejections (CMEs) observed with the Lasco coronagraph on the SOHO spacecraft. The timing characteristics of the SEP events are compared with the speeds and widths of the associated CMEs to determine whether any of the characteristics of the SEP intensity-time profiles can be related to CME properties. The longitude dependence of the temporal profiles is considered separately to determine the geometric extents of the shocks producing the SEP events at 1 AU.

  17. A Simple Computer Interface To Time Relatively Slow Physical Events.

    ERIC Educational Resources Information Center

    Ocaya, R. O.

    2000-01-01

    Describes a simple computer interface that can be used to make reliable time measurements, such as when timing the swings of a pendulum. Presents a sample experiment involving a form of pendulum known as the compound pendulum. (Author/YDS)

  18. Applications to Real World Time Series Event detection, multimodality and non-stationarity: Ordinal patterns, a tool to rule them all?

    NASA Astrophysics Data System (ADS)

    Arroyo, D.; Chamorro, P.; Amigó, J. M.; Rodríguez, F. B.; Varona, P.

    2013-06-01

    In this work, we apply ordinal analysis of time series to the characterisation of neuronal activity. Automatic event detection is performed by means of the so-called permutation entropy, along with the quantification of the relative cardinality of forbidden patterns. In addition, multivariate time series are characterised using the joint permutation entropy. In order to illustrate the suitability of the ordinal analysis for characterising neurophysiological data, we have compared the measures based on ordinal patterns of time series to the tools typically used in the context of neurophysiology.

  19. Geological Time, Biological Events and the Learning Transfer Problem

    ERIC Educational Resources Information Center

    Johnson, Claudia C.; Middendorf, Joan; Rehrey, George; Dalkilic, Mehmet M.; Cassidy, Keely

    2014-01-01

    Comprehension of geologic time does not come easily, especially for students who are studying the earth sciences for the first time. This project investigated the potential success of two teaching interventions that were designed to help non-science majors enrolled in an introductory geology class gain a richer conceptual understanding of the…

  20. Multivariate normality

    NASA Technical Reports Server (NTRS)

    Crutcher, H. L.; Falls, L. W.

    1976-01-01

    Sets of experimentally determined or routinely observed data provide information about the past, present and, hopefully, future sets of similarly produced data. An infinite set of statistical models exists which may be used to describe the data sets. The normal distribution is one model. If it serves at all, it serves well. If a data set, or a transformation of the set, representative of a larger population can be described by the normal distribution, then valid statistical inferences can be drawn. There are several tests which may be applied to a data set to determine whether the univariate normal model adequately describes the set. The chi-square test based on Pearson's work in the late nineteenth and early twentieth centuries is often used. Like all tests, it has some weaknesses which are discussed in elementary texts. Extension of the chi-square test to the multivariate normal model is provided. Tables and graphs permit easier application of the test in the higher dimensions. Several examples, using recorded data, illustrate the procedures. Tests of maximum absolute differences, mean sum of squares of residuals, runs and changes of sign are included in these tests. Dimensions one through five with selected sample sizes 11 to 101 are used to illustrate the statistical tests developed.

  1. Reporting of Life Events Over Time: Methodological Issues in a Longitudinal Sample of Women

    ERIC Educational Resources Information Center

    Pachana, Nancy A.; Brilleman, Sam L.; Dobson, Annette J.

    2011-01-01

    The number of life events reported by study participants is sensitive to the method of data collection and time intervals under consideration. Individual characteristics also influence reporting; respondents with poor mental health report more life events. Much current research on life events is cross-sectional. Data from a longitudinal study of…

  2. Travel time classification of extreme solar events: Two families and an outlier

    NASA Astrophysics Data System (ADS)

    Freed, A. J.; Russell, C. T.

    2014-10-01

    Extreme solar events are of great interest because of the extensive damage that could be experienced by technological systems such as electrical transformers during such periods. In studying geophysical phenomena, it is helpful to have a quantitative measure of event strength so that similar events can be intercompared. Such a measure also allows the calculation of the occurrence rates of events with varying strength. We use historical fast travel time solar events to develop a measure of strength based on the Sun-Earth trip time. We find that these fast events can be grouped into two distinct families with one even faster outlier. That outlier is not the Carrington event of 1859 but the extremely intense solar particle event of August 1972.

  3. Parent–offspring similarity in the timing of developmental events: an origin of heterochrony?

    PubMed Central

    Tills, Oliver; Rundle, Simon D.; Spicer, John I.

    2013-01-01

    Understanding the link between ontogeny (development) and phylogeny (evolution) remains a key aim of biology. Heterochrony, the altered timing of developmental events between ancestors and descendants, could be such a link although the processes responsible for producing heterochrony, widely viewed as an interspecific phenomenon, are still unclear. However, intraspecific variation in developmental event timing, if heritable, could provide the raw material from which heterochronies originate. To date, however, heritable developmental event timing has not been demonstrated, although recent work did suggest a genetic basis for intraspecific differences in event timing in the embryonic development of the pond snail, Radix balthica. Consequently, here we used high-resolution (temporal and spatial) imaging of the entire embryonic development of R. balthica to perform a parent–offspring comparison of the timing of twelve, physiological and morphological developmental events. Between-parent differences in the timing of all events were good predictors of such timing differences between their offspring, and heritability was demonstrated for two of these events (foot attachment and crawling). Such heritable intraspecific variation in developmental event timing could be the raw material for speciation events, providing a fundamental link between ontogeny and phylogeny, via heterochrony. PMID:23966639

  4. Timing of Childhood Events and Early-Adult Household Formation.

    ERIC Educational Resources Information Center

    Hill, Martha S.; And Others

    1996-01-01

    Identified a number of risk factors contributing to early household formation. Found that for girls, factors included mother's educational level and birth order; for boys, parental divorce at any stage of childhood. Risk factors common to boys and girls were age of mother at time of child's birth and race. (HTH)

  5. Intermittent control of unstable multivariate systems.

    PubMed

    Loram, I; Gawthrop, P; Gollee, H

    2015-08-01

    A sensorimotor architecture inspired from biological, vertebrate control should (i) explain the interface between high dimensional sensory analysis, low dimensional goals and high dimensional motor mechanisms and (ii) provide both stability and flexibility. Our interest concerns whether single-input-single-output intermittent control (SISO_IC) generalized to multivariable intermittent control (MIC) can meet these requirements.We base MIC on the continuous-time observer-predictorstate-feedback architecture. MIC uses event detection. A system matched hold (SMH), using the underlying continuoustime optimal control design, generates multivariate open-loop control signals between samples of the predicted state. Combined, this serial process provides a single-channel of control with optimised sensor fusion and motor synergies. Quadratic programming provides constrained, optimised equilibrium control design to handle unphysical configurations, redundancy and provides minimum, necessary reduction of open loop instability through optimised joint impedance. In this multivariate form, dimensionality is linked to goals rather than neuromuscular or sensory degrees of freedom. The biological and engineering rationale for intermittent rather than continuous multivariate control, is that the generalised hold sustains open loop predictive control while the open loop interval provides time within the feedback loop for online centralised, state dependent optimisation and selection. PMID:26736539

  6. Pipeline Implementation of Real Time Event Cross Correlation for Nuclear Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Wehlen, J. A., III

    2014-12-01

    The United States National Data Center (US NDC) is responsible for monitoring international compliance to nuclear test ban treaties. This mission is performed through real time acquisition, processing, and evaluation of data acquired by a global network of seismic, hydroacoustic, and infrasonic sensors. Automatic and human reviewed event solutions are stored in a data warehouse which contains over 15 years of alphanumeric information and waveform data. A significant effort is underway to employ the data warehouse in real time processing to improve the quality of automatic event solutions, reduce analyst burden, and supply decision makers with information regarding relevant historic events. To this end, the US NDC processing pipeline has been modified to automatically recognize events built in the past. Event similarity information and the most relevant historic solution are passed to the human analyst to assist their evaluation of automatically formed events. This is achieved through real time cross correlation of selected seismograms from automatically formed events against those stored in the data warehouse. Historic events used in correlation analysis are selected based on a set of user defined parameters, which are tuned to maintain pipeline timeliness requirements. Software architecture and database infrastructure were modified using a multithreaded design for increased processing speed, database connection pools for parallel queries, and Oracle spatial indexing to enhance query efficiency. This functionality allows the human analyst to spend more time studying anomalous events and less time rebuilding routine events.

  7. Real-Time GPS Network Monitors Bayou Corne Sinkhole Event

    NASA Astrophysics Data System (ADS)

    Kent, Joshua D.; Dunaway, Larry

    2013-10-01

    In August 2012 a sinkhole developed in the swampy marshland near the rural community of Bayou Corne in Assumption Parish (i.e., county), Louisiana. The area was evacuated, and some residents have still not been able to return. The sinkhole—which now measures about 450 meters wide and is continuing to grow—is being monitored by multiple systems, including four rapid-response GPS continuously operating reference stations (CORS) called CORS911. The real-time data provided by this system are used by scientists and decision makers to help ensure public safety.

  8. Developmental and Cognitive Perspectives on Humans' Sense of the Times of Past and Future Events

    ERIC Educational Resources Information Center

    Friedman, W.J.

    2005-01-01

    Mental time travel in human adults includes a sense of when past events occurred and future events are expected to occur. Studies with adults and children reveal that a number of distinct psychological processes contribute to a temporally differentiated sense of the past and future. Adults possess representations of multiple time patterns, and…

  9. The Roles of Prior Experience and the Timing of Misinformation Presentation on Young Children's Event Memories

    ERIC Educational Resources Information Center

    Roberts, Kim P.; Powell, Martine B.

    2007-01-01

    The current study addressed how the timing of interviews affected children's memories of unique and repeated events. Five- to six-year-olds (N = 125) participated in activities 1 or 4 times and were misinformed either 3 or 21 days after the only or last event. Although single-experience children were subsequently less accurate in the 21- versus…

  10. Qualitative and event-specific real-time PCR detection methods for Bt brinjal event EE-1.

    PubMed

    Randhawa, Gurinder Jit; Sharma, Ruchi; Singh, Monika

    2012-01-01

    Bt brinjal event EE-1 with cry1Ac gene, expressing insecticidal protein against fruit and shoot borer, is the first genetically modified food crop in the pipeline for commercialization in India. Qualitative polymerase chain reaction (PCR) along with event-specific conventional as well as real-time PCR methods to characterize the event EE-1 is reported. A multiplex (pentaplex) PCR system simultaneously amplifying cry1Ac transgene, Cauliflower Mosaic Virus (CaMV) 35S promoter, nopaline synthase (nos) terminator, aminoglycoside adenyltransferase (aadA) marker gene, and a taxon-specific beta-fructosidase gene in event EE-1 has been developed. Furthermore, construct-specific PCR, targeting the approximate 1.8 kb region of inserted gene construct comprising the region of CaMV 35S promoter and cry1Ac gene has also been developed. The LOD of developed EE-1 specific conventional PCR assay is 0.01%. The method performance of the reported real-time PCR assay was consistent with the acceptance criteria of Codex Alimentarius Commission ALINORM 10/33/23, with the LOD and LOQ values of 0.05%. The developed detection methods would not only facilitate effective regulatory compliance for identification of genetic traits, risk assessment, management, and postrelease monitoring, but also address consumer concerns and resolution of legal disputes. PMID:23451391

  11. Time sequence of events leading to chromosomal aberration formation

    SciTech Connect

    Moore, R.C. ); Bender, M.A. )

    1993-01-01

    Investigations have been carried out which have measured the influence of the repair polymerases on the yield of different types of chromosomal aberrations. The studies were mainly concerned with the effect of inhibiting the polymerases on the yield of aberrations. The polymerases fill in single strand regions, and the fact that their inhibition affects the yield of aberrations suggests that single strand lesions are influential in aberration formation. The results indicate that: (1) There are two actions of polymerases in clastogenesis. One is in their involvement in a G2 repair system, in which the pair of chromatids is concerned, and which does not yield aberrations unless the inhibition is still operating when the cells enter mitosis. The second also operates in G1 and S, and is such that when repair is inhibited, further damage accrues. (2) The second action is affected by inhibiting polymerase but operates even when the repair enzymes are active. (3) The production of chromosomal exchanges involves a series of reactions, some of which are reversible. (4) The time span over which the reactions occur is much longer than has been envisaged previously (e.g., most of a cell cycle). 29 refs., 1 fig.

  12. Time sequence of events leading to chromosomal aberration formation

    SciTech Connect

    Moore, R.C. ); Bender, M.A. )

    1993-01-01

    Investigations have been carried out on the influence of the repair polymerases on the yield of different types of chromosomal aberrations. The studies were mainly concerned with the effect of inhibiting the polymerases on the yield of aberrations. The polymerases fill in single-strand regions, and the fact that their inhibition affects the yield of aberrations suggests that single-strand lesions are influential in aberration formation. The results indicate that there are two actions of polymerases in clastogenesis. One is in their involvement in a G[sub 2] repair system, in which either of the two chromatids is concerned, and which does not yield aberrations unless the inhibition is still operating when the cells enter mitosis. The second is such that when repair is inhibited, further damage accrues. The second action is affected by inhibiting polymerase repair, but also operates even when the repair enzymes are active. The production of chromosomal exchanges involves a series of reactions, some of which are reversible. The time span over which the reactions occur is much longer than has been envisaged previously.

  13. Time sequence of events leading to chromosomal aberration formation

    SciTech Connect

    Moore, R.C.; Bender, M.A.

    1993-05-01

    Investigations have been carried out on the influence of the repair polymerases on the yield of different types of chromosomal aberrations. The studies were mainly concerned with the effect of inhibiting the polymerases on the yield of aberrations. The polymerases fill in single-strand regions, and the fact that their inhibition affects the yield of aberrations suggests that single-strand lesions are influential in aberration formation. The results indicate that there are two actions of polymerases in clastogenesis. One is in their involvement in a G{sub 2} repair system, in which either of the two chromatids is concerned, and which does not yield aberrations unless the inhibition is still operating when the cells enter mitosis. The second is such that when repair is inhibited, further damage accrues. The second action is affected by inhibiting polymerase repair, but also operates even when the repair enzymes are active. The production of chromosomal exchanges involves a series of reactions, some of which are reversible. The time span over which the reactions occur is much longer than has been envisaged previously.

  14. Cognitive tasks in information analysis: Use of event dwell time to characterize component activities

    SciTech Connect

    Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

    2004-09-28

    Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing “cognitive signatures” of complex activities, and can facilitate the development of technology aids for information intensive tasks.

  15. Time, space, and events in language and cognition: a comparative view.

    PubMed

    Sinha, Chris; Gärdenfors, Peter

    2014-10-01

    We propose an event-based account of the cognitive and linguistic representation of time and temporal relations. Human beings differ from nonhuman animals in entertaining and communicating elaborate detached (as opposed to cued) event representations and temporal relational schemas. We distinguish deictically based (D-time) from sequentially based (S-time) representations, identifying these with the philosophical categories of A-series and B-series time. On the basis of cross-linguistic data, we claim that all cultures employ both D-time and S-time representations. We outline a cognitive model of event structure, emphasizing that this does not entail an explicit, separate representation of a time dimension. We propose that the notion of an event-independent, metric "time as such" is not universal, but a cultural and historical construction based on cognitive technologies for measuring time intervals. We critically examine claims that time is universally conceptualized in terms of spatial metaphors, and hypothesize that systematic space-time metaphor is only found in languages and cultures that have constructed the notion of time as a separate dimension. We emphasize the importance of distinguishing what is universal from what is variable in cultural and linguistic representations of time, and speculate on the general implications of an event-based understanding of time. PMID:25098724

  16. Monitoring Natural Events Globally in Near Real-Time Using NASA's Open Web Services and Tools

    NASA Technical Reports Server (NTRS)

    Boller, Ryan A.; Ward, Kevin Alan; Murphy, Kevin J.

    2015-01-01

    Since 1960, NASA has been making global measurements of the Earth from a multitude of space-based missions, many of which can be useful for monitoring natural events. In recent years, these measurements have been made available in near real-time, making it possible to use them to also aid in managing the response to natural events. We present the challenges and ongoing solutions to using NASA satellite data for monitoring and managing these events.

  17. Conditions for Recurrence of a Flow of Physical Events with Unextendable Dead Time Period

    NASA Astrophysics Data System (ADS)

    Nezhel'skaya, L. A.

    2016-04-01

    A flow of physical events (photons, electrons, etc.) is studied. One of the mathematical models of such flows is the modulated MAP flow of events circulating under conditions of unextendable dead time period. The explicit form of the probability density of interarrival interval of the flow is presented together with the explicit form of the joint probability density of two adjacent intervals in the observed flow. The conditions for recurrence of the observable flow of events are presented.

  18. Orbital chronology for the Cenomanian-Turonian Oceanic Anoxic Event 2 and the timing of the "Plenus Cold Event"

    NASA Astrophysics Data System (ADS)

    Voigt, Silke; Erbacher, Jochen; Pälike, Heiko; Westerhold, Thomas

    2015-04-01

    The Cenomanian-Turonian OAE 2 is reflected by one of the most extreme carbon cycle perturbations in Earth's history possibly triggered by massive volcanic CO2 degassing during the emplacement of large igneous provinces (LIPs). Severe climatic, oceanographic and biotic feedbacks are reported from different depositional settings. The nature of these changes as well as their spatial and temporal dimension is still not well understood to date. The main difficulty to integrate different observations in different locations is the insufficient resolution of available timescales and stratigraphies. Although new radiometric ages exists for the stratotype section at Pueblo and regional orbital age models are developed from shelf settings from both sides of the Atlantic Ocean, their correlation to the open ocean is not unequivocal. Here, we present a cyclostratigraphic correlation based on time series analyses of relative changes in XRF-element concentrations derived from two sites, the oceanic ODP-Site 1261 (Demerara Rise, tropical Western Atlantic) and a mid-latitude shelf-sea locality exposed in the Wunstorf Core (Germany). Both successions expose distinct sedimentary cycles as well as a brief period of intermittent surface-water cooling and bottom water oxygenation ("Plenus Cold Event" in western Europe) during the early OAE 2 which is considered as synchronous event by several authors. The estimated overall duration of OAE 2 is about 5 and 4.5 short eccentricity cycles for both Site 1261 and Wunstorf. For correlation purposes the independently derived floating orbital time scales of Site 1261 and Wunstorf are tied to each other using the first prominent increase of the δ13C anomaly, a characteristic feature of all OAE 2 successions. Sedimentary cycles, interpreted as short eccentricity cycles during OAE 2, are correlated between the two different depositional settings. Based on this correlation the cooling pulses recorded in the tropical Atlantic and the European mid

  19. Real-Time Forecasting Of Streamflow And Water Loss/Gain In A River System By Using A Robust Multivariate Bayesian Regression Model

    NASA Astrophysics Data System (ADS)

    Ticlavilca, A. M.; McKee, M.; Walker, W.

    2009-12-01

    This research presents a model that simultaneously forecasts streamflow one and two days ahead, and water loss/gain in a river reach between two reservoirs one day ahead and for the next two days. The reservoir operator can take into account these real-time predictions and decide whether to increase/decrease the releases from the upstream reservoir in order to compensate the water loss/gain and manage the streamflow entering the downstream reservoir efficiently. The model inputs are the past daily data of climate (maximum and minimum temperature), streamflow, reservoir releases, water loss/gain in the river, and irrigation canal diversions. The model is developed in the form of a multivariate relevance vector machine (MVRVM) that is based on a multivariate Bayesian regression approach. Based on this Bayesian approach, a predictive confidence interval is obtained from the model that captures the uncertainty of both the model and the data. The model is applied to the river system located in the Lower Sevier River Basin near Delta, Utah. The results show that the model learns the input-output patterns with good accuracy. A bootstrap analysis is used to guarantee robustness of the estimated model parameters. Test results demonstrate good performance of predictions and statistics that indicate robust model generalization abilities.

  20. A novel way to detect correlations on multi-time scales, with temporal evolution and for multi-variables

    NASA Astrophysics Data System (ADS)

    Yuan, Naiming; Xoplaki, Elena; Zhu, Congwen; Luterbacher, Juerg

    2016-06-01

    In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-significant between 1865–1875. As for SRYR and PDO, significant correlations are found on time scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, which compared to traditional methods, can objectively show how two time series are related (on which time scale, during which time period). These are important not only for diagnosis of complex system, but also for better designs of prediction models. Therefore, the new methods offer new opportunities for applications in natural sciences, such as ecology, economy, sociology and other research fields.

  1. A novel way to detect correlations on multi-time scales, with temporal evolution and for multi-variables

    PubMed Central

    Yuan, Naiming; Xoplaki, Elena; Zhu, Congwen; Luterbacher, Juerg

    2016-01-01

    In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-significant between 1865–1875. As for SRYR and PDO, significant correlations are found on time scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, which compared to traditional methods, can objectively show how two time series are related (on which time scale, during which time period). These are important not only for diagnosis of complex system, but also for better designs of prediction models. Therefore, the new methods offer new opportunities for applications in natural sciences, such as ecology, economy, sociology and other research fields. PMID:27293028

  2. A novel way to detect correlations on multi-time scales, with temporal evolution and for multi-variables.

    PubMed

    Yuan, Naiming; Xoplaki, Elena; Zhu, Congwen; Luterbacher, Juerg

    2016-01-01

    In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-significant between 1865-1875. As for SRYR and PDO, significant correlations are found on time scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, which compared to traditional methods, can objectively show how two time series are related (on which time scale, during which time period). These are important not only for diagnosis of complex system, but also for better designs of prediction models. Therefore, the new methods offer new opportunities for applications in natural sciences, such as ecology, economy, sociology and other research fields. PMID:27293028

  3. A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates.

    PubMed

    Bartolucci, Francesco; Farcomeni, Alessio

    2015-03-01

    Mixed latent Markov (MLM) models represent an important tool of analysis of longitudinal data when response variables are affected by time-fixed and time-varying unobserved heterogeneity, in which the latter is accounted for by a hidden Markov chain. In order to avoid bias when using a model of this type in the presence of informative drop-out, we propose an event-history (EH) extension of the latent Markov approach that may be used with multivariate longitudinal data, in which one or more outcomes of a different nature are observed at each time occasion. The EH component of the resulting model is referred to the interval-censored drop-out, and bias in MLM modeling is avoided by correlated random effects, included in the different model components, which follow common latent distributions. In order to perform maximum likelihood estimation of the proposed model by the expectation-maximization algorithm, we extend the usual forward-backward recursions of Baum and Welch. The algorithm has the same complexity as the one adopted in cases of non-informative drop-out. We illustrate the proposed approach through simulations and an application based on data coming from a medical study about primary biliary cirrhosis in which there are two outcomes of interest, one continuous and the other binary. PMID:25227970

  4. Schizophrenia Spectrum Disorders Show Reduced Specificity and Less Positive Events in Mental Time Travel.

    PubMed

    Chen, Xing-Jie; Liu, Lu-Lu; Cui, Ji-Fang; Wang, Ya; Chen, An-Tao; Li, Feng-Hua; Wang, Wei-Hong; Zheng, Han-Feng; Gan, Ming-Yuan; Li, Chun-Qiu; Shum, David H K; Chan, Raymond C K

    2016-01-01

    Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958

  5. Schizophrenia Spectrum Disorders Show Reduced Specificity and Less Positive Events in Mental Time Travel

    PubMed Central

    Chen, Xing-jie; Liu, Lu-lu; Cui, Ji-fang; Wang, Ya; Chen, An-tao; Li, Feng-hua; Wang, Wei-hong; Zheng, Han-feng; Gan, Ming-yuan; Li, Chun-qiu; Shum, David H. K.; Chan, Raymond C. K.

    2016-01-01

    Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958

  6. Penalised logistic regression and dynamic prediction for discrete-time recurrent event data.

    PubMed

    Elgmati, Entisar; Fiaccone, Rosemeire L; Henderson, R; Matthews, John N S

    2015-10-01

    We consider methods for the analysis of discrete-time recurrent event data, when interest is mainly in prediction. The Aalen additive model provides an extremely simple and effective method for the determination of covariate effects for this type of data, especially in the presence of time-varying effects and time varying covariates, including dynamic summaries of prior event history. The method is weakened for predictive purposes by the presence of negative estimates. The obvious alternative of a standard logistic regression analysis at each time point can have problems of stability when event frequency is low and maximum likelihood estimation is used. The Firth penalised likelihood approach is stable but in removing bias in regression coefficients it introduces bias into predicted event probabilities. We propose an alterative modified penalised likelihood, intermediate between Firth and no penalty, as a pragmatic compromise between stability and bias. Illustration on two data sets is provided. PMID:25626559

  7. Fisher's theorems for multivariable, time- and space-dependent systems, with applications in population genetics and chemical kinetics

    PubMed Central

    Vlad, Marcel O.; Szedlacsek, Stefan E.; Pourmand, Nader; Cavalli-Sforza, L. Luca; Oefner, Peter; Ross, John

    2005-01-01

    We study different physical, chemical, or biological processes involving replication, transformation, and disappearance processes, as well as transport processes, and assume that the time and space dependence of the species densities are known. We derive two types of Fisher equations. The first type relates the average value of the time derivative of the relative time-specific rates of growth of the different species to the variance of the relative, time-specific rates of growth. A second type relates the average value of the gradient or the divergence of the relative, space-specific rates of growth to the space correlation matrix of the relative, space-specific rates of growth. These Fisher equations are exact results, which are independent of the detailed kinetics of the process: they are valid whether the evolution equations are linear or nonlinear, local or nonlocal in space and/or time and can be applied for the study of a large class of physical, chemical, and biological systems described in terms of time- and/or space-dependent density fields. We examine the implications of our generalized Fisher relations in population genetics, biochemistry, and chemical kinetics (reaction–diffusion systems). We show that there is a connection between the enhanced (hydrodynamic) transport of mutations induced by population growth and space-specific rate vectors: the velocity of enhanced transport is proportional to the product of the diffusion coefficient of the species and the space rate vector; this relation is similar to a fluctuation–dissipation relation in statistical mechanics. PMID:15994224

  8. Forecasting dose-time profiles of solar particle events using a dosimetry-based forecasting methodology

    NASA Astrophysics Data System (ADS)

    Neal, John Stuart

    2001-10-01

    A dosimetery-based Bayesian methodology for forecasting astronaut radiation doses in deep space due to radiologically significant solar particle event proton fluences is developed. Three non-linear sigmoidal growth curves (Gompertz, Weibull, logistic) are used with hierarchical, non-linear, regression models to forecast solar particle event dose-time profiles from doses obtained early in the development of the event. Since there are no detailed measurements of dose versus time for actual events, surrogate dose data are provided by calculational methods. Proton fluence data are used as input to the deterministic, coupled neutron-proton space radiation computer code, BRYNTRN, for transporting protons and their reaction products (protons, neutrons, 2H, 3H, 3He, and 4He) through aluminum shielding material and water. Calculated doses and dose rates for ten historical solar particle events are used as the input data by grouping similar historical solar particle events, using asymptotic dose and maximum dose rate as the grouping criteria. These historical data are then used to lend strength to predictions of dose and dose rate-time profiles for new solar particle events. Bayesian inference techniques are used to make parameter estimates and predictive forecasts. Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior distributions. Hierarchical, non-linear regression models provide useful predictions of asymptotic dose and dose-time profiles for the November 8, 2000 and August 12, 1989 solar particle events. Predicted dose rate-time profiles are adequate for the November 8, 2000 solar particle event. Predictions of dose rate-time profiles for the August 12, 1989 solar particle event suffer due to a more complex dose rate-time profile. Forecasts provide a valuable tool to space operations planners when making recommendations concerning operations in which radiological exposure might jeopardize personal safety or mission completion. This work

  9. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays.

    PubMed

    Krstajić, Nikola; Poland, Simon; Levitt, James; Walker, Richard; Erdogan, Ahmet; Ameer-Beg, Simon; Henderson, Robert K

    2015-09-15

    We present a digital architecture for fast acquisition of time correlated single photon counting (TCSPC) events from a 32×32 complementary metal oxide semiconductor (CMOS) single photon avalanche detector (SPAD) array (Megaframe) to the computer memory. Custom firmware was written to transmit event codes from 1024-TCSPC-enabled pixels for fast transfer of TCSPC events. Our 1024-channel TCSPC system is capable of acquiring up to 0.5×10(9) TCSPC events per second with 16 histogram bins spanning a 14 ns width. Other options include 320×10(6) TCSPC events per second with 256 histogram bins spanning either a 14 or 56 ns time window. We present a wide-field fluorescence microscopy setup demonstrating fast fluorescence lifetime data acquisition. To the best of our knowledge, this is the fastest direct TCSPC transfer from a single photon counting device to the computer to date. PMID:26371922

  10. Real-time, time-frequency mapping of event-related cortical activation

    NASA Astrophysics Data System (ADS)

    Cheung, Connie; Chang, Edward F.

    2012-08-01

    Functional mapping of eloquent cortex is a common and necessary component of neurosurgical operative planning. Current electrical stimulation-based techniques are inefficient, can evoke seizures and are prone to false-negative results. Here, we present a novel cortical mapping system that extracts event-related neural activity from passive electrocorticographic recordings to quickly and accurately localize sensory and motor cortices using the precise temporal properties of spectral alteration. This procedure generates a robust functional motor and sensory cortical map in seconds, and usually with less than five to ten trial events. Our algorithm demonstrates high concordance with results derived using independent electrical cortical stimulation mapping.

  11. A multivariate time-frequency method to characterize the influence of respiration over heart period and arterial pressure

    NASA Astrophysics Data System (ADS)

    Orini, Michele; Bailón, Raquel; Laguna, Pablo; Mainardi, Luca T.; Barbieri, Riccardo

    2012-12-01

    Respiratory activity introduces oscillations both in arterial pressure and heart period, through mechanical and autonomic mechanisms. Respiration, arterial pressure, and heart period are, generally, non-stationary processes and the interactions between them are dynamic. In this study we present a methodology to robustly estimate the time course of cross spectral indices to characterize dynamic interactions between respiratory oscillations of heart period and blood pressure, as well as their interactions with respiratory activity. Time-frequency distributions belonging to Cohen's class are used to estimate time-frequency (TF) representations of coherence, partial coherence and phase difference. The characterization is based on the estimation of the time course of cross spectral indices estimated in specific TF regions around the respiratory frequency. We used this methodology to describe the interactions between respiration, heart period variability (HPV) and systolic arterial pressure variability (SAPV) during tilt table test with both spontaneous and controlled respiratory patterns. The effect of selective autonomic blockade was also studied. Results suggest the presence of common underling mechanisms of regulation between cardiovascular signals, whose interactions are time-varying. SAPV changes followed respiratory flow both in supine and standing positions and even after selective autonomic blockade. During head-up tilt, phase differences between respiration and SAPV increased. Phase differences between respiration and HPV were comparable to those between respiration and SAPV during supine position, and significantly increased during standing. As a result, respiratory oscillations in SAPV preceded respiratory oscillations in HPV during standing. Partial coherence was the most sensitive index to orthostatic stress. Phase difference estimates were consistent among spontaneous and controlled breathing patterns, whereas coherence was higher in spontaneous breathing

  12. WAITING TIME DISTRIBUTION OF SOLAR ENERGETIC PARTICLE EVENTS MODELED WITH A NON-STATIONARY POISSON PROCESS

    SciTech Connect

    Li, C.; Su, W.; Fang, C.; Zhong, S. J.; Wang, L.

    2014-09-10

    We present a study of the waiting time distributions (WTDs) of solar energetic particle (SEP) events observed with the spacecraft WIND and GOES. The WTDs of both solar electron events (SEEs) and solar proton events (SPEs) display a power-law tail of ∼Δt {sup –γ}. The SEEs display a broken power-law WTD. The power-law index is γ{sub 1} = 0.99 for the short waiting times (<70 hr) and γ{sub 2} = 1.92 for large waiting times (>100 hr). The break of the WTD of SEEs is probably due to the modulation of the corotating interaction regions. The power-law index, γ ∼ 1.82, is derived for the WTD of the SPEs which is consistent with the WTD of type II radio bursts, indicating a close relationship between the shock wave and the production of energetic protons. The WTDs of SEP events can be modeled with a non-stationary Poisson process, which was proposed to understand the waiting time statistics of solar flares. We generalize the method and find that, if the SEP event rate λ = 1/Δt varies as the time distribution of event rate f(λ) = Aλ{sup –α}exp (– βλ), the time-dependent Poisson distribution can produce a power-law tail WTD of ∼Δt {sup α} {sup –3}, where 0 ≤ α < 2.

  13. Early Event-Related Potentials Correlate with Inspection Time and Intelligence.

    ERIC Educational Resources Information Center

    Caryl, P. G.

    1994-01-01

    Vertex event-related potentials (ERPs) were obtained from undergraduates performing an inspection time task together with measures of inspection time (n=35) and mental ability (n=28). Techniques that reveal changes over time in the relationship between ERP measures and psychometric indices were presented. (SLD)

  14. Spatial Cueing in Time-Space Synesthetes: An Event-Related Brain Potential Study

    ERIC Educational Resources Information Center

    Teuscher, Ursina; Brang, David; Ramachandran, Vilayanur S.; Coulson, Seana

    2010-01-01

    Some people report that they consistently and involuntarily associate time events, such as months of the year, with specific spatial locations; a condition referred to as time-space synesthesia. The present study investigated the manner in which such synesthetic time-space associations affect visuo-spatial attention via an endogenous cuing…

  15. Improving linear accelerator service response with a real- time electronic event reporting system.

    PubMed

    Hoisak, Jeremy D P; Pawlicki, Todd; Kim, Gwe-Ya; Fletcher, Richard; Moore, Kevin L

    2014-01-01

    To track linear accelerator performance issues, an online event recording system was developed in-house for use by therapists and physicists to log the details of technical problems arising on our institution's four linear accelerators. In use since October 2010, the system was designed so that all clinical physicists would receive email notification when an event was logged. Starting in October 2012, we initiated a pilot project in collaboration with our linear accelerator vendor to explore a new model of service and support, in which event notifications were also sent electronically directly to dedicated engineers at the vendor's technical help desk, who then initiated a response to technical issues. Previously, technical issues were reported by telephone to the vendor's call center, which then disseminated information and coordinated a response with the Technical Support help desk and local service engineers. The purpose of this work was to investigate the improvements to clinical operations resulting from this new service model. The new and old service models were quantitatively compared by reviewing event logs and the oncology information system database in the nine months prior to and after initiation of the project. Here, we focus on events that resulted in an inoperative linear accelerator ("down" machine). Machine downtime, vendor response time, treatment cancellations, and event resolution were evaluated and compared over two equivalent time periods. In 389 clinical days, there were 119 machine-down events: 59 events before and 60 after introduction of the new model. In the new model, median time to service response decreased from 45 to 8 min, service engineer dispatch time decreased 44%, downtime per event decreased from 45 to 20 min, and treatment cancellations decreased 68%. The decreased vendor response time and reduced number of on-site visits by a service engineer resulted in decreased downtime and decreased patient treatment cancellations. PMID

  16. Multiple imputation for multivariate data with missing and below-threshold measurements: time-series concentrations of pollutants in the Arctic.

    PubMed

    Hopke, P K; Liu, C; Rubin, D B

    2001-03-01

    Many chemical and environmental data sets are complicated by the existence of fully missing values or censored values known to lie below detection thresholds. For example, week-long samples of airborne particulate matter were obtained at Alert, NWT, Canada, between 1980 and 1991, where some of the concentrations of 24 particulate constituents were coarsened in the sense of being either fully missing or below detection limits. To facilitate scientific analysis, it is appealing to create complete data by filling in missing values so that standard complete-data methods can be applied. We briefly review commonly used strategies for handling missing values and focus on the multiple-imputation approach, which generally leads to valid inferences when faced with missing data. Three statistical models are developed for multiply imputing the missing values of airborne particulate matter. We expect that these models are useful for creating multiple imputations in a variety of incomplete multivariate time series data sets. PMID:11252602

  17. Near Optimal Event-Triggered Control of Nonlinear Discrete-Time Systems Using Neurodynamic Programming.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-09-01

    This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP. PMID:26285220

  18. Negative Emotional Events that People Ruminate about Feel Closer in Time

    PubMed Central

    Siedlecka, Ewa; Capper, Miriam M.; Denson, Thomas F.

    2015-01-01

    Rumination is intrusive, perseverative cognition. We suggest that one psychological consequence of ruminating about negative emotional events is that the events feel as though they happened metaphorically “just yesterday”. Results from three studies showed that ruminating about real world anger provocations, guilt-inducing events, and sad times in the last year made these past events feel as though they happened more recently. The relationship between rumination and reduced temporal psychological distance persisted even when controlling for when the event occurred and the emotional intensity of the event. Moreover, angry rumination was correlated with enhanced approach motivation, which mediated the rumination-distance relationship. The relationship between guilty rumination and distance was mediated by enhanced vividness. Construal level and taking a 3rd person perspective contributed to the sense of distance when participants were prompted to think about less emotionally charged situations. A meta-analysis of the data showed that the relationship between rumination and reduced distance was significant and twice as large as the same relationship for neutral events. These findings have implications for understanding the role of emotional rumination on memory processes in clinical populations and people prone to rumination. This research suggests that rumination may be a critical mechanism that keeps negative events close in the heart, mind, and time. PMID:25714395

  19. Inter event times of fluid induced earthquakes suggest their Poisson nature

    NASA Astrophysics Data System (ADS)

    Langenbruch, C.; Dinske, C.; Shapiro, S. A.

    2011-11-01

    We analyze the inter event time distribution of fluid-injection-induced earthquakes for six catalogs collected at geothermal injection sites at Soultz-sous-Forêts and Basel. We find that the distribution of waiting times during phases of constant seismicity rate coincides with the exponential distribution of the homogeneous Poisson process (HPP). We analyze the waiting times for the complete event catalogs and find that, as for naturally occurring earthquakes, injection induced earthquakes are distributed according to a non homogeneous Poisson process in time. Moreover, the process of event occurrence in the injection volume domain is a HPP. These results indicate that fluid-injection-induced earthquakes are directly triggered by the loading induced by the fluid injection. We also consider the spatial distance between events and perform a nearest neighbor analysis in the time-space-magnitude domain. Our analysis including a comparison to a synthetic catalog created according to the ETAS model reveals no signs of causal relationships between events. Therefore, coupling effects between events are very weak. The Poisson model seems to be a very good approximation of fluid induced seismicity.

  20. Case-based damage assessment of storm events in near real-time

    NASA Astrophysics Data System (ADS)

    Möhrle, Stella; Mühr, Bernhard

    2015-04-01

    Damage assessment in times of crisis is complex due to a highly dynamic environment and uncertainty in respect of available information. In order to assess the extent of a disaster in near real-time, historic events and their consequences may facilitate first estimations. Events of the past, which are in the same category or which have similar frame conditions like imminent or just occurring storms, might give preliminary information about possible damages. The challenge here is to identify useful historic events based on little information regarding the current event. This work investigates the potential of drawing conclusions about a current event based on similar historic disasters, exemplarily for storm events in Germany. Predicted wind speed and area affected can be used for roughly classifying a storm event. For this purpose, a grid of equidistant points can be used to split up the area of Germany. In combination with predicted wind speed at these points and the predicted number of points affected, respectively, a storm can be categorized in a fast manner. In contrast to investigate only data taken by the observation network, the grid approach is more objective, since stations are not equally distributed. Based on model data, the determined storm class provides one key factor for identifying similar historic events. Further aspects, such as region or specific event characteristics, complete knowledge about the potential storm scale and result in a similarity function, which automatically identifies useful events from the past. This work presents a case-based approach to estimate damages in the event of an extreme storm event in Germany. The focus in on the similarity function, which is based on model storm classes, particularly wind speed and area affected. In order to determine possible damages more precisely, event specific characteristics and region will be included. In the frame of determining similar storm events, neighboring storm classes will be

  1. Multivariate Analyses and Classification of Inertial Sensor Data to Identify Aging Effects on the Timed-Up-and-Go Test

    PubMed Central

    Vervoort, Danique; Vuillerme, Nicolas; Kosse, Nienke; Hortobágyi, Tibor; Lamoth, Claudine J. C.

    2016-01-01

    Many tests can crudely quantify age-related mobility decrease but instrumented versions of mobility tests could increase their specificity and sensitivity. The Timed-up-and-Go (TUG) test includes several elements that people use in daily life. The test has different transition phases: rise from a chair, walk, 180° turn, walk back, turn, and sit-down on a chair. For this reason the TUG is an often used test to evaluate in a standardized way possible decline in balance and walking ability due to age and or pathology. Using inertial sensors, qualitative information about the performance of the sub-phases can provide more specific information about a decline in balance and walking ability. The first aim of our study was to identify variables extracted from the instrumented timed-up-and-go (iTUG) that most effectively distinguished performance differences across age (age 18–75). Second, we determined the discriminative ability of those identified variables to classify a younger (age 18–45) and older age group (age 46–75). From healthy adults (n = 59), trunk accelerations and angular velocities were recorded during iTUG performance. iTUG phases were detected with wavelet-analysis. Using a Partial Least Square (PLS) model, from the 72-iTUG variables calculated across phases, those that explained most of the covariance between variables and age were extracted. Subsequently, a PLS-discriminant analysis (DA) assessed classification power of the identified iTUG variables to discriminate the age groups. 27 variables, related to turning, walking and the stand-to-sit movement explained 71% of the variation in age. The PLS-DA with these 27 variables showed a sensitivity and specificity of 90% and 85%. Based on this model, the iTUG can accurately distinguish young and older adults. Such data can serve as a reference for pathological aging with respect to a widely used mobility test. Mobility tests like the TUG supplemented with smart technology could be used in clinical

  2. Multivariate Analyses and Classification of Inertial Sensor Data to Identify Aging Effects on the Timed-Up-and-Go Test.

    PubMed

    Vervoort, Danique; Vuillerme, Nicolas; Kosse, Nienke; Hortobágyi, Tibor; Lamoth, Claudine J C

    2016-01-01

    Many tests can crudely quantify age-related mobility decrease but instrumented versions of mobility tests could increase their specificity and sensitivity. The Timed-up-and-Go (TUG) test includes several elements that people use in daily life. The test has different transition phases: rise from a chair, walk, 180° turn, walk back, turn, and sit-down on a chair. For this reason the TUG is an often used test to evaluate in a standardized way possible decline in balance and walking ability due to age and or pathology. Using inertial sensors, qualitative information about the performance of the sub-phases can provide more specific information about a decline in balance and walking ability. The first aim of our study was to identify variables extracted from the instrumented timed-up-and-go (iTUG) that most effectively distinguished performance differences across age (age 18-75). Second, we determined the discriminative ability of those identified variables to classify a younger (age 18-45) and older age group (age 46-75). From healthy adults (n = 59), trunk accelerations and angular velocities were recorded during iTUG performance. iTUG phases were detected with wavelet-analysis. Using a Partial Least Square (PLS) model, from the 72-iTUG variables calculated across phases, those that explained most of the covariance between variables and age were extracted. Subsequently, a PLS-discriminant analysis (DA) assessed classification power of the identified iTUG variables to discriminate the age groups. 27 variables, related to turning, walking and the stand-to-sit movement explained 71% of the variation in age. The PLS-DA with these 27 variables showed a sensitivity and specificity of 90% and 85%. Based on this model, the iTUG can accurately distinguish young and older adults. Such data can serve as a reference for pathological aging with respect to a widely used mobility test. Mobility tests like the TUG supplemented with smart technology could be used in clinical practice

  3. Characterization of poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium pentoxide substrates using time-of-flight secondary ion mass spectrometry and multivariate analysis.

    PubMed

    Wagner, M S; Pasche, S; Castner, D G; Textor, M

    2004-03-01

    Control of protein adsorption onto solid surfaces is a critical area of biomaterials and biosensors research. Application of high performance surface analysis techniques to these problems can improve the rational design and understanding of coatings that control protein adsorption. We have used static time-of-flight secondary ion mass spectrometry (TOF-SIMS) to investigate several poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) adlayers adsorbed electrostatically onto negatively charged niobium pentoxide (Nb(2)O(5)) substrates. By varying the PEG graft ratio (i.e., the number of lysine monomers per grafted PEG chain) and the molecular weights of the PLL and PEG polymers, the amount of protein adsorption can be tailored between 1 and 300 ng/cm(2). Detailed multivariate analysis using principal component analysis (PCA) of the positive and negative ion TOF-SIMS spectra showed changes in the outermost surface of the polymer films that were related to the density and molecular weight of the PEG chains on the surface. However, no significant differences were noted due to PLL molecular weight, despite observed differences in the serum adsorption characteristics for adlayers of PLL-g-PEG polymers with different PLL molecular weights. From the PCA results, multivariate peak intensity ratios were developed that correlated with the thickness of the adlayer and the enrichment of the PEG chains and the methoxy terminus of the PEG chains at the outermost surface of the adlayer. Furthermore, partial least squares regression was used to correlate the TOF-SIMS spectra with the amount of protein adsorption, resulting in a predictive model for determining the amount of protein adsorption on the basis of the TOF-SIMS spectra. The accuracy of the prediction of the amount of serum adsorption depended on the molecular weight of the PLL and PEG polymers and the PEG graft ratio. The combination of multivariate analysis and static TOF-SIMS provides detailed information on the surface

  4. A LORETA study of mental time travel: similar and distinct electrophysiological correlates of re-experiencing past events and pre-experiencing future events.

    PubMed

    Lavallee, Christina F; Persinger, Michael A

    2010-12-01

    Previous studies exploring mental time travel paradigms with functional neuroimaging techniques have uncovered both common and distinct neural correlates of re-experiencing past events or pre-experiencing future events. A gap in the mental time travel literature exists, as paradigms have not explored the affective component of re-experiencing past episodic events; this study explored this sparsely researched area. The present study employed standardized low resolution electromagnetic tomography (sLORETA) to identify electrophysiological correlates of re-experience affect-laden and non-affective past events, as well as pre-experiencing a future anticipated event. Our results confirm previous research and are also novel in that we illustrate common and distinct electrophysiological correlates of re-experiencing affective episodic events. Furthermore, research from this experiment yields results outlining a pattern of activation in the frontal and temporal regions is correlated with the time frame of past or future events subjects imagined. PMID:20598583

  5. Time distributions of solar energetic particle events: Are SEPEs really random?

    NASA Astrophysics Data System (ADS)

    Jiggens, P. T. A.; Gabriel, S. B.

    2009-10-01

    Solar energetic particle events (SEPEs) can exhibit flux increases of several orders of magnitude over background levels and have always been considered to be random in nature in statistical models with no dependence of any one event on the occurrence of previous events. We examine whether this assumption of randomness in time is correct. Engineering modeling of SEPEs is important to enable reliable and efficient design of both Earth-orbiting and interplanetary spacecraft and future manned missions to Mars and the Moon. All existing engineering models assume that the frequency of SEPEs follows a Poisson process. We present analysis of the event waiting times using alternative distributions described by Lévy and time-dependent Poisson processes and compared these with the usual Poisson distribution. The results show significant deviation from a Poisson process and indicate that the underlying physical processes might be more closely related to a Lévy-type process, suggesting that there is some inherent “memory” in the system. Inherent Poisson assumptions of stationarity and event independence are investigated, and it appears that they do not hold and can be dependent upon the event definition used. SEPEs appear to have some memory indicating that events are not completely random with activity levels varying even during solar active periods and are characterized by clusters of events. This could have significant ramifications for engineering models of the SEP environment, and it is recommended that current statistical engineering models of the SEP environment should be modified to incorporate long-term event dependency and short-term system memory.

  6. Classification and Space-Time Analysis of Precipitation Events in Manizales, Caldas, Colombia.

    NASA Astrophysics Data System (ADS)

    Suarez Hincapie, J. N.; Vélez, J.; Romo Melo, L.; Chang, P.

    2015-12-01

    Manizales is a mid-mountain Andean city located near the Nevado del Ruiz volcano in west-central Colombia, this location exposes it to earthquakes, floods, landslides and volcanic eruptions. It is located in the intertropical convergence zone (ITCZ) and presents a climate with a bimodal rainfall regime (Cortés, 2010). Its mean annual rainfall is 2000 mm, one may observe precipitation 70% of the days over a year. This rain which favors the formation of large masses of clouds and the presence of macroclimatic phenomenon as "El Niño South Oscillation", has historically caused great impacts in the region (Vélez et al, 2012). For example the geographical location coupled with rain events results in a high risk of landslides in the city. Manizales has a hydrometeorological network of 40 stations that measure and transmit data of up to eight climate variables. Some of these stations keep 10 years of historical data. However, until now this information has not been used for space-time classification of precipitation events, nor has the meteorological variables that influence them been thoroughly researched. The purpose of this study was to classify historical events of rain in an urban area of Manizales and investigate patterns of atmospheric behavior that influence or trigger such events. Classification of events was performed by calculating the "n" index of the heavy rainfall, describing the behavior of precipitation as a function of time throughout the event (Monjo, 2009). The analysis of meteorological variables was performed using statistical quantification over variable time periods before each event. The proposed classification allowed for an analysis of the evolution of rainfall events. Specially, it helped to look for the influence of different meteorological variables triggering rainfall events in hazardous areas as the city of Manizales.

  7. The role of musical training in emergent and event-based timing

    PubMed Central

    Baer, L. H.; Thibodeau, J. L. N.; Gralnick, T. M.; Li, K. Z. H.; Penhune, V. B.

    2013-01-01

    Introduction: Musical performance is thought to rely predominantly on event-based timing involving a clock-like neural process and an explicit internal representation of the time interval. Some aspects of musical performance may rely on emergent timing, which is established through the optimization of movement kinematics, and can be maintained without reference to any explicit representation of the time interval. We predicted that musical training would have its largest effect on event-based timing, supporting the dissociability of these timing processes and the dominance of event-based timing in musical performance. Materials and Methods: We compared 22 musicians and 17 non-musicians on the prototypical event-based timing task of finger tapping and on the typically emergently timed task of circle drawing. For each task, participants first responded in synchrony with a metronome (Paced) and then responded at the same rate without the metronome (Unpaced). Results: Analyses of the Unpaced phase revealed that non-musicians were more variable in their inter-response intervals for finger tapping compared to circle drawing. Musicians did not differ between the two tasks. Between groups, non-musicians were more variable than musicians for tapping but not for drawing. We were able to show that the differences were due to less timer variability in musicians on the tapping task. Correlational analyses of movement jerk and inter-response interval variability revealed a negative association for tapping and a positive association for drawing in non-musicians only. Discussion: These results suggest that musical training affects temporal variability in tapping but not drawing. Additionally, musicians and non-musicians may be employing different movement strategies to maintain accurate timing in the two tasks. These findings add to our understanding of how musical training affects timing and support the dissociability of event-based and emergent timing modes. PMID:23717275

  8. The showerfront time-structure of anomalous muon'' events associated with Hercules X-1

    SciTech Connect

    Alexandreas, D.E.; Allen, R.C.; Biller, S.D.; Dion, G.M.; Lu, X-Q.; Vishwanath, P.R.; Yodh, G.B. ); Berley, D.; Chang, C.Y.; Dingus, B.L.; Dion, C.; Goodman, J.A.; Gupta, S.K.; Haines, T.J.; Kwok, P.W.; Stark, M.J. ); Burman, R.L.; Hoffman, C.M.; Lloyd-Evans, J.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Zhang, W.P. (Los Alamos National Lab.,

    1990-01-01

    The 11 in-phase'' source events from the 1986 muon-rich bursts associated with Hercules X-1 (previously reported by this group) have been studied for indications of further anomalous behavior. The most significant effect observed resulted from an analysis of the showerfront time-structures of these events. This analysis was then applied a priori to the rest of the source day, where an additional {approximately}9 signal events are expected to remain. The same effect was observed at a chance probability level of {approximately}0.1%. 1 ref., 7 figs.

  9. Timing of the most recent surface rupture event on the Ohariu Fault near Paraparaumu, New Zealand

    USGS Publications Warehouse

    Litchfield, N.; Van Dissen, R.; Langridge, Rob; Heron, D.; Prentice, C.

    2004-01-01

    Thirteen radiocarbon ages from three trenches across the Ohariu Fault tightly constrain the timing of the most recent surface rupture event at Muaupoko Stream valley, c. 2 km east of Paraparaumu, to between 930 and 1050 cal. yr BP. This age overlaps with previously published ages of the most recent event on the Ohariu Fault and together they further constrain the event to 1000-1050 cal. yr BP. Two trenches provide loose constraints on the maximum recurrence interval at 3-7000 yr. Tephra, most probably the Kawakawa Tephra, was found within alluvial fan deposits in two of the trenches. ?? The Royal Society of New Zealand 2004.

  10. A Time-Reversed Reciprocal Method for Detecting High-frequency events in Civil Structures

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Heaton, T. H.

    2007-12-01

    A new method that uses the properties of wave propagation reciprocity and time-reversed reciprocal Green's functions is presented for identifying high-frequency events that occur within engineered structures. Wave propagation properties of a seismic source in an elastic medium are directly applicable to structural waveform data. The number of structures with dense seismic networks embedded in them is increasing, making it possible to develop new approaches to identifying failure events such as fracturing welds that take advantage of the large number of recordings. The event identification method is based on the hypothesis that a database can be compiled of pre-event, source-receiver Green's functions using experimental sources. For buildings it is assumed that the source-time excitation is a delta function, proportional to the displacement produced at the receiver site. In theory, if all the Green's functions for a structure are known for a complete set of potential failure event locations, forward modeling can be used to compute a range of displacements to identify the correct Green's functions, locations, and source times from the suite of displacements that recorded actual events. The method is applied to a 17-story, steel, moment-frame building using experimentally applied impulse-force hammer sources. The building has an embedded, 72-channel, accelerometer array that is continuously recorded by 24-bit data loggers at 100 and 500 sps. The focus of this particular application is the identification of brittle- fractured welds of beam-column connections.

  11. AXS and SOM: A new statistical approach for treating within-subject, time-varying, multivariate data collected using the AXS Test Battery

    NASA Astrophysics Data System (ADS)

    Lauter, Judith L.; Ninness, Chris

    2003-10-01

    The Auditory Cross-Section (AXS) Test Battery [J. L. Lauter, Behav. Res. Methods Instrum. Comput. 32, 180-190 (2000)], described in presentations to ASA in 2002 and 2003, is designed to document dynamic relations linking the cortex, brainstem, and body periphery (whether physics, physiology, or behavior) on an individually-specific basis. Data collections using the battery typically employ a within-subject, time-varying, multivariate design, yet conventional group statistics do not provide satisfactory means of treating such data. We have recently developed an approach based on Kohonens (2001) Self-Organizing Maps (SOM) algorithm, which categorizes time-varying profiles across variables, either within- or between-subjects. The treatment entails three steps: (1) z-score transformation of all raw data; (2) employing the SOM to sort the time-varying profiles into groups; and (3) deriving an estimate of the bounds for the Bayes error rate. Our three-step procedure will be briefly described and illustrated with data from a recent study combining otoacoustic emissions, auditory brainstem responses, and cortical qEEG.

  12. Multivariate postprocessing techniques for probabilistic hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Hemri, S.; Lisniak, D.; Klein, B.

    2015-09-01

    Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both location and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well-calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. The domain of this study covers three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. In this study, the two approaches to model the temporal dependence structure are ensemble copula coupling (ECC), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA), which estimates the temporal correlations from training observations. The results indicate that both methods are suitable for modeling the temporal dependencies of probabilistic hydrologic forecasts.

  13. Multivariate respiratory motion prediction

    NASA Astrophysics Data System (ADS)

    Dürichen, R.; Wissel, T.; Ernst, F.; Schlaefer, A.; Schweikard, A.

    2014-10-01

    In extracranial robotic radiotherapy, tumour motion is compensated by tracking external and internal surrogates. To compensate system specific time delays, time series prediction of the external optical surrogates is used. We investigate whether the prediction accuracy can be increased by expanding the current clinical setup by an accelerometer, a strain belt and a flow sensor. Four previously published prediction algorithms are adapted to multivariate inputs—normalized least mean squares (nLMS), wavelet-based least mean squares (wLMS), support vector regression (SVR) and relevance vector machines (RVM)—and evaluated for three different prediction horizons. The measurement involves 18 subjects and consists of two phases, focusing on long term trends (M1) and breathing artefacts (M2). To select the most relevant and least redundant sensors, a sequential forward selection (SFS) method is proposed. Using a multivariate setting, the results show that the clinically used nLMS algorithm is susceptible to large outliers. In the case of irregular breathing (M2), the mean root mean square error (RMSE) of a univariate nLMS algorithm is 0.66 mm and can be decreased to 0.46 mm by a multivariate RVM model (best algorithm on average). To investigate the full potential of this approach, the optimal sensor combination was also estimated on the complete test set. The results indicate that a further decrease in RMSE is possible for RVM (to 0.42 mm). This motivates further research about sensor selection methods. Besides the optical surrogates, the sensors most frequently selected by the algorithms are the accelerometer and the strain belt. These sensors could be easily integrated in the current clinical setup and would allow a more precise motion compensation.

  14. Multi-variable X-band radar observation and tracking of ash plume from Mt. Etna volcano on November 23, 2013 event

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Vulpiani, Gianfranco; Riccci, Matteo; Corradini, Stefano; Merucci, Luca; Marzano, Frank S.

    2015-04-01

    Ground based weather radar observations of volcanic ash clouds are gaining momentum after recent works which demonstrated their potential use either as stand alone tool or in combination with satellite retrievals. From an operational standpoint, radar data have been mainly exploited to derive the height of ash plume and its temporal-spatial development, taking into account the radar limitation of detecting coarse ash particles (from approximately 20 microns to 10 millimeters and above in terms of particle's radius). More sophisticated radar retrievals can include airborne ash concentration, ash fall rate and out-flux rate. Marzano et al. developed several volcanic ash radar retrieval (VARR) schemes, even though their practical use is still subject to a robust validation activity. The latter is made particularly difficult due to the lack of field campaigns with multiple observations and the scarce repetition of volcanic events. The radar variable, often used to infer the physical features of actual ash clouds, is the radar reflectivity named ZHH. It is related to ash particle size distribution and it shows a nice power law relationship with ash concentration. This makes ZHH largely used in radar-volcanology studies. However, weather radars are often able to detect Doppler frequency shifts and, more and more, they have a polarization-diversity capability. The former means that wind speed spectrum of the ash cloud is potentially inferable, whereas the latter implies that variables other than ZHH are available. Theoretically, these additional radar variables are linked to the degree of eccentricity of ash particles, their orientation and density as well as the presence of strong turbulence effects. Thus, the opportunity to refine the ash radar estimates so far developed can benefit from the thorough analysis of radar Doppler and polarization diversity. In this work we show a detailed analysis of Doppler shifts and polarization variables measured by the X band radar

  15. Model for the evolution of the time profile in optimistic parallel discrete event simulations

    NASA Astrophysics Data System (ADS)

    Ziganurova, L.; Novotny, M. A.; Shchur, L. N.

    2016-02-01

    We investigate synchronisation aspects of an optimistic algorithm for parallel discrete event simulations (PDES). We present a model for the time evolution in optimistic PDES. This model evaluates the local virtual time profile of the processing elements. We argue that the evolution of the time profile is reminiscent of the surface profile in the directed percolation problem and in unrestricted surface growth. We present results of the simulation of the model and emphasise predictive features of our approach.

  16. Measures of dependence for multivariate Lévy distributions

    NASA Astrophysics Data System (ADS)

    Boland, J.; Hurd, T. R.; Pivato, M.; Seco, L.

    2001-02-01

    Recent statistical analysis of a number of financial databases is summarized. Increasing agreement is found that logarithmic equity returns show a certain type of asymptotic behavior of the largest events, namely that the probability density functions have power law tails with an exponent α≈3.0. This behavior does not vary much over different stock exchanges or over time, despite large variations in trading environments. The present paper proposes a class of multivariate distributions which generalizes the observed qualities of univariate time series. A new consequence of the proposed class is the "spectral measure" which completely characterizes the multivariate dependences of the extreme tails of the distribution. This measure on the unit sphere in M-dimensions, in principle completely general, can be determined empirically by looking at extreme events. If it can be observed and determined, it will prove to be of importance for scenario generation in portfolio risk management.

  17. Non-linear time series analysis of precipitation events using regional climate networks for Germany

    NASA Astrophysics Data System (ADS)

    Rheinwalt, Aljoscha; Boers, Niklas; Marwan, Norbert; Kurths, Jürgen; Hoffmann, Peter; Gerstengarbe, Friedrich-Wilhelm; Werner, Peter

    2016-02-01

    Synchronous occurrences of heavy rainfall events and the study of their relation in time and space are of large socio-economical relevance, for instance for the agricultural and insurance sectors, but also for the general well-being of the population. In this study, the spatial synchronization structure is analyzed as a regional climate network constructed from precipitation event series. The similarity between event series is determined by the number of synchronous occurrences. We propose a novel standardization of this number that results in synchronization scores which are not biased by the number of events in the respective time series. Additionally, we introduce a new version of the network measure directionality that measures the spatial directionality of weighted links by also taking account of the effects of the spatial embedding of the network. This measure provides an estimate of heavy precipitation isochrones by pointing out directions along which rainfall events synchronize. We propose a climatological interpretation of this measure in terms of propagating fronts or event traces and confirm it for Germany by comparing our results to known atmospheric circulation patterns.

  18. Flexible algorithm for real-time convolution supporting dynamic event-related fMRI

    NASA Astrophysics Data System (ADS)

    Eaton, Brent L.; Frank, Randall J.; Bolinger, Lizann; Grabowski, Thomas J.

    2002-04-01

    An efficient algorithm for generation of the task reference function has been developed that allows real-time statistical analysis of fMRI data, within the framework of the general linear model, for experiments with event-related stimulus designs. By leveraging time-stamped data collection in the Input/Output time-aWare Architecture (I/OWA), we detect the onset time of a stimulus as it is delivered to a subject. A dynamically updated list of detected stimulus event times is maintained in shared memory as a data stream and delivered as input to a real-time convolution algorithm. As each image is acquired from the MR scanner, the time-stamp of its acquisition is delivered via a second dynamically updated stream to the convolution algorithm, where a running convolution of the events with an estimated hemodynamic response function is computed at the image acquisition time and written to a third stream in memory. Output is interpreted as the activation reference function and treated as the covariate of interest in the I/OWA implementation of the general linear model. Statistical parametric maps are computed and displayed to the I/OWA user interface in less than the time between successive image acquisitions.

  19. Disentangling the effect of event-based cues on children's time-based prospective memory performance.

    PubMed

    Redshaw, Jonathan; Henry, Julie D; Suddendorf, Thomas

    2016-10-01

    Previous time-based prospective memory research, both with children and with other groups, has measured the ability to perform an action with the arrival of a time-dependent yet still event-based cue (e.g., the occurrence of a specific clock pattern) while also engaged in an ongoing activity. Here we introduce a novel means of operationalizing time-based prospective memory and assess children's growing capacities when the availability of an event-based cue is varied. Preschoolers aged 3, 4, and 5years (N=72) were required to ring a bell when a familiar 1-min sand timer had completed a cycle under four conditions. In a 2×2 within-participants design, the timer was either visible or hidden and was either presented in the context of a single task or embedded within a dual picture-naming task. Children were more likely to ring the bell before 2min had elapsed in the visible-timer and single-task conditions, with performance improving with age across all conditions. These results suggest a divergence in the development of time-based prospective memory in the presence versus absence of event-based cues, and they also suggest that performance on typical time-based tasks may be partly driven by event-based prospective memory. PMID:27295204

  20. Event- and time-dependent decline of outcome information in the primate prefrontal cortex

    PubMed Central

    Marcos, Encarni; Tsujimoto, Satoshi; Genovesio, Aldo

    2016-01-01

    The prefrontal cortex (PF) is involved in outcome-based flexible adaptation in a dynamically changing environment. The outcome signal dissipates gradually over time, but the temporal dynamics of this dissipation remains unknown. To examine this issue, we analyzed the outcome-related activity of PF neurons in 2 monkeys in a distance discrimination task. The initial prestimulus period of this task varied in duration, allowing us to dissociate the effects of time and event on the decline in previous outcome-related activity —previous correct versus previous error. We observed 2 types of decline in previous outcome representation: PF neurons that ceased to encode the previous outcome as time passed (time-dependent) and neurons that maintained their signal but it decreased rapidly after the occurrence of a new external event (event-dependent). Although the time-dependent dynamics explained the decline in a greater proportion of neurons, the event-dependent decline was also observed in a significant population of neurons. PMID:27162060

  1. Ants Can Expect the Time of an Event on Basis of Previous Experiences.

    PubMed

    Cammaerts, Marie-Claire; Cammaerts, Roger

    2016-01-01

    Working on three ant species of the genus Myrmica, M. ruginodis, M. rubra, and M. sabuleti, we showed that foragers can expect the subsequent time at which food will be available on the basis of the previous times at which food was present. The ants acquired this expectative ability right after having experienced two time shifts of food delivery. Moreover, the ants' learning score appeared to be a logarithmic function of time (i.e., of the number of training days). This ability to expect subsequent times at which an event will occur may be an advantageous ethological trait. PMID:27403457

  2. Ants Can Expect the Time of an Event on Basis of Previous Experiences

    PubMed Central

    Cammaerts, Roger

    2016-01-01

    Working on three ant species of the genus Myrmica, M. ruginodis, M. rubra, and M. sabuleti, we showed that foragers can expect the subsequent time at which food will be available on the basis of the previous times at which food was present. The ants acquired this expectative ability right after having experienced two time shifts of food delivery. Moreover, the ants' learning score appeared to be a logarithmic function of time (i.e., of the number of training days). This ability to expect subsequent times at which an event will occur may be an advantageous ethological trait. PMID:27403457

  3. Life events and change in leisure time physical activity: a systematic review.

    PubMed

    Engberg, Elina; Alen, Markku; Kukkonen-Harjula, Katriina; Peltonen, Juha E; Tikkanen, Heikki O; Pekkarinen, Heikki

    2012-05-01

    The global epidemic of chronic non-communicable diseases is closely related to changes in lifestyle, including decreasing leisure time physical activity (PA). Physical inactivity is a major public health challenge. To respond to that challenge, it is essential to know which personal and environmental factors affect PA behaviour. Certain life events may be one contributing factor, by creating emotional distress and disrupting a person's daily routine. The aim was to examine the literature concerning the effects of life events on changes in PA. A systematic literature search was performed on studies that assessed at least one major change in life circumstances and a change in PA. To be included, studies had to assess PA at two timepoints at least (before and after the event). Diseases as life events were excluded from this review. Thirty-four articles met the inclusion criteria. The studies examined the following life-change events: transition to university; change in employment status; marital transitions and changes in relationships; pregnancy/having a child; experiencing harassment at work, violence or disaster; and moving into an institution. The studies reviewed showed statistically significant changes in leisure PA associated with certain life events. In men and women, transition to university, having a child, remarriage and mass urban disaster decreased PA levels, while retirement increased PA. In young women, beginning work, changing work conditions, changing from being single to cohabiting, getting married, pregnancy, divorce/separation and reduced income decreased PA. In contrast, starting a new personal relationship, returning to study and harassment at work increased PA. In middle-aged women, changing work conditions, reduced income, personal achievement and death of a spouse/partner increased PA, while experiencing violence and a family member being arrested or jailed decreased PA. In older women, moving into an institution and interpersonal loss

  4. Time and again: effects of repetition and retention interval on 2 year olds' event recall.

    PubMed

    Fivush, R; Hamond, N R

    1989-04-01

    How and what very young children remember is a central question for understanding the course of memory development. In this research, we examined the effects of two factors on 2-year-old children's ability to recall novel events: repetition of the experience and time since experience. Twenty 24-month-old and twenty 28-month-old children participated in unusual laboratory play events. Half of the children returned after a 2-week delay and again after a 3-month delay (repeated experience condition); the remaining children returned only after 3 months (single experience condition). Memory was assessed by asking children to reenact the events. Recall was generally accurate, and there were no significant effects of age. All children recalled more information about the activities associated with the event than about the objects. Surprisingly, children in the repeated experience condition recalled as much about the events at the 3-month retention interval as at the 2-week retention interval. Further, children in this condition recalled more information at the 3-month retention interval than children in the single experience condition, suggesting that reexperiencing an event may guard against long-term forgetting. PMID:2703807

  5. Time-Frequency Characteristics of Tsunami Magnetic Signals from Four Pacific Ocean Events

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Manoj, C.; An, C.; Sugioka, H.; Toh, H.

    2016-07-01

    The recent deployment of highly sensitive seafloor magnetometers coinciding with the deep solar minimum has provided excellent opportunities for observing tsunami electromagnetic signals. These fluctuating signals (periods ranging from 10-20 min) are generally found to be within ± ˜ 1 nT and coincide with the arrival of the tsunami waves. Previous studies focused on tsunami electromagnetic characteristics, as well as modeling the signal for individual events. This study instead aims to provide the time-frequency characteristics for a range of tsunami signals and a method to separate the data's noise using additional data from a remote observatory. We focus on four Pacific Ocean events of varying tsunami signal amplitude: (1) the 2011 Tohoku, Japan event (M9.0), (2) the 2010 Chile event (M8.8), (3) the 2009 Samoa event (M8.0) and, (4) the 2007 Kuril Islands event (M8.1). We find possible tsunami signals in high-pass filtered data and successfully isolate the signals from noise using a cross-wavelet analysis. The cross-wavelet analysis reveals that the longer period signals precede the stronger, shorter period signals. Our results are very encouraging for using tsunami magnetic signals in warning systems.

  6. Real-time extreme weather event attribution with forecast seasonal SSTs

    NASA Astrophysics Data System (ADS)

    Haustein, K.; Otto, F. E. L.; Uhe, P.; Schaller, N.; Allen, M. R.; Hermanson, L.; Christidis, N.; McLean, P.; Cullen, H.

    2016-06-01

    Within the last decade, extreme weather event attribution has emerged as a new field of science and garnered increasing attention from the wider scientific community and the public. Numerous methods have been put forward to determine the contribution of anthropogenic climate change to individual extreme weather events. So far nearly all such analyses were done months after an event has happened. Here we present a new method which can assess the fraction of attributable risk of a severe weather event due to an external driver in real-time. The method builds on a large ensemble of atmosphere-only general circulation model simulations forced by seasonal forecast sea surface temperatures (SSTs). Taking the England 2013/14 winter floods as an example, we demonstrate that the change in risk for heavy rainfall during the England floods due to anthropogenic climate change, is of similar magnitude using either observed or seasonal forecast SSTs. Testing the dynamic response of the model to the anomalous ocean state for January 2014, we find that observed SSTs are required to establish a discernible link between a particular SST pattern and an atmospheric response such as a shift in the jetstream in the model. For extreme events occurring under strongly anomalous SST patterns associated with known low-frequency climate modes, however, forecast SSTs can provide sufficient guidance to determine the dynamic contribution to the event.

  7. Ordering of young injection events within Saturnian SLS longitude and local time

    NASA Astrophysics Data System (ADS)

    Kennelly, T.; Leisner, J. S.; Hospodarsky, G. B.; Gurnett, D. A.

    2012-12-01

    The Saturnian SLS longitude systems are based on periodic radio emissions generated at high latitudes and relatively close to the planet. These periodicities have been observed throughout the magnetosphere in both the magnetic field and the plasma. While their presence in the outer magnetosphere has been understood, one outstanding question is how these periodicities are transmitted to the inner magnetosphere. The inner and outer magnetospheres are connected by inward-moving flux tubes, referred to as injection events, and it was postulated that they could carry the periodicities between the two regions. Early analysis of these phenomena, however, showed that there was no ordering in longitude. In this study, we reexamine this possibility by limiting our data set to the young injection events observed by the Cassini Radio and Plasma Wave Science instrument. We find that the young injection events are restricted to two local time sectors: post-noon and near-midnight. We find no structure in the post-noon sector, but the near-midnight events are strongly ordered by SLS longitude. Further, the longitudinal ordering varies with Saturnian season. Pre-equinox, the longitude system derived from the northern hemisphere's SKR emissions controls the event occurrence. Post-equinox, the events are ordered by the southern hemisphere-derived longitude system. We suggest that this may be an effect in the variations in the ionospheric conductivity or due to change in the magnetosphere's orientation relative to the solar wind.

  8. The effect of time constraints and running phases on combined event pistol shooting performance.

    PubMed

    Dadswell, Clare; Payton, Carl; Holmes, Paul; Burden, Adrian

    2016-01-01

    The combined event is a crucial aspect of the modern pentathlon competition, but little is known about how shooting performance changes through the event. This study aimed to identify (i) how performance-related variables changed within each shooting series and (ii) how performance-related variables changed between each shooting series. Seventeen modern pentathletes completed combined event trials. An optoelectronic shooting system recorded score and pistol movement, and force platforms recorded centre of pressure movement 1 s prior to every shot. Heart rate and blood lactate values were recorded throughout the event. Whilst heart rate and blood lactate significantly increased between series (P < 0.05), there were no accompanying changes in the time period that participants spent aiming at the target, shot score, pistol movement or centre of pressure movement (P > 0.05). Thus, combined event shooting performance following each running phase appears similar to shooting performance following only 20 m of running. This finding has potential implications for the way in which modern pentathletes train for combined event shooting, and highlights the need for modern pentathletes to establish new methods with which to enhance shooting accuracy. PMID:26375196

  9. Jointly modeling time-to-event and longitudinal data: A Bayesian approach.

    PubMed

    Huang, Yangxin; Hu, X Joan; Dagne, Getachew A

    2014-03-01

    This article explores Bayesian joint models of event times and longitudinal measures with an attempt to overcome departures from normality of the longitudinal response, measurement errors, and shortages of confidence in specifying a parametric time-to-event model. We allow the longitudinal response to have a skew distribution in the presence of measurement errors, and assume the time-to-event variable to have a nonparametric prior distribution. Posterior distributions of the parameters are attained simultaneously for inference based on Bayesian approach. An example from a recent AIDS clinical trial illustrates the methodology by jointly modeling the viral dynamics and the time to decrease in CD4/CD8 ratio in the presence of CD4 counts with measurement errors and to compare potential models with various scenarios and different distribution specifications. The analysis outcome indicates that the time-varying CD4 covariate is closely related to the first-phase viral decay rate, but the time to CD4/CD8 decrease is not highly associated with either the two viral decay rates or the CD4 changing rate over time. These findings may provide some quantitative guidance to better understand the relationship of the virological and immunological responses to antiretroviral treatments. PMID:24611039

  10. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Wu, Wei; Sun, Le; Zhang, Zhe; Guo, Yingying; Liu, Shuying

    2015-03-25

    An ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed for the detection and structural analysis of ginsenosides in white ginseng and related processed products (red ginseng). Original neutral, malonyl, and chemically transformed ginsenosides were identified in white and red ginseng samples. The aglycone types of ginsenosides were determined by MS/MS as PPD (m/z 459), PPT (m/z 475), C-24, -25 hydrated-PPD or PPT (m/z 477 or m/z 493), and Δ20(21)-or Δ20(22)-dehydrated-PPD or PPT (m/z 441 or m/z 457). Following the structural determination, the UHPLC-Q-TOF-MS-based chemical profiling coupled with multivariate statistical analysis method was applied for global analysis of white and processed ginseng samples. The chemical markers present between the processed products red ginseng and white ginseng could be assigned. Process-mediated chemical changes were recognized as the hydrolysis of ginsenosides with large molecular weight, chemical transformations of ginsenosides, changes in malonyl-ginsenosides, and generation of 20-(R)-ginsenoside enantiomers. The relative contents of compounds classified as PPD, PPT, malonyl, and transformed ginsenosides were calculated based on peak areas in ginseng before and after processing. This study provides possibility to monitor multiple components for the quality control and global evaluation of ginseng products during processing. PMID:25590943

  11. Intensity/time profiles of solar particle events at one astronomical unit

    NASA Technical Reports Server (NTRS)

    Shea, M. A.

    1988-01-01

    A description of the intensity-time profiles of solar proton events observed at the orbit of the earth is presented. The discussion, which includes descriptive figures, presents a general overview of the subject without the detailed mathematical description of the physical processes which usually accompany most reviews.

  12. "Anniversary Reaction": Important Events and Timing of Death in a Group of Roman Catholic Priests.

    ERIC Educational Resources Information Center

    Walker, Lee; Walker, Lawrence D.

    1990-01-01

    Compared death dates of 1,038 Roman Catholic priests with dates of Christmas, Easter, birthday, and day of ordination. Found no meaningful patterns of death around any anniversary, suggesting either no association between time of death and important anniversaries or that important event may be so extraordinary to each individuals that it is not…

  13. The influence of pubertal timing and stressful life events on depression and delinquency among Chinese adolescents.

    PubMed

    Chen, Jie; Yu, Jing; Wu, Yun; Zhang, Jianxin

    2015-06-01

    This study aimed to investigate the influences of pubertal timing and stressful life events on Chinese adolescents' depression and delinquency. Sex differences in these influences were also examined. A large sample with 4,228 participants aged 12-15 years (53% girls) was recruited in Beijing, China. Participants' pubertal development, stressful life events, depressive symptoms, and delinquency were measured using self-reported questionnaires. Both early maturing girls and boys displayed more delinquency than their same-sex on-time and late maturing peers. Early maturing girls displayed more depressive symptoms than on-time and late maturing girls, but boys in the three maturation groups showed similar levels of depressive symptoms. The interactive effects between early pubertal timing and stressful life events were significant in predicting depression and delinquency, particularly for girls. Early pubertal maturation is an important risk factor for Chinese adolescents' depression and delinquency. Stressful life events intensified the detrimental effects of early pubertal maturation on adolescents' depression and delinquency, particularly for girls. PMID:26261908

  14. Individual Change and the Timing and Onset of Important Life Events: Methods, Models, and Assumptions

    ERIC Educational Resources Information Center

    Grimm, Kevin; Marcoulides, Katerina

    2016-01-01

    Researchers are often interested in studying how the timing of a specific event affects concurrent and future development. When faced with such research questions there are multiple statistical models to consider and those models are the focus of this paper as well as their theoretical underpinnings and assumptions regarding the nature of the…

  15. Modeling Repeatable Events Using Discrete-Time Data: Predicting Marital Dissolution

    ERIC Educational Resources Information Center

    Teachman, Jay

    2011-01-01

    I join two methodologies by illustrating the application of multilevel modeling principles to hazard-rate models with an emphasis on procedures for discrete-time data that contain repeatable events. I demonstrate this application using data taken from the 1995 National Survey of Family Growth (NSFG) to ascertain the relationship between multiple…

  16. Global grid of master events for waveform cross-correlation: from testing to real time processing

    NASA Astrophysics Data System (ADS)

    Bobrov, Dmitry; Rozhkov, Mikhail; Kitov, Ivan

    2014-05-01

    Seismic monitoring of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) requires a globally uniform detection threshold, which is provided by geographical distribution of the Primary Seismic Network of the International Monitoring System (IMS). This detection threshold has to be as low as allowed by the entire set of real time and historical data recorded by the IMS. The International Data Centre (IDC) analyzes all relevant data in automatic processing and interactive review to issue a Reviewed Event Bulletin (REB), which includes all qualified events as obtained for the purpose of nuclear test monitoring. Since 2000, raw data, individual detections, and created events are saved in the IDC archive currently reaching tens of terabyte. In order to effectively use this archive in global monitoring we introduced the waveform cross correlation (matched filter) technique. Cross correlation between real time records at IMS stations and template waveforms is calculated for a dense (spacing of ~ 140 km) and regular grid of master events uniformly covering the globe. There are approximately 25,000 master events with 3 to 10 templates at IMS stations. In seismically active zones, we populate masters with real waveforms. For aseismic zones, we develop an extended set of synthetic templates for virtual master events. For optimal performance of cross correlation, the Principal and Independent Component Analysis are applied to the historical (from earthquakes and underground nuclear tests) and synthetic waveforms. Real waveform templates and selected PCA/ICA components are used in automatic processing for the production of a tentative cross-correlation standard event list (XSEL).

  17. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  18. Renewal stochastic processes with correlated events: Phase transitions along time evolution

    NASA Astrophysics Data System (ADS)

    Velázquez, Jorge; Robledo, Alberto

    2011-03-01

    We consider renewal stochastic processes generated by nonindependent events from the perspective that their basic distribution and associated generating functions obey the statistical-mechanical structure of systems with interacting degrees of freedom. Based on this fact we look briefly into the less-known case of processes that display phase transitions along time. When the density distribution ψn(t) for the occurrence of the nth event at time t is considered to be a partition function, of a “microcanonical” type for n “degrees of freedom” at fixed “energy” t, one obtains a set of four partition functions of which that for the generating function variable z and Laplace transform variable ɛ, conjugate to n and t, respectively, plays a central role. These partition functions relate to each other in the customary way and in accordance to the precepts of large deviations theory, while the entropy, or Massieu potential, derived from ψn(t) satisfies an Euler relation. We illustrate this scheme first for an ordinary renewal process of events generated by a simple exponential waiting-time distribution ψ(t). Then we examine a process modeled after the so-called Hamiltonian mean-field model that is representative of agents that perform a repeated task with an associated outcome, such as an opinion poll. When a sequence of (many) events takes place in a sufficiently short time the process exhibits clustering of the outcome, but for larger times the process resembles that of independent events. The two regimes are separated by a sharp transition, technically of the second order. Finally we point out the existence of a similar scheme for random-walk processes.

  19. Analysis of inter-event times for avalanches on a conical bead pile with cohesion

    NASA Astrophysics Data System (ADS)

    Lehman, Susan; Johnson, Nathan; Tieman, Catherine; Wainwright, Elliot

    2015-03-01

    We investigate the critical behavior of a 3D conical bead pile built from uniform 3 mm steel spheres. Beads are added to the pile by dropping them onto the apex one at a time; avalanches are measured through changes in pile mass. We investigate the dynamic response of the pile by recording avalanches from the pile over tens of thousands of bead drops. We have previously shown that the avalanche size distribution follows a power law for beads dropped onto the pile apex from a low drop height. We are now tuning the critical behavior of the system by adding cohesion from a uniform magnetic field and find an increase in both size and number for very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased. We compare the experimental inter-event time distribution to both the Brownian passage-time and Weibull distributions, and observe a shift from the Weibull to Brownian passage-time as we raise the threshold from measuring time between events of all sizes to time between only the largest system-spanning events. These results are both consistent with those from a mean-field model of slip avalanches in a shear system [Dahmen, Nat Phys 7, 554 (2011)].

  20. The DOE Model for Improving Seismic Event Locations Using Travel Time Corrections: Description and Demonstration

    SciTech Connect

    Hipp, J.R.; Moore, S.G.; Shepherd, E.; Young, C.J.

    1998-10-20

    The U.S. National Laboratories, under the auspices of the Department of Energy, have been tasked with improv- ing the capability of the United States National Data Center (USNDC) to monitor compliance with the Comprehen- sive Test Ban Trea~ (CTBT). One of the most important services which the USNDC must provide is to locate suspicious events, preferably as accurately as possible to help identify their origin and to insure the success of on-site inspections if they are deemed necessary. The seismic location algorithm used by the USNDC has the capability to generate accurate locations by applying geographically dependent travel time corrections, but to date, none of the means, proposed for generating and representing these corrections has proven to be entirely satisfactory. In this presentation, we detail the complete DOE model for how regional calibration travel time information gathered by the National Labs will be used to improve event locations and provide more realistic location error esti- mates. We begin with residual data and error estimates from ground truth events. Our model consists of three parts: data processing, data storage, and data retrieval. The former two are effectively one-time processes, executed in advance before the system is made operational. The last step is required every time an accurate event location is needed. Data processing involves applying non-stationary Bayesian kriging to the residwd data to densifi them, and iterating to find the optimal tessellation representation for the fast interpolation in the data retrieval task. Both the kriging and the iterative re-tessellation are slow, computationally-expensive processes but this is acceptable because they are performed off-line, before any events are to be located. In the data storage task, the densified data set is stored in a database and spatially indexed. Spatial indexing improves the access efficiency of the geographically-ori- ented data requests associated with event location

  1. gPhoton: Time-tagged GALEX photon events analysis tools

    NASA Astrophysics Data System (ADS)

    Million, Chase C.; Fleming, S. W.; Shiao, B.; Loyd, P.; Seibert, M.; Smith, M.

    2016-03-01

    Written in Python, gPhoton calibrates and sky-projects the ~1.1 trillion ultraviolet photon events detected by the microchannel plates on the Galaxy Evolution Explorer Spacecraft (GALEX), archives these events in a publicly accessible database at the Mikulski Archive for Space Telescopes (MAST), and provides tools for working with the database to extract scientific results, particularly over short time domains. The software includes a re-implementation of core functionality of the GALEX mission calibration pipeline to produce photon list files from raw spacecraft data as well as a suite of command line tools to generate calibrated light curves, images, and movies from the MAST database.

  2. Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems

    NASA Astrophysics Data System (ADS)

    Fedorov, A. K.; Anufriev, M. N.; Zhirnov, A. A.; Stepanov, K. V.; Nesterov, E. T.; Namiot, D. E.; Karasik, V. E.; Pnev, A. B.

    2016-03-01

    We propose a novel approach to the recognition of particular classes of non-conventional events in signals from phase-sensitive optical time-domain-reflectometry-based sensors. Our algorithmic solution has two main features: filtering aimed at the de-nosing of signals and a Gaussian mixture model to cluster them. We test the proposed algorithm using experimentally measured signals. The results show that two classes of events can be distinguished with the best-case recognition probability close to 0.9 at sufficient numbers of training samples.

  3. Note: Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems.

    PubMed

    Fedorov, A K; Anufriev, M N; Zhirnov, A A; Stepanov, K V; Nesterov, E T; Namiot, D E; Karasik, V E; Pnev, A B

    2016-03-01

    We propose a novel approach to the recognition of particular classes of non-conventional events in signals from phase-sensitive optical time-domain-reflectometry-based sensors. Our algorithmic solution has two main features: filtering aimed at the de-nosing of signals and a Gaussian mixture model to cluster them. We test the proposed algorithm using experimentally measured signals. The results show that two classes of events can be distinguished with the best-case recognition probability close to 0.9 at sufficient numbers of training samples. PMID:27036840

  4. The Dependence of Characteristic Times of Gradual SEP Events on Their Associated CME Properties

    NASA Astrophysics Data System (ADS)

    Pan, Z. H.; Wang, C. B.; Xue, X. H.; Wang, Y. M.

    It is generally believed that coronal mass ejections CMEs are the drivers of shocks that accelerate gradual solar energetic particles SEPs One might expect that the characteristics of the SEP intensity time profiles observed at 1 AU are determined by properties of the associated CMEs such as the radial speed and the angular width Recently Kahler statistically investigated the characteristic times of gradual SEP events observed from 1998-2002 and their associated coronal mass ejection properties Astrophys J 628 1014--1022 2005 Three characteristic times of gradual SEP events are determined as functions of solar source longitude 1 T 0 the time from associated CME launch to SEP onset at 1 AU 2 T R the rise time from SEP onset to the time when the SEP intensity is a factor of 2 below peak intensity and 3 T D the duration over which the SEP intensity is within a factor of 2 of the peak intensity However in his study the CME speeds and angular widths are directly taken from the LASCO CME catalog In this study we analyze the radial speeds and the angular widths of CMEs by an ice-cream cone model and re-investigate their correlationships with the characteristic times of the corresponding SEP events We find T R and T D are significantly correlated with radial speed for SEP events in the best-connected longitude range and there is no correlation between T 0 and CME radial speed and angular width which is consistent with Kahler s results On the other hand it s found that T R and T D are also have

  5. Relative Time-scale for Channeling Events Within Chaotic Terrains, Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Janke, D.

    1985-01-01

    A relative time scale for ordering channel and chaos forming events was constructed for areas within the Margaritifer Sinus region of Mars. Transection and superposition relationships of channels, chaotic terrain, and the surfaces surrounding them were used to create the relative time scale; crater density studies were not used. Channels and chaos in contact with one another were treated as systems. These systems were in turn treated both separately (in order to understand internal relationships) and as members of the suite of Martian erosional forms (in order to produce a combined, master time scale). Channeling events associated with chaotic terrain development occurred over an extended geomorphic period. The channels can be divided into three convenient groups: those that pre-date intercrater plains development post-plains, pre-chasma systems; and those associated with the development of the Vallis Marineris chasmata. No correlations with cyclic climatic changes, major geologic events in other regions on Mars, or triggering phenomena (for example, specific impact events) were found.

  6. Modelling the type and timing of consecutive events: application to predicting preterm birth in repeated pregnancies

    PubMed Central

    Shih, Joanna H.; Albert, Paul S.; Mendola, Pauline; Grantz, Katherine L.

    2016-01-01

    Summary Predicting the occurrence and timing of adverse pregnancy events such as preterm birth is an important analytical challenge in obstetrical practice. Developing statistical approaches that can be used to assess the risk and timing of these adverse events will provide clinicians with tools for individualized risk assessment that account for a woman’s prior pregnancy history. Often adverse pregnancy outcomes are subject to competing events; for example, interest may focus on the occurrence of pre-eclampsia-related preterm birth, where preterm birth for other reasons may serve as a competing event. We propose modelling the type and timing of adverse outcomes in repeated pregnancies. We formulate a joint model, where types of adverse outcomes across repeated pregnancies are modelled by using a polychotomous logistic regression model with random effects, and gestational ages at delivery are modelled conditionally on the types of adverse outcome. The correlation between gestational ages conditional on the adverse pregnancies is modelled by the semiparametric normal copula function. We present a two-stage estimation method and develop the asymptotic theory for the estimators proposed. The model and estimation procedure proposed are applied to the National Institute of Child Health and Human Development consecutive pregnancies study data and evaluated by simulations.

  7. Modelling the timing of major spring bloom events in the central Yellow Sea

    NASA Astrophysics Data System (ADS)

    Xuan, Ji-Liang; Zhou, Feng; Huang, Daji; Zhu, Xiao-Hua; Xing, Chuanxi; Fan, Xiaopeng

    2012-11-01

    Spring blooms observed in the Yellow Sea, which contribute the primary production in the local food chain, generally occur in the central part of the Yellow Sea (YS) in the early spring from March to April. In this paper, we use a 3-D physical ocean model and 1-D ecosystem model to explore the timing of the five major spring bloom events observed in the central YS in 2007. The results show that Sverdrup's critical depth model can be applied to simulate the first four spring bloom events in March and April of 2007. Under the conditions when nutrients are sufficient, the timing of the spring bloom events appears to always be controlled by physical processes and the reduction of the wind speed in particular. The magnitude of the bloom events is affected by light and temperature in the euphotic layer. The correlation between the timing of the spring bloom and the reduction of the wind speed is investigated by reversal computations and linear regression, and a critical wind speed of less than 5.7 m s-1 was determined to trigger the bloom.

  8. Ontology-based time information representation of vaccine adverse events in VAERS for temporal analysis

    PubMed Central

    2012-01-01

    Background The U.S. FDA/CDC Vaccine Adverse Event Reporting System (VAERS) provides a valuable data source for post-vaccination adverse event analyses. The structured data in the system has been widely used, but the information in the write-up narratives is rarely included in these kinds of analyses. In fact, the unstructured nature of the narratives makes the data embedded in them difficult to be used for any further studies. Results We developed an ontology-based approach to represent the data in the narratives in a “machine-understandable” way, so that it can be easily queried and further analyzed. Our focus is the time aspect in the data for time trending analysis. The Time Event Ontology (TEO), Ontology of Adverse Events (OAE), and Vaccine Ontology (VO) are leveraged for the semantic representation of this purpose. A VAERS case report is presented as a use case for the ontological representations. The advantages of using our ontology-based Semantic web representation and data analysis are emphasized. Conclusions We believe that representing both the structured data and the data from write-up narratives in an integrated, unified, and “machine-understandable” way can improve research for vaccine safety analyses, causality assessments, and retrospective studies. PMID:23256916

  9. Lessons Learned from Real-Time, Event-Based Internet Science Communications

    NASA Technical Reports Server (NTRS)

    Phillips, T.; Myszka, E.; Gallagher, D. L.; Adams, M. L.; Koczor, R. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    For the last several years the Science Directorate at Marshall Space Flight Center has carried out a diverse program of Internet-based science communication. The Directorate's Science Roundtable includes active researchers, NASA public relations, educators, and administrators. The Science@NASA award-winning family of Web sites features science, mathematics, and space news. The program includes extended stories about NASA science, a curriculum resource for teachers tied to national education standards, on-line activities for students, and webcasts of real-time events. The focus of sharing science activities in real-time has been to involve and excite students and the public about science. Events have involved meteor showers, solar eclipses, natural very low frequency radio emissions, and amateur balloon flights. In some cases, broadcasts accommodate active feedback and questions from Internet participants. Through these projects a pattern has emerged in the level of interest or popularity with the public. The pattern differentiates projects that include science from those that do not, All real-time, event-based Internet activities have captured public interest at a level not achieved through science stories or educator resource material exclusively. The worst event-based activity attracted more interest than the best written science story. One truly rewarding lesson learned through these projects is that the public recognizes the importance and excitement of being part of scientific discovery. Flying a camera to 100,000 feet altitude isn't as interesting to the public as searching for viable life-forms at these oxygen-poor altitudes. The details of these real-time, event-based projects and lessons learned will be discussed.

  10. Time forecast of a break-off event from a hanging glacier

    NASA Astrophysics Data System (ADS)

    Faillettaz, Jérome; Funk, Martin; Vagliasindi, Marco

    2016-06-01

    A cold hanging glacier located on the south face of the Grandes Jorasses (Mont Blanc, Italy) broke off on the 23 and 29 September 2014 with a total estimated ice volume of 105 000 m3. Thanks to accurate surface displacement measurements taken up to the final break-off, this event was successfully predicted 10 days in advance, enabling local authorities to take the necessary safety measures. The break-off event also confirmed that surface displacements experienced a power law acceleration along with superimposed log-periodic oscillations prior to the final rupture. This paper describes the methods used to achieve a satisfactory time forecast in real time and demonstrates, using a retrospective analysis, their potential for the development of early-warning systems in real time.

  11. Adults’ reports of their earliest memories: Consistency in events, ages, and narrative characteristics over time

    PubMed Central

    Bauer, Patricia J.; Tasdemir-Ozdes, Aylin; Larkina, Marina

    2014-01-01

    Earliest memories have been of interest since the late 1800s, when it was first noted that most adults do not have memories from the first years of life (so-called childhood amnesia). Several characteristics of adults’ earliest memories have been investigated, including emotional content, the perspective from which they are recalled, and vividness. The focus of the present research was a feature of early memories heretofore relatively neglected in the literature, namely, their consistency. Adults reported their earliest memories 2 to 4 times over a 4-year period. Reports of earliest memories were highly consistent in the events identified as the bases for earliest memories, the reported age at the time of the event, and in terms of qualities of the narrative descriptions. These findings imply stability in the boundary that marks the offset of childhood amnesia, as well as in the beginning of a continuous sense of self over time. PMID:24836979

  12. Adults' reports of their earliest memories: consistency in events, ages, and narrative characteristics over time.

    PubMed

    Bauer, Patricia J; Tasdemir-Ozdes, Aylin; Larkina, Marina

    2014-07-01

    Earliest memories have been of interest since the late 1800s, when it was first noted that most adults do not have memories from the first years of life (so-called childhood amnesia). Several characteristics of adults' earliest memories have been investigated, including emotional content, the perspective from which they are recalled, and vividness. The focus of the present research was a feature of early memories heretofore relatively neglected in the literature, namely, their consistency. Adults reported their earliest memories 2-4 times over a 4-year period. Reports of earliest memories were highly consistent in the events identified as the bases for earliest memories, the reported age at the time of the event, and in terms of qualities of the narrative descriptions. These findings imply stability in the boundary that marks the offset of childhood amnesia, as well as in the beginning of a continuous sense of self over time. PMID:24836979

  13. Onset Times of Solar Particle Events Observed by MSL/RAD - Constraints on Particle Transport

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, R. F.; Hassler, D. M.; Boettcher, S.; Martin, C.; Zeitlin, C.; Brinza, D.; Koehler, J.; Guo, J.; Posner, A.; Appel, J.

    2012-12-01

    En route to Mars, Mars Science Laboratory's (MSL's) Radiation Assessment Detector (RAD) was already operational and observed a number of solar particle events. These were also seen by an array of spacecraft in the heliosphere. This constellation provides an unique opportunity to investigate particle propagation in the ecliptic plane and thus constrain particle propagation models. RAD measures energetic ions up to approximately 100 MeV/nuc, but was buried deep inside the Mars Science Laboratory (MSL). Due to the significant shielding provided by the MSL cruise stage, back-shell, heat shield, and skycrane, RAD was sensitive to particles in a significantly higher and somewhat uncertain energy range. Even behind the aforementioned shielding, onset times of particle events can be clearly identified. In this work, we will provide them for the particle events observed by RAD in 2012. We will also relate them to other data and solar/interplanetary acceleration sites.

  14. Music, clicks, and their imaginations favor differently the event-based timing component for rhythmic movements.

    PubMed

    Bravi, Riccardo; Quarta, Eros; Del Tongo, Claudia; Carbonaro, Nicola; Tognetti, Alessandro; Minciacchi, Diego

    2015-06-01

    The involvement or noninvolvement of a clock-like neural process, an effector-independent representation of the time intervals to produce, is described as the essential difference between event-based and emergent timing. In a previous work (Bravi et al. in Exp Brain Res 232:1663-1675, 2014a. doi: 10.1007/s00221-014-3845-9 ), we studied repetitive isochronous wrist's flexion-extensions (IWFEs), performed while minimizing visual and tactile information, to clarify whether non-temporal and temporal characteristics of paced auditory stimuli affect the precision and accuracy of the rhythmic motor performance. Here, with the inclusion of new recordings, we expand the examination of the dataset described in our previous study to investigate whether simple and complex paced auditory stimuli (clicks and music) and their imaginations influence in a different way the timing mechanisms for repetitive IWFEs. Sets of IWFEs were analyzed by the windowed (lag one) autocorrelation-wγ(1), a statistical method recently introduced for the distinction between event-based and emergent timing. Our findings provide evidence that paced auditory information and its imagination favor the engagement of a clock-like neural process, and specifically that music, unlike clicks, lacks the power to elicit event-based timing, not counteracting the natural shift of wγ(1) toward positive values as frequency of movements increase. PMID:25837726

  15. A New Characteristic Function for Fast Time-Reverse Seismic Event Location

    NASA Astrophysics Data System (ADS)

    Hendriyana, Andri; Bauer, Klaus; Weber, Michael; Jaya, Makky; Muksin, Muksin

    2015-04-01

    Microseismicity produced by natural activities is usually characterized by low signal-to-noise ratio and huge amount of data as recording is conducted for a long period of time. Locating microseismic events is preferably carried out using migration-based methods such as time-reverse modeling (TRM). The original TRM is based on backpropagating the wavefield from the receiver down to the source location. Alternatively, we are using a characteristic function (CF) derived from the measured wavefield as input for the TRM. The motivation for such a strategy is to avoid undesired contributions from secondary arrivals which may generate artifacts in the final images. In this presentation, we introduce a new CF as input for TRM method. To obtain this CF, initially we apply kurtosis-based automatic onset detection and convolution with a given wavelet. The convolution with low frequency wavelets allows us to conduct time-reverse modeling using coarser sampling hence it will reduce computing time. We apply the method to locate seismic events measured along an active part of the Sumatra Fault around the Tarutung pull-apart basin (North Sumatra, Indonesia). The results show that seismic events are well-determined since they are concentrated along the Sumatran fault. Internal details of the Tarutung basin structure could be derived. Our results are consistent with those obtained from inversion of manually picked travel time data.

  16. Regression Splines in the Time-Dependent Coefficient Rates Model for Recurrent Event Data

    PubMed Central

    Amorim, Leila D.; Cai, Jianwen; Zeng, Donglin; Barreto, Maurício L.

    2009-01-01

    SUMMARY Many epidemiologic studies involve the occurrence of recurrent events and much attention has been given for the development of modelling techniques that take into account the dependence structure of multiple event data. This paper presents a time-dependent coefficient rates model that incorporates regression splines in its estimation procedure. Such method would be appropriate in situations where the effect of an exposure or covariates changes over time in recurrent event data settings. The finite sample properties of the estimators are studied via simulation. Using data from a randomized community trial that was designed to evaluate the effect of vitamin A supplementation on recurrent diarrheal episodes in small children, we model the functional form of the treatment effect on the time to the occurrence of diarrhea. The results describe how this effect varies over time. In summary, we observed a major impact of the vitamin A supplementation on diarrhea after 2 months of the dosage, with the effect diminishing after the third dosage. The proposed method can be viewed as a flexible alternative to the marginal rates model with constant effect in situations where the effect of interest may vary over time. PMID:18696748

  17. APNEA list mode data acquisition and real-time event processing

    SciTech Connect

    Hogle, R.A.; Miller, P.; Bramblett, R.L.

    1997-11-01

    The LMSC Active Passive Neutron Examinations and Assay (APNEA) Data Logger is a VME-based data acquisition system using commercial-off-the-shelf hardware with the application-specific software. It receives TTL inputs from eighty-eight {sup 3}He detector tubes and eight timing signals. Two data sets are generated concurrently for each acquisition session: (1) List Mode recording of all detector and timing signals, timestamped to 3 microsecond resolution; (2) Event Accumulations generated in real-time by counting events into short (tens of microseconds) and long (seconds) time bins following repetitive triggers. List Mode data sets can be post-processed to: (1) determine the optimum time bins for TRU assay of waste drums, (2) analyze a given data set in several ways to match different assay requirements and conditions and (3) confirm assay results by examining details of the raw data. Data Logger events are processed and timestamped by an array of 15 TMS320C40 DSPs and delivered to an embedded controller (PowerPC604) for interim disk storage. Three acquisition modes, corresponding to different trigger sources are provided. A standard network interface to a remote host system (Windows NT or SunOS) provides for system control, status, and transfer of previously acquired data. 6 figs.

  18. Foreshocks and aftershocks of Pisagua 2014 earthquake: time and space evolution of megathrust event.

    NASA Astrophysics Data System (ADS)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Wollam, Jack; Thomas, Reece; de Lima Neto, Oscar; Tavera, Hernando; Garth, Thomas; Ruiz, Sergio

    2016-04-01

    The 2014 Pisagua earthquake of magnitude 8.2 is the first case in Chile where a foreshock sequence was clearly recorded by a local network, as well all the complete sequence including the mainshock and its aftershocks. The seismicity of the last year before the mainshock include numerous clusters close to the epicentral zone (Ruiz et al; 2014) but it was on 16th March that this activity became stronger with the Mw 6.7 precursory event taking place in front of Iquique coast at 12 km depth. The Pisagua earthquake arrived on 1st April 2015 breaking almost 120 km N-S and two days after a 7.6 aftershock occurred in the south of the rupture, enlarging the zone affected by this sequence. In this work, we analyse the foreshocks and aftershock sequence of Pisagua earthquake, from the spatial and time evolution for a total of 15.764 events that were recorded from the 1st March to 31th May 2015. This event catalogue was obtained from the automatic analyse of seismic raw data of more than 50 stations installed in the north of Chile and the south of Peru. We used the STA/LTA algorithm for the detection of P and S arrival times on the vertical components and then a method of back propagation in a 1D velocity model for the event association and preliminary location of its hypocenters following the algorithm outlined by Rietbrock et al. (2012). These results were then improved by locating with NonLinLoc software using a regional velocity model. We selected the larger events to analyse its moment tensor solution by a full waveform inversion using ISOLA software. In order to understand the process of nucleation and propagation of the Pisagua earthquake, we also analysed the evolution in time of the seismicity of the three months of data. The zone where the precursory events took place was strongly activated two weeks before the mainshock and remained very active until the end of the analysed period with an important quantity of the seismicity located in the upper plate and having

  19. Real-time gesture interface based on event-driven processing from stereo silicon retinas.

    PubMed

    Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael; Park, Paul K J; Shin, Chang-Woo; Ryu, Hyunsurk Eric; Kang, Byung Chang

    2014-12-01

    We propose a real-time hand gesture interface based on combining a stereo pair of biologically inspired event-based dynamic vision sensor (DVS) silicon retinas with neuromorphic event-driven postprocessing. Compared with conventional vision or 3-D sensors, the use of DVSs, which output asynchronous and sparse events in response to motion, eliminates the need to extract movements from sequences of video frames, and allows significantly faster and more energy-efficient processing. In addition, the rate of input events depends on the observed movements, and thus provides an additional cue for solving the gesture spotting problem, i.e., finding the onsets and offsets of gestures. We propose a postprocessing framework based on spiking neural networks that can process the events received from the DVSs in real time, and provides an architecture for future implementation in neuromorphic hardware devices. The motion trajectories of moving hands are detected by spatiotemporally correlating the stereoscopically verged asynchronous events from the DVSs by using leaky integrate-and-fire (LIF) neurons. Adaptive thresholds of the LIF neurons achieve the segmentation of trajectories, which are then translated into discrete and finite feature vectors. The feature vectors are classified with hidden Markov models, using a separate Gaussian mixture model for spotting irrelevant transition gestures. The disparity information from stereovision is used to adapt LIF neuron parameters to achieve recognition invariant of the distance of the user to the sensor, and also helps to filter out movements in the background of the user. Exploiting the high dynamic range of DVSs, furthermore, allows gesture recognition over a 60-dB range of scene illuminance. The system achieves recognition rates well over 90% under a variety of variable conditions with static and dynamic backgrounds with naïve users. PMID:25420246

  20. Precipitation-snowmelt timing and snowmelt augmentation of large peak flow events, western Cascades, Oregon

    NASA Astrophysics Data System (ADS)

    Jennings, Keith; Jones, Julia A.

    2015-09-01

    This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992-2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly snowmelt lysimeter, air and dewpoint temperature, wind speed, precipitation, and discharge data. All events involved snowpack outflow, but only seven events had continuous net snowpack outflow, including three of the five top-ranked peak discharge events. Peak discharge was not related to precipitation rate, but it was related to the 10 day sum of precipitation and net snowpack outflow, indicating an increased flood response to continuously melting snowpacks. The two largest peak discharge events in the study had significant wavelet coherence at multiple time scales over several days; a distribution of phase differences between precipitation and net snowpack outflow at the 12-32 h time scale with a sharp peak at π/2 radians; and strongly correlated snowpack outflow among lysimeters representing 42% of basin area. The recipe for an extreme rain-on-snow event includes persistent, slow melt within the snowpack, which appears to produce a near-saturated zone within the snowpack throughout the landscape, such that the snowpack may transmit pressure waves of precipitation directly to streams, and this process is synchronized across the landscape. Further work is needed to understand the internal dynamics of a melting snowpack throughout a snow-covered landscape and its contribution to extreme rain-on-snow floods.

  1. High time resolution observation of the transient event of 5 March 1979

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Darbro, W.; Ghosh, P.; Sutherland, P. G.; Grindlay, J.

    1980-01-01

    The detection of an intense gamma ray burst with the monitor proportional counter on the HEAO 2 spacecraft is discussed with particular emphasis on the measurement of the time of onset of the event. Based on the mean observed counting rate in the burst and assuming a sharp rise, the uncertainty in the burst onset is found to be + or - 220 microseconds. The time of occurrence was 57124.826908 + or - 0.000220 s UT on March 5, 1979, and the location of the HEAO 2 satellite at this time was latitude 22.15 deg, longitude -27.60 deg at an altitude of 525.0 km.

  2. High Speed Multichannel Charge Sensitive Data Acquisition System with Self-Triggered Event Timing

    PubMed Central

    Tremsin, Anton S.; Siegmund, Oswald H.W.; Vallerga, John V.; Raffanti, Rick; Weiss, Shimon; Michalet, Xavier

    2010-01-01

    A number of modern experiments require simultaneous measurement of charges on multiple channels at > MHz event rates with an accuracy of 100-1000 e− rms. One widely used data processing scheme relies on application of specific integrated circuits enabling multichannel analog peak detection asserted by an external trigger followed by a serial/sparsified readout. Although this configuration minimizes the back end electronics, its counting rate capability is limited by the speed of the serial readout. Recent advances in analog to digital converters and FPGA devices enable fully parallel high speed multichannel data processing with digital peak detection enhanced by finite impulse response filtering. Not only can accurate charge values be obtained at high event rates, but the timing of the event on each channel can also be determined with high accuracy. We present the concept and first experimental tests of fully parallel 128-channel charge sensitive data processing electronics capable of measuring charges with accuracy of ~1000 e- rms. Our system does not require an external trigger and, in addition to charge values, it provides the event timing with an accuracy of ~1 ns FWHM. One of the possible applications of this system is high resolution position sensitive event counting detectors with microchannel plates combined with cross strip readout. Implementation of fast data acquisition electronics increases the counting rates of those detectors to multi-MHz level, preserving their unique capability of virtually noiseless detection of both position (with accuracy of ~10 μm FWHM) and timing (~1 ns FWHM) of individual particles, including photons, electrons, ions, neutrals, and neutrons. PMID:20174482

  3. Rise Times of Solar Energetic Particle Events and Speeds of CMEs

    NASA Astrophysics Data System (ADS)

    Kahler, S.; Reames, D.

    2002-12-01

    Gradual solar energetic particle (SEP) events are assumed to be produced in coronal and interplanetary shocks driven by fast coronal mass ejections (CMEs). These fast CMEs are decelerated as they move through the slower ambient solar wind. However, the Alfven speed is decreasing with increasing distance. Faster CMEs may therefore continue to drive strong shocks for longer characteristic times than do the slower CMEs, such that shock production and injection of SEPs of a given energy will also continue longer with the faster CMEs. We test this proposition observationally by comparing the times to maxima of 20 MeV SEP events with the observed speeds of associated CMEs. The SEP/CME events are sorted by solar longitude to factor out the longitudinal dependence of the SEP rise times. A preliminary analysis comparing 20 MeV protons from the GSFC EPACT detector on the Wind satellite with CMEs observed by the LASCO coronagraph on the SOHO spacecraft showed a correlation between SEP rise times and CME speeds. We expand the database to include the 1996-2001 period for a more definitive test of the correlation. The implications of the results will be discussed.

  4. State feedback control of real-time discrete event systems with infinite states

    NASA Astrophysics Data System (ADS)

    Park, Seong-Jin; Cho, Kwang-Hyun

    2015-05-01

    In this paper, we study a state feedback supervisory control of timed discrete event systems (TDESs) with infinite number of states modelled as timed automata. To this end, we represent a timed automaton with infinite number of untimed states (called locations) by a finite set of conditional assignment statements. Predicates and predicate transformers are employed to finitely represent the behaviour and specification of a TDES with infinite number of locations. In addition, the notion of clock regions in timed automata is used to identify the reachable states of a TDES with an infinite time space. For a real-time specification described as a predicate, we present the controllability condition for the existence of a state feedback supervisor that restricts the behaviour of the controlled TDES within the specification.

  5. Validation of Cross-Sectional Time Series and Multivariate Adaptive Regression Splines Models for the Prediction of Energy Expenditure in Children and Adolescents Using Doubly Labeled Water12

    PubMed Central

    Butte, Nancy F.; Wong, William W.; Adolph, Anne L.; Puyau, Maurice R.; Vohra, Firoz A.; Zakeri, Issa F.

    2010-01-01

    Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant characteristics, heart rate (HR), and accelerometer counts (AC) for prediction of minute-by-minute EE, and hence 24-h total EE (TEE), against a 7-d doubly labeled water (DLW) method in children and adolescents. Our secondary aim was to demonstrate the utility of CSTS and MARS to predict awake EE, sleep EE, and activity EE (AEE) from 7-d HR and AC records, because these shorter periods are not verifiable by DLW, which provides an estimate of the individual's mean TEE over a 7-d interval. CSTS and MARS models were validated in 60 normal-weight and overweight participants (ages 5–18 y). The Actiheart monitor was used to simultaneously measure HR and AC. For prediction of TEE, mean absolute errors were 10.7 ± 307 kcal/d and 18.7 ± 252 kcal/d for CSTS and MARS models, respectively, relative to DLW. Corresponding root mean square error values were 305 and 251 kcal/d for CSTS and MARS models, respectively. Bland-Altman plots indicated that the predicted values were in good agreement with the DLW-derived TEE values. Validation of CSTS and MARS models based on participant characteristics, HR monitoring, and accelerometry for the prediction of minute-by-minute EE, and hence 24-h TEE, against the DLW method indicated no systematic bias and acceptable limits of agreement for pediatric groups and individuals under free-living conditions. PMID:20573939

  6. Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water.

    PubMed

    Butte, Nancy F; Wong, William W; Adolph, Anne L; Puyau, Maurice R; Vohra, Firoz A; Zakeri, Issa F

    2010-08-01

    Accurate, nonintrusive, and inexpensive techniques are needed to measure energy expenditure (EE) in free-living populations. Our primary aim in this study was to validate cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS) models based on observable participant characteristics, heart rate (HR), and accelerometer counts (AC) for prediction of minute-by-minute EE, and hence 24-h total EE (TEE), against a 7-d doubly labeled water (DLW) method in children and adolescents. Our secondary aim was to demonstrate the utility of CSTS and MARS to predict awake EE, sleep EE, and activity EE (AEE) from 7-d HR and AC records, because these shorter periods are not verifiable by DLW, which provides an estimate of the individual's mean TEE over a 7-d interval. CSTS and MARS models were validated in 60 normal-weight and overweight participants (ages 5-18 y). The Actiheart monitor was used to simultaneously measure HR and AC. For prediction of TEE, mean absolute errors were 10.7 +/- 307 kcal/d and 18.7 +/- 252 kcal/d for CSTS and MARS models, respectively, relative to DLW. Corresponding root mean square error values were 305 and 251 kcal/d for CSTS and MARS models, respectively. Bland-Altman plots indicated that the predicted values were in good agreement with the DLW-derived TEE values. Validation of CSTS and MARS models based on participant characteristics, HR monitoring, and accelerometry for the prediction of minute-by-minute EE, and hence 24-h TEE, against the DLW method indicated no systematic bias and acceptable limits of agreement for pediatric groups and individuals under free-living conditions. PMID:20573939

  7. Prediction of a time-to-event trait using genome wide SNP data

    PubMed Central

    2013-01-01

    Background A popular objective of many high-throughput genome projects is to discover various genomic markers associated with traits and develop statistical models to predict traits of future patients based on marker values. Results In this paper, we present a prediction method for time-to-event traits using genome-wide single-nucleotide polymorphisms (SNPs). We also propose a MaxTest associating between a time-to-event trait and a SNP accounting for its possible genetic models. The proposed MaxTest can help screen out nonprognostic SNPs and identify genetic models of prognostic SNPs. The performance of the proposed method is evaluated through simulations. Conclusions In conjunction with the MaxTest, the proposed method provides more parsimonious prediction models but includes more prognostic SNPs than some naive prediction methods. The proposed method is demonstrated with real GWAS data. PMID:23418752

  8. Monotonic continuous-time random walks with drift and stochastic reset events

    NASA Astrophysics Data System (ADS)

    Montero, Miquel; Villarroel, Javier

    2013-01-01

    In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.

  9. A Bayesian Approach for Instrumental Variable Analysis with Censored Time-to-Event Outcome

    PubMed Central

    Li, Gang; Lu, Xuyang

    2014-01-01

    Instrumental variable (IV) analysis has been widely used in economics, epidemiology, and other fields to estimate the causal effects of covariates on outcomes, in the presence of unobserved confounders and/or measurement errors in covariates. However, IV methods for time-to-event outcome with censored data remain underdeveloped. This paper proposes a Bayesian approach for IV analysis with censored time-to-event outcome by using a two-stage linear model. A Markov Chain Monte Carlo sampling method is developed for parameter estimation for both normal and non-normal linear models with elliptically contoured error distributions. Performance of our method is examined by simulation studies. Our method largely reduces bias and greatly improves coverage probability of the estimated causal effect, compared to the method that ignores the unobserved confounders and measurement errors. We illustrate our method on the Women's Health Initiative Observational Study and the Atherosclerosis Risk in Communities Study. PMID:25393617

  10. Automated seismic event location by arrival time stacking: Applications to local and micro-seismicity

    NASA Astrophysics Data System (ADS)

    Grigoli, F.; Cesca, S.; Braun, T.; Philipp, J.; Dahm, T.

    2012-04-01

    Locating seismic events is one of the oldest problem in seismology. In microseismicity application, when the number of event is very large, it is not possible to locate earthquake manually and automated location procedures must be established. Automated seismic event location at different scales is very important in different application areas, including mining monitoring, reservoir geophysics and early warning systems. Location is needed to start rescue operations rapidly. Locating and mapping microearthquakes or acoustic emission sources in mining environments is important for monitoring of mines stability. Mapping fractures through microseimicity distribution inside hydrocarbon reservoirs is needed to find areas with an higher permeability and enhance oil production. In the last 20 years a large number of picking algorithm was developed in order to locate seismic events automatically. While P onsets can now be accurately picked using automatic routines, the automatic picking of later seismic phases (including S onset) is still problematic , thus limiting the location performance. In this work we present a picking free location method based on the use of the Short-Term-Average/Long-Term-Average (STA/LTA) traces at different stations as observed data. For different locations and origin times, observed STA/LTA are stacked along the travel time surface corresponding to the selected hypocentre. Iterating this procedure on a three-dimensional grid we retrieve a multidimensional matrix whose absolute maximum corresponds to the spatio-temporal coordinates of the seismic event. We tested our methodology on synthetic data, simulating different environments and network geometries. Finally, we apply our method to real datasets related to microseismic activity in mines and earthquake swarms in Italy. This work has been funded by the German BMBF "Geotechnologien" project MINE (BMBF03G0737A).

  11. Time study of trace elements and major ions during two cloud events at the Mt. Brocken

    NASA Astrophysics Data System (ADS)

    Plessow, K.; Acker, K.; Heinrichs, H.; Möller, D.

    Cloud water investigations have been performed at the highest elevation of Central Germany in 1997. Results of extensive trace element measurements are presented. Besides conductivity, pH, liquid water content and major ions the data set includes 49 minor and trace elements. Estimation of crustal enrichment factors (EFs) provides an indication of the anthropogenic contributions to the cloud water concentrations. The variation of cloud composition with time has been illustrated for two selected events with different air mass origins. The chemical composition of the cloud condensation nuclei on which the droplets grow mainly determines the cloud water chemistry. For a cloud event in June 1997 the concentrations of the crustally derived elements Si, Al, Fe, Ti, Ce, La and Nd follow each other closely. The fact that SO 42-, NO 3- and NH 4+ are only moderately correlated with the particular pollutants with high enrichment factors such as Cd, Sb, Pb, Zn, Cu, As, Bi, Sn, Mo, Ni, Tl and V indicates that their source regions are more widespread. During an event in October 1997 the time trends for most minor and trace elements follow rather closely those for the major ions NH 4+, SO 42- and NO 3-. Back trajectories show that the transport from continental and marine European sources was the likely cause of the sample concentrations. EFs of trace elements in cloud water samples during the June and October event show a strong correlation with those obtained for urban particulate matter. Although both events are influenced by air masses of different origin, there is a good agreement between the EF signatures.

  12. Meteorological factors and timing of the initiating event of human parturition.

    PubMed

    Hirsch, Emmet; Lim, Courtney; Dobrez, Deborah; Adams, Marci G; Noble, William

    2011-03-01

    The aim of this study was to determine whether meteorological factors are associated with the timing of either onset of labor with intact membranes or rupture of membranes prior to labor-together referred to as 'the initiating event' of parturition. All patients delivering at Evanston Hospital after spontaneous labor or rupture of membranes at ≥20 weeks of gestation over a 6-month period were studied. Logistic regression models of the initiating event of parturition using clinical variables (maternal age, gestational age, parity, multiple gestation and intrauterine infection) with and without the addition of meteorological variables (barometric pressure, temperature and humidity) were compared. A total of 1,088 patients met the inclusion criteria. Gestational age, multiple gestation and chorioamnionitis were associated with timing of initiation of parturition (P < 0.01). The addition of meteorological to clinical variables generated a statistically significant improvement in prediction of the initiating event; however, the magnitude of this improvement was small (less than 2% difference in receiver-operating characteristic score). These observations held regardless of parity, fetal number and gestational age. Meteorological factors are associated with the timing of parturition, but the magnitude of this association is small. PMID:20526783

  13. Meteorological factors and timing of the initiating event of human parturition

    NASA Astrophysics Data System (ADS)

    Hirsch, Emmet; Lim, Courtney; Dobrez, Deborah; Adams, Marci G.; Noble, William

    2011-03-01

    The aim of this study was to determine whether meteorological factors are associated with the timing of either onset of labor with intact membranes or rupture of membranes prior to labor—together referred to as `the initiating event' of parturition. All patients delivering at Evanston Hospital after spontaneous labor or rupture of membranes at ≥20 weeks of gestation over a 6-month period were studied. Logistic regression models of the initiating event of parturition using clinical variables (maternal age, gestational age, parity, multiple gestation and intrauterine infection) with and without the addition of meteorological variables (barometric pressure, temperature and humidity) were compared. A total of 1,088 patients met the inclusion criteria. Gestational age, multiple gestation and chorioamnionitis were associated with timing of initiation of parturition ( P < 0.01). The addition of meteorological to clinical variables generated a statistically significant improvement in prediction of the initiating event; however, the magnitude of this improvement was small (less than 2% difference in receiver-operating characteristic score). These observations held regardless of parity, fetal number and gestational age. Meteorological factors are associated with the timing of parturition, but the magnitude of this association is small.

  14. Time-frequency analysis of event-related potentials: a brief tutorial.

    PubMed

    Herrmann, Christoph S; Rach, Stefan; Vosskuhl, Johannes; Strüber, Daniel

    2014-07-01

    Event-related potentials (ERPs) reflect cognitive processes and are usually analyzed in the so-called time domain. Additional information on cognitive functions can be assessed when analyzing ERPs in the frequency domain and treating them as event-related oscillations (EROs). This procedure results in frequency spectra but lacks information about the temporal dynamics of EROs. Here, we describe a method-called time-frequency analysis-that allows analyzing both the frequency of an ERO and its evolution over time. In a brief tutorial, the reader will learn how to use wavelet analysis in order to compute time-frequency transforms of ERP data. Basic steps as well as potential artifacts are described. Rather than in terms of formulas, descriptions are in textual form (written text) with numerous figures illustrating the topics. Recommendations on how to present frequency and time-frequency data in journal articles are provided. Finally, we briefly review studies that have applied time-frequency analysis to mismatch negativity paradigms. The deviant stimulus of such a paradigm evokes an ERO in the theta frequency band that is stronger than for the standard stimulus. Conversely, the standard stimulus evokes a stronger gamma-band response than does the deviant. This is interpreted in the context of the so-called match-and-utilization model. PMID:24194116

  15. Events That Trigger Poverty Entries and Exits. JCPR Working Paper.

    ERIC Educational Resources Information Center

    McKernan, Signe-Mary; Ratcliffe, Caroline

    This paper uses a discrete-time multivariate hazard model and longitudinal data from the Survey of Income and Program Participation to examine how events affect poverty entries and exits and how these events have changed over time--from the pre-welfare reform period to the post-reform period. It also uses monthly state unemployment rate data from…

  16. Comprehensive temporal information detection from clinical text: medical events, time, and TLINK identification

    PubMed Central

    Sohn, Sunghwan; Wagholikar, Kavishwar B; Li, Dingcheng; Jonnalagadda, Siddhartha R; Tao, Cui; Komandur Elayavilli, Ravikumar; Liu, Hongfang

    2013-01-01

    Background Temporal information detection systems have been developed by the Mayo Clinic for the 2012 i2b2 Natural Language Processing Challenge. Objective To construct automated systems for EVENT/TIMEX3 extraction and temporal link (TLINK) identification from clinical text. Materials and methods The i2b2 organizers provided 190 annotated discharge summaries as the training set and 120 discharge summaries as the test set. Our Event system used a conditional random field classifier with a variety of features including lexical information, natural language elements, and medical ontology. The TIMEX3 system employed a rule-based method using regular expression pattern match and systematic reasoning to determine normalized values. The TLINK system employed both rule-based reasoning and machine learning. All three systems were built in an Apache Unstructured Information Management Architecture framework. Results Our TIMEX3 system performed the best (F-measure of 0.900, value accuracy 0.731) among the challenge teams. The Event system produced an F-measure of 0.870, and the TLINK system an F-measure of 0.537. Conclusions Our TIMEX3 system demonstrated good capability of regular expression rules to extract and normalize time information. Event and TLINK machine learning systems required well-defined feature sets to perform well. We could also leverage expert knowledge as part of the machine learning features to further improve TLINK identification performance. PMID:23558168

  17. Sensitivity to censored-at-random assumption in the analysis of time-to-event endpoints.

    PubMed

    Lipkovich, Ilya; Ratitch, Bohdana; O'Kelly, Michael

    2016-05-01

    Over the past years, significant progress has been made in developing statistically rigorous methods to implement clinically interpretable sensitivity analyses for assumptions about the missingness mechanism in clinical trials for continuous and (to a lesser extent) for binary or categorical endpoints. Studies with time-to-event outcomes have received much less attention. However, such studies can be similarly challenged with respect to the robustness and integrity of primary analysis conclusions when a substantial number of subjects withdraw from treatment prematurely prior to experiencing an event of interest. We discuss how the methods that are widely used for primary analyses of time-to-event outcomes could be extended in a clinically meaningful and interpretable way to stress-test the assumption of ignorable censoring. We focus on a 'tipping point' approach, the objective of which is to postulate sensitivity parameters with a clear clinical interpretation and to identify a setting of these parameters unfavorable enough towards the experimental treatment to nullify a conclusion that was favorable to that treatment. Robustness of primary analysis results can then be assessed based on clinical plausibility of the scenario represented by the tipping point. We study several approaches for conducting such analyses based on multiple imputation using parametric, semi-parametric, and non-parametric imputation models and evaluate their operating characteristics via simulation. We argue that these methods are valuable tools for sensitivity analyses of time-to-event data and conclude that the method based on piecewise exponential imputation model of survival has some advantages over other methods studied here. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26997353

  18. The Value of Real-time High Resolution Satellite Precipitation in Capturing Extreme Rainfall Event

    NASA Astrophysics Data System (ADS)

    Imam, B.; Kuranjekar, P.; Behrangi, A.; Hsu, K.; Sorooshian, S.

    2008-05-01

    In many parts of the world, operational real-time flood and hydrologic forecasting are hindered by the lack of reliable real-time precipitation observations. The insufficient ground observations have made satellite-based precipitation estimates the only available source for wide coverage data. As the spatial and temporal resolution of satellite-based rainfall estimates continue to improve, assessing the usefulness of these products, particularly in capturing extreme precipitation events becomes an important issue. This presentation demonstrates and discusses a framework for evaluating real-time high resolution precipitation products in terms of their operational utility. As an example of operational high resolution precipitation products, the 3 hourly near real-time, 0.04°x0.04° Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) (Hong et. al., 2004) product is compared against gauge and NEXRAD observations of several heavy precipitation events including tropical storm Erin, which affected Texas and Oklahoma during the period of August 10-20, 2007. For each storm, a swath of precipitation along the storm track is analyzed using both real-time and quality controlled versions of the products. Traditional as well as threshold- based (e.g. verification) performance measures are used to describe differences between NEXRAD and Satellite observations' ability to capture severe storm characteristics within the target area and to assess possible shifts in rainfall amount spectrum. While not fully conclusive, the results indicate that for operational purposes, high resolution satellite-based precipitation estimates can fill in a much needed observational gap during severe storm events.

  19. Model-based estimation of measures of association for time-to-event outcomes

    PubMed Central

    2014-01-01

    Background Hazard ratios are ubiquitously used in time to event applications to quantify adjusted covariate effects. Although hazard ratios are invaluable for hypothesis testing, other adjusted measures of association, both relative and absolute, should be provided to fully appreciate studies results. The corrected group prognosis method is generally used to estimate the absolute risk reduction and the number needed to be treated for categorical covariates. Methods The goal of this paper is to present transformation models for time-to-event outcomes to obtain, directly from estimated coefficients, the measures of association widely used in biostatistics together with their confidence interval. Pseudo-values are used for a practical estimation of transformation models. Results Using the regression model estimated through pseudo-values with suitable link functions, relative risks, risk differences and the number needed to treat, are obtained together with their confidence intervals. One example based on literature data and one original application to the study of prognostic factors in primary retroperitoneal soft tissue sarcomas are presented. A simulation study is used to show some properties of the different estimation methods. Conclusions Clinically useful measures of treatment or exposure effect are widely available in epidemiology. When time to event outcomes are present, the analysis is performed generally resorting to predicted values from Cox regression model. It is now possible to resort to more general regression models, adopting suitable link functions and pseudo values for estimation, to obtain alternative measures of effect directly from regression coefficients together with their confidence interval. This may be especially useful when, in presence of time dependent covariate effects, it is not straightforward to specify the correct, if any, time dependent functional form. The method can easily be implemented with standard software. PMID:25106903

  20. Real-Time Classification of Bladder Events for Effective Diagnosis and Treatment of Urinary Incontinence.

    PubMed

    Karam, Robert; Bourbeau, Dennis; Majerus, Steve; Makovey, Iryna; Goldman, Howard B; Damaser, Margot S; Bhunia, Swarup

    2016-04-01

    Diagnosis of lower urinary tract dysfunction with urodynamics has historically relied on data acquired from multiple sensors using nonphysiologically fast cystometric filling. In addition, state-of-the-art neuromodulation approaches to restore bladder function could benefit from a bladder sensor for closed-loop control, but a practical sensor and automated data analysis are not available. We have developed an algorithm for real-time bladder event detection based on a single in situ sensor, making it attractive for both extended ambulatory bladder monitoring and closed-loop control of stimulation systems for diagnosis and treatment of bladder overactivity. Using bladder pressure data acquired from 14 human subjects with neurogenic bladder, we developed context-aware thresholding, a novel, parameterized, user-tunable algorithmic framework capable of real-time classification of bladder events, such as detrusor contractions, from single-sensor bladder pressure data. We compare six event detection algorithms with both single-sensor and two-sensor systems using a metric termed Conditional Stimulation Score, which ranks algorithms based on projected stimulation efficacy and efficiency. We demonstrate that adaptive methods are more robust against day-to-day variations than static thresholding, improving sensitivity and specificity without parameter modifications. Relative to other methods, context-aware thresholding is fast, robust, highly accurate, noise-tolerant, and amenable to energy-efficient hardware implementation, which is important for mapping to an implant device. PMID:26292331

  1. Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector

    NASA Astrophysics Data System (ADS)

    Brandis, M.; Vartsky, D.; Dangendorf, V.; Bromberger, B.; Bar, D.; Goldberg, M. B.; Tittelmeier, K.; Friedman, E.; Czasch, A.; Mardor, I.; Mor, I.; Weierganz, M.

    2012-04-01

    Results are presented from the latest experiment with a new neutron/gamma detector, a Time-Resolved, Event-Counting Optical Radiation (TRECOR) detector. It is composed of a scintillating fiber-screen converter, bending mirror, lens and Event-Counting Image Intensifier (ECII), capable of specifying the position and time-of-flight of each event. TRECOR is designated for a multipurpose integrated system that will detect Special Nuclear Materials (SNM) and explosives in cargo. Explosives are detected by Fast-Neutron Resonance Radiography, and SNM by Dual Discrete-Energy gamma-Radiography. Neutrons and gamma-rays are both produced in the 11B(d,n+γ)12C reaction. The two detection modes can be implemented simultaneously in TRECOR, using two adjacent radiation converters that share a common optical readout. In the present experiment the neutron detection mode was studied, using a plastic scintillator converter. The measurements were performed at the PTB cyclotron, using the 9Be(d,n) neutron spectrum obtained from a thick Be-target at Ed ~ 13 MeV\\@. The basic characteristics of this detector were investigated, including the Contrast Transfer Function (CTF), Point Spread Function (PSF) and elemental discrimination capability.

  2. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical

  3. Problems with Multivariate Normality: Can the Multivariate Bootstrap Help?

    ERIC Educational Resources Information Center

    Thompson, Bruce

    Multivariate normality is required for some statistical tests. This paper explores the implications of violating the assumption of multivariate normality and illustrates a graphical procedure for evaluating multivariate normality. The logic for using the multivariate bootstrap is presented. The multivariate bootstrap can be used when distribution…

  4. Cross-Sectional Time Series and Multivariate Adaptive Regression Splines Models Using Accelerometry and Heart Rate Predict Energy Expenditure of Preschoolers123

    PubMed Central

    Zakeri, Issa F.; Adolph, Anne L.; Puyau, Maurice R.; Vohra, Firoz A.; Butte, Nancy F.

    2013-01-01

    Prediction equations of energy expenditure (EE) using accelerometers and miniaturized heart rate (HR) monitors have been developed in older children and adults but not in preschool-aged children. Because the relationships between accelerometer counts (ACs), HR, and EE are confounded by growth and maturation, age-specific EE prediction equations are required. We used advanced technology (fast-response room calorimetry, Actiheart and Actigraph accelerometers, and miniaturized HR monitors) and sophisticated mathematical modeling [cross-sectional time series (CSTS) and multivariate adaptive regression splines (MARS)] to develop models for the prediction of minute-by-minute EE in 69 preschool-aged children. CSTS and MARS models were developed by using participant characteristics (gender, age, weight, height), Actiheart (HR+AC_x) or ActiGraph parameters (AC_x, AC_y, AC_z, steps, posture) [x, y, and z represent the directional axes of the accelerometers], and their significant 1- and 2-min lag and lead values, and significant interactions. Relative to EE measured by calorimetry, mean percentage errors predicting awake EE (−1.1 ± 8.7%, 0.3 ± 6.9%, and −0.2 ± 6.9%) with CSTS models were slightly higher than with MARS models (−0.7 ± 6.0%, 0.3 ± 4.8%, and −0.6 ± 4.6%) for Actiheart, ActiGraph, and ActiGraph+HR devices, respectively. Predicted awake EE values were within ±10% for 81–87% of individuals for CSTS models and for 91–98% of individuals for MARS models. Concordance correlation coefficients were 0.936, 0.931, and 0.943 for CSTS EE models and 0.946, 0.948, and 0.940 for MARS EE models for Actiheart, ActiGraph, and ActiGraph+HR devices, respectively. CSTS and MARS models should prove useful in capturing the complex dynamics of EE and movement that are characteristic of preschool-aged children. PMID:23190760

  5. Critical job events, acute stress, and strain: a multiple interrupted time series.

    PubMed

    Eden, D

    1982-12-01

    A critical job event (CJE) is defined as a time-bounded peak of performance demand made on the individual as an integral part of his job. Though such events are an important source of acute job stress and are amenable to longitudinal study, relevant research has been scant. In the present study, the effects of acute objective stress on subjective stress and on psychological and physiological strain were assessed among 39 first-year nursing students in an interrupted time series with multiple replications. Strain was measured five times, twice in anticipation of CJE interspersed by three low-stress occasions. The CJEs were providing the first comprehensive patient care and the final exam in nursing. A consistently confirmatory pattern of significantly rising and falling strain was found for anxiety, systolic blood pressure, and pulse rate: qualitative overload and serum uric acid changed as predicted four times out of five. CJE research can redress past overemphasis on chronic organizational stress and strengthen causal interpretation. PMID:10257633

  6. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  7. High time resolution studies of flux transfer events at the Earth's dayside magnetopause using Cluster data

    NASA Astrophysics Data System (ADS)

    Varsani, Ali; Owen, Christopher J.; Fazakerley, Andrew N.; Forsyth, Colin; Walsh, Andrew P.; Andre, Mats; Dandouras, Iannis; Lucek, Elizabeth

    2013-04-01

    Since launch in 2000, the four ESA Cluster spacecraft have each crossed the dayside magnetopause region thousands of times. Many previous studies presenting analysis of data from the mission, have contributed to a better understanding of the structure and dynamics of that interface and its associated boundary layers. While 2D electron pitch angle distributions (PAD) are routinely produced by the PEACE sensors on Cluster at spacecraft spin resolution (4s), the structures in this region are known to undergo changes on faster timescales than this, in response to both external drivers and internal dynamic processes. However, in certain circumstances, near-complete pitch angle distributions can be obtained at higher time resolution using Cluster burst mode data, facilitating a more detailed analysis of the particle behaviour near the magnetopause. In this paper we present an event during which the four spacecraft made outbound crossings through the low latitude boundary layer while the magnetic field orientation allowed a full pitch angle distribution of electrons to be constructed (every 1/8 s). The four Cluster spacecraft were in the 'multi-scale' formation with separations between individual pairs of spacecraft of either ~8000 or ~800 km. During the event in question, the Cluster spacecraft observed two flux transfer events (FTEs) and made a rapid (~16s) crossing of the magnetopause. The first FTE was most prominent in the C1 data a few minutes before the spacecraft crossed the magnetopause; and the second FTE was observed by C2 just before its magnetopause crossing. Additionally, C1 detected the signature associated with the second FTE in the magnetosheath, and the data from C3 show a disturbance in the low latitude boundary layer that also appears to be related to this FTE. We have utilized the high time resolution pitch angle distributions of electrons along with the high time resolution electric & magnetic data and ion distributions, to study in detail the

  8. Time dependent inversion of the August 2010 Northern Cascadia slow slip event

    NASA Astrophysics Data System (ADS)

    Mitchell, C. A.; Bartlow, N. M.; Segall, P.

    2011-12-01

    Although slip and tremor occur together, their precise spatial and temporal relationship is not well determined. We analyze data for the period of August to September 2010 from the northern Cascadia subduction zone, where the Juan de Fuca plate obliquely subducts below North America. Using geodetic (GPS and tilt) data from Pacific Northwest Geodetic Array (PANGA) we reconstruct a record of slip and slip-rate during the ETS event. To do this we first remove seasonal signals and long-term secular velocities from the data, and then use a time-dependent slip inversion method (constrained Network Inversion Filter [Segall and Matthews, J. Geophys. Res., 1997; Simon and Simon, IEE Proc.-Control Theory Appl., 2006]) to solve for slip and slip-rate. We also utilize tremor locations from University of Washington Pacific Northwest Seismic Network (PNSN), to reconstruct the migration of the tectonic tremor. Utilizing the UW tremor locations, we superimpose the tremor data onto the geodetic inversion results to correlate the tremor migration with the slow slip event. The tremor belt spans from Vancouver, BC to a little north of Portland, Oregon. Fairly consistent with model predictions, the geodetic data displays noticeable displacement of GPS stations located in and around the Olympic peninsula region. Although derived from different data types, slip and tremor occur generally in the same location and during the same time period. A similar synchronized movement of the tremor and slip-rate locations was found by Bartlow et al for the 2009 ETS event. Our results indicate that this synchronized migration is likely true of all ETS in Cascadia, as it has now been shown for both this ETS event and the August 2009 central Cascadia ETS (Bartlow et al, 2011). Analysis of the geodetic data and tremor epicenters indicate that the ETS event migrated bimodally and appears to have originated near the Puget sound. GPS stations located in this general area had greater measured displacement

  9. Area-Specific Information Processing in Prefrontal Cortex during a Probabilistic Inference Task: A Multivariate fMRI BOLD Time Series Analysis

    PubMed Central

    Demanuele, Charmaine; Kirsch, Peter; Esslinger, Christine; Zink, Mathias; Meyer-Lindenberg, Andreas; Durstewitz, Daniel

    2015-01-01

    Introduction Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task. Methods We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages. Results Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative. Conclusions/Significance We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns

  10. Auroral observations in the Antarctic at the time of the Tunguska event, 1908 June 30.

    NASA Astrophysics Data System (ADS)

    Steel, D.; Ferguson, R.

    1993-03-01

    The original notebooks of Sir Douglas Mawson containing observations of the aurora australis by members of the British Antarctic Expedition at the time of the Tunguska explosion over Siberia on 1908 June 30 have been inspected, and it is found that, contrary to some suggestions which note that geomagnetic transients were witnessed elsewhere, and that the BAE was in winter quarters close to the south magnetic pole at the time, no exceptional auroral activity was seen which might have provided useful information on a planet-wide disturbance at the time of the event. However, an exceptional aurora was seen about seven hours prior to the explosion, and it is suggested that this may have been due to an anti-solar comet-like ion tail producing that auroral display whilst the impactor was still far from Earth.

  11. TEACHING PHYSICS: A simple computer interface to time relatively slow physical events

    NASA Astrophysics Data System (ADS)

    Ocaya, R. O.

    2000-07-01

    This article describes a simple computer interface that can be used to make reliable time measurements, such as that which may be made when timing the swings of a pendulum. The interface revolves around the IBM computer printer port. It can be constructed cheaply and does not involve the modification of the internal circuits of the computer. In a sample experimental set-up, which is also described, the time measurements were found to be repeatable to three decimal places for event rates of around 14Â Hz. The sample experiment described involves a form of pendulum known as the compound pendulum. The interface can be modified easily to work with other types of moving object.

  12. Measurement of the time dependence of B0-B0(bar) oscillations using inclusive dilepton events

    SciTech Connect

    Barrera, Barbara

    2000-10-16

    A preliminary study of time dependence of B{sup 0}{bar B}{sup 0} oscillations using dilepton events is presented. The flavor of the B meson is determined by the charge sign of the lepton. To separate signal leptons from cascade and fake leptons we have used a method which combines several discriminating variables in a neural network. The time evolution of the oscillations is studied by reconstructing the time difference between the decays of the B mesons produced by the {Upsilon}(4S) decay. With an integrated luminosity of 7.7 fb{sup -1} collected on resonance by BABAR at the PEP-II asymmetric B Factory, we measure the difference in mass of the neutral B eigenstates, {Delta}m{sub B{sup 0}}, to be (0.507 {+-} 0.015 {+-} 0.022) x 10{sup 12} {Dirac_h} s{sup -1}.

  13. SOLAR ENERGETIC-PARTICLE RELEASE TIMES IN HISTORIC GROUND-LEVEL EVENTS

    SciTech Connect

    Reames, Donald V.

    2009-11-20

    Ground-level events (GLEs) are large solar energetic-particle events with sufficiently hard spectra for GeV protons to be detected by neutron monitors at ground level. For each of 30 well-observed historic GLEs from four solar cycles, extending back to 1973, I have plotted onset times versus velocity{sup -1} for particles observed on the IMP-7 and 8, ISEE-3, Wind, and GOES spacecraft and by neutron monitors. A linear fit on such a plot for each GLE determines the initial solar particle release (SPR) time, as the intercept, and the magnetic path length traversed, as the slope, of the fitted line. Magnetic path lengths and SPR times are well determined by the fits and cannot be used as adjustable parameters to make particle and photon emission times coincide. SPR times follow the onsets of shock-induced type II radio bursts and the coronal height of the coronal mass ejection (CME)-driven shock at SPR time can be determined for GLEs spanning an interval of solar longitude of approx140 deg. For a given GLE, all particle species and energies diverge from a single SPR point at a given coronal height and footpoint longitude of the field line to the Earth. These heights tend to increase with longitudinal distance away from the source, a pattern expected for shock acceleration. Acceleration for magnetically well-connected large GLEs begins at approx2 solar radii, in contrast to non-GLEs that have been found to be strongly associated with shocks above approx3 solar radii. The higher densities and magnetic field strengths at lower altitudes may be responsible for the acceleration of higher-energy particles in GLEs, while those GLEs that begin above 3R {sub S} may compensate by having higher shock speeds. These results support the joint dependence of maximum particle energy on magnetic field strength, injected particle density, and shock speed, all predicted theoretically.

  14. Integrated survival analysis using an event-time approach in a Bayesian framework.

    PubMed

    Walsh, Daniel P; Dreitz, Victoria J; Heisey, Dennis M

    2015-02-01

    Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the

  15. Integrated survival analysis using an event-time approach in a Bayesian framework

    PubMed Central

    Walsh, Daniel P; Dreitz, Victoria J; Heisey, Dennis M

    2015-01-01

    Event-time or continuous-time statistical approaches have been applied throughout the biostatistical literature and have led to numerous scientific advances. However, these techniques have traditionally relied on knowing failure times. This has limited application of these analyses, particularly, within the ecological field where fates of marked animals may be unknown. To address these limitations, we developed an integrated approach within a Bayesian framework to estimate hazard rates in the face of unknown fates. We combine failure/survival times from individuals whose fates are known and times of which are interval-censored with information from those whose fates are unknown, and model the process of detecting animals with unknown fates. This provides the foundation for our integrated model and permits necessary parameter estimation. We provide the Bayesian model, its derivation, and use simulation techniques to investigate the properties and performance of our approach under several scenarios. Lastly, we apply our estimation technique using a piece-wise constant hazard function to investigate the effects of year, age, chick size and sex, sex of the tending adult, and nesting habitat on mortality hazard rates of the endangered mountain plover (Charadrius montanus) chicks. Traditional models were inappropriate for this analysis because fates of some individual chicks were unknown due to failed radio transmitters. Simulations revealed biases of posterior mean estimates were minimal (≤ 4.95%), and posterior distributions behaved as expected with RMSE of the estimates decreasing as sample sizes, detection probability, and survival increased. We determined mortality hazard rates for plover chicks were highest at <5 days old and were lower for chicks with larger birth weights and/or whose nest was within agricultural habitats. Based on its performance, our approach greatly expands the range of problems for which event-time analyses can be used by eliminating the

  16. A population-based temporal logic gate for timing and recording chemical events.

    PubMed

    Hsiao, Victoria; Hori, Yutaka; Rothemund, Paul Wk; Murray, Richard M

    2016-01-01

    Engineered bacterial sensors have potential applications in human health monitoring, environmental chemical detection, and materials biosynthesis. While such bacterial devices have long been engineered to differentiate between combinations of inputs, their potential to process signal timing and duration has been overlooked. In this work, we present a two-input temporal logic gate that can sense and record the order of the inputs, the timing between inputs, and the duration of input pulses. Our temporal logic gate design relies on unidirectional DNA recombination mediated by bacteriophage integrases to detect and encode sequences of input events. For an E. coli strain engineered to contain our temporal logic gate, we compare predictions of Markov model simulations with laboratory measurements of final population distributions for both step and pulse inputs. Although single cells were engineered to have digital outputs, stochastic noise created heterogeneous single-cell responses that translated into analog population responses. Furthermore, when single-cell genetic states were aggregated into population-level distributions, these distributions contained unique information not encoded in individual cells. Thus, final differentiated sub-populations could be used to deduce order, timing, and duration of transient chemical events. PMID:27193783

  17. A novel adaptive, real-time algorithm to detect gait events from wearable sensors.

    PubMed

    Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona

    2015-05-01

    A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices. PMID:25069118

  18. Event Timing in Associative Learning: From Biochemical Reaction Dynamics to Behavioural Observations

    PubMed Central

    Yarali, Ayse; Nehrkorn, Johannes; Tanimoto, Hiromu; Herz, Andreas V. M.

    2012-01-01

    Associative learning relies on event timing. Fruit flies for example, once trained with an odour that precedes electric shock, subsequently avoid this odour (punishment learning); if, on the other hand the odour follows the shock during training, it is approached later on (relief learning). During training, an odour-induced Ca++ signal and a shock-induced dopaminergic signal converge in the Kenyon cells, synergistically activating a Ca++-calmodulin-sensitive adenylate cyclase, which likely leads to the synaptic plasticity underlying the conditioned avoidance of the odour. In Aplysia, the effect of serotonin on the corresponding adenylate cyclase is bi-directionally modulated by Ca++, depending on the relative timing of the two inputs. Using a computational approach, we quantitatively explore this biochemical property of the adenylate cyclase and show that it can generate the effect of event timing on associative learning. We overcome the shortage of behavioural data in Aplysia and biochemical data in Drosophila by combining findings from both systems. PMID:22493657

  19. Time evolution of atmospheric particle number concentration during high-intensity pyrotechnic events

    NASA Astrophysics Data System (ADS)

    Crespo, Javier; Yubero, Eduardo; Nicolás, Jose F.; Caballero, Sandra; Galindo, Nuria

    2014-10-01

    The Mascletàs are high-intensity pyrotechnic events, typical of eastern Spanish festivals, in which thousands of firecrackers are burnt at ground level in an intense, short-time (<8 min) deafening spectacle that generates short-lived, thick aerosol clouds. In this study, the impact of such events on air quality has been evaluated by means of particle number concentration measurements performed close to the venue during the June festival in Alicante (southeastern Spain). Peak concentrations and dilution times observed throughout the Mascletàs have been compared to those measured when conventional aerial fireworks were launched 2 km away from the monitoring site. The impact of the Mascletàs on the total number concentration of particles larger than 0.3 μm was higher (maximum ˜2·104 cm-3) than that of fireworks (maximum ˜2·103 cm-3). The effect of fireworks depended on whether the dominant meteorological conditions favoured the transport of the plume to the measurement location. However, the time required for particle concentrations to return to background levels is longer and more variable for firework displays (minutes to hours) than for the Mascletàs (<25 min).

  20. Real-time gait event detection for transfemoral amputees during ramp ascending and descending.

    PubMed

    Maqbool, H F; Husman, M A B; Awad, M I; Abouhossein, A; Dehghani-Sanij, A A

    2015-01-01

    Events and phases detection of the human gait are vital for controlling prosthesis, orthosis and functional electrical stimulation (FES) systems. Wearable sensors are inexpensive, portable and have fast processing capability. They are frequently used to assess spatio-temporal, kinematic and kinetic parameters of the human gait which in turn provide more details about the human voluntary control and ampute-eprosthesis interaction. This paper presents a reliable real-time gait event detection algorithm based on simple heuristics approach, applicable to signals from tri-axial gyroscope for lower limb amputees during ramp ascending and descending. Experimental validation is done by comparing the results of gyroscope signal with footswitches. For healthy subjects, the mean difference between events detected by gyroscope and footswitches is 14 ms and 10.5 ms for initial contact (IC) whereas for toe off (TO) it is -5 ms and -25 ms for ramp up and down respectively. For transfemoral amputee, the error is slightly higher either due to the placement of footswitches underneath the foot or the lack of proper knee flexion and ankle plantarflexion/dorsiflexion during ramp up and down. Finally, repeatability tests showed promising results. PMID:26737364

  1. Recurrent event data analysis with intermittently observed time-varying covariates.

    PubMed

    Li, Shanshan; Sun, Yifei; Huang, Chiung-Yu; Follmann, Dean A; Krause, Richard

    2016-08-15

    Although recurrent event data analysis is a rapidly evolving area of research, rigorous studies on estimation of the effects of intermittently observed time-varying covariates on the risk of recurrent events have been lacking. Existing methods for analyzing recurrent event data usually require that the covariate processes are observed throughout the entire follow-up period. However, covariates are often observed periodically rather than continuously. We propose a novel semiparametric estimator for the regression parameters in the popular proportional rate model. The proposed estimator is based on an estimated score function where we kernel smooth the mean covariate process. We show that the proposed semiparametric estimator is asymptotically unbiased, normally distributed, and derives the asymptotic variance. Simulation studies are conducted to compare the performance of the proposed estimator and the simple methods carrying forward the last covariates. The different methods are applied to an observational study designed to assess the effect of group A streptococcus on pharyngitis among school children in India. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887664

  2. Memory for time and place contributes to enhanced confidence in memories for emotional events.

    PubMed

    Rimmele, Ulrike; Davachi, Lila; Phelps, Elizabeth A

    2012-08-01

    Emotion strengthens the subjective sense of remembering. However, these confidently remembered emotional memories have not been found be more accurate for some types of contextual details. We investigated whether the subjective sense of recollecting negative stimuli is coupled with enhanced memory accuracy for three specific types of central contextual details using the remember/know paradigm and confidence ratings. Our results indicate that the subjective sense of remembering is indeed coupled with better recollection of spatial location and temporal context, but not higher memory accuracy for colored dots placed in the conceptual center of negative and neutral scenes. These findings show that the enhanced subjective recollective experience for negative stimuli reliably indicates objective recollection for spatial location and temporal context, but not for other types of details, whereas for neutral stimuli, the subjective sense of remembering is coupled with all the types of details assessed. Translating this finding to flashbulb memories, we found that, over time, more participants correctly remembered the location where they learned about the terrorist attacks on 9/11 than any other canonical feature. Likewise, participants' confidence was higher in their memory for location versus other canonical features. These findings indicate that the strong recollective experience of a negative event corresponds to an accurate memory for some kinds of contextual details but not for other kinds. This discrepancy provides further evidence that the subjective sense of remembering negative events is driven by a different mechanism than the subjective sense of remembering neutral events. PMID:22642353

  3. A Bayesian model for time-to-event data with informative censoring

    PubMed Central

    Kaciroti, Niko A.; Raghunathan, Trivellore E.; Taylor, Jeremy M. G.; Julius, Stevo

    2012-01-01

    Randomized trials with dropouts or censored data and discrete time-to-event type outcomes are frequently analyzed using the Kaplan–Meier or product limit (PL) estimation method. However, the PL method assumes that the censoring mechanism is noninformative and when this assumption is violated, the inferences may not be valid. We propose an expanded PL method using a Bayesian framework to incorporate informative censoring mechanism and perform sensitivity analysis on estimates of the cumulative incidence curves. The expanded method uses a model, which can be viewed as a pattern mixture model, where odds for having an event during the follow-up interval (tk−1,tk], conditional on being at risk at tk−1, differ across the patterns of missing data. The sensitivity parameters relate the odds of an event, between subjects from a missing-data pattern with the observed subjects for each interval. The large number of the sensitivity parameters is reduced by considering them as random and assumed to follow a log-normal distribution with prespecified mean and variance. Then we vary the mean and variance to explore sensitivity of inferences. The missing at random (MAR) mechanism is a special case of the expanded model, thus allowing exploration of the sensitivity to inferences as departures from the inferences under the MAR assumption. The proposed approach is applied to data from the TRial Of Preventing HYpertension. PMID:22223746

  4. Analysis of recurrent events with an associated informative dropout time: Application of the joint frailty model.

    PubMed

    Rogers, Jennifer K; Yaroshinsky, Alex; Pocock, Stuart J; Stokar, David; Pogoda, Janice

    2016-06-15

    This paper considers the analysis of a repeat event outcome in clinical trials of chronic diseases in the context of dependent censoring (e.g. mortality). It has particular application in the context of recurrent heart failure hospitalisations in trials of heart failure. Semi-parametric joint frailty models (JFMs) simultaneously analyse recurrent heart failure hospitalisations and time to cardiovascular death, estimating distinct hazard ratios whilst individual-specific latent variables induce associations between the two processes. A simulation study was carried out to assess the suitability of the JFM versus marginal analyses of recurrent events and cardiovascular death using standard methods. Hazard ratios were consistently overestimated when marginal models were used, whilst the JFM produced good, well-estimated results. An application to the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity programme was considered. The JFM gave unbiased estimates of treatment effects in the presence of dependent censoring. We advocate the use of the JFM for future trials that consider recurrent events as the primary outcome. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:26751714

  5. Time-Based and Event-Based Prospective Memory in Autism Spectrum Disorder: The Roles of Executive Function and Theory of Mind, and Time-Estimation

    ERIC Educational Resources Information Center

    Williams, David; Boucher, Jill; Lind, Sophie; Jarrold, Christopher

    2013-01-01

    Prospective memory (remembering to carry out an action in the future) has been studied relatively little in ASD. We explored time-based (carry out an action at a pre-specified time) and event-based (carry out an action upon the occurrence of a pre-specified event) prospective memory, as well as possible cognitive correlates, among 21…

  6. Not ready for prime time: transitional events in the extremely preterm infant.

    PubMed

    Armentrout, Debra

    2014-01-01

    Successful transition from intrauterine to extrauterine life involves significant physiologic changes. The majority of these changes occur relatively quickly during those first moments following delivery; however, transition for the extremely preterm infant occurs over a longer period of time. Careful assessment and perceptive interventions on the part of neonatal care providers is essential as the extremely preterm infant adjusts to life outside the womb. This article will focus on respiratory, cardiovascular, gastrointestinal, and neurologic transitional events experienced by the extremely premature infant. PMID:24781773

  7. The timing of life history events in the presence of soft disturbances.

    PubMed

    Bertacchi, Daniela; Zucca, Fabio; Ambrosini, Roberto

    2016-01-21

    We study a model for the evolutionarily stable strategy (ESS) used by biological populations for choosing the time of life-history events, such as arrival from migration and breeding. In our model we account for both intra-species competition (early individuals have a competitive advantage) and a disturbance which strikes at a random time, killing a fraction 1-p of the population. Disturbances include spells of bad weather, such as freezing or heavily raining days. It has been shown by Iwasa and Levin (1995) that when the disturbance is so strong that it kills any individual present when it strikes (hard disturbance, p=0), then the ESS is a mixed strategy (individuals choose their arrival date in an interval of possible dates, according to a certain probability distribution). In this case, individuals wait for a certain time and afterwards start arriving (or breeding) every day. In this paper we explore a biologically more realistic situation whereby the disturbance kills only a fraction of the individuals (soft disturbance, p>0). We also remove some technical assumptions which Iwasa and Levin made on the distribution of the disturbance. We prove that the ESS is still a mixed choice of times, however with respect to the case of hard disturbance, a new phenomenon arises: whenever the disturbance is soft, if the competition is sufficiently strong, the waiting time disappears and a fraction of the population arrives at the earliest day possible, while the rest will arrive throughout the whole period during which the disturbance may occur. This means that under strong competition, the payoff of early arrival balances the increased risk of being killed by the disturbance. We study the behaviour of the ESS and of the average fitness of the population, depending on the parameters involved. We also investigate how the population may be affected by climate change: namely the occurrence of more extreme weather events, which may kill a larger fraction of the population, and

  8. A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Transit Events

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John Asher

    2015-12-01

    Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, I present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows one to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration. I will also present our open-source N-body photodynamical modeling code, which integrates planetary and stellar orbits accounting for the effects of GR, tidal effects, and Doppler beaming.

  9. A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Events

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John

    2015-08-01

    Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, we present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows us to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration.

  10. Evaluating principal surrogate endpoints with time-to-event data accounting for time-varying treatment efficacy

    PubMed Central

    Gabriel, Erin E.; Gilbert, Peter B.

    2014-01-01

    Principal surrogate (PS) endpoints are relatively inexpensive and easy to measure study outcomes that can be used to reliably predict treatment effects on clinical endpoints of interest. Few statistical methods for assessing the validity of potential PSs utilize time-to-event clinical endpoint information and to our knowledge none allow for the characterization of time-varying treatment effects. We introduce the time-dependent and surrogate-dependent treatment efficacy curve, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\mathrm {TE}}(t|s)$\\end{document}, and a new augmented trial design for assessing the quality of a biomarker as a PS. We propose a novel Weibull model and an estimated maximum likelihood method for estimation of the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\mathrm {TE}}(t|s)$\\end{document} curve. We describe the operating characteristics of our methods via simulations. We analyze data from the Diabetes Control and Complications Trial, in which we find evidence of a biomarker with value as a PS. PMID:24337534

  11. NASA Climate Days: Promoting Climate Literacy One Ambassador and One Event at a Time

    NASA Astrophysics Data System (ADS)

    Weir, H. M.; Lewis, P. M.; Chambers, L. H.; Millham, R. A.; Richardson, A.

    2012-12-01

    presentations from the training, along with downloadable Climate Day Kit materials. Utilizing informal educators from museums, aquariums, libraries and other similar venues allow the hard-to-understand, sometimes-controversial, topic of climate change to be presented to the public in tailored events that suit an individual community's needs. Included in the process of scheduling and executing these climate events, the Ambassadors participate in virtual conferences to discuss progress, to ensure proper evaluation and to allow ample time for questions from the trainers and scientists. This ensures an accurate stream of information from the scientist to the public in a fashion that can be understood and digested by the layperson, helping them to make better-informed decisions about societal issues related to global climate change. Through a series of local Climate Day events, it is hoped that the public will have the opportunity to have first hand experience with the topic of climate change, leaving with a better understanding of its scientific basis. Outcome: This paper will summarize the various methods and strategies used in the Climate Day training events. A discussion of methods that work and those that do not for informal education will help provide a better understanding of the challenges faced in educating the public on such a controversial and hard-to-understand topic.

  12. Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events

    SciTech Connect

    Kesler, S.E.; van der Pluijm, B.A. )

    1990-11-01

    Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authigenic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of paleomagnetic overprints of similar age, have focused attention on the possibility that these Mississippi Valley-type deposits formed as a result of late Paleozoic deformation. Geologic and geochemical similarities among most of these deposits, from Georgia to Newfoundland, including unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradiogenic lead, suggest that they are coeval. Sphalerite sand that parallels host-rock layering in many of the deposits indicates that mineralization occurred before regional deformation. Although the late Paleozoic age of deformation in the southern Appalachians provides little constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This hypothesis has important implications for basin evolution, fluid events, and remagnetization in the Appalachians.

  13. Tracking Visual Events in Time in the Absence of Time Perception: Implicit Processing at the ms Level

    PubMed Central

    Poncelet, Patrick Eric; Giersch, Anne

    2015-01-01

    Previous studies have suggested that even if subjects deem two visual stimuli less than 20 ms apart to be simultaneous, implicitly they are nonetheless distinguished in time. It is unclear, however, how information is encoded within this short timescale. We used a priming paradigm to demonstrate how successive visual stimuli are processed over time intervals of less than 20 ms. The primers were two empty square frames displayed either simultaneously or with a 17ms asynchrony. The primers were followed by the target information after a delay of 25 ms to 100 ms. The two square frames were filled in one after another with a delay of 100 ms between them, and subjects had to decide on the location of the first of the frames to be filled in. In a second version of the paradigm, only one square frame was filled in, and subjects had to decide where it was positioned. The influence of the primers is revealed through faster response times depending on the location of the first and second primers. Experiment 1 replicates earlier results, with a bias towards the side of the second primer, but only when there is a delay of 75 to 100 ms between primers and targets. The following experiments suggest this effect to be relatively independent of the task context, except for a slight effect on the time course of the biases. For the temporal order judgment task, identical results were observed when subjects have to answer to the side of the second rather than the first target, showing the effect to be independent of the hand response, and suggesting it might be related to a displacement of attention. All in all the results suggest the flow of events is followed more efficiently than suggested by explicit asynchrony judgment studies. We discuss the possible impact of these results on our understanding of the sense of time continuity. PMID:26030155

  14. Post-event human decision errors: operator action tree/time reliability correlation

    SciTech Connect

    Hall, R E; Fragola, J; Wreathall, J

    1982-11-01

    This report documents an interim framework for the quantification of the probability of errors of decision on the part of nuclear power plant operators after the initiation of an accident. The framework can easily be incorporated into an event tree/fault tree analysis. The method presented consists of a structure called the operator action tree and a time reliability correlation which assumes the time available for making a decision to be the dominating factor in situations requiring cognitive human response. This limited approach decreases the magnitude and complexity of the decision modeling task. Specifically, in the past, some human performance models have attempted prediction by trying to emulate sequences of human actions, or by identifying and modeling the information processing approach applicable to the task. The model developed here is directed at describing the statistical performance of a representative group of hypothetical individuals responding to generalized situations.

  15. Adaptation-Induced Compression of Event Time Occurs Only for Translational Motion

    PubMed Central

    Fornaciai, Michele; Arrighi, Roberto; Burr, David C.

    2016-01-01

    Adaptation to fast motion reduces the perceived duration of stimuli displayed at the same location as the adapting stimuli. Here we show that the adaptation-induced compression of time is specific for translational motion. Adaptation to complex motion, either circular or radial, did not affect perceived duration of subsequently viewed stimuli. Adaptation with multiple patches of translating motion caused compression of duration only when the motion of all patches was in the same direction. These results show that adaptation-induced compression of event-time occurs only for uni-directional translational motion, ruling out the possibility that the neural mechanisms of the adaptation occur at early levels of visual processing. PMID:27003445

  16. Prospective and retrospective semantic processing: prediction, time, and relationship strength in event-related potentials.

    PubMed

    Luka, Barbara J; Van Petten, Cyma

    2014-08-01

    Semantic context effects have variously been attributed to prospective processing - predictions about upcoming words - or to retrospective appreciation of relationships after reading both context and target. In two experiments, we altered the core variable distinguishing prospective from retrospective processing, namely time. Word pairs varying in strength of relationship were presented sequentially, to allow time for anticipation of the second word, or simultaneously. For both sorts of presentation, the amplitude of the N400 component of the event-related potential was graded from Unrelated to Moderate/Weak to Strong associates. Strong associates showed a temporal advantage over weaker associates - an earlier context effect - only during sequential presentation. Spatial distributions of the N400 context effects also differed for simultaneous versus sequential presentation. PMID:25025836

  17. FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors.

    PubMed

    Sprenger, Julia U; Perera, Ruwan K; Götz, Konrad R; Nikolaev, Viacheslav O

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy continues to gain increasing interest as a technique for real-time monitoring of biochemical and signaling events in live cells and tissues. Compared to classical biochemical methods, this novel technology is characterized by high temporal and spatial resolution. FRET experiments use various genetically-encoded biosensors which can be expressed and imaged over time in situ or in vivo. Typical biosensors can either report protein-protein interactions by measuring FRET between a fluorophore-tagged pair of proteins or conformational changes in a single protein which harbors donor and acceptor fluorophores interconnected with a binding moiety for a molecule of interest. Bimolecular biosensors for protein-protein interactions include, for example, constructs designed to monitor G-protein activation in cells, while the unimolecular sensors measuring conformational changes are widely used to image second messengers such as calcium, cAMP, inositol phosphates and cGMP. Here we describe how to build a customized epifluorescence FRET imaging system from single commercially available components and how to control the whole setup using the Micro-Manager freeware. This simple but powerful instrument is designed for routine or more sophisticated FRET measurements in live cells. Acquired images are processed using self-written plug-ins to visualize changes in FRET ratio in real-time during any experiments before being stored in a graphics format compatible with the build-in ImageJ freeware used for subsequent data analysis. This low-cost system is characterized by high flexibility and can be successfully used to monitor various biochemical events and signaling molecules by a plethora of available FRET biosensors in live cells and tissues. As an example, we demonstrate how to use this imaging system to perform real-time monitoring of cAMP in live 293A cells upon stimulation with a β-adrenergic receptor agonist and blocker. PMID

  18. A spatial time-to-event approach for estimating associations between air pollution and preterm birth

    PubMed Central

    Chang, Howard H.; Reich, Brian J.; Miranda, Marie Lynn

    2013-01-01

    Summary The paper describes a Bayesian spatial discrete time survival model to estimate the effect of air pollution on the risk of preterm birth. The standard approach treats prematurity as a binary outcome and cannot effectively examine time varying exposures during pregnancy. Time varying exposures can arise either in short-term lagged exposures due to seasonality in air pollution or long-term cumulative exposures due to changes in length of exposure. Our model addresses this challenge by viewing gestational age as time-to-event data where each pregnancy becomes at risk at a prespecified time (e.g. the 28th week). The pregnancy is then followed until either a birth occurs before the 37th week (preterm), or it reaches the 37th week, and a full-term birth is expected. The model also includes a flexible spatially varying baseline hazard function to control for unmeasured spatial confounders and to borrow information across areal units. The approach proposed is applied to geocoded birth records in Mecklenburg County, North Carolina, for the period 2001–2005.We examine the risk of preterm birth that is associated with total cumulative and 4-week lagged exposure to ambient fine particulate matter. PMID:24353351

  19. Automated detection of rare-event pathogens through time-gated luminescence scanning microscopy.

    PubMed

    Lu, Yiqing; Jin, Dayong; Leif, Robert C; Deng, Wei; Piper, James A; Yuan, Jingli; Duan, Yusheng; Huo, Yujing

    2011-05-01

    Many microorganisms have a very low threshold (<10 cells) to trigger infectious diseases, and, in these cases, it is important to determine the absolute cell count in a low-cost and speedy fashion. Fluorescent microscopy is a routine method; however, one fundamental problem has been associated with the existence in the sample of large numbers of nontarget particles, which are naturally autofluorescent, thereby obscuring the visibility of target organisms. This severely affects both direct visual inspection and the automated microscopy based on computer pattern recognition. We report a novel strategy of time-gated luminescent scanning for accurate counting of rare-event cells, which exploits the large difference in luminescence lifetimes between the lanthanide biolabels, >100 μs, and the autofluorescence backgrounds, <0.1 μs, to render background autofluorescence invisible to the detector. Rather than having to resort to sophisticated imaging analysis, the background-free feature allows a single-element photomultiplier to locate rare-event cells, so that requirements for data storage and analysis are minimized to the level of image confirmation only at the final step. We have evaluated this concept in a prototype instrument using a 2D scanning stage and applied it to rare-event Giardia detection labeled by a europium complex. For a slide area of 225 mm(2) , the time-gated scanning method easily reduced the original 40,000 adjacent elements (0.075 mm × 0.075 mm) down to a few "elements of interest" containing the Giardia cysts. We achieved an averaged signal-to-background ratio of 41.2 (minimum ratio of 12.1). Such high contrasts ensured the accurate mapping of all the potential Giardia cysts free of false positives or negatives. This was confirmed by the automatic retrieving and time-gated luminescence bioimaging of these Giardia cysts. Such automated microscopy based on time-gated scanning can provide novel solutions for quantitative diagnostics in advanced

  20. Multivariate postprocessing techniques for probabilistic hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2016-04-01

    Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power

  1. Characteristic Times of Gradual Solar Energetic Particle Events and Their Dependence on Associated Coronal Mass Ejection Properties

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.

    2005-08-01

    We use 20 MeV proton intensities from the EPACT instrument on Wind and coronal mass ejections (CMEs) from the LASCO coronagraph on SOHO observed during 1998-2002 to statistically determine three characteristic times of gradual solar energetic particle (SEP) events as functions of solar source longitude: (1) TO, the time from associated CME launch to SEP onset at 1 AU, (2) TR, the rise time from SEP onset to the time when the SEP intensity is a factor of 2 below peak intensity, and (3) TD, the duration over which the SEP intensity is within a factor of 2 of the peak intensity. Those SEP event times are compared with associated CME speeds, accelerations, and widths to determine whether and how the SEP event times may depend on the formation and dynamics of coronal/interplanetary shocks driven by the CMEs. Solar source longitudinal variations are clearly present in the SEP times, but TR and TD are significantly correlated with CME speeds only for SEP events in the best-connected longitude range. No significant correlations between the SEP times and CME accelerations are found except for TD in one longitude range, but there is a weak correlation of TR and TD with CME widths. We also find no correlation of any SEP times with the solar wind O+7/O+6 values, suggesting no dependence on solar wind stream type. The SEP times of the small subset of events occurring in interplanetary CMEs may be slightly shorter than those of all events.

  2. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks.

    PubMed

    Blanche, Paul; Dartigues, Jean-François; Jacqmin-Gadda, Hélène

    2013-12-30

    The area under the time-dependent ROC curve (AUC) may be used to quantify the ability of a marker to predict the onset of a clinical outcome in the future. For survival analysis with competing risks, two alternative definitions of the specificity may be proposed depending of the way to deal with subjects who undergo the competing events. In this work, we propose nonparametric inverse probability of censoring weighting estimators of the AUC corresponding to these two definitions, and we study their asymptotic properties. We derive confidence intervals and test statistics for the equality of the AUCs obtained with two markers measured on the same subjects. A simulation study is performed to investigate the finite sample behaviour of the test and the confidence intervals. The method is applied to the French cohort PAQUID to compare the abilities of two psychometric tests to predict dementia onset in the elderly accounting for death without dementia competing risk. The 'timeROC' R package is provided to make the methodology easily usable. PMID:24027076

  3. Nature and timing of multiple metasomatic events in the sub-cratonic lithosphere beneath Labait, Tanzania

    NASA Astrophysics Data System (ADS)

    Koornneef, Janne M.; Davies, Gareth R.; Döpp, Sonja P.; Vukmanovic, Zoja; Nikogosian, Igor K.; Mason, Paul R. D.

    2009-11-01

    Petrography, mineral major- and trace element analyses and Rb-Sr and Sm-Nd systematics of xenoliths from Labait volcano, north-central Tanzania, document multiple metasomatic events after initial depletion of the Archaean sub-lithospheric mantle. Four distinct metasomatic phases occurred during the 2.8-3.2 Ga history of the mantle section of the Tanzanian craton. 1) Garnet and Cr-diopside in two depleted lherzolites record LREE enrichment in an early cryptic metasomatic event (~ 2 Ga) resulting in unradiogenic ɛ Nd (- 6.6) and relatively radiogenic Sr signature ( 87Sr/ 86Sr = 0.7049); 2) Four texturally equilibrated peridotites contain phlogopite and Cr-diopside inferred to be introduced by a hydrous melt/fluid that produced LREE enrichment related to the subduction and collision during the 650 Ma Pan-African Orogeny; 3) Fe-enrichment is observed in many garnet-free wehrlites and dunites having low Mg# olivines. Timing of this enrichment event remains poorly defined; and 4) One spinel lherzolite records orthopyroxene replacing clinopyroxene due to recent infiltration of a rift-related H 2O poor, K-alkaline silicate melt. This ongoing metasomatic reaction caused by rift-related magmatism would result in the conversion of lherzolite to orthopyroxene-rich harzburgite. The reaction possibly represents the mechanism involved in the formation of orthopyroxene-rich sub-continental lithospheric mantle below the Kaapvaal and Siberian cratons. Generally, the rift-related metasomatism beneath Tanzania has caused formation of interstitial clinopyroxene, melt veins and melt pockets and new rims of phlogopite, all of which are in chemical disequilibrium with the original xenolith mineralogy.

  4. Memory for time and place contributes to enhanced confidence in memories for emotional events

    PubMed Central

    Rimmele, Ulrike; Davachi, Lila; Phelps, Elizabeth A.

    2012-01-01

    Emotion strengthens the subjective sense of remembering. However, these confidently remembered emotional memories have not been found be more accurate for some types of contextual details. We investigated whether the subjective sense of recollecting negative stimuli is coupled with enhanced memory accuracy for three specific types of central contextual details using the remember/know paradigm and confidence ratings. Our results indicate that the subjective sense of remembering is indeed coupled with better recollection of spatial location and temporal context. In contrast, we found a double-dissociation between the subjective sense of remembering and memory accuracy for colored dots placed in the conceptual center of negative and neutral scenes. These findings show that the enhanced subjective recollective experience for negative stimuli reliably indicates objective recollection for spatial location and temporal context, but not for other types of details, whereas for neutral stimuli, the subjective sense of remembering is coupled with all the types of details assessed. Translating this finding to flashbulb memories, we found that, over time, more participants correctly remembered the location where they learned about the terrorist attacks on 9/11 than any other canonical feature. Likewise participants’ confidence was higher in their memory for location vs. other canonical features. These findings indicate that the strong recollective experience of a negative event corresponds to an accurate memory for some kinds of contextual details, but not other kinds. This discrepancy provides further evidence that the subjective sense of remembering negative events is driven by a different mechanism than the subjective sense of remembering neutral events. PMID:22642353

  5. Sensitivity Analysis of Per-Protocol Time-to-Event Treatment Efficacy in Randomized Clinical Trials

    PubMed Central

    Gilbert, Peter B.; Shepherd, Bryan E.; Hudgens, Michael G.

    2013-01-01

    Summary Assessing per-protocol treatment effcacy on a time-to-event endpoint is a common objective of randomized clinical trials. The typical analysis uses the same method employed for the intention-to-treat analysis (e.g., standard survival analysis) applied to the subgroup meeting protocol adherence criteria. However, due to potential post-randomization selection bias, this analysis may mislead about treatment efficacy. Moreover, while there is extensive literature on methods for assessing causal treatment effects in compliers, these methods do not apply to a common class of trials where a) the primary objective compares survival curves, b) it is inconceivable to assign participants to be adherent and event-free before adherence is measured, and c) the exclusion restriction assumption fails to hold. HIV vaccine efficacy trials including the recent RV144 trial exemplify this class, because many primary endpoints (e.g., HIV infections) occur before adherence is measured, and nonadherent subjects who receive some of the planned immunizations may be partially protected. Therefore, we develop methods for assessing per-protocol treatment efficacy for this problem class, considering three causal estimands of interest. Because these estimands are not identifiable from the observable data, we develop nonparametric bounds and semiparametric sensitivity analysis methods that yield estimated ignorance and uncertainty intervals. The methods are applied to RV144. PMID:24187408

  6. Predicting time to prostate cancer recurrence based on joint models for non-linear longitudinal biomarkers and event time outcomes.

    PubMed

    Pauler, Donna K; Finkelstein, Dianne M

    2002-12-30

    Biological markers that are both sensitive and specific for tumour regrowth or metastasis are increasingly becoming available and routinely monitored during the regular follow-up of patients treated for cancer. Obtained by a simple blood test, these markers provide an inexpensive non-invasive means for the early detection of recurrence (or progression). Currently, the longitudinal behaviour of the marker is viewed as an indicator of early disease progression, and is applied by a physician in making clinical decisions. One marker that has been studied for use in both population screening for early disease and for detection of recurrence in prostate cancer patients is PSA. The elevation of PSA levels is known to precede clinically detectable recurrence by 2 to 5 years, and current clinical practice often relies partially on multiple recent rises in PSA to trigger a change in treatment. However, the longitudinal trajectory for individual markers is often non-linear; in many cases there is a decline immediately following radiation therapy or surgery, a plateau during remission, followed by an exponential rise following the recurrence of the cancer. The aim of this article is to determine the multiple aspects of the longitudinal PSA biomarker trajectory that can be most sensitive for predicting time to clinical recurrence. Joint Bayesian models for the longitudinal measures and event times are utilized based on non-linear hierarchical models, implied by unknown change-points, for the longitudinal trajectories, and a Cox proportional hazard model for progression times, with functionals of the longitudinal parameters as covariates in the Cox model. Using Markov chain Monte Carlo sampling schemes, the joint model is fit to longitudinal PSA measures from 676 patients treated at Massachusetts General Hospital between the years 1988 and 1995 with follow-up to 1999. Based on these data, predictive schemes for detecting cancer recurrence in new patients based on their

  7. Mixed effects models for recurrent events data with partially observed time-varying covariates: Ecological momentary assessment of smoking.

    PubMed

    Rathbun, Stephen L; Shiffman, Saul

    2016-03-01

    Cigarette smoking is a prototypical example of a recurrent event. The pattern of recurrent smoking events may depend on time-varying covariates including mood and environmental variables. Fixed effects and frailty models for recurrent events data assume that smokers have a common association with time-varying covariates. We develop a mixed effects version of a recurrent events model that may be used to describe variation among smokers in how they respond to those covariates, potentially leading to the development of individual-based smoking cessation therapies. Our method extends the modified EM algorithm of Steele (1996) for generalized mixed models to recurrent events data with partially observed time-varying covariates. It is offered as an alternative to the method of Rizopoulos, Verbeke, and Lesaffre (2009) who extended Steele's (1996) algorithm to a joint-model for the recurrent events data and time-varying covariates. Our approach does not require a model for the time-varying covariates, but instead assumes that the time-varying covariates are sampled according to a Poisson point process with known intensity. Our methods are well suited to data collected using Ecological Momentary Assessment (EMA), a method of data collection widely used in the behavioral sciences to collect data on emotional state and recurrent events in the every-day environments of study subjects using electronic devices such as Personal Digital Assistants (PDA) or smart phones. PMID:26410189

  8. Mixed Effects Models for Recurrent Events Data with Partially Observed Time-Varying Covariates: Ecological Momentary Assessment of Smoking

    PubMed Central

    Rathbun, Stephen L.; Shiffman, Saul

    2015-01-01

    Summary Cigarette smoking is a prototypical example of a recurrent event. The pattern of recurrent smoking events may depend on time-varying covariates including mood and environmental variables. Fixed effects and frailty models for recurrent events data assume that smokers have a common association with time-varying covariates. We develop a mixed effects version of a recurrent events model that may be used to describe variation among smokers in how they respond to those covariates, potentially leading to the development of individual-based smoking cessation therapies. Our method extends the modified EM algorithm of Steele (1996) for generalized mixed models to recurrent events data with partially observed time-varying covariates. It is offered as an alternative to the method of Rizopoulos, Verbeke and Lesaffre (2009) who extended Steele’s (1996) algorithm to a joint-model for the recurrent events data and time-varying covariates. Our approach does not require a model for the time-varying covariates, but instead assumes that the time-varying covariates are sampled according to a Poisson point process with known intensity. Our methods are well suited to data collected using Ecological Momentary Assessment (EMA), a method of data collection widely used in the behavioral sciences to collect data on emotional state and recurrent events in the every-day environments of study subjects using electronic devices such as Personal Digital Assistants (PDA) or smart phones. PMID:26410189

  9. Quantifying intraclass correlations for count and time-to-event data.

    PubMed

    Oliveira, Izabela R C; Molenberghs, Geert; Demétrio, Clarice G B; Dias, Carlos T S; Giolo, Suely R; Andrade, Marcela C

    2016-07-01

    The intraclass correlation is commonly used with clustered data. It is often estimated based on fitting a model to hierarchical data and it leads, in turn, to several concepts such as reliability, heritability, inter-rater agreement, etc. For data where linear models can be used, such measures can be defined as ratios of variance components. Matters are more difficult for non-Gaussian outcomes. The focus here is on count and time-to-event outcomes where so-called combined models are used, extending generalized linear mixed models, to describe the data. These models combine normal and gamma random effects to allow for both correlation due to data hierarchies as well as for overdispersion. Furthermore, because the models admit closed-form expressions for the means, variances, higher moments, and even the joint marginal distribution, it is demonstrated that closed forms of intraclass correlations exist. The proposed methodology is illustrated using data from agricultural and livestock studies. PMID:26899931

  10. Aesthetic appreciation: event-related field and time-frequency analyses.

    PubMed

    Munar, Enric; Nadal, Marcos; Castellanos, Nazareth P; Flexas, Albert; Maestú, Fernando; Mirasso, Claudio; Cela-Conde, Camilo J

    2011-01-01

    Improvements in neuroimaging methods have afforded significant advances in our knowledge of the cognitive and neural foundations of aesthetic appreciation. We used magnetoencephalography (MEG) to register brain activity while participants decided about the beauty of visual stimuli. The data were analyzed with event-related field (ERF) and Time-Frequency (TF) procedures. ERFs revealed no significant differences between brain activity related with stimuli rated as "beautiful" and "not beautiful." TF analysis showed clear differences between both conditions 400 ms after stimulus onset. Oscillatory power was greater for stimuli rated as "beautiful" than those regarded as "not beautiful" in the four frequency bands (theta, alpha, beta, and gamma). These results are interpreted in the frame of synchronization studies. PMID:22287948

  11. Aesthetic appreciation: event-related field and time-frequency analyses

    PubMed Central

    Munar, Enric; Nadal, Marcos; Castellanos, Nazareth P.; Flexas, Albert; Maestú, Fernando; Mirasso, Claudio; Cela-Conde, Camilo J.

    2012-01-01

    Improvements in neuroimaging methods have afforded significant advances in our knowledge of the cognitive and neural foundations of aesthetic appreciation. We used magnetoencephalography (MEG) to register brain activity while participants decided about the beauty of visual stimuli. The data were analyzed with event-related field (ERF) and Time-Frequency (TF) procedures. ERFs revealed no significant differences between brain activity related with stimuli rated as “beautiful” and “not beautiful.” TF analysis showed clear differences between both conditions 400 ms after stimulus onset. Oscillatory power was greater for stimuli rated as “beautiful” than those regarded as “not beautiful” in the four frequency bands (theta, alpha, beta, and gamma). These results are interpreted in the frame of synchronization studies. PMID:22287948

  12. Real-time detection of an extreme scattering event: Constraints on Galactic plasma lenses.

    PubMed

    Bannister, Keith W; Stevens, Jamie; Tuntsov, Artem V; Walker, Mark A; Johnston, Simon; Reynolds, Cormac; Bignall, Hayley

    2016-01-22

    Extreme scattering events (ESEs) are distinctive fluctuations in the brightness of astronomical radio sources caused by occulting plasma lenses in the interstellar medium. The inferred plasma pressures of the lenses are ~10(3) times the ambient pressure, challenging our understanding of gas conditions in the Milky Way. Using a new survey technique, we discovered an ESE while it was in progress. Here we report radio and optical follow-up observations. Modeling of the radio data demonstrates that the lensing structure is a density enhancement and the lens is diverging, ruling out one of two competing physical models. Our technique will uncover many more ESEs, addressing a long-standing mystery of the small-scale gas structure of our Galaxy. PMID:26798008

  13. Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics

    PubMed Central

    2012-01-01

    In this work, we critically assess the ability of the all-atom enhanced sampling method accelerated molecular dynamics (aMD) to investigate conformational changes in proteins that typically occur on the millisecond time scale. We combine aMD with the inherent power of graphics processor units (GPUs) and apply the implementation to the bovine pancreatic trypsin inhibitor (BPTI). A 500 ns aMD simulation is compared to a previous millisecond unbiased brute force MD simulation carried out on BPTI, showing that the same conformational space is sampled by both approaches. To our knowledge, this represents the first implementation of aMD on GPUs and also the longest aMD simulation of a biomolecule run to date. Our implementation is available to the community in the latest release of the Amber software suite (v12), providing routine access to millisecond events sampled from dynamics simulations using off the shelf hardware. PMID:22984356

  14. Real-time detection of an extreme scattering event: Constraints on Galactic plasma lenses

    NASA Astrophysics Data System (ADS)

    Bannister, Keith W.; Stevens, Jamie; Tuntsov, Artem V.; Walker, Mark A.; Johnston, Simon; Reynolds, Cormac; Bignall, Hayley

    2016-01-01

    Extreme scattering events (ESEs) are distinctive fluctuations in the brightness of astronomical radio sources caused by occulting plasma lenses in the interstellar medium. The inferred plasma pressures of the lenses are ~103 times the ambient pressure, challenging our understanding of gas conditions in the Milky Way. Using a new survey technique, we discovered an ESE while it was in progress. Here we report radio and optical follow-up observations. Modeling of the radio data demonstrates that the lensing structure is a density enhancement and the lens is diverging, ruling out one of two competing physical models. Our technique will uncover many more ESEs, addressing a long-standing mystery of the small-scale gas structure of our Galaxy.

  15. Prediction of solar energetic particle event histories using real-time particle and solar wind measurements

    NASA Technical Reports Server (NTRS)

    Roelof, E. C.; Gold, R. E.

    1978-01-01

    The comparatively well-ordered magnetic structure in the solar corona during the decline of Solar Cycle 20 revealed a characteristic dependence of solar energetic particle injection upon heliographic longitude. When analyzed using solar wind mapping of the large scale interplanetary magnetic field line connection from the corona to the Earth, particle fluxes display an approximately exponential dependence on heliographic longitude. Since variations in the solar wind velocity (and hence the coronal connection longitude) can severely distort the simple coronal injection profile, the use of real-time solar wind velocity measurements can be of great aid in predicting the decay of solar particle events. Although such exponential injection profiles are commonplace during 1973-1975, they have also been identified earlier in Solar Cycle 20, and hence this structure may be present during the rise and maximum of the cycle, but somewhat obscured by greater temporal variations in particle injection.

  16. Timing and chemistry of igneous events associated with the Southern Oklahoma Aulacogen

    NASA Astrophysics Data System (ADS)

    Charles Gilbert, M.

    1983-05-01

    Igneous activity in the Southern Oklahoma Aulacogen of North America was concentrated in the early rifting stages of aulacogen development. The time span over which liquids rose may not have exceeded 50 m.y. and certainly terminated before the Upper Cambrian. Igneous activity began with three basaltic liquids, stratigraphically identifiable but perhaps not all distinct genetically. This was followed by one large rhyolitic-granitic episode of A-type character. One final basaltic event ended the activity. All the basaltic types seem to be tholeiitic showing more kinship with either the older, Proterozoic North American Midcontinental Rift or the northern part of the Cenozoic Rio Grande Rift, than the Cenozoic East African Rift. Two major uplifts occurred: one between the earlier basalts and the rhyolite, and one much later, after all igneous activity was over, in the Pennsylvanian.

  17. One-stage parametric meta-analysis of time-to-event outcomes

    PubMed Central

    Siannis, F; Barrett, J K; Farewell, V T; Tierney, J F

    2010-01-01

    Methodology for the meta-analysis of individual patient data with survival end-points is proposed. Motivated by questions about the reliance on hazard ratios as summary measures of treatment effects, a parametric approach is considered and percentile ratios are introduced as an alternative to hazard ratios. The generalized log-gamma model, which includes many common time-to-event distributions as special cases, is discussed in detail. Likelihood inference for percentile ratios is outlined. The proposed methodology is used for a meta-analysis of glioma data that was one of the studies which motivated this work. A simulation study exploring the validity of the proposed methodology is available electronically. Copyright © 2010 John Wiley & Sons, Ltd. PMID:20963770

  18. Multivariate Regression with Calibration*

    PubMed Central

    Liu, Han; Wang, Lie; Zhao, Tuo

    2014-01-01

    We propose a new method named calibrated multivariate regression (CMR) for fitting high dimensional multivariate regression models. Compared to existing methods, CMR calibrates the regularization for each regression task with respect to its noise level so that it is simultaneously tuning insensitive and achieves an improved finite-sample performance. Computationally, we develop an efficient smoothed proximal gradient algorithm which has a worst-case iteration complexity O(1/ε), where ε is a pre-specified numerical accuracy. Theoretically, we prove that CMR achieves the optimal rate of convergence in parameter estimation. We illustrate the usefulness of CMR by thorough numerical simulations and show that CMR consistently outperforms other high dimensional multivariate regression methods. We also apply CMR on a brain activity prediction problem and find that CMR is as competitive as the handcrafted model created by human experts. PMID:25620861

  19. Real-time detection of pathological cardiac events in the electrocardiogram.

    PubMed

    Iliev, Ivo; Krasteva, Vessela; Tabakov, Serafim

    2007-03-01

    The development of accurate and fast methods for real-time electrocardiogram (ECG) analysis is mandatory in handheld fully automated monitoring devices for high-risk cardiac patients. The present work describes a simple software method for fast detection of pathological cardiac events. It implements real-time procedures for QRS detection, interbeat RR-intervals analysis, QRS waveform evaluation and a decision-tree beat classifier. Two QRS descriptors are defined to assess (i) the RR interval deviation from the mean RR interval and (ii) the QRS waveform deviation from the QRS pattern of the sustained rhythm. The calculation of the second parameter requires a specific technique, in order to satisfy the demand for straight signal processing with minimum iterations and small memory size. This technique includes fast and resource efficient estimation of a histogram matrix, which accumulates dynamically the amplitude-temporal distribution of the successive QRS pattern waveforms. The pilot version of the method is developed in Matlab and it is tested with internationally recognized ECG databases. The assessment of the online single lead QRS detector showed sensitivity and positive predictivity of above 99%. The classification rules for detection of pathological ventricular beats were defined empirically by statistical analysis. The attained specificity and sensitivity are about 99.5% and 95.7% for all databases and about 99.81% and 98.87% for the noise free dataset. The method is applicable in low computational cost systems for long-term ECG monitoring, such as intelligent holters, automatic event/alarm recorders or personal devices with intermittent wireless data transfer to a central terminal. PMID:17322591

  20. Disambiguating past events: Accurate source memory for time and context depends on different retrieval processes.

    PubMed

    Persson, Bjorn M; Ainge, James A; O'Connor, Akira R

    2016-07-01

    Current animal models of episodic memory are usually based on demonstrating integrated memory for what happened, where it happened, and when an event took place. These models aim to capture the testable features of the definition of human episodic memory which stresses the temporal component of the memory as a unique piece of source information that allows us to disambiguate one memory from another. Recently though, it has been suggested that a more accurate model of human episodic memory would include contextual rather than temporal source information, as humans' memory for time is relatively poor. Here, two experiments were carried out investigating human memory for temporal and contextual source information, along with the underlying dual process retrieval processes, using an immersive virtual environment paired with a 'Remember-Know' memory task. Experiment 1 (n=28) showed that contextual information could only be retrieved accurately using recollection, while temporal information could be retrieved using either recollection or familiarity. Experiment 2 (n=24), which used a more difficult task, resulting in reduced item recognition rates and therefore less potential for contamination by ceiling effects, replicated the pattern of results from Experiment 1. Dual process theory predicts that it should only be possible to retrieve source context from an event using recollection, and our results are consistent with this prediction. That temporal information can be retrieved using familiarity alone suggests that it may be incorrect to view temporal context as analogous to other typically used source contexts. This latter finding supports the alternative proposal that time since presentation may simply be reflected in the strength of memory trace at retrieval - a measure ideally suited to trace strength interrogation using familiarity, as is typically conceptualised within the dual process framework. PMID:27174312

  1. Unattended monitoring system at a static storage area with real-time event notification.

    SciTech Connect

    West, J. D.; Betts, S. E.; Michel, K. D.; Schanfein, M. J.; Ricketts, T. E.

    2005-01-01

    Domestic Safeguards at Los Alamos National Laboratory (LANL) and throughout the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) complex has historically relied on administrative and non-integrated approaches to implement nuclear safeguards at its facilities. Besides the heavy cost born by the facility and the compliance oversight organization, the safeguards assurance is only periodic, potentially allowing an adversary a longer time before detection. Even after detection, the lack of situational awareness makes it difficult to assess events. By leveraging unattended monitoring systems (UMS) used by the International Atomic Energy Agency (IAEA), we have designed a baseline system that has high reliability through fault tolerant designs for both hardware and software. Applying IAEA design goals to assure no loss of data and using a dual containment strategy, this system is a first step in implementing modern safeguards monitoring systems at LANL and, hopefully, applications at other DOE/NNSA sites. This paper will review the design requirements and how they will be met, to provide a real-time event notification for a static storage location. The notification system triggers communications to pagers and email addresses for a fast response by facility personnel to the violation of a defined safeguards exclusion zone. Since the system has to be installed in an existing facility, the challenges to the designers will be presented. Aside from the initial baseline system that relies on surveillance cameras and seals, other optional upgrades will be detailed, showing both the power and the promise of unattended systems for domestic safeguards. We will also include a short discussion of the business obstacles to modernizing safeguards and how a UMS system may be applied to dynamic activities at a nuclear facility. Ultimately, the current lack of such modern monitoring systems reflects the many business obstacles internal to DOE/NNSA to the use of

  2. A Real-Time Web Services Hub to Improve Situation Awareness during Flash Flood Events

    NASA Astrophysics Data System (ADS)

    Salas, F. R.; Liu, F.; Maidment, D. R.; Hodges, B. R.

    2011-12-01

    The central Texas corridor is one of the most flash flood-prone regions in the United States. Over the years, flash floods have resulted in hundreds of flood fatalities and billions of dollars in property damage. In order to mitigate risk to residents and infrastructure during flood events, both citizens and emergency responders need to exhibit proactive behavior instead of reactive. Real-time and forecasted flood information is fairly limited and hard to come by at varying spatial scales. The University of Texas at Austin has collaborated with IBM Research-Austin and ESRI to build a distributed real-time flood information system through a framework that leverages large scale data management and distribution, Open Geospatial Consortium standardized web services, and smart map applications. Within this paradigm, observed precipitation data encoded in WaterML is ingested into HEC-HMS and then delivered to a high performance hydraulic routing software package developed by IBM that utilizes the latest advancements in VLSI design, numerical linear algebra and numerical integration techniques on contemporary multicore architecture to solve fully dynamic Saint Venant equations at both small and large scales. In this paper we present a real-time flood inundation map application that in conjunction with a web services Hub, seamlessly integrates hydrologic information available through both public and private data services, model services and mapping services. As a case study for this project, we demonstrate how this system has been implemented in the City of Austin, Texas.

  3. Framework for modeling urban restoration resilience time in the aftermath of an extreme event

    USGS Publications Warehouse

    Ramachandran, Varun; Long, Suzanna K.; Shoberg, Thomas G.; Corns, Steven; Carlo, Héctor

    2015-01-01

    The impacts of extreme events continue long after the emergency response has terminated. Effective reconstruction of supply-chain strategic infrastructure (SCSI) elements is essential for postevent recovery and the reconnectivity of a region with the outside. This study uses an interdisciplinary approach to develop a comprehensive framework to model resilience time. The framework is tested by comparing resilience time results for a simulated EF-5 tornado with ground truth data from the tornado that devastated Joplin, Missouri, on May 22, 2011. Data for the simulated tornado were derived for Overland Park, Johnson County, Kansas, in the greater Kansas City, Missouri, area. Given the simulated tornado, a combinatorial graph considering the damages in terms of interconnectivity between different SCSI elements is derived. Reconstruction in the aftermath of the simulated tornado is optimized using the proposed framework to promote a rapid recovery of the SCSI. This research shows promising results when compared with the independent quantifiable data obtained from Joplin, Missouri, returning a resilience time of 22 days compared with 25 days reported by city and state officials.

  4. Multivariate Data EXplorer (MDX)

    SciTech Connect

    Steed, Chad Allen

    2012-08-01

    The MDX toolkit facilitates exploratory data analysis and visualization of multivariate datasets. MDX provides and interactive graphical user interface to load, explore, and modify multivariate datasets stored in tabular forms. MDX uses an extended version of the parallel coordinates plot and scatterplots to represent the data. The user can perform rapid visual queries using mouse gestures in the visualization panels to select rows or columns of interest. The visualization panel provides coordinated multiple views whereby selections made in one plot are propagated to the other plots. Users can also export selected data or reconfigure the visualization panel to explore relationships between columns and rows in the data.

  5. Time perception of simultaneous and sequential events in early-onset schizophrenia.

    PubMed

    de Montalembert, M; Coulon, N; Cohen, D; Bonnot, O; Tordjman, S

    2016-08-01

    Timing disorders in schizophrenia are a well-known phenomenon. However, no studies have yet assessed the role of temporal distortions in early-onset schizophrenia (EOS), despite evidence that distorted time perception may share genetic risk factors with schizophrenia and may be a useful indicator in identifying individuals at risk for schizophrenia. In the present study, we investigated the ability of 10 patients with EOS (mean age = 21.5 years, SD = 6) matched with 20 healthy control participants (mean age = 25.3 years, SD = 4.6) in order to compare the durations of two visual events, presented either sequentially or overlapping in time, along with neuropsychological assessments of attention, working memory, and executive functions. Each participant had to judge a total of 336 stimuli. We found that temporal overlap had a greater negative effect on ability to judge the duration of a pair of stimuli in EOS patients than in healthy control participants. In addition, EOS patients showed impairments in attention and executive functions. Furthermore, in EOS patients, the scores for executive and attentional functions were significantly correlated with accuracy of temporal estimation in the overlap condition (r = 0.31, p < 0.05 and r = 0.57, p < 0.05, respectively). These preliminary results suggest that impairments in neuropsychological functions participate in the deficit in time estimation observed in patients with EOS. These conclusions highlight the importance of testing time perception in patients with EOS and could contribute to the development of cognitive remediation-based therapy for these patients. PMID:27388526

  6. Real-time Monitoring Network to Characterize Anthropogenic and Natural Events Affecting the Hudson River, NY

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Bonner, J. S.; Fuller, C.; Kirkey, W.; Ojo, T.

    2011-12-01

    The Hudson River watershed spans 34,700 km2 predominantly in New York State, including agricultural, wilderness, and urban areas. The Hudson River supports many activities including shipping, supplies water for municipal, commercial, and agricultural uses, and is an important recreational resource. As the population increases within this watershed, so does the anthropogenic impact on this natural system. To address the impacts of anthropogenic and natural activities on this ecosystem, the River and Estuary Observatory Network (REON) is being developed through a joint venture between the Beacon Institute, Clarkson University, General Electric Inc. and IBM Inc. to monitor New York's Hudson and Mohawk Rivers in real-time. REON uses four sensor platform types with multiple nodes within the network to capture environmentally relevant episodic events. Sensor platform types include: 1) fixed robotic vertical profiler (FRVP); 2) mobile robotic undulating platform (MRUP); 3) fixed acoustic Doppler current profiler (FADCP) and 4) Autonomous Underwater Vehicle (AUV). The FRVP periodically generates a vertical profile with respect to water temperature, salinity, dissolved oxygen, particle concentration and size distribution, and fluorescence. The MRUP utilizes an undulating tow-body tethered behind a research vessel to measure the same set of water parameters as the FRVP, but does so 'synchronically' over a highly-resolved spatial regime. The fixed ADCP provides continuous water current profiles. The AUV maps four-dimensional (time, latitude, longitude, depth) variation of water quality, water currents and bathymetry along a pre-determined transect route. REON data can be used to identify episodic events, both anthropogenic and natural, that impact the Hudson River. For example, a strong heat signature associated with cooling water discharge from the Indian Point nuclear power plant was detected with the MRUP. The FRVP monitoring platform at Beacon, NY, located in the

  7. Recurrence time statistics of landslide events simulated by a cellular automaton model

    NASA Astrophysics Data System (ADS)

    Piegari, Ester; Di Maio, Rosa; Avella, Adolfo

    2014-05-01

    The recurrence time statistics of a cellular automaton modelling landslide events is analyzed by performing a numerical analysis in the parameter space and estimating Fano factor behaviors. The model is an extended version of the OFC model, which is a paradigm for SOC in non-conserved systems, but it works differently from the original OFC model as a finite value of the driving rate is applied. By driving the system to instability with different rates, the model exhibits a smooth transition from a correlated to an uncorrelated regime as the effect of a change in predominant mechanisms to propagate instability. If the rate at which instability is approached is small, chain processes dominate the landslide dynamics, and power laws govern probability distributions. However, the power-law regime typical of SOC-like systems is found in a range of return intervals that becomes shorter and shorter by increasing the values of the driving rates. Indeed, if the rates at which instability is approached are large, domino processes are no longer active in propagating instability, and large events simply occur because a large number of cells simultaneously reach instability. Such a gradual loss of the effectiveness of the chain propagation mechanism causes the system gradually enter to an uncorrelated regime where recurrence time distributions are characterized by Weibull behaviors. Simulation results are qualitatively compared with those from a recent analysis performed by Witt et al.(Earth Surf. Process. Landforms, 35, 1138, 2010) for the first complete databases of landslide occurrences over a period as large as fifty years. From the comparison with the extensive landslide data set, the numerical analysis suggests that statistics of such landslide data seem to be described by a crossover region between a correlated regime and an uncorrelated regime, where recurrence time distributions are characterized by power-law and Weibull behaviors for short and long return times

  8. Digitized pressure-time records, selected nuclear events. Technical report, 1 September 1982-1 April 1986

    SciTech Connect

    McMullan, F.W.; Bryant, E.J.

    1986-04-30

    Pressure-time records are presented for selected atmospheric nuclear events. The records were extracted from published test reports, digitized, and given uniform pressure-time scales for a given event and a given range to permit easier comparison. Data include p-t, q-t, p(tot)-t, Mach No-t, and Impulse-t as appropriate. Selected data were scaled to 1 kT.

  9. A complete procedure for multivariate index-flood model application

    NASA Astrophysics Data System (ADS)

    Requena, Ana Isabel; Chebana, Fateh; Mediero, Luis

    2016-04-01

    Multivariate frequency analyses are needed to study floods due to dependence existing among representative variables of the flood hydrograph. Particularly, multivariate analyses are essential when flood-routing processes significantly attenuate flood peaks, such as in dams and flood management in flood-prone areas. Besides, regional analyses improve at-site quantile estimates obtained at gauged sites, especially when short flow series exist, and provide estimates at ungauged sites where flow records are unavailable. However, very few studies deal simultaneously with both multivariate and regional aspects. This study seeks to introduce a complete procedure to conduct a multivariate regional hydrological frequency analysis (HFA), providing guidelines. The methodology joins recent developments achieved in multivariate and regional HFA, such as copulas, multivariate quantiles and the multivariate index-flood model. The proposed multivariate methodology, focused on the bivariate case, is applied to a case study located in Spain by using hydrograph volume and flood peak observed series. As a result, a set of volume-peak events under a bivariate quantile curve can be obtained for a given return period at a target site, providing flexibility to practitioners to check and decide what the design event for a given purpose should be. In addition, the multivariate regional approach can also be used for obtaining the multivariate distribution of the hydrological variables when the aim is to assess the structure failure for a given return period.

  10. Applications and usage of the real-time neutron monitor database for solar particle events monitoring

    NASA Astrophysics Data System (ADS)

    Papaioannou, Athanasios

    A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least eighteen Neutron Monitors distributed around the world and operated in real time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be implemented in real-time. The first and most important one will be the establishment of an Alert signal when dangerous solar particle events are heading to the Earth, resulting into Ground Level Enhancements effects registered by Neutron Monitors. On top of which, the mapping of all ground level enhancement features in near real-time mode will provide an over all picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful for radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of cosmic rays, which have been developed over the years, will also be set online offering the advantage of an extensive analysis of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will turn the extensive network of Neutron Monitors into a multi directional spectrographic detector. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor's data usage.

  11. Multivariate Intraclass Correlation.

    ERIC Educational Resources Information Center

    Wiley, David E.; Hawkes, Thomas H.

    This paper is an explication of a statistical model which will permit an interpretable intraclass correlation coefficient that is negative, and a generalized extension of that model to cover a multivariate problem. The methodological problem has its practical roots in an attempt to find a statistic which could indicate the degree of similarity or…

  12. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution.

    PubMed

    McGranahan, Nicholas; Favero, Francesco; de Bruin, Elza C; Birkbak, Nicolai Juul; Szallasi, Zoltan; Swanton, Charles

    2015-04-15

    Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal "actionable" mutations, including BRAF (V600E), IDH1 (R132H), PIK3CA (E545K), EGFR (L858R), and KRAS (G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K (phosphatidylinositol 3-kinase)-AKT-mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS-MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTOR signaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified. PMID:25877892

  13. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution

    PubMed Central

    McGranahan, Nicholas; Favero, Francesco; de Bruin, Elza C.; Birkbak, Nicolai Juul; Szallasi, Zoltan; Swanton, Charles

    2015-01-01

    Deciphering whether actionable driver mutations are found in all or a subset of tumor cells will likely be required to improve drug development and precision medicine strategies. We analyzed nine cancer types to determine the subclonal frequencies of driver events, to time mutational processes during cancer evolution, and to identify drivers of subclonal expansions. Although mutations in known driver genes typically occurred early in cancer evolution, we also identified later subclonal “actionable” mutations, including BRAF(V600E), IDH1(R132H), PIK3CA(E545K), EGFR(L858R), and KRAS(G12D), which may compromise the efficacy of targeted therapy approaches. More than 20% of IDH1 mutations in glioblastomas, and 15% of mutations in genes in the PI3K(phosphatidylinositol 3-kinase)–AKT–mTOR (mammalian target of rapamycin) signaling axis across all tumor types were subclonal. Mutations in the RAS–MEK (mitogen-activated protein kinase kinase) signaling axis were less likely to be subclonal than mutations in genes associated with PI3K-AKT-mTORsignaling. Analysis of late mutations revealed a link between APOBEC-mediated mutagenesis and the acquisition of subclonal driver mutations and uncovered putative cancer genes involved in subclonal expansions, including CTNNA2 and ATXN1. Our results provide a pan-cancer census of driver events within the context of intratumor heterogeneity and reveal patterns of tumor evolution across cancers. The frequent presence of subclonal driver mutations suggests the need to stratify targeted therapy response according to the proportion of tumor cells in which the driver is identified. PMID:25877892

  14. Modeling a Typical Winter-time Dust Event over the Arabian Peninsula and the Red Sea

    SciTech Connect

    Kalenderski, S.; Stenchikov, G.; Zhao, Chun

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg/day and ~1.5 Tg/day, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W/m2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  15. Assessment of realistic nowcasting lead-times based on predictability analysis of Mediterranean Heavy Precipitation Events

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Berenguer, Marc

    2014-05-01

    Operational quantitative precipitation forecasts (QPF) are provided routinely by weather services or hydrological authorities, particularly those responsible for densely populated regions of small catchments, such as those typically found in Mediterranean areas prone to flash-floods. Specific rainfall values are used as thresholds for issuing warning levels considering different time frameworks (mid-range, short-range, 24h, 1h, etc.), for example 100 mm in 24h or 60 mm in 1h. There is a clear need to determine how feasible is a specific rainfall value for a given lead-time, in particular for very short range forecasts or nowcasts typically obtained from weather radar observations (Pierce et al 2012). In this study we assess which specific nowcast lead-times can be provided for a number of heavy precipitation events (HPE) that affected Catalonia (NE Spain). The nowcasting system we employed generates QPFs through the extrapolation of rainfall fields observed with weather radar following a Lagrangian approach developed and tested successfully in previous studies (Berenguer et al. 2005, 2011).Then QPFs up to 3h are compared with two quality controlled observational data sets: weather radar quantitative precipitation estimates (QPE) and raingauge data. Several high-impact weather HPE were selected including the 7 September 2005 Llobregat Delta river tornado outbreak (Bech et al. 2007) or the 2 November 2008 supercell tornadic thunderstorms (Bech et al. 2011) both producing, among other effects, local flash floods. In these two events there were torrential rainfall rates (30' amounts exceeding 38.2 and 12.3 mm respectively) and 24h accumulation values above 100 mm. A number of verification scores are used to characterize the evolution of precipitation forecast quality with time, which typically presents a decreasing trend but showing an strong dependence on the selected rainfall threshold and integration period. For example considering correlation factors, 30

  16. Time-based and event-based prospective memory in autism spectrum disorder: the roles of executive function and theory of mind, and time-estimation.

    PubMed

    Williams, David; Boucher, Jill; Lind, Sophie; Jarrold, Christopher

    2013-07-01

    Prospective memory (remembering to carry out an action in the future) has been studied relatively little in ASD. We explored time-based (carry out an action at a pre-specified time) and event-based (carry out an action upon the occurrence of a pre-specified event) prospective memory, as well as possible cognitive correlates, among 21 intellectually high-functioning children with ASD, and 21 age- and IQ-matched neurotypical comparison children. We found impaired time-based, but undiminished event-based, prospective memory among children with ASD. In the ASD group, time-based prospective memory performance was associated significantly with diminished theory of mind, but not with diminished cognitive flexibility. There was no evidence that time-estimation ability contributed to time-based prospective memory impairment in ASD. PMID:23179340

  17. Hierarchy of temporal responses of multivariate self-excited epidemic processes

    NASA Astrophysics Data System (ADS)

    Saichev, Alexander; Maillart, Thomas; Sornette, Didier

    2013-04-01

    Many natural and social systems are characterized by bursty dynamics, for which past events trigger future activity. These systems can be modelled by so-called self-excited Hawkes conditional Poisson processes. It is generally assumed that all events have similar triggering abilities. However, some systems exhibit heterogeneity and clusters with possibly different intra- and inter-triggering, which can be accounted for by generalization into the "multivariate" self-excited Hawkes conditional Poisson processes. We develop the general formalism of the multivariate moment generating function for the cumulative number of first-generation and of all generation events triggered by a given mother event (the "shock") as a function of the current time t. This corresponds to studying the response function of the process. A variety of different systems have been analyzed. In particular, for systems in which triggering between events of different types proceeds through a one-dimension directed or symmetric chain of influence in type space, we report a novel hierarchy of intermediate asymptotic power law decays ˜ 1/ t 1-( m+1) θ of the rate of triggered events as a function of the distance m of the events to the initial shock in the type space, where 0 < θ < 1 for the relevant long-memory processes characterizing many natural and social systems. The richness of the generated time dynamics comes from the cascades of intermediate events of possibly different kinds, unfolding via random changes of types genealogy.

  18. A Bayesian Framework for Functional Mapping through Joint Modeling of Longitudinal and Time-to-Event Data

    PubMed Central

    Das, Kiranmoy; Li, Runze; Huang, Zhongwen; Gai, Junyi; Wu, Rongling

    2012-01-01

    The most powerful and comprehensive approach of study in modern biology is to understand the whole process of development and all events of importance to development which occur in the process. As a consequence, joint modeling of developmental processes and events has become one of the most demanding tasks in statistical research. Here, we propose a joint modeling framework for functional mapping of specific quantitative trait loci (QTLs) which controls developmental processes and the timing of development and their causal correlation over time. The joint model contains two submodels, one for a developmental process, known as a longitudinal trait, and the other for a developmental event, known as the time to event, which are connected through a QTL mapping framework. A nonparametric approach is used to model the mean and covariance function of the longitudinal trait while the traditional Cox proportional hazard (PH) model is used to model the event time. The joint model is applied to map QTLs that control whole-plant vegetative biomass growth and time to first flower in soybeans. Results show that this model should be broadly useful for detecting genes controlling physiological and pathological processes and other events of interest in biomedicine. PMID:22685454

  19. Time-frequency analysis of the event-related potentials associated with the Stroop test.

    PubMed

    Ergen, Mehmet; Saban, Sara; Kirmizi-Alsan, Elif; Uslu, Atilla; Keskin-Ergen, Yasemin; Demiralp, Tamer

    2014-12-01

    Multiple executive processes are suggested to be engaged at Stroop test, and time-frequency analysis is acknowledged to improve the informative utility of EEG in cognitive brain research. We aimed to investigate event-related oscillations associated with the Stroop test. EEG data was collected from 23 healthy volunteers while they performed a computer version of Stroop test. Both evoked (phase-locked) and total (phase-locked+non-phase-locked) oscillatory responses in the EEG were analyzed by wavelet transform. Data from the congruent (color-word matching) and incongruent stimuli (color-word non-matching) conditions are compared. In the incongruent condition, N450 wave was more negative and amplitude of the late slow wave was more positive. In the time-frequency plane, the fronto-central total theta amplitude (300-700 ms) was larger in the incongruent condition. The evoked delta (250-600 ms) was larger in the congruent condition particularly over parieto-occipital regions. The larger frontal theta response in the incongruent condition was associated with the detection of interference and inhibition of the response to task-irrelevant features, while the larger evoked delta in the congruent condition was suggestive of the easier decision process owing to congruency between the physical attribute and the verbal meaning of the stimuli. Furthermore, in the incongruent condition, amplitude of the occipital total alpha in the very late phase (700-900 ms) was smaller. This prolonged desynchronization in the alpha band could be reflecting augmentation of attentional filters in visual modality for the next stimulus. These multiple findings on EEG time-frequency plane provide improved description of the overlapping processes in Stroop test. PMID:25135670

  20. How the timing of weather events influences early development in a large mammal.

    PubMed

    Hendrichsen, D K; Tyler, N J C

    2014-07-01

    Capturing components of the weather that drive environment-animal interactions is a perennial problem in ecology. Identifying biologically significant elements of weather conditions in sensible statistics suitable for analysis of life history variation and population dynamics is central. Meteorological variables such as temperature, precipitation, and wind modulate rates of heat loss in animals, but analysis of their effects on endothermic species is complicated by the fact that their influence on energy balance is not invariably linear, even across the thermoneutral range. Rather, the thermal load imposed by a given set of weather conditions is a function of organisms' metabolic requirement, which, crucially, may vary spontaneously both seasonally and across different life phases. We propose that the endogenous component of variation in metabolic demand introduces a temporal dimension and that, as a consequence, the specific effect of meteorological variables on energy balance and attendant life history parameters is a function of the timing of weather events with respect to the organism's metabolic rhythm(s). To test this, we examined how a spontaneous increase in metabolic demand influenced the effect of weather on early development in a large mammal. Specifically, we examined interaction between the exponential rise in the energy requirements of pregnancy and depth of snow, which restricts dams' access to forage, on the body mass of reindeer calves (Rangifer tarandus) at weaning. As expected, we detected a significant temporal component: the specific negative effect of snow on weaning mass was not constant, but increased across pregnancy. The life history response was therefore better predicted by interaction between the magnitude and the timing of weather events than by their magnitude alone. To our knowledge, this is the first demonstration of the influence of an endogenous metabolic dynamic on the impact of weather on a life history trait in a free

  1. The variations of long time period slow slip events along the Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Tu, Y. T.; Heki, K.

    2014-12-01

    Slow slip events (SSEs) are a type of slow earthquakes that can be observed with Global Positioning System (GPS) networks in the world. Those events are detected on intensely coupled plate boundaries such as Cascadia subduction zone (Dragert et al., 2001), western North America, Mexico (Kostoglodov et al., 2003), Alaska (Ohta et al., 2007) and Tokai and Boso areas (Ozawa et al., 2002, 2003), central Japan and are considered to have relations to large subduction thrust earthquakes. However, in southwestern Ryukyu trench where most of researchers believe that it should be a decoupled plate boundary, SSEs recur regularly and are located at a patch that is as deep as 20 to 40 km (Heki and Kataoka, 2008). For comprehending the characteristics and time variations of SSEs in this area, the GEONET GPS data of 16 years are used in this study. During 1997 to 2014, more than thirty SSEs are identified near Hateruma Island, Ryukyu. The average recurrence interval is calculated to be 6.3 months and release seismic moment is Mw 6.6 on average. However, the values of recurrence interval are not invariable. From 1997 to 2002, interval period of SSEs is 7.5 months, but during 2002 to 2008, the interval period decreases suddenly to 5.5 months. After 2008, the value restores to 7.2 months again. Furthermore, the slip amount of SSEs in this area varies with time. From 1997 to 2002, the slip is 9.5 cm/year; and during 2002 to 2008, the value slightly increases to 10.5 cm/year. However, in 2008 to 2013, the slip drops to 6.6 cm/year, but accord to the trend of cumulative slip, the slip value would increase in 2014. Considering these data, we find the slip values increase conspicuously in 2002 and 2013. Coincidentally, one Mw 7.1 thrust earthquake occurred in 2002 and earthquake swarm activity started in the Okinawa trough approximately 50km north of the SSE patch. In 2013, another earthquake swarm activity occurred in nearly the same area as the 2002 activity. This suggests that the

  2. Correlation Analyses Between the Characteristic Times of Gradual Solar Energetic Particle Events and the Properties of Associated Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Pan, Z. H.; Wang, C. B.; Wang, Yuming; Xue, X. H.

    2011-06-01

    It is generally believed that gradual solar energetic particles (SEPs) are accelerated by shocks associated with coronal mass ejections (CMEs). Using an ice-cream cone model, the radial speed and angular width of 95 CMEs associated with SEP events during 1998 - 2002 are calculated from SOHO/LASCO observations. Then, we investigate the relationships between the kinematic properties of these CMEs and the characteristic times of the intensity-time profile of their accompanied SEP events observed at 1 AU. These characteristic times of SEP are i) the onset time from the accompanying CME eruption at the Sun to the SEP arrival at 1 AU, ii) the rise time from the SEP onset to the time when the SEP intensity is one-half of peak intensity, and iii) the duration over which the SEP intensity is within a factor of two of the peak intensity. It is found that the onset time has neither significant correlation with the radial speed nor with the angular width of the accompanying CME. For events that are poorly connected to the Earth, the SEP rise time and duration have no significant correlation with the radial speed and angular width of the associated CMEs. However, for events that are magnetically well connected to the Earth, the SEP rise time and duration have significantly positive correlations with the radial speed and angular width of the associated CMEs. This indicates that a CME event with wider angular width and higher speed may more easily drive a strong and wide shock near to the Earth-connected interplanetary magnetic field lines, may trap and accelerate particles for a longer time, and may lead to longer rise time and duration of the ensuing SEP event.

  3. Development of a real time monitor and multivariate method for long term diagnostics of atmospheric pressure dielectric barrier discharges: application to He, He/N2, and He/O2 discharges.

    PubMed

    O'Connor, N; Milosavljević, V; Daniels, S

    2011-08-01

    In this paper we present the development and application of a real time atmospheric pressure discharge monitoring diagnostic. The software based diagnostic is designed to extract latent electrical and optical information associated with the operation of an atmospheric pressure dielectric barrier discharge (APDBD) over long time scales. Given that little is known about long term temporal effects in such discharges, the diagnostic methodology is applied to the monitoring of an APDBD in helium and helium with both 0.1% nitrogen and 0.1% oxygen gas admixtures over periods of tens of minutes. Given the large datasets associated with the experiments, it is shown that this process is much expedited through the novel application of multivariate correlations between the electrical and optical parameters of the corresponding chemistries which, in turn, facilitates comparisons between each individual chemistry also. The results of these studies show that the electrical and optical parameters of the discharge in helium and upon the addition of gas admixtures evolve over time scales far longer than the gas residence time and have been compared to current modelling works. It is envisaged that the diagnostic together with the application of multivariate correlations will be applied to rapid system identification and prototyping in both experimental and industrial APDBD systems in the future. PMID:21895242

  4. Real-time detection and classification of anomalous events in streaming data

    DOEpatents

    Ferragut, Erik M.; Goodall, John R.; Iannacone, Michael D.; Laska, Jason A.; Harrison, Lane T.

    2016-04-19

    A system is described for receiving a stream of events and scoring the events based on anomalousness and maliciousness (or other classification). The events can be displayed to a user in user-defined groupings in an animated fashion. The system can include a plurality of anomaly detectors that together implement an algorithm to identify low probability events and detect atypical traffic patterns. The atypical traffic patterns can then be classified as being of interest or not. In one particular example, in a network environment, the classification can be whether the network traffic is malicious or not.

  5. Illustration of compositional variations over time of Chinese porcelain glazes combining micro-X-ray Fluorescence spectrometry, multivariate data analysis and Seger formulas

    NASA Astrophysics Data System (ADS)

    Van Pevenage, J.; Verhaeven, E.; Vekemans, B.; Lauwers, D.; Herremans, D.; De Clercq, W.; Vincze, L.; Moens, L.; Vandenabeele, P.

    2015-01-01

    In this research, the transparent glaze layers of Chinese porcelain samples were investigated. Depending on the production period, these samples can be divided into two groups: the samples of group A dating from the Kangxi period (1661-1722), and the samples of group B produced under emperor Qianlong (1735-1795). Due to the specific sample preparation method and the small spot size of the X-ray beam, investigation of the transparent glaze layers is enabled. Despite the many existing research papers about glaze investigations of ceramics and/or porcelain ware, this research reveals new insights into the glaze composition and structure of Chinese porcelain samples. In this paper it is demonstrated, using micro-X-ray Fluorescence (μ-XRF) spectrometry, multivariate data analysis and statistical analysis (Hotelling's T-Square test) that the transparent glaze layers of the samples of groups A and B are significantly different (95% confidence level). Calculation of the Seger formulas, enabled classification of the glazes. Combining all the information, the difference in composition of the Chinese porcelain glazes of the Kangxi period and the Qianlong period can be demonstrated.

  6. Did you witness demonic possession? A response time analysis of the relationship between event plausibility and autobiographical beliefs.

    PubMed

    Mazzoni, Gilana

    2007-04-01

    This study tested the hypothesis that the search for information pertinent to answering the question "Did event x happen to you?" is preceded by a preliminary plausibility assessment, the outcome of which affects the amount of effort invested in the search. Undergraduate students were asked to assess the plausibility of six events and subsequently to rate their belief that each event had happened to them before the age of 6. Unknown to them, response times (RTs) for answering the belief questions were also recorded. RTs for making belief judgments were more highly correlated with plausibility than with belief, and were significantly associated with plausibility even when belief ratings were controlled. As predicted, RTs were very short when the event was deemed highly implausible and increased sharply if the event was deemed at least somewhat plausible; significant but less pronounced increases in RTs followed as plausibility increased further. PMID:17694913

  7. Rainfall time series synthesis from queue scheduling of rain event fractals over radio links

    NASA Astrophysics Data System (ADS)

    Alonge, Akintunde A.; Afullo, Thomas J.

    2015-12-01

    Rainfall attenuation over wireless networks stems from random fluctuations in the natural process of arriving rainfall rates over radio links. This arrival process results in discernible rainfall traffic pattern which manifests as naturally scheduled and queue-generated rain spikes. Hence, the phenomenon of rainfall process can be approached as a semi-Markovian queueing process, with event characteristics dependent on queue parameters. However, a constraint to this approach is the knowledge of the physical characteristics of queue-generated rain spikes. Therefore, this paper explores the probability theory and descriptive mathematics of rain spikes in rainfall processes. This investigation presents the synthesis of rainfall queue with rain spikes at subtropical and equatorial locations of Durban (29°52'S, 30°58'E) and Butare (2°36'S, 29°44'E), respectively. The resulting comparative analysis of rainfall distributions, using error analysis at both locations, reveals that queue-generated rainfall compares well with measured rainfall data set. This suggests that the time-varying process of rainfall, though stochastic, can be synthesized via queue scheduling with the application of relevant queue parameters at any location.

  8. A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data.

    PubMed

    Wolfson, Julian; Bandyopadhyay, Sunayan; Elidrisi, Mohamed; Vazquez-Benitez, Gabriela; Vock, David M; Musgrove, Donald; Adomavicius, Gediminas; Johnson, Paul E; O'Connor, Patrick J

    2015-09-20

    Predicting an individual's risk of experiencing a future clinical outcome is a statistical task with important consequences for both practicing clinicians and public health experts. Modern observational databases such as electronic health records provide an alternative to the longitudinal cohort studies traditionally used to construct risk models, bringing with them both opportunities and challenges. Large sample sizes and detailed covariate histories enable the use of sophisticated machine learning techniques to uncover complex associations and interactions, but observational databases are often 'messy', with high levels of missing data and incomplete patient follow-up. In this paper, we propose an adaptation of the well-known Naive Bayes machine learning approach to time-to-event outcomes subject to censoring. We compare the predictive performance of our method with the Cox proportional hazards model which is commonly used for risk prediction in healthcare populations, and illustrate its application to prediction of cardiovascular risk using an electronic health record dataset from a large Midwest integrated healthcare system. PMID:25980520

  9. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  10. Nuclear event time histories and computed site transfer functions for locations in the Los Angeles region

    USGS Publications Warehouse

    Rogers, A.M.; Covington, P.A.; Park, R.B.; Borcherdt, R.D.; Perkins, D.M.

    1980-01-01

    This report presents a collection of Nevada Test Site (NTS) nuclear explosion recordings obtained at sites in the greater Los Angeles, Calif., region. The report includes ground velocity time histories, as well as, derived site transfer functions. These data have been collected as part of a study to evaluate the validity of using low-level ground motions to predict the frequency-dependent response of a site during an earthquake. For this study 19 nuclear events were recorded at 98 separate locations. Some of these sites have recorded more than one of the nuclear explosions, and, consequently, there are a total of 159, three-component station records. The location of all the recording sites are shown in figures 1–5, the station coordinates and abbreviations are given in table 1. The station addresses are listed in table 2, and the nuclear explosions that were recorded are listed in table 3. The recording sites were chosen on the basis of three criteria: (1) that the underlying geological conditions were representative of conditions over significant areas of the region, (2) that the site was the location of a strong-motion recording of the 1971 San Fernando earthquake, or (3) that more complete geographical coverage was required in that location.

  11. A Time Scale for Major Events in Early Mars Crustal Evolution

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.

    2004-01-01

    The population of visible and buried impact basins > 200 km diameter revealed by high resolution gridded MOLA data and the cumulative frequency curves derived for these pvide a basis for a chronology of major events in early martian history. The relative chronology can be given in terms of N(200) crater retention ages; 'absolute ages' can be assigued using the Hartmann-Neukum (H&N) model chronology. In terms of billions of H&N years, the crustal dichotomy formed by large impact basins at 4.12 +/- 0.08 BYA (N(200) = 3.0-3.2) and the global magnetic field died at about or slightly before the same time (4.15 +/- 0.08 BYA (N(200) = 3.5). In this chronology, the buried lowlands are approx. 120 my younger than the buried highlands, approx. 160 my younger than the highlands overall and approx. 340 my younger than the oldest crater retention surface we see, defined by the largest impact basins.

  12. Real-Time Microbiology Laboratory Surveillance System to Detect Abnormal Events and Emerging Infections, Marseille, France

    PubMed Central

    Abat, Cédric; Chaudet, Hervé; Colson, Philippe; Rolain, Jean-Marc

    2015-01-01

    Infectious diseases are a major threat to humanity, and accurate surveillance is essential. We describe how to implement a laboratory data–based surveillance system in a clinical microbiology laboratory. Two historical Microsoft Excel databases were implemented. The data were then sorted and used to execute the following 2 surveillance systems in Excel: the Bacterial real-time Laboratory-based Surveillance System (BALYSES) for monitoring the number of patients infected with bacterial species isolated at least once in our laboratory during the study periodl and the Marseille Antibiotic Resistance Surveillance System (MARSS), which surveys the primary β-lactam resistance phenotypes for 15 selected bacterial species. The first historical database contained 174,853 identifications of bacteria, and the second contained 12,062 results of antibiotic susceptibility testing. From May 21, 2013, through June 4, 2014, BALYSES and MARSS enabled the detection of 52 abnormal events for 24 bacterial species, leading to 19 official reports. This system is currently being refined and improved. PMID:26196165

  13. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  14. Multivariate Analysis in Metabolomics

    PubMed Central

    Worley, Bradley; Powers, Robert

    2015-01-01

    Metabolomics aims to provide a global snapshot of all small-molecule metabolites in cells and biological fluids, free of observational biases inherent to more focused studies of metabolism. However, the staggeringly high information content of such global analyses introduces a challenge of its own; efficiently forming biologically relevant conclusions from any given metabolomics dataset indeed requires specialized forms of data analysis. One approach to finding meaning in metabolomics datasets involves multivariate analysis (MVA) methods such as principal component analysis (PCA) and partial least squares projection to latent structures (PLS), where spectral features contributing most to variation or separation are identified for further analysis. However, as with any mathematical treatment, these methods are not a panacea; this review discusses the use of multivariate analysis for metabolomics, as well as common pitfalls and misconceptions. PMID:26078916

  15. Multivariate Data EXplorer (MDX)

    Energy Science and Technology Software Center (ESTSC)

    2012-08-01

    The MDX toolkit facilitates exploratory data analysis and visualization of multivariate datasets. MDX provides and interactive graphical user interface to load, explore, and modify multivariate datasets stored in tabular forms. MDX uses an extended version of the parallel coordinates plot and scatterplots to represent the data. The user can perform rapid visual queries using mouse gestures in the visualization panels to select rows or columns of interest. The visualization panel provides coordinated multiple views wherebymore » selections made in one plot are propagated to the other plots. Users can also export selected data or reconfigure the visualization panel to explore relationships between columns and rows in the data.« less

  16. The showerfront time-structure of anomalous muon'' events associated with Hercules X-1. [Her X-1

    SciTech Connect

    Alexandreas, D.E. ); Berley, D.; Biller, S.D.; Burman, R.L.; Cady, D.R.; Chang, C.Y.; Dingus, B.L.; Dion, C.; Dion, G.M.; Ellsworth, R.W.; Goodman, J.A.; Haines, T.J.; Hoffman, C.M.; Krakauer, D.A.; Kwok, P.W.; Lloyd-Evans, J.; Lu, X.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Stark, M.J.; Vishwanath, P.R.; Yodh, G.B.; Zhang, W.P. The University of Maryland, College Park, Maryland 20742-4111 Los Alamos National Laboratory, Los Alamos, New Mexico 87545 The University of Notre Dame, Notre Dame, Indiana 46556 George Mason University, Fairfax, Virginia 22030-4444 Argonne National Laboratory, Argonne, Illinois, 60439-4843 ); Presented by S. Biller

    1991-04-05

    The 11 in-phase'' source events from the 1986 muon-rich bursts associated with Hercules X-1 (previously reported by this group) have been studied for indications of further anomalous behavior. The most significant effect observed resulted from an analysis of the showerfront time-structures of these events. This analysis was then applied {ital a} {ital priori} to the rest of the source day, where an additional {similar to}9 signal events are expected to remain. The same effect was observed at a chance probability level of {similar to}0.1%.

  17. Investigating neural primacy in Major Depressive Disorder: Multivariate granger causality analysis of resting-state fMRI time-series data

    PubMed Central

    Hamilton, J. Paul; Chen, Gang; Thomason, Moriah E.; Schwartz, Mirra E.; Gotlib, Ian H.

    2010-01-01

    Major Depressive Disorder (MDD) has been conceptualized as a neural network-level disease. Few studies of the neural bases of depression, however, have used analytic techniques that are capable of testing network-level hypotheses of neural dysfunction in this disorder. Moreover, of those that have, fewer still have attempted to determine directionality of influence within functionally abnormal networks of structures. We used multivariate Granger causality analysis — a technique that estimates the extent to which preceding neural activity in one or more seed regions predicts subsequent activity in target brain regions — to analyze blood-oxygen-level dependent (BOLD) data collected during eyes-closed rest in depressed and never-depressed persons. We found that activation in the hippocampus predicted subsequent increases in ventral anterior cingulate cortex (vACC) activity in depression, and that activity in medial prefrontal cortex and vACC were mutually reinforcing in MDD. Hippocampal and vACC activation in depressed participants predicted subsequent decreases in dorsal cortical activity. This study shows that, on a moment-by-moment basis, there is increased excitatory activity among limbic and paralimbic structures, as well as increased inhibition in activity of dorsal cortical structures, by limbic structures in depression; these aberrant patterns of effective connectivity implicate disturbances in the mesostriatal dopamine system in depression. These findings advance neural theory of depression by detailing specific patterns of limbic excitation in MDD, by making explicit the primary role of limbic inhibition of dorsal cortex in the cortico-limbic relation posited to underlie depression, and by presenting an integrated neurofunctional account of altered dopamine function in this disorder. PMID:20479758

  18. Time-to-Event Analysis of Individual Variables Associated with Nursing Students' Academic Failure: A Longitudinal Study

    ERIC Educational Resources Information Center

    Dante, Angelo; Fabris, Stefano; Palese, Alvisa

    2013-01-01

    Empirical studies and conceptual frameworks presented in the extant literature offer a static imagining of academic failure. Time-to-event analysis, which captures the dynamism of individual factors, as when they determine the failure to properly tailor timely strategies, impose longitudinal studies which are still lacking within the field. The…

  19. Monitoring the data quality of the real-time event reconstruction in the ALICE High Level Trigger

    NASA Astrophysics Data System (ADS)

    Austrheim Erdal, Hege; Richther, Matthias; Szostak, Artur; Toia, Alberica

    2012-12-01

    ALICE is a dedicated heavy ion experiment at the CERN LHC. The ALICE High Level Trigger was designed to select events with desirable physics properties. Data from several of the major subdetectors in ALICE are processed by the HLT for real-time event reconstruction, for instance the Inner Tracking System, the Time Projection Chamber, the electromagnetc calorimeters, the Transition Radiation Detector and the muon spectrometer. The HLT reconstructs events in real-time and thus provides input for trigger algorithms. It is necessary to monitor the quality of the reconstruction where one focuses on track and event properties. Also, HLT implemented data compression for the TPC during the heavy ion data taking in 2011 to reduce the data rate from the ALICE detector. The key for the data compression is to store clusters (spacepoints) calculated by HLT rather than storing raw data. It is thus very important to monitor the cluster finder performance as a way to monitor the data compression. The data monitoring is divided into two stages. The first stage is performed during data taking. A part of the HLT production chain is dedicated to performing online monitoring and facilities are available in the HLT production cluster to have real-time access to the reconstructed events in the ALICE control room. This includes track and event properties, and in addition, this facility gives a way to display a small fraction of the reconstructed events in an online display. The second part of the monitoring is performed after the data has been transferred to permanent storage. After a post-process of the real-time reconstructed data, one can look in more detail at the cluster finder performance, the quality of the reconstruction of tracks, vertices and vertex position. The monitoring solution is presented in detail, with special attention to the heavy ion data taking of 2011.

  20. LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS

    SciTech Connect

    Bower, Geoffrey C.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Metzger, Brian D.

    2013-02-15

    We present new observations with the Karl G. Jansky Very Large Array of seven X-ray-selected tidal disruption events (TDEs). The radio observations were carried out between 9 and 22 years after the initial X-ray discovery, and thus probe the late-time formation of relativistic jets and jet interactions with the interstellar medium in these systems. We detect a compact radio source in the nucleus of the galaxy IC 3599 and a compact radio source that is a possible counterpart to RX J1420.4+5334. We find no radio counterparts for five other sources with flux density upper limits between 51 and 200 {mu}Jy (3{sigma}). If the detections truly represent late radio emission associated with a TDE, then our results suggest that a fraction, {approx}> 10%, of X-ray-detected TDEs are accompanied by relativistic jets. We explore several models for producing late radio emission, including interaction of the jet with gas in the circumnuclear environment (blast wave model), and emission from the core of the jet itself. Upper limits on the radio flux density from archival observations suggest that the jet formation may have been delayed for years after the TDE, possibly triggered by the accretion rate dropping below a critical threshold of {approx}10{sup -2}-10{sup -3} M-dot {sub Edd}. The non-detections are also consistent with this scenario; deeper radio observations can determine whether relativistic jets are present in these systems. The emission from RX J1420.4+5334 is also consistent with the predictions of the blast wave model; however, the radio emission from IC 3599 is substantially underluminous, and its spectral slope is too flat, relative to the blast wave model expectations. Future radio monitoring of IC 3599 and RX J1420.4+5334 will help to better constrain the nature of the jets in these systems.

  1. Demanding response time requirements on coherent receivers due to fast polarization rotations caused by lightning events.

    PubMed

    Krummrich, Peter M; Ronnenberg, David; Schairer, Wolfgang; Wienold, Daniel; Jenau, Frank; Herrmann, Maximilian

    2016-05-30

    Lightning events can cause fast polarization rotations and phase changes in optical transmission fibers due to strong electrical currents and magnetic fields. Whereas these are unlikely to affect legacy transmission systems with direct detection, different mechanisms have to be considered in systems with local oscillator based coherent receivers and digital signal processing. A theoretical analysis reveals that lightning events can result in polarization rotations with speeds as fast as a few hundred kRad/s. We discuss possible mechanisms how such lightning events can affect coherent receivers with digital signal processing. In experimental investigations with a high current pulse generator and transponder prototypes, we observed post FEC errors after polarization rotation events which can be expected from lightning strikes. PMID:27410158

  2. Real-time distributed fiber optic sensor for security systems: Performance, event classification and nuisance mitigation

    NASA Astrophysics Data System (ADS)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-09-01

    The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.

  3. Here and now: how time segments may become events in the hippocampus.

    PubMed

    Lorincz, András; Szirtes, Gábor

    2009-01-01

    The hippocampal formation is believed to play a central role in memory functions related to the representation of events. Events are usually considered as temporally bounded processes, in contrast to the continuous nature of sensory signal flow they originate from. Events are then organized and stored according to behavioral relevance and are used to facilitate prediction of similar events. In this paper we are interested in the kind of representation of sensory signals that allows for detecting and/or predicting events. Based on new results on the identification problem of linear hidden processes, we propose a connectionist network with biologically sound parameter tuning that can represent causal relationships and define events. Interestingly, the wiring diagram of our architecture not only resembles the gross anatomy of the hippocampal formation (including the entorhinal cortex), but it also features similar spatial distribution functions of activity (localized and periodic, 'grid-like' patterns) as found in the different parts of the hippocampal formation. We shortly discuss how our model corresponds to different theories on the role of the hippocampal formation in forming episodic memories or supporting spatial navigation. We speculate that our approach may constitute a step toward a unified theory about the functional role of the hippocampus and the structure of memory representations. PMID:19616410

  4. Multivariate multiscale entropy for brain consciousness analysis.

    PubMed

    Ahmed, Mosabber Uddin; Li, Ling; Cao, Jianting; Mandic, Danilo P

    2011-01-01

    The recently introduced multiscale entropy (MSE) method accounts for long range correlations over multiple time scales and can therefore reveal the complexity of biological signals. The existing MSE algorithm deals with scalar time series whereas multivariate time series are common in experimental and biological systems. To that cause, in this paper the MSE method is extended to the multivariate case. This allows us to gain a greater insight into the complexity of the underlying signal generating system, producing multifaceted and more robust estimates than standard single channel MSE. Simulations on both synthetic data and brain consciousness analysis support the approach. PMID:22254434

  5. Time distribution of heavy rainfall events in south west of Iran

    NASA Astrophysics Data System (ADS)

    Ghassabi, Zahra; kamali, G. Ali; Meshkatee, Amir-Hussain; Hajam, Sohrab; Javaheri, Nasrolah

    2016-07-01

    Accurate knowledge of rainfall time distribution is a fundamental issue in many Meteorological-Hydrological studies such as using the information of the surface runoff in the design of the hydraulic structures, flood control and risk management, and river engineering studies. Since the main largest dams of Iran are in the south-west of the country (i.e. South Zagros), this research investigates the temporal rainfall distribution based on an analytical numerical method to increase the accuracy of hydrological studies in Iran. The United States Soil Conservation Service (SCS) estimated the temporal rainfall distribution in various forms. Hydrology studies usually utilize the same distribution functions in other areas of the world including Iran due to the lack of sufficient observation data. However, we first used Weather Research Forecasting (WRF) model to achieve the simulated rainfall results of the selected storms on south west of Iran in this research. Then, a three-parametric Logistic function was fitted to the rainfall data in order to compute the temporal rainfall distribution. The domain of the WRF model is 30.5N-34N and 47.5E-52.5E with a resolution of 0.08 degree in latitude and longitude. We selected 35 heavy storms based on the observed rainfall data set to simulate with the WRF Model. Storm events were scrutinized independently from each other and the best analytical three-parametric logistic function was fitted for each grid point. The results show that the value of the coefficient a of the logistic function, which indicates rainfall intensity, varies from the minimum of 0.14 to the maximum of 0.7. Furthermore, the values of the coefficient B of the logistic function, which indicates rain delay of grid points from start time of rainfall, vary from 1.6 in south-west and east to more than 8 in north and central parts of the studied area. In addition, values of rainfall intensities are lower in south west of IRAN than those of observed or proposed by the

  6. Scaling Time Warp-based Discrete Event Execution to 104 Processors on Blue Gene Supercomputer

    SciTech Connect

    Perumalla, Kalyan S

    2007-01-01

    Lately, important large-scale simulation applications, such as emergency/event planning and response, are emerging that are based on discrete event models. The applications are characterized by their scale (several millions of simulated entities), their fine-grained nature of computation (microseconds per event), and their highly dynamic inter-entity event interactions. The desired scale and speed together call for highly scalable parallel discrete event simulation (PDES) engines. However, few such parallel engines have been designed or tested on platforms with thousands of processors. Here an overview is given of a unique PDES engine that has been designed to support Time Warp-style optimistic parallel execution as well as a more generalized mixed, optimistic-conservative synchronization. The engine is designed to run on massively parallel architectures with minimal overheads. A performance study of the engine is presented, including the first results to date of PDES benchmarks demonstrating scalability to as many as 16,384 processors, on an IBM Blue Gene supercomputer. The results show, for the first time, the promise of effectively sustaining very large scale discrete event execution on up to 104 processors.

  7. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    SciTech Connect

    Zhang, Yun

    2008-12-18

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification

  8. Introduction to multivariate discrimination

    NASA Astrophysics Data System (ADS)

    Kégl, Balázs

    2013-07-01

    Multivariate discrimination or classification is one of the best-studied problem in machine learning, with a plethora of well-tested and well-performing algorithms. There are also several good general textbooks [1-9] on the subject written to an average engineering, computer science, or statistics graduate student; most of them are also accessible for an average physics student with some background on computer science and statistics. Hence, instead of writing a generic introduction, we concentrate here on relating the subject to a practitioner experimental physicist. After a short introduction on the basic setup (Section 1) we delve into the practical issues of complexity regularization, model selection, and hyperparameter optimization (Section 2), since it is this step that makes high-complexity non-parametric fitting so different from low-dimensional parametric fitting. To emphasize that this issue is not restricted to classification, we illustrate the concept on a low-dimensional but non-parametric regression example (Section 2.1). Section 3 describes the common algorithmic-statistical formal framework that unifies the main families of multivariate classification algorithms. We explain here the large-margin principle that partly explains why these algorithms work. Section 4 is devoted to the description of the three main (families of) classification algorithms, neural networks, the support vector machine, and AdaBoost. We do not go into the algorithmic details; the goal is to give an overview on the form of the functions these methods learn and on the objective functions they optimize. Besides their technical description, we also make an attempt to put these algorithm into a socio-historical context. We then briefly describe some rather heterogeneous applications to illustrate the pattern recognition pipeline and to show how widespread the use of these methods is (Section 5). We conclude the chapter with three essentially open research problems that are either

  9. Multivariate volume rendering

    SciTech Connect

    Crawfis, R.A.

    1996-03-01

    This paper presents a new technique for representing multivalued data sets defined on an integer lattice. It extends the state-of-the-art in volume rendering to include nonhomogeneous volume representations. That is, volume rendering of materials with very fine detail (e.g. translucent granite) within a voxel. Multivariate volume rendering is achieved by introducing controlled amounts of noise within the volume representation. Varying the local amount of noise within the volume is used to represent a separate scalar variable. The technique can also be used in image synthesis to create more realistic clouds and fog.

  10. A time-varying subjective quality model for mobile streaming videos with stalling events

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Pan, Janice; Bovik, Alan C.

    2015-09-01

    Over-the-top mobile video streaming is invariably influenced by volatile network conditions which cause playback interruptions (stalling events), thereby impairing users' quality of experience (QoE). Developing models that can accurately predict users' QoE could enable the more efficient design of quality-control protocols for video streaming networks that reduce network operational costs while still delivering high-quality video content to the customers. Existing objective models that predict QoE are based on global video features, such as the number of stall events and their lengths, and are trained and validated on a small pool of ad hoc video datasets, most of which are not publicly available. The model we propose in this work goes beyond previous models as it also accounts for the fundamental effect that a viewer's recent level of satisfaction or dissatisfaction has on their overall viewing experience. In other words, the proposed model accounts for and adapts to the recency, or hysteresis effect caused by a stall event in addition to accounting for the lengths, frequency of occurrence, and the positions of stall events - factors that interact in a complex way to affect a user's QoE. On the recently introduced LIVE-Avvasi Mobile Video Database, which consists of 180 distorted videos of varied content that are afflicted solely with over 25 unique realistic stalling events, we trained and validated our model to accurately predict the QoE, attaining standout QoE prediction performance.

  11. Investigations in Reducing the Computational Expense of Transient 3D Multi-Phase CO2 Wellbore Leakage Simulations: Time-Series Matching versus Multivariate Adaptive Regression Splines

    NASA Astrophysics Data System (ADS)

    Harp, D. R.; Pawar, R.

    2014-12-01

    Depleted oil and gas reserves have abandoned wellbore densities up to 10 per square kilometer (Crow, 2010). These locations are considered to have favorable geological structure and properties for CO2 sequestration. To understand the risk of CO2 leakage along these abandoned wellbores requires the simulation of a comprehensive set of realizations encompassing the potential scenarios. The simulations must capture transient, 3D, multi-phase effects (i.e. supercritical, liquid, and gas CO2 phases along with liquid reservoir and aquifer fluids), and include capillary and buoyant flow. Performing a large number of these simulations becomes computationally burdensome. In order to reduce this computational burden, regression approaches have been used to develop computationally efficient reduced order models to try to capture the general trends of the simulations. In these approaches, model inputs and outputs are collected from the transient simulations at each time step. Recognizing that many of the inputs to the regression approach come from time series (i.e. pressures and CO2 saturations) and that all of the outputs are time series (i.e. CO2 and brine flow rates), we develop a time-series matching approach. In this approach, CO2 and brine flow rate time series are estimated given input time series and parameters by averaging the flow rates of the collected simulations weighted by the similarity of their input time series and parameter. Similarity of both time series and parameters is calculated by the Euclidean distance. Euclidean distances are converted to a generalized likelihood metric, and used to weight the flow-rate time-series averages. We present a comparison of this time series matching approach to the MARS algorithm.

  12. MOBBED: a computational data infrastructure for handling large collections of event-rich time series datasets in MATLAB.

    PubMed

    Cockfield, Jeremy; Su, Kyungmin; Robbins, Kay A

    2013-01-01

    Experiments to monitor human brain activity during active behavior record a variety of modalities (e.g., EEG, eye tracking, motion capture, respiration monitoring) and capture a complex environmental context leading to large, event-rich time series datasets. The considerable variability of responses within and among subjects in more realistic behavioral scenarios requires experiments to assess many more subjects over longer periods of time. This explosion of data requires better computational infrastructure to more systematically explore and process these collections. MOBBED is a lightweight, easy-to-use, extensible toolkit that allows users to incorporate a computational database into their normal MATLAB workflow. Although capable of storing quite general types of annotated data, MOBBED is particularly oriented to multichannel time series such as EEG that have event streams overlaid with sensor data. MOBBED directly supports access to individual events, data frames, and time-stamped feature vectors, allowing users to ask questions such as what types of events or features co-occur under various experimental conditions. A database provides several advantages not available to users who process one dataset at a time from the local file system. In addition to archiving primary data in a central place to save space and avoid inconsistencies, such a database allows users to manage, search, and retrieve events across multiple datasets without reading the entire dataset. The database also provides infrastructure for handling more complex event patterns that include environmental and contextual conditions. The database can also be used as a cache for expensive intermediate results that are reused in such activities as cross-validation of machine learning algorithms. MOBBED is implemented over PostgreSQL, a widely used open source database, and is freely available under the GNU general public license at http://visual.cs.utsa.edu/mobbed. Source and issue reports for MOBBED

  13. Cardiovascular Event Risk Dynamics Over Time in Older Patients on Dialysis: A Generalized Multiple-Index Varying Coefficient Model Approach

    PubMed Central

    Estes, Jason P.; Nguyen, Danh V.; Dalrymple, Lorien S.; Mu, Yi; Şentürk, Damla

    2014-01-01

    Among patients on dialysis, cardiovascular disease and infection are leading causes of hospitalization and death. Although recent studies have found that the risk of cardiovascular events is higher after an infection-related hospitalization, studies have not fully elucidated how the risk of cardiovascular events changes over time for patients on dialysis. In this work, we characterize the dynamics of cardiovascular event risk trajectories for patients on dialysis while conditioning on survival status via multiple time indices: (1) time since the start of dialysis, (2) time since the pivotal initial infection-related hospitalization and (3) the patient’s age at the start of dialysis. This is achieved by using a new class of generalized multiple-index varying coefficient (GM-IVC) models. The proposed GM-IVC models utilize a multiplicative structure and one-dimensional varying coefficient functions along each time and age index to capture the cardiovascular risk dynamics before and after the initial infection-related hospitalization among the dynamic cohort of survivors. We develop a two-step estimation procedure for the GM-IVC models based on local maximum likelihood. We report new insights on the dynamics of cardiovascular events risk using the United States Renal Data System database, which collects data on nearly all patients with end-stage renal disease in the U.S. Finally, simulation studies assess the performance of the proposed estimation procedures. PMID:24766178

  14. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event.

    PubMed

    Smith, D R; Owens, P R; Leytem, A B; Warnemuende, E A

    2007-05-01

    Nutrient losses to surface waters following fertilization contribute to eutrophication. This study was conducted to compare the impacts of fertilization with inorganic fertilizer, swine (Sus scrofa domesticus) manure or poultry (Gallus domesticus) litter on runoff water quality, and how the duration between application and the first runoff event affects resulting water quality. Fertilizers were applied at 35 kg P ha-1, and the duration between application and the first runoff event varied between 1 and 29 days. Swine manure was the greatest risk to water quality 1 day after fertilization due to elevated phosphorus (8.4 mg P L-1) and ammonium (10.3 mg NH4-N L-1) concentrations; however, this risk decreased rapidly. Phosphorus concentrations were 2.6 mg L-1 29 days after fertilization with inorganic fertilizer. This research demonstrates that manures might be more environmentally sustainable than inorganic fertilizers, provided runoff events do not occur soon after application. PMID:17029684

  15. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  16. Primer on multivariate calibration

    SciTech Connect

    Thomas, E.V. )

    1994-08-01

    In analytical chemistry, calibration is the procedure that relates instrumental measurements to an analyte of interest. Typically, instrumental measurements are obtained from specimens in which the amount (or level) of the analyte has been determined by some independent and inherently accurate assay (e.g., wet chemistry). Together, the instrumental measurements and results from the independent assays are used to construct a model that relates the analyte level to the instrumental measurements. The advent of high-speed digital computers has greatly increased data acquisition and analysis capabilities and has provided the analytical chemist with opportunities to use many measurements - perhaps hundreds - for calibrating an instrument (e.g., absorbances at multiple wave-lengths). To take advantage of this technology, however, new methods (i.e., multivariate calibration methods) were needed for analyzing and modeling the experimental data. The purpose of this report is to introduce several evolving multivariate calibration methods and to present some important issues regarding their use. 30 refs., 7 figs.

  17. A Web Portal-Based Time-Aware KML Animation Tool for Exploring Spatiotemporal Dynamics of Hydrological Events

    NASA Astrophysics Data System (ADS)

    Bao, X.; Cai, X.; Liu, Y.

    2009-12-01

    Understanding spatiotemporal dynamics of hydrological events such as storms and droughts is highly valuable for decision making on disaster mitigation and recovery. Virtual Globe-based technologies such as Google Earth and Open Geospatial Consortium KML standards show great promises for collaborative exploration of such events using visual analytical approaches. However, currently there are two barriers for wider usage of such approaches. First, there lacks an easy way to use open source tools to convert legacy or existing data formats such as shapefiles, geotiff, or web services-based data sources to KML and to produce time-aware KML files. Second, an integrated web portal-based time-aware animation tool is currently not available. Thus users usually share their files in the portal but have no means to visually explore them without leaving the portal environment which the users are familiar with. We develop a web portal-based time-aware KML animation tool for viewing extreme hydrologic events. The tool is based on Google Earth JavaScript API and Java Portlet standard 2.0 JSR-286, and it is currently deployable in one of the most popular open source portal frameworks, namely Liferay. We have also developed an open source toolkit kml-soc-ncsa (http://code.google.com/p/kml-soc-ncsa/) to facilitate the conversion of multiple formats into KML and the creation of time-aware KML files. We illustrate our tool using some example cases, in which drought and storm events with both time and space dimension can be explored in this web-based KML animation portlet. The tool provides an easy-to-use web browser-based portal environment for multiple users to collaboratively share and explore their time-aware KML files as well as improving the understanding of the spatiotemporal dynamics of the hydrological events.

  18. Children, Literacy and Mass Trauma Teaching in Times of Catastrophic Events and on Going Emergency Situations

    ERIC Educational Resources Information Center

    Taylor, Denny

    2006-01-01

    This article focuses on children living in areas of armed conflict, catastrophic events and on-going emergencies. Based upon her ethnographic research, the author wants to try to share some insights into the complexities of the world in which children sometimes have to fight to live. Her intent is to create a space in which a discussion can take…

  19. Constraining timing and origin of extreme wave events, Shirazuka Lowlands, Japan

    NASA Astrophysics Data System (ADS)

    Riedesel, Svenja; Brill, Dominik; Brückner, Helmut; De Batist, Marc; Fujiwara, Osamu; Garrett, Ed; Heyvaert, Vanessa M. A.; Miyairi, Yosuke; Opitz, Stephan; Seeliger, Martin; Shishikura, Masanubu; Yokoyama, Yusuke; Zander, Anja

    2016-04-01

    Tsunami and storm surges are major threats on coastal settlements. The Pacific Coast of southwest Japan is impacted by typhoons and tsunamis caused by earthquakes along the Nankai trough. This part of the Philippine Sea to Eurasia Plate subduction zone is expected to cause another earthquake and tsunami in near future. To improve the predictability of potential events, it is important to establish chronologies of former tsunamis as a basis for long-term recurrence intervals. Characterization of potential event deposits following a multi-proxy approach provides information about sediment source, transport dynamics and depositional processes. Sandwiched between a mid-Pleistocene terrace and a beach ridge, the coastal lowlands at Shirasuka, are ideally situated to record evidence of typhoons and tsunamis. Sediment cores from the lowlands include seven potential extreme wave event deposits. Their age, roughly constrained from a radiocarbon chronology, is historical. However, since the radiocarbon plateau deteriorates the precision of radiocarbon dating, optically stimulated luminescence dating was tested at this site. Quartz, as the favoured mineral for dating young and potentially poorly bleached sediments failed due to low signal intensity, absence of a fast component, and sensitivity to IR stimulation. Instead, feldspar dating is applied, using a standard IR50 and the post-IR-IR130 protocol to account for both signal stability (anomalous fading) and bleachability of the relatively young age of the sediments (<1000 years). The promising feldspar luminescence properties revealed by both protocols may offer the potential to establish robust OSL ages for all seven recorded event deposits that, in the end, may help to refine the existing radiocarbon chronology. Beside the establishment of a high-resolution OSL chronology, sedimentological, geochemical and microfaunal analyses allow a more detailed characterization of the event deposits. By applying the end

  20. Tracking the Time Course of Word-Frequency Effects in Auditory Word Recognition with Event-Related Potentials

    ERIC Educational Resources Information Center

    Dufour, Sophie; Brunelliere, Angele; Frauenfelder, Ulrich H.

    2013-01-01

    Although the word-frequency effect is one of the most established findings in spoken-word recognition, the precise processing locus of this effect is still a topic of debate. In this study, we used event-related potentials (ERPs) to track the time course of the word-frequency effect. In addition, the neighborhood density effect, which is known to…

  1. Hemispheric Differences in the Time-Course of Semantic Priming Processes: Evidence from Event-Related Potentials (ERPs)

    ERIC Educational Resources Information Center

    Bouaffre, Sarah; Faita-Ainseba, Frederique

    2007-01-01

    To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go…

  2. Language Context Effects on Interlingual Homograph Recognition: Evidence from Event-Related Potentials and Response Times in Semantic Priming.

    ERIC Educational Resources Information Center

    de Bruijn, Ellen R. A.; Dijkstra, Ton; Chwilla, Dorothee J.; Schriefers, Herbert J.

    2001-01-01

    Dutch-English bilinguals performed a generalized lexical decision task on triplets of items, responding with "yes" if all items wee correct Dutch and/or English words, and with "no" if one or ore of the items was not a word in wither language. Semantic priming effects were found in on-line response times. Event-related potentials that were…

  3. Timing and duration of climate variability during the 8.2 ka event reconstructed from four speleothems from Germany

    NASA Astrophysics Data System (ADS)

    Wenz, Sarah; Scholz, Denis; Spötl, Christoph; Plessen, Birgit; Mischel, Simon; Breitenbach, Sebastian F. M.; Jochum, Klaus Peter; Fohlmeister, Jens

    2016-04-01

    The most prominent climate anomaly of the Holocene is the 8.2 ka event, which reflects the impact of a dramatic freshwater influx into the North Atlantic during an interglacial climate state. Thus, it can be considered as a possible analogue for future climate change. Due to the short-lived nature of the event (160.5 ± 5.5 years; Thomas et al., 2007), a detailed investigation requires archives of both high temporal resolution and accurate chronology. We present high-resolution stable oxygen and carbon isotope (ca. 3-4 years) as well as sub-annually resolved trace element records of the 8.2 ka event from stalagmites (BB-3, Bu4, HLK2 and TV1) from three cave systems in Germany (Blessberg Cave, Bunker Cave and Herbstlabyrinth). The location of these caves in central European is well suited in order to detect changes in temperature and precipitation in relation to changes in the North Atlantic region (Fohlmeister et al., 2012). The 8.2 ka event is clearly recorded as a pronounced negative excursion in the δ18O values of all four speleothems. While stalagmites BB-3 from Blessberg Cave and Bu4 from Bunker Cave also show a negative excursion in the δ13C values during the event, the two speleothems from Herbstlabyrinth show no distinctive features in their δ13C values. The timing, duration and structure of the event differ between the individual records. In BB-3, the event occurs earlier (ca. 8.4 ka) and has a relatively short duration of ca. 90 years. In Bu4, the event occurs later (ca. 8.1 ka) and shows a relatively long duration of more than 200 years. In the two speleothems from the Herbstlabyrinth, the event is replicated and has a timing between 8.3 and 8.1 ka and a duration of ca. 150 years. These differences may at least in part be related to the dating uncertainties of 100-200 years (95 % confidence limits). References: Fohlmeister, J., Schroder-Ritzrau, A., Scholz, D., Spötl, C., Riechelmann, D.F.C., Mudelsee, M., Wackerbarth, A., Gerdes, A., Riechelmann, S

  4. Are rare, long waiting times between rearrangement events responsible for the slowdown of the dynamics at the glass transition?

    NASA Astrophysics Data System (ADS)

    Ahn, Ji Won; Falahee, Bryn; Del Piccolo, Chiara; Vogel, Michael; Bingemann, Dieter

    2013-03-01

    The dramatic slowdown of the structural relaxation at the glass transition is one of the most puzzling features of glass dynamics. Single molecule orientational correlation times show this strong Vogel-Fulcher-Tammann temperature dependence typical for glasses. Through statistical analysis of single molecule trajectories, we can identify individual glass rearrangement events in the vicinity of a probe molecule in the glass former poly(vinyl acetate) from 8 K below to 6 K above the glass transition temperature. We find that changes in the distribution of waiting times between individual glass rearrangement events are much less dramatic with temperature, the main difference being a small, but decisive number of increasingly long waiting times at lower temperatures. We notice similar individual, local relaxation events in molecular dynamics trajectories for a variety of glassy systems further from the glass transition, leading to waiting time distributions with similar features as those observed in the single molecule experiments. We show that these rare long waiting times are responsible for the dramatic increase in correlation time upon cooling.

  5. Multivariate Hypergeometric Similarity Measure

    PubMed Central

    Kaddi, Chanchala D.; Parry, R. Mitchell; Wang, May D.

    2016-01-01

    We propose a similarity measure based on the multivariate hypergeometric distribution for the pairwise comparison of images and data vectors. The formulation and performance of the proposed measure are compared with other similarity measures using synthetic data. A method of piecewise approximation is also implemented to facilitate application of the proposed measure to large samples. Example applications of the proposed similarity measure are presented using mass spectrometry imaging data and gene expression microarray data. Results from synthetic and biological data indicate that the proposed measure is capable of providing meaningful discrimination between samples, and that it can be a useful tool for identifying potentially related samples in large-scale biological data sets. PMID:24407308

  6. Palynological constraints on timing and duration of Siberian Traps volcanic events

    NASA Astrophysics Data System (ADS)

    Visscher, Henk; Svensen, Henrik; Looy, Cindy; Fristad, Kirsten; Polozov, Alexander; Planke, Sverre

    2010-05-01

    Lacustrine sediments intercalated locally in the voluminous flood basalts and pyroclastic rocks of the Siberian Traps igneous province are characterized by the presence of surprisingly diverse assemblages of macroscopic and microscopic plant fossils. In addition, these intertrappean sediments contain a wide variety of faunal remains, such as conchostracans, ostracodes, gastropods and insects. Outside the area of presently exposed flood basalt, plant fossils may also occur abundantly in the sedimentary infill of crater lakes above vent structures in the southern part of the Tunguska Basin on the Siberian Platform. Because of a possible cause-effect relationship between Siberian Traps magmatism and end-Permian mass-extinctions, vegetation that must have grown in the immediate vicinity of the eruptive centres is one of the most obvious biota to be investigated for evidence of terrestrial biosphere crisis. On the basis of literature information and new palynological data from cored crater-lake sediments, in this presentation we briefly address the basic question to what extent the Siberian plant fossil record confirms age-equivalence between biotic and volcanic events. At present, most published biostratigraphic interpretations of the floral and faunal records refute any correspondence of end-Permian biotic turnover with the Siberian Traps. In effect, the records are long since being used to advocate an exclusively Triassic age for the Siberian volcanism, the main phase of flood basalt eruption taking place during late Early Triassic (Olenekian) and early Middle Triassic (Anisian) times. However, re-evaluation of the chronostratigraphic significance of plant megafossils and faunal remains has resulted in alternative views, which suggest a Late Permian age for part or the whole of the volcanic sequence exposed on the Siberian Platform. Compositional characters of palynomorph assemblages indicate age-equivalence of the flood basalts in the northern part of the Tunguska

  7. Hour glass half full or half empty? Future time perspective and preoccupation with negative events across the life span.

    PubMed

    Strough, JoNell; Bruine de Bruin, Wändi; Parker, Andrew M; Lemaster, Philip; Pichayayothin, Nipat; Delaney, Rebecca

    2016-09-01

    According to socioemotional selectivity theory, older adults' emotional well-being stems from having a limited future time perspective that motivates them to maximize well-being in the "here and now." Presumably, then, older adults' time horizons are associated with emotional competencies that boost positive affect and dampen negative affect, but little research has addressed this. Using a U.S. adult life-span sample (N = 3,933; 18-93 years), we found that a 2-factor model of future time perspective (future opportunities; limited time) fit the data better than a 1-factor model. Through middle age, people perceived the life-span hourglass as half full-they focused more on future opportunities than limited time. Around Age 60, the balance changed to increasingly perceiving the life-span hourglass as half empty-they focused less on future opportunities and more on limited time, even after accounting for perceived health, self-reported decision-making ability, and retirement status. At all ages, women's time horizons focused more on future opportunities compared with men's, and men's focused more on limited time. Focusing on future opportunities was associated with reporting less preoccupation with negative events, whereas focusing on limited time was associated with reporting more preoccupation. Older adults reported less preoccupation with negative events, and this association was stronger after controlling for their perceptions of limited time and fewer future opportunities, suggesting that other pathways may explain older adults' reports of their ability to disengage from negative events. Insights gained and questions raised by measuring future time perspective as 2 dimensions are discussed. (PsycINFO Database Record PMID:27267222

  8. A novel method for the precise determination of step times and sizes in counting large numbers of photobleaching events

    NASA Astrophysics Data System (ADS)

    Tsekouras, Konstantinos; Presse, Steve

    Counting of photobleaching steps is of importance in the investigation of many open problems in biophysics. Current methods of counting photo- bleaching steps cannot directly account for fluorophore photophysical behaviors such as fluorophore self-quenching, blinking and flickering. Our Bayesian approach to the counting problem allows for fluorophore blinking and reactivation as well as for multiple simultaneous photobleaching events and is neither computational resource- nor time- heavy. We detail the method's applicability and limitations and present examples of application in photobleach event counting.

  9. How does leaving home affect marital timing? An event-history analysis of migration and marriage in Nang Rong, Thailand.

    PubMed

    Jampaklay, Aree

    2006-11-01

    This study examines the effects of migration on marital timing in Thailand between 1984 and 2000 using prospective and retrospective survey data from Nang Rong. In contrast to previous results in the literature, event-history analysis of the longitudinal data reveals a positive, not a negative, effect of lagged migration experience on the likelihood of marriage. The findings also indicate gender differences. Migration's positive impact is independent of other life events for women but is completely "explained" by employment for men. PMID:17236543

  10. Beyond Visibility: the "Crucifixion Eclipse" in the Context of Some Other Astronomical Events of the Times

    NASA Astrophysics Data System (ADS)

    Gaskell, C. M.

    1993-12-01

    A variety of astronomical, biblical and other historical evidence favors Friday April 3, AD 33 as the date of the crucifixion of Jesus Christ (see Hoehner 1977, "Chronological Aspects of the Life of Christ"). There was also a partial lunar eclipse on that day. Schaefer (1990, QJRAS, 31, 53) has shown convincingly that, while technically the eclipse did occur while the moon was above the horizon in Jerusalem, this eclipse could not have been seen from Jerusalem. However there is good evidence that predictable celestial events were regarded as significant even if they were not visible because of daylight or clouds. Some specific examples will be given of celestial events which would not have been visible from the region, but which were none the less regarded as highly significant during this period. It will be argued that the significance of the lunar eclipse on the day of the crucifixion would be independent of its visibility.

  11. Inoculation or antidote? The effects of cognitive interview timing on false memory for forcibly fabricated events.

    PubMed

    Memon, Amina; Zaragoza, Maria; Clifford, Brian R; Kidd, Lynsey

    2010-04-01

    This study examined whether a cognitive interview (CI) can counteract the effects of suggestive interviews involving forced fabrication. College students witnessed a filmed event and were later forced to fabricate answers to misleading questions about the event. All witnesses were interviewed with a non-leading CI or free recall (FR) either before or after the forced fabrication phase. A week later participants completed a recognition and source monitoring (SM) test of video content. Relative to FR, the CI administered before the forced fabrication interview increased reports of correct details and reduced false assents to fabricated items. A CI after resulted in false memory rates comparable to the FR group. Early interviews using CI techniques may protect against memory loss and misinformation effects. PMID:19301110

  12. An uncertain journey around the tails of multivariate hydrological distributions

    NASA Astrophysics Data System (ADS)

    Serinaldi, Francesco

    2013-10-01

    Moving from univariate to multivariate frequency analysis, this study extends the Klemeš' critique of the widespread belief that the increasingly refined mathematical structures of probability functions increase the accuracy and credibility of the extrapolated upper tails of the fitted distribution models. In particular, we discuss key aspects of multivariate frequency analysis applied to hydrological data such as the selection of multivariate design events (i.e., appropriate subsets or scenarios of multiplets that exhibit the same joint probability to be used in design applications) and the assessment of the corresponding uncertainty. Since these problems are often overlooked or treated separately, and sometimes confused, we attempt to clarify properties, advantages, shortcomings, and reliability of results of frequency analysis. We suggest a selection method of multivariate design events with prescribed joint probability based on simple Monte Carlo simulations that accounts for the uncertainty affecting the inference results and the multivariate extreme quantiles. It is also shown that the exploration of the p-level probability regions of a joint distribution returns a set of events that is a subset of the p-level scenarios resulting from an appropriate assessment of the sampling uncertainty, thus tending to overlook more extreme and potentially dangerous events with the same (uncertain) joint probability. Moreover, a quantitative assessment of the uncertainty of multivariate quantiles is provided by introducing the concept of joint confidence intervals. From an operational point of view, the simulated event sets describing the distribution of the multivariate p-level quantiles can be used to perform multivariate risk analysis under sampling uncertainty. As an example of the practical implications of this study, we analyze two case studies already presented in the literature.

  13. It’s always snack time: An investigation of event scripts in young children

    PubMed Central

    Musher-Eizenman, Dara R.; Marx, Jenna M.; Taylor, Maija B.

    2015-01-01

    This study examined whether young children include eating in their cognitive scripts for various events, and whether food-related scripts are associated with body mass index (BMI) percentile. Data were collected in a structured interview format. Participants, recruited from area preschools and day cares, provided a four-activity sequence for each of three events, and responses were recorded verbatim. Forty-four children (45% female) participated, with an average BMI percentile of 73.3% (SD = 25.9). Data were binarily coded to indicate whether each response was food-related. Frequencies were obtained, and responses were correlated with BMI percentile. Over 22% of the activities in the children’s scripts involved food. The number of food-related activities reported was positively correlated with children’s BMI percentile (r = 0.53, p = 0.03). Results provide preliminary evidence that food features prominently in young children’s event scripts and that children with higher BMI percentiles may possess scripts that feature more food-related themes. Future researchers should investigate the causal nature of this relationship. PMID:25447019

  14. Exploiting non-linear relationships between retention time and molecular structure of peptides originating from proteomes and comparing three multivariate approaches.

    PubMed

    Žuvela, Petar; Macur, Katarzyna; Jay Liu, J; Bączek, Tomasz

    2016-08-01

    Peptides' retention time prediction is gaining increasing popularity in liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics. This is a promising approach for improving successful proteome mapping, useful both in identification and quantification workflows. In this work, a quantitative structure-retention relationships (QSRR) model for its direct prediction from the molecular structure of 185 peptides originating from 8 well-characterized proteins and two Bacillus subtilis proteomes has been developed. Genetic Algorithm (GA) was used for selection of a subset of molecular descriptors coupled with three machine learning methods: Support Vector Regression (SVR), Artificial Neural Networks (ANN), and kernel Partial Least Squares (kPLS) for regression. Final GA-SVR, GA-ANN, and GA-kPLS models were validated through an external validation set of 95 peptides originating from the human epithelial HeLa cells proteomes. Robustness and stability was ensured by defining their applicability domain. The descriptors of the developed models were interpreted confirming a causal relationship between parameters of molecular structure and retention time. GA-SVR model has shown to be superior over the others in terms of both predictive ability, and interpretation of the selected descriptors. PMID:26856456

  15. Multivariate Screening Analysis of Water-in-Oil Emulsions in High External Electric Fields as Studied by Means of Dielectric Time Domain Spectroscopy.

    PubMed

    Midttun; Kallevik; Sjöblom; Kvalheim

    2000-07-15

    The effect of crude oil resins with various polar characters on the stability of w/o model emulsions containing asphaltenes is investigated using a mixture design. The resins were extracted using an adsorption-desorption technique. One asphaltene fraction and four different resin fractions from one European crude oil were used. The stabilities are measured using time-domain dielectric spectroscopy in high external electric field. It is found that resins with different polar character have different effects on the emulsion stability. At asphaltene/resin ratios of 1 and 5 : 3 the resins in some cases lead to an emulsion stability higher than that of a similar emulsion stabilized by asphaltenes only, while at low asphaltene/resin ratios ( approximately 1 : 3) the emulsion stability is reduced by the resins. The effect on emulsion stability of combining two different resin fractions depended on the resin types combined as well as the relative amount of resins and asphaltenes. Also, an increase in the stability of some of the emulsions containing resins and asphaltenes for a period of 50-300 min after the emulsification was observed. This time-dependence of emulsion stability is attributed to the mobility of resins at the oil-water interface and the slow buildup of a stabilizing interfacial film consisting of resins and asphaltenes. Copyright 2000 Academic Press. PMID:10873310

  16. Jointly Modeling Event Time and Skewed-Longitudinal Data with Missing Response and Mismeasured Covariate for AIDS Studies.

    PubMed

    Huang, Yangxin; Yan, Chunning; Xing, Dongyuan; Zhang, Nanhua; Chen, Henian

    2015-01-01

    In longitudinal studies it is often of interest to investigate how a repeatedly measured marker in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. Normality of model errors in longitudinal model is a routine assumption, but it may be unrealistically obscuring important features of subject variations. Covariates are usually introduced in the models to partially explain between- and within-subject variations, but some covariates such as CD4 cell count may be often measured with substantial errors. Moreover, the responses may encounter nonignorable missing. Statistical analysis may be complicated dramatically based on longitudinal-survival joint models where longitudinal data with skewness, missing values, and measurement errors are observed. In this article, we relax the distributional assumptions for the longitudinal models using skewed (parametric) distribution and unspecified (nonparametric) distribution placed by a Dirichlet process prior, and address the simultaneous influence of skewness, missingness, covariate measurement error, and time-to-event process by jointly modeling three components (response process with missing values, covariate process with measurement errors, and time-to-event process) linked through the random-effects that characterize the underlying individual-specific longitudinal processes in Bayesian analysis. The method is illustrated with an AIDS study by jointly modeling HIV/CD4 dynamics and time to viral rebound in comparison with potential models with various scenarios and different distributional specifications. PMID:24905593

  17. Shedding Light on the Etiology of Sports Injuries: A Look Behind the Scenes of Time-to-Event Analyses.

    PubMed

    Nielsen, Rasmus Østergaard; Malisoux, Laurent; Møller, Merete; Theisen, Daniel; Parner, Erik Thorlund

    2016-04-01

    Synopsis The etiological mechanism underpinning any sports-related injury is complex and multifactorial. Frequently, athletes perceive "excessive training" as the principal factor in their injury, an observation that is biologically plausible yet somewhat ambiguous. If the applied training load is suddenly increased, this may increase the risk for sports injury development, irrespective of the absolute amount of training. Indeed, little to no rigorous scientific evidence exists to support the hypothesis that fluctuations in training load, compared to absolute training load, are more important in explaining sports injury development. One reason for this could be that prospective data from scientific studies should be analyzed in a different manner. Time-to-event analysis is a useful statistical tool in which to analyze the influence of changing exposures on injury risk. However, the potential of time-to-event analysis remains insufficiently exploited in sports injury research. Therefore, the purpose of the present article was to present and discuss measures of association used in time-to-event analyses and to present the advanced concept of time-varying exposures and outcomes. In the paper, different measures of association, such as cumulative relative risk, cumulative risk difference, and the classical hazard rate ratio, are presented in a nontechnical manner, and suggestions for interpretation of study results are provided. To summarize, time-to-event analysis complements the statistical arsenal of sports injury prevention researchers, because it enables them to analyze the complex and highly dynamic reality of injury etiology, injury recurrence, and time to recovery across a range of sporting contexts. J Orthop Sports Phys Ther 2016;46(4):300-311. Epub 8 Mar 2016. doi:10.2519/jospt.2016.6510. PMID:26954269

  18. Expressive Timing Facilitates the Neural Processing of Phrase Boundaries in Music: Evidence from Event-Related Potentials

    PubMed Central

    Istók, Eva; Friberg, Anders; Huotilainen, Minna; Tervaniemi, Mari

    2013-01-01

    The organization of sound into meaningful units is fundamental to the processing of auditory information such as speech and music. In expressive music performance, structural units or phrases may become particularly distinguishable through subtle timing variations highlighting musical phrase boundaries. As such, expressive timing may support the successful parsing of otherwise continuous musical material. By means of the event-related potential technique (ERP), we investigated whether expressive timing modulates the neural processing of musical phrases. Musicians and laymen listened to short atonal scale-like melodies that were presented either isochronously (deadpan) or with expressive timing cues emphasizing the melodies’ two-phrase structure. Melodies were presented in an active and a passive condition. Expressive timing facilitated the processing of phrase boundaries as indicated by decreased N2b amplitude and enhanced P3a amplitude for target phrase boundaries and larger P2 amplitude for non-target boundaries. When timing cues were lacking, task demands increased especially for laymen as reflected by reduced P3a amplitude. In line, the N2b occurred earlier for musicians in both conditions indicating general faster target detection compared to laymen. Importantly, the elicitation of a P3a-like response to phrase boundaries marked by a pitch leap during passive exposure suggests that expressive timing information is automatically encoded and may lead to an involuntary allocation of attention towards significant events within a melody. We conclude that subtle timing variations in music performance prepare the listener for musical key events by directing and guiding attention towards their occurrences. That is, expressive timing facilitates the structuring and parsing of continuous musical material even when the auditory input is unattended. PMID:23383088

  19. Expressive timing facilitates the neural processing of phrase boundaries in music: evidence from event-related potentials.

    PubMed

    Istók, Eva; Friberg, Anders; Huotilainen, Minna; Tervaniemi, Mari

    2013-01-01

    The organization of sound into meaningful units is fundamental to the processing of auditory information such as speech and music. In expressive music performance, structural units or phrases may become particularly distinguishable through subtle timing variations highlighting musical phrase boundaries. As such, expressive timing may support the successful parsing of otherwise continuous musical material. By means of the event-related potential technique (ERP), we investigated whether expressive timing modulates the neural processing of musical phrases. Musicians and laymen listened to short atonal scale-like melodies that were presented either isochronously (deadpan) or with expressive timing cues emphasizing the melodies' two-phrase structure. Melodies were presented in an active and a passive condition. Expressive timing facilitated the processing of phrase boundaries as indicated by decreased N2b amplitude and enhanced P3a amplitude for target phrase boundaries and larger P2 amplitude for non-target boundaries. When timing cues were lacking, task demands increased especially for laymen as reflected by reduced P3a amplitude. In line, the N2b occurred earlier for musicians in both conditions indicating general faster target detection compared to laymen. Importantly, the elicitation of a P3a-like response to phrase boundaries marked by a pitch leap during passive exposure suggests that expressive timing information is automatically encoded and may lead to an involuntary allocation of attention towards significant events within a melody. We conclude that subtle timing variations in music performance prepare the listener for musical key events by directing and guiding attention towards their occurrences. That is, expressive timing facilitates the structuring and parsing of continuous musical material even when the auditory input is unattended. PMID:23383088

  20. Effects of the air-sea coupling time frequency on the ocean response during Mediterranean intense events

    NASA Astrophysics Data System (ADS)

    Lebeaupin Brossier, Cindy; Ducrocq, Véronique; Giordani, Hervé

    2009-08-01

    The near-sea surface meteorological conditions associated with the Mediterranean heavy precipitation events constitute, on a short time scale, a strong forcing on the ocean mixed layer. This study addresses the question of the optimal time frequency of the atmospheric forcing to drive an ocean model in order to make it able to capture the fine scale ocean mixed layer response to severe meteorological conditions. The coupling time frequency should allow the ocean model to reproduce the formation of internal low-salty boundary layers due to sudden input of intense precipitation, as well as the cooling and deepening of the ocean mixed layer through large latent heat fluxes and stress under the intense low-level jet associated with these events. In this study, the one-dimensional ocean model is driven by 2.4-km atmospheric simulated fields on a case of Mediterranean heavy precipitation, varying the time resolution of the atmospheric forcing. The results show that using a finer temporal resolution than 1 h for the atmospheric forcing is not necessary, but a coarser temporal resolution (3 or 6 h) modifies the event course and intensity perceived by the ocean. Consequently, when using a too coarse temporal resolution forcing, typically 6 h, the ocean model fails to reproduce the ocean mixed layer fine scale response under the heavy rainfall pulses and the strong wind gusts.

  1. Near Real-Time Optimal Prediction of Adverse Events in Aviation Data

    NASA Technical Reports Server (NTRS)

    Martin, Rodney Alexander; Das, Santanu

    2010-01-01

    The prediction of anomalies or adverse events is a challenging task, and there are a variety of methods which can be used to address the problem. In this paper, we demonstrate how to recast the anomaly prediction problem into a form whose solution is accessible as a level-crossing prediction problem. The level-crossing prediction problem has an elegant, optimal, yet untested solution under certain technical constraints, and only when the appropriate modeling assumptions are made. As such, we will thoroughly investigate the resilience of these modeling assumptions, and show how they affect final performance. Finally, the predictive capability of this method will be assessed by quantitative means, using both validation and test data containing anomalies or adverse events from real aviation data sets that have previously been identified as operationally significant by domain experts. It will be shown that the formulation proposed yields a lower false alarm rate on average than competing methods based on similarly advanced concepts, and a higher correct detection rate than a standard method based upon exceedances that is commonly used for prediction.

  2. Time-varying autoregressive model for spectral analysis of microseismic experiments and long-period volcanic events

    NASA Astrophysics Data System (ADS)

    Tary, J. B.; Herrera, R. H.; van der Baan, M.

    2014-01-01

    Recent studies show that the frequency content of continuous passive recordings contains useful information for the study of hydraulic fracturing experiments as well as longstanding applications in volcano and global seismology. The short-time Fourier transform (STFT) is usually used to obtain the time-frequency representation of a seismic trace. Yet, this transform has two main disadvantages, namely its fixed time-frequency resolution and spectral leakage. Here, we describe two methods based on autoregressive (AR) models: the short-time autoregressive method (ST-AR) and the Kalman smoother (KS). These two methods allow for the AR coefficients to vary over time in order to follow time-varying frequency contents. The outcome of AR methods depends mainly on the number of AR coefficients. We use a robust approach to estimate the optimum order of the AR methods that best matches the spectral comparison between Fourier and AR spectra. Comparing the outcomes of the three methods on a synthetic signal, a long-period volcanic event, and microseismic data, we show that the STFT and both AR methods are able to track fast changes in frequency content. The STFT provides reasonable results even for noisy data using a simple and effective algorithm. The coefficients of the AR filter are defined at all time in the case of the KS. However, its better time resolution is slightly offset by a lower frequency resolution and its computational complexity. The ST-AR has a high spectral resolution and the lowest sensitivity to background noises, facilitating the identification of the various frequency components. The estimated AR coefficients can also be used to extract parts of the signal. The study of long-term phenomena, such as resonance frequencies, or transient events, such as long-period events, could help to gain further insight on reservoir deformation during hydraulic fracturing experiments as well as global or volcano seismological signals.

  3. Multivariate statistic and time series analyses of grain-size data in quaternary sediments of Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wennrich, V.; Sauerbrey, M.; Juschus, O.; Melles, M.; Brigham-Grette, J.

    2013-11-01

    Lake El'gygytgyn, located in the Far East Russian Arctic, was formed by a meteorite impact about 3.58 Ma ago. In 2009, the International Continental Scientific Drilling Program (ICDP) at Lake El'gygytgyn obtained a continuous sediment sequence of the lacustrine deposits and the upper part of the impact breccia. Here, we present grain-size data of the past 2.6 Ma. General downcore grain-size variations yield coarser sediments during warm periods and finer ones during cold periods. According to principal component analysis (PCA), the climate-dependent variations in grain-size distributions mainly occur in the coarse silt and very fine silt fraction. During interglacial periods, accumulation of coarser material in the lake center is caused by redistribution of clastic material by a wind-induced current pattern during the ice-free period. Sediment supply to the lake is triggered by the thickness of the active layer in the catchment and the availability of water as a transport medium. During glacial periods, sedimentation at Lake El'gygytgyn is hampered by the occurrence of a perennial ice cover, with sedimentation being restricted to seasonal moats and vertical conduits through the ice. Thus, the summer temperature predominantly triggers transport of coarse material into the lake center. Time series analysis that was carried out to gain insight into the frequency of the grain-size data showed variations predominately on 98.5, 40.6, and 22.9 kyr oscillations, which correspond to Milankovitch's eccentricity, obliquity and precession bands. Variations in the relative power of these three oscillation bands during the Quaternary suggest that sedimentation processes at Lake El'gygytgyn are dominated by environmental variations caused by global glacial-interglacial variations (eccentricity, obliquity), and local insolation forcing and/or latitudinal teleconnections (precession), respectively.

  4. Modelling recurrent events: a tutorial for analysis in epidemiology

    PubMed Central

    Amorim, Leila DAF; Cai, Jianwen

    2015-01-01

    In many biomedical studies, the event of interest can occur more than once in a participant. These events are termed recurrent events. However, the majority of analyses focus only on time to the first event, ignoring the subsequent events. Several statistical models have been proposed for analysing multiple events. In this paper we explore and illustrate several modelling techniques for analysis of recurrent time-to-event data, including conditional models for multivariate survival data (AG, PWP-TT and PWP-GT), marginal means/rates models, frailty and multi-state models. We also provide a tutorial for analysing such type of data, with three widely used statistical software programmes. Different approaches and software are illustrated using data from a bladder cancer project and from a study on lower respiratory tract infection in children in Brazil. Finally, we make recommendations for modelling strategy selection for analysis of recurrent event data. PMID:25501468

  5. Modelling recurrent events: a tutorial for analysis in epidemiology.

    PubMed

    Amorim, Leila D A F; Cai, Jianwen

    2015-02-01

    In many biomedical studies, the event of interest can occur more than once in a participant. These events are termed recurrent events. However, the majority of analyses focus only on time to the first event, ignoring the subsequent events. Several statistical models have been proposed for analysing multiple events. In this paper we explore and illustrate several modelling techniques for analysis of recurrent time-to-event data, including conditional models for multivariate survival data (AG, PWP-TT and PWP-GT), marginal means/rates models, frailty and multi-state models. We also provide a tutorial for analysing such type of data, with three widely used statistical software programmes. Different approaches and software are illustrated using data from a bladder cancer project and from a study on lower respiratory tract infection in children in Brazil. Finally, we make recommendations for modelling strategy selection for analysis of recurrent event data. PMID:25501468

  6. Structure and process in semantic memory: evidence from event-related brain potentials and reaction times.

    PubMed

    Kounios, J; Holcomb, P J

    1992-12-01

    Through scalp measurements of the electrical activity of the brain (event-related potentials, or ERPs) recorded while subjects verified the truth of sentences relating exemplars and categories (e.g., ALL DOGS ARE ANIMALS), inferences were made about aspects of semantic processing that were not directly reflected by overt responses. In particular, it is suggested that a negative ERP component that peaks about 400 ms after the onset of the sentence predicate (i.e., N400) is sensitive to structural aspects of semantic memory. The amplitude of this component was modulated by the relatedness of the subject and predicate terms, as well as the hierarchical level of both these terms, but was not sensitive to the truth value of a sentence. PMID:1431739

  7. Architecture for event-driven real-time distributed computer systems

    SciTech Connect

    McDonald, J.E.

    1983-01-01

    The author describes a proposed preliminary system design that includes hardware and software for real-time distributed computer systems. This new system is appropriate as a digital avionics architecture or as a real-time multi-computer simulation system using a mixture of computers, mainframes to micros. The hardware contains a network that employs high-speed serial data transmission concepts in emulating a multicomputer shared memory system. The distributed multicomputer system then capitalizes on the attributes of the hardware by structuring the real-time software as the data-driven input-output system. The real-time software executes only on demand and not synchronously as in conventional real-time systems. Background information concerning multi-computer systems using serial and parallel data transmission networks is given. This information supports the design rationale of the proposed hardware system which is basically a technology blend of conventional serial and parallel transmission schemes. 2 references.

  8. An efficient approach to identify different chemical markers between fibrous root and rhizome of Anemarrhena asphodeloides by ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry with multivariate statistical analysis.

    PubMed

    Wang, Fang-Xu; Yuan, Jian-Chao; Kang, Li-Ping; Pang, Xu; Yan, Ren-Yi; Zhao, Yang; Zhang, Jie; Sun, Xin-Guang; Ma, Bai-Ping

    2016-09-10

    An ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry approach coupled with multivariate statistical analysis was established and applied to rapidly distinguish the chemical differences between fibrous root and rhizome of Anemarrhena asphodeloides. The datasets of tR-m/z pairs, ion intensity and sample code were processed by principal component analysis and orthogonal partial least squares discriminant analysis. Chemical markers could be identified based on their exact mass data, fragmentation characteristics, and retention times. And the new compounds among chemical markers could be isolated rapidly guided by the ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry and their definitive structures would be further elucidated by NMR spectra. Using this approach, twenty-four markers were identified on line including nine new saponins and five new steroidal saponins of them were obtained in pure form. The study validated this proposed approach as a suitable method for identification of the chemical differences between various medicinal parts in order to expand medicinal parts and increase the utilization rate of resources. PMID:27416524

  9. Meta-analysis of time-to-event outcomes from randomized trials using restricted mean survival time: application to individual participant data.

    PubMed

    Wei, Yinghui; Royston, Patrick; Tierney, Jayne F; Parmar, Mahesh K B

    2015-09-20

    Meta-analysis of time-to-event outcomes using the hazard ratio as a treatment effect measure has an underlying assumption that hazards are proportional. The between-arm difference in the restricted mean survival time is a measure that avoids this assumption and allows the treatment effect to vary with time. We describe and evaluate meta-analysis based on the restricted mean survival time for dealing with non-proportional hazards and present a diagnostic method for the overall proportional hazards assumption. The methods are illustrated with the application to two individual participant meta-analyses in cancer. The examples were chosen because they differ in disease severity and the patterns of follow-up, in order to understand the potential impacts on the hazards and the overall effect estimates. We further investigate the estimation methods for restricted mean survival time by a simulation study. PMID:26099573

  10. Time-to-event analysis as a framework for quantifying fish passage performance: Chapter 9.1

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Perry, Russell W.

    2012-01-01

    Fish passage is the result of a sequence of processes, whereby fish must approach, enter, and pass a structure. Each of these processes takes time, and fishway performance is best quantified in terms of the rates at which each process is completed. Optimal performance is achieved by maximizing the rates of approach, entry, and passage through safe and desirable routes. Sometimes, however, it is necessary to reduce rates of passage through less desirable routes in order to increase proportions passing through the preferred route. Effectiveness of operational or structural modifications for achieving either of these goals is best quantified by applying time-to-event analysis, commonly known as survival analysis methods, to telemetry data. This set of techniques allows for accurate estimation of passage rates and covariate effects on those rates. Importantly, it allows researchers to quantify rates that vary over time, as well as the effects of covariates that also vary over time. Finally, these methods are able to control for competing risks, i.e., the presence of alternate passage routes, failure to pass, or other fates that remove fish from the pool of candidates available to pass through a particular route. In this chapter, we present a model simulation of telemetered fish passing a hydroelectric dam, and provide step-by-step guidance and rationales for performing time-to-event analysis on the resulting data. We demonstrate how this approach removes bias from performance estimates that can result from using methods that focus only on proportions passing each route. Time-to-event analysis, coupled with multinomial models for measuring survival, provides a comprehensive set of techniques for quantifying fish passage, and a framework from which performance among different sites can be better understood.

  11. Time-stratigraphic reconstruction and integration of paleopedologic, sedimentologic, and biotic events (Willwood Formation, Lower Eocene, northwest Wyoming, USA)

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    An empirically-based model is advanced using paleosol maturities to estimate the relative geologic time separating any stratigraphic levels within the lower Eocene Willwood Formation. The reviewed Willwood time stratigraphy from this analysis helps evaluate the nature, tempo, and possible causes of three major episodes of mammalian appearance and disappearance. These faunal events are directly correlated with certain apects of paleosol evolution in the Willwood Formation. That evolution is tied directly to climatic changes and to varying sediment accumulation rates in response to tectonism. -from Authors

  12. Pyroclastic density current hazard maps at Campi Flegrei caldera (Italy): the effects of event scale, vent location and time forecasts.

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Neri, Augusto; Esposti Ongaro, Tomaso; Isaia, Roberto; Flandoli, Franco; Bisson, Marina

    2016-04-01

    Today hundreds of thousands people live inside the Campi Flegrei caldera (Italy) and in the adjacent part of the city of Naples making a future eruption of such volcano an event with huge consequences. Very high risks are associated with the occurrence of pyroclastic density currents (PDCs). Mapping of background or long-term PDC hazard in the area is a great challenge due to the unknown eruption time, scale and vent location of the next event as well as the complex dynamics of the flow over the caldera topography. This is additionally complicated by the remarkable epistemic uncertainty on the eruptive record, affecting the time of past events, the location of vents as well as the PDCs areal extent estimates. First probability maps of PDC invasion were produced combining a vent-opening probability map, statistical estimates concerning the eruptive scales and a Cox-type temporal model including self-excitement effects, based on the eruptive record of the last 15 kyr. Maps were produced by using a Monte Carlo approach and adopting a simplified inundation model based on the "box model" integral approximation tested with 2D transient numerical simulations of flow dynamics. In this presentation we illustrate the independent effects of eruption scale, vent location and time of forecast of the next event. Specific focus was given to the remarkable differences between the eastern and western sectors of the caldera and their effects on the hazard maps. The analysis allowed to identify areas with elevated probabilities of flow invasion as a function of the diverse assumptions made. With the quantification of some sources of uncertainty in relation to the system, we were also able to provide mean and percentile maps of PDC hazard levels.

  13. Time-frequency analysis of single-point engine-block vibration measurements for multiple excitation-event identification

    NASA Astrophysics Data System (ADS)

    Vulli, S.; Dunne, J. F.; Potenza, R.; Richardson, D.; King, P.

    2009-04-01

    The short-term-Fourier-transform (STFT) is used to identify different sources of IC engine-block vibration from single-point acceleration measurements taken with a commercial knock sensor. Interest is focused on using the STFT to distinguish normal combustion from other sources of excitation including valve impact, injector pulses, and abnormal combustion, such as knocking. Positive identification of these other events using a single method can be useful for pre-processing of measured knock-sensor data for neural-network-based reconstruction of cylinder pressure. It can also be useful separately as part of a fast knock detection system. A series of experiments is discussed to create the data to isolate these different events on a 3-cylinder gasoline engine. In each case, the measured data is processed using the STFT to attempt to isolate the occurrence of particular events in the time domain. Four classes of experiments are undertaken: (i) an un-fired (motored) engine, driven by a dynamometer, with spark plugs fitted, and then removed, to isolate valve impact; (ii) a fired engine running under idle conditions, to contrast no-load combustion with no combustion; (iii) a part-loaded engine running normally, and then running with one injector switched-off, and (iv) a fully-loaded engine running normally, and then running with knock-control switched-off. The paper shows that a single Time-frequency analysis method, applied to knock sensor data in the form of an appropriately-tuned STFT, can effectively identify the occurrence of these events in the time domain if responses are adequately separated and strong enough.

  14. Real-time surveillance for abnormal events: the case of influenza outbreaks.

    PubMed

    Rao, Yao; McCabe, Brendan

    2016-06-15

    This paper introduces a method of surveillance using deviations from probabilistic forecasts. Realised observations are compared with probabilistic forecasts, and the "deviation" metric is based on low probability events. If an alert is declared, the algorithm continues to monitor until an all-clear is announced. Specifically, this article addresses the problem of syndromic surveillance for influenza (flu) with the intention of detecting outbreaks, due to new strains of viruses, over and above the normal seasonal pattern. The syndrome is hospital admissions for flu-like illness, and hence, the data are low counts. In accordance with the count properties of the observations, an integer-valued autoregressive process is used to model flu occurrences. Monte Carlo evidence suggests the method works well in stylised but somewhat realistic situations. An application to real flu data indicates that the ideas may have promise. The model estimated on a short run of training data did not declare false alarms when used with new observations deemed in control, ex post. The model easily detected the 2009 H1N1 outbreak. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26782751

  15. Time-to-event analysis of predictors for recovery from Salmonella Dublin infection in Danish dairy herds between 2002 and 2012.

    PubMed

    Nielsen, Liza Rosenbaum; Dohoo, Ian

    2013-07-01

    Salmonella Dublin infections reduce gross margins and compromise animal health and welfare in dairy cattle herds. Despite on-going control efforts in several countries the duration and risk factors of a persistent infection have been difficult to study due to a lack of suitable data. This study utilised the unique opportunity to extract systematically collected repeated bulk-tank milk antibody measurements from all the Danish dairy herds during a 10-year period to perform a time-to-event analysis of the factors that affect the duration of test-positivity and the hazards of recovery from S. Dublin at herd level. Recovery was defined as a shift from test-positive to test-negative between two year-quarters followed by at least three more test-negative year-quarters. The average duration of infection was approximately 2 years. Predictors of recovery were tested in a multivariable Cox proportional hazard model allowing herds to recover from infection multiple times over the 10-year surveillance period. The model results were based on 36,429 observations with data on all the predictors, representing 3563 herds with a total of 3246 recoveries. Sixty-seven herds (2.4%) remained test-positive throughout the study period. The rest of the 317 herds that did not have any recoveries were censored, mainly due to a cessation of milk production. Prior recovery from test-positivity turned out not to be a significant predictor of recovery in the model. The effect of the duration of infection on the conditional probability of recovery (i.e. the hazard) was time-dependent: early in the study period, long durations of infection were predictive of a low hazard of recovery. Later in the control programme the effect of duration of infection was reduced indicating a desired effect of an intensified control programme. There was an increasing tendency towards longer durations and lower hazard of recovery with: (i) increasing herd sizes, (ii) increasing bulk-tank milk somatic cell counts

  16. Timing of Antiretroviral Therapy Initiation after a First AIDS-Defining Event: Temporal Changes in Clinical Attitudes in the ICONA Cohort

    PubMed Central

    Cingolani, Antonella; Cozzi-Lepri, Alessandro; Ammassari, Adriana; Mussini, Cristina; Ursitti, Maria Alessandra; Caramello, Pietro; Angarano, Gioacchino; Bonfanti, Paolo; De Luca, Andrea; Mura, Maria Stella; Girardi, Enrico; Antinori, Andrea; Monforte, Antonela D'Arminio

    2014-01-01

    Background Time of starting antiretroviral therapy (ART) after diagnosis of specific AIDS-defining event (ADE) is a crucial aspect. Objectives of this study were to evaluate if in patients diagnosed with ADE the time to ART initiation may vary according to year of diagnosis and type of ADE. Methods All HIV+ persons diagnosed with an ADE over the 6 months prior to or after enrolment in the Icona Foundation study cohort and while ART-naive were grouped according to type of diagnosis: Those with ADE requiring medications interacting with ART [group A], those with ADE treatable only with ART [B] and other ADE [C]. Survival analysis by Kaplan-Meier was used to estimate the percentage of people starting ART, overall and after stratification for calendar period and ADE group. Multivariable Cox regression model was used to investigate association between calendar year of specific ADE and time to ART initiation. Results 720 persons with first ADE were observed over 1996–2013 (group A, n = 171; B, n = 115; C, n = 434). By 30 days from diagnosis, 27% (95% CI: 22–32) of those diagnosed in 1996–2000 had started ART vs. 32% (95% CI: 24–40) in 2001–2008 and 43% (95% CI: 33–47) after 2008 (log-rank p = 0.001). The proportion of patients starting ART by 30 days was 13% (95% CI 7–19), 40% (95% CI: 30–50) and 38% (95% CI 33–43) in ADE groups A, B and C (log-rank p = 0.0001). After adjustment for potential confounders, people diagnosed after 2008 remained at increased probability of starting ART more promptly than those diagnosed in 1996–1999 (AHR 1.72 (95% CI 1.16–2.56). Conclusions In our “real-life” setting, the time from ADE to ART initiation was significantly shorter in people diagnosed in more recent years, although perhaps less prompt than expected. PMID:24587081

  17. Interpretation of the Time-Intensity Profile of the 15 March 2013 Solar Energetic Particle Event with Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Plunkett, S. P.; Wu, C.; Liou, K.; Vourlidas, A.; Dryer, Ph. D., M.; Wu, S.; Mewaldt, R. A.

    2013-12-01

    The coronal mass ejection (CME) event on March 15, 2013 is one of the few solar events in cycle 24 that produced a large solar energetic particle (SEP) event and severe geomagnetic activity. SEP observations from the ACE spacecraft show a complex time-intensity profile that is not easily understood with current SEP theories. In this study, we employ a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation to help interpret the observations. The simulation is based on the H3DMHD code and incorporates extrapolations of photospheric magnetic field as the inner boundary condition at 2.5 solar radii (Rs). A Gaussian-shaped velocity pulse is imposed at the inner boundary as a proxy of the CME. It is found that the time-intensity profile of the high-energy (> 10MeV) SEPs can be explained by the evolution of the CME-driven shock and its interaction with the heliospheric current sheet and the non-uniform solar wind. Specifically, we demonstrate that the shock Mach number at the well-connected shock location is correlated (r ≥ 0.8) with the concurrent proton SEP fluxes with energies greater than 10 and 30 MeV. This study demonstrates that global MHD simulation, despite the limitation implied by its physics-based ideal fluid continuum assumption, can be a useful tool for SEP data analysis.

  18. The influence of minimum time between rain events (MTE) on the daily rainfall and EI30 erosivity index relation.

    NASA Astrophysics Data System (ADS)

    Ayuso-Ruiz, P.; Ayuso-Muñoz, J. L.; Taguas, E. V.; García-Marín, A.

    2010-05-01

    The amount of rain registered between two consecutives dry time intervals can be defined as a downpour or rain event. The length of these dry periods is known as minimum time between events (MTE). This work analyses the influence of the MTE value on the daily rainfall and EI30 erosivity index relationship. Using a potential equation like , the relation between daily EI30 index and daily precipitation, P, was obtained for Malaga. Hourly rainfall data from 1981 to 2007 were used. Rain events of at least 10 mm were identified four each rainy day and several MTE were used (1, 2, 3, 4, 5 and 6 hours). Due to hourly resolution of the data, the EI60 index was then obtained by multiplying the kinetic energy and the maximum hourly rainfall. Ten minutes resolution data were also available in Malaga from 1999 to 2002. Using these records the lineal correlation between EI30 and EI60 indexes was obtained, allowing the conversion of the EI60 indexes previously obtained. The results showed that no significant differences appear when varying the MTE value. The R2 coefficient had values of 0.7192 when working with a 2 hour MTE and 0.7503 for 6 hour MTE. Thus, it can be concluded that the best relation was obtained for the last MTE, though a slightly dependency between daily rainfall and EI30 index was found.

  19. Simplified Linear Multivariable Control Of Robots

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun

    1989-01-01

    Simplified method developed to design control system that makes joints of robot follow reference trajectories. Generic design includes independent multivariable feedforward and feedback controllers. Feedforward controller based on inverse of linearized model of dynamics of robot and implements control law that contains only proportional and first and second derivatives of reference trajectories with respect to time. Feedback controller, which implements control law of proportional, first-derivative, and integral terms, makes tracking errors converge toward zero as time passes.

  20. Seismicity along the Main Marmara Fault, Turkey: from space-time distribution to repeating events

    NASA Astrophysics Data System (ADS)

    Schmittbuhl, Jean; Karabulut, Hayrullah; Lengliné, Olivier; Bouchon, Michel

    2016-04-01

    The North Anatolian Fault (NAF) poses a significant hazard for the large cities surrounding the Marmara Sea region particularly the megalopolis of Istanbul. Indeed, the NAF is presently hosting a long unruptured segment below the Sea of Marmara. This seismic gap is approximately 150 km long and corresponds to the Main Marmara Fault (MMF). The seismicity along the Main Marmara Fault (MMF) below the Marmara Sea is analyzed here during the 2007-2012 period to provide insights on the recent evolution of this important regional seismic gap. High precision locations show that seismicity is strongly varying along strike and depth providing fine details of the fault behavior that are inaccessible from geodetic inversions. The activity strongly clusters at the regions of transition between basins. The Central basin shows significant seismicity located below the shallow locking depth inferred from GPS measurements. Its b-value is low and the average seismic slip is high. Interestingly we found also several long term repeating earthquakes in this domain. Using a template matching technique, we evidenced two new families of repeaters: a first family that typically belongs to aftershock sequences and a second family of long lasting repeaters with a multi-month recurrence period. All observations are consistent with a deep creep of this segment. On the contrary, the Kumburgaz basin at the center of the fault shows sparse seismicity with the hallmarks of a locked segment. In the eastern Marmara Sea, the seismicity distribution along the Princes Island segment in the Cinarcik basin, is consistent with the geodetic locking depth of 10km and a low contribution to the regional seismic energy release. The assessment of the locked segment areas provide an estimate of the magnitude of the main forthcoming event to be about 7.3 assuming that the rupture will not enter significantly within creeping domains.

  1. Timing and evolution of ocean anoxic event during Early Cambrian in south China

    NASA Astrophysics Data System (ADS)

    Yang, J.; Jiang, S.; Pi, D.; Ling, H.

    2008-12-01

    The Precambrian/Cambrian (PC-C) interval is one of the most interesting intervals in the evolution of life because of the sudden diversification of animals with mineralized skeletons, known as "Cambrian Explosion". The Yangtze Platform in south China is one of the best occurrences that can provide excellent insights into the palaeo-environmental and biological changes across the PC-C boundary. Our study show that the ocean anoxia were widespread during the Early Cambrian period, however, the start of this anoxic event was not from the PC-C boundary (i.e., 542 Ma), but some 7 Ma later (~535 Ma) when the Niutitang Formation black rock series (black phosphorite, chert, and black shale) deposited along a thousand kilometer long NEE zone in the transitional facies in the Yangtze Platform, while the major Cambrian radiation (Changjiang fauna) took place during 521-511 Ma. During the Niutitang period, the depositional environment of the Early Cambrian sedimentary sequence in south China have evolved from an initial oxic/dysoxic to a major anoxic/euxinic environment, and then back to dysoxic/oxic environment. A Ni-Mo sulfide layer occurred in the lower part of the Niutitang black shales which contains extremely enrichments of many metals, and can serve as a marker layer in south China when the depositional environment turned into euxinic condition. Re-Os isotope study of the sulfide ores and host black shales show an age of 535 Ma. Initial Os isotopic compositions, Mo isotopic compositions, and rare earth elements and Pt group element geochemistry suggest involvement of submarine hydrothermal fluids during the metal enrichments in black shale.

  2. A two-stage approach for dynamic prediction of time-to-event distributions.

    PubMed

    Huang, Xuelin; Yan, Fangrong; Ning, Jing; Feng, Ziding; Choi, Sangbum; Cortes, Jorge

    2016-06-15

    Dynamic prediction uses longitudinal biomarkers for real-time prediction of an individual patient's prognosis. This is critical for patients with an incurable disease such as cancer. Biomarker trajectories are usually not linear, nor even monotone, and vary greatly across individuals. Therefore, it is difficult to fit them with parametric models. With this consideration, we propose an approach for dynamic prediction that does not need to model the biomarker trajectories. Instead, as a trade-off, we assume that the biomarker effects on the risk of disease recurrence are smooth functions over time. This approach turns out to be computationally easier. Simulation studies show that the proposed approach achieves stable estimation of biomarker effects over time, has good predictive performance, and is robust against model misspecification. It is a good compromise between two major approaches, namely, (i) joint modeling of longitudinal and survival data and (ii) landmark analysis. The proposed method is applied to patients with chronic myeloid leukemia. At any time following their treatment with tyrosine kinase inhibitors, longitudinally measured BCR-ABL gene expression levels are used to predict the risk of disease progression. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26748812

  3. Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales

    NASA Astrophysics Data System (ADS)

    Gierz, I.; Calegari, F.; Aeschlimann, S.; Chávez Cervantes, M.; Cacho, C.; Chapman, R. T.; Springate, E.; Link, S.; Starke, U.; Ast, C. R.; Cavalleri, A.

    2015-08-01

    Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is, instead, predicted to be dominant at the earliest time delays. Here, <8 fs extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time-and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme time scales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for petahertz electronics.

  4. Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales.

    PubMed

    Gierz, I; Calegari, F; Aeschlimann, S; Chávez Cervantes, M; Cacho, C; Chapman, R T; Springate, E; Link, S; Starke, U; Ast, C R; Cavalleri, A

    2015-08-21

    Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is, instead, predicted to be dominant at the earliest time delays. Here, <8  fs extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time-and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme time scales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for petahertz electronics. PMID:26340199

  5. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    ERIC Educational Resources Information Center

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as chalk is to…

  6. Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models

    NASA Astrophysics Data System (ADS)

    Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido

    2016-06-01

    We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.

  7. Ultra-high throughput real-time instruments for capturing fast signals and rare events

    NASA Astrophysics Data System (ADS)

    Buckley, Brandon Walter

    Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and

  8. A combined Event-Driven/Time-Driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases

    SciTech Connect

    Valentini, Paolo Schwartzentruber, Thomas E.

    2009-12-10

    A novel combined Event-Driven/Time-Driven (ED/TD) algorithm to speed-up the Molecular Dynamics simulation of rarefied gases using realistic spherically symmetric soft potentials is presented. Due to the low density regime, the proposed method correctly identifies the time that must elapse before the next interaction occurs, similarly to Event-Driven Molecular Dynamics. However, each interaction is treated using Time-Driven Molecular Dynamics, thereby integrating Newton's Second Law using the sufficiently small time step needed to correctly resolve the atomic motion. Although infrequent, many-body interactions are also accounted for with a small approximation. The combined ED/TD method is shown to correctly reproduce translational relaxation in argon, described using the Lennard-Jones potential. For densities between {rho}=10{sup -4}kg/m{sup 3} and {rho}=10{sup -1}kg/m{sup 3}, comparisons with kinetic theory, Direct Simulation Monte Carlo, and pure Time-Driven Molecular Dynamics demonstrate that the ED/TD algorithm correctly reproduces the proper collision rates and the evolution toward thermal equilibrium. Finally, the combined ED/TD algorithm is applied to the simulation of a Mach 9 shock wave in rarefied argon. Density and temperature profiles as well as molecular velocity distributions accurately match DSMC results, and the shock thickness is within the experimental uncertainty. For the problems considered, the ED/TD algorithm ranged from several hundred to several thousand times faster than conventional Time-Driven MD. Moreover, the force calculation to integrate the molecular trajectories is found to contribute a negligible amount to the overall ED/TD simulation time. Therefore, this method could pave the way for the application of much more refined and expensive interatomic potentials, either classical or first-principles, to Molecular Dynamics simulations of shock waves in rarefied gases, involving vibrational nonequilibrium and chemical reactivity.

  9. Unexpected spatial intensity distributions and onset timing of solar electron events observed by closely spaced STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Müller-Mellin, R.

    2016-09-01

    We present multi-spacecraft observations of four solar electron events using measurements from the Solar Electron Proton Telescope (SEPT) and the Electron Proton Helium INstrument (EPHIN) on board the STEREO and SOHO spacecraft, respectively, occurring between 11 October 2013 and 1 August 2014, during the approaching superior conjunction period of the two STEREO spacecraft. At this time the longitudinal separation angle between STEREO-A (STA) and STEREO-B (STB) was less than 72°. The parent particle sources (flares) of the four investigated events were situated close to, in between, or to the west of the STEREO's magnetic footpoints. The STEREO measurements revealed a strong difference in electron peak intensities (factor ≤12) showing unexpected intensity distributions at 1 AU, although the two spacecraft had nominally nearly the same angular magnetic footpoint separation from the flaring active region (AR) or their magnetic footpoints were both situated eastwards from the parent particle source. Furthermore, the events detected by the two STEREO imply a strongly unexpected onset timing with respect to each other: the spacecraft magnetically best connected to the flare detected a later arrival of electrons than the other one. This leads us to suggest the concept of a rippled peak intensity distribution at 1 AU formed by narrow peaks (fingers) superposed on a quasi-uniform Gaussian distribution. Additionally, two of the four investigated solar energetic particle (SEP) events show a so-called circumsolar distribution and their characteristics make it plausible to suggest a two-component particle injection scenario forming an unusual, non-uniform intensity distribution at 1 AU.

  10. A Bayesian mixture of semiparametric mixed-effects joint models for skewed-longitudinal and time-to-event data.

    PubMed

    Chen, Jiaqing; Huang, Yangxin

    2015-09-10

    In longitudinal studies, it is of interest to investigate how repeatedly measured markers in time are associated with a time to an event of interest, and in the mean time, the repeated measurements are often observed with the features of a heterogeneous population, non-normality, and covariate measured with error because of longitudinal nature. Statistical analysis may complicate dramatically when one analyzes longitudinal-survival data with these features together. Recently, a mixture of skewed distributions has received increasing attention in the treatment of heterogeneous data involving asymmetric behaviors across subclasses, but there are relatively few studies accommodating heterogeneity, non-normality, and measurement error in covariate simultaneously arose in longitudinal-survival data setting. Under the umbrella of Bayesian inference, this article explores a finite mixture of semiparametric mixed-effects joint models with skewed distributions for longitudinal measures with an attempt to mediate homogeneous characteristics, adjust departures from normality, and tailor accuracy from measurement error in covariate as well as overcome shortages of confidence in specifying a time-to-event model. The Bayesian mixture of joint modeling offers an appropriate avenue to estimate not only all parameters of mixture joint models but also probabilities of class membership. Simulation studies are conducted to assess the performance of the proposed method, and a real example is analyzed to demonstrate the methodology. The results are reported by comparing potential models with various scenarios. PMID:25924891

  11. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.

    PubMed

    Gigante, Guido; Deco, Gustavo; Marom, Shimon; Del Giudice, Paolo

    2015-11-01

    Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural) is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms. PMID:26558616

  12. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model

    PubMed Central

    Gigante, Guido; Deco, Gustavo; Marom, Shimon; Del Giudice, Paolo

    2015-01-01

    Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural) is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed ‘quasi-orbits’, which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network’s firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms. PMID:26558616

  13. Event-sequence time series analysis in ground-based gamma-ray astronomy

    SciTech Connect

    Barres de Almeida, U.; Chadwick, P.; Daniel, M.; Nolan, S.; McComb, L.

    2008-12-24

    The recent, extreme episodes of variability detected from Blazars by the leading atmospheric Cerenkov experiments motivate the development and application of specialized statistical techniques that enable the study of this rich data set to its furthest extent. The identification of the shortest variability timescales supported by the data and the actual variability structure observed in the light curves of these sources are some of the fundamental aspects being studied, that answers can bring new developments on the understanding of the physics of these objects and on the mechanisms of production of VHE gamma-rays in the Universe. Some of our efforts in studying the time variability of VHE sources involve the application of dynamic programming algorithms to the problem of detecting change-points in a Poisson sequence. In this particular paper we concentrate on the more primary issue of the applicability of counting statistics to the analysis of time-series on VHE gamma-ray astronomy.

  14. Analysis of Time to Event Outcomes in Randomized Controlled Trials by Generalized Additive Models

    PubMed Central

    Argyropoulos, Christos; Unruh, Mark L.

    2015-01-01

    Background Randomized Controlled Trials almost invariably utilize the hazard ratio calculated with a Cox proportional hazard model as a treatment efficacy measure. Despite the widespread adoption of HRs, these provide a limited understanding of the treatment effect and may even provide a biased estimate when the assumption of proportional hazards in the Cox model is not verified by the trial data. Additional treatment effect measures on the survival probability or the time scale may be used to supplement HRs but a framework for the simultaneous generation of these measures is lacking. Methods By splitting follow-up time at the nodes of a Gauss Lobatto numerical quadrature rule, techniques for Poisson Generalized Additive Models (PGAM) can be adopted for flexible hazard modeling. Straightforward simulation post-estimation transforms PGAM estimates for the log hazard into estimates of the survival function. These in turn were used to calculate relative and absolute risks or even differences in restricted mean survival time between treatment arms. We illustrate our approach with extensive simulations and in two trials: IPASS (in which the proportionality of hazards was violated) and HEMO a long duration study conducted under evolving standards of care on a heterogeneous patient population. Findings PGAM can generate estimates of the survival function and the hazard ratio that are essentially identical to those obtained by Kaplan Meier curve analysis and the Cox model. PGAMs can simultaneously provide multiple measures of treatment efficacy after a single data pass. Furthermore, supported unadjusted (overall treatment effect) but also subgroup and adjusted analyses, while incorporating multiple time scales and accounting for non-proportional hazards in survival data. Conclusions By augmenting the HR conventionally reported, PGAMs have the potential to support the inferential goals of multiple stakeholders involved in the evaluation and appraisal of clinical trial

  15. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation

    PubMed Central

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints. PMID:27579033

  16. Time-Shift Correlation Algorithm for P300 Event Related Potential Brain-Computer Interface Implementation.

    PubMed

    Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien

    2016-01-01

    A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints. PMID:27579033

  17. Relating interesting quantitative time series patterns with text events and text features

    NASA Astrophysics Data System (ADS)

    Wanner, Franz; Schreck, Tobias; Jentner, Wolfgang; Sharalieva, Lyubka; Keim, Daniel A.

    2013-12-01

    In many application areas, the key to successful data analysis is the integrated analysis of heterogeneous data. One example is the financial domain, where time-dependent and highly frequent quantitative data (e.g., trading volume and price information) and textual data (e.g., economic and political news reports) need to be considered jointly. Data analysis tools need to support an integrated analysis, which allows studying the relationships between textual news documents and quantitative properties of the stock market price series. In this paper, we describe a workflow and tool that allows a flexible formation of hypotheses about text features and their combinations, which reflect quantitative phenomena observed in stock data. To support such an analysis, we combine the analysis steps of frequent quantitative and text-oriented data using an existing a-priori method. First, based on heuristics we extract interesting intervals and patterns in large time series data. The visual analysis supports the analyst in exploring parameter combinations and their results. The identified time series patterns are then input for the second analysis step, in which all identified intervals of interest are analyzed for frequent patterns co-occurring with financial news. An a-priori method supports the discovery of such sequential temporal patterns. Then, various text features like the degree of sentence nesting, noun phrase complexity, the vocabulary richness, etc. are extracted from the news to obtain meta patterns. Meta patterns are defined by a specific combination of text features which significantly differ from the text features of the remaining news data. Our approach combines a portfolio of visualization and analysis techniques, including time-, cluster- and sequence visualization and analysis functionality. We provide two case studies, showing the effectiveness of our combined quantitative and textual analysis work flow. The workflow can also be generalized to other

  18. Modelling Time-Resolved Two-Dimensional Electronic Spectroscopy of the Primary Photoisomerization Event in Rhodopsin

    PubMed Central

    2015-01-01

    Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump–probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques. PMID:24794143

  19. A survival tree method for the analysis of discrete event times in clinical and epidemiological studies.

    PubMed

    Schmid, Matthias; Küchenhoff, Helmut; Hoerauf, Achim; Tutz, Gerhard

    2016-02-28

    Survival trees are a popular alternative to parametric survival modeling when there are interactions between the predictor variables or when the aim is to stratify patients into prognostic subgroups. A limitation of classical survival tree methodology is that most algorithms for tree construction are designed for continuous outcome variables. Hence, classical methods might not be appropriate if failure time data are measured on a discrete time scale (as is often the case in longitudinal studies where data are collected, e.g., quarterly or yearly). To address this issue, we develop a method for discrete survival tree construction. The proposed technique is based on the result that the likelihood of a discrete survival model is equivalent to the likelihood of a regression model for binary outcome data. Hence, we modify tree construction methods for binary outcomes such that they result in optimized partitions for the estimation of discrete hazard functions. By applying the proposed method to data from a randomized trial in patients with filarial lymphedema, we demonstrate how discrete survival trees can be used to identify clinically relevant patient groups with similar survival behavior. PMID:26358826

  20. Developing a real-time emulation of multiresolutional control architectures for complex, discrete-event systems

    SciTech Connect

    Davis, W.J.; Macro, J.G.; Brook, A.L.

    1996-12-31

    This paper first discusses an object-oriented, control architecture and then applies the architecture to produce a real-time software emulator for the Rapid Acquisition of Manufactured Parts (RAMP) flexible manufacturing system (FMS). In specifying the control architecture, the coordinated object is first defined as the primary modeling element. These coordinated objects are then integrated into a Recursive, Object-Oriented Coordination Hierarchy. A new simulation methodology, the Hierarchical Object-Oriented Programmable Logic Simulator, is then employed to model the interactions among the coordinated objects. The final step in implementing the emulator is to distribute the models of the coordinated objects over a network of computers and to synchronize their operation to a real-time clock. The paper then introduces the Hierarchical Subsystem Controller as an intelligent controller for the coordinated object. The proposed approach to intelligent control is then compared to the concept of multiresolutional semiosis that has been developed by Dr. Alex Meystel. Finally, the plans for implementing an intelligent controller for the RAMP FMS are discussed.

  1. Statistics in review. Part 2: generalised linear models, time-to-event and time-series analysis, evidence synthesis and clinical trials.

    PubMed

    Moran, John L; Solomon, Patricia J

    2007-06-01

    In Part I, we reviewed graphical display and data summary, followed by a consideration of linear regression models. Generalised linear models, structured in terms of an exponential response distribution and link function, are now introduced, subsuming logistic and Poisson regression. Time-to-event ("survival") analysis is developed from basic principles of hazard rate, and survival, cumulative distribution and density functions. Semi-parametric (Cox) and parametric (accelerated failure time) regression models are contrasted. Time-series analysis is explicated in terms of trend, seasonal, and other cyclical and irregular components, and further illustrated by development of a classical Box-Jenkins ARMA (autoregressive moving average) model for monthly ICU-patient hospital mortality rates recorded over 11 years. Multilevel (random-effects) models and principles of meta-analysis are outlined, and the review concludes with a brief consideration of important statistical aspects of clinical trials: sample size determination, interim analysis and "early stopping". PMID:17536991

  2. Real-time digital filtering, event triggering, and tomographic reconstruction of JET soft x-ray data (abstract)

    NASA Astrophysics Data System (ADS)

    Edwards, A. W.; Blackler, K.; Gill, R. D.; van der Goot, E.; Holm, J.

    1990-10-01

    Based upon the experience gained with the present soft x-ray data acquisition system, new techniques are being developed which make extensive use of digital signal processors (DSPs). Digital filters make 13 further frequencies available in real time from the input sampling frequency of 200 kHz. In parallel, various algorithms running on further DSPs generate triggers in response to a range of events in the plasma. The sawtooth crash can be detected, for example, with a delay of only 50 μs from the onset of the collapse. The trigger processor interacts with the digital filter boards to ensure data of the appropriate frequency is recorded throughout a plasma discharge. An independent link is used to pass 780 and 24 Hz filtered data to a network of transputers. A full tomographic inversion and display of the 24 Hz data is carried out in real time using this 15 transputer array. The 780 Hz data are stored for immediate detailed playback following the pulse. Such a system could considerably improve the quality of present plasma diagnostic data which is, in general, sampled at one fixed frequency throughout a discharge. Further, it should provide valuable information towards designing diagnostic data acquisition systems for future long pulse operation machines when a high degree of real-time processing will be required, while retaining the ability to detect, record, and analyze events of interest within such long plasma discharges.

  3. Characterization and event specific-detection by quantitative real-time PCR of T25 maize insert.

    PubMed

    Collonnier, Cécile; Schattner, Alexandra; Berthier, Georges; Boyer, Francine; Coué-Philippe, Géraldine; Diolez, Annick; Duplan, Marie-Noëlle; Fernandez, Sophie; Kebdani, Naïma; Kobilinsky, André; Romaniuk, Marcel; de Beuckeleer, Marc; de Loose, Marc; Windels, Pieter; Bertheau, Yves

    2005-01-01

    T25 is one of the 4 maize transformation events from which commercial lines have so far been authorized in Europe. It was created by polyethylene glycol-mediated transformation using a construct bearing one copy of the synthetic pat gene associated with both promoter and terminator of the 35S ribosomal gene from cauliflower mosaic virus. In this article, we report the sequencing of the whole T25 insert and the characterization of its integration site by using a genome walking strategy. Our results confirmed that one intact copy of the initial construct had been integrated in the plant genome. They also revealed, at the 5' junction of the insert, the presence of a second truncated 35S promoter, probably resulting from rearrangements which may have occurred before or during integration of the plasmid DNA. The analysis of the junction fragments showed that the integration site of the insert presented high homologies with the Huck retrotransposon family. By using one primer annealing in the maize genome and the other in the 5' end of the integrated DNA, we developed a reliable event-specific detection system for T25 maize. To provide means to comply with the European regulation, a real-time PCR test was designed for specific quantitation of T25 event by using Taqman chemistry. PMID:15859082

  4. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria)

    PubMed Central

    Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S.

    2014-01-01

    Summary The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and

  5. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria).

    PubMed

    Mayaud, C; Wagner, T; Benischke, R; Birk, S

    2014-04-16

    The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the

  6. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria)

    NASA Astrophysics Data System (ADS)

    Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S.

    2014-04-01

    The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the

  7. Direct real-time detection of the structural and biochemical events in the myosin power stroke.

    PubMed

    Muretta, Joseph M; Rohde, John A; Johnsrud, Daniel O; Cornea, Sinziana; Thomas, David D

    2015-11-17

    A principal goal of molecular biophysics is to show how protein structural transitions explain physiology. We have developed a strategic tool, transient time-resolved FRET [(TR)(2)FRET], for this purpose and use it here to measure directly, with millisecond resolution, the structural and biochemical kinetics of muscle myosin and to determine directly how myosin's power stroke is coupled to the thermodynamic drive for force generation, actin-activated phosphate release, and the weak-to-strong actin-binding transition. We find that actin initiates the power stroke before phosphate dissociation and not after, as many models propose. This result supports a model for muscle contraction in which power output and efficiency are tuned by the distribution of myosin structural states. This technology should have wide application to other systems in which questions about the temporal coupling of allosteric structural and biochemical transitions remain unanswered. PMID:26578772

  8. Storm-time Large-Scale Birkeland Currents: Salient Dynamics in Grand Challenge Events

    NASA Astrophysics Data System (ADS)

    Korth, H.; Anderson, B. J.; Waters, C. L.; Barnes, R. J.

    2015-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides continuous global observations of Birkeland currents on a 10 minute cadence. During geomagnetic storms, currents intensify to over 15 MA, are dynamic both in intensity and distribution, and exhibit features not discernible in statistical analyses. For all of the subject grand challenge storms, AMPERE data reveal a number of novel phenomena illustrating the profound dynamics of the storm-time system. Storm-time onsets associated with shock arrivals are often very prompt and lead to dramatic surges in total current from 1 MA to over 5 MA in less than 20 minutes. The current surges occur predominantly on the dayside at high latitudes prior to any ring current or auroral expansions, indicating that neutral density upwelling is often driven independently of ring current or auroral zone intensifications. Rapid reconfigurations of the currents with IMF BY reversals within the sheath structures of coronal mass ejections (CMEs) are also common. This implies that convection of ionospheric density patches over the polar cap may be quite complex, particularly during the early phase of geomagnetic storms related to the CME sheath passage. The 3 September 2012 storm exhibited intense driving with classic quasi-stable Region 1 and 2 currents spanning 55 to 70 degrees magnetic latitude for over 10 hours at the beginning of the day, corresponding to stable southward IMF prior to shock arrival at noon on that day. The shock arrival and IMF southward intensification led to further expansion of the currents below 50 degrees magnetic latitude and to episodic surges in currents on the nightside, which is unique to storms. The resulting current structure showed multiple large-scale alternations in downward-upward-downward-upward direction that often occurs during intense, sustained driving during strong storms.

  9. Time response of O to a weak transverse ion heating event in the polar ionosphere

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra

    1996-03-01

    Time response of O+ ions to transverse ion heating in the polar ionosphere is studied by means of a particle code. Here we deal with relatively low levels of heating over a few minutes yielding superthermal ions energized up to a few eV. Under the influence of the upward mirror and downward gravitational forces, most of the heated ions are trapped between the topside ionosphere and some high altitude depending on their perpendicular energies. A few ions with sufficiently large perpendicular energy escape the gravitational pull, and the flux of such ions increases with the heating level. The trapped ions bounce back and forth. During the first upward transit of the heated ions, the transient outflux from the topside ionosphere is as large as 107 ionscm-2s-1 and it subsequently decays to quite small values in a few tens of minutes. A large transient outflux (~3×108 ionscm-2s-1) consisting of unheated ions develops even below the heating region, lasting over just a few minutes. As the ions having relatively large energies continue their upward journey, and the less energetic ones begin to fall down, the O+ drift velocity ranges from a relatively large negative value (downward) just above the dense O+ plasma in the topside ionosphere to a large positive value at high altitudes. Substantial flux of downward moving ions is also seen. During subsequent upward motions, the bouncing ions form a well-defined, quite sharp expansion front. The bounce motion generates a succession of plateau formation over a period of several hours in response to a brief heating period of just a few minutes. This leads to nearly periodic oscillations in local densities, with the oscillation period increasing with altitude. In a time of about one day, the oscillations in the density cease due to the spatial dispersion of the heated ions having differing initial energies. Eventually the O+ density profile becomes nearly stable but remains extended with significantly enhanced O+ density at high

  10. The intrapituitary endocrine events during maturation and timing of puberty in the female sheep.

    PubMed

    Wańkowska, M; Misztal, T; Romanowicz, K; Wójcik-Gładysz, A; Polkowska, J

    2008-05-01

    The aim of this study was to determine the maturational activity of gonadotroph cells, the site of synthesis, storage and release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in Polish Merino female sheep born after the summer solstice. The actual time of puberty of these lambs was delayed until the following breeding season, when they were 14 months old. Changes were examined in 12 peripubertal (30-, 52-week-old) and pubertal (Days 15 and 17 of the second ovarian cycle) females. Histomorphological and functional changes in the gonadotroph population were assayed with hybridohistochemistry, immunohistochemistry, computer-assisted image analysis and radioimmunoassay. The percentage of the adenohypophyseal area (PAA) occupied by gonadotrophs containing LHbeta-mRNA was higher and the LH plasma concentration and pulse frequency were lower in the 52-week-old sheep in comparison with the 30-week-old sheep (P<0.05). The PAA occupied by immunoreactive (ir)-LHbeta-cells remained stable at the 30th and 52nd weeks of age and then increased at the pubertal follicular phase. The PAA occupied by ir-FSHbeta-cells was higher in the 52-week-old sheep compared with the 30-week-old sheep and then lower at the pubertal follicular phase (P<0.05). The PAA occupied by gonadotrophs containing LHbeta-mRNA or FSHbeta-mRNA was lower at the pubertal follicular phase in comparison with the 52nd week of age (P<0.05). In pubertal sheep, the PAA occupied by gonadotrophs containing LHbeta-mRNA or FSHbeta-mRNA was higher and the PAA occupied by ir-LHbeta or ir-FSHbeta-cells was lower at the preovulatory phase in comparison with the follicular phase of the cycle (P<0.05). In conclusion, the photoperiodic suspension of gonadotroph population's maturational functions has been observed at the level of LH storage and release but not at the level of LH synthesis during the expected time of puberty in female sheep of an aseasonal breed such as Merino. The findings show the

  11. Note: A technique to capture and compose streak images of explosive events with unpredictable timing.

    PubMed

    Parker, Gary R; Asay, Blaine W; Dickson, Peter M

    2010-01-01

    The authors describe a method to capture optical data and construct digitized streak images for analysis of high-speed phenomena with unpredictable timing by using a high-speed video camera and software routines. Advances in high-speed video camera technology have led to development of cameras with frame rates (1 x 10(6) frames per second) and spatial resolution (1280 x 800 pixels) suitable to capture fast phenomena, such as detonation in high explosives (< or = 10 km s(-1)), on small enough scales to be convenient for laboratory experiments. Further, relatively long-duration recordings (> or = 1 s) are maintained in a rolling buffer in volatile memory allowing the entire frame sequence to be recorded pretrigger, thus obviating the need for precisely located diagnostic triggers. The method described was used to capture the progression of luminous reaction during the deflagration-to-detonation transition of the HMX-based (octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine) plastic bonded explosive (PBX) formulation during cookoff. PMID:20113140

  12. Improving Customer Waiting Time at a DMV Center Using Discrete-Event Simulation

    NASA Technical Reports Server (NTRS)

    Arnaout, Georges M.; Bowling, Shannon

    2010-01-01

    Virginia's Department of Motor Vehicles (DMV) serves a customer base of approximately 5.6 million licensed drivers and ID card holders and 7 million registered vehicle owners. DMV has more daily face-to-face contact with Virginia's citizens than any other state agency [1]. The DMV faces a major difficulty in keeping up with the excessively large customers' arrival rate. The consequences are queues building up, stretching out to the entrance doors (and sometimes even outside) and customers complaining. While the DMV state employees are trying to serve at their fastest pace, the remarkably large queues indicate that there is a serious problem that the DMV faces in its services, which must be dealt with rapidly. Simulation is considered as one of the best tools for evaluating and improving complex systems. In this paper, we use it to model one of the DMV centers located in Norfolk, VA. The simulation model is modeled in Arena 10.0 from Rockwell systems. The data used is collected from experts of the DMV Virginia headquarter located in Richmond. The model created was verified and validated. The intent of this study is to identify key problems causing the delays at the DMV centers and suggest possible solutions to minimize the customers' waiting time. In addition, two tentative hypotheses aiming to improve the model's design are tested and validated.

  13. Time-stratigraphic reconstruction and integration of paleopedologic, sedimentologic, and biotic events (Willwood Formation, lower Eocene, northwest Wyoming, USA)

    SciTech Connect

    Brown, T.M. ); Kraus, M.J. )

    1993-02-01

    Relative paleosol maturities are inversely proportional to the accumulation rates of the sediment upon which they formed, and are therefore excellent relative indicators of how much geologic time elapsed between any two horizons. An empirically-based model is advanced using paleosol maturities to estimate the relative geologic time separating any stratigraphic levels within the lower Eocene Willwood Formation. The revised Willwood time stratigraphy from this analysis helps evaluate the nature, tempo, and possible causes of three major episodes of mammalian appearance and disappearance. These faunal events are directly correlated with certain aspects of paleosol evolution in the Willwood Formation. That evolution is tied directly to climatic changes and to varying sediment accumulation rates in response to tectonism. The first faunal turnover occurs at the base of the Willwood Formation. It coincides with a major increase in pedogenic maturity, reflecting a major decrease in sediment accumulation rate, and accompanying general climatic warming at about the time of the Paleocene-Eocene boundary. Throughout the remainder of Willwood time, there was a gradual, yet continual, decrease in paleosol maturity and degree of hydromorphy, probably related to the progressive structural elevation of the Owl Creek antiform bounding the south and southeast margins of the Bighorn Basin. This gradual decrease was punctuated by two intervals of more significant decline in paleosol maturity and in the incidence of hydromorphic soils. Both intervals are also marked by faunal turnovers. These sedimentologic and biologic events may reflect tectonic, periods when the rate of basin subsidence increased more rapidly. 58 refs., 7 figs., 2 tabs.

  14. Evidence for Long-Time Scale ( > 103 years) Changes in Hydrothermal Activity Induced By Seismic Events

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Howald, T.; Campbell, A.; Hofstra, A.; Lueth, V.; Sweetkind, D. S.; Gable, C. W.; Luijendijk, E.; Crossey, L. J.; Karlstrom, K. E.; Kelley, S.; Phillips, F. M.

    2014-12-01

    The typical approach to assess climate change impacts on water resources systems is based on a vertical integration/coupling of models: GCM models are run to project future precipitations and temperatures, which are then downscaled and used as inputs to hydrologic models whose outputs are processed by water systems models. From a decision-making point of view, this top-down vertical approach presents some challenges. For example, since the range of uncertainty that can be explored with GCM is limited, researchers are relying on ensembles to enlarge the spread, making the modeling approach even more demanding in terms of computation time and resource. When a particular water system must be analyzed, the question is to know whether this computationally intensive vertical approach is necessary in the first place or if we could extrapolate projections available in neighboring systems to feed the water system model? This would be equivalent to a horizontal approach. The proposed study addresses this question by comparing the performance of a water resource system under future climate conditions using the vertical and horizontal approaches. The methodology is illustrated with the hydropower system of the Gatineau River Basin in Quebec, Canada. Vertically obtained hydrologic projections available in those river basins are extrapolated and used as inputs to a stochastic multireservoir optimization model. Two different extrapolation techniques are tested. The first one simply relies on the ratios between the drainage areas. The second exploits the covariance structure found in historical flow data throughout the region. The analysis of the simulation results reveals that the annual and weekly energy productions of the system derived from the horizontal approach are statistically equivalent to those obtained with the vertical one, regardless of the extrapolation technique used.

  15. Improvement of IDC/CTBTO Event Locations in Latin America and the Caribbean Using a Regional Seismic Travel Time Model

    NASA Astrophysics Data System (ADS)

    Given, J. W.; Guendel, F.

    2013-05-01

    The International Data Centre is a vital element of the Comprehensive Test Ban Treaty (CTBT) verification mechanism. The fundamental mission of the International Data Centre (IDC) is to collect, process, and analyze monitoring data and to present results as event bulletins to Member States. For the IDC and in particular for waveform technologies, a key measure of the quality of its products is the accuracy by which every detected event is located. Accurate event location is crucial for purposes of an On Site Inspection (OSI), which would confirm the conduct of a nuclear test. Thus it is important for the IDC monitoring and data analysis to adopt new processing algorithms that improve the accuracy of event location. Among them the development of new algorithms to compute regional seismic travel times through 3-dimensional models have greatly increased IDC's location precision, the reduction of computational time, allowing forward and inverse modeling of large data sets. One of these algorithms has been the Regional Seismic Travel Time model (RSTT) of Myers et al., (2011). The RSTT model is nominally a global model; however, it currently covers only North America and Eurasia in sufficient detail. It is the intention CTBTO's Provisional Technical Secretariat and the IDC to extend the RSTT model to other regions of the earth, e.g. Latin America-Caribbean, Africa and Asia. This is particularly important for the IDC location procedure, as there are regions of the earth for which crustal models are not well constrained. For this purpose IDC has launched a RSTT initiative. In May 2012, a technical meeting was held in Vienna under the auspices of the CTBTO. The purpose of this meeting was to invite National Data Centre experts as well as network operators from Africa, Europe, the Middle East, Asia, Australia, Latin and North America to discuss the context under which a project to extend the RSTT model would be implemented. A total of 41 participants from 32 Member States

  16. Phylogenetic timing of mutation and deletion events in the primate-specific serine hydroxymethyltransferase pseudogene HSHMT-{Psi}{sub c}

    SciTech Connect

    Dill-Devor, R.M.; Devor, E.J.

    1994-09-01

    We recently discovered a processed pseudogene which arose from the cytosolic isoforms of the pyridoxal-phosphate binding enzyme serine hydroxymethyltransferase (HSHMT-cyt). This pseudogene, which we have designated HSHMT-{Psi}{sub c}, is located on chromosome 1. Compared to the published HSHMT-cyt cDNA sequence, the 281 bp pseudogene PCR product on which we have concentrated displays an 11 bp deletion and nineteen separate single base substitutions. One of these introduces a stop signal that eliminates more than one-third of the coding region of the gene. Both the mitochondrial and cytosolic SHMT isoforms show a great deal of evolutionary conservation both at the amino acid and nucleotide sequence levels. For this reason we have attempted to amplify and sequence our 281 bp product in more than a dozen non-human primate and eleven non-primate mammalian species. Our results indicate that the pseudogene HSHMT-{Psi}{sub c} is present only in primate genomes. Further, a number of the mutations observed in the human sequence are unique to our species while others can be attributed to events occurring prior to the divergence of ancestral lines. Finally, the 11 bp deletion is found only among the apes, thus placing the deletion event at a time no longer than 25 million years ago. Similar phylogenetic timing can be assigned to other changes in the HSHMT-{Psi}{sub c} sequence, thus allowing us to present a reasonably detailed mutational history for this pseudogene.

  17. Measuring the Dayside Thermospheric Resonse to Extreme Joule Heating Events Using SuperDARN and TIMED GUVI

    NASA Astrophysics Data System (ADS)

    Baker, J. B.; Greenwald, R. A.; Paxton, L. J.; Zhang, Y.; Ruohoniemi, J. M.; Oksavik, K.

    2005-12-01

    A major goal of the NASA TIMED spacecraft is to understand the transfer of energy from the magnetosphere into the Mesosphere-Lower-Thermosphere-Ionosphere (MLTI) region. Joule and auroral particle heating at high latitudes are two processes by which magnetospheric energy can be deposited within the MLTI. In this session, we will present large-scale maps of dayside Joule heating rates obtained by combining ionospheric electric field measurements from the Super Dual Auroral Radar Network (SuperDARN) with estimates for the ionospheric Pedersen conductance obtained from TIMED Global Ultraviolet Imager (GUVI) auroral images. These Joule heating maps will be compared with maps of the GUVI O/N2 ratio, thereby providing a measure of the change in thermospheric composition associated with the Joule heating events and the subsequent transport of those perturbations via neutral winds.

  18. Establishing a time-line of word recognition: evidence from eye movements and event-related potentials.

    PubMed

    Sereno, S C; Rayner, K; Posner, M I

    1998-07-13

    The average duration of eye fixations in reading places constraints on the time for lexical processing. Data from event related potential (ERP) studies of word recognition can illuminate stages of processing within a single fixation on a word. In the present study, high and low frequency regular and exception words were used as targets in an eye movement reading experiment and a high-density electrode ERP lexical decision experiment. Effects of lexicality (words vs pseudowords vs consonant strings), word frequency (high vs low frequency) and word regularity (regular vs exception spelling-sound correspondence) were examined. Results suggest a very early time-course for these aspects of lexical processing within the context of a single eye fixation. PMID:9694199

  19. The impact of economic austerity and prosperity events on suicide in Greece: a 30-year interrupted time-series analysis

    PubMed Central

    Branas, Charles C; Kastanaki, Anastasia E; Michalodimitrakis, Manolis; Tzougas, John; Kranioti, Elena F; Theodorakis, Pavlos N; Carr, Brendan G; Wiebe, Douglas J

    2015-01-01

    Objectives To complete a 30-year interrupted time-series analysis of the impact of austerity-related and prosperity-related events on the occurrence of suicide across Greece. Setting Greece from 1 January 1983 to 31 December 2012. Participants A total of 11 505 suicides, 9079 by men and 2426 by women, occurring in Greece over the study period. Primary and secondary outcomes National data from the Hellenic Statistical Authority assembled as 360 monthly counts of: all suicides, male suicides, female suicides and all suicides plus potentially misclassified suicides. Results In 30 years, the highest months of suicide in Greece occurred in 2012. The passage of new austerity measures in June 2011 marked the beginning of significant, abrupt and sustained increases in total suicides (+35.7%, p<0.001) and male suicides (+18.5%, p<0.01). Sensitivity analyses that figured in undercounting of suicides also found a significant, abrupt and sustained increase in June 2011 (+20.5%, p<0.001). Suicides by men in Greece also underwent a significant, abrupt and sustained increase in October 2008 when the Greek recession began (+13.1%, p<0.01), and an abrupt but temporary increase in April 2012 following a public suicide committed in response to austerity conditions (+29.7%, p<0.05). Suicides by women in Greece also underwent an abrupt and sustained increase in May 2011 following austerity-related events (+35.8%, p<0.05). One prosperity-related event, the January 2002 launch of the Euro in Greece, marked an abrupt but temporary decrease in male suicides (−27.1%, p<0.05). Conclusions This is the first multidecade, national analysis of suicide in Greece using monthly data. Select austerity-related events in Greece corresponded to statistically significant increases for suicides overall, as well as for suicides among men and women. The consideration of future austerity measures should give greater weight to the unintended mental health consequences that may follow and the public

  20. Seasonal changes in estuarine dissolved organic matter due to variable flushing time and wind-driven mixing events

    NASA Astrophysics Data System (ADS)

    Dixon, Jennifer L.; Osburn, Christopher L.; Paerl, Hans W.; Peierls, Benjamin L.

    2014-12-01

    This study examined the seasonality of dissolved organic matter (DOM) sources and transformations within the Neuse River estuary (NRE) in eastern North Carolina between March 2010 and February 2011. During this time, monthly surface and bottom water samples were collected along the longitudinal axis of the NRE, ranging from freshwater to mesohaline segments. The monthly mean of all surface and bottom measurements made on collected samples was used to clarify larger physical mixing controls in the estuary as a whole. By comparing monthly mean trends in DOM and chromophoric dissolved organic matter (CDOM) properties in surface and bottom waters during varying hydrological conditions, we found that DOM and CDOM quality in the NRE is controlled by a combination of discharge, wind speed, and wind direction. The quality of DOM was assessed using C:N ratios, specific ultraviolet absorption at 254 nm (SUVA254), the absorption spectral slope ratio (SR), and the humification (HIX) and biological (BIX) indices from fluorescence. The NRE reflects allochthonous sources when discharge and flushing time are elevated at which times SUVA254 and HIX increased relative to base flow. During periods of reduced discharge and long flushing times in the estuary, extensive autochthonous production modifies the quality of the DOM pool in the NRE. This was evidenced by falling C:N values, and higher BIX and SR values. Lastly, a combination of increased wind speed and shifts in wind direction resulted in benthic resuspension events of degraded, planktonic OM. Thus, the mean DOM characteristics in this shallow micro-tidal estuary can be rapidly altered during episodic mixing events on timescales of a few weeks.

  1. F100 Multivariable Control Synthesis Program. Computer Implementation of the F100 Multivariable Control Algorithm

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.

    1983-01-01

    As turbofan engines become more complex, the development of controls necessitate the use of multivariable control techniques. A control developed for the F100-PW-100(3) turbofan engine by using linear quadratic regulator theory and other modern multivariable control synthesis techniques is described. The assembly language implementation of this control on an SEL 810B minicomputer is described. This implementation was then evaluated by using a real-time hybrid simulation of the engine. The control software was modified to run with a real engine. These modifications, in the form of sensor and actuator failure checks and control executive sequencing, are discussed. Finally recommendations for control software implementations are presented.

  2. Multivariate streamflow forecasting using independent component analysis

    NASA Astrophysics Data System (ADS)

    Westra, Seth; Sharma, Ashish; Brown, Casey; Lall, Upmanu

    2008-02-01

    Seasonal forecasting of streamflow provides many benefits to society, by improving our ability to plan and adapt to changing water supplies. A common approach to developing these forecasts is to use statistical methods that link a set of predictors representing climate state as it relates to historical streamflow, and then using this model to project streamflow one or more seasons in advance based on current or a projected climate state. We present an approach for forecasting multivariate time series using independent component analysis (ICA) to transform the multivariate data to a set of univariate time series that are mutually independent, thereby allowing for the much broader class of univariate models to provide seasonal forecasts for each transformed series. Uncertainty is incorporated by bootstrapping the error component of each univariate model so that the probability distribution of the errors is maintained. Although all analyses are performed on univariate time series, the spatial dependence of the streamflow is captured by applying the inverse ICA transform to the predicted univariate series. We demonstrate the technique on a multivariate streamflow data set in Colombia, South America, by comparing the results to a range of other commonly used forecasting methods. The results show that the ICA-based technique is significantly better at representing spatial dependence, while not resulting in any loss of ability in capturing temporal dependence. As such, the ICA-based technique would be expected to yield considerable advantages when used in a probabilistic setting to manage large reservoir systems with multiple inflows or data collection points.

  3. Identifying Prognostic SNPs in Clinical Cohorts: Complementing Univariate Analyses by Resampling and Multivariable Modeling

    PubMed Central

    Hieke, Stefanie; Benner, Axel; Schlenk, Richard F.; Schumacher, Martin; Bullinger, Lars; Binder, Harald

    2016-01-01

    Clinical cohorts with time-to-event endpoints are increasingly characterized by measurements of a number of single nucleotide polymorphisms that is by a magnitude larger than the number of measurements typically considered at the gene level. At the same time, the size of clinical cohorts often is still limited, calling for novel analysis strategies for identifying potentially prognostic SNPs that can help to better characterize disease processes. We propose such a strategy, drawing on univariate testing ideas from epidemiological case-controls studies on the one hand, and multivariable regression techniques as developed for gene expression data on the other hand. In particular, we focus on stable selection of a small set of SNPs and corresponding genes for subsequent validation. For univariate analysis, a permutation-based approach is proposed to test at the gene level. We use regularized multivariable regression models for considering all SNPs simultaneously and selecting a small set of potentially important prognostic SNPs. Stability is judged according to resampling inclusion frequencies for both the univariate and the multivariable approach. The overall strategy is illustrated with data from a cohort of acute myeloid leukemia patients and explored in a simulation study. The multivariable approach is seen to automatically fo