Science.gov

Sample records for municipal water reclamation

  1. Aspects of municipal wastewater reclamation and reuse for future water resource shortages in Taiwan.

    PubMed

    Chiou, R J; Chang, T C; Ouyang, C F

    2007-01-01

    The Water Resources Agency (WRA), Ministry of Economic Affairs (MOEA) has predicted that the annual water demand in Taiwan will reach approximately 20 billion m3 by 2021. However, the present water supply is only 18 billion m3 per year. This means that an additional 2 billion m3 have to be developed in the next 17 years. The reuse of treated wastewater effluent from municipal wastewater treatment plants could be one target for the development of new water resources. The responsible government departments already have plans to construct public sewerage systems in order to improve the quality of life of the populace and protect the environment. The treated wastewater effluent from such municipal wastewater treatment plants could be a very stable and readily available secondary type of water resource, different from the traditional types of water resources. The major areas where reclaimed municipal wastewater can be used to replace traditional fresh water resources include agricultural and landscape irrigation, street cleaning, toilet flushing, secondary industrial reuse and environmental uses. However, necessary wastewater reclamation and reuse systems have not yet been established. The requirements for their establishment include water reuse guidelines and criteria, the elimination of health risks ensuring safe use, the determination of the wastewater treatment level appropriate for the reuse category, as well as the development and application of management systems reuse. An integrated system for water reuse would be of great benefit to us all by providing more efficient ways to utilise the water resources. PMID:17305164

  2. The role of free water surface constructed wetlands as polishing step in municipal wastewater reclamation and reuse.

    PubMed

    Ghermandi, A; Bixio, D; Thoeye, C

    2007-07-15

    In Europe, the last two decades witnessed growing water stress, both in terms of water scarcity and quality deterioration, which prompted many municipalities for a more efficient use of the water resources, including a more widespread acceptance of water reuse practices. Treatment technology encompasses a vast variety of options. Constructed wetlands are regarded as key elements in polishing conventionally treated wastewater for recreational and environmental applications. A survey was conducted to assess the performance of tertiary free water surface constructed wetlands in treating both key and emerging contaminant categories in the perspective of water reuse. A database was created with information concerning systems with emerging and free-floating macrophytes. The database includes results from both full- and pilot-scale systems, and considers a broad variety of operating conditions. This paper provides an overview of the treatment performances of the constructed wetlands in the database and discusses their significance in the optic of water reclamation and reuse practices. PMID:17289115

  3. Water Reclamation and Reuse.

    ERIC Educational Resources Information Center

    Smith, Daniel W.

    1978-01-01

    Presents a literature review of water reclamation and reuse. This review covers: (1) water resources planning; (2) agriculture and irrigation; (3) ground recharge; (4) industrial reuse; (5) health considerations; and (6) technology developments. A list of 217 references is also presented. (HM)

  4. Water Reclamation and Reuse.

    PubMed

    Huang, Chunkai; Zeng, Ping; Yang, Sen; Shao, Yanxi; Liu, Yang

    2016-10-01

    A review of the literature published in 2015 on topics relating to water reclamation and reuse is presented. The review is divided into the following sections: (1) General: extent of reuse, research needs, guidelines and monitoring, health effects; (2) Treatment technologies: integrated process design, membrane treatment, membrane bioreactors, electrocoagulation, ion exchange and adsorption, disinfection, wetlands, managed aquifer recharge; (3) Planning and management: public acceptance and education, economics/pricing, water quality planning and management and project/case studies. Much of the water treatment research focuses on membrane treatment, integrated designs, and other innovative technologies. PMID:27620090

  5. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false What is the Reclamation Rural Water Supply... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply Program? This program addresses domestic, municipal, and industrial...

  6. STRIP MINE RECLAMATION WITH MUNICIPAL SLUDGE

    EPA Science Inventory

    Stabilized municipal sludge was used on three 4-ha demonstration plots of acidic stripmined land. Liquid digested, dewatered, and sludges were used at variable rates to supply and maintain nutrients for vegetating the plots with a grass-legume mixture. All rates resulted in a lus...

  7. Domestic wash water reclamation

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    System consists of filtration unit, reverse-osmosis module, tanks, pumps, plumbing, and various gauges, meters, and valves. After water is used in washing machine or shower, it is collected in holding tank. Water is pumped through series of five particulate filters. Pressure tank supplies processed water to commode water closet.

  8. Membrane bioreactors for water reclamation.

    PubMed

    Tao, G; Kekre, K; Wei, Z; Lee, T C; Viswanath, B; Seah, H

    2005-01-01

    Singapore has been using dual membrane technology (MF/UF RO) to produce high-grade water (NEWater) from secondary treated sewage. Membrane bioreactor (MBR) has very high potential and will lead to the further improvement of the productivity and quality of high-grade water. This study was focused on the technical feasibility of MBR system for water reclamation in Singapore, making a comparison between various membrane systems available and to get operational experience in terms of membrane cleaning and other issues. Three MBR plants were built at Bedok Water Reclamation Plant with a design flow of 300 m3/day each. They were commissioned in March 2003. Three different types of submerged membranes were tested. They are Membrane A, plate sheet membrane with pore size of 0.4 microm; Membrane B, hollow fibre membrane with pore size of 0.4 microm; and Membrane C, hollow fibre membrane with pore size of 0.035 microm. The permeate quality of all the three MBR Systems were found equivalent to or better than that of the conventional tertiary treatment by ultrafiltration. MBR permeate TOC was about 2 mg/l lower than UF permeate TOC. GC-MS, GC-ECD and HPLC scan results show that trace organic contaminants in MBR permeate and UF permeate were in the same range. MBR power consumption can be less than 1 kwh/m3. Gel layer or dynamic membrane generated on the submerged membrane surface played an important role for the lower MBR permeate TOC than the supernatant TOC in the membrane tank. Intensive chemical cleaning can temporarily remove this layer. During normal operation conditions, the formation of dynamic membrane may need one day to obtain the steady low TOC levels in MBR permeate. PMID:16004005

  9. Development assessment of wash water reclamation

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1976-01-01

    An analytical study assessment of state-of-the-art wash water reclamation technology is presented. It covers all non-phase-change unit operations, unit processes and subsystems currently under development by NASA. Each approach to wash water reclamation is described in detail. Performance data are given together with the projected weights and sizes of key components and subsystems. It is concluded that a simple multifiltration subsystem composed of surface-type cartridge filters, carbon adsorption and ion exchange resins is the most attractive approach for spacecraft wash water reclamation in earth orbital missions of up to 10 years in duration.

  10. Sustainability of water reclamation: long-term recharge with reclaimed wastewater does not enhance antibiotic resistance in sediment bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wastewater reclamation for municipal irrigation is an increasingly attractive option for extending water supplies. However, public health concerns include the potential for development of antibiotic resistance (AR) in soil bacteria after exposure to residual pharmaceuticals in reclaimed water. Thoug...

  11. Reclamation of acidic copper mine tailings using municipal biosolids

    SciTech Connect

    Rogers, M.T.; Thompson, T.L.; Bengson, S.A.

    1998-12-31

    Reclamation of copper mine tailings in a cost effective, successful, and sustainable manner is an ongoing area of evaluation in the arid southwest. A study was initiated in September, 1996 near Hayden, Arizona to evaluate the use of municipal biosolids for reclaiming acidic copper mine tailings (pH of 2.5 to 4.0). The main objectives of the study were to (1) define an appropriate level of biosolids application for optimum plant growth, and (2) evaluate the effects of green waste and lime amendments. The experiment was a randomized complete block design with four biosolid rates of 20, 70, 100 and 135 dry tons/acre, three amendment treatments (none, green waste, and green waste plus lime); with three replications. Non-replicated controls (no treatment, green waste only and lime only) were included for comparison. Shortly after biosolids incorporation to a depth of 10--12 inches, composite soil samples (0--12 inches) of each plot were taken. Biosolids incorporation increased the pH of the tailings (>5.75) and additional increases in pH were noted with lime application. In January 1997, the plots were seeded and sprinkler irrigation was commenced. A total of 4.47 inches of rainfall and 3.8 inches of irrigation were applied until harvest in May 1997. Data from the first growing season indicates optimum growth (>66 lbs/acre) at biosolids rates of 70--100 dry tons/acre. There was a significant positive effect on growth of green waste and lime amendments. Surface NO{sub 3}-N concentrations in biosolids amended plots were greatly reduced (from 23 to 6 mg/kg) by addition of green waste. There was no evidence for NO{sub 3}N leaching below 12 inches.

  12. Water resources. Bureau of Reclamation's Bonneville Unit: future repayment arrangements

    SciTech Connect

    Not Available

    1986-03-01

    GAO is convinced that: the Bureau of Reclamation's use of the Water Supply Act of 1958 to defer a portion of municipal and industrial (M and I) costs of the Bonneville Unit was illegal, the Bureau's use of ad valorem (percentage of value) tax revenues from property owners to increase the Bonneville Unit's M and I customers repayment obligation under the 1965 contract was improper, and the Department of Energy Organization Act 1977 requires congressional approval of the modified cost allocation of the Bonneville Unit initiated by the Bureau in 1984.

  13. Computer simulation of water reclamation processors

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hightower, T. M.; Flynn, Michael T.

    1991-01-01

    The development of detailed simulation models of water reclamation processors based on the ASPEN PLUS simulation program is discussed. Individual models have been developed for vapor compression distillation, vapor phase catalytic ammonia removal, and supercritical water oxidation. These models are used for predicting the process behavior. Particular attention is given to methodology which is used to complete this work, and the insights which are gained by this type of model development.

  14. Biodeterioration of materials in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Maki, James S.; Mitchell, Ralph

    1992-01-01

    The chemicals produced by the microbial processes involved in the 'biofilms' which form on the surfaces of manned spacecraft water reclamation systems encompass both metals and organic poisons; both are potential hazards to astronaut health and the growth of the plants envisioned for closed-cycle life support systems. Image analysis is here shown to be a very useful technique for the study of biofilm formation on candidate water-processor materials for Space Station Freedom. The biodeterioration of materials exposed to biofilms can be swiftly evaluated by means of electrochemical impedance spectroscopy.

  15. Enhanced Oxidation Catalysts for Water Reclamation

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1999-01-01

    This effort seeks to develop and test high-performance, long operating life, physically stable catalysts for use in spacecraft water reclamation systems. The primary goals are to a) reduce the quantity of expendable water filters used to purify water aboard spacecraft, b) to extend the life of the oxidation catalysts used for eliminating organic contaminants in the water reclamation systems, and c) reduce the weight/volume of the catalytic oxidation systems (e.g. VRA) used. This effort is targeted toward later space station utilization and will consist of developing flight-qualifiable catalysts and long-term ground tests of the catalyst prior to their utilization in flight. Fixed -bed catalytic reactors containing 5% platinum on granular activated carbon have been subjected to long-term dynamic column tests to measure catalyst stability vs throughput. The data generated so far indicate that an order of magnitude improvement can be obtained with the treated catalysts vs the control catalyst, at only a minor loss (approx 10%) in the initial catalytic activity.

  16. Selective removal of organics for water reclamation

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. The feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space habitat humidity condensates was demonstrated. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. The electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water reclamation applications are described. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are also described. The design of a novel electrochemical system that incorporates a proton exchange membrane (PEM) electrolyte is presented based on parametric test data and current fuel cell technology.

  17. The utilisation of municipal waste compost for the reclamation of anthropogenic soils: implications on C dynamics.

    NASA Astrophysics Data System (ADS)

    Said-Pullicino, D.; Bol, R.; Gigliotti, G.

    2009-04-01

    The application of municipal waste compost (MWC) and other organic materials may serve to enhance soil fertility and increase C stocks of earthen materials and mine spoils used in land reclamation activities, particularly in the recovery of degraded areas left by exhausted quarries, mines, abandoned industrial zones, degraded natural areas and exhausted landfill sites. Such land management options may serve as a precondition for landscaping and reclamation of degraded areas, reforestation or agriculture. In fact, previous results have shown that compost application to the capping layer of a landfill covering soil significantly enhanced the fertility, evidenced by an improvement in soil structure, porosity and water holding capacity, an increase in the relative proportion of recalcitrant C pools and an increase in soil nutrient content, microbial activity and soil microbial biomass. Proper management of MWC requires a capacity to understand and predict their impacts on C dynamics in the field subsequent to application. Although numerous works deal with the effects of compost application in agricultural systems, little is known on how land rehabilitation practices effect C dynamics in such relatively young soil systems. The estimation of SOC pools and their potential turnover rates in land reclamation activities is fundamental to our understanding of terrestrial C dynamics. In the framework of a long-term field experiment, the objective of this work was to evaluate the temporal and spatial dynamics of compost-derived organic matter with respect to the major processes involved in organic matter cycling in an anthropogenic landfill covering soil originally amended with a single dose of MWC. We investigated long-term organic C dynamics in such systems by collecting samples at different depths over a 10 year chronosequence subsequent to compost application to the top layer of the landfill covering soil. Variations in the stable isotope composition (delta 13C) of the soil

  18. Municipal water consumption forecast accuracy

    NASA Astrophysics Data System (ADS)

    Fullerton, Thomas M.; Molina, Angel L.

    2010-06-01

    Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.

  19. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What is the Reclamation Rural Water Supply Program? 404.3 Section 404.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply...

  20. 43 CFR 404.3 - What is the Reclamation Rural Water Supply Program?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false What is the Reclamation Rural Water Supply Program? 404.3 Section 404.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.3 What is the Reclamation Rural Water Supply...

  1. Reclamation, managing water in the West: An exploration of Bureau of Reclamation approaches for managing conflict over diverging science

    USGS Publications Warehouse

    Burkardt, Nina; Ruell, Emily; Clark, Douglas

    2008-01-01

    We report the results of (1) an electronic survey of Reclamation senior managers and (2) a panel discussion amongst Reclamation senior managers as to the current institutional capabilities for managing diverging scientific findings in water dispute resolution processes. We conclude with a discussion of the strengths and weaknesses of the different tools and techniques managers reported in the survey and in the panel discussion.

  2. Geophysical experiments for the pre-reclamation assessment of industrial and municipal waste landfills

    NASA Astrophysics Data System (ADS)

    Balia, R.; Littarru, B.

    2010-03-01

    Two examples of combined application of geophysical techniques for the pre-reclamation study of old waste landfills in Sardinia, Italy, are illustrated. The first one concerned a mine tailings basin and the second one a municipal solid waste landfill; both disposal sites date back to the 1970-80s. The gravity, shallow reflection, resistivity and induced polarization methods were employed in different combinations at the two sites, and in both cases useful information on the landfill's geometry has been obtained. The gravity method proved effective for locating the boundaries of the landfill and the shallow reflection seismic technique proved effective for the precise imaging of the landfill's bottom; conversely the electrical techniques, though widely employed for studying waste landfills, provided mainly qualitative and debatable results. The overall effectiveness of the surveys has been highly improved through the combined use of different techniques, whose individual responses, being strongly dependent on their specific basic physical characteristic and the complexity of the situation to be studied, did not show the same effectiveness at the two places.

  3. Wastewater reclamation and recharge: A water management strategy for Albuquerque

    SciTech Connect

    Gorder, P.J.; Brunswick, R.J.; Bockemeier, S.W.

    1995-12-31

    Approximately 61,000 acre-feet of the pumped water is annually discharged to the Rio Grande as treated wastewater. Albuquerque`s Southside Water Reclamation Plant (SWRP) is the primary wastewater treatment facility for most of the Albuquerque area. Its current design capacity is 76 million gallons per day (mgd), which is expected to be adequate until about 2004. A master plan currently is being prepared (discussed here in Wastewater Master Planning and the Zero Discharge Concept section) to provide guidelines for future expansions of the plant and wastewater infrastructure. Construction documents presently are being prepared to add ammonia and nitrogen removal capability to the plant, as required by its new discharge permit. The paper discusses water management strategies, indirect potable reuse for Albuquerque, water quality considerations for indirect potable reuse, treatment for potable reuse, geohydrological aspects of a recharge program, layout and estimated costs for a conceptual reclamation and recharge system, and work to be accomplished under phase 2 of the reclamation and recharge program.

  4. Treatment of RO brine-towards sustainable water reclamation practice.

    PubMed

    Ng, H Y; Lee, L Y; Ong, S L; Tao, G; Viawanath, B; Kekre, K; Lay, W; Seah, H

    2008-01-01

    Treatment and disposal of RO brine is an important part in sustaining the water reclamation practice. RO brine generated from water reclamation contains high concentration of organic and inorganic compounds. Cost-effective technologies for treatment of RO brine are still relatively unexplored. Thus, this study aim to determine a feasible treatment process for removal of both organic and inorganic compounds in RO brine generated from NEWater production. The proposed treatment consists of biological activated carbon (BAC) column followed by capacitive deionization (CDI) process for organic and inorganic removals, respectively. Preliminary bench-scale study demonstrated about 20% TOC removal efficiency was achieved using BAC at 40 mins empty bed contact time (EBCT) while the CDI process was able to remove more than 90% conductivity reducing it from 2.19 mS/cm to only about 164 microS/cm. More than 90% cations and anions in the BAC effluent were removed using CDI process. In addition, TOC and TN removals of 78% and 91%, respectively were also attained through this process. About 90% water recovery was achieved. This process shows the potential of increased water recovery in the reclamation process while volume for disposal can be further minimized. Further studies on the sustainable operation and process optimization are ongoing. PMID:18776632

  5. Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation.

    PubMed

    Tang, Fang; Hu, Hong-Ying; Sun, Li-Juan; Sun, Ying-Xue; Shi, Na; Crittenden, John C

    2016-03-01

    Membrane fouling is an important shortcoming limiting the efficiency and wide application of reverse osmosis (RO) technology. In this paper, RO membranes in a full-scale municipal wastewater reclamation plant were autopsied. From the lead to tail position RO membranes in RO system, both of organic and inorganic matters on membranes reduced gradually. The higher ion products in RO concentrate didn't result in more serious inorganic scaling on the last position RO membranes, which was contrast with some other researches. Fe, Ca and Mg were major inorganic elements. Fe had a relatively low concentration in RO influent but the highest content on membranes. However, there was no specific pretreatment in terms of Fe removal. Ca and Mg scaling was controlled by the antiscalants injected. Organic fouling (75.0-84.5% of dry weights) was major problem on RO membranes due to the large amount of dissolved organic matters in secondary effluent as raw water. Hydrophilic acid (HIA, 48.0% of total DOC), hydrophobic acid (HOA, 23.6%) and hydrophobic neutral (HON, 19.0%) fraction was largest among the six fractions in RO influent, while HON (38.2-51.1%) and HOA (22.1-26.1%) tended to accumulate on membranes in higher quantities. Monitoring HON and HOA might help to forecast organic fouling. PMID:26760485

  6. Photocatalytic post-treatment in waste water reclamation systems

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  7. Ames' mutagenic activity in recycled water from an Israeli water reclamation project

    SciTech Connect

    Neeman, I.; Kroll, R.; Mahler, A.; Rubin, R.J.

    1980-01-01

    Effluent samples taken from a water reclamation project in Israel were analyzed for mutagenicity and toxicity using the Ames assay test. Test results indicate the presence of low levels of mutagens in recycled water taken from the reclamation plant; samples taken from different sites in the plant yielded different levels of mutagenicity. Improved wastewater treatment technology is needed to make water reuse safe. (2 graphs, 15 references, 1 table)

  8. Selective removal of organics for water reclamation

    NASA Technical Reports Server (NTRS)

    Murphy, Oliver J.; Hitchens, G. Duncan

    1989-01-01

    Electrolysis has been investigated as a means of purifying waste water. The feasibility of the direct electrochemical oxidation of urea has been demonstrated. Urea levels were reduced from 1200 ppm to 1 ppm forming the basis for a new approach to urine purification where the only consumable is electrical energy. Preliminary estimates of the energy requirements are 270 W/hr per liter of urine. Urea oxidation rates of around 350 mg urea/hr/m2 were observed. It is anticipated that a 1 m2 geometric area of electrode could treat urine for a crew of several persons. The low levels of organic contaminants resulting from this treatment indicate that the approach may have an impact as a post treatment process. Experiments are planned to investigate this later possibility.

  9. Water reclamation technology development for future long range missions

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Amo, Karl; Hightower, T. M.; Fisher, John

    1992-01-01

    This paper covers the development of computer simulation models of the Vapor Compression Distillation (VCD) process, the Super Critical Water Oxidation (SCWO) process, and two versions of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) process. These process level models have combined into two Integrated Water Reclamation Systems (IWRS). Results from these integrated models, in conjunction with other data sources, have been used to develop a preliminary comparison of the two systems. Also discussed in this paper is the development of a Vapor Phase Catalytic Ammonia Reduction teststand and the development of a new urine analog for use with the teststand and computer models.

  10. Corrosion consequences of microfouling in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Mitchell, Ralph

    1991-01-01

    This paper examines the potential fouling and corrosion problems associated with microbial film formation throughout the water reclamation system (WRS) designed for the Space Station Freedom. It is shown that the use of advanced metal sputtering techiques combined with image analysis and FTIR spectroscopy will present realistic solutions for investigating the formation and function of biofilm on different alloys, the subsequent corrosion, and the efficiency of different treatments. These techniques, used in combination with electrochemical measurements of corrosion, will provide a powerful approach to examinations of materials considered for use in the WRS.

  11. ADVANCED TREATMENT FOR WASTEWATER RECLAMATION AT WATER FACTORY 21

    EPA Science Inventory

    The performance and reliability of Water Factory 21 (WF21) in Orange County, California, for removal of a broad range of organic, inorganic, and biological contaminants from activated-sludge treated municipal wastewater was evaluated. This full-scale facility has a capacity of 0....

  12. Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China.

    PubMed

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2013-07-01

    In this study, we investigated the occurrences and fates of eight quinolones (QNs), nine sulfonamides (SAs), and five macrolides (MCs) in a wastewater reclamation plant (WRP) in Beijing, China. Among all the 22 antibiotics considered, quinolones were the dominant antibiotics in all samples (4916ngL(-1) in influents, 1869ngL(-1) in secondary effluents, 123ngL(-1) in tertiary effluents, and 9200μgkg(-1) in sludge samples), followed by sulfonamides (2961ngL(-1) in influents, 1053ngL(-1) in secondary effluents, 25.9ngL(-1) in tertiary effluents, and 63.7μgkg(-1) in sludge samples) and macrolides (365ngL(-1) in influents, 353ngL(-1) in secondary effluents, 24.7ngL(-1) in tertiary effluents, and 32.7μgkg(-1) in sludge samples). The removal efficiencies of the target antibiotics were limited (-32 to 78%) in the conventional treatment. This study indicated that quinolones were mainly removed from the secondary clarifier, and sulfonamides were degraded in the oxic tank; while macrolides were considered as persistent during the conventional treatment. After the advance treatment, the target antibiotics could be effectively removed at high rates (85-100%), and the risks of antibiotic contamination significantly decreased. However, risk assessment showed that the risk of ofloxacin and erythromycin on organisms in recycled water needed further investigations. PMID:23399307

  13. Tertiary treatment using microfiltration and UV disinfection for water reclamation

    SciTech Connect

    Jolis, D.; Hirano, R.; Pitt, P.

    1999-03-01

    Microfiltration and UV disinfection are two alternative technologies for water reclamation. The results of a pilot study combining these two processes are presented. In addition to producing filtrate turbidites averaging 0.06 nephelometric turbidity units, microfiltration was an effective barrier to pathogens, demonstrating average log reductions of 4.5 for total coliforms and 2.9 for MS2 bacteriophage. Ultraviolet disinfection following microfiltration reliably met the California Wastewater Reclamation Criteria (Title 22) total coliform standard of 2.2 colony-forming units/100 mL at a UV dose of 450 J/m{sup 2}. The MS2 bacteriophage standard, which requires a 5-log reduction, was achieved by microfiltration and a UV dose of 880 J/m{sup 2}. A model of the kinetics of inactivation of MS2 bacteriophage was used in further analysis of disinfection data. The model indicated that considerable backmixing occurred in the pilot UV disinfection unit, and observed UV doses could be reduced with improved hydraulics.

  14. Wash water reclamation technology for advanced manned spacecraft

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.

    1977-01-01

    The results of an analytical study and assessment of state-of-the-art wash water reclamation technology for advanced manned spacecraft is presented. All non-phase-change unit operations, unit processes, and subsystems currently under development by NASA are considered. Included among these are: filtration, ultrafiltration, carbon adsorption, ion exchange, chemical pretreatment, reverse osmosis, hyperfiltration, and certain urea removal techniques. Performance data are given together with the projected weights and sizes of key components and subsystems. In the final assessment, a simple multifiltration approach consisting of surface-type cartridge filters, carbon adsorption and ion exchange resins receives the highest rating for six-man orbital missions of up to 10 years in duration.

  15. Economic feasibility analysis of water-harvesting techniques for mined-land reclamation

    SciTech Connect

    Nieves, L.A.; Marti, M.H.

    1981-07-01

    A water harvesting, agricultural production system, field tested as a means of reclaiming strip-mined land is described. Though the technical feasibility of the system is becoming increasingly apparent, economic feasibility and legal issues may determine its potential application. The purpose of this study is to explore the economic feasibility of the system and to provide information for use in assessing whether further investigation of water harvesting reclamation techniques is warranted. The economic feasibility of the PNL reclamation system hinges on whether its net benefits exceed those of conventional reclamation. This preliminary feasibility study assesses the net private benefits of each system using data for the Peabody Coal Company's Kayenta mine on the Black Mesa in Arizona. To compare the alternative reclamation systems, the present value of direct net benefits (income minus production and reclamation costs) is calculated for grazing (conventional reclamation) or for cropping (PNL reclamation). Three of the PNL system slope treatments have lower estimated total costs than conventional reclamation. The difference is $3895/acre for compacted slope, $3025/acre for salt-compacted slope and $2310/acre for crop-on-slope. These differences constitute a substantial cost advantage for the system on the basis of the present value of land reclamation and maintenance costs. The system also has advantages based on the estimated value of agricultural production capacity. Even the lowest yield levels considered for alfalfa, corn, and pinto beans had higher net present values than grazing.

  16. 43 CFR 404.49 - What criteria will Reclamation use to determine whether to recommend that a proposed rural water...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... determine whether to recommend that a proposed rural water supply project be authorized for construction... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Feasibility Studies § 404.49 What criteria will Reclamation use to determine whether to recommend that a proposed rural water...

  17. DELUGE AND WATER RECLAMATION BASIN BELOW TEST STAND 1A. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DELUGE AND WATER RECLAMATION BASIN BELOW TEST STAND 1-A. Looking north northwest - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  18. 43 CFR 404.12 - Can Reclamation provide assistance with the construction of a rural water supply project under...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Can Reclamation provide assistance with the construction of a rural water supply project under this program? 404.12 Section 404.12 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview...

  19. 43 CFR 404.12 - Can Reclamation provide assistance with the construction of a rural water supply project under...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Can Reclamation provide assistance with the construction of a rural water supply project under this program? 404.12 Section 404.12 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview...

  20. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake of... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Municipal and private water...

  1. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake of... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Municipal and private water...

  2. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake of... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Municipal and private water...

  3. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Municipal and private water supplies... Potential Effects on Human Use Characteristics § 230.50 Municipal and private water supplies. (a) Municipal and private water supplies consist of surface water or ground water which is directed to the intake...

  4. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Tennessee reclamation plan for... OPERATIONS WITHIN EACH STATE TENNESSEE § 942.20 Approval of Tennessee reclamation plan for lands and waters affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  5. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Tennessee reclamation plan for... OPERATIONS WITHIN EACH STATE TENNESSEE § 942.20 Approval of Tennessee reclamation plan for lands and waters affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  6. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Tennessee reclamation plan for... OPERATIONS WITHIN EACH STATE TENNESSEE § 942.20 Approval of Tennessee reclamation plan for lands and waters affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  7. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters.

    PubMed

    Shen, Chengcheng; Shi, Honghua; Zheng, Wei; Li, Fen; Peng, Shitao; Ding, Dewen

    2016-02-15

    The purpose of this study is to develop feasible tools to investigate the cumulative impact of reclamations on coastal ecosystem health, so that the strategies of ecosystem-based management can be applied in the coastal zone. An indicator system and model were proposed to assess the cumulative impact synthetically. Two coastal water bodies, namely Laizhou Bay (LZB) and Tianjin coastal waters (TCW), in the Bohai Sea of China were studied and compared, each in a different phase of reclamations. Case studies showed that the indicator scores of coastal ecosystem health in LZB and TCW were 0.75 and 0.68 out of 1.0, respectively. It can be concluded that coastal reclamations have a historically cumulative effect on benthic environment, whose degree is larger than that on aquatic environment. The ecosystem-based management of coastal reclamations should emphasize the spatially and industrially intensive layout. PMID:26763325

  8. Tapping Water from the Atmosphere: The Bureau of Reclamation's Project Skywater (Invited)

    NASA Astrophysics Data System (ADS)

    Harper, K.

    2010-12-01

    Since President Theodore Roosevelt signed the Reclamation Act on 17 June 1902—creating the forerunner of today’s Bureau of Reclamation that was established under Interior in 1907—this agency has been tasked with developing water resources in the US West. These efforts focused on building dams, reservoirs, and irrigation systems. But by the early 1960s, the federal government’s increasing interest in weather control began to attract the attention of BuRec’s leaders. Deciding that it was time to track down solid information on rainmaking techniques, the bureau called upon weather control pioneer Vincent Schaefer for assistance with its plan use weather modification as an adjunct to its water resources development portfolio. In response, Schaefer—writing to the National Science Foundation’s Earl Droessler in late 1961—declared that the Bureau’s proposed project would bring a “responsible, capable, and enthusiastic” group to represent the government and take over the engineering parts of weather modification. Enthusiastic was a bit of an understatement. BuRec was eager to use the atmosphere as a water reservoir, which could dispense moisture to watersheds feeding their earth-bound reservoirs. Contracting with universities—and working to get ahead of its nemesis, the skeptical US Weather Bureau—BuRec announced the artificial precipitation successes of its “Laboratory in the Sky” in early 1963. Although this headquarters-announced “success” was disputed by BuRec’s Denver field office, BuRec’s colorful commissioner Floyd Dominy was determined to press forward. Within months, the bureau was publishing reports indicating that the US West was a “potential future food deficit area” due to an increasing population that was outstripping the availability of ground and surface waters for agriculture. New approaches would be necessary to bring water to BuRec reservoirs for further distribution to municipalities, irrigators, and industries

  9. Sensor placement for municipal water networks.

    SciTech Connect

    Watson, Jean-Paul; Berry, Jonathan W.; Phillips, Cynthia Ann; Boman, Erik Gunnar; Hart, David Blaine; Carr, Robert D.; McKenna, Sean Andrew; Hart, William Eugene; Murray, Regan Elizabeth; Riesen, Lee Ann

    2010-12-01

    We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

  10. Evaluation of a multifiltration water reclamation subsystem to reclaim domestic clothes wash water

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.

    1973-01-01

    An evaluation has been performed of a multifiltration water reclamation subsystem to determine its capability to recover water from domestic clothes wash water. A total of 32.89 kg (72.5 lb) of clothes were washed during eight wash cycles which used 1.4 lb of detergent, 145 gallons of hot water and 133.9 gallons of cold water. Water recovered at a weighted average process rate of 3.81 gallons per hour met the majority of the 23 requirements established for potable water by the U.S. Public Health Service. Average power consumed during this evaluation was approximately 71 watt-hours per gallon of water recovered. Filter replacement, which was required primarily for the control of micro-organisms in the recovered water averaged 4.86 filters per 100 gallons of wash water processed. The subsystem removed approximately 98 percent and virtually 100 percent of the phosphates and surfactants, respectively, from the wash water.

  11. Changes in the components and biotoxicity of dissolved organic matter in a municipal wastewater reclamation reverse osmosis system.

    PubMed

    Sun, Ying-Xue; Hu, Hong-Ying; Shi, Chun-Zhen; Yang, Zhe; Tang, Fang

    2016-09-01

    The characteristics of dissolved organic matter (DOM) and the biotoxicity of these components were investigated in a municipal wastewater reclamation reverse osmosis (mWRRO) system with a microfiltration (MF) pretreatment unit. The MF pretreatment step had little effect on the levels of dissolved organic carbon (DOC) in the secondary effluent, but the addition of chlorine before MF promoted the formation of organics with anti-estrogenic activity. The distribution of excitation emission matrix (EEM) fluorescence constituents exhibited obvious discrepancies between the secondary effluent and the reverse osmosis (RO) concentrate. Using size exclusion chromatography, DOM with low molecular weights of approximately 1.2 and 0.98 kDa was newly formed during the mWRRO. The normalized genotoxicity and anti-estrogenic activity of the RO concentrate were 32.1 ± 10.2 μg4-NQO/mgDOC and 0.36 ± 0.08 mgTAM/mgDOC, respectively, and these values were clearly higher than those of the secondary effluent and MF permeate. The florescence volume of Regions I and II in the EEM spectrum could be suggested as a surrogate for assessing the genotoxicity and anti-estrogenic activity of the RO concentrate. PMID:26803912

  12. Reclamation of a burned forest soil with municipal waste compost: macronutrient dynamic and improved vegetation cover recovery.

    PubMed

    Guerrero, C; Gómez, I; Moral, R; Mataix-Solera, J; Mataix-Beneyto, J; Hernández, T

    2001-02-01

    The reclamation of burned soils in Mediterranean environments is of paramount importance in order to increase the levels of soil protection and minimise erosion and soil loss. The changes produced in the content of total organic carbon (TOC), N (Kjeldahl) and available P, K, Ca and Mg by the addition of different doses of a municipal solid waste compost to a burned soil were evaluated during one year. The effect of organic amendment on the improvement in the vegetation cover after one year was also evaluated. The organic amendment, particularly at a high dose, increased the TOC and N-Kjeldahl content of the soil in a closely related way. The levels of available K in soil were also enhanced by the organic amendment. Although the effects on all three parameters tended to decrease with time, their values in the amended soils were higher than in the control soil, which clearly indicates the improvement in the chemical quality of the soil brought about by the organic amendment. The available P content did not seem to be influenced by organic treatment, while available Mg levels were higher than in the control during the first 4 months following organic amendment. The application of compost to the burned soil improved its fertility and favoured rapid vegetal recovery, thus minimising the risk of soil erosion. PMID:11198173

  13. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.

    PubMed

    Daigger, Glen T

    2009-08-01

    Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban

  14. MUNICIPAL WATER POLLUTION CONTROL ABSTRACTS: NOVEMBER 1976-OCTOBER 1977

    EPA Science Inventory

    The Franklin Institute Research Laboratories, Science Information Services Department, prepared for the Environmental Protection Agency Volume 4 of the Municipal Technology Bulletin, a current-awareness abstracting bulletin covering methods of municipal waste water treatment, pro...

  15. MUNICIPAL WATER POLLUTION CONTROL ABSTRACTS: MAY-OCTOBER 1976

    EPA Science Inventory

    The Franklin Institute Research Laboratories, Science Information Services Department prepared for the Environmental Protection Agency, Volume 4 of a monthly current-awareness abstracting bulletin, Municipal Technology Bulletin, which dealt with methods of municipal waste water t...

  16. MUNICIPAL WATER POLLUTION CONTROL ABSTRACTS: APRIL 1975-MARCH 1976

    EPA Science Inventory

    The Franklin Institute Research Laboratories, Science Information Services Department prepared for the Environmental Protection Agency, Volume 3 of a monthly current-awareness abstracting bulletin, Municipal Technology Bulletin, which dealt with methods of municipal waste water t...

  17. 43 CFR 404.49 - What criteria will Reclamation use to determine whether to recommend that a proposed rural water...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... opportunities for water conservation through structural or non-structural approaches and demonstration... determine whether to recommend that a proposed rural water supply project be authorized for construction... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Feasibility Studies §...

  18. 43 CFR 404.49 - What criteria will Reclamation use to determine whether to recommend that a proposed rural water...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... opportunities for water conservation through structural or non-structural approaches and demonstration... determine whether to recommend that a proposed rural water supply project be authorized for construction... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Feasibility Studies §...

  19. 43 CFR 404.49 - What criteria will Reclamation use to determine whether to recommend that a proposed rural water...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... opportunities for water conservation through structural or non-structural approaches and demonstration... determine whether to recommend that a proposed rural water supply project be authorized for construction... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Feasibility Studies §...

  20. NASA Land Information System (LIS) Water Availability to Support Reclamation ET Estimation

    NASA Technical Reports Server (NTRS)

    Toll, David; Arsenault, Kristi; Pinheiro, Ana; Peters-Lidard, Christa; Houser, Paul; Kumar, Sujay; Engman, Ted; Nigro, Joe; Triggs, Jonathan

    2005-01-01

    The U.S. Bureau of Reclamation identified the remote sensing of evapotranspiration (ET) as an important water flux for study and designated a test site in the Lower Colorado River basin. A consortium of groups will work together with the goal to develop more accurate and cost effective techniques using the enhanced spatial and temporal coverage afforded by remote sensing. ET is a critical water loss flux where improved estimation should lead to better management of Reclamation responsibilities. There are several areas where NASA satellite and modeling data may be useful to meet Reclamation's objectives for improved ET estimation. In this paper we outline one possible contribution to use NASA's data integration capability of the Land Information System (LIS) to provide a merger of observational (in situ and satellite) with physical process models to provide estimates of ET and other water availability outputs (e.g., runoff, soil moisture) retrospectively, in near real-time, and also providing short-term predictions.

  1. Evaluation of the treatment of reverse osmosis concentrates from municipal wastewater reclamation by coagulation and granular activated carbon adsorption.

    PubMed

    Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan

    2016-07-01

    Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system. PMID:27032632

  2. The Bureau of Reclamation's new mandate for irrigation water conservation: Purposes and policy alternatives

    SciTech Connect

    Moore, M.R. )

    1991-02-01

    Although the Bureau of Reclamation adopted a new mission as a water management agency, social purposes of the mission and methods of accomplishing the purposes remain undefined. A broad consensus agrees that a central feature of the agency's management program should be irrigation water conservation. This paper describes three purposes of irrigation water conservation: achieving economic efficiency of water allocation, improving environmental quality of western river systems, and satisfying outstanding Native American water claims. Five policy instruments are described as alternative methods of inducing conservation: quantity-based regulation, price-based regulation, transferable water use permits, conservation subsidies, and decentralization of ownership of Reclamation facilities. Two findings are: (1) price-based regulation may not produce water conservation and (2) conservation policy instruments should be chosen with reference to their ability to achieve the purposes of federal water conservation policy. An example illustrates quantitative effects on farm income of the alternative instruments.

  3. Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays.

    PubMed

    Lin, Yi-wen; Li, Dan; Gu, April Z; Zeng, Si-yu; He, Miao

    2016-02-01

    Microbial regrowth needs to be managed during water reclamation and distribution. The aim of present study was to investigate the removal and regrowth of Escherichia coli (E. coli) and Salmonella in water reclamation and distribution system by using membrane integrity assay (PMA-qPCR), reverse transcriptional activity assay (Q-RT-PCR) and culture-based assay, and also to evaluate the relationships among bacterial regrowth, and environmental factors in the distribution system. The results showed that most of the water reclamation processes potentially induced bacteria into VBNC state. The culturable E. coli and Salmonella regrew 1.8 and 0.7 log10 in distribution system, which included reactivation of bacteria in the viable but non-culturable (VBNC) state and reproduction of culturable bacteria. The regrowth of culturable E. coli and Salmonella in the distribution system mainly depended on the residual chlorine levels, with correlations (R(2)) of -0.598 and -0.660. The abundances of membrane integrity and reverse transcriptional activity bacteria in reclamation effluents had significant correlations with the culturable bacteria at the end point of the distribution system, demonstrating that PMA-qPCR and Q-RT-PCR are sensitive and accurate tools to determine and predict bacterial regrowth in water distribution systems. This study has improved our understanding of microbial removal and regrowth in reclaimed water treatment and distribution systems. And the results also recommended that more processes should be equipped to remove viable bacteria in water reclamation plants for the sake of inhibition microbial regrowth during water distribution and usages. PMID:26595310

  4. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lands and waters affected by past coal mining. 942.20 Section 942.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING... affected by past coal mining. The Tennessee Reclamation Plan, as submitted on March 24, 1982, is...

  5. 43 CFR 404.12 - Can Reclamation provide assistance with the construction of a rural water supply project under...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Can Reclamation provide assistance with the construction of a rural water supply project under this program? 404.12 Section 404.12 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE...

  6. 43 CFR 404.49 - What criteria will Reclamation use to determine whether to recommend that a proposed rural water...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false What criteria will Reclamation use to determine whether to recommend that a proposed rural water supply project be authorized for construction? 404.49 Section 404.49 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR...

  7. Carbon footprint estimation of municipal water cycle

    NASA Astrophysics Data System (ADS)

    Bakhshi, Ali A.

    2009-11-01

    This research investigates the embodied energy associated with water use. A geographic information system (GIS) was tested using data from Loudoun County, Virginia. The objective of this study is to estimate the embodied energy and carbon emission levels associated with water service at a geographical location and to improve for sustainability planning. Factors that affect the carbon footprint were investigated and the use of a GIS based model as a sustainability planning framework was evaluated. The carbon footprint metric is a useful tool for prediction and measurement of a system's sustainable performance over its expected life cycle. Two metrics were calculated: tons of carbon dioxide per year to represent the contribution to global warming and watt-hrs per gallon to show the embodied energy associated with water consumption. The water delivery to the building, removal of wastewater from the building and associated treatment of water and wastewater create a sizable carbon footprint; often the energy attributed to this water service is the greatest end use of electrical energy. The embodied energy in water depends on topographical characteristics of the area's local water supply, the efficiency of the treatment systems, and the efficiency of the pumping stations. The questions answered by this research are: What is the impact of demand side sustainable water practices on the embodied energy as represented by a comprehensive carbon footprint? What are the major energy consuming elements attributed to the system? What is a viable and visually identifiable tool to estimate the carbon footprint attributed to those Greenhouse Gas (GHG) producing elements? What is the embodied energy and emission associated with water use delivered to a building? Benefits to be derived from a standardized GIS applied carbon footprint estimation approach include: (1) Improved environmental and economic information for the developers, water and wastewater processing and municipal

  8. Reclamation of used urban waters for irrigation purposes--a review of treatment technologies.

    PubMed

    Norton-Brandão, Diana; Scherrenberg, Sigrid M; van Lier, Jules B

    2013-06-15

    The worldwide fresh water scarcity is increasing the demand for non-conventional water resources. Despite the technology being available for application of treated wastewater in irrigation, the use of effluent in agriculture is not being properly managed in the majority of cases. Industrial countries, where financial resources are available but restricted, face difficulties in some cases related to the lack of a complete definition of irrigation water quality standards, as well as to the lack of monitoring components that determine if the effluent is suitable for such use. The present paper presents a critical review on urban reclamation technologies for irrigation. The technologies are presented by the four most important parameters for irrigation water quality: salinity, pathogens, nutrients and heavy metals. An overview is given of the current, on-going evaluation of different reclamation technologies for irrigation. PMID:23562951

  9. Bacterial antibiotic resistance in soils irrigated with reclaimed municipal wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wastewater reclamation for municipal irrigation and groundwater recharge is an increasingly attractive option for extending water supplies. However, public health concerns include the potential for development of antibiotic resistance (AR) in soil bacteria after exposure to residual chemicals in rec...

  10. Water Pollution: Part I, Municipal Wastewaters; Part II, Industrial Wastewaters.

    ERIC Educational Resources Information Center

    Fowler, K. E. M.

    This publication is an annotated bibliography of municipal and industrial wastewater literature. This publication consists of two parts plus appendices. Part one is entitled Municipal Wastewaters and includes publications in such areas as health effects of polluted waters, federal policy and legislation, biology and chemistry of polluted water,…

  11. Status of the Space Station water reclamation and management subsystem design concept

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Mortazavi, P. L.

    1987-01-01

    A development status report is presented for the NASA Space Station's water reclamation and management (WRM) system, for which the candidate phase change-employing processing technologies are an air evaporation subsystem, a thermoelectric integrated membrane evaporation subsystem, and the vapor compression distillation subsystem. These WRM candidates employ evaporation to effect water removal from contaminants, but differ in their control of the vapor/liquid interface in zero-gravity and in the recovery of the latent heat of vaporization.

  12. The municipal viewpoint on water security

    NASA Astrophysics Data System (ADS)

    States, Stanley

    2006-05-01

    Following the attacks of September 11, 2001 the drinking water industry like many other sectors of our society realized the possibility that they could potentially become the target of malevolent acts. The most serious concern is that an individual or group might intentionally contaminate the public water supply. From an analytical perspective this new concern introduced two challenges. The first is the need to be able to conduct rapid analyses, perhaps at the scene of a suspected contamination event, to obtain preliminary, presumptive information that can help emergency responders determine, in a timely manner, whether a harmful substance had indeed been introduced into the water. The second challenge is the need to develop a robust and sensitive continuous online monitoring system that can detect harmful chemicals, microbes, or radionuclides that may have intentionally, or even accidentally, found their way into the municipal water system. This paper summarizes the current state of technology in these two areas and describes some of the shortfalls where future development is needed.

  13. Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry.

    PubMed

    Phungsai, Phanwatt; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2016-09-01

    Reclaimed water has recently become an important water source for urban use, but the composition of dissolved organic matter (DOM) in reclaimed water has rarely been characterized at the compound level because of its complexity. In this study, the transformation and changes in composition of low molecular weight DOM in water reclamation processes, where secondary effluent of the municipal wastewater treatment plant was further treated by biofiltration, ozonation and chlorination, were investigated by "unknown" screening analysis using Orbitrap mass spectrometry (Orbitrap MS). The intense ions were detected over an m/z range from 100 to 450. In total, 2412 formulae with various heteroatoms were assigned, and formulae with carbon (C), hydrogen (H) and oxygen (O) only and C, H, O and sulfur (S) were the most abundant species. During biofiltration, CHO-only compounds with relatively high hydrogen to carbon (H/C) ratio or with saturated structure were preferentially removed, while CHOS compounds were mostly removed. Ozonation induced the greatest changes in DOM composition. CHOS compounds were mostly decreased after ozonation while ozone selectively removed CHO compounds with relatively unsaturated structure and produced compounds that were more saturated and with a higher degree of oxidation. After chlorination, 168 chlorine-containing formulae, chlorinated disinfection by-products (DBPs), were additionally detected. Candidate DBP precursors were determined by tracking chlorinated DBPs formed via electrophilic substitution, half of which were generated during the ozonation. PMID:27235773

  14. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  15. Relating Climate Change Risks to Water Supply Planning Assumptions: Recent Applications by the U.S. Bureau of Reclamation (Invited)

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.

    2009-12-01

    Presentation highlights recent methods carried by Reclamation to incorporate climate change and variability information into water supply assumptions for longer-term planning. Presentation also highlights limitations of these methods, and possible method adjustments that might be made to address these limitations. Reclamation was established more than one hundred years ago with a mission centered on the construction of irrigation and hydropower projects in the Western United States. Reclamation’s mission has evolved since its creation to include other activities, including municipal and industrial water supply projects, ecosystem restoration, and the protection and management of water supplies. Reclamation continues to explore ways to better address mission objectives, often considering proposals to develop new infrastructure and/or modify long-term criteria for operations. Such studies typically feature operations analysis to disclose benefits and effects of a given proposal, which are sensitive to assumptions made about future water supplies, water demands, and operating constraints. Development of these assumptions requires consideration to more fundamental future drivers such as land use, demographics, and climate. On the matter of establishing planning assumptions for water supplies under climate change, Reclamation has applied several methods. This presentation highlights two activities where the first focuses on potential changes in hydroclimate frequencies and the second focuses on potential changes in hydroclimate period-statistics. The first activity took place in the Colorado River Basin where there was interest in the interarrival possibilities of drought and surplus events of varying severity relevant to proposals on new criteria for handling lower basin shortages. The second activity occurred in California’s Central Valley where stakeholders were interested in how projected climate change possibilities translated into changes in hydrologic and

  16. Effects of nitrate input from a water reclamation facility on the Occoquan Reservoir water quality.

    PubMed

    Cubas, Francisco J; Novak, John T; Godrej, Adil N; Grizzard, Thomas J

    2014-02-01

    To manage water quality in the Occoquan Reservoir, Virginia, a water reclamation facility discharges nitrified product water that reduces the release of undesirable substances (e.g., phosphorus, iron, and ammonia) from sediments during periods of hypolimnetic anoxia. Results showed that when the oxidized nitrogen (OxN) concentration input to the reservoir was lower than 5 mg N/L during periods of anoxia following thermal stratification, nitrate was depleted in the upper reaches of the reservoir resulting in the release of ammonia and orthophosphate from the sediments downstream. When the OxN input to the reservoir was operationally increased to a concentration greater than 10 mg-N/L, orthophosphate release was suppressed. Introducing OxN to the system decreased sediment ammonia release but did not eliminate it. By discharging reclaimed water that contained nitrate levels greater than 10 mg N/L, reservoir water quality was protected and the discharged nitrate was converted to nitrogen gas as it moved downstream. PMID:24645542

  17. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources. PMID:22828292

  18. Application of biocatalysts to Space Station ECLSS and PMMS water reclamation

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Bagdigian, Robert M.

    1989-01-01

    Immobilized enzyme reactors have been developed and tested for potential water reclamation applications in the Space Station Freedom Environmental Control and Life Support System (ECLSS) and Process Materials Management System (PMMS). The reactors convert low molecular weight organic contaminants found in ECLSS and PMMS wastewaters to compounds that are more efficiently removed by existing technologies. Demonstration of the technology was successfully achieved with two model reactors. A packed bed reactor containing immobilized urease was found to catalyze the complete decomposition of urea to by-products that were subsequently removed using conventional ion exchange results. A second reactor containing immobilized alcohol oxidase showed promising results relative to its ability to convert methanol and ethanol to the corresponding aldehydes for subsequent removal. Preliminary assessments of the application of biocatalysts to ECLSS and PMMS water reclamation sytems are presented.

  19. The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Snowdon, Doug; Pickering, Karen D.; Callahan, Michael

    2007-01-01

    Advanced water processors being developed for NASA s Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS) and is based primarily on ISS experience related to the development of the VRA. The second ersatz solution was defined by NASA in support of a study contract to Hamilton Sundstrand to evaluate the VRA as a potential post processor for the Cascade Distillation system being developed by Honeywell. This second ersatz solution contains several low molecular weight alcohols, organic acids, and several inorganic species. A range of residence times, oxygen concentrations and operating temperatures have been studied with both ersatz solutions to provide addition performance capability of the VRA catalyst.

  20. Mine drainage and surface mine reclamation. Volume I. Mine water and mine waste

    SciTech Connect

    Not Available

    1988-01-01

    Mine waste and mine reclamation are topics of major interest to the mining industry, the government and the general public. This publication and its companion volume are the proceedings of a conference held in Pittsburgh, April 19-21, 1988. There were nine sessions (50 papers) that dealt with the geochemistry, hydrology and problems of mine waste and mine water, especially acid mine drainage. These comprise Volume 1. The nine sessions (43 papers) that dealt with reclamation and restoration of disturbed lands, as well as related policy issues, are included in volume 2. Volume 2 also contains the ten papers that pertained to control of subsidence and mine fires at abandoned mines. Poster session presentations are, in general, represented by abstracts; these have been placed in the back of both volumes.

  1. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste

    SciTech Connect

    Forster, G A

    1995-01-01

    This report summarized the Lancaster county Solid Waste Management Authorities`s (LCSWMA)landfill reclamation activities, ongoing since 1991. All aspects have been analyzed from the manpower and equipment requirements at the landfill to the operational impacts felt at the LCSWMA Resource Recovery Facility (RRF) where the material is delivered for processing. Characteristics of the reclaimed refuse and soil recovered from trommeling operations are discussed as are results of air monitoring performed at the landfill excavation site and the RRF. The report also discusses the energy value of the reclaimed material and compares this value with those obtained for significantly older reclaimed waste streams. The effects of waste age on the air emissions and ash residue quality at the RRF are also provided. The report concludes by summarizing the project benefits and provides recommendations for other landfill reclamation operations and areas requiring further research.

  2. Reclamation and disposal of water-based machining coolants

    SciTech Connect

    Taylor, P.A.

    1982-01-01

    The Oak Ridge Y-12 Plant, which is operated by the Union Carbide Corporation, Nuclear Division for the Department of Energy under US government contract W-7405-eng-26, currently uses about 10{sup 6} L/yr (260,000 gal/yr) of water-based coolants in its machining operations. These coolants are disposed of in a 110,000-L (29,000-gal) activated sludge reactor. The reactor has oxidized an average of 38.6 kg of total organic carbon (TOC) per day with an overall efficiency of 90%. The predominant bacteria in the reactor have been identified once each year for the past three years. Six primary types of water-based coolants are currently used in the machine shops. In order to reduce the coolant usage rate, efforts are being made to introduce one universal coolant into the shops. By using a biocide to limit bacterial deterioration and using a filter and centrifuge system to remove dirt and tramp oils from the coolant, the coolant discard rate can be greatly reduced. 1 tab.

  3. Nanofiltration based water reclamation from tannery effluent following coagulation pretreatment.

    PubMed

    Dasgupta, J; Mondal, D; Chakraborty, S; Sikder, J; Curcio, S; Arafat, H A

    2015-11-01

    Coagulation-nanofiltration based integrated treatment scheme was employed in the present study to maximize the removal of toxic Cr(VI) species from tannery effluents. The coagulation pretreatment step using aluminium sulphate hexadecahydrate (alum) was optimized by response surface methodology (RSM). A nanofiltration unit was integrated with this coagulation pre-treatment unit and the resulting flux decline and permeate quality were investigated. Herein, the coagulation was conducted under response surface-optimized operating conditions. The hybrid process demonstrated high chromium(VI) removal efficiency over 98%. Besides, fouling of two of the tested nanofiltration membranes (NF1 and NF3) was relatively mitigated after feed pretreatment. Nanofiltration permeation fluxes as high as 80-100L/m(2)h were thereby obtained. The resulting permeate stream quality post nanofiltration (NF3) was found to be suitable for effective reuse in tanneries, keeping the Cr(VI) concentration (0.13mg/L), Biochemical Oxygen Demand (BOD) (65mg/L), Chemical Oxygen Demand (COD) (142mg/L), Total Dissolved Solids (TDS) (108mg/L), Total Solids (TS) (86mg/L) and conductivity levels (14mho/cm) in perspective. The process water reclaiming ability of nanofiltration was thereby substantiated and the effectiveness of the proposed hybrid system was thus affirmed. PMID:26188702

  4. Treatability of contaminated ground water and aquifer solids at town gas sites, using photolytic ozonation and chemical in-situ reclamation. Final report

    SciTech Connect

    Peyton, G.R.; LeFaivre, M.H.; Smith, M.A.

    1990-08-01

    The feasbility of cleaning up contaminated ground water and aquifer solids from so-called town gas sites using photolytic ozonation and chemical in situ aquifer reclamation (CISR) techniques was investigated in the laboratory. At the actual site, coal was thermally oxidized to produce methane for municipal distribution. The degradation left a coal tar which, if released into the ground, could contaminate ground water and aquifer solids with a number of organic substances, including aromatic hydrocarbons such as benzene, toluene, xylene (BTX), and polynuclear aromatic hydrocarbons (PAHs) at environmentally significant concentrations. A chemical in situ treatment method using persulfate as a source of free radicals destroyed organic contaminants that were adsorbed to the aquifer solids. PAHs were reduced by 34 percent after 12 days of treatment and by 52 percent after 40 days.

  5. Potential of BAC combined with UVC/H2O2 for reducing organic matter from highly saline reverse osmosis concentrate produced from municipal wastewater reclamation.

    PubMed

    Lu, Jie; Fan, Linhua; Roddick, Felicity A

    2013-10-01

    The organic matter present in the concentrate streams generated from reverse osmosis (RO) based municipal wastewater reclamation processes poses environmental and health risks on its disposal to the receiving environment (e.g., estuaries, bays). The potential of a biological activated carbon (BAC) process combined with pre-oxidation using a UVC/H2O2 advanced oxidation process for treating a high salinity (TDS~10000 mg L(-1)) municipal wastewater RO concentrate (ROC) was evaluated at lab scale during 90 d of operation. The combined treatment reduced the UVA254 and colour of the ROC to below those for the influent of the RO process (i.e., biologically treated secondary effluent), and the reductions in DOC and COD were approximately 60% and 50%, respectively. UVC/H2O2 was demonstrated to be an effective means of converting the recalcitrant organic compounds in the ROC into biodegradable substances which were readily removed by the BAC process, leading to a synergistic effect of the combined treatment in degrading the organic matter. The tests using various BAC feed concentrations suggested that the biological treatment was robust and consistent for treating the high salinity ROC. Using Microtox analysis no toxicity was detected for the ROC after the combined treatment, and the trihalomethane formation potential was reduced from 3.5 to 2.8 mg L(-1). PMID:23820538

  6. Plutonium discharges to the sanitary sewer: Health impacts at the Livermore Water Reclamation Plant

    SciTech Connect

    Balke, B.K.

    1993-04-16

    The Lawrence Livermore National Laboratory (LLNL) is the largest discharger of sewage treated by the Livermore Water Reclamation (LWRP), contributing approximately 7% by volume of the LWRP influent LILNL operations, as potential sources both of industrial pollutants and radioactivity, are therefore of particular concern to the LWRP. For this reason, LLNL has maintained vigorous wastewater discharge control and monitoring programs. In particular, the monitoring program has demonstrated that, except in a few rare instances, the concentration of contaminants in LLNL effluent have always remained below the appropriate regulatory standards. The exceptions have generally been due to inadvertent discharges of metals-bearing solutions produced by metal plating or cleaning operations.

  7. Development and Application of Climate Services for Water Resources Planning and Management within the Department of Interior Bureau of Reclamation

    NASA Astrophysics Data System (ADS)

    Raff, D. A.; Morgan, A.; Brekke, L. D.

    2014-12-01

    The Bureau of Reclamation is the nation's largest wholesale water supplier and the second largest producer of hydropower. Reclamation operates 337 reservoirs with a total storage capacity of 245 million acre-feet and operates 53 hydroelectric powerplants that annually produce, on average for the past 10 years, 40 billion kilowatt-hours. Reclamation is adapting to the impacts and future challenges posed by the changing climate through the development of new climate services as well as through cooperation with Federal, state, local, tribal, academic, and non-governmental partners in the use of climate and water resource information that may be available. Reclamation is utilizing this information within a strategy that has four goals: 1) Increase Water Management Flexibility, 2) Enhance Climate Adaptation Planning, 3) Improve Infrastructure Resiliency, and 4) Expand Information Sharing. Within this presentation we will focus on the utilization of climate services within each of these key goals of Reclamation's strategy. This includes the utilization of climate information to track and potentially improve reservoir management to increase water management flexibility, the development of climate informed hydrology that supports climate adaptation planning, use of climate information to inform decisions of infrastructure resilience, and climate services use for jointly informed water management decisions through education and web based services.

  8. Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands.

    PubMed

    Wei, Xinchao; Wei, Honghong; Viadero, Roger C

    2011-02-01

    Abandoned mine land (AML) is one of the legacies of historic mining activities, causing a wide range of environmental problems worldwide. A stream monitoring study was conducted for a period of 7 years to evaluate the water quality trend in a Mid-Appalachian watershed, which was heavily impacted by past coal mining and subsequently reclaimed by reforestation and revegetation. GIS tools and multivariate statistical analyses were applied to characterize land cover, to assess temporal trends of the stream conditions, and to examine the linkages between water quality and land cover. In the entire watershed, 15.8% of the land was designated as AML reclaimed by reforestation (4.9%) and revegetation (10.8%). Statistic analysis revealed sub-watersheds with similar land cover (i.e. percentage of reclaimed AML) had similar water quality and all tested water quality variables were significantly related to land cover. Based on the assessment of water quality, acid mine drainage was still the dominant factor leading to the overall poor water quality (low pH, high sulfate and metals) in the watershed after reclamation was completed more than 20 years ago. Nevertheless, statistically significant improvement trends were observed for the mine drainage-related water quality variables (except pH) in the reclaimed AML watershed. The lack of pH improvement in the watershed might be related to metal precipitation and poor buffering capacity of the impacted streams. Furthermore, water quality improvement was more evident in the sub-watersheds which were heavily impacted by past mining activities and reclaimed by reforestation, indicating good reclamation practice had positive impact on water quality over time. PMID:21167556

  9. Non-composted municipal solid waste byproduct influences soil and plant nutrients five years after soil reclamation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns for the mounting supply of municipal solid waste being generated combined with decreasing landfill space have compelled military installations to evaluate alternative methods for disposal. One approach to reduce landfilling is the use of a new garbage-processing technology that sterilizes a...

  10. A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: removal of nutrients and micropollutants, and characterization of membrane foulants.

    PubMed

    Chon, Kangmin; Cho, Jaeweon; Shon, Ho Kyong

    2013-08-01

    A pilot-scale municipal wastewater reclamation system using combined coagulation and disk filtration (CC-DF), ultrafiltration (UF), and reverse osmosis (RO) membrane has been built to investigate removal of water contaminants and fouling mitigation. The reclaimed water using the pilot system could meet draft regulations on wastewater reuse of the California Department of Public Health (DOC: 0.5 mgC/L; TN: 5 mgN/L). The removal of micropolluants by the CC-DF process and UF could not be evaluated by their MW, Log D, and charge characteristics. However, they were identified as governing factors affecting the removal of micropollutants by the RO. The CC-DF process might effectively remove particulate materials capable of contributing to cake layer formation on the UF membrane surfaces but the residual coagulants provided a strong effect on fouling formation of the UF membrane. Thus, hydrophobic fractions of the desorbed UF membrane foulants were higher than those of the desorbed RO membrane foulants. PMID:23611699

  11. 40 CFR 230.50 - Municipal and private water supplies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Municipal and private water supplies. 230.50 Section 230.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Effects on Human Use Characteristics...

  12. The U.S. Bureau of Reclamation's use of Climate Information Products to support Reservoir Operations and Water Management

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.

    2007-12-01

    Climate forecast information plays an integral role in Reclamation's operation of surface water systems located throughout the western United States. These systems include over 300 reservoirs, 16000 miles of canals, and 245 million acre-feet of storage capacity. Combined, their operation leads to approximately $9 billion in annual agricultural benefits, enough energy to supply 6 million homes, 308 public recreation areas, and billions of dollars in avoided flood damages. Reclamation's use of climate information varies with decision application, which might be characterized by lead- time, application horizon, and reversibility. This presentation will provide an overview of Reclamation's short- to long-term climate-affected decisions, where and why climate information products are currently used, where products are desired but are absent, and where products are available but are not used for various reasons. The presentation will also highlight lessons learned from recent efforts to introduce new uses of climate forecast information in Reclamation decision processes (e.g., use of short-lead teleconnections to potentially support Spring season flood control management in the Pacific Northwest, use of CPC local 3-month temperature outlooks to support Summer-Autumn stream temperature management in California, and development of downscaled WCRP CMIP3 climate projections to support long-term system evaluations throughout Reclamation's service regions).

  13. Membrane bioreactor and nanofiltration hybrid system for reclamation of municipal wastewater: removal of nutrients, organic matter and micropollutants.

    PubMed

    Chon, Kangmin; KyongShon, Ho; Cho, Jaeweon

    2012-10-01

    A membrane bioreactor (MBR) and nanofiltration (NF) hybrid system was investigated to demonstrate the performance of treating nitrogen, phosphorus and pharmaceuticals and personal care products (PPCPs) in municipal wastewater. With the MBR and NF (molecular weight cut off (MWCO): 210 Da), the concentration of total nitrogen (TN) and total phosphorus (TP) was effectively reduced by nitrification by MBR and negatively charged surface of NF (TN: 8.67 mgN/L and TP: 0.46 mgP/L). Biosorption and microbial decomposition in MBR seem to be major removal mechanisms for the removal of PPCPs. Among various parameters affecting the removal of PPCPs by NF, namely, physicochemical properties of the PPCPs (charge characteristics, hydrophobicity and M(W)) and membranes (MWCO and surface charge), the MWCO effect was found to be the most critical aspect. PMID:22608290

  14. The land use plan and water quality prediction for the Saemangeum reclamation project.

    PubMed

    Hwang, D H; Choi, J Y; Yi, S M; Han, D H; Jang, S H

    2009-01-01

    As the final closure of the world's longest sea dike of 33 km, the use of the Saemangeum reclaimed land becomes an issue in Korea. The Korean government has proclaimed that the Saemangeum Reclamation Project will be handled in an environmentally friendly manner but its effect on the water quality of reservoirs has always been controversial. This study was conducted to estimate the water quality of the Saemangeum reservoir using WASP5 according to the new land use plan adopted in 2007. Predictions on water quality shows that Dongjin reservoir would meet the standards for COD, T-P, and Chl-a if the wastewater from the Dongjin region was properly managed. However, T-P and Chl-a in Mangyeong reservoir would exceed the standards even without releasing the treated wastewater into the reservoir. With further reductions of 20% for T-P and Chl-a from the mouth of Mangyeong river, the water quality standards in the reservoir were achieved. This means that additional schemes, as well as water quality management programs established in the Government Master Plan in 2001, should be considered. Although the Saemangeum reservoir would manage to achieve the standards, it will enter a eutrophic state due to the high concentration of nutrients. PMID:19381006

  15. 76 FR 53678 - Calleguas Municipal Water District Notice of Surrender of Exemption (Conduit)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-29

    ... Federal Energy Regulatory Commission Calleguas Municipal Water District Notice of Surrender of Exemption (Conduit) Pursuant to section 4.95(a) of the Commission's regulations,\\1\\ Calleguas Municipal Water... exemption for Project No. 11651 on June 7, 1999. Calleguas Municipal Water District, 87 FERC ] 62,256...

  16. Applications of Ferrate(VI) to Wastewater Reclamation and Water Treatment

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, H.; Lee, K.; Nam, J.; Kim, I.

    2010-12-01

    The estimated amount of water resources is about 63 billion cubic meters in Korea. However, due to the lack of precipitation during the dry season, natural flows are not enough for the water supply. In addition, since the lack of water affects water quality, environmental problems are occurred in natural and social systems. In this study, we investigated the application feasibility of ferrate(VI) systems to water and wastewater treatment. And we'd like to suggest an alternative solution for conservation and efficient reuse of the limited water resources. In the research area of environmental applications, a primary interest has been focused to the power of ferrate(VI) systems in the decomposition of pollutants in wastewater and industrial effluents due to its potential use as a strong, relatively non-toxic, and oxidizing agent for diverse environmental contaminants. Also ferrate(VI) has additional advantages as a very efficient coagulant and a sorbent of pollutants. We have analysed and compared several ferrate(VI) manufacturing processes, especially focused on the electro chemical methods(Fig. 1). And we have investigated the applications of the manufactured ferrate(VI) in our own laboratory and the commercial ferrate(VI) to decomposition of persistent organic pollutants in water. Under optimal conditions, the removal efficiencies of 2-chlorophenol and benzothiophene were above 90%(Fig. 2). The ferrate system(VI) is promising and can be one of the most efficient alternatives among the advanced oxidation processes(AOPs) for degradation of persistent organic pollutants, and is an innovative technology for the wastewater reclamation, water reusing systems, and water treatment systems. Fig 1. Comparison of Electro-Chemical Ferrate(VI) manufacturing Processes Fig 2. Degradation of 2-Chlorophenol and Bezothiophene by Ferrate. (Experimental Conditions : 2-CP = 3ppm, BT = 5ppm, NaClO4 = 0.05M)

  17. Municipal Water Demand: Statistical and Management Issues

    NASA Astrophysics Data System (ADS)

    Martin, William E.

    In the foreword to this volume, Charles W. Howe, general editor of the Westview Press series on water policy and management, states that the goal of this book is to emphasize “the potential for improved water management with reduced economic and environmental costs by utilizing modern methods of demand estimation that take into account user responsiveness to price, conservation measures, and economic-demographic changes.” The authors accomplish their purpose, but the book itself leaves much to be desired.

  18. Enhanced cover methods for surface coal refuse reclamation

    SciTech Connect

    Gentile, L.F.; Cargill, K.W.; McGarvie, S.D.

    1997-12-31

    Controlling acid rock drainage (ARD) can be a major component of surface mining reclamation. An enhanced reclamation cover system is being constructed to control infiltration of rain water and generation of ARD from coal-refuse disposal areas at a closed mine in southern Illinois. Development of the mine reclamation plan required consideration of ARD generation in coal refuse disposal areas located adjacent to an alluvial aquifer used for public water supply. An integrated site characterization was performed at the mine to provide information to develop and support the enhanced reclamation plan. The enhanced cover system is similar to covers required for municipal solid waste landfills by the Resource Conversation and Recovery Act (RCRA), Subtitle D regulations. The system comprises a graded and compacted gob layer, overlain by a compacted clay liner, and a protective soil cover. The results of infiltration modeling and analyses showed that the standard reclamation cover is effective in reducing infiltration by about 18 percent compared to an unreclaimed coal-refuse surface. The modeling results showed that the inhanced cover system should reduce infiltration by about 84 percent. The geochemical modeling results showed that the reduction in infiltration would help minimize ARD generation and contribute to an earlier reclamation of the mine site.

  19. Integrated pretreatment with capacitive deionization for reverse osmosis reject recovery from water reclamation plant.

    PubMed

    Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Tao, Guihe; Kekre, Kiran; Viswanath, Balakrishnan; Lay, Winson; Seah, Harry

    2009-10-01

    Reverse osmosis (RO) reject recovery from the water reclamation process was demonstrated feasible using an integrated pretreatment scheme followed by the Capacitive Deionization (CDI) process. The RO reject had an average total dissolved solids (TDS) of 1276+/-166 mg/L. Water recovery of 85% with water quality comparable with the RO feed was achieved. Pretreatments using biological activated carbon (BAC) and BAC-ultrafiltration (UF) attained total organic carbon (TOC) removal efficiencies of 23.5+/-6.0% and 39.9+/-9.0%, respectively. Organics removal of RO reject was attributed to simultaneous adsorption and biodegradation in the BAC pretreatment, while further biodegradation in the submerged UF membrane tank provided additional organics removal. Membrane and CDI fouling was reduced by pH adjustment of the pretreated RO reject to approximately 6.5, which prolonged the CDI operation time by at least two times. The CDI process was able to achieve more than 88 and 87% TDS and ion removals, respectively, while PO(4)(3-) and TOC removals were at 52-81% and 50-63%, respectively. PMID:19700181

  20. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  1. Effect of long-term application of biosolids for land reclamation on surface water chemistry.

    PubMed

    Tian, G; Granato, T C; Pietz, R I; Carlson, C R; Abedin, Z

    2006-01-01

    Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in

  2. Tracking persistent pharmaceutical residues from municipal sewage to drinking water

    NASA Astrophysics Data System (ADS)

    Heberer, Thomas

    2002-09-01

    In urban areas such as Berlin (Germany) with high municipal sewage water discharges and low surface water flows there is a potential risk of drinking water contamination by polar organic compounds when groundwater recharge is used in drinking water production. Thus, some pharmaceutically active compounds (PhACs) are not eliminated completely in the municipal sewage treatment plants (STPs) and they are discharged as contaminants into the receiving waters. In terms of several monitoring studies carried out in Berlin between 1996 and 2000, PhACs such as clofibric acid, diclofenac, ibuprofen, propyphenazone, primidone and carbamazepine were detected at individual concentrations up to the μg/l-level in influent and effluent samples from STPs and in all surface water samples collected downstream from the STPs. Under recharge conditions, several compounds were also found at individual concentrations up to 7.3 μg/l in samples collected from groundwater aquifers near to contaminated water courses. A few of the PhACs were also identified at the ng/l-level in Berlin tap water samples.

  3. Studies on the integration of nanofiltration and soil treatment for municipal effluent reclamation as a groundwater supplement.

    PubMed

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2010-01-01

    Water shortage leads to increasing attention to artificial groundwater recharge by reclaimed water. An injection well is the most common recharge approach. In this paper, a new kind of integrated technology-short-term vadose soil treatment followed by nanofiltration-is recommended as pretreatment for artificial groundwater recharge by an injection well. Laboratory-scale experiments demonstrate that the short-term vadose soil can remove approximately 30% of the total dissolved organic carbon (DOC) content and 40% of dissolved organic matter with a molecular weight less than 1 kDa. As a compensatory process of soil treatment, nanofiltration offers a favorable desalination and additional organics removal. The removal efficiencies for total dissolved solids and conductivity amount to 45 and 48%, respectively. The residual DOC in the final effluent is below 1.0 mg/L. In addition, short-term vadose soil offers effective elimination of aromatic protein-like and polysaccharide-like substances, which are detected as components of the membrane foulant. PMID:20112534

  4. Water, Energy and Carbon Balance Research: Recovery Trajectories For Oil Sands Reclamation and Disturbed Watersheds in the Western Boreal Forest

    NASA Astrophysics Data System (ADS)

    Petrone, R. M.; Carey, S. K.

    2014-12-01

    The Oil Sand Region (OSR) of North-Central Alberta exists within the sub-humid Boreal Plains (BP) ecozone, with a slight long-term moisture deficit regime. Despite this deficit, the BP is comprised of productive wetland and mixed wood (aspen and conifer dominated) forests. Reclamation activities are now underway at a large number of surface mining operations in the OSR, where target ecosystems are identified, soil prescriptions placed and commercial forest species planted. Some watersheds have been created that now contain wetlands. However, recent work in the BP suggests that over time wetlands supply moisture for the productivity of upland forests. Thus, water use of reclaimed forests is going to be critical in determining the sustainability of these systems and adjacent wetlands, and whether in time, either will achieve some form of equivalent capability that will allow for certification by regulators. A critical component in the success of any reclamation is that sufficient water is available to support target ecosystems through the course of natural climate cycles in the region. Water Use Efficiency (WUE), which links photosynthesis (GEP) with water use (Evapotranspiration (ET)), provides a useful metric to compare ecosystems and evaluate their utilization of resources. In this study, 41 site years of total growing season water and carbon flux data over 8 sites (4 reclamation, 4 regeneration) were evaluated using eddy covariance micrometeorological towers. WUE shows clear discrimination among ecosystem types as aspen stands assimilate more carbon per unit weight of water than conifers. WUEs also change with time as ecosystems become more effective at transpiring water through plant pathways compared with bare-soil evaporation, which allows an assessment of ability to limit water loss without carbon uptake. In addition, clonal rooting systems allow aspen forests to recover quicker after disturbance than reclamation sites in terms of their WUE. For reclamation

  5. Diarrheal diseases in children from a water reclamation site in Mexico city.

    PubMed Central

    Cifuentes, Enrique; Suárez, Leticia; Solano, Maritsa; Santos, René

    2002-01-01

    This study was conducted to assess the risk of enteric diseases among children living in a water reclamation area in Mexico City. A geographic information system was used to define eligible wells and surrounding homesteads. Sixty-five water samples from five wells were tested for fecal coliform bacteria per 100 mL (FC/100 mL) during visits to 750 eligible households; caretakers only in those dwellings with children under 5 years old were interviewed throughout repeated cross-sectional surveys, conducted during 1999-2000. Data on diarrheal diseases were obtained from 761 children during the rainy season and 732 children during the dry season; their guardians also provided information on drinking water supply, sanitation, and socioeconomic variables. The presence of indicator organisms in groundwater samples pointed to fecal pollution; bacterial indicators, however, did not predict the health risk. The rates of diarrhea were 10.7% in the dry season and 11.8% in the rainy season. Children 1 year old showed the highest rate of diarrhea during the dry season [odds ratio (OR) = 2.1 with 95% confidence interval (CI), 0.99-4.71], particularly those from households perceiving unpleasant taste of tap water (OR, 1.7; 95% CI, 0.97-2.92) and consuming vegetables washed only with water (OR, 2.2; 95% CI, 1.10-4.39). Lower risk was observed in individuals enjoying full-day water supply (OR, 0.5; 95% CI, 0.27-0.86) and a flushing toilet (OR, 0.3; 95% CI, 0.16-0.67), as well as those storing water in covered receptacles (OR, 0.3; 95% CI, 0.15-0.80). Rainy season data suggested that children from households perceiving a color to their water had a higher rate of diarrhea than did those without such complaint (OR, 1.8; 95% CI, 0.93-3.67); recent consumption of food sold by street vendors was also a significant risk factor (OR, 1.6; 95% CI, 0.98-2.87). Groundwater is at risk of contamination, as indicated by the presence of FC/100 mL. The endemic pattern of diarrhea, however, reflects

  6. Composting of municipal waste-water sludges. Seminar pub

    SciTech Connect

    Not Available

    1985-08-01

    This seminar publication provides practical information on current methods of composting municipal waste-water sludges. It is intended for government and private sector individuals involved in the planning, design, and operation of municipal sludge treatment and disposal systems. Chapter 1 presents general principles of the composting process and system design. Chapters 2 and 3 discuss in depth the experiences at the Dickerson, Western Branch, and Site II static-pile-composting operations in Maryland and at the windrow operation in Los Angeles County. In-vessel composting is reviewed in Chapter 4. Chapter 5 discusses current and proposed regulations and guidelines that pertain to sludge composting. The publication is not a design manual nor does it include all the latest knowledge about composting.

  7. Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants.

    PubMed

    Bagastyo, Arseto Y; Keller, Jurg; Poussade, Yvan; Batstone, Damien J

    2011-03-01

    Water reclamation plants frequently utilise reverse osmosis (RO), generating a concentrated reject stream as a by-product. The concentrate stream contains salts, and dissolved organic compounds, which are recalcitrant to biological treatment, and may have an environmental impact due to colour and embedded nitrogen. In this study, we characterise organic compounds in RO concentrates (ROC) and treated ROC (by coagulation, adsorption, and advanced oxidation) from two full-scale plants, assessing the diversity and treatability of colour and organic compounds containing nitrogen. One of the plants was from a coastal catchment, while the other was inland. Stirred cell membrane fractionation was applied to fractionate the treated ROC, and untreated ROC along with chemical analysis (DOC, DON, COD), colour, and fluorescence excitation-emission matrix (EEM) scans to characterise changes within each fraction. In both streams, the largest fraction contained < 1 kDa molecules which were small humic substances, fulvic acids and soluble microbial products (SMPs), as indicated by EEM. Under optimal treatment conditions, alum preferentially removed > 10 kDa molecules, with 17-34% of organic compounds as COD. Iron coagulation affected a wider size range, with better removal of organics (41-49% as COD) at the same molar dosage. As with iron, adsorption reduced organics of a broader size range, including organic nitrogen (26-47%). Advanced oxidation (UV/H2O2) was superior for complete decolourisation and provided superior organics removal (50-55% as COD). PMID:21371733

  8. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  9. Water and waste water reclamation in a 21st century space colony

    NASA Technical Reports Server (NTRS)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  10. Domestic wash-water reclamation using an aerospace-developed water recovery subsystem

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.

    1973-01-01

    A prototype aerospace distillation water recovery subsystem was tested to determine its capability to recover potable water from domestic wash water. A total of 0.0994 cu m (26.25 gallons) of domestic wash water was processed over a 7-day period at an average process rate of 0.0146 cu m per day (3.85 gallons per day). The subsystem produced water that met all United States Public Health Standards for drinking water with the exception of two standards which could not be analyzed at the required sensitivity levels. Average energy consumption for this evaluation to maintain both the recovery process and microbial control in the recovered water was approximately 3366 kilowatt-hours per cubic meter (12.74 kilowatt-hours per gallon) of water recovered. This condition represents a worst case energy consumption since no attempt was made to recover heat energy in the subsystem. An ultraviolet radiation cell installed in the effluent line of the subsystem was effective in controlling coliform micro-organisms within acceptable levels for drinking water. The subsystem recovered virtually 100 percent of the available water in the waste-water process. In addition, the subsystem removed 99.6 percent and 98.3 percent of the surfactants and phosphate, respectively, from the wash water.

  11. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate.

    PubMed

    Yang, Qin; Shen, Nan; Lee, Zarraz M-P; Xu, Guangjing; Cao, Yeshi; Kwok, Beehong; Lay, Winson; Liu, Yu; Zhou, Yan

    2016-01-01

    The combination of simultaneous nitrification-denitrification (SND) with enhanced biological phosphorus removal (EBPR) provides a more efficient and economically viable option for nutrient removal from municipal wastewater compared to conventional two-step nitrification-denitrification. This study analyzed the nutrients (N and P) profiles in a full-scale municipal wastewater reclamation plant (WRP) located in the tropical region, in which more than 90% of nitrogen was removed. Interestingly, average SND efficiency in aerobic zones was found to be up to 50%, whereas phosphorus profile displayed a clear cyclic release and uptake pattern with a phosphorus removal efficiency of up to 76%. The capability of sludge to perform SND and EBPR was further confirmed through a series of batch experiments. Microbial analysis revealed the presence of Accumulibacter and Tetrasphaera phosphate accumulating organisms in the plant, while few glycogen accumulating organisms (GAO) was observed. This study showed the significant occurrence of combined SND and EBPR, known as simultaneous nitrification, denitrification and phosphorus removal (SNDPR), in the studied WRP under warm climate. The possible causes behind the observed SNDPR were also discussed. PMID:27438250

  12. Comparing effects of land reclamation techniques on water pollution and fishery loss for a large-scale offshore airport island in Jinzhou Bay, Bohai Sea, China.

    PubMed

    Yan, Hua-Kun; Wang, Nuo; Yu, Tiao-Lan; Fu, Qiang; Liang, Chen

    2013-06-15

    Plans are being made to construct Dalian Offshore Airport in Jinzhou Bay with a reclamation area of 21 km(2). The large-scale reclamation can be expected to have negative effects on the marine environment, and these effects vary depending on the reclamation techniques used. Water quality mathematical models were developed and biology resource investigations were conducted to compare effects of an underwater explosion sediment removal and rock dumping technique and a silt dredging and rock dumping technique on water pollution and fishery loss. The findings show that creation of the artificial island with the underwater explosion sediment removal technique would greatly impact the marine environment. However, the impact for the silt dredging technique would be less. The conclusions from this study provide an important foundation for the planning of Dalian Offshore Airport and can be used as a reference for similar coastal reclamation and marine environment protection. PMID:23608638

  13. Calibration of a one-dimensional water flow model for the evaluation of the reclamation success of saline soil substrates

    NASA Astrophysics Data System (ADS)

    Shaygan, Mandana; Baumgartl, Thomas; Arnold, Sven; Reading, Lucy; Fletcher, Andrew

    2015-04-01

    Highly saline-sodic soils restrict plant establishment. Salt affected soils may be reclaimed by leaching salts from a potential root zone. Soil amendments can be used as a reclamation technique to improve the soil pore system and hydraulic functions, which allows the downward transport of water under certain precipitation conditions. The objective of this study was to investigate salt movement within saline-sodic soil at a small scale in soil columns and assess the success of amendment strategies for reclamation of the soil. For the purpose of predicting the effect of typical rainfall scenarios on the reclamation of saline-sodic soils, a one-dimensional numerical water flow model (HYDRUS-1D) was tested and calibrated. The model was calibrated using data from laboratory column experiments. A saline-sodic soil was packed into 30 cm long columns (diameter 7cm) from a depth of 10 to 30 cm and then covered with the same soil, however amended with 40% (wt/wt) fine sand and 20% (wt/wt) wood chips, respectively. A column filled with the saline-sodic soil only to a depth of 30 cm was used as a control. The experiments were carried out by establishing an initial pressure head of -60 cm at the soil surface. Based on climate data from a location in south-west Queensland, rainfall scenarios with 50% and 1% probability of annual exceedance for this location were calculated and applied to the soil columns. The hydrological response in the columns was monitored by measuring the water potential using tensiometers installed in three depths (3, 11 and 25 cm) and knowledge of inflow and outflow of the columns. The simulation captured the observed trends in the results for the investigated columns and measured depths under heavy rainfall events as well as surface substrates exposed to small rainfall events, where the simulated and measured results were in very good agreement, with R2 values generally ranging between 0.92 and 0.98. The simulated results also provided a good description

  14. Cyber-physical system for a water reclamation plant: Balancing aeration, energy, and water quality to maintain process resilience

    NASA Astrophysics Data System (ADS)

    Zhu, Junjie

    Aeration accounts for a large fraction of energy consumption in conventional water reclamation plants (WRPs). Although process operations at older WRPs can satisfy effluent permit requirements, they typically operate with excess aeration. More effective process controls at older WRPs can be challenging as operators work to balance higher energy costs and more stringent effluent limitations while managing fluctuating loads. Therefore, understandings of process resilience or ability to quickly return to original operation conditions at a WRP are important. A state-of-art WRP should maintain process resilience to deal with different kinds of perturbations even after optimization of energy demands. This work was to evaluate the applicability and feasibility of cyber-physical system (CPS) for improving operation at Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) Calumet WRP. In this work, a process model was developed and used to better understand the conditions of current Calumet WRP, with additional valuable information from two dissolved oxygen field measurements. Meanwhile, a classification system was developed to reveal the pattern of historical influent scenario based on cluster analysis and cross-tabulation analysis. Based on the results from the classification, typical process control options were investigated. To ensure the feasibility of information acquisition, the reliability and flexibility of soft sensors were assessed to typical influent conditions. Finally, the process resilience was investigated to better balance influent perturbations, energy demands, and effluent quality for long-term operations. These investigations and evaluations show that although the energy demands change as the influent conditions and process controls. In general, aeration savings could be up to 50% from the level of current consumption; with a more complex process controls, the saving could be up to 70% in relatively steady-state conditions and at least 40

  15. Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants.

    PubMed

    Matamoros, Víctor; Salvadó, Victòria

    2012-01-01

    The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L(-1)) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L(-1)), suggesting that the chemical quality of the reclaimed water is better than available surface waters. PMID:22051341

  16. Foulant Characteristics Comparison in Recycling Cooling Water System Makeup by Municipal Reclaimed Water and Surface Water in Power Plant

    PubMed Central

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  17. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    PubMed

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water. PMID:25893132

  18. Tidal characteristics in the Wenzhou offshore waters and changes resulting from the Wenzhou Shoal Reclamation Project

    NASA Astrophysics Data System (ADS)

    Bao, Min; Bao, Xianwen; Yu, Huaming; Ding, Yang

    2015-12-01

    The Wenzhou Shoal Reclamation Project is the core part of Wenzhou Peninsula Engineering which is a big comprehensive development project to expand the city space. The dynamics of the surrounding area was proved to suffer little effect in response to the Lingni north dyke since it was built approximately along the current direction. Therefore, this paper focuses firstly on the tidal characteristics in the Wenzhou and Yueqing bays with the Lingni north dyke being built and then on the changes resulting from the implementation of the on-going Wenzhou Shoal Reclamation Project (WSRP) which will reclaim land from the whole Wenzhou Shoal. To simulate the tidal dynamics, a high-resolution coastal ocean model with unstructured triangular grids was set up for the Wenzhou and Yueqing Bays. The model resolved the complicated tidal dynamics with the simulated tidal elevation and current in good agreement with observations. In the study area, M2 is the predominant tidal component, which means the tide is semidiurnal. The new reclamation project hardly affects the Yueqing Bay and the open ocean, but there are concentrated effects on the mouth of the southern branch of the Oujiang River and the southwest of Wenzhou Shoal. This study provides an indicative reference to the local government and helps to weigh the advantages and disadvantages of the project.

  19. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed. PMID:26645649

  20. DISTRIBUTION STUDY OF PERSISTENT, BIOACCUMULATIVE & TOXICS (PBTS) AT THE CALUMET WATER RECLAMATION PLANT

    EPA Science Inventory

    This project will determine the fate, transport and emission characteristics of selected persistent bioaccumulative compounds passing through a municipal waste treatment plant, including the sludge drying process. Compounds of interest include polybrominated diphenyl ethers (PD...

  1. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    NASA Astrophysics Data System (ADS)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  2. Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility.

    PubMed

    Armstrong, Dana L; Lozano, Nuria; Rice, Clifford P; Ramirez, Mark; Torrents, Alba

    2016-01-01

    While the recycling of wastewater biosolids via land-application is a sustainable practice for nutrient recovery and soil reclamation that has become increasingly common worldwide, concerns remain that this practice may become a source of toxic, persistent organic pollutants to the environment. This study concentrates on assessing the presence and the temporal trends of 12 perfluoroalkyl substances (PFASs), pollutants of global consequence, in limed Class B biosolids from a municipal water resource recovery facility (WRRF), also know as a wastewater treatment plant. PFASs are of significant concern due to their extensive presence and persistence in environmental and biotic samples worldwide, most notably human blood samples. Class B biosolids were collected from the WRRF, prior to land-application, approximately every two to three months, from 2005 to 2013. Overall, this study found that concentrations of the 7 detectable PFAS compounds remained unchanged over the 8-year period, a result that is consistent with other temporal studies of these compounds in sewage sludges. From these analyzed compounds, the highest mean concentrations observed over the study period were 25.1 ng/g dw, 23.5 ng/g dw, and 22.5 ng/g dw for perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS), respectively, and these compounds were detected at concentrations 2.5-5 times higher than the remaining, detectable PFASs. Furthermore, it was observed that PFOS, while demonstrating no overall change during the study, exhibited a visible spike in concentration from late 2006 to early 2007. This study indicates that concentrations of PFASs in WRRFs have been stagnant over time, despite regulation. This study also demonstrates that the use of glass jars with polytetrafluoroethylene-lined lids, a common storage method for environmental samples, will not influence PFOA and PFNA concentrations in archived biosolids samples. PMID:26413802

  3. Effects of exposure to oil sands process-affected water from experimental reclamation ponds on Chironomus dilutus.

    PubMed

    Anderson, Julie; Wiseman, Steve B; Moustafa, Ahmed; El-Din, Mohamed Gamal; Liber, Karsten; Giesy, John P

    2012-04-15

    Effective detoxification of oil sands process-affected water (OSPW) is one issue associated with bitumen extraction in the Alberta oil sands. It has been suggested that reclamation ponds can be used to passively treat OSPW, potentially allowing for its safe return to the environment. In this study, OSPW was sampled in two batches (A and B) from the Syncrude Canada Ltd. West In-Pit (WIP) settling pond and from three experimental reclamation ponds - Big Pit, FE5, and TPW. Acute (10 d) and chronic (until adult emergence) exposures of Chironomus dilutus larvae to OSPW were conducted and survival, growth, development, and behavior were assessed. Masses of larvae exposed to WIP-OSPW were 64-77% less than the freshwater control (p < 0.001). Similarly, chronic exposure to WIP-OSPW resulted in significantly (p < 0.05) less pupation than in the freshwater control, with 31% (A) and 71% (B) less pupation of larvae exposed to WIP-OSPW. Rates of emergence were significantly less for larvae exposed to WIP-OSPW, with only 13% (A) and 8% (B) of larvae emerging as adults when exposed to WIP-OSPW, compared to 81% in the freshwater control (p < 0.0001). Pupation and emergence rates were significantly less in TPW than freshwater control (p < 0.05), but there were no differences observed in Big Pit or FE5. Lesser toxicity was observed in reclaimed OSPW compared to fresh OSPW and this coincided with lesser concentrations of NAs. The results presented are consistent with the hypothesis that an organic fraction is the cause of the toxicity of OSPW toward C. dilutus and that OSPW aged in reclamation ponds retains toxicity and therefore, more aggressive, targeted treatment of OSPW is required to accelerate decreases. PMID:22265614

  4. WILLOW CREEK RECLAMATION PROJECT

    EPA Science Inventory

    Working in cooperation with the EPA, Colorado Division of Minerals and Geology, and others, the Willow Creek Reclamation Committee (WCRC) will investigate the sources and character of water entering the mine workings on the Amethyst vein near the town of Creede, Colorado. Activi...

  5. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  6. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  7. Approach to the health-risk management on municipal reclaimed water reused in landscape water system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Li, J.; Liu, W.

    2008-12-01

    Water pollution and water heavily shortage are both main environmental conflicts in China. Reclaimed water reuse is an important approach to lessen water pollution and solve the water shortage crisis in the city. The heath risk of reclaimed water has become the focus of the public. It is impending to evaluate the health risk of reclaimed water with risk assessment technique. Considering the ways of the reclaimed water reused, it is studied that health risk produced by toxic pollutants and pathogenic microbes in the processes of reclaimed water reused in landscape water system. The pathogenic microbes monitoring techniques in wastewater and reclaimed water are discussed and the hygienic indicators, risk assessment methods, concentration limitations of pathogenic microbes for various reclaimed water uses are studied. The principle of health risk assessment is used to research the exposure level and the health risk of concerned people in a wastewater reuse project where the reclaimed water is applied for green area irrigation in a public park in Beijing. The exposure assessment method and model of various reclaimed water uses are built combining with Beijing reclaimed water project. Firstly the daily ingesting dose and lifetime average daily dose(LADD) of exposure people are provided via field work and monitoring analysis, which could be used in health risk assessment as quantitative reference. The result shows that the main risk comes from the pathology pollutants, the toxic pollutants, the eutrophication pollutants, pathogenic microbes and the secondary pollutants when municipal wastewater is reclaimed for landscape water. The major water quality limited should include pathogenic microbes, toxic pollutants, and heavy metals. Keywords: municipal wastewater, reclaimed water, landscape water, health risk

  8. Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode.

    PubMed

    Han, Gang; de Wit, Jos S; Chung, Tai-Shung

    2015-09-15

    By using a novel hydrophilic cellulose acetate butyrate (CAB) as the membrane material for the hollow fiber substrate and modifying its outer surface by polydopamine (PDA) coating and inner surface by interfacial polymerization, we have demonstrated that the thin-film composite (TFC) membranes can be effectively used for sustainable water reclamation from emulsified oil/water streams via forward osmosis (FO) under the pressure retarded osmosis (PRO) mode. The newly developed TFC-FO hollow fiber membrane shows characteristics of high water flux, outstanding salt and oil rejection, and low fouling propensity. Under the PRO mode, the newly developed TFC-FO membrane exhibits a water flux of 37.1 L m(-2) h(-1) with an oil rejection of 99.9% using a 2000 ppm soybean oil/water emulsion as the feed and 1 M NaCl as the draw solution. Remarkable anti-fouling behaviors have also been observed. Under the PRO mode, the water flux decline is only 10% of the initial value even after a 12 h test for oil/water separation. The water flux of the fouled membrane can be effectively restored to 97% of the original value by water rinses on the fiber outer surface without using any chemicals. Furthermore, the flux declines are only 25% and 52% when the water recovery of a 2000 ppm soybean oil/water emulsion and a 2000 ppm petroleum oil/water emulsion containing 0.04 M NaCl reaches 82%, respectively. This study may not only provide insightful guidelines for the fabrication of effective TFC-FO membranes with high performance and low fouling behaviors for oily wastewater under the PRO mode but also add an alternative perspective to the design of new materials for water purification purposes. PMID:26043371

  9. Scenarios of Global Municipal Water-Use Demand Projections over the 21st Century

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav; Davies, Evan; Eom, Jiyong

    2013-03-06

    This paper establishes three future projections of global municipal water use to the end of the 21st century: A reference business-as usual (BAU) scenario, a High Technological Improvement (High Tech) scenario and a Low Technological Improvement (Low Tech) scenario. A global municipal water demand model is constructed using global water use statistics at the country-scale, calibrated to the base year of 2005, and simulated to the end of the 21st century. Since the constructed water demand model hinges on socioeconomic variables (population, income), water price, and end-use technology and efficiency improvement rates, projections of those input variables are adopted to characterize the uncertainty in future water demand estimates. The water demand model is linked to the Global Change Assessment Model (GCAM), a global change integrated assessment model. Under the reference scenario, the global total water withdrawal increases from 466 km3/year in 2005 to 941 km3/year in 2100,while withdrawals in the high and low tech scenarios are 321 km3/ year and 2000 km3/ year, respectively. This wide range (321-2000 km3/ year) indicates the level of uncertainty associated with such projections. The simulated global municipal demand projections are most sensitive to population and income projections, then to end-use technology and efficiency projections, and finally to water price. Thus, using water price alone as a policy measure to reduce municipal water use may substantiate the share of municipal water price of people’s annual incomes.

  10. MUNICIPAL WATER POLLUTION CONTROL ABSTRACTS: NOVEMBER 1977-OCTOBER 1978

    EPA Science Inventory

    The Municipal Technology Bulletin informs researchers, consultants, engineers, and government officials of current developments described in more than 4000 English and non-English language scientific and technical publications. Topics covered in the Bulletin and in the abstracts ...

  11. Phosphorus removal mechanisms at the Yellow River Sweetwater Creek Water Reclamation Facility, Gwinnett County, Georgia. Master's thesis

    SciTech Connect

    Borowy, J.T.

    1994-01-01

    This research investigated the capabilities of the Yellow River Sweetwater Creek Water Reclamation Facility in Gwinnett County, GA. to remove phosphorus biologically. Phosphorus levels and removal locations were analyzed in plant operational units (sampling events), while in reactor experiments (pilot studies), waste was subjected to various conditions to promote-biological phosphorus release and uptake. Analysis of plant conditions at the time of experimentation indicates that one-half of the plant phosphorus removal is accomplished biologically through incorporation of phosphorus in microbial cells during growth. It does not appear, however, that enhanced biological phosphorus removal (BPR) is possible due to wastestream characteristics and/or microbial population. It was noted that the basic anaerobic-aerobic sequence associated with enhanced BPR appears to be occurring with the secondary clarifier sludge blanket and return to compartment A of the nitrification basin.

  12. Municipal waste-water sludge-combustion technology. Seminar pub

    SciTech Connect

    Not Available

    1985-09-01

    This publication describes and evaluates the various municipal sludge-combustion systems. It also emphasizes the necessity for considering and evaluating the costs involved in the total sludge-management train, including dewatering, combustion, air pollution control, and ash-disposal processes. It is intended to supplement but not replace EPA technology-transfer publications on sludge treatment and disposal, dewatering municipal wastewater sludges, municipal sludge landfills, and land application of municipal sludge. It also answers questions that have been raised about incineration as a means of processing sludge solids for ultimate disposal and presents factual answers supported by case histories. The primary objectives of the document are: (1) to assess the current status of municipal-sludge-combustion technology as to performance of in-place systems, environmental concerns, and regulatory agency viewpoints; (2) to determine what needs to be done to make municipal-sludge combustion more economical, including upgrading the performance of present and future systems; and (3) to discuss technology in the R and D stage.

  13. 30 CFR 942.20 - Approval of Tennessee reclamation plan for lands and waters affected by past coal mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 530 Gay Street, Suite 500, Knoxville, Tennessee 37902 State of Tennessee Department of Conservation... Surface Mining Reclamation and Enforcement, Administrative Record, Room 5315, 1100 'L' Street,...

  14. Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth

    SciTech Connect

    Shipitalo, M.J.; Bonta, J.V.

    2008-11-15

    Paper mills generate large amounts of solid waste consisting of fibrous cellulose, clay, and lime. Paper mill Sludge (PMS) can improve reclamation of surface-coal mines where low pH and organic-carbon levels in the spoil cover material can inhibit revegetation. When applied at high rates, however, PMS may adversely impact the quality of surface runoff. Therefore, we applied PMS at 0, 224, and 672 dry Mg ha{sup -1} to 22.1 x 4.6-m plots at a recently mined site and monitored runoff for a total of 13 mo. The zero-rate plots served as controls and received standard reclamation consisting of mulching with hay and fertilization at planting. Compared to the control plots, PMS reduced runoff fourfold to sixfold and decreased erosion from 47 Mg ha{sup -1} to < 1 Mg ha{sup -1}. Most of the reduction occurred in the 2.5 mo before the plots were planted. Flow-weighted average dissolved oxygen concentrations in runoff from plots at the 224 and 672 Mg ha{sup -1} rates, however, were much lower ({<=} 0.4 vs. 8.2 mg L{sup -1}) and chemical oxygen demand (COD) was much higher for the 672 Mg ha{sup -1} rate plots than the control plots during the pre-plant period (7229 vs. 880 mg L{sup -1}). There were few noteworthy differences in water quality among treatments post-planting, but plant dry-matter yields were greater for the PMS plots than for the controls. The 672 Mg ha{sup -1} rate did not increase COD or nutrient loads compared to the 224 Mg ha{sup -1} rate and may have more persistent beneficial effects by increasing soil organic carbon levels and pH to a greater extent.

  15. 77 FR 1687 - EPA Workshops on Achieving Water Quality Through Integrated Municipal Stormwater and Wastewater...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... solutions to multiple causes of water pollution. The Agency anticipates that the framework document will... AGENCY EPA Workshops on Achieving Water Quality Through Integrated Municipal Stormwater and Wastewater Plans Under the Clean Water Act (CWA) AGENCY: Environmental Protection Agency (EPA). ACTION:...

  16. Water pollution and water quality in Massachusetts' coastal zone: A municipal official's primer

    SciTech Connect

    Hall-Arber, M.

    1992-01-01

    Conservation commissions, boards of selectmen and other municipal agencies are the first line of defense against a multitude of assaults on water quality in the rapidly developing Commonwealth of Massachusetts. Maintaining a community's water quality is a daunting task, faced, in many cases, by volunteers whose primary qualification is a devotion to their town or city and a willingness to spend a large part of their 'leisure' time working to improve and protect their community. This manual is a reference guide to problems, causes, solutions, experts and bibliographic references in the field of water pollution and water quality. With overviews of the main issues and suggestions for coping mechanisms, as well as listings of pertinent legislation and responsible government agencies, the manual should be a time saver for both experienced and novice decision-makers. It will not answer every question in detail, but will serve as a starting point for the seeker.

  17. Municipal sewage treatment: Lagoons (ponds). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning the treatment and storage of municipal wastewater and sewage in lagoons. Lagoon design, operation, and associated equipment for pretreatment, treatment, and storage techniques are discussed. Many citations describe the water treatment facilities of specific cities, and provide evaluations of the operations at those sites. Industrial and other non-municipal wastewater treatment lagoons are referenced in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  18. Municipal sewage treatment: Lagoons (ponds). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the treatment and storage of municipal wastewater and sewage in lagoons. Lagoon design, operation, and associated equipment for pretreatment, treatment, and storage techniques are discussed. Many citations describe the water treatment facilities of specific cities, and provide evaluations of the operations at those sites. Industrial and other non-municipal wastewater treatment lagoons are referenced in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  19. PRESENCE AND TRANSPORT OF ESCHERICHIA COLI AND SALMONELLA SPP. IN SOILS OF A MUNICIPAL PARK IRRIGATED WITH RECLAIMED WASTEWATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on limited water resources have made wastewater reclamation for municipal irrigation an attractive option for extending available water supplies. However, there remain public health concerns about the potential risks of human contact with irrigated turf areas. We are monitoring so...

  20. The growing season water balance and controls on evapotranspiration in wetland reclamation test cells Fort McMurray, Alberta

    NASA Astrophysics Data System (ADS)

    Faubert, Jean-Pascal R.

    In the oil sands mining region near Fort McMurray, Alberta, efforts to establish specific wetland reclamation techniques are underway. During the 2010 growing season, the water balance of 12 plots (cells) of different soil and vegetation treatments were studied with emphasis on understanding the controls on evapotranspiration (ET) and the effects of construction techniques. Cell hydrologic behaviour was distinct from natural wetlands due to frequent artificial irrigation. ET ranged from ˜0 6 mm day-1 to ˜8.2 mm day-1 with a mean of ˜3.2 mm day-1 and variation among the cells was attributed to the construction techniques used, specifically placement period and soil depth. ET was weakly correlated to individual environmental variables; however, multivariate statistical models revealed complex interactions among environmental variables that acted to control ET. Cumulative water balances indicated certain construction techniques produced ET rates comparable to natural wetlands, which may be an important factor in improving the long-term sustainability of reclaimed wetlands.

  1. Surface coal mine land reclamation using a dry flue gas desulfurization product: Short-term and long-term water responses.

    PubMed

    Chen, Liming; Stehouwer, Richard; Tong, Xiaogang; Kost, Dave; Bigham, Jerry M; Dick, Warren A

    2015-09-01

    Abandoned coal-mined lands are a worldwide concern due to their potential negative environmental impacts, including erosion and development of acid mine drainage. A field study investigated the use of a dry flue gas desulfurization product for reclamation of abandoned coal mined land in USA. Treatments included flue gas desulfurization product at a rate of 280 Mg ha(-1) (FGD), FGD at the same rate plus 112 Mg ha(-1) yard waste compost (FGD/C), and conventional reclamation that included 20 cm of re-soil material plus 157 Mg ha(-1) of agricultural limestone (SOIL). A grass-legume sward was planted after treatment applications. Chemical properties of surface runoff and tile water (collected from a depth of 1.2m below the ground surface) were measured over both short-term (1-4 yr) and long-term (14-20 yr) periods following reclamation. The pH of surface runoff water was increased from approximately 3, and then sustained at 7 or higher by all treatments for up to 20 yr, and the pH of tile flow water was also increased and sustained above 5 for 20 yr. Compared with SOIL, concentrations of Ca, S and B in surface runoff and tile flow water were generally increased by the treatments with FGD product in both short- and long-term measurements and concentrations of the trace elements were generally not statistically increased in surface runoff and tile flow water over the 20-yr period. However, concentrations of As, Ba, Cr and Hg were occasionally elevated. These results suggest the use of FGD product for remediating acidic surface coal mined sites can provide effective, long-term reclamation. PMID:26001939

  2. Tree-Substrate Water Relations and Root Development in Tree Plantations Used for Mine Tailings Reclamation.

    PubMed

    Guittonny-Larchevêque, Marie; Bussière, Bruno; Pednault, Carl

    2016-05-01

    Tree water uptake relies on well-developed root systems. However, mine wastes can restrict root growth, in particular metalliferous mill tailings, which consist of the finely crushed ore that remains after valuable metals are removed. Thus, water stress could limit plantation success in reclaimed mine lands. This study evaluates the effect of substrates varying in quality (topsoil, overburden, compost and tailings mixture, and tailings alone) and quantity (50- or 20-cm-thick topsoil layer vs. 1-m plantation holes) on root development and water stress exposure of trees planted in low-sulfide mine tailings under boreal conditions. A field experiment was conducted over 2 yr with two tree species: basket willow ( L.) and hybrid poplar ( Moench × A. Henry). Trees developed roots in the tailings underlying the soil treatments despite tailings' low macroporosity. However, almost no root development occurred in tailings underlying a compost and tailings mixture. Because root development and associated water uptake was not limited to the soil, soil volume influenced neither short-term (water potential and instantaneous transpiration) nor long-term (δC) water stress exposure in trees. However, trees were larger and had greater total leaf area when grown in thicker topsoil. Despite a volumetric water content that always remained above permanent wilting point in the tailings colonized by tree roots, measured foliar water potentials at midday were lower than drought thresholds reported for both tested tree species. PMID:27136172

  3. Modeling indoor odor-odorant concentrations and the relative humidity effect on odor perception at a water reclamation plant

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Sattayatewa, Chakkrid; Venkatesan, Dhesikan; Noll, Kenneth E.; Pagilla, Krishna R.; Moschandreas, Demetrios J.

    2011-12-01

    Models formulated to associate odors and odorants in many industrial and agricultural fields ignore the potential effect of relative humidity on odor perception, and are not validated. This study addresses literature limitations by formulating a model that includes relative humidity and by validating the model. The model employs measured paired values, n = 102, of indoor odors and odorants from freshly dewatered biosolids in a post-digestion dewatering building of a Water Reclamation Plant (WRP). A random sub-sample of n = 32 is used to validate the model by associating predicted vs. measured values ( R2 = 0.90). The model is validated again with a smaller independent database from a second WRP ( R2 = 0.85). Moreover this study asserts that reduction of hydrogen sulfide concentrations, conventionally used as a surrogate of sewage odors, to acceptable levels does not assure acceptable odor levels. It is concluded that: (1) The addition of relative humidity results in a stronger association between odors and odorants than the use of H 2S alone; (2) the two step model validation indicates that the model is not simply site-specific but can be applied to similar facilities; and (3) the model is a promising tool for designing odor and odorant control strategies, the ultimate goal of engineering studies.

  4. Bacterial profiling in brine samples of the Emalahleni Water Reclamation Plant, South Africa, using 454-pyrosequencing method.

    PubMed

    Sekar, Sudharshan; Zintchem, Armand A E A; Keshri, Jitendra; Kamika, Ilunga; Momba, Maggy N B

    2014-10-01

    A metagenomic approach was applied using 454-pyrosequencing data analysis for the profiling of bacterial communities in the brine samples of the water reclamation plant. Some physicochemical characteristics of brine samples were also determined using standard methods. Samples ranged from being lightly alkaline to highly alkaline (pH 7.40-10.91) throughout the various treatment stages, with the salinity ranging from 1.62 to 4.53 g L(-1) and dissolved oxygen concentrations ranging from 7.47 to 9.12 mg L(-1). Phenotypic switching was found to occur due to these physicochemical parameters. Microbial diversities increased from those present in Stage I reactor (six taxonomic groups) to those in Reverse Osmosis (RO) stage I (17 taxonomic groups), whereas in the second phase of the treatment, it increased in Stage II clarifier (14 taxonomic groups) followed by a decrease in RO stage II (seven taxonomic groups). Overall, seven phyla were detected, apart from many bacterial sequences that were unclassified at the phylum level. The most dominant phylum found was Proteobacteria accounting for 59% of the total sequences. A blastn sequence similarity search showed that the majority of the sequences (56%) were homologous to the uncultured bacterial species, underlining the vast untapped bacterial diversity. PMID:25168269

  5. Case study of odor and indoor air quality assessment in the dewatering building at the Stickney Water Reclamation Plant.

    PubMed

    Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna

    2012-01-01

    Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops. PMID:22277239

  6. A rill erosion-vegetation modeling approach for the evaluation of slope reclamation success in water-limited environments

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Diaz Sierra, Ruben; Nicolau, Jose M.; Zavala, Miguel A.

    2013-04-01

    Slope reclamation from surface mining and road construction usually shows important constraints in water-limited environments. Soil erosion is perceived as a critical process, especially when rill formation occurs, as rills can condition the spatial distribution and availability of soil moisture for plant growth, hence affecting vegetation development. On the other hand, encouraging early vegetation establishment is essential to reduce the risk of degradation in these man-made systems. This work describes a modeling approach focused on stability analysis of water-limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for both vegetation cover and rill erosion that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long-term sustainability of the restored ecosystem. We apply our threshold analysis framework in Mediterranean-dry reclaimed slopes derived form surface coal mining (the Teruel coalfield in central-east Spain), obtaining a good field-based performance. Therefore, we believe that this model is a valuable contribution for the management of water-limited reclaimed systems, as it can play an important role in decision-making during ecosystem restoration and provides a tool for the assessment of restoration success in severely disturbed landscapes.

  7. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    SciTech Connect

    McFee, J.; Langsted, J.; Young, M.; Porcon, J.; Day, E.

    2007-07-01

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc., was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)

  8. Hydrogeology and ground-water quality at a land reclamation site, Neshaminy State Park, Pennsylvania

    USGS Publications Warehouse

    Blickwedel, Ray S.; Linn, Jeff H.

    1987-01-01

    Analyses of ground-water samples collected after the first two sludge applications (120 tons per acre and 450 tons per acre), indicate that no significant change occurred in the chemistry of the samples from the Trenton gravel, whereas organic nitrogen increased temporarily in ground water from the dredge spoil 6 months after the larger of the two sludge applications, but quickly returned to background levels. The lack of chemical change with time in the ground water implies either that little of the more than 100 inches of precipitation that fell from April 1983 through March 1985 reached the water table or, more likely, that a mechanism exists beneath the soil- factory site that retards or prevents the downard migration of contaminants.

  9. Development of a two-stage membrane-based wash-water reclamation subsystem

    NASA Technical Reports Server (NTRS)

    Mccray, S. B.

    1988-01-01

    A two-stage membrane-based subsystem was designed and constructed to enable the recycle of wash waters generated in space. The first stage is a fouling-resistant tube-side-feed hollow-fiber ultrafiltration module, and the second stage is a spiral-wound reverse-osmosis module. Throughout long-term tests, the subsystem consistently produced high-quality permeate, processing actual wash water to 95 percent recovery.

  10. Town of Edinburg landfill reclamation demonstration project

    SciTech Connect

    Not Available

    1992-05-15

    Landfill reclamation is the process of excavating a solid waste landfill to recover materials, reduce environmental impacts, restore the land resource, and, in some cases, extend landfill life. Using conventional surface mining techniques and specialized separation equipment, a landfill may be separated into recyclable material, combustible material, a soil/compost fraction and residual waste. A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified. The results indicate that, although dependent on site-specific conditions and economic factors, landfill reclamation can be a technically and economically feasible alternative or companion to conventional landfill closure under a range of favorable conditions. Feasibility can be determined only after an investigation of the variety of landfill conditions and reclamation options.

  11. Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing.

    PubMed

    Rasmussen, M L; Khanal, S K; Pometto, A L; van Leeuwen, J Hans

    2014-01-01

    Rhizopus oligosporus was cultivated on thin stillage from a dry-grind corn ethanol plant. The aim of the research was to develop a process to replace the current energy-intensive flash evaporation and make use of this nutrient-rich stream to create a new co-product in the form of protein-rich biomass. Batch experiments in 5- and 50-L stirred bioreactors showed prolific fungal growth under non-sterile conditions. COD, suspended solids, glycerol, and organic acids removals, critical for in-plant water reuse, reached ca. 80%, 98%, 100% and 100%, respectively, within 5 d of fungal inoculation, enabling effluent recycle as process water. R. oligosporus contains 2% lysine, good levels of other essential amino acids, and 43% crude protein - a highly nutritious livestock feed. Avoiding water evaporation from thin stillage would furthermore save substantial energy inputs on corn ethanol plants. PMID:24269825

  12. Combination of an electrolytic pretreatment unit with secondary water reclamation processes

    NASA Technical Reports Server (NTRS)

    Wells, G. W.; Bonura, M. S.

    1973-01-01

    The design and fabrication of a flight concept prototype electrolytic pretreatment unit (EPU) and of a contractor-furnished air evaporation unit (AEU) are described. The integrated EPU and AEU potable water recovery system is referred to as the Electrovap and is capable of processing the urine and flush water of a six-man crew. Results of a five-day performance verification test of the Electrovap system are presented and plans are included for the extended testing of the Electrovap to produce data applicable to the combination of electrolytic pretreatment with most final potable water recovery systems. Plans are also presented for a program to define the design requirements for combining the electrolytic pretreatment unit with a reverse osmosis final processing unit.

  13. Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum

    NASA Astrophysics Data System (ADS)

    Gharaibeh, M. A.; Rusan, M. J.; Eltaif, N. I.; Shunnar, O. F.

    2014-09-01

    The efficiency of two amendments in reclaiming saline sodic soil using moderately saline (EC) and moderate sodium adsorption ratio (SAR) canal water was investigated. Phosphogypsum (PG) and reagent grade calcium chloride were applied to packed sandy loam soil columns and leached with canal water (SAR = 4, and EC = 2.16 dS m-1). Phosphogypsum was mixed with top soil prior to leaching at application rates of 5, 10, 15, 20, 25, 35, 40 Mg ha-1, whereas calcium chloride was dissolved directly in water at equivalent rates of 4.25, 8.5, 12.75, 17.0, 21.25, 29.75, and 34 Mg ha-1, respectively. Both amendments efficiently reduced soil salinity and sodicity. Calcium chloride removed 90 % of the total Na and soluble salts whereas PG removed 79 and 60 %, respectively. Exchangeable sodium percentage was reduced by 90 % in both amendments. Results indicated that during cation exchange reactions most of the sodium was removed when effluent SAR was at maximum. Phosphogypsum has lower total costs than calcium chloride and as an efficient amendment an application of 30 Mg ha-1 and leaching with 4 pore volume (PV) of canal water could be recommended to reclaim the studied soil.

  14. Analysis of alternative modifications for reducing backwater flooding at the Honey Creek coal strip-mine reclamation site in Henry County, Missouri. Water Resources Investigation

    SciTech Connect

    Alexander, T.W.

    1990-01-01

    Studies to determine the hydrologic conditions in mined and reclaimed mine areas, as well as areas of proposed mining, have become necessary with the enactment of the Surface Mining Control and Reclamation Act of 1977. Honey Creek in Henry County, Missouri, has been re-routed to flow through a series of former strip mining pits which lie within the Honey Creek coal strip mine reclamation site. During intense or long duration rainfalls within the Honey Creek basin, surface runoff has caused flooding on agricultural land near the upstream boundary of the reclamation site. The calculated existing design discharge (3,050 cubic feet per second) water-surface profile is compared to the expected water-surface profiles from three assumed alternative channel modifcations within the Honey Creek study area. The alternative channel modifications used in these analyses include (1) improvement of channel bottom slope, (2) relocation of spoil material, and (3) improved by-pass channel flow conditions. The alternative 1, 2, and 3 design discharge increase will reduce the agricultural field current (1990) frequency of backwater flooding from a 3-year to a 6.5-year event.

  15. Reclamation of Water Polluted with Flubendiamide Residues by Photocatalytic Treatment with Semiconductor Oxides.

    PubMed

    Fenoll, José; Vela, Nuria; Garrido, Isabel; Navarro, Ginés; Pérez-Lucas, Gabriel; Navarro, Simón

    2015-01-01

    The photodegradation of flubendiamide (benzenedicarboxamide insecticide), a relatively new insecticide was investigated in aqueous suspensions binary (ZnO of and TiO2 ) and ternary (Zn2 TiO4 and ZnTiO3 ) oxides under artificial light (300-460 nm) irradiation. Photocatalytic experiments showed that the addition of semiconductors, especially ZnO and TiO2 , in tandem with an electron acceptor (Na2 S2 O8 ) enhances the degradation rate of this compound in comparison with those carried out with catalyst alone and photolytic tests. The photocatalytical degradation of flubendiamide using ZnO/Na2 S2 O8 and TiO2 /Na2 S2 O8 followed first-order kinetics. In addition, desiodo-flubendiamide was identified during the degradation of flubendiamide. Finally, application of these reaction systems in different waters (tap, leaching and watercourse) showed the validity of the treatments, which allowed the removal of flubendiamide residues in these drinking and environmental water samples. PMID:26084678

  16. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    USGS Publications Warehouse

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  17. Effect of Municipal Wastewater as a Wetland Water Source on Soil Microbial Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial activity, as determined by CO2 evolution, was compared between two soils irrigated with either municipal wastewater effluent or Missouri River water. Irrigation of soils was conducted in greenhouse microcosms with irrigation timing and quantity designed to simulate wetland moist-soil mana...

  18. Pharmaceutical occurrence in groundwater and surface waters in forests land-applied with municipal wastewater.

    PubMed

    McEachran, Andrew D; Shea, Damian; Bodnar, Wanda; Nichols, Elizabeth Guthrie

    2016-04-01

    The occurrence and fate of pharmaceutical and personal care products in the environment are of increasing public importance because of their ubiquitous nature and documented effects on wildlife, ecosystems, and potentially humans. One potential, yet undefined, source of entry of pharmaceuticals into the environment is via the land application of municipal wastewater onto permitted lands. The objective of the present study is to determine the extent to which pharmaceuticals are mitigated by or exported from managed tree plantations irrigated with municipal wastewater. A specific focus of the present study is the presence of pharmaceutical compounds in groundwater and surface water discharge. The study site is a municipality that land-applies secondary treated wastewater onto 930 hectares of a 2000-hectare managed hardwood and pine plantation. A suite of 33 pharmaceuticals and steroid hormones was targeted in the analysis, which consisted of monthly grab sampling of groundwater, surface water, and wastewater, followed by concentration and cleanup via solid phase extraction and separation, detection, and quantification via liquid chromatography coupled with tandem mass spectrometry. More than one-half of all compounds detected in irrigated wastewater were not present in groundwater and subsequent surface water. However, antibiotics, nonsteroidal anti-inflammatory drugs, caffeine, and other prescription and over-the-counter drugs remained in groundwater and were transported into surface water at concentrations up to 10 ng/L. These results provide important documentation for pharmaceutical fate and transport in forest systems irrigated with municipal wastewater, a previously undocumented source of environmental entry. PMID:26297815

  19. LEVELS OF SYNTHETIC MUSKS COMPOUNDS IN MUNICIPAL WASTEWATER FOR ESTIMATING BIOTA EXPOSURE IN RECEIVING WATERS

    EPA Science Inventory

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials and consumed in very large quantities worldwide. Due to their high use and release, they have become ubiquitous in the environment. We analyzed water samples from the confluence of three municipal...

  20. 78 FR 35618 - Three Valleys Municipal Water District; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Three Valleys Municipal Water District; Notice of Application Accepted for Filing and Soliciting Comments, Motions To Intervene, Protests, Recommendations, and Terms and Conditions Take notice that the...

  1. Domestic wash water reclamation for reuse as commode water supply using filtration: Reverse-osmosis separation technique

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Batten, C. E.; Wilkins, J. R.

    1974-01-01

    A combined filtration-reverse-osmosis water recovery system has been evaluated to determine its capability to reclaim domestic wash water for reuse as a commode water supply. The system produced water that met all chemical and physical requirements established by the U.S. Public Health Service for drinking water with the exception of carbon chloroform extractables, methylene blue active substances, and phenols. It is thought that this water is of sufficient quality to be reused as commode supply water. The feasibility of using a combined filtration and reverse-osmosis technique for reclaiming domestic wash water has been established. The use of such a technique for wash-water recovery will require a maintenance filter to remove solid materials including those less than 1 micron in size from the wash water. The reverse-osmosis module, if sufficiently protected from plugging, is an attractive low-energy technique for removing contaminants from domestic wash water.

  2. Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paper mills generate large amounts of solid waste consisting of a mixture of fibrous cellulose, clay, and lime. Paper mill sludge (PMS) can be used to improve reclamation of surface coal mines where low pH and organic matter levels in the soil material used to cover the spoil can inhibit reestablish...

  3. The challenges of mainstream deammonification process for municipal used water treatment.

    PubMed

    Xu, Guangjing; Zhou, Yan; Yang, Qin; Lee, Zarraz May-Ping; Gu, Jun; Lay, Winson; Cao, Yeshi; Liu, Yu

    2015-03-01

    The deammonification process combining partial nitritation and anaerobic ammonium oxidation has been considered as a viable option for energy-efficient used water treatment. So far, many full-scale sidestream deammonification plants handling high-ammonia used water have been in successful operation since Anammox bacteria were first discovered in the 1990s. However, large-scale application of this process for treating municipal used water with low ammonia concentration has rarely been reported. Compared to the sidestream deammonification process, the mainstream deammonification process for municipal used water treatment faces three main challenges, i.e., (i) high COD/N ratio leading to denitrifiers outcompeting Anammox bacteria, (ii) numerous difficulties in selective retention of ammonia-oxidizing bacteria (AOB) over nitrite-oxidizing bacteria (NOB), and (iii) sufficient accumulation of Anammox bacteria. Therefore, this paper attempts to provide a detailed analysis of these challenges and possible solutions towards sustainable mainstream deammonification process. PMID:25638355

  4. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Belle Fourche Reclamation Project, western South Dakota, 1988-89. Water Resources Investigation

    SciTech Connect

    Roddy, W.R.; Greene, E.A.; Sowards, C.L.

    1991-01-01

    The U.S. Department of the Interior initiated nine reconnaissance investigations during 1986-87 in response to nationwide concern about harmful effects of irrigation drainage on human health, fish, and wildlife. The investigation of the Belle Fourche Reclamation Project in western South Dakota is one of ten additional reconnaissance investigations conducted during 1988-89. The U.S. Geological Survey collected a total of thirty surface-water-quality samples during April, June, August, and October 1988. Six to ten sites were sampled during each sampling period. An additional 40 surface-water-quality samples were collected at three of the sites during October 1987 through April 1989, and these results are included in the discussion. Bottom sediment was collected at eight of the ten water-sampling sites. The U.S. Fish and Wildlife Service collected fish samples at three sites during the spring and fall; samples of bird livers and bird eggs were collected at five sites during the summer; and samples of benthic invertebrates and aquatic plants were collected at six sites during the summer.

  5. DRINKING WATER AND CANCER INCIDENCE IN IOWA. 1. TRENDS AND INCIDENCE BY SOURCE OF DRINKING WATER AND SIZE OF MUNICIPALITY

    EPA Science Inventory

    The available data resources in the State of Iowa were used to investigate the relationships of drinking water contaminants and cancer incidence rates for communities. Age-adjusted, sex-specific cancer incidence rates for the years 1969-1978 were determined for municipalities hav...

  6. Alternatives for reducing nitrate in municipal water supplies

    SciTech Connect

    Guter, G.A.; Kartinen, E.O. )

    1989-01-01

    A project to reduce nitrate levels in drinking water supplied to the community of McFarland, California is described. Intense irrigation of the surrounding area subjects the community to ground water pollution from agricultural chemicals and by products. Nitrates ranged from 40 to 100mg/L (as NO3) in water supplied from wells. Costs and operational data of a 1 mgd ion exchange plant are presented. Costs and data for a recently constructed 1 mgd plant are also reviewed. Data from other nitrate plants now under construction are presented. Future research involving the use of nitrate selective resins and waste brine recovery and recycling is reviewed.

  7. 43 CFR 404.43 - What process will Reclamation follow to determine if an appraisal investigation is ready for review?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Appraisal Investigations § 404.43 What process will Reclamation follow to determine if...

  8. Application of a fully-integrated groundwater-surface water flow model in municipal asset management

    NASA Astrophysics Data System (ADS)

    Bowman, L. K.; Unger, A.; Jones, J. P.

    2014-12-01

    Access to affordable potable water is critical in the development and maintenance of urban centres. Given that water is a public good in Canada, all funds related to operation and maintenance of the drinking water and wastewater networks must come from consumers. An asset management system can be put in place by municipalities to more efficiently manage their water and wastewater distribution system to ensure proper use of these funds. The system works at the operational, tactical, and strategic levels, thus ensuring optimal scheduling of operation and maintenance activities, as well as prediction of future water demand scenarios. At the operational level, a fully integrated model is used to simulate the groundwater-surface water interaction of the Laurel Creek Watershed, of which 80% is urbanized by the City of Waterloo. Canadian municipalities typically lose 13% of their potable water through leaks in watermains and sanitary sewers, and sanitary sewers often generate substantial inflows from fractures in pipe walls. The City of Waterloo sanitary sewers carry an additional 10,000 cubic meters of water to wastewater treatment plants. Therefore, watermain and sanitary sewers present a significant impact on the groundwater-surface water interaction, as well as the affordability of the drinking water and wastewater networks as a whole. To determine areas of concern within the network, the integrated groundwater-surface water model also simulates flow through the City of Waterloo's watermain and sanitary sewer networks. The final model will be used to assess the interaction between measured losses of water from the City of Waterloo's watermain system, infiltration into the sanitary sewer system adjacent to the watermains, and the response of the groundwater system to deteriorated sanitary sewers or to pipes that have been recently renovated. This will ultimately contribute to the City of Waterloo's municipal asset management plan.

  9. Evaluation of the effects of coal-mine reclamation on water quality in Big Four Hollow near Lake Hope, southeastern Ohio

    SciTech Connect

    Nichols, V.E.

    1985-01-01

    A data collection program was established in 1979 by the US Geological Survey to evaluate effects of drift-mine sealing on surface water and groundwater systems of the Big Four Hollow Creek and Sandy Run area just below the mine. Data collected show that pH ranged from 2.7 to 4.8, with a median of 3.1. The calculated sulfate load was 1,200 lb/day, and the calculated iron load was 50 lb/day. Data collected near the mouth of Big Four Hollow Creek from 1971 through 1979 show the daily pH ranged from 2.1 to 6.7; the median was 3.6. The estimated loads of chemical constituents were: Sulfate, 1,100 lb/day; iron, 54 lb/day; and manganese, 12 lb/day. All postconstruction data collected at station 03201700 through the end of the project, May 1980 through June 30, 1983, show that the daily pH ranged from 2.4 to 7.7, with a median of 3.7. Daily specific conductance ranged from 87 to 3,200 microsiemens/cm and averaged 1,200. Standard nonparametric statistical tests were performed on the data collected before and after reclamation. Differences at the 95% confidence level were found in the before- and after-reclamation data sets for specific conductance, aluminum, and manganese at station 03201700. Data collected during the first 6 months after reclamation indicated moderate improvement in water quality only because no highly mineralized water was leaking from the closed mine. 15 refs., 17 figs., 22 tabs.

  10. Municipal Water Demand Study, Oklahoma City and Tulsa, Oklahoma

    NASA Astrophysics Data System (ADS)

    Cochran, Richard; Cotton, Arthur W.

    1985-07-01

    By using a multiple regression model, this longitudinal study analyzes the methods and results of the factors which influence water consumption in Oklahoma City and Tulsa, Oklahoma during the 20-year period of 1961 through 1980. The explanatory variables utilized in the model include the average price of water per thousand liters (X1); constant per capita income (X2); average monthly precipitation measured in millimeters (X3); average monthly temperatures in °C(X4); and number of households per thousand population (X5). The results indicate that average price and per capita income were predictive variables for Oklahoma City's water demand, while only per capita income was found to be a predictor for consumption in Tulsa.

  11. Municipal Wastewater: A Rediscovered Resource for Sustainable Water Reuse

    EPA Science Inventory

    Both population growth and movement puts forth the need for increased regional water supplies across the globe. While significant progress has been made in the area of building new infrastructure to capture freshwater and divert it to urban and rural areas, there exists a consid...

  12. Rubber Reclamation

    ERIC Educational Resources Information Center

    Williams, Kathryn R.

    2007-01-01

    The safety and health hazards related to recycling of used rubber, due to the scarcity and high price of virgin rubber are reported. Various threats like stagnant water pools trapped in tires leading to diseases and ignited tires, which become very difficult to extinguish and generating smoke that is extremely detrimental to the environment, have…

  13. Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities

    SciTech Connect

    Young, J C; Johnson, L D

    1980-09-01

    Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

  14. Landfill reclamation attracts attention and questions

    SciTech Connect

    Aquino, J.T.

    1994-12-01

    Landfill mining or reclamation has fit neatly into the recycling/reuse mindset. In heralding the first California landfill reclamation project at the Caspar Landfill municipal solid waste (MSW) site in May 1994, a California state official described it as ''win-win. Nobody loses''. Speaking at a session at the annual meeting of the Solid Waste Management Association of North America (SWANA), held August 2--6, 1994, Joanne R. Guerriero, senior project engineer, Malcolm Pirnie, Inc. (White Plains, NY), said landfill reclamation--the excavation of a landfill using conventional mining technology to recover and reuse resources--can: extend the life of existing landfill sites and reduce the need for siting new landfills; decrease the area requiring closure; remediate an environmental concern by removing a contaminant source; reclaim marketable recyclables; and capture energy through waste combustion.

  15. 43 CFR 404.17 - How will Reclamation evaluate my statement of interest?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false How will Reclamation evaluate my statement of interest? 404.17 Section 404.17 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.17 How will Reclamation evaluate my statement...

  16. 43 CFR 404.22 - How will Reclamation evaluate my full proposal?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false How will Reclamation evaluate my full proposal? 404.22 Section 404.22 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.22 How will Reclamation evaluate my full proposal?...

  17. 43 CFR 404.21 - What is Reclamation's role in preparing the full proposal?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false What is Reclamation's role in preparing the full proposal? 404.21 Section 404.21 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.21 What is Reclamation's role in preparing...

  18. 43 CFR 404.22 - How will Reclamation evaluate my full proposal?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false How will Reclamation evaluate my full proposal? 404.22 Section 404.22 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.22 How will Reclamation evaluate my full proposal?...

  19. 43 CFR 404.21 - What is Reclamation's role in preparing the full proposal?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What is Reclamation's role in preparing the full proposal? 404.21 Section 404.21 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.21 What is Reclamation's role in preparing...

  20. Guide to land treatment of municipal waste water in Illinois

    SciTech Connect

    Skelton, L.W.; Hinesly, T.D.; John, S.F.

    1989-01-01

    Waste water is a recyclable commodity. Organic matter, nitrogen, phosphorus, and micronutrients in waste water are generally harmful when discharged to lakes and streams, but these constituents have a positive economic value when applied under properly controlled conditions to vegetated soils. The guide provides an overview of planning for a land-treatment system. It first discusses the potential for land treatment in Illinois, how to modify lagoons for land treatment, economic considerations, health and environmental concerns, regulatory requirements, and public education. It then provides more technical information on land-treatment processes, site and waste-load evaluation, systems for agricultural production, the potential for supplemental irrigation in Illinois, general site management, and system monitoring.

  1. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  2. Corrosion control when using secondary treated municipal wastewater as alternative makeup water for cooling tower systems.

    PubMed

    Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D

    2010-12-01

    Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former. PMID:21214028

  3. Description of concept and first feasibility test results of a life support subsystem of the Botany Facility based on water reclamation

    NASA Technical Reports Server (NTRS)

    Loeser, H. R.

    1986-01-01

    The Botany Facility allows the growth of higher plants and fungi over a period of 6 months maximum. It is a payload planned for the second flight of the Eureca platform around 1990. Major tasks of the Life Support Subsystem (LSS) of the Botany Facility include the control of the pressure and composition of the atmosphere within the plant/fungi growth chambers, control of the temperature and humidity of the air and the regulation of the soil water content within specified limits. Previous studies have shown that various LSS concepts are feasible ranging from heavy, simple and cheap to light, complex and expensive solutions. A summary of those concepts is given. A new approach to accomplish control of the temperature and humidity of the air within the growth chambers based on water reclamation is discussed. This reclamation is achieved by condensation with a heat pump and capillary transport of the condensate back into the soil of the individual growth chamber. Some analytical estimates are given in order to obtain guidelines for circulation flow rates and to determine the specific power consumption.

  4. Energy optimization of water and wastewater management for municipal and industrial applications conference

    SciTech Connect

    Not Available

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use and conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  5. Measuring willingness to pay to improve municipal water in southeast Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Bilgic, Abdulbaki

    2010-12-01

    Increasing demands for water and quality concerns have highlighted the importance of accounting for household perceptions before local municipalities rehabilitate existing water infrastructures and bring them into compliance. We compared different willingness-to-pay (WTP) estimates using household surveys in the southern Anatolian region of Turkey. Our study is the first of its kind in Turkey. Biases resulting from sample selection and the endogeneity of explanatory variables were corrected. When compared to a univariate probit model, correction of these biases was shown to result in statistically significant findings through moderate reductions in mean WTP.

  6. Energy optimization of water and wastewater management for municipal and industrial applications conference

    SciTech Connect

    Not Available

    1980-08-01

    These proceedings document the presentations given at the Energy Optimization of Water and Wastewater Management for Municipal and Industrial Applications, Conference, sponsored by the Department of Energy (DOE). The conference was organized and coordinated by Argonne National Laboratory. The conference focused on energy use on conservation in water and wastewater. The General Session also reflects DOE's commitment to the support and development of waste and wastewater systems that are environmentally acceptable. The conference proceedings are divided into two volumes. Volume 1 contains the General Session and Sessions 1 to 5. Volume 2 covers Sessions 6 to 12. Separate abstracts are prepared for each item within the scope of the Energy Data Base.

  7. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: implications for land and water reclamation in tropical regions.

    PubMed

    Lottermoser, Bernd G; Ashley, Paul M

    2011-10-01

    This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions. PMID:21550704

  8. Assessment of ground-water withdrawals at municipal industrial parks in Puerto Rico, 2000

    USGS Publications Warehouse

    Rodriguez, Jose M.

    2004-01-01

    An assessment of ground-water withdrawals at municipal industrial parks throughout Puerto Rico was conducted to investigate the effect of ground-water usage on nearby surface- and ground-water resources. Water-bearing strata were divided into four generalized hydrogeologic units: (1) fissured aquifers (including karst and non-karst limestone); (2) intergranular aquifers; (3) intergranular aquifers overlying fissured rock units; and (4) strata with local or limited ground-water resources. Approximately 49 percent of the municipal industrial parks are located in areas with local or limited ground-water resources, 29 percent overlie intergranular aquifers, 13 percent overlie fissured aquifers, and 9 percent overlie intergranular units that overlie fissured rock units. Hydrogeologic data for the generalized hydrogeologic units were compiled from published U.S. Geological Survey reports. Depths to ground water near industrial parks range from approximately 20 to 400 feet in the fissured aquifers, 6 to 65 feet in coastal intergranular aquifers, 3 to 30 feet in intergranular aquifers overlying fissured rock units, and 1 to 100 feet in strata with local or limited ground-water resources. Aquifer transmissivities near industrial parks range from approximately 100,000 feet squared per day in the fissured aquifers to less than 100 feet squared per day in the strata with local or limited ground-water resources. Well construction data were compiled from published U.S. Geological Survey reports, drillers? logs, and unpublished reports. Specific capacity for wells near industrial parks ranges from approximately 100 gallons per minute per foot of drawdown in the fissured aquifer at Manati to approximately 0.1 gallon per minute per foot of drawdown in strata with local and limited ground-water resources at Bayamon. Reported well yields near industrial parks ranges from 2,800 gallons per minute in the intergranular aquifer at Santa Isabel to approximately 3 gallons per minute in

  9. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  10. The Role of Municipal Water Ortho-Phosphate on Eutrophication at Prospect Park, Brooklyn, New York

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Cheng, Z.; Jordan, J.; Doan, A.

    2008-05-01

    Ortho-phosphate has been added to municipal supply as one of the measures for drinking water lead control since 1990's. In New York City, P concentration of tap water has been maintained at about 2 ppm for the past decade. As a result, on average 4 metric tons of P enter the drinking water supply and eventually it is deposited, accumulated and recycled in urban water systems. The impact of this excessive nutrient on urban environment and ecosystems, especially over the long term, has not been adequately addressed. Prospect Lake in Brooklyn is composed of a series of ponds whose water are fed mainly by municipal water supply. More and more severe eutrophication symptoms have become apparent in the past decade. Prospect Park is one of the largest parks in New York City that is visited by millions of people each year. Eutrophication prevailing almost all year in its water system poses management challenges. Finding ways to cure this "chronic disease" requires pinpointing the main source of the nutrients for algal boom. There is an ongoing controversy as to the importance of orthophosphate from the municipal water supply. Preliminary measurements indicate that most P gradually deposit into the series of ponds as it runs through the water system. Although fertilizer has rarely been used at Prospect Park, runoff from nearby lands could have also brought in nutrients that need to be quantified. The contributions from groundwater and animals also remain poorly understood. In addition, there is lack of fundamental understanding of the effects of hydrodynamics and recycling of P among the sediment-water-ecological systems. A phosphorus budget model is being established to study the distribution, recycling, and transport of inorganic and organic P. Ongoing experiments isolate the contributions from dissolved P and sediment P for algal growth. Sediment and water samples are taken from the lake, and then placed in a microcosm system to study the effect of aqueous and sediment

  11. Exposure assessment for trihalomethanes in municipal drinking water and risk reduction strategy.

    PubMed

    Chowdhury, Shakhawat

    2013-10-01

    Lifetime exposure to disinfection byproducts (DBPs) in municipal water may pose risks to human health. Current approaches of exposure assessments use DBPs in cold water during showering, while warming of chlorinated water during showering may increase trihalomethane (THM) formation in the presence of free residual chlorine. Further, DBP exposure through dermal contact during showering is estimated using steady-state condition between the DBPs in shower water impacting on human skin and skin exposed to shower water. The lag times to achieve steady-state condition between DBPs in shower water and human skin can vary in the range of 9.8-391.2 min, while shower duration is often less than the lag times. Assessment of exposure without incorporating these factors might have misinterpreted DBP exposure in some previous studies. In this study, exposure to THMs through ingestion was estimated using cold water THMs, while THM exposure through inhalation and dermal contact during showering was estimated using THMs in warm water. Inhalation of THMs was estimated using THM partition into the shower air, while dermal uptake was estimated by incorporating lag times (e.g., unsteady and steady-state phases of exposure) during showering. Probabilistic approach was followed to incorporate uncertainty in the assessment. Inhalation and dermal contact during showering contributed 25-60% of total exposure. Exposure to THMs during showering can be controlled by varying shower stall volume, shower duration and air exchange rate following power law equations. The findings might be useful in understanding exposure to THMs, which can be extended to other volatile compounds in municipal water. PMID:23872246

  12. Heating and cooling of municipal buildings with waste heat from ground water

    SciTech Connect

    Morgan, D.S.; Hochgraf, J.

    1980-10-01

    The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

  13. Mycobacterium abscessus isolated from municipal water - a potential source of human infection

    PubMed Central

    2013-01-01

    Background Mycobacterium abscessus is a rapidly growing mycobacterium responsible for progressive pulmonary disease, soft tissue and wound infections. The incidence of disease due to M. abscessus has been increasing in Queensland. In a study of Brisbane drinking water, M. abscessus was isolated from ten different locations. The aim of this study was to compare genotypically the M. abscessus isolates obtained from water to those obtained from human clinical specimens. Methods Between 2007 and 2009, eleven isolates confirmed as M. abscessus were recovered from potable water, one strain was isolated from a rainwater tank and another from a swimming pool and two from domestic taps. Seventy-four clinical isolates referred during the same time period were available for comparison using rep-PCR strain typing (Diversilab). Results The drinking water isolates formed two clusters with ≥97% genetic similarity (Water patterns 1 and 2). The tankwater isolate (WP4), one municipal water isolate (WP3) and the pool isolate (WP5) were distinctly different. Patient isolates formed clusters with all of the water isolates except for WP3. Further patient isolates were unrelated to the water isolates. Conclusion The high degree of similarity between strains of M. abscessus from potable water and strains causing infection in humans from the same geographical area, strengthens the possibility that drinking water may be the source of infection in these patients. PMID:23705674

  14. BENEFICIAL USE OF INDUSTRIAL STORMWATER RUNOFF: NONPOTABLE WATER SUPPLY PURPOSES

    EPA Science Inventory

    As population and industry grow, water demand increases, and water supply becomes more of a problem. While reclamation of municipal wastewater for industry, subpotable domestic usage, and groundwater recharge has been practiced in the United States over the past several decades ...

  15. Estimating the number of cases of acute gastrointestinal illness (AGI) associated with Canadian municipal drinking water systems.

    PubMed

    Murphy, H M; Thomas, M K; Medeiros, D T; McFADYEN, S; Pintar, K D M

    2016-05-01

    The estimated burden of endemic acute gastrointestinal illness (AGI) annually in Canada is 20·5 million cases. Approximately 4 million of these cases are domestically acquired and foodborne, yet the proportion of waterborne cases is unknown. A number of randomized controlled trials have been completed to estimate the influence of tap water from municipal drinking water plants on the burden of AGI. In Canada, 83% of the population (28 521 761 people) consumes tap water from municipal drinking water plants serving >1000 people. The drinking water-related AGI burden associated with the consumption of water from these systems in Canada is unknown. The objective of this research was to estimate the number of AGI cases attributable to consumption of drinking water from large municipal water supplies in Canada, using data from four household drinking water intervention trials. Canadian municipal water treatment systems were ranked into four categories based on source water type and quality, population size served, and treatment capability and barriers. The water treatment plants studied in the four household drinking water intervention trials were also ranked according to the aforementioned criteria, and the Canadian treatment plants were then scored against these criteria to develop four AGI risk groups. The proportion of illnesses attributed to distribution system events vs. source water quality/treatment failures was also estimated, to inform the focus of future intervention efforts. It is estimated that 334 966 cases (90% probability interval 183 006-501 026) of AGI per year are associated with the consumption of tap water from municipal systems that serve >1000 people in Canada. This study provides a framework for estimating the burden of waterborne illness at a national level and identifying existing knowledge gaps for future research and surveillance efforts, in Canada and abroad. PMID:26564554

  16. An analysis of the market potential of water hyacinth-based systems for municipal wastewater treatment

    NASA Technical Reports Server (NTRS)

    Robinson, A. C.; Gorman, H. J.; Hillman, M.; Lawhon, W. T.; Maase, D. L.; Mcclure, T. A.

    1976-01-01

    The potential U.S. market for tertiary municipal wastewater treatment facilities which make use of water hyacinths was investigated. A baseline design was developed which approximates the "typical" or "average" situation under which hyacinth-based systems can be used. The total market size for tertiary treatment was then estimated for those geographical regions in which hyacinths appear to be applicable. Market penetration of the baseline hyacinth system when competing with conventional chemical and physical processing systems was approximated, based primarily on cost differences. A limited analysis was made of the sensitivity of market penetration to individual changes in these assumptions.

  17. Introduction of monochloramine into a municipal water system: impact on colonization of buildings by Legionella spp.

    PubMed

    Moore, Matthew R; Pryor, Marsha; Fields, Barry; Lucas, Claressa; Phelan, Maureen; Besser, Richard E

    2006-01-01

    Legionnaires' disease (LD) outbreaks are often traced to colonized potable water systems. We collected water samples from potable water systems of 96 buildings in Pinellas County, Florida, between January and April 2002, during a time when chlorine was the primary residual disinfectant, and from the same buildings between June and September 2002, immediately after monochloramine was introduced into the municipal water system. Samples were cultured for legionellae and amoebae using standard methods. We determined predictors of Legionella colonization of individual buildings and of individual sampling sites. During the chlorine phase, 19 (19.8%) buildings were colonized with legionellae in at least one sampling site. During the monochloramine phase, six (6.2%) buildings were colonized. In the chlorine phase, predictors of Legionella colonization included water source (source B compared to all others, adjusted odds ratio [aOR], 6.7; 95% confidence interval [CI], 2.0 to 23) and the presence of a system with continuously circulating hot water (aOR, 9.8; 95% CI, 1.9 to 51). In the monochloramine phase, there were no predictors of individual building colonization, although we observed a trend toward greater effectiveness of monochloramine in hotels and single-family homes than in county government buildings. The presence of amoebae predicted Legionella colonization at individual sampling sites in both phases (OR ranged from 15 to 46, depending on the phase and sampling site). The routine introduction of monochloramine into a municipal drinking water system appears to have reduced colonization by Legionella spp. in buildings served by the system. Monochloramine may hold promise as community-wide intervention for the prevention of LD. PMID:16391067

  18. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    PubMed

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. PMID:26926783

  19. The ISS Reclamation Data Bank.

    PubMed

    Musmeci, Loredana; Bellino, Mirella; Binetti, Roberto; Ceccarelli, Federica; Costamagna, Francesca Marina; D'Angiolini, Antonella; Fabri, Alessandra; Falleni, Fabrizio; Ferri, Maurizio; Piccardi, Augusta; Roazzi, Paolo; Trucchi, Daniela; Marcello, Ida

    2008-01-01

    Since the issue of the first regulations concerning the remediation of contaminated sites, the Istituto Superiore di Sanità, on the basis of specific requests, has drawn up various technical opinions regarding the proposed reference values (quality standards) for soils and underground waters, to be achieved when remediating contaminated sites, for substances for which no standard limit values did not exist at that time. These reference values, widely used throughout the country and accepted and adopted as "remediation aim" values by various territorial bodies responsible for the approval and monitoring of remediation projects, have been collected in a specific reclamation oriented data bank known as the "Banca Dati Bonifiche (BDB)" (Reclamation Data Bank). The BDB contains the related standardized "rationale" for each reference value, in order to serve as a useful reference for the national bodies concerned with the remediation of contaminated sites. PMID:18469379

  20. Escalating water demand for energy production and the potential for use of treated municipal wastewater.

    PubMed

    Li, Heng; Chien, Shih-Hsiang; Hsieh, Ming-Kai; Dzombak, David A; Vidic, Radisav D

    2011-05-15

    To ensure sufficient thermoelectric power production in the future, the use of alternative water sources to replace freshwater consumption in power plants will be required. The amount of municipal wastewater (MWW) being produced and its widespread availability merit the investigation of this potential source of cooling water. This is particularly important for thermoelectric power plants in regions where freshwater is not readily available. Critical regulatory and technical challenges for using MWW as makeup water in recirculating cooling systems are examined. The existing regulations do not prohibit wastewater reuse for power plant cooling. The challenges of controlling corrosion, mineral scaling, and biofouling in recirculating cooling systems need to be carefully considered and balanced in a holistic fashion. Initial investigations suggest that many of these challenges can be surmounted to ensure the use of MWW in recirculating cooling systems. PMID:21466187

  1. Microorganism levels in air near spray irrigation of municipal waste water: The Lubbock Infection Surveillance Study

    SciTech Connect

    Camann, D.E.; Moore, B.E.; Harding, H.J.; Sorber, C.A.

    1988-01-01

    The Lubbock Infection Surveillance Study (LISS) investigated possible adverse effects on human health from slow-rate land application of municipal wastewater. Extensive air sampling was conducted to characterize the irrigation site as a source of infectious microbial aerosols. Spray irrigation of poor-quality waste water received directly from the treatment plant significantly elevated air densities of fecal coliforms, fecal streptococci, mycobacteria, and coliphage above ambient background levels for at least 200 m downwind. Enteroviruses were repeatedly recovered at 44 to 60 m downwind at a higher level (geometric mean = 0.05 pfu/m3) than observed at other waste water aerosol sites in the U.S. and in Israel. Waste water storage in reservoirs reduced downwind air densities of indicator organisms by two orders of magnitude.

  2. An Analysis of Total Phosphorus Dispersion in Lake Used As a Municipal Water Supply.

    PubMed

    Lima, Rômulo C; Mesquita, André L A; Blanco, Claudio J C; Santos, Maria de Lourdes S; Secretan, Yves

    2015-09-01

    In Belém city is located the potable water supply system of its metropolitan area, which includes, in addition to this city, four more municipalities. In this water supply complex is the Água Preta lake, which serves as a reservoir for the water pumped from the Guamá river. Due to the great importance of this lake for this system, several works have been devoted to its study, from the monitoring of the quality of its waters to its hydrodynamic modeling. This paper presents the results obtained by computer simulation of the phosphorus dispersion within this reservoir by the numerical solution of two-dimensional equation of advection-diffusion-reaction by the method θ/SUPG. Comparing these results with data concentration of total phosphorus collected from November 2008 to October 2009 and from satellite photos show that the biggest polluters of the water of this lake are the domestic sewage dumps from the population living in its vicinity. The results obtained indicate the need for more information for more precise quantitative analysis. However, they show that the phosphorus brought by the Guamá river water is consumed in an area adjacent to the canal that carries this water into the lake. Phosphorus deposits in the lake bottom should be monitored to verify their behavior, thus preventing the quality of water maintained therein. PMID:26421456

  3. Viruses in non-disinfected groundwater used for municipal drinking water and the incidence of acute gastrointestinal illness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human viruses from fecal wastes have been known to contaminate the groundwater supplies of municipal drinking water systems. The relationship of these sporadic virus detections in groundwater to human health risk is unknown. We quantified virus concentrations by real-time qPCR in the tap water of ...

  4. Communitywide cryptosporidiosis outbreak associated with a surface water-supplied municipal water system--Baker City, Oregon, 2013.

    PubMed

    DeSilva, M B; Schafer, S; Kendall Scott, M; Robinson, B; Hills, A; Buser, G L; Salis, K; Gargano, J; Yoder, J; Hill, V; Xiao, L; Roellig, D; Hedberg, K

    2016-01-01

    Cryptosporidium, a parasite known to cause large drinking and recreational water outbreaks, is tolerant of chlorine concentrations used for drinking water treatment. Human laboratory-based surveillance for enteric pathogens detected a cryptosporidiosis outbreak in Baker City, Oregon during July 2013 associated with municipal drinking water. Objectives of the investigation were to confirm the outbreak source and assess outbreak extent. The watershed was inspected and city water was tested for contamination. To determine the community attack rate, a standardized questionnaire was administered to randomly sampled households. Weighted attack rates and confidence intervals (CIs) were calculated. Water samples tested positive for Cryptosporidium species; a Cryptosporidium parvum subtype common in cattle was detected in human stool specimens. Cattle were observed grazing along watershed borders; cattle faeces were observed within watershed barriers. The city water treatment facility chlorinated, but did not filter, water. The community attack rate was 28·3% (95% CI 22·1-33·6), sickening an estimated 2780 persons. Watershed contamination by cattle probably caused this outbreak; water treatments effective against Cryptosporidium were not in place. This outbreak highlights vulnerability of drinking water systems to pathogen contamination and underscores the need for communities to invest in system improvements to maintain multiple barriers to drinking water contamination. PMID:26264893

  5. Geotechnical considerations in surface mine reclamation

    SciTech Connect

    Kuhn, A.K.

    1999-07-01

    Most attention in surface mine reclamation is given to agronomic soils and revegetation, but reclamation success depends on the geotechnical characteristics of the underlying earth. If the soil and rock that underline the surface are not stable, surface treatments lack the dependable foundation needed for them to succeed. Reclamation practioners need to understand those geotechnical considerations--material properties, structure, and processes--that affect stability. properties of rock and soil are altered by mining, and those altered materials together with water and processing waste form often-complex mixtures of materials that must be stabilized in reclamation. Surface mining alters existing landforms and creates new ones such as pit walls, spoil and waste rock piles, tailings impoundments, and earthfills. those structures need to be constructed or stabilized so that they can endure and support successful reclamation. processes that affect material properties and landforms include mechanical breakage, accelerated weathering, erosion, and mass movements. Mechanical breakage and the resulting accelerated weathering combine to change material properties, usually expressed as degraded strength, that can lead to instability of landforms. Erosion, especially that related to extreme storm events, and mass movements in the form of slop failures are the most problematic processes that must be taken into account in reclaiming mined lands. These geotechnical considerations are essential in successful reclamation, and practioners who overlook them may find their work literally sliding down a slippery slope.

  6. Industrial contamination of a municipal water-supply lake by induced reversal of ground-water flow, Managua, Nicaragua

    SciTech Connect

    Bethune, D.N.; Farvolden, R.N.; Ryan, M.C.; Guzman, A.L.

    1996-07-01

    Laguna Asososca, a large ground-water-fed volcanic crater, is an important source of municipal water supply for the city of Managua. In 1990, after 65 years of pumping at increasing rates from the crater, the gradient between the Laguna and the highly contaminated Lake Managua had potentially reversed, leading to a scenario where the Laguna was possibly drawing in contaminated ground water from Lake Managua and/or a highly contaminated aquifer below an industrial area located between the Laguna and Lake Managua. A drilling and sampling program undertaken between 1990 and 1992 found: (1) four synthetic organic chemicals in the Laguna (methylene chloride, chloroform, 1,3-dichlorobenzene and 1,4-dichlorobenzene), (2) numerous other synthetic organic chemicals near Laguna Asososca in the ground water below the industrial area, and (3) no evidence of Laguna Asososca drawing water from Lake Managua. It appears that the Laguna Asososca capture zone extended into the industrial area but not as far as Lake Managua. Ground-water flow modeling of the regional ground-water flow system was consistent with the field interpretation. Estimates of the relative mobilities of the synthetic organic chemicals indicated that the chemicals found in the water of Laguna Asososca likely represented the mobile leading edge of a contaminant plume emanating from the industrial area. The simplest and most effective solution to mitigate contamination of Laguna Asososca is to maintain its water level above that of Lake Managua by reducing its pumpage to about 50% of the 1990 rate.

  7. Effects of water washing on removing organic residues in bottom ashes of municipal solid waste incinerators.

    PubMed

    Lin, Yen-Ching; Panchangam, Sri Chandana; Wu, Chung-Hsin; Hong, Pui-Kwan Andy; Lin, Cheng-Fang

    2011-01-01

    Due to their potential toxicity and odourous nature, the residual organics in municipal solid waste incinerators are recently gaining attention as an important issue of resources recovery apart from their complex mixture of organic counterpart. Studies of the organic fractions in municipal solid waste incinerator residues have been limited. In this study, extended solid-phase extraction of the water-washed bottom ash and liquid-phase extraction of the washing water were carried out with regard to bottom ash samples from three mass-burning incinerators in Taipei County (Taiwan) during four consecutive seasons of year 2008-2009. Supercritical fluid extraction and Soxtec extraction techniques along with GC-MS were successfully used to characterize the residual organics in weathered and washed bottom ashes. Supercritical fluid extraction provided the quantification of aliphatics and aromatic compounds such as hexanoic acid and benzaldehyde, respectively. Soxtec extraction was useful for qualitative analysis of aromatic and aliphatic groups in the ashes and many of which were odourous and toxic compounds. By mixing one unit weight (g) bottom ash with two unit volume (mL) water for 15 min, total organic carbon in the bottom ash was greatly reduced (e.g., from 4.1 to 1.8 wt.%). Among the removed were foul odour-causing compounds such as pyridine and quinoline derivatives, while some aromatic compounds such as 4-hydroxybenzaldehyde and low-molecular-weight aliphatics such as hexanoic acid remained. The results here suggest that washing with water can be an effective pre-treatment step for removing odour-causing and environmental concerned organics. PMID:21112610

  8. Desalting and water treatment membrane manual: A guide to membranes for municipal water treatment. Water treatment technology program report No. 1

    SciTech Connect

    Chapman-Wilbert, M.

    1993-09-01

    The Bureau of Reclamation prepared this manual to provide an overview of microfiltration, ultrafiltration, nanofiltration, reverse osmosis, and electrodialysis processes as they are used for water treatment. Membrane composition, the chemical processes, and the physical processes involved with each membrane type are described and compared. Because care and maintenance of water treatment membranes are vital to their performance and life expectancy, pretreatment, cleaning, and storage requirements are discussed in some detail. Options for concentrate disposal, also a problematic feature of membrane processes, are discussed. The culmination of this wealth of knowledge is an extensive comparison of water treatment membranes commercially available at this time. The tables cover physical characteristics, performance data, and operational tolerances.

  9. Town of Edinburg landfill reclamation demonstration project. Final report

    SciTech Connect

    Not Available

    1992-05-15

    Landfill reclamation is the process of excavating a solid waste landfill to recover materials, reduce environmental impacts, restore the land resource, and, in some cases, extend landfill life. Using conventional surface mining techniques and specialized separation equipment, a landfill may be separated into recyclable material, combustible material, a soil/compost fraction and residual waste. A landfill reclamation demonstration project was hosted at the Town of Edinburg municipal landfill in northwest Saratoga County. The report examines various separation techniques employed at the site and appropriate uses for reclaimed materials. Specifications regarding engineered work plans, health and safety monitoring, and contingency preparedness are discussed. Major potential applications and benefits of using landfill reclamation technology at existing landfills are identified and discussed. The research and development aspect of the report also examines optimal screening technologies, site selection protocol and the results of a test burn of reclaimed waste at a waste-to-energy facility. Landfill reclamation costs are developed, and economic comparisons are made between reclamation costs and conventional landfill closure costs, with key criteria identified. The results indicate that, although dependent on site-specific conditions and economic factors, landfill reclamation can be a technically and economically feasible alternative or companion to conventional landfill closure under a range of favorable conditions. Feasibility can be determined only after an investigation of the variety of landfill conditions and reclamation options.

  10. Neurobehavioral effects of exposure to trichloroethylene through a municipal water supply.

    PubMed

    Reif, John S; Burch, James B; Nuckols, John R; Metzger, Linda; Ellington, David; Anger, W Kent

    2003-11-01

    We studied a population-based sample of 143 residents of a community in which the municipal water supply had been contaminated with trichloroethylene (TCE) and related chemicals from several adjacent hazardous waste sites between 1981 and 1986. A hydraulic simulation model was used in conjunction with a geographic information system (GIS) to estimate residential water supply exposures to TCE; 80% of the participants had potential TCE exposure exceeding the maximum contaminant level (5 ppb). The Neurobehavioral Core Test Battery (NCTB), tests of visual contrast sensitivity, and the profile of mood states (POMS) were administered approximately 6 years following peak concentrations of TCE in municipal drinking water. Multivariate analysis of variance adjusted for potential confounders was used to compare mean test scores of residents classified by estimated TCE exposure (< or =5, >5-10, >10-15, >15 ppb). TCE exposure >15 ppb was associated with poorer performance on the digit symbol, contrast sensitivity C test, and contrast sensitivity D test and higher mean scores for confusion, depression, and tension. We found evidence of a strong interaction between exposure to TCE and alcohol consumption; the associations for the NCTB and POMS among persons in the high-exposure group who also consumed alcohol were stronger and were statistically significant for the Benton, digit symbol, digit span, and simple reaction time tests, as well as for confusion, depression, and tension. This study adds to the evidence that long-term exposure to low concentrations of TCE is associated with neurobehavioral deficits and demonstrates the usefulness of GIS-based modeling in exposure assessment. PMID:14615234

  11. Enterococcus faecalis Gene Transfer under Natural Conditions in Municipal Sewage Water Treatment Plants†

    PubMed Central

    Marcinek, Herbert; Wirth, Reinhard; Muscholl-Silberhorn, Albrecht; Gauer, Matthias

    1998-01-01

    The ability of Enterococcus faecalis to transfer various genetic elements under natural conditions was tested in two municipal sewage water treatment plants. Experiments in activated sludge basins of the plants were performed in a microcosm which allowed us to work under sterile conditions; experiments in anoxic sludge digestors were performed in dialysis bags. We used the following naturally occurring genetic elements: pAD1 and pIP1017 (two so-called sex pheromone plasmids with restricted host ranges, which are transferred at high rates under laboratory conditions); pIP501 (a resistance plasmid possessing a broad host range for gram-positive bacteria, which is transferred at low rates under laboratory conditions); and Tn916 (a conjugative transposon which is transferred under laboratory conditions at low rates to gram-positive bacteria and at very low rates to gram-negative bacteria). The transfer rate between different strains of E. faecalis under natural conditions was, compared to that under laboratory conditions, at least 105-fold lower for the sex pheromone plasmids, at least 100-fold lower for pIP501, and at least 10-fold lower for Tn916. In no case was transfer from E. faecalis to another bacterial species detected. By determining the dependence of transfer rates for pIP1017 on bacterial concentration and extrapolating to actual concentrations in the sewage water treatment plant, we calculated that the maximum number of transfer events for the sex pheromone plasmids between different strains of E. faecalis in the municipal sewage water treatment plant of the city of Regensburg ranged from 105 to 108 events per 4 h, indicating that gene transfer should take place under natural conditions. PMID:9464401

  12. Integrating surveillance data on water-related diseases and drinking-water quality; action-research in a Brazilian municipality.

    PubMed

    Queiroz, Ana Carolina Lanza; Cardoso, Laís Santos de Magalhães; Heller, Léo; Cairncross, Sandy

    2015-12-01

    The Brazilian Ministry of Health proposed a research study involving municipal professional staff conducting both epidemiological and water quality surveillance to facilitate the integration of the data which they collected. It aimed to improve the intersectoral collaboration and health promotion activities in the municipalities, especially regarding drinking-water quality. We then conducted a study using the action-research approach. At its evaluation phase, a technique which we called 'the tree analogy' was applied in order to identify both possibilities and challenges related to the proposed interlinkage. Results showed that integrating the two data collection systems cannot be attained without prior institutional adjustments. It suggests therefore the necessity to unravel issues that go beyond the selection and the interrelation of indicators and compatibility of software, to include political, administrative and personal matters. The evaluation process led those involved to re-think their practice by sharing experiences encountered in everyday practice, and formulating constructive criticisms. All this inevitably unleashes a process of empowerment. From this perspective, we have certainly gathered some fruit from the Tree, but not necessarily the most visible. PMID:26608766

  13. Source and transport of human enteric viruses in deep municipal water supply wells

    USGS Publications Warehouse

    Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.

    2013-01-01

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  14. Suppression of formation of dioxins in combustion gas of municipal waste incinerators by spray water injection.

    PubMed

    Kubota, Eiji; Shigechi, Toru; Takemasa, Takehiro; Momoki, Satoru; Arizono, Koji

    2007-01-01

    Dioxins in the combustion gas of municipal solid waste incinerators (MSWIs) are resynthesized when the combustion gas passes from the outlet exaust gas boiler to the outlet gas duct. The objective of the study was to estimate if the suppression of the formation of dioxins depends on the inlet gas temperature and diameter and/or temperature of droplet spray water using an actual incinerator operation data. The dioxin formation and/or the quenching temperature is revealed using the Altwicker theory equation with the information of inlet gas temperature and droplet spray water. The evaporation rate of a spray water droplet also can be estimated using the Mizutani theory. The highest dioxin formation was found at 350 degrees C; thereafter, it decreased quickly. When an area of 500 microm for droplet-formed dioxins is defined as 100%, the values of formed dioxins for 400, 300, 200 and 100 microm droplet areas are estimated as 71, 41, 25 and 18%, respectively. It is revealed that the smaller size of droplet spray water and lower inlet gas temperature enable the decrease in dioxin formation. The decreased dioxin formation and/or the lower quenching temperature is revealed using the Altwicker theory equation with the information of inlet gas temperature and droplet spray water size. PMID:18382417

  15. Effects of treated municipal effluent irrigation on ground water beneath sprayfields, Tallahassee, Florida

    USGS Publications Warehouse

    Pruitt, J.B.; Elder, J.F.; Johnson, I.K.

    1988-01-01

    Groundwater quality data collection began in November 1979 at a spray-irrigation site near Tallahassee, Florida, before the initial application of secondary-treated municipal wastewater in November 1980. Effects of effluent irrigation on groundwater quality were evident about 1 year after spraying began and have continued to increase during the study period of 1983-85. Chloride and nitrate concentrations in groundwater have continued to increase since about 1 year after spraying began. Nitrate-nitrogen concentrations have increased from 0.03 mg/L to as much as 11 mg/L in water from one well in the surficial aquifer and from 0.07 to 15 mg/L in one well in the Floridan aquifer system. The greatest increases in concentrations have occurred in water from wells that top the surficial and Floridan aquifers. Increase in concentration occurred in water from some wells in the Floridan outside and downgradient of pivots, indicating lateral movement within the Floridan. The increase in sodium concentrations has been similar to the in chloride concentrations. Increases increases in the concentrations of other inorganic constituents have been minor compared to increases in chloride, sodium and nitrate concentrations. Nine volatile organic halocarbon compounds were detected in 18 effluent samples. Low concentrations of two of these halocarbons--chloroform and trichloroethene (TCE)--were detected intermittently in water sampled from six wells. None of the organic compounds detected in effluent or groundwater exceeded Florida drinking water standards. (USGS)

  16. Municipal water-based heat pump heating and/or cooling systems: Findings and recommendations. Final report

    SciTech Connect

    Bloomquist, R.G.; Wegman, S.

    1998-04-01

    The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for material and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.

  17. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    USGS Publications Warehouse

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  18. Municipal water quantities and health in Nunavut households: an exploratory case study in Coral Harbour, Nunavut, Canada

    PubMed Central

    Daley, Kiley; Castleden, Heather; Jamieson, Rob; Furgal, Chris; Ell, Lorna

    2014-01-01

    Background Access to adequate quantities of water has a protective effect on human health and well-being. Despite this, public health research and interventions are frequently focused solely on water quality, and international standards for domestic water supply minimums are often overlooked or unspecified. This trend is evident in Inuit and other Arctic communities even though numerous transmissible diseases and bacterium infections associated with inadequate domestic water quantities are prevalent. Objectives Our objective was to explore the pathways by which the trucked water distribution systems being used in remote northern communities are impacting health at the household level, with consideration given to the underlying social and environmental determinants shaping health in the region. Methods Using a qualitative case study design, we conducted 37 interviews (28 residents, 9 key informants) and a review of government water documents to investigate water usage practices and perspectives. These data were thematically analysed to understand potential health risks in Arctic communities and households. Results Each resident receives an average of 110 litres of municipal water per day. Fifteen of 28 households reported experiencing water shortages at least once per month. Of those 15, most were larger households (5 people or more) with standard sized water storage tanks. Water shortages and service interruptions limit the ability of some households to adhere to public health advice. The households most resilient, or able to cope with domestic water supply shortages, were those capable of retrieving their own drinking water directly from lake and river sources. Residents with extended family and neighbours, whom they can rely on during shortages, were also less vulnerable to municipal water delays. Conclusions The relatively low in-home water quantities observed in Coral Harbour, Nunavut, appear adequate for some families. Those living in overcrowded households

  19. Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant.

    PubMed

    Pittmann, T; Steinmetz, H

    2014-09-01

    This work describes the production of polyhydroxyalkanoates (PHAs) as a side stream process on a municipal waste water treatment plant (WWTP) at different operation conditions. Therefore various tests were conducted regarding a high PHA production and stable PHA composition. Influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were investigated. The results demonstrated a strong influence of the operating conditions on the PHA production. Lower substrate concentration, 20°C, neutral pH-value and a 24h cycle time are preferable for high PHA production up to 28.4% of cell dry weight (CDW). PHA composition was influenced by cycle time only and a stable PHA composition was reached. PMID:24995880

  20. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  1. Ten Years of Growing Season Water, Energy and Carbon Exchange From an Oil sands Reclamation Site, Fort McMurray, Alberta

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Drewitt, G. B.

    2013-12-01

    The oil sands mining industry in Canada has made a commitment to restore disturbed areas to an equivalent capability to that which existed prior to mining. Certification requires successful reclamation, which can in part be evaluated through long-term ecosystem studies. A reclamation site, informally named South Bison Hill (SBH) has had growing season water, energy and carbon fluxes measured via the eddy covariance method for 10 years since establishment. SBH was capped with a 0.2 m peat-glacial till mixture overlying 0.8 m of reworked glacial till soil. The site was seeded to barley cultivar (Hordeum spp.) in the summer of 2002 and later planted to white spruce (Picea glauca) and aspen (Populus spp.) in the summer/fall of 2004. Since 2007, the major species atop SBH has been aspen, and by 2012 was on average ~ 4 m in height. Climatically, mean growing temperature did not vary greatly, yet there was considerable difference in rainfall among years, with 2012 having the greatest rainfall at 321 mm, whereas 2011 and 2007 were notably dry at 180 and 178 mm, respectively. The partitioning of energy varied among years, but the fraction of latent heat as a portion of net radiation increased with the establishment of aspen, along with concomitant increases in LAI and growing season net ecosystem exchange (NEE). Peat growing season ET was smallest in 2004 at 2.3 mm/d and greatest in 2010 at ~3.9 mm/d. ET rates showed a marked increase in 2008 corresponding with the increase in LAI attributed to the aspen cover. Since the establishment of a surface cover and vegetation in 2003, SBH has been a growing season sink for carbon dioxide. Values of NEE follow similar patterns to those of ET, with values gradually becoming more negative (greater carbon uptake) as the aspen forest established. Comparison with other disturbed and undisturbed boreal aspen stands show that SBH exhibits similar water, energy and carbon flux patterns during the growing season.

  2. Growth of water hyacinth in municipal landfill leachate with different pH.

    PubMed

    El-Gendy, A S; Biswas, N; Bewtra, J K

    2004-07-01

    Batch experiments were conducted to investigate the effect of municipal landfill leachate pH on the growth of water hyacinth (Eichhornia crassipes). These experiments were carried out in a green house environment on leachate samples collected from Essex-Windsor Regional Landfill, Windsor, Ontario, Canada. It was found that water hyacinth plants survived in a pH range of 4.0 to 8.0. Both alkaline pH (above 8.0) and highly acidic pH (below 4.0) had inhibitory effect on the growth of plants. The pH range, for optimum growth of the water hyacinth plants was found to be 5.8 to 6.0. At optimum growth, water hyacinth had an average mean relative growth rate of 0.043 d-1. It was found that nitrogen compounds underwent different transformations depending on the pH of leachate. Plant uptake, nitrification and volatilization were among these transformations. PMID:15346865

  3. Immunotoxicity of surface waters contaminated by municipal effluents to the snail Lymnaea stagnalis.

    PubMed

    Gust, M; Fortier, M; Garric, J; Fournier, M; Gagné, F

    2013-01-15

    The immunotoxic effects of surface waters contaminated by a municipal effluent dispersion plume were examined in the snail Lymnaea stagnalis. Snails were exposed to surface waters where changes in hemocyte counts, viability, levels of reactive oxygen species (ROS), reduced thiols and phagocytic activity were tracked following exposure periods of 3h and 3 and 7d. Changes in mRNA expression of some genes in the hemocytes were also assessed after 7d of exposure, as follows: genes coding for catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSR), selenium-dependent glutathione peroxidase (SeGPX), two isoforms of the nitric oxide synthetase (NOS1 and NOS2), molluscan defensive molecule (MDM), toll-like receptor 4 (TLR4), allograft inflammatory factor-1 (AIF), and heat-shock protein 70 (HSP70). At the sites closest to the discharge point, exposure led to impaired hemocyte viability and intracellular thiol levels and also an increase of hemocyte count, ROS levels and phagocytosis. Phagocytosis and ROS levels in hemocytes were correlated with heterotrophic bacterial counts in snails. We found four genes with increased mRNA expression as a response to exposure of municipal wastewaters: TLR4 (6-fold), HSP70 (2-fold), SeGPx (4-fold) and CAT (2-fold). Immunocompetence responses were analyzed by canonical analysis to seek out relationships with mRNA expression of the genes involved in stress, pattern recognition, cellular and humoral responses. The data revealed that genes involved in oxidative stress were strongly involved with immunocompetence and that the resulting immune responses were influenced both by the bacterial and pollutant loadings of the effluent. PMID:23021492

  4. Quality of ground water for selected municipal water supplies in Iowa, 1997-2002

    USGS Publications Warehouse

    Littin, Gregory R.

    2004-01-01

    The compact disc included with this report has information about water-quality properties and concentrations of dissolved solids, major ions, nutrients, trace elements, radionuclides, total organic carbon, pesticides, and synthetic organic compounds for water years 1997 through 2002.

  5. Selenium source identification and biogeochemical processes controlling selenium in surface water and biota, Kendrick Reclamation Project, Wyoming, U.S.A.

    USGS Publications Warehouse

    Naftz, D.L.; See, R.B.; Ramirez, P.

    1993-01-01

    The major tributaries draining the Kendrick Reclamation Project (KRP) account for an average of 52% of the total Se load measured in the North Platte River downstream from Casper, Wyoming. The Casper Creek drainage basin contributed the largest Se load of the five tributary sites to the North Platte River. The 4-d average Se concentration in water samples from one site in the part of the North Platte River that receives irrigation return flows exceeded the 5 ??g/l U.S. Environmental Protection Agency's aquatic life criterion five time during a 50-d monitoring period in 1989. In agreement with the water-quality data, muscle and liver tissue rom rainbow trout collected from the same part of the North Platte River had Se concentrations exceeding levels known to cause reproductive failure and chronic Se poisoning. On the basis of Se: Cl, 18O/16O and D/H ratios in water from Goose and Rasmus Lee Lakes (closed-basin systems), the large Se concentrations in those lakes were derived by natural evaporation of irrigation water without leaching of soluble forms of Se from soil or rocks. Water samples from Thirtythree Mile Reservoir and Illco Pond (flow-through systems) showed considerable enrichment in Se over evaporative concentration, presumably due to leaching and desorption of Se from soil and rock. The Se: Cl ratios of irrigation drain water collected from the KRP indicate that leaching and desorption of soluble forms of Se from soils and rocks are the dominant processes in drain water. Results of a Wilcoxon matched-pairs test for 43 paired drain-water samples collected during June and August 1988, indicated there is a statistically larger concentration of Se (0.01 significance level) during the June sampling period. The larger concentrations of Se and other chemical constitutents during the early part of the irrigation season probably were due to dissolution of seleniferous salts that have accumulated in soils within the KRP since the last irrigation season. The large

  6. 43 CFR 404.17 - How will Reclamation evaluate my statement of interest?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How will Reclamation evaluate my statement of interest? 404.17 Section 404.17 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview §...

  7. 43 CFR 404.22 - How will Reclamation evaluate my full proposal?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How will Reclamation evaluate my full proposal? 404.22 Section 404.22 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.22 How...

  8. 43 CFR 404.45 - What will be included in the appraisal report prepared by Reclamation?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false What will be included in the appraisal report prepared by Reclamation? 404.45 Section 404.45 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Appraisal Investigations § 404.45 What will...

  9. 43 CFR 404.45 - What will be included in the appraisal report prepared by Reclamation?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false What will be included in the appraisal report prepared by Reclamation? 404.45 Section 404.45 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY...

  10. Partial oxidative gasification of municipal sludge in subcritical and supercritical water.

    PubMed

    Xu, Z R; Zhu, W; Htar, Swe Hlaing

    2012-06-01

    Subcritical and supercritical water gasification of dewatered sewage sludge obtained from a typical municipal wastewater treatment plant was investigated in a one-litre high-pressure autoclave at temperatures of 300-400 degrees C and pressures of 17.5-23.5 MPa. The sludge (without catalyst) was gasified at subcritical and supercritical water conditions, with different reaction times ranging from 30 to 60 min. The results showed that gaseous product yield increased with increasing temperature and reaction time. Gas products consisted primarily of hydrogen, carbon dioxide, methane, carbon monoxide and other light hydrocarbons. The liquid products contained high levels of organic matter, ammonia nitrogen and a few heavy metals. Compared with the landfilling of sewage sludge, the solid residues were in accordance with the Chinese standard for sludge quality in co-landfilling even without further treatment. In addition, the heavy metals in solid products exhibited more stable characteristics attributable to the reduced leaching toxicity after supercritical water gasification. PMID:22856292

  11. Climate Narratives: Combing multiple sources of information to develop risk management strategies for a municipal water utility

    NASA Astrophysics Data System (ADS)

    Yates, D. N.; Basdekas, L.; Rajagopalan, B.; Stewart, N.

    2013-12-01

    Municipal water utilities often develop Integrated Water Resource Plans (IWRP), with the goal of providing a reliable, sustainable water supply to customers in a cost-effective manner. Colorado Springs Utilities, a 5-service provider (potable and waste water, solid waste, natural gas and electricity) in Colorado USA, recently undertook an IWRP. where they incorporated water supply, water demand, water quality, infrastructure reliability, environmental protection, and other measures within the context of complex water rights, such as their critically important 'exchange potential'. The IWRP noted that an uncertain climate was one of the greatest sources of uncertainty to achieving a sustainable water supply to a growing community of users. We describe how historic drought, paleo-climate, and climate change projections were blended together into climate narratives that informed a suite of water resource systems models used by the utility to explore the vulnerabilities of their water systems.

  12. Comparison of the microbiological quality of water coolers and that of municipal water systems.

    PubMed Central

    Lévesque, B; Simard, P; Gauvin, D; Gingras, S; Dewailly, E; Letarte, R

    1994-01-01

    The microbiological quality of tap water and that of water from 50 water coolers located in residences and workplaces were comparatively studied. In addition, difference factors that might influence the bacteriological contamination of water dispensers were examined. Aeorbic and facultative anaerobic heterotrophic bacteria, total coliforms, and two indicators for fecal contamination (fecal coliforms and fecal streptococci) as well as three types of pathogenic bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, and Aeromonas spp.) were enumerated. It was found that 36 and 28% of the water dispenser samples from the residences and the workplaces, respectively, were contaminated by a least one coliform or indicator bacterium and/or at least one pathogenic bacterium. The respective proportions of tap water samples contaminated in a similar fashion were 18 and 22%, much less than those observed for water coolers (Chi2(1) = 3.71, P = 0.05). We were unable to discern the dominant factors responsible for the contamination of water coolers, but cleaning the water dispenser every 2 months seemed to limit the extent of contamination. PMID:8017912

  13. Characterizing ground water flow in the municipal well fields of Cedar Rapids, Iowa, with selected environmental tracers

    USGS Publications Warehouse

    Boyd, R.A.

    1998-01-01

    Cedar Rapids obtains its municipal water supply from a shallow alluvial aquifer along the Cedar River in east-central Iowa. Water samples were collected and analyzed for selected isotopes and chlorofluorocarbons to characterize the ground-water flow system near the municipal well fields. Analyses of deuterium and oxygen-18 indicate that water in the alluvial aquifer and in the underlying carbonate bedrock aquifer was recharged from precipitation during modern climatic conditions. Analyses of tritium indicate modern, post-1952, water in the alluvial aquifer and older, pre-1952, water in the bedrock aquifer. Mixing of the modern and older waters occurs in areas where (1) the confining layer between the two aquifers is discontinuous, (2) the bedrock aquifer is fractured, or (3) pumping of supply wells induces the flow of water between aquifers. Analyses of chlorofluorocarbons were used to determine the date of recharge of water samples. Water in the bedrock aquifer likely was recharged prior to the 1950s. Water in the alluvial aquifer likely was recharged from the 1960s to 1990s. Biodegradation or sorption probably affected some of the ground water analyzed for chlorofluorocarbons. These processes reduce the concentrations of CFCs, which results in older than actual calculated dates of recharge.

  14. Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the recycling of wastewater biosolids via land-application is a commonly used practice for nutrient recovery and soil reclamation, concerns remain that they may become sources of toxic, persistent organic pollutants to the environment. This study concentrates on assessing the presence and the...

  15. RECLAMATION OF PYRITIC WASTE

    EPA Science Inventory

    The reclamation of land used for the disposal of pyritic mine waste utilizing sewage sludge as a soil conditioner has been studied in laboratory greenhouse studies and a full-scale demonstration project. Analysis of samples revealed that some of the mining waste had a pH as low a...

  16. Mutagens in urine sampled repetitively from municipal refuse incinerator workers and water treatment workers

    SciTech Connect

    Ma, Xin Fang; Babish, J.G.; Scarlett, J.M.; Gutenmann, W.H.; Lisk, D.J. )

    1992-12-01

    Municipal refuse incinerator workers may be exposed to mutagenic compounds from combustion gases and particulates during plant operation, maintenance, and ash removal procedures. The frequency of mutagens was measured by the Ames assay in 3 urine samples collected from each of 37 workers in 4 refuse incinerators and 35 (control) workers from 8 water treatment plants during June-August 1990. When comparing the first urine samples contributed by workers in each cohort, incinerator workers had a significantly (p < .05) increased risk of both direct-acting mutagens and promutagens (8/37 or 22% for each mutagen type) compared with water treatment workers (2/35 or 6% for each mutagen type). Smoking within 24 h before urine sampling was not a confounder of these results. Interestingly, there was no significant (p > .05) difference for risk of urinary mutagens or promutagens between the two cohorts when comparing, respectively, the second and third urine samples from each cohort. The repeatability of demonstrating urinary mutagens in individual incinerator workers was poor, suggesting that their exposure was highly variable and/or that these workers modified their exposure (e.g., wore masks) as a consequence of being studied. Factors that influence production of mutagenic compounds during refuse incineration and subsequent worker exposure are discussed.

  17. Efficient management of municipal water: water scarcity in Taiz City, Yemen - issues and options

    NASA Astrophysics Data System (ADS)

    Noaman, A.; Al-Sharjabe, A. W.

    2015-04-01

    The city of Taiz is the third largest city in Yemen, located about 250 km south of Sana'a and about 90 km inland from the Red Sea. Taiz is situated on the foothills and slopes of the Jabal Saber Mountain at elevations between 1100 and 1600 m a.s.l. Its population is rapidly increasing and is expected to grow from about 580 000 in 2012 to over 1 000 000 in 2020. Water supply is the most pressing problem in the city of Taiz today due to the significant shortages of supply (the average consumption is 23 L/d) caused by the depletion of existing water resources and the lack of a clear direction in dealing with the problem. This forces frequent service interruptions (30-40 days) and the service is rarely extended to new users (only 57% of the population are covered). Sanitation is another daunting problem. The (poorly maintained) sewerage network covers only 44% of the population. In several unsewered areas to the north, east and west of the city, raw sewage is disposed of directly into wadis, which causes a health hazard and threatens to contaminate groundwater resources. The proper computation of demand and supply is based on the various fields. It was performed under this study with a particular model: the Water Evaluation and Planning System (WEAP) developed by the Stockholm Environment Institute (SEI). WEAP is supported by a geographical information system (GIS). The available and relevant data on poverty and social indicators, water use and sources, surface runoff, surface and groundwater availability, groundwater depletion and management, crop production areas, soil cover, maps, and meteorological information were gathered from a number of sources. There are only two ways to decrease the water deficit: by increasing water supply or decreasing the water demand. Any adaptation project aims at one of the two. Six projects are proposed, with three in each category (1, 2 and 3 to decrease demand, and 4, 5 and 6 to increase supply): - Project 1: Improvement of

  18. Willingness to pay and willingness to work for improvements of municipal and community-managed water services

    NASA Astrophysics Data System (ADS)

    Vásquez, William F.

    2014-10-01

    This study investigates household preferences, in labor time and monetary terms, for improved water services in Guatemala using sequential contingent valuation questions. The household survey was implemented in areas served by municipal and community-managed systems, which allows for comparing household preferences under those governance approaches. Results show that respondents with municipal services are willing to pay a substantial increase (more than 200%) in their water bills for reliable supplies of safe drinking water. They are also willing to work approximately 19 h per month for such improved services when labor hours are proposed as the payment vehicle. In contrast, households with community-managed services are not willing to pay or work for service improvements, even though they report to be quite dissatisfied with current services. Policy implications are discussed.

  19. Matorral and reclamation. The contribution of scrubs and dwarf shrubs to soil and water conservation in Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; González Hidalgo, J. C.

    2009-04-01

    The Mediterranean Matorral (scrubs and dwarf shrubs) was seen by John Thornes as a protective vegetative cover of semiarid lands. His studies on matorral triggered the research, vocations and scientific work of researchers and contributed with a relevant knowledge to the environmental studies in Spain. This research reviews the changes in land use and the use of matorral in Spain. A review of the research done on the effect of matorral on soil and water losses is presented. Books, scientific papers, book chapters and research reports are being reviewed to report how matorral control the soil and water losses under different climatic conditions in Spain. The main conclusion is that scrubs and dwarf shrubs are very efficient in controlling the soil and water losses under semiarid climatic conditions were trees are rare. Nevertheless, scrub has been neglected by the Spanish forestry policy-makers and sometimes the shrubs cover is removed to develop afforestations, mainly with Aleppo pine. Palabras clave: Matorral, Soil, Water, Losses, Spain, Land use, Land management.

  20. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA

    PubMed Central

    Stanish, Lee F.; Hull, Natalie M.; Robertson, Charles E.; Harris, J. Kirk; Stevens, Mark J.; Spear, John R.; Pace, Norman R.

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources. PMID:27362708

  1. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA.

    PubMed

    Stanish, Lee F; Hull, Natalie M; Robertson, Charles E; Harris, J Kirk; Stevens, Mark J; Spear, John R; Pace, Norman R

    2016-01-01

    The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources. PMID:27362708

  2. Determining the Spatial Influence of Imported and Local Water Sources to Municipal Tap Water Systems in the Southwestern United States Using Stable Isotopes of Oxygen and Hydrogen

    NASA Astrophysics Data System (ADS)

    Stalker, J. C.; Kennedy, C. D.; Bowen, G. J.

    2010-12-01

    In arid and semi-arid parts of the southwestern USA, imported waters derived from large canal systems like the Colorado River Aqueduct, Los Angeles Aqueduct, and the California Aqueduct service a significant component of the regional water needs. These waters are sourced primarily from high altitude snowmelt runoff and have relatively low annually averaged stable isotope ratios of hydrogen and oxygen (δD, δ18O) (-99 to -127‰, -10 to -13‰,) when compared to water derived from local rainfall and surface river sources (-35 to -42 ‰, -5 to -7‰) in southern California, western Arizona, and southern Nevada. The distinct isotope signatures of these two waters can be used to differentiate the two sources in tap water from municipal systems. In this study, samples of tap water, aqueduct water, and surface water were collected throughout the Southwest to produce a series of maps of the spatial influence of imported water in municipal tap water. This data was then be used to develop mixing models to determine the relative importance of imported water regionally, and track the prominence of the movement of these imported waters after initial use and addition to a system. The use of isotopes to trace this anthropogenically introduced water is of interest to water management, resolving water rights issues and disputes, as well as environmental applications in ecological studies. Additionally these tracing methods may be applied worldwide in areas where the movement and dynamics of hydrologic systems are either unclear or unknown.

  3. Impact of biocrust succession on water retention and repellency on open-cast lignite mining sites under reclamation in Lower Lusatia, NE-Germany

    NASA Astrophysics Data System (ADS)

    Gypser, Stella; Fischer, Thomas; Lange, Philipp; Veste, Maik

    2016-04-01

    caused by bryophytes. The determination of the water retention curves showed an increase of the water holding capacity, especially in conjunction with the growth of green algae layer. The absorption capacity of soil crust biota as well as a decreased pore diameter in the green algae layers positively affected the water retention of crusted soil compared to pure substrate. The occurrence of bryophytes with later succession weakened the repellent behavior of the biocrusts, increased infiltration, and might have affected the run-off at small-scale on biocrusts. Certainly, the biological soil crusts showed water repellent properties but no distinctive hydrophobic characteristics. On both locations, similar trends of water repellency and retention related to crustal formation were observed, in spite of different relief, reclamation time and inhomogeneous distribution of crustal organisms. References Gypser, S., Veste, M., Fischer, T., Lange, P. (2016): Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany, Journal of Hydrology and Hydromechanics, accepted 12. November 2015. Gypser, S., Veste, M., Fischer, T., Lange, P. (2015): Formation of soil lichen crusts at reclaimed post-mining sites, Lower Lusatia, North-east Germany. Graphis Scripta 27: 3-14.

  4. Surface water-ground water interaction: Herbicide transport into municipal collector wells

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Carr, J.D.; Steele, G.V.; Thurman, E.M.; Bastian, K.C.; Dormedy, D.F.

    1999-01-01

    During spring runoff events, herbicides in the Platte River are transported through an alluvial aquifer into collector wells located on an island in the river in 6 to 7 d. During two spring runoff events in 1995 and 1996, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] concentrations in water from these wells reached approximately 7 ??g/L, 70 times more than the background concentration in ground water. Concentrations of herbicides and metabolites in the collector wells generally were one-half to one-fifth the concentrations of herbicides in the river for atrazine, alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)-acetanilide], alachlor ethane-sulfonic acid (ESA) [2-((2,6-diethylphenyl) (methoxymethyl)amino)-2- oxoethane-sulfonic acid], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethyl)acetamide], cyanazine [2-((4-chloro-6-(ethyl-amino)- 1,3,5 triazin-2-yl)-amino)-2-methylpropionitrile], and acetochlor [2-chloro- N-(ethoxymethyl)-N-(2-ethyl-6methyl-phenyl) acetamide], suggesting that 20 to 50% river water could be present in the water from the collector wells, assuming no degradation. The effect of the river on the quality of water from the collector wells can be reduced through selective management of horizontal laterals of the collector wells. The quality of the water from the collector wells is dependent on the (i) selection of the collector well used, (ii) number and selection of laterals used, (iii) chemical characteristics of the contaminant, and (iv) relative mixing of the Platte River and a major upstream tributary.

  5. Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system.

    PubMed

    Lindberg, Richard H; Östman, Marcus; Olofsson, Ulrika; Grabic, Roman; Fick, Jerker

    2014-07-01

    The concentrations and behaviour of 105 different active pharmaceutical ingredients (APIs) in the aqueous phase of sewage water within a municipal sewer collection system have been investigated. Sewage water samples were gathered from seven pump stations (one of which was located within a university hospital) and from sewage water treatment influent and effluent. The targeted APIs were quantified using a multi-residue method based on online solid phase extraction liquid chromatography tandem mass spectrometry. The method was thoroughly validated and complies with EU regulations on sample handling, limits of quantification, quality control and selectivity. 51 APIs, including antibiotics, antidepressants, hypertension drugs, analgesics, NSAIDs and psycholeptics, were found frequently within the sewer collection system. API concentrations and mass flows were evaluated in terms of their frequency of detection, daily variation, median/minimum/maximum/average concentrations, demographic dissimilarities, removal efficiencies, and mass flow profiles relative to municipal sales data. Our results suggest that some APIs are removed from, or introduced to, the aqueous phase of sewage waters within the studied municipal collection system. PMID:24768701

  6. A statistical approach to evaluate the relation of coal mining, land reclamation, and surface-water quality in Ohio

    USGS Publications Warehouse

    Hren, Janet; Wilson, K.S.; Helsel, D.R.

    1984-01-01

    Base-flow data from 779 sites in Ohio 's coal region were analyzed statistically to relate land use to selected water-quality characteristics. Sites were classified into five categories: unmined (100 percent unmined land), abandoned (50 percent or more abandoned surface mines), reclaimed (50 percent or more reclaimed surface mines), deep-mined (50 percent or more underground mines), and mixed (all others). Specific conductance , pH, alkalinity, acidity, sulfate, dissolved iron, total iron, and total manganese in streams draining basins in the coal region were the eight characteristics selected for analysis. (USGS)

  7. Contaminants of emerging concern in municipal wastewater effluents and marine receiving water.

    PubMed

    Vidal-Dorsch, Doris E; Bay, Steven M; Maruya, Keith; Snyder, Shane A; Trenholm, Rebecca A; Vanderford, Brett J

    2012-12-01

    The occurrence and concentrations of contaminants of emerging concern (CECs) were investigated in municipal effluents and in marine receiving water. Final effluent from four large publicly owned treatment works (POTWs) and seawater collected near the respective POTW outfall discharges and a reference station were collected quarterly over one year and analyzed for 56 CECs. Several CECs were detected in effluents; naproxen, gemfibrozil, atenolol, and tris(1-chloro-2-propyl)phosphate were the compounds most frequently found and with the highest concentrations (>1 µg/L). Gemfibrozil and naproxen had the highest seawater concentrations (0.0009 and 0.0007 µg/L) and also were among the most frequently detected compounds. Effluent dilution factors ranged from >400 to approximately 1,000. Fewer CECs were detected and at lower concentrations in seawater collected from the reference station than at the outfall sites. Effluent concentrations for some CECs (e.g., pharmaceuticals) were inversely related to the degree of wastewater treatment. This trend was not found in seawater samples. Few temporal differences were observed in effluent or seawater samples. Effluent CEC concentrations were lower than those currently known for chronic toxicity thresholds. Nevertheless, the evaluation of potential chronic effects for CECs is uncertain because aquatic life toxicity thresholds have been developed for only a few CECs, and the effluent and seawater samples had compounds, such as nonylphenol, known to bioaccumulate in local fish. Additional data are needed to better understand the significance of CEC presence and concentrations in marine environments. PMID:22987561

  8. Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: process performance and fouling control.

    PubMed

    Kazner, C; Jamil, S; Phuntsho, S; Shon, H K; Wintgens, T; Vigneswaran, S

    2014-01-01

    While high quality water reuse based on dual membrane filtration (membrane filtration or ultrafiltration, followed by reverse osmosis) is expected to be progressively applied, treatment and sustainable management of the produced reverse osmosis concentrate (ROC) are still important issues. Forward osmosis (FO) is a promising technology for maximising water recovery and further dewatering ROC so that zero liquid discharge is produced. Elevated concentrations of organic and inorganic compounds may act as potential foulants of the concentrate desalting system, in that they consist of, for example, FO and a subsequent crystallizer. The present study investigated conditions under which the FO system can serve as concentration phase with the focus on its fouling propensity using model foulants and real ROC. Bulk organics from ROC consisted mainly of humic acids (HA) and building blocks since wastewater-derived biopolymers were retained by membrane filtration or ultrafiltration. Organic fouling of the FO system by ROC-derived bulk organics was low. HA was only adsorbed moderately at about 7% of the initial concentration, causing a minor flux decline of about 2-4%. However, scaling was a major impediment to this process if not properly controlled, for instance by pH adjustment or softening. PMID:24960004

  9. Review of municipal sludge use as a soil amendment on disturbed lands

    SciTech Connect

    Brandt, C.A.; Hendrickson, P.L.

    1990-08-01

    The US Department of Energy is examining options of improving soil conditions at Hanford reclamation sites. One promising technology is the incorporation of municipal sewage sludge into the soil profile. This report reviews the potential benefits and adverse consequences of sludge use in land reclamation. Land reclamation comprises those activities instigated to return a mechanically disturbed site to some later successional state. Besides the introduction of suitable plant species to disturbed lands, reclamation generally requires measures to enhance long-term soil nutrient content, moisture retention or drainage, and mitigation of toxic effects from metals and pH. One of the more effective means of remediating adverse soil characteristics is the application of complex organic manures such as municipal sewage sludge. Sewage sludges contain complete macro- and micronutrients necessary to sustain plant growth. The application of sewage sludge may reestablish microbial activity in sterile soils. Physical properties, such as water-holding capacity and percentage water-stable aggregates, also improve with the addition of sewage sludge. Sludge applications may also increase the rate of degradation of some hydrocarbon pollutants in soils. Potential adverse impacts associated with the application of sewage sludge to land include negative public perception of human waste products; concerns regarding pathogen buildup and spread in the soils, plants, and water; entrance and accumulation of heavy metals in the food chain; salt accumulation in the soil and ground water; leaching of nitrates into ground water; and accumulation of other potentially toxic substances, such as boron and synthetic hydrocarbons, in the soil, plants, and food chain. 56 refs., 10 tabs.

  10. Trees for reclamation

    SciTech Connect

    Not Available

    1980-01-01

    Land reclamation programs sponsored by several state forestry organizations are summarized in these presentations. The use of trees as a preferred specie for revegetation of surface mined lands is addressed. Modern methods of forestry can be used to make land economically and aesthetically acceptable. Tree planting techniques are presented and the role of Mycorrhizae is discussed. There are 30 papers included in this proceedings. States represented include: Alabama, Arkansas, Georgia, Illinois, Kansas, Kentucky, Maryland, Virginia, Iowa, Ohio, Pennsylvania, and West Virginia.