Science.gov

Sample records for muon-nucleus interactions based

  1. Photo nuclear energy loss term for muon-nucleus interactions based on xi scaling model of QCD

    NASA Technical Reports Server (NTRS)

    Roychoudhury, R.

    1985-01-01

    Extensive air showers (EMC) experiments discovered a significant deviation of the ratio of structure functions of iron and deuteron from unity. It was established that the quark parton distribution in nuclei are different from the corresponding distribution in the nucleus. It was examined whether these results have an effect on the calculation of photo nucleus energy loss term for muon-nucleus nuclear interaction. Though the EMC and SLAC data were restricted to rather large q sq region it is expected that the derivation would persist even in the low q sq domain. For the ratio of iron and deuteron structure function a rather naive least square fit of the form R(x) = a + bx was taken and it is assumed that the formula is valid for the whole q sq region the absence of any knowledge of R(x) for small q sq.

  2. Multifractal behavior of nuclear fragments in high-energy leptonic interactions

    SciTech Connect

    Ghosh, Dipak; Deb, Argha; Lahiri, Madhumita Banerjee; Ghosh, Parthasarathi; Ahmed, Syed Imtiaz; Halder, Prabir Kumar

    2004-11-01

    The multifractal analysis of nuclear fragmentation data obtained from muon-nucleus interactions at 420{+-}45 GeV is performed using G-moment and Takagi-moment methods. The generalized fractal dimensions D{sub q} are determined from these methods and also are compared with those obtained from intermittency exponents. The analysis reveals the multifractal behavior of target fragments in lepton-nucleus interactions.

  3. Results-Based Interaction Design

    ERIC Educational Resources Information Center

    Weiss, Meredith

    2008-01-01

    Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…

  4. Variance-based interaction index measuring heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom

    2016-06-01

    This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.

  5. Adding Interactivity to Web Based Distance Learning.

    ERIC Educational Resources Information Center

    Cafolla, Ralph; Knee, Richard

    Web Based Distance Learning (WBDL) is a form of distance learning based on providing instruction mainly on the World Wide Web. This paradigm has limitations, especially the lack of interactivity inherent in the Web. The purpose of this paper is to discuss some of the technologies the authors have used in their courses at Florida Atlantic…

  6. A determinant based full configuration interaction program

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-04-01

    The program FCI solves the Full Configuration Interaction (Full CI) problem of quantum chemistry, in which the electronic Schrödinger equation is solved exactly within a given one particle basis set. The Slater determinant based algorithm leads to highly efficient implementation on a vector computer, and has enabled Full CI calculations of dimension more than 10 7 to be performed.

  7. Nucleon interaction data bases for background estimates

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.

    1989-01-01

    Nucleon interaction data bases available in the open literature are examined for potential use in a recently developed nucleon transport code. Particular attention is given to secondary particle penetration and the multiple charged ion products. A brief description of the transport algorithm is given.

  8. Light Based Cellular Interactions: hypotheses and perspectives

    NASA Astrophysics Data System (ADS)

    Laager, Frederic

    2015-08-01

    This work investigates the theoretical possibility of interactions between cells via light. We first take a brief look at the previous research done in the past to have a better understanding of the field and the origins of the concept of cellular interactions. Then we identify the different elements essential for interactions between two parties. We then compare the required elements with the known and studied elements and characteristics which are well defined in biology, chemistry and physics. This way we are able to set up four postulates required for cell interactions: I. A signal is present and subject to secondary modulation by the emitter cells. II. There is a plastic information medium that reacts directly to the metabolic state of the emitter and therefore carries information about the emitter. III. An optical signal can be perceived by cells on a molecular level by a multitude of different receptors. IV. The information can in theory be processed by cells and metabolic changes in reaction to the signals can be observed. We demonstrate that all required elements have been observed. Most of them have important and well-known roles in cells. Therefore we suggest that our hypothetical model is a good explanation for light based cellular interactions.

  9. Interactive analysis of geodata based intelligence

    NASA Astrophysics Data System (ADS)

    Wagner, Boris; Eck, Ralf; Unmüessig, Gabriel; Peinsipp-Byma, Elisabeth

    2016-05-01

    When a spatiotemporal events happens, multi-source intelligence data is gathered to understand the problem, and strategies for solving the problem are investigated. The difficulties arising from handling spatial and temporal intelligence data represent the main problem. The map might be the bridge to visualize the data and to get the most understand model for all stakeholders. For the analysis of geodata based intelligence data, a software was developed as a working environment that combines geodata with optimized ergonomics. The interaction with the common operational picture (COP) is so essentially facilitated. The composition of the COP is based on geodata services, which are normalized by international standards of the Open Geospatial Consortium (OGC). The basic geodata are combined with intelligence data from images (IMINT) and humans (HUMINT), stored in a NATO Coalition Shared Data Server (CSD). These intelligence data can be combined with further information sources, i.e., live sensors. As a result a COP is generated and an interaction suitable for the specific workspace is added. This allows the users to work interactively with the COP, i.e., searching with an on board CSD client for suitable intelligence data and integrate them into the COP. Furthermore, users can enrich the scenario with findings out of the data of interactive live sensors and add data from other sources. This allows intelligence services to contribute effectively to the process by what military and disaster management are organized.

  10. Data Driven, Force Based Interaction for Quadrotors

    NASA Astrophysics Data System (ADS)

    McKinnon, Christopher D.

    Quadrotors are small and agile, and are becoming more capable for their compact size. They are expected perform a wide variety of tasks including inspection, physical interaction, and formation flight. In all of these tasks, the quadrotors can come into close proximity with infrastructure or other quadrotors, and may experience significant external forces and torques. Reacting properly in each case is essential to completing the task safely and effectively. In this thesis, we develop an algorithm, based on the Unscented Kalman Filter, to estimate such forces and torques without making assumptions about the source of the forces and torques. We then show in experiment how the proposed estimation algorithm can be used in conjunction with controls and machine learning to choose the appropriate actions in a wide variety of tasks including detecting downwash, tracking the wind induced by a fan, and detecting proximity to the wall.

  11. Interactive physically-based sound simulation

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation

  12. Learning through Interaction: Improving Practice with Design-Based Research

    ERIC Educational Resources Information Center

    Voigt, Christian; Swatman, Paula M. C.

    2006-01-01

    This article presents the first stage of a design-based research project to introduce case-based learning using existing interactive technologies in a major Australian university. The paper initially outlines the relationship between case-based learning, student interaction and the study of interactions--and includes a review of research into…

  13. CABINS: Case-based interactive scheduler

    NASA Technical Reports Server (NTRS)

    Miyashita, Kazuo; Sycara, Katia

    1992-01-01

    In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.

  14. Problem Solving: Physics Modeling-Based Interactive Engagement

    ERIC Educational Resources Information Center

    Ornek, Funda

    2009-01-01

    The purpose of this study was to investigate how modeling-based instruction combined with an interactive-engagement teaching approach promotes students' problem solving abilities. I focused on students in a calculus-based introductory physics course, based on the matter and interactions curriculum of Chabay & Sherwood (2002) at a large state…

  15. Physically-based interactive Schlieren flow visualization

    SciTech Connect

    Mccormick, Patrick S; Brownlee, Carson S; Pegoraro, Vincent; Shankar, Siddharth; Hansen, Charles D

    2009-01-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph and schlieren imaging for centuries which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraphs and schlieren images of time-varying scalar fields derived from computational fluid dynamics (CFD) data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Results comparing this method to previous schlieren approximations are presented.

  16. Constraint-based interactive assembly planning

    SciTech Connect

    Jones, R.E.; Wilson, R.H.; Calton, T.L.

    1997-03-01

    The constraints on assembly plans vary depending on the product, assembly facility, assembly volume, and many other factors. This paper describes the principles and implementation of a framework that supports a wide variety of user-specified constraints for interactive assembly planning. Constraints from many sources can be expressed on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. All constraints are implemented as filters that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner`s algorithms. Replanning is fast enough to enable a natural plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to several complex assemblies. 12 refs., 2 figs., 3 tabs.

  17. Isoniazid interaction with phosphatidylcholine-based membranes

    NASA Astrophysics Data System (ADS)

    Marques, Amanda Vicente; Marengo Trindade, Paulo; Marques, Sheylla; Brum, Tainá; Harte, Etienne; Rodrigues, Marieli Oliveira; D'Oca, Marcelo Gonçalves Montes; da Silva, Pedro Almeida; Pohlmann, Adriana R.; Alves, Isabel Dantas; de Lima, Vânia Rodrigues

    2013-11-01

    Interaction between the anti-tuberculosis drug isoniazid (INH) and phosphatidylcholine membranes was investigated in terms of: (i) drug affinity to a lipid bilayer and (ii) drug-induced changes in the dynamic properties of liposomes, such as membrane hydration state, polar head and non-polar acyl chain order and lipid phase transition behavior. These parameters were studied by plasmon waveguide resonance spectroscopy (PWR), UV-visible, horizontal attenuated total reflectance-Fourier transform infrared (HATR-FTIR), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. PWR measurements showed an INH membrane dissociation constant value of 0.031 μM to phosphatidylcholine bilayers. INH induced higher membrane perturbation in the plane which is perpendicular to the membrane plane. The INH saturation concentration in phosphatidylcholine liposomes was 170 μM. At this concentration, HATR-FTIR and NMR findings showed that INH may interact with the lipid polar head, increasing the number of hydrogen bonds in the phosphate region and enhancing the choline motional freedom. DSC measurements showed that, at 115 μM, INH was responsible for a decrease in lipid phase transition temperature of approximately 2 °C and had no influence in the lipid enthalpy variation (ΔH). However, at 170 μM, INH induced the reduction of the ΔH by approximately 52%, suggesting that the drug may increase the distance among lipid molecules and enhance the freedom of the lipid acyl chains methylene groups. This paper provides information on the effects of INH on membrane dynamics which is important to understand liposome targeting of the drug and for the development of anti-TB pharmacologic systems that not only are less susceptible to resistance but also have low toxicity.

  18. Internet-based Interactive Construction Management Learning System.

    ERIC Educational Resources Information Center

    Sawhney, Anil; Mund, Andre; Koczenasz, Jeremy

    2001-01-01

    Describes a way to incorporate practical content into the construction engineering and management curricula: the Internet-based Interactive Construction Management Learning System, which uses interactive and adaptive learning environments to train students in the areas of construction methods, equipment and processes using multimedia, databases,…

  19. Web-based Interactive Simulator for Rotating Machinery.

    ERIC Educational Resources Information Center

    Sirohi, Vijayalaxmi

    1999-01-01

    Baroma (Balance of Rotating Machinery), the Web-based educational engineering interactive software for teaching/learning combines didactical and software ergonomical approaches. The software in tutorial form simulates a problem using Visual Interactive Simulation in graphic display, and animation is brought about through graphical user interface…

  20. A Usability Study of Interactive Web-Based Modules

    ERIC Educational Resources Information Center

    Girard, Tulay; Pinar, Musa

    2011-01-01

    This research advances the understanding of the usability of marketing case study modules in the area of interactive web-based technologies through the assignment of seven interactive case modules in a Principles of Marketing course. The case modules were provided for marketing students by the publisher, McGraw Hill Irwin, of the "Marketing"…

  1. Narrative-Based Interactive Learning Environments from Modelling Reasoning

    ERIC Educational Resources Information Center

    Yearwood, John; Stranieri, Andrew

    2007-01-01

    Narrative and story telling has a long history of use in structuring, organising and communicating human experience. This paper describes a narrative based interactive intelligent learning environment which aims to elucidate practical reasoning using interactive emergent narratives that can be used in training novices in decision making. Its…

  2. Interactive Internet Based Pendulum for Learning Mechatronics

    NASA Astrophysics Data System (ADS)

    Sethson, Magnus R.

    2003-01-01

    This paper describes an Internet based remote experimental setup of a double lined pendulum mechanism for students experiments at the M. Sc. Level. Some of the first year experience using this web-based setup in classes is referred. In most of the courses given at the division of mechanical engineering systems at Linkoeping Institute of Technology we provide experimental setups to enhance the teaching Of M.Sc. students. Many of these experimental setups involve mechatronical systems. Disciplines like fluid power, electronics, and mechanics and also software technologies are used in each experiment. As our campus has recently been split into two different cities some new concepts for distance learning have been studied. The one described here tries to implement remotely controlled mechatronic setups for teaching basic programming of real-time operating systems and analysis of the dynamics of mechanical systems. The students control the regulators for the pendulum through a web interface and get measurement results and a movie back through their email. The present setup uses a double linked pendulum that is controlled by a DC-motor and monitored through both camera and angular position sensors. All software needed is hosted on a double-processor PC running the RedHat 7.1. distribution complemented with real-time scheduling using DIAPM-RTAI 1.7. The Internet site is presented to the students using PHP, Apache and MySQL. All of the used software originates from the open source domain. The experience from integrating these technologies and security issues is discussed together with the web-camera interface. One of the important experiences from this project so far is the need for a good visual feedback. This is both in terms of video speed but also in resolution. It has been noticed that when the students makes misstates and wants to search the failure they want clear, large images with high resolution to support their personal believes in the cause of the failure. Even

  3. Gallium based low-interaction anions

    DOEpatents

    King, Wayne A.; Kubas, Gregory J.

    2000-01-01

    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  4. Interacting with Visual Poems through AR-Based Digital Artwork

    ERIC Educational Resources Information Center

    Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Liu, Eric Zhi-Feng; Chuang, Tsung-Yen

    2012-01-01

    In this study, an AR-based digital artwork called "Mind Log" was designed and evaluated. The augmented reality technique was employed to create digital artwork that would present interactive poems. A digital poem was generated via the interplay between a video film and a text-based poem. This artwork was created following a rigorous design flow,…

  5. Ortholog-based protein-protein interaction prediction and its application to inter-species interactions

    PubMed Central

    Lee, Sheng-An; Chan, Cheng-hsiung; Tsai, Chi-Hung; Lai, Jin-Mei; Wang, Feng-Sheng; Kao, Cheng-Yan; Huang, Chi-Ying F

    2008-01-01

    Background The rapid growth of protein-protein interaction (PPI) data has led to the emergence of PPI network analysis. Despite advances in high-throughput techniques, the interactomes of several model organisms are still far from complete. Therefore, it is desirable to expand these interactomes with ortholog-based and other methods. Results Orthologous pairs of 18 eukaryotic species were expanded and merged with experimental PPI datasets. The contributions of interologs from each species were evaluated. The expanded orthologous pairs enable the inference of interologs for various species. For example, more than 32,000 human interactions can be predicted. The same dataset has also been applied to the prediction of host-pathogen interactions. PPIs between P. falciparum calmodulin and several H. sapiens proteins are predicted, and these interactions may contribute to the maintenance of host cell Ca2+ concentration. Using comparisons with Bayesian and structure-based approaches, interactions between putative HSP40 homologs of P. falciparum and the H. sapiens TNF receptor associated factor family are revealed, suggesting a role for these interactions in the interference of the human immune response to P. falciparum. Conclusion The PPI datasets are available from POINT and POINeT . Further development of methods to predict host-pathogen interactions should incorporate multiple approaches in order to improve sensitivity, and should facilitate the identification of targets for drug discovery and design. PMID:19091010

  6. User Interaction Design for a Home-Based Telecare System

    NASA Astrophysics Data System (ADS)

    Raptis, Spyros; Tsiakoulis, Pirros; Chalamandaris, Aimilios; Karabetsos, Sotiris

    This paper presents the design of the user-interaction component of a home-based telecare system for congestive heart failure patients. It provides a short overview of the overall system and offers details on the different interaction types supported by the system. Interacting with the user occurs either as part of a scheduled procedure or as a consequence of identifying or predicting a potentially hazardous deterioration of the patients' health state. The overall logic of the interaction is structured around event-scenario associations, where a scenario consists of concrete actions to be performed, some of which may involve the patient. A key objective in this type of interaction that it is very simple, intuitive and short, involving common everyday objects and familiar media such as speech.

  7. The implementation of distributed interactive simulator based on HLA

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Teng, Jianfu; Feng, Tao

    2004-03-01

    HLA (High Level Architecture) is a new architecture of distributed interactive simulation developed from DIS. We put forward a technical scheme of a distributed interactive simulator based on HLA, and bring forward a concept about distributed oriented-object simulator's engine, as well as an in-depth study on its architecture. This provides a new theoretical and practical approach in order to turn simulator's architecture into HLA.

  8. Improving usability for video analysis using gaze-based interaction

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Peinsipp-Byma, Elisabeth; Klaus, Edmund

    2012-06-01

    In this contribution, we propose the use of eye tracking technology to support video analysts. To reduce workload, we implemented two new interaction techniques as a substitute for mouse pointing: gaze-based selection of a video of interest from a set of video streams, and gaze-based selection of moving targets in videos. First results show that the multi-modal interaction technique gaze + key press allows the selection of fast moving objects in a more effective way. Moreover, we discuss further application possibilities like gaze behavior analysis to measure the analyst's fatigue, or analysis of the gaze behavior of expert analysts to instruct novices.

  9. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    PubMed Central

    Flannery, Andrea; Gerlach, Jared Q.; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i) conventional carbohydrate or glycan microarrays; (ii) whole mucin microarrays; and (iii) microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments. PMID:27600247

  10. Wandering: A Web-Based Platform for the Creation of Location-Based Interactive Learning Objects

    ERIC Educational Resources Information Center

    Barak, Miri; Ziv, Shani

    2013-01-01

    Wandering is an innovative web-based platform that was designed to facilitate outdoor, authentic, and interactive learning via the creation of location-based interactive learning objects (LILOs). Wandering was integrated as part of a novel environmental education program among middle school students. This paper describes the Wandering platform's…

  11. Developing Computer-Based Interactive Video Simulations on Questioning Strategies.

    ERIC Educational Resources Information Center

    Rogers, Randall; Rieff, Judith

    1989-01-01

    This article presents a rationale for development and implementation of computer based interactive videotape (CBIV) in preservice teacher education; identifies advantages of CBIV simulations over other practice exercises; describes economical production procedures; discusses implications and importance of these simulations; and makes…

  12. Harmonizing Technology with Interaction in Blended Problem-Based Learning

    ERIC Educational Resources Information Center

    Donnelly, Roisin

    2010-01-01

    This paper discusses the harmonizing role of technology and interaction in a qualitative study on blended problem-based learning within the context of academic development in higher education. Within this setting, and as both designers and tutors in blended PBL, it is important to seek best practices for how to combine instructional strategies in…

  13. A Microcomputer-Based Interactive Presentation Development System.

    ERIC Educational Resources Information Center

    Moreau, Dennis R.; Dominick, Wayne D.

    1988-01-01

    Reviews research and development projects sponsored by the National Aeronautics and Space Administration (NASA) that address microcomputer-based support for instructional activities at the University of Southwestern Louisiana. Highlights include a graphics project, local area networks, and the Interactive Presentation Development System, which is…

  14. Interactive Video-Based Industrial Training in Basic Electronics.

    ERIC Educational Resources Information Center

    Mirkin, Barry

    The Wisconsin Foundation for Vocational, Technical, and Adult Education is currently involved in the development, implementation, and distribution of a sophisticated interactive computer and video learning system. Designed to offer trainees an open entry and open exit opportunity to pace themselves through a comprehensive competency-based,…

  15. Computer-Based Interaction Analysis with DEGREE Revisited

    ERIC Educational Resources Information Center

    Barros, B.; Verdejo, M. F.

    2016-01-01

    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  16. Web-Based Interactive Writing Environment: Development and Evaluation

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Ko, Hwa Wei; Chung, I. Ling

    2005-01-01

    This study reports the development and evaluation of a web-based interactive writing environment designed for elementary school students. The environment includes three writing themes, "story pass on", "story chameleon" and "thousand ideas", to encourage reading comprehension, creativity and problem-solving skills of students. Three assessment…

  17. Systematic Detection of Epistatic Interactions Based on Allele Pair Frequencies

    PubMed Central

    Ackermann, Marit; Beyer, Andreas

    2012-01-01

    Epistatic genetic interactions are key for understanding the genetic contribution to complex traits. Epistasis is always defined with respect to some trait such as growth rate or fitness. Whereas most existing epistasis screens explicitly test for a trait, it is also possible to implicitly test for fitness traits by searching for the over- or under-representation of allele pairs in a given population. Such analysis of imbalanced allele pair frequencies of distant loci has not been exploited yet on a genome-wide scale, mostly due to statistical difficulties such as the multiple testing problem. We propose a new approach called Imbalanced Allele Pair frequencies (ImAP) for inferring epistatic interactions that is exclusively based on DNA sequence information. Our approach is based on genome-wide SNP data sampled from a population with known family structure. We make use of genotype information of parent-child trios and inspect 3×3 contingency tables for detecting pairs of alleles from different genomic positions that are over- or under-represented in the population. We also developed a simulation setup which mimics the pedigree structure by simultaneously assuming independence of the markers. When applied to mouse SNP data, our method detected 168 imbalanced allele pairs, which is substantially more than in simulations assuming no interactions. We could validate a significant number of the interactions with external data, and we found that interacting loci are enriched for genes involved in developmental processes. PMID:22346757

  18. Traffic and Driving Simulator Based on Architecture of Interactive Motion.

    PubMed

    Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza

    2015-01-01

    This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711

  19. Traffic and Driving Simulator Based on Architecture of Interactive Motion

    PubMed Central

    Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza

    2015-01-01

    This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711

  20. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.

    PubMed

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh

    2015-04-01

    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments. PMID:26357093

  1. Web-based Interactive Landform Simulation Model - Grand Canyon

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  2. An Opinion Interactive Model Based on Individual Persuasiveness

    PubMed Central

    Zhou, Xin; Chen, Bin; Liu, Liang; Ma, Liang; Qiu, Xiaogang

    2015-01-01

    In order to study the formation process of group opinion in real life, we put forward a new opinion interactive model based on Deffuant model and its improved models in this paper because current models of opinion dynamics lack considering individual persuasiveness. Our model has following advantages: firstly persuasiveness is added to individual's attributes reflecting the importance of persuasiveness, which means that all the individuals are different from others; secondly probability is introduced in the course of interaction which simulates the uncertainty of interaction. In Monte Carlo simulation experiments, sensitivity analysis including the influence of randomness, initial persuasiveness distribution, and number of individuals is studied at first; what comes next is that the range of common opinion based on the initial persuasiveness distribution can be predicted. Simulation experiment results show that when the initial values of agents are fixed, no matter how many times independently replicated experiments, the common opinion will converge at a certain point; however the number of iterations will not always be the same; the range of common opinion can be predicted when initial distribution of opinion and persuasiveness are given. As a result, this model can reflect and interpret some phenomena of opinion interaction in realistic society. PMID:26508911

  3. Towards accurate porosity descriptors based on guest-host interactions.

    PubMed

    Paik, Dooam; Haranczyk, Maciej; Kim, Jihan

    2016-05-01

    For nanoporous materials at the characterization level, geometry-based approaches have become the methods of choice to provide information, often encoded in numerical descriptors, about the pores and the channels of a porous material. Examples of most common descriptors of the latter are pore limiting diameters, accessible surface area and accessible volume. The geometry-based methods exploit hard-sphere approximation for atoms, which (1) reduces costly computations of the interatomic interactions between the probe guest molecule and the porous material framework atoms, (2) effectively exploit applied mathematics methods such as Voronoi decomposition to represent and characterize porosity. In this work, we revisit and quantify the shortcoming of the geometry-based approaches. To do so, we have developed a series of algorithms to calculate pore descriptors such as void fraction, accessible surface area, pore limiting diameters (largest included sphere, and largest free sphere) based on a classical force field model of interactions between the guest and the framework atoms. Our resulting energy-based methods are tested on diverse sets of metal-organic frameworks and zeolite structures and comparisons against results obtained from geometric-based method indicate deviations in the cases for structures with small pore sizes. The method provides both high accuracy and performance making it suitable when screening a large database of materials. PMID:27054971

  4. Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations

    NASA Technical Reports Server (NTRS)

    Drucker, Nick; Jones, Phillip N.

    2012-01-01

    Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.

  5. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    SciTech Connect

    T. Satogata, J. Ziegler

    2011-03-01

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  6. Interactive classification: A technique for acquiring and maintaining knowledge bases

    SciTech Connect

    Finin, T.W.

    1986-10-01

    The practical application of knowledge-based systems, such as in expert systems, often requires the maintenance of large amounts of declarative knowledge. As a knowledge base (KB) grows in size and complexity, it becomes more difficult to maintain and extend. Even someone who is familiar with the knowledge domain, how it is represented in the KB, and the actual contents of the current KB may have severe difficulties in updating it. Even if the difficulties can be tolerated, there is a very real danger that inconsistencies and errors may be introduced into the KB through the modification. This paper describes an approach to this problem based on a tool called an interactive classifier. An interactive classifier uses the contents of the existing KB and knowledge about its representation to help the maintainer describe new KB objects. The interactive classifier will identify the appropriate taxonomic location for the newly described object and add it to the KB. The new object is allowed to be a generalization of existing KB objects, enabling the system to learn more about existing objects.

  7. Defect Interaction in Iron and Iron-based Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Stocks, G. Malcolm; Stoller, Roger

    2014-03-01

    Magnetism has a profound influence on the defect properties in iron and iron-based alloys. For instance, it has been shown from first principles calculations that the helium interstitial occupies the tetrahedral site instead of octahedral site in contrast to all previous work that neglected the magnetic effects. In this study, we explore the effects of magnetism on the defect interaction, primarily interstitial-type defects, in bcc iron and Fe-Cr systems. The magnetic moment change during the interaction of two 1/2 <111>interstitial loops in bcc iron was calculated using the ab initio locally self-consistent multiple-scattering (LSMS) method and a significant fluctuation was observed. Adding Cr significantly modifies the magnetic structure of the defects and defect interactions. In addition, the effects of magnetism on the defect energetics are evaluated. This study provides useful insights on whether magnetism can be used as a effective means to manipulate the defect evolution in iron-based structural alloys. This material is based upon work supported as part of the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  8. [Interaction of Ag+ ions with ribonucleotides of canonical bases].

    PubMed

    Sorokin, V A; Valeev, V A; Gladchenko, G O; Sysa, I V; Degtiar, M V; Volchok, I V; Blagoĭ, Iu P

    1999-01-01

    The interaction of Ag+ ions with ribonucleotides of canonical bases in aqueous solution was studied by differential UV spectroscopy. Atoms coordinating silver ions (N7, O6 of guanosine 5'-monophosphate, N3, O2 of cytidine 5'-monophosphate, N7, N1, N3 of adenosine 5'-monophosphate and N3 of uridine 5'-monophosphate) and the binding constants characterizing the formation of appropriate complexes were determined. The differences in the relative affinity of Ag+ ions for the atoms of nucleotide bases correlate with the potential on them. PMID:10418671

  9. Direct interaction of microtubule- and actin-based transport motors

    NASA Technical Reports Server (NTRS)

    Huang, J. D.; Brady, S. T.; Richards, B. W.; Stenolen, D.; Resau, J. H.; Copeland, N. G.; Jenkins, N. A.

    1999-01-01

    The microtubule network is thought to be used for long-range transport of cellular components in animal cells whereas the actin network is proposed to be used for short-range transport, although the mechanism(s) by which this transport is coordinated is poorly understood. For example, in sea urchins long-range Ca2+-regulated transport of exocytotic vesicles requires a microtubule-based motor, whereas an actin-based motor is used for short-range transport. In neurons, microtubule-based kinesin motor proteins are used for long-range vesicular transport but microtubules do not extend into the neuronal termini, where actin filaments form the cytoskeletal framework, and kinesins are rapidly degraded upon their arrival in neuronal termini, indicating that vesicles may have to be transferred from microtubules to actin tracks to reach their final destination. Here we show that an actin-based vesicle-transport motor, MyoVA, can interact directly with a microtubule-based transport motor, KhcU. As would be expected if these complexes were functional, they also contain kinesin light chains and the localization of MyoVA and KhcU overlaps in the cell. These results indicate that cellular transport is, in part, coordinated through the direct interaction of different motor molecules.

  10. Quantification of Aromaticity Based on Interaction Coordinates: A New Proposal.

    PubMed

    Pandey, Sarvesh Kumar; Manogaran, Dhivya; Manogaran, Sadasivam; Schaefer, Henry F

    2016-05-12

    Attempts to establish degrees of aromaticity in molecules are legion. In the present study, we begin with a fictitious fragment arising from only those atoms contributing to the aromatic ring and having a force field projected from the original system. For example, in benzene, we adopt a fictitious C6 fragment with a force field projected from the full benzene force field. When one bond or angle is stretched and kept fixed, followed by a partial optimization for all other internal coordinates, structures change from their respective equilibria. These changes are the responses of all other internal coordinates for constraining the bond or angle by unit displacements and relaxing the forces on all other internal coordinates. The "interaction coordinate" derived from the redundant internal coordinate compliance constants measures how a bond (its electron density) responds for constrained optimization when another bond or angle is stretched by a specified unit (its electron density is perturbed by a finite amount). The sum of interaction coordinates (responses) of all bonded neighbors for all internal coordinates of the fictitious fragment is a measure of the strength of the σ and π electron interactions leading to aromatic stability. This sum, based on interaction coordinates, appears to be successful as an aromaticity index for a range of chemical systems. Since the concept involves analyzing a fragment rather than the whole molecule, this idea is more general and is likely to lead to new insights. PMID:27074522

  11. Predicting protein-protein interactions based only on sequences information.

    PubMed

    Shen, Juwen; Zhang, Jian; Luo, Xiaomin; Zhu, Weiliang; Yu, Kunqian; Chen, Kaixian; Li, Yixue; Jiang, Hualiang

    2007-03-13

    Protein-protein interactions (PPIs) are central to most biological processes. Although efforts have been devoted to the development of methodology for predicting PPIs and protein interaction networks, the application of most existing methods is limited because they need information about protein homology or the interaction marks of the protein partners. In the present work, we propose a method for PPI prediction using only the information of protein sequences. This method was developed based on a learning algorithm-support vector machine combined with a kernel function and a conjoint triad feature for describing amino acids. More than 16,000 diverse PPI pairs were used to construct the universal model. The prediction ability of our approach is better than that of other sequence-based PPI prediction methods because it is able to predict PPI networks. Different types of PPI networks have been effectively mapped with our method, suggesting that, even with only sequence information, this method could be applied to the exploration of networks for any newly discovered protein with unknown biological relativity. In addition, such supplementary experimental information can enhance the prediction ability of the method. PMID:17360525

  12. Interactive cell segmentation based on phase contrast optics.

    PubMed

    Su, Hang; Su, Zhou; Zheng, Shibao; Yang, Hua; Wei, Sha

    2014-01-01

    Cell segmentation in phase contrast microscopy images lays a crucial foundation for numerous subsequent computer-aided cell image analysis, but it encounters many unsolved challenges due to image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose an interactive cell segmentation scheme over phase retardation features. After partitioning the images into phase homogeneous atoms, human annotations are propagated to unlabeled atoms over an affinity graph that is learned based on discrimination analysis. Then, an active query strategy is proposed for which the most informative unlabeled atom is selected for annotation, which is also propagated to the other unlabeled atoms. Cell segmentation converges to quality results after several rounds of interactions involving both the user's intentions and characteristics of image features. Experimental results demonstrate that cells with different optical properties are well segmented via the proposed approach. PMID:24211879

  13. Gesture Interaction Browser-Based 3D Molecular Viewer.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education. PMID:27350455

  14. Bases for interactions between saflufenacil and glyphosate in plants.

    PubMed

    Ashigh, Jamshid; Hall, J Christopher

    2010-06-23

    Buckwheat (Fagropyrum esculentum Moench.), cabbage (Brassica oleracea L), and conventional and glyphosate-resistant varieties of canola (Brassica napus L.) were used to study the bases of saflufenacil and glyphosate interactions. Compared to the addition of Merge (surfactant), the addition of both Transorb (i.e., commercial product, Transorb formulation with glyphosate) and Merge increased the cuticular absorption of [(14)C] saflufenacil in cabbage plants with thick epicuticular wax layers. However, in all cases, the addition of glyphosate reduced the translocation of [(14)C]saflufenacil in glyphosate-susceptible plants, while translocation was not affected in glyphosate-resistant canola. Moreover, the phytotoxicity of saflufenacil reduced the activity of glyphosate, possibly by reducing its translocation in all plant species studied. Increased absorption of saflufenacil by the addition of Transorb (i.e., Transorb formulation with glyphosate) plus Merge appears to increase its contact activity, thus the interaction of saflufenacil and glyphosate involves two separate processes, absorption and translocation. PMID:20481603

  15. Interactive Reference Point Procedure Based on the Conic Scalarizing Function

    PubMed Central

    2014-01-01

    In multiobjective optimization methods, multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions. The conic scalarizing function is a general characterization of Benson proper efficient solutions of non-convex multiobjective problems in terms of saddle points of scalar Lagrangian functions. This approach preserves convexity. The conic scalarizing function, as a part of a posteriori or a priori methods, has successfully been applied to several real-life problems. In this paper, we propose a conic scalarizing function based interactive reference point procedure where the decision maker actively takes part in the solution process and directs the search according to her or his preferences. An algorithmic framework for the interactive solution of multiple objective optimization problems is presented and is utilized for solving some illustrative examples. PMID:24723795

  16. ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.

    USGS Publications Warehouse

    Lumb, Alan M.; Kittle, John L.

    1985-01-01

    ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.

  17. Aerosol cloud interaction: a multiplatform-scenario-based methodology

    NASA Astrophysics Data System (ADS)

    Landulfo, Eduardo; Lopes, Fabío. J. S.; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas

    2015-10-01

    Suspended atmospheric particles i.e. aerosol particles go through many chemical and physical processes and those interactions and transformations may cause particle change in size, structure and composition regulated by mechanisms, which are also present in clouds. These interactions play a great role in the radiation transfer in the atmosphere and are not completely understood as competing effects might occur which are known as indirect aerosol effects. Performing measurements and experiments in remote sensing to improve the knowledge of these processes are also a challenge. In face of that we propose a multi-platform approach based lidar, sun photometry and satellite observations which should be characterized under a scenario perspective in which given the cloud height, geometric and optical geometries in a diurnal/nocturnal basis will make possible to apply different analytical tools in each a set of product that specify the aerosol present in the vicinity of clouds, their optical and physical properties. These scenarios are meant to aid in tagging the expected products and help in creating a robust database to systematically study the aerosol-cloud interaction.In total we will present 6 scenarios: 3 under daylight conditions, 3 under at nighttime. Each scenario and their counterpart should be able to provide the cloud base/top height, aerosol backscattering profile and cloud optical/geometric thickness. In each instance we should count on a 5 wavelength Raman lidar system measurement, a collocated sun photometer and CALIPSO/MODIS observation from AQUA/TERRA platforms. To further improve the aerosol cloud interaction the Raman lidar system should have a water vapor channel or moreover a liquid water channel. In our study we will present a two-day case study to show the methodology feasibility and its potential application.

  18. The Development of an Interactive Web-Based Astronomy Course

    NASA Astrophysics Data System (ADS)

    Duric, N.; Heald, G.

    2002-05-01

    An interactive web-based astronomy laboratory course, targeted at incoming non-science majors, has been developed at the University of New Mexico. The aim of this course is to provide students with exposure to the research methods used by professional astronomers and, in the process, to teach the students fundamental concepts about astronomy. A tremendous demand for astronomy labs combined with limited observatory resources led to the challenge of opening a large number of daytime sections that would provide the students with a realistic research experience. The challenge was addressed by developing a set of highly interactive laboratory exercises that simulate the experience at the telescope and at the researcher's desk. Students acquire data from a variety of telescopes and instruments by accessing web-based archives. The data are reduced and analyzed using relatively simple web tools developed with Javascript code and Java applets. The lab course can be accessed at www.unm.edu/ astro1/101lab. A demonstration of the laboratory exercises will be presented. Assessment results, based on the University of Wisconsin's Student Assessment of Learning Gains (SALG) and the use of pre and post-tests will also be presented. A future goal of this project is to integrate the use of remotely controlled telescopes into the course. The ultimate goal is to develop a space science curriculum for use in regional institutions that include Dine College, University of New Mexico and NM Highlands University.

  19. Interactive agent based modeling of public health decision-making.

    PubMed

    Parks, Amanda L; Walker, Brett; Pettey, Warren; Benuzillo, Jose; Gesteland, Per; Grant, Juliana; Koopman, James; Drews, Frank; Samore, Matthew

    2009-01-01

    Agent-based models have yielded important insights regarding the transmission dynamics of communicable diseases. To better understand how these models can be used to study decision making of public health officials, we developed a computer program that linked an agent-based model of pertussis with an agent-based model of public health management. The program, which we call the Public Health Interactive Model & simulation (PHIMs) encompassed the reporting of cases to public health, case investigation, and public health response. The user directly interacted with the model in the role of the public health decision-maker. In this paper we describe the design of our model, and present the results of a pilot study to assess its usability and potential for future development. Affinity for specific tools was demonstrated. Participants ranked the program high in usability and considered it useful for training. Our ultimate goal is to achieve better public health decisions and outcomes through use of public health decision support tools. PMID:20351907

  20. Tunable Stable Levitation Based on Casimir Interaction between Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xianglei; Zhang, Zhuomin M.

    2016-03-01

    Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.

  1. Multi-Point Combinatorial Optimization Method with Distance Based Interaction

    NASA Astrophysics Data System (ADS)

    Yasuda, Keiichiro; Jinnai, Hiroyuki; Ishigame, Atsushi

    This paper proposes a multi-point combinatorial optimization method based on Proximate Optimality Principle (POP), which method has several advantages for solving large-scale combinatorial optimization problems. The proposed algorithm uses not only the distance between search points but also the interaction among search points in order to utilize POP in several types of combinatorial optimization problems. The proposed algorithm is applied to several typical combinatorial optimization problems, a knapsack problem, a traveling salesman problem, and a flow shop scheduling problem, in order to verify the performance of the proposed algorithm. The simulation results indicate that the proposed method has higher optimality than the conventional combinatorial optimization methods.

  2. A prototype system based on visual interactive SDM called VGC

    NASA Astrophysics Data System (ADS)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang

    2009-10-01

    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  3. Graphlet-based edge clustering reveals pathogen-interacting proteins

    PubMed Central

    Solava, R. W.; Michaels, R. P.; Milenković, T.

    2012-01-01

    Motivation: Prediction of protein function from protein interaction networks has received attention in the post-genomic era. A popular strategy has been to cluster the network into functionally coherent groups of proteins and assign the entire cluster with a function based on functions of its annotated members. Traditionally, network research has focused on clustering of nodes. However, clustering of edges may be preferred: nodes belong to multiple functional groups, but clustering of nodes typically cannot capture the group overlap, while clustering of edges can. Clustering of adjacent edges that share many neighbors was proposed recently, outperforming different node clustering methods. However, since some biological processes can have characteristic ‘signatures’ throughout the network, not just locally, it may be of interest to consider edges that are not necessarily adjacent. Results: We design a sensitive measure of the ‘topological similarity’ of edges that can deal with edges that are not necessarily adjacent. We cluster edges that are similar according to our measure in different baker's yeast protein interaction networks, outperforming existing node and edge clustering approaches. We apply our approach to the human network to predict new pathogen-interacting proteins. This is important, since these proteins represent drug target candidates. Availability: Software executables are freely available upon request. Contact: tmilenko@nd.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22962470

  4. Teaching Vectors Through an Interactive Game Based Laboratory

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Sirokman, Gergely

    2014-03-01

    In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.

  5. Interactive Webmap-Based Science Planning for BepiColombo

    NASA Astrophysics Data System (ADS)

    McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.

    2015-10-01

    For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.

  6. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations

    PubMed Central

    Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim

    2016-01-01

    Background Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. Methodology/Principal Findings In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. Conclusion/Significance The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms

  7. Quantification of cardiorespiratory interactions based on joint symbolic dynamics.

    PubMed

    Kabir, Muammar M; Saint, David A; Nalivaiko, Eugene; Abbott, Derek; Voss, Andreas; Baumert, Mathias

    2011-10-01

    Cardiac and respiratory rhythms are highly nonlinear and nonstationary. As a result traditional time-domain techniques are often inadequate to characterize their complex dynamics. In this article, we introduce a novel technique to investigate the interactions between R-R intervals and respiratory phases based on their joint symbolic dynamics. To evaluate the technique, electrocardiograms (ECG) and respiratory signals were recorded in 13 healthy subjects in different body postures during spontaneous and controlled breathing. Herein, the R-R time series were extracted from ECG and respiratory phases were obtained from abdomen impedance belts using the Hilbert transform. Both time series were transformed into ternary symbol vectors based on the changes between two successive R-R intervals or respiratory phases. Subsequently, words of different symbol lengths were formed and the correspondence between the two series of words was determined to quantify the interaction between cardiac and respiratory cycles. To validate our results, respiratory sinus arrhythmia (RSA) was further studied using the phase-averaged characterization of the RSA pattern. The percentage of similarity of the sequence of symbols, between the respective words of the two series determined by joint symbolic dynamics, was significantly reduced in the upright position compared to the supine position (26.4 ± 4.7 vs. 20.5 ± 5.4%, p < 0.01). Similarly, RSA was also reduced during upright posture, but the difference was less significant (0.11 ± 0.02 vs. 0.08 ± 0.01 s, p < 0.05). In conclusion, joint symbolic dynamics provides a new efficient technique for the analysis of cardiorespiratory interaction that is highly sensitive to the effects of orthostatic challenge. PMID:21618043

  8. Versatile Supramolecular Gene Vector Based on Host-Guest Interaction.

    PubMed

    Liu, Jia; Hennink, Wim E; van Steenbergen, Mies J; Zhuo, Renxi; Jiang, Xulin

    2016-04-20

    It is a great challenge to arrange multiple functional components into one gene vector system to overcome the extra- and intracellular obstacles for gene therapy. In this study, we developed a supramolecular approach for constructing a versatile gene delivery system composed of adamantyl-terminated functional polymers and a β-cyclodextrin based polymer. Adamantyl-functionalized low molecular weight PEIs (PEI-Ad) and PEG (Ad-PEG) as well as poly(β-cyclodextrin) (PCD) were synthesized by one-step chemical reactions. The supramolecular inclusion complex formed from PCD to assemble LMW PEI-Ad4 via host-guest interactions can condense plasmid DNA to form nanopolyplexes by electrostatic interactions. The supramolecular polyplexes can be further PEGylated with Ad-PEG to form inclusion complexes, which showed increased salt and serum stability. In vitro experiments revealed that these supramolecular assembly polyplexes had good cytocompatibility and showed high transfection activity close to that of the commercial ExGen 500 at high dose of DNA. Also, the supramolecular vector system exhibited about 60% silencing efficiency as a siRNA vector. Thus, a versatile effective supramolecular gene vector based on host-guest complexes was fabricated with good cytocompatbility and transfection activity. PMID:27019340

  9. The Use of a Web-Based Classroom Interaction System in Introductory Physics Classes

    NASA Astrophysics Data System (ADS)

    Corpuz, Edgar D.; Corpuz, Ma. Aileen A.; Rosalez, Rolando

    2010-10-01

    A web-based interaction system was used in algebra-based and calculus-based physics classes to enhance students' classroom interaction. The interactive teaching approach primarily incorporated elements of Mazur's Peer Instruction and Interactive Lecture Demonstration. In our implementation, students used personal digital assistants (PDAs) to interact with their instructor during lecture and classroom demonstration. In this paper, we document the perceptions and attitudes of algebra-based and calculus-based physics students towards the interactive teaching approach and likewise present data on how this approach affected students' performance on the Force Concept Inventory (FCI).

  10. Graphics processing unit-based alignment of protein interaction networks.

    PubMed

    Xie, Jiang; Zhou, Zhonghua; Ma, Jin; Xiang, Chaojuan; Nie, Qing; Zhang, Wu

    2015-08-01

    Network alignment is an important bridge to understanding human protein-protein interactions (PPIs) and functions through model organisms. However, the underlying subgraph isomorphism problem complicates and increases the time required to align protein interaction networks (PINs). Parallel computing technology is an effective solution to the challenge of aligning large-scale networks via sequential computing. In this study, the typical Hungarian-Greedy Algorithm (HGA) is used as an example for PIN alignment. The authors propose a HGA with 2-nearest neighbours (HGA-2N) and implement its graphics processing unit (GPU) acceleration. Numerical experiments demonstrate that HGA-2N can find alignments that are close to those found by HGA while dramatically reducing computing time. The GPU implementation of HGA-2N optimises the parallel pattern, computing mode and storage mode and it improves the computing time ratio between the CPU and GPU compared with HGA when large-scale networks are considered. By using HGA-2N in GPUs, conserved PPIs can be observed, and potential PPIs can be predicted. Among the predictions based on 25 common Gene Ontology terms, 42.8% can be found in the Human Protein Reference Database. Furthermore, a new method of reconstructing phylogenetic trees is introduced, which shows the same relationships among five herpes viruses that are obtained using other methods. PMID:26243827

  11. Interactive Web-based tutorials for teaching digital electronics

    NASA Astrophysics Data System (ADS)

    Bailey, Donald G.

    2000-10-01

    With a wide range of student abilities in a class, it is difficult to effectively teach and stimulate all students. A series of web based tutorials was designed to help weaker students and stretch the stronger students. The tutorials consist of a series of HTML web pages with embedded Java applets. This combination is particularly powerful for providing interactive demonstrations because any textual content may be easily provided within the web page. The applet is able to be a compete working program that dynamically illustrates the concept, or provides a working environment for the student to experiment and work through their solution. The applet is dynamic, and responds to the student through both mouse clicks and keyboard entry. These allow the student to adjust parameters, make selections, and affect the way the program is run or information is displayed. Such interaction allows each applet to provide a mini demonstration or experiment to help the student understand a particular concept or technique. The approach taken is illustrated with a tutorial that dynamically shows the relationships between a truth table, Karnaugh amp, logic circuit and Boolean algebra representations of a logic function, and dramatically illustrates the effect of minimization on the resultant circuit. Use of the tutorial has resulted in significant benefits, particularly with weaker students.

  12. Interaction of purine bases and nucleosides with serum albumin

    NASA Astrophysics Data System (ADS)

    Sułkowska, A.; Michnik, A.

    1997-06-01

    The proton NMR spectra of alkyl derivatives of adenine and adenosine have been studied. High-resolution (400 MHz) proton spectra were recorded at 300 K at increasing concentrations of serum albumin. The dependence of the chemical shifts and the line width of the individual spectral lines on the protein concentration provides some detailed information about the nature of the complexes between the purine derivatives and albumin. Comparison of data for the methylated and non-methylated purine bases and nucleosides indicates the formation of non-specific complexes with serum albumin. However, the presence of the ethyl group in 8-ethyl-9 N-methyladenine means that in the adenine derivative-serum albumin complex the ethyl chain preserves its dominant role in binding. An advantage of our model is that the π-π interaction between the adenine ring and the amino acids of the protein can be replaced by hydrophobic interaction in the case of complexation of the ethyl adenine derivative.

  13. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method. PMID:27250458

  14. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  15. Evolving effective behaviours to interact with tag-based populations

    NASA Astrophysics Data System (ADS)

    Yucel, Osman; Crawford, Chad; Sen, Sandip

    2015-07-01

    Tags and other characteristics, externally perceptible features that are consistent among groups of animals or humans, can be used by others to determine appropriate response strategies in societies. This usage of tags can be extended to artificial environments, where agents can significantly reduce cognitive effort spent on appropriate strategy choice and behaviour selection by reusing strategies for interacting with new partners based on their tags. Strategy selection mechanisms developed based on this idea have successfully evolved stable cooperation in games such as the Prisoner's Dilemma game but relies upon payoff sharing and matching methods that limit the applicability of the tag framework. Our goal is to develop a general classification and behaviour selection approach based on the tag framework. We propose and evaluate alternative tag matching and adaptation schemes for a new, incoming individual to select appropriate behaviour against any population member of an existing, stable society. Our proposed approach allows agents to evolve both the optimal tag for the environment as well as appropriate strategies for existing agent groups. We show that these mechanisms will allow for robust selection of optimal strategies by agents entering a stable society and analyse the various environments where this approach is effective.

  16. Interactive brain shift compensation using GPU based programming

    NASA Astrophysics Data System (ADS)

    van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf

    2009-02-01

    Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.

  17. Interactive model evaluation tool based on IPython notebook

    NASA Astrophysics Data System (ADS)

    Balemans, Sophie; Van Hoey, Stijn; Nopens, Ingmar; Seuntjes, Piet

    2015-04-01

    In hydrological modelling, some kind of parameter optimization is mostly performed. This can be the selection of a single best parameter set, a split in behavioural and non-behavioural parameter sets based on a selected threshold or a posterior parameter distribution derived with a formal Bayesian approach. The selection of the criterion to measure the goodness of fit (likelihood or any objective function) is an essential step in all of these methodologies and will affect the final selected parameter subset. Moreover, the discriminative power of the objective function is also dependent from the time period used. In practice, the optimization process is an iterative procedure. As such, in the course of the modelling process, an increasing amount of simulations is performed. However, the information carried by these simulation outputs is not always fully exploited. In this respect, we developed and present an interactive environment that enables the user to intuitively evaluate the model performance. The aim is to explore the parameter space graphically and to visualize the impact of the selected objective function on model behaviour. First, a set of model simulation results is loaded along with the corresponding parameter sets and a data set of the same variable as the model outcome (mostly discharge). The ranges of the loaded parameter sets define the parameter space. A selection of the two parameters visualised can be made by the user. Furthermore, an objective function and a time period of interest need to be selected. Based on this information, a two-dimensional parameter response surface is created, which actually just shows a scatter plot of the parameter combinations and assigns a color scale corresponding with the goodness of fit of each parameter combination. Finally, a slider is available to change the color mapping of the points. Actually, the slider provides a threshold to exclude non behaviour parameter sets and the color scale is only attributed to the

  18. Using Interactive Simulations in Assessment: The Use of Computer-Based Interactive Simulations in the Assessment of Statistical Concepts

    ERIC Educational Resources Information Center

    Neumann, David L.

    2010-01-01

    Interactive computer-based simulations have been applied in several contexts to teach statistical concepts in university level courses. In this report, the use of interactive simulations as part of summative assessment in a statistics course is described. Students accessed the simulations via the web and completed questions relating to the…

  19. Interactive Multimedia and Model-based Learning in Biology.

    ERIC Educational Resources Information Center

    Buckley, Barbara C.

    2000-01-01

    Documents a case of model-building in biology through microanalysis of one student's interaction with "Science for Living: The Circulatory System (SFL)", an interactive multimedia resource prototype for research. Describes the student's learning goals, gains, and activities with particular attention to interactions with representations, then…

  20. Photon-Electron Interactions in Graphene-Based Heterojunctions

    NASA Astrophysics Data System (ADS)

    Liu, Fangze

    Graphene, a single layer of carbon atoms arranged in honeycomb lattice, has been one of the most attractive materials for fundamental and applied research in the past decade. Its unique electronic, optical, thermal, chemical and mechanical properties have lead to the discovery of new physics and many promising applications. In particular, research on photon-electron interaction in graphene-based heterojunctions has revealed a new route to design photoactive devices. In this thesis, I present our work on the synthesis of graphene by chemical vapor deposition (CVD) and the study of graphene-based optoelectronic devices. In addition to the conventional synthesis of graphene on copper (Cu) foils, we also present the CVD synthesis of graphene on a new substrate: palladium (Pd). Especially, we performed detailed study of the nucleation, evolution and morphology of graphene growth on Pd substrate. It helps us to understand the growth reaction mechanism and achieve controllable synthesis of graphene from single layer to multiple layers with different morphologies. We then studied the broadband and ultrasensitive photocurrent and photovoltage response of graphene/silicon (Si) Schottky diodes. For the same architecture, we identified a new photoconductive mode with ultra high photoconductive gain, namely "quantum carrier reinvestment (QCR)". A gain exceeding 107 A/W was demonstrated. The underlying physics of photon-electron interactions in these junctions were studied by a combination of optical characterization tools including Raman spectroscopy, UV-Vis spectroscopy and scanning optical microscopy. The results obtained have been discussed in the framework of the unique electronic band structure, density states, and mobility of graphene, along with the manner in witch photoexcited carrier behave under various externally tuned parameters. We also systematically studied the optimization of performance of graphene/Si and thin transparent graphite/Si junction solar cells and

  1. Sensing Landscape History with an Interactive Location Based Service

    PubMed Central

    van Lammeren, Ron; Goossen, Martin; Roncken, Paul

    2009-01-01

    This paper introduces the STEAD approach for interpreting data acquired by a “human sensor”, who uses an informal interactive location-based service (iLBS) to sense cultural-historic facts and anecdotes of, and in the landscape. This user-generated data is collected outdoors and in situ. The approach consists of four related facets (who, what, where, when). Three of the four facets are discussed and illustrated by user generated data collected during a Dutch survey in 2008. These data represent the personal cultural-historic knowledge and anecdotes of 150 people using a customized iLBS for experiencing the cultural history of a landscape. The “who” facet shows three dominant mentality groups (cosmopolitans, modern materialists and post modern hedonists) that generated user content. The “what” facet focuses on three subject types of pictures and four picture framing classes. Pictures of the place type showed to be dominant and foreground framing class was slightly favourite. The “where” facet is explored via density, distribution, and distance of the pictures made. The illustrations of the facets indirectly show the role of the “human sensor” with respect to the domain of interest. The STEAD approach needs further development of the when-facet and of the relations between the four facets. Finally the results of the approach may support data archives of iLBS applications. PMID:22399994

  2. Ocean interactions with the base of Amery Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hellmer, Hartmut H.; Jacobs, Stanley S.

    1992-12-01

    Using a two-dimensional ocean thermohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the "G1" ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the seafloor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. A freshwater flux across the grounding line, derived from melting beneath the grounded ice sheet, would have to be anomalously large to produce the basal marine ice layer and account for the Ice Shelf Water outflow. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.

  3. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  4. Quadrupole beam-based alignment in the RHIC interaction regions

    SciTech Connect

    Ziegler, J.; Satogata, T.

    2011-03-28

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements. BBA data has been collected over the past two runs for all three of the active experimental IRs at RHIC, updating results from the 2005 run which were taken with incorrectly installed offsets. The technique was successfully applied to expose a systematic misuse of the BPM survey offsets in the control system. This is likely to benefit polarized proton operations as polarization transmission through acceleration ramps depends on RMS orbit control in the arcs, but a quantitative understanding of its impact is still under active investigation. Data taking is ongoing as are refinements to the BBA technique aimed at reducing systematic errors and properly accounting for dispersive effects. Further development may focus on non-triplet BPMs such as those located near snakes, or arc quadrupoles that do not have individually shunted power supplies (a prerequisite for the current method) and as such, will require a modified procedure.

  5. Optical immunoassay systems based upon evanescent wave interactions

    NASA Astrophysics Data System (ADS)

    Christensen, Douglas A.; Herron, James N.

    1996-04-01

    Immunoassays based upon evanescent wave interactions are finding increased biosensing application. In these devices, the evanescent tail associated with total internal reflection of an incident beam at the substrate/solution interface provides sensitivity for surface-bound protein over bulk molecules, allowing homogeneous assays and real-time measurement of binding dynamics. Among such systems are surface plasmon resonance sensors and a resonant mirror device. Several research groups are also developing fluorescent fiberoptic or planar waveguide sensors for biomedical applications. We describe a second-generation planar waveguide fluoroimmunoassay system being developed in our laboratory which uses a molded polystyrene sensor. The 633-nm beam from a laser diode is focused into the 500 micrometer- thick planar waveguide by an integral lens. Antibodies to the desired analyte (hCG) are immobilized on the waveguide surface and fluorescence from bound analyte/tracer antibodies in a sandwich format is imaged onto the detector. The geometry of the waveguide allows several zones to be detected, providing the capability for on-sensor calibration. This sensor has shown picomolar sensitivity for the detection of hCG.

  6. Evaluating Types of Students' Interactions in a Wiki-Based Collaborative Learning Project

    ERIC Educational Resources Information Center

    Prokofieva, Maria

    2013-01-01

    Wiki technology has been promoted as a collaborative software platform. This study investigates interactions that occur in a wiki-based collaborative learning project. The study draws on interaction literature and investigates the types of interactions with which students are engaged in wiki-based group projects, clusters that reflect online…

  7. Interaction of cellulose-based cationic polyelectrolytes with mucin.

    PubMed

    Mazoniene, Edita; Joceviciute, Simona; Kazlauske, Jurgita; Niemeyer, Bernd; Liesiene, Jolanta

    2011-03-01

    Mucoadhesivity of water-soluble polymers is an important factor, when testing their suitability for controlled drug delivery systems. For this purpose, the interaction of new cationic cellulose polyelectrolytes with lyophilized mucin was investigated by means of turbidimetric titration, microscopy and measurement of zeta potential and particle size changes in the system. Results show that the cellulose derivatives interact with mucin. This interaction became stronger if cellulose macromolecules contained positively charged groups and an electrostatic interaction with the negatively charged mucin particles occurred. Under certain conditions flocculation of mucin particles by the cellulose polyelectrolyte was observed. PMID:21134731

  8. Movement-Based Interaction Applied to Physical Rehabilitation Therapies

    PubMed Central

    Ruiz Penichet, Victor Manuel; Lozano Pérez, María Dolores

    2014-01-01

    Background Health care environments are continuously improving conditions, especially regarding the use of current technology. In the field of rehabilitation, the use of video games and related technology has helped to develop new rehabilitation procedures. Patients are able to work on their disabilities through new processes that are more motivating and entertaining. However, these patients are required to leave their home environment to complete their rehabilitation programs. Objective The focus of our research interests is on finding a solution to eliminate the need for patients to interrupt their daily routines to attend rehabilitation therapy. We have developed an innovative system that allows patients with a balance disorder to perform a specific rehabilitation exercise at home. Additionally, the system features an assistive tool to complement the work of physiotherapists. Medical staff are thus provided with a system that avoids the need for them to be present during the exercise in specific cases in which patients are under suitable supervision. Methods A movement-based interaction device was used to achieve a reliable system for monitoring rehabilitation exercises performed at home. The system accurately utilizes parameters previously defined by the specialist for correct performance of the exercise. Accordingly, the system gives instructions and corrects the patient’s actions. The data generated during the session are collected for assessment by the specialist to adapt the difficulty of the exercise to the patient’s progress. Results The evaluation of the system was conducted by two experts in balance disorder rehabilitation. They were required to verify the effectiveness of the system, and they also facilitated the simulation of real patient behavior. They used the system freely for a period of time and provided interesting and optimistic feedback. First, they evaluated the system as a tool for real-life rehabilitation therapy. Second, their

  9. Interactive Video and Group Learning: Two Action Enquiry Based Evaluations.

    ERIC Educational Resources Information Center

    Cloke, Chris; And Others

    1996-01-01

    Two evaluations of video programs that involved groups of learners interacting with LaserVision software are presented. One concerns counselling skills for student teachers. The other is a geography simulation program. Program structure, group interaction, and the role of the instructor are discussed. Learners in both studies found the visual…

  10. Interactive Language Simulation Systems: Technology for a National Language Base.

    ERIC Educational Resources Information Center

    Rowe, A. Allen

    1985-01-01

    Discusses the efforts of the Defense Language Institute Foreign Language Center to make interactive video an integral part of foreign language instruction. Interactive video is seen as a method which could profoundly alter the old classroom model of language instruction. (Author/SED)

  11. Natural Interaction Based Online Military Boxing Learning System

    ERIC Educational Resources Information Center

    Yang, Chenglei; Wang, Lu; Sun, Bing; Yin, Xu; Wang, Xiaoting; Liu, Li; Lu, Lin

    2013-01-01

    Military boxing, a kind of Chinese martial arts, is widespread and health beneficial. In this paper, the authors introduce a military boxing learning system realized by 3D motion capture, Web3D and 3D interactive technologies. The interactions with the system are natural and intuitive. Users can observe and learn the details of each action of the…

  12. Apparatus and method for determining microscale interactions based on compressive sensors such as crystal structures

    SciTech Connect

    McAdams, Harley; AlQuraishi, Mohammed

    2015-04-21

    Techniques for determining values for a metric of microscale interactions include determining a mesoscale metric for a plurality of mesoscale interaction types, wherein a value of the mesoscale metric for each mesoscale interaction type is based on a corresponding function of values of the microscale metric for the plurality of the microscale interaction types. A plurality of observations that indicate the values of the mesoscale metric are determined for the plurality of mesoscale interaction types. Values of the microscale metric are determined for the plurality of microscale interaction types based on the plurality of observations and the corresponding functions and compressed sensing.

  13. In Interactive, Web-Based Approach to Metadata Authoring

    NASA Technical Reports Server (NTRS)

    Pollack, Janine; Wharton, Stephen W. (Technical Monitor)

    2001-01-01

    NASA's Global Change Master Directory (GCMD) serves a growing number of users by assisting the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 8000 data set descriptions in Directory Interchange Format (DIF) and 200 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information, thus allowing researchers to discover data pertaining to a particular geographic location, as well as subject of interest. The GCMD strives to be the preeminent data locator for world-wide directory level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are not currently attracting. widespread usage. With usage being the prime indicator of utility, it has become apparent that current tools must be improved. As a result, the GCMD has released a new suite of web-based authoring tools that enable a user to create new data and service entries, as well as modify existing data entries. With these tools, a more interactive approach to metadata authoring is taken, as they feature a visual "checklist" of data/service fields that automatically update when a field is completed. In this way, the user can quickly gauge which of the required and optional fields have not been populated. With the release of these tools, the Earth science community will be further assisted in efficiently creating quality data and services metadata. Keywords: metadata, Earth science, metadata authoring tools

  14. Interactive, Computer-Based Training Program for Radiological Workers

    SciTech Connect

    Trinoskey, P.A.; Camacho, P.I.; Wells, L.

    2000-01-18

    Lawrence Livermore National Laboratory (LLNL) is redesigning its Computer-Based Training (CBT) program for radiological workers. The redesign represents a major effort to produce a single, highly interactive and flexible CBT program that will meet the training needs of a wide range of radiological workers--from researchers and x-ray operators to individuals working in tritium, uranium, plutonium, and accelerator facilities. The new CBT program addresses the broad diversity of backgrounds found at a national laboratory. When a training audience is homogeneous in terms of education level and type of work performed, it is difficult to duplicate the effectiveness of a flexible, technically competent instructor who can tailor a course to the express needs and concerns of a course's participants. Unfortunately, such homogeneity is rare. At LLNL, they have a diverse workforce engaged in a wide range of radiological activities, from the fairly common to the quite exotic. As a result, the Laboratory must offer a wide variety of radiological worker courses. These include a general contamination-control course in addition to radioactive-material-handling courses for both low-level laboratory (i.e., bench-top) activities as well as high-level work in tritium, uranium, and plutonium facilities. They also offer training courses for employees who work with radiation-generating devices--x-ray, accelerator, and E-beam operators, for instance. However, even with the number and variety of courses the Laboratory offers, they are constrained by the diversity of backgrounds (i.e., knowledge and experience) of those to be trained. Moreover, time constraints often preclude in-depth coverage of site- and/or task-specific details. In response to this situation, several years ago LLNL began moving toward computer-based training for radiological workers. Today, that CBT effort includes a general radiological safety course developed by the Department of Energy's Hanford facility and a

  15. Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems

    SciTech Connect

    Endert, Alexander; North, Chris

    2012-10-14

    With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focus on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.

  16. The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction

    PubMed Central

    Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad

    2016-01-01

    Background To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Objectives Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. Materials and Methods In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. Results It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Conclusions Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.

  17. Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction

    PubMed Central

    Escalera, Sergio; Baró, Xavier; Vitrià, Jordi; Radeva, Petia; Raducanu, Bogdan

    2012-01-01

    Social interactions are a very important component in people’s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times’ Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links’ weights are a measure of the “influence” a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network. PMID:22438733

  18. Novel interactive virtual showcase based on 3D multitouch technology

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Liu, Yue; Lu, You; Wang, Yongtian

    2009-11-01

    A new interactive virtual showcase is proposed in this paper. With the help of virtual reality technology, the user of the proposed system can watch the virtual objects floating in the air from all four sides and interact with the virtual objects by touching the four surfaces of the virtual showcase. Unlike traditional multitouch system, this system cannot only realize multi-touch on a plane to implement 2D translation, 2D scaling, and 2D rotation of the objects; it can also realize the 3D interaction of the virtual objects by recognizing and analyzing the multi-touch that can be simultaneously captured from the four planes. Experimental results show the potential of the proposed system to be applied in the exhibition of historical relics and other precious goods.

  19. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  20. Interactive Multimedia-Based E-Learning: A Study of Effectiveness

    ERIC Educational Resources Information Center

    Zhang, Dongsong

    2005-01-01

    The author conducted two experiments to assess effectiveness of interactive e-learning. Students in a fully interactive multimedia-based e-learning environment achieved better performance and higher levels of satisfaction than those in a traditional classroom and those in a less interactive e-learning environment.

  1. Faculty Choice and Student Perception of Web-Based Technologies for Interaction in Online Economics Courses

    ERIC Educational Resources Information Center

    Morris, Olivia

    2012-01-01

    This research investigated faculty choice of web-based technologies for interaction in online economics courses and students' perception of those technologies. The literature review of online interaction has established the importance of learner-learner, learner-instructor and learner-content interaction in distance learning. However, some…

  2. A Qualitative Examination of Two Year-Olds Interaction with Tablet Based Interactive Technology

    ERIC Educational Resources Information Center

    Geist, Eugene A.

    2012-01-01

    The purpose of this study was to observe children naturally interacting with these touch screen devices. Little direct instruction was given to the children on the use of the devices however an adult did assist when needed. The device was introduced to the children as would be any other educational material such as play-dough, new items in the…

  3. Using Interactive Science Notebooks for Inquiry-Based Science

    ERIC Educational Resources Information Center

    Chesbro, Robert

    2006-01-01

    The interactive science notebook (ISN) is a perfect opportunity for science educators to encapsulate and promote the most cutting-edge constructivist teaching strategies while simultaneously addressing standards, differentiation of instruction, literacy development, and maintenance of an organized notebook as laboratory and field scientists do.…

  4. Web-Based Interactive Visualization in an Information Retrieval Course.

    ERIC Educational Resources Information Center

    Brusilovsky, Peter

    Interactive visualization is a powerful educational tool. It has been used to enhance the teaching of various subjects from computer science to chemistry to engineering. In computer science education, this powerful tool is used almost exclusively in programming and data structure courses. This paper suggests that visualization could be very…

  5. Classroom Interaction Based on Teacher Ethnicity and Experience.

    ERIC Educational Resources Information Center

    Cook, Runett H.

    A study was conducted to investigate classroom interaction between black and white teachers working with black students in New York City. The purpose was to compare black and white teachers' attitudes as they taught minority students. Also compared were conceptions of students, parents, and administrators on what constitutes a "good teacher." The…

  6. Interaction force microscopy based on quartz tuning fork force sensor

    NASA Astrophysics Data System (ADS)

    Qin, Yexian

    The ability to sense small changes in the interaction force between a scanning probe microscope (SPM) tip and a substrate requires cantilevers with a sharp mechanical resonance. A typical commercially available cantilever in air is characterized by a resonance with a Q factor of 100 ˜ 300. The low Q factor can be attributed to imperfections in the cantilever itself as well as damping effects of the surrounding air. To substantially increase the Q factor, novel concepts are required. For this reason, we have performed a systematic study of quartz tuning fork resonators for possible use with SPMs. We find that tuning fork resonators operating in air are characterized by Q factors in the order of 104, thereby greatly improving the SPM's ability to measure small shifts in the interaction force. By carefully attaching commercially available SPM tips to the tuning fork, it is possible to obtain SPM images using non-contact imaging techniques and analyze the tip-sample interactions. The assembly of uniform molecular monolayers on atomically flat substrates for molecular electronics applications has received widespread attention during the past ten years. Scanning probe techniques are often used to assess substrate topography, molecular ordering and electronic properties, yet little is known about the fundamental tip-molecule interaction. To address this issue we have built an Interaction Force Microscope using a quartz tuning fork to probe tip-molecular monolayer interactions using scanning probe microscopy. The high quality factor and stable resonant frequency of a quartz tuning fork allows accurate measurement of small shifts in the resonant frequency as the tip interacts with the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezomechanical properties of a tuning fork have been calibrated using a fiber optical interferometer. In prior work [1], we have studied molecular layers formed from either 4-Trifluoro

  7. Interactive Learning with Java Applets: Using Interactive, Web-Based Java Applets to Present Science in a Concrete, Meaningful Manner

    ERIC Educational Resources Information Center

    Corder, Greg

    2005-01-01

    Science teachers face challenges that affect the quality of instruction. Tight budgets, limited resources, school schedules, and other obstacles limit students' opportunities to experience science that is visual and interactive. Incorporating web-based Java applets into science instruction offers a practical solution to these challenges. The…

  8. Illuminating Spatial and Temporal Organization of Protein Interaction Networks by Mass Spectrometry-Based Proteomics

    PubMed Central

    Yang, Jiwen; Wagner, Sebastian A.; Beli, Petra

    2015-01-01

    Protein–protein interactions are at the core of all cellular functions and dynamic alterations in protein interactions regulate cellular signaling. In the last decade, mass spectrometry (MS)-based proteomics has delivered unprecedented insights into human protein interaction networks. Affinity purification-MS (AP-MS) has been extensively employed for focused and high-throughput studies of steady state protein–protein interactions. Future challenges remain in mapping transient protein interactions after cellular perturbations as well as in resolving the spatial organization of protein interaction networks. AP-MS can be combined with quantitative proteomics approaches to determine the relative abundance of purified proteins in different conditions, thereby enabling the identification of transient protein interactions. In addition to affinity purification, methods based on protein co-fractionation have been combined with quantitative MS to map transient protein interactions during cellular signaling. More recently, approaches based on proximity tagging that preserve the spatial dimension of protein interaction networks have been introduced. Here, we provide an overview of MS-based methods for analyzing protein–protein interactions with a focus on approaches that aim to dissect the temporal and spatial aspects of protein interaction networks. PMID:26648978

  9. Determination of Base Binding Strength and Base Stacking Interaction of DNA Duplex Using Atomic Force Microscope

    PubMed Central

    Zhang, Tian-biao; Zhang, Chang-lin; Dong, Zai-li; Guan, Yi-fu

    2015-01-01

    As one of the most crucial properties of DNA, the structural stability and the mechanical strength are attracting a great attention. Here, we take advantage of high force resolution and high special resolution of Atom Force Microscope and investigate the mechanical force of DNA duplexes. To evaluate the base pair hydrogen bond strength and base stacking force in DNA strands, we designed two modes (unzipping and stretching) for the measurement rupture forces. Employing k-means clustering algorithm, the ruptured force are clustered and the mean values are estimated. We assessed the influence of experimental parameters and performed the force evaluation for DNA duplexes of pure dG/dC and dA/dT base pairs. The base binding strength of single dG/dC and single dA/dT were estimated to be 20.0 ± 0.2 pN and 14.0 ± 0.3 pN, respectively, and the base stacking interaction was estimated to be 2.0 ± 0.1 pN. Our results provide valuable information about the quantitative evaluation of the mechanical properties of the DNA duplexes. PMID:25772017

  10. Java-based Interactive Illustrations for Studio Physics

    NASA Astrophysics Data System (ADS)

    Malak, Michael; Wilson, Jack

    1997-04-01

    We have written a series of interactive demonstrations and simulations for introductory Electricity and Magnetism. These programs are written in the Java (TM) language and are delivered via the World-Wide Web to students either in the classroom or at home. The combination of such interactive illustrations with the Web's hypermedia capability is of significant value in the creation of network-distributable useful courseware. We are using these applets at Rensselaer and are evaluating their effectiveness as components of the instruction of Studio Physics II (Introduction to Electricity and Magnetism). Two of the applets allow the student to explore two-dimensional electric and magnetic fields by drawing field lines and equipotentials, evaluating divergence and curl, and calculating loop and surface integrals for Maxwell's laws. Another applet illustrates Snell's law of refraction, and another is an optical bench with movable lenses and a movable object.

  11. Glucose-Nucleobase Pseudo Base Pairs: Biomolecular Interactions within DNA.

    PubMed

    Vengut-Climent, Empar; Gómez-Pinto, Irene; Lucas, Ricardo; Peñalver, Pablo; Aviñó, Anna; Fonseca Guerra, Célia; Bickelhaupt, F Matthias; Eritja, Ramón; González, Carlos; Morales, Juan C

    2016-07-18

    Noncovalent forces rule the interactions between biomolecules. Inspired by a biomolecular interaction found in aminoglycoside-RNA recognition, glucose-nucleobase pairs have been examined. Deoxyoligonucleotides with a 6-deoxyglucose insertion are able to hybridize with their complementary strand, thus exhibiting a preference for purine nucleobases. Although the resulting double helices are less stable than natural ones, they present only minor local distortions. 6-Deoxyglucose stays fully integrated in the double helix and its OH groups form two hydrogen bonds with the opposing guanine. This 6-deoxyglucose-guanine pair closely resembles a purine-pyrimidine geometry. Quantum chemical calculations indicate that glucose-purine pairs are as stable as a natural T-A pair. PMID:27328804

  12. Non-Native Speaker Interaction Management Strategies in a Network-Based Virtual Environment

    ERIC Educational Resources Information Center

    Peterson, Mark

    2008-01-01

    This article investigates the dyad-based communication of two groups of non-native speakers (NNSs) of English involved in real time interaction in a type of text-based computer-mediated communication (CMC) tool known as a MOO. The object of this semester long study was to examine the ways in which the subjects managed their L2 interaction during…

  13. Enhancing Learning Outcomes with an Interactive Knowledge-Based Learning Environment Providing Narrative Feedback

    ERIC Educational Resources Information Center

    Stranieri, Andrew; Yearwood, John

    2008-01-01

    This paper describes a narrative-based interactive learning environment which aims to elucidate reasoning using interactive scenarios that may be used in training novices in decision-making. Its design is based on an approach to generating narrative from knowledge that has been modelled in specific decision/reasoning domains. The approach uses a…

  14. The Reality of Web-Based Interaction in an Egyptian Distance Education Course

    ERIC Educational Resources Information Center

    Sadik, Alaa

    2006-01-01

    This paper reports the results of a study conducted to evaluate the reality of interaction in a web-based distance education course. The learners were Egyptian first-grade secondary school students (15-16 years old) and the learning subject is mathematics. To investigate students' interactions via the Web, a Web-based learning environment was…

  15. Approaches to Interactive Video Anchors in Problem-Based Science Learning

    ERIC Educational Resources Information Center

    Kumar, David Devraj

    2010-01-01

    This paper is an invited adaptation of the IEEE Education Society Distinguished Lecture Approaches to Interactive Video Anchors in Problem-Based Science Learning. Interactive video anchors have a cognitive theory base, and they help to enlarge the context of learning with information-rich real-world situations. Carefully selected movie clips and…

  16. Model-based description of environment interaction for mobile robots

    NASA Astrophysics Data System (ADS)

    Borghi, Giuseppe; Ferrari, Carlo; Pagello, Enrico; Vianello, Marco

    1999-01-01

    We consider a mobile robot that attempts to accomplish a task by reaching a given goal, and interacts with its environment through a finite set of actions and observations. The interaction between robot and environment is modeled by Partially Observable Markov Decision Processes (POMDP). The robot takes its decisions in presence of uncertainty about the current state, by maximizing its reward gained during interactions with the environment. It is able to self-locate into the environment by collecting actions and perception histories during the navigation. To make the state estimation more reliable, we introduce an additional information in the model without adding new states and without discretizing the considered measures. Thus, we associate to the state transition probabilities also a continuous metric given through the mean and the variance of some significant sensor measurements suitable to be kept under continuous form, such as odometric measurements, showing that also such unreliable data can supply a great deal of information to the robot. The overall control system of the robot is structured as a two-levels layered architecture, where the low level implements several collision avoidance algorithms, while the upper level takes care of the navigation problem. In this paper, we concentrate on how to use POMDP models at the upper level.

  17. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier

    PubMed Central

    Geng, Haijiang; Lu, Tao; Lin, Xiao; Liu, Yu; Yan, Fangrong

    2015-01-01

    Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input to the Naive Bayes Classifier- (NBC-) based method to predict interaction sites in protein-protein complexes interaction. The prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein sequence features as input vectors performed well. PMID:26697220

  18. Avidity-based extracellular interaction screening (AVEXIS) for the scalable detection of low-affinity extracellular receptor-ligand interactions.

    PubMed

    Kerr, Jason S; Wright, Gavin J

    2012-01-01

    Extracellular protein:protein interactions between secreted or membrane-tethered proteins are critical for both initiating intercellular communication and ensuring cohesion within multicellular organisms. Proteins predicted to form extracellular interactions are encoded by approximately a quarter of human genes, but despite their importance and abundance, the majority of these proteins have no documented binding partner. Primarily, this is due to their biochemical intractability: membrane-embedded proteins are difficult to solubilise in their native conformation and contain structurally-important posttranslational modifications. Also, the interaction affinities between receptor proteins are often characterised by extremely low interaction strengths (half-lives < 1 second) precluding their detection with many commonly-used high throughput methods. Here, we describe an assay, AVEXIS (AVidity-based EXtracellular Interaction Screen) that overcomes these technical challenges enabling the detection of very weak protein interactions (t(1/2) ≤ 0.1 sec) with a low false positive rate. The assay is usually implemented in a high throughput format to enable the systematic screening of many thousands of interactions in a convenient microtitre plate format (Fig. 1). It relies on the production of soluble recombinant protein libraries that contain the ectodomain fragments of cell surface receptors or secreted proteins within which to screen for interactions; therefore, this approach is suitable for type I, type II, GPI-linked cell surface receptors and secreted proteins but not for multipass membrane proteins such as ion channels or transporters. The recombinant protein libraries are produced using a convenient and high-level mammalian expression system, to ensure that important posttranslational modifications such as glycosylation and disulphide bonds are added. Expressed recombinant proteins are secreted into the medium and produced in two forms: a biotinylated bait which can

  19. Magnetic hysteresis based on dipolar interactions in granular magnetic systems

    NASA Astrophysics Data System (ADS)

    Allia, Paolo; Coisson, Marco; Knobel, Marcelo; Tiberto, Paola; Vinai, Franco

    1999-11-01

    The magnetic hysteresis of granular magnetic systems is investigated in the high-temperature limit (T>> blocking temperature of magnetic nanoparticles). Measurements of magnetization curves have been performed at room temperature on various samples of granular bimetallic alloys of the family Cu100-xCox (x=5-20 at. %) obtained in ribbon form by planar flow casting in a controlled atmosphere, and submitted to different thermal treatments. The loop amplitude and shape, which are functions of sample composition and thermal history, are studied taking advantage of a novel method of graphical representation, particularly apt to emphasize the features of thin, elongated loops. The hysteresis is explained in terms of the effect of magnetic interactions of the dipolar type among magnetic-metal particles, acting to hinder the response of the system of moments to isothermal changes of the applied field. Such a property is accounted for in a mean-field scheme, by introducing a memory term in the argument of the Langevin function which describes the anhysteretic behavior of an assembly of noninteracting superparamagnetic particles. The rms field arising from the cumulative effect of dipolar interactions is linked by the theory to a measurable quantity, the reduced remanence of a major symmetric hysteresis loop. The theory's self-consistence and adequacy have been properly tested at room temperature on all examined systems. The agreement with experimental results is always striking, indicating that at high temperatures the magnetic hysteresis of granular systems is dominated by interparticle, rather than single-particle, effects. Dipolar interactions seem to fully determine the magnetic hysteresis in the high-temperature limit for low Co content (x<=10). For higher concentrations of magnetic metal, the experimental results indicate that additional hysteretic mechanisms have to be introduced.

  20. PPI-IRO: a two-stage method for protein-protein interaction extraction based on interaction relation ontology.

    PubMed

    Li, Chuan-Xi; Chen, Peng; Wang, Ru-Jing; Wang, Xiu-Jie; Su, Ya-Ru; Li, Jinyan

    2014-01-01

    Mining Protein-Protein Interactions (PPIs) from the fast-growing biomedical literature resources has been proven as an effective approach for the identification of biological regulatory networks. This paper presents a novel method based on the idea of Interaction Relation Ontology (IRO), which specifies and organises words of various proteins interaction relationships. Our method is a two-stage PPI extraction method. At first, IRO is applied in a binary classifier to determine whether sentences contain a relation or not. Then, IRO is taken to guide PPI extraction by building sentence dependency parse tree. Comprehensive and quantitative evaluations and detailed analyses are used to demonstrate the significant performance of IRO on relation sentences classification and PPI extraction. Our PPI extraction method yielded a recall of around 80% and 90% and an F1 of around 54% and 66% on corpora of AIMed and BioInfer, respectively, which are superior to most existing extraction methods. PMID:25757257

  1. Comprehensive Characterization of Molecular Interactions Based on Nanomechanics

    PubMed Central

    Lang, Hans-Peter; Gerber, Christoph; Hegner, Martin

    2008-01-01

    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (∼748*106 Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions. PMID:18978938

  2. Interaction-based discovery of functionally important genes in cancers

    PubMed Central

    Ghersi, Dario; Singh, Mona

    2014-01-01

    A major challenge in cancer genomics is uncovering genes with an active role in tumorigenesis from a potentially large pool of mutated genes across patient samples. Here we focus on the interactions that proteins make with nucleic acids, small molecules, ions and peptides, and show that residues within proteins that are involved in these interactions are more frequently affected by mutations observed in large-scale cancer genomic data than are other residues. We leverage this observation to predict genes that play a functionally important role in cancers by introducing a computational pipeline (http://canbind.princeton.edu) for mapping large-scale cancer exome data across patients onto protein structures, and automatically extracting proteins with an enriched number of mutations affecting their nucleic acid, small molecule, ion or peptide binding sites. Using this computational approach, we show that many previously known genes implicated in cancers are enriched in mutations within the binding sites of their encoded proteins. By focusing on functionally relevant portions of proteins—specifically those known to be involved in molecular interactions—our approach is particularly well suited to detect infrequent mutations that may nonetheless be important in cancer, and should aid in expanding our functional understanding of the genomic landscape of cancer. PMID:24362839

  3. Child second language interaction in science-based tasks

    NASA Astrophysics Data System (ADS)

    McPhail, Cynthia Leigh

    While quasi-experimental in design, this study utilized qualitative data collection and analysis methods to examine the questions of whether students' speech act behavior and language use would vary by linguistic grouping. Second grade Puerto Rican native speakers of Spanish, and native English speakers completed sets of paired, hands-on, science activities. Children were paired in two linguistic groupings: heterogeneous (English native speaker/non-native speaker), and homogeneous (English non-native speaker/non-native speaker, or English native speaker/native speaker). Speech acts and use of target and native language in the two linguistic groupings were compared. Interviews with both the students and their teachers provided further understanding of the speech act behavior. Most prior research has dealt with university level adults learning English. Previous research that has dealt with children and second language interaction has often focused on teacher talk directed to the children, and no child/child interaction studies have attempted to control for variables such as linguistic grouping. Results indicated that linguistically heterogeneous groupings led to higher percentages of English use for non-native speakers. Homogeneous grouping led to higher percentages of native Spanish use. English native speakers' speech act behavior remained consistent in terms of dominance or passivity of behavior regardless of linguistic grouping, but there is the possibility that non-English speakers may behave in a slightly more passive manner when in heterogeneous grouping.

  4. Combining region-based and imprecise boundary-based cues for interactive medical image segmentation.

    PubMed

    Jones, Jonathan-Lee; Xie, Xianghua; Essa, Ehab

    2014-12-01

    In this paper, we present an approach combining both region selection and user point selection for user-assisted segmentation as either an enclosed object or an open curve, investigate the method of image segmentation in specific medical applications (user-assisted segmentation of the media-adventitia border in intravascular ultrasound images, and lumen border in optical coherence tomography images), and then demonstrate the method with generic images to show how it could be utilized in other types of medical image and is not limited to the applications described. The proposed method combines point-based soft constraint on object boundary and stroke-based regional constraint. The user points act as attraction points and are treated as soft constraints rather than hard constraints that the segmented boundary has to pass through. The user can also use strokes to specify region of interest. The probabilities of region of interest for each pixel are then calculated, and their discontinuity is used to indicate object boundary. The combinations of different types of user constraints and image features allow flexible and robust segmentation, which is formulated as an energy minimization problem on a multilayered graph and is solved using a shortest path search algorithm. We show that this combinatorial approach allows efficient and effective interactive segmentation, which can be used with both open and closed curves to segment a variety of images in different ways. The proposed method is demonstrated in the two medical applications, that is, intravascular ultrasound and optical coherence tomography images, where image artefacts such as acoustic shadow and calcification are commonplace and thus user guidance is desirable. We carried out both qualitative and quantitative analysis of the results for the medical data; comparing the proposed method against a number of interactive segmentation techniques. PMID:25377853

  5. Protein interaction network constructing based on text mining and reinforcement learning with application to prostate cancer.

    PubMed

    Zhu, Fei; Liu, Quan; Zhang, Xiaofang; Shen, Bairong

    2015-08-01

    Constructing interaction network from biomedical texts is a very important and interesting work. The authors take advantage of text mining and reinforcement learning approaches to establish protein interaction network. Considering the high computational efficiency of co-occurrence-based interaction extraction approaches and high precision of linguistic patterns approaches, the authors propose an interaction extracting algorithm where they utilise frequently used linguistic patterns to extract the interactions from texts and then find out interactions from extended unprocessed texts under the basic idea of co-occurrence approach, meanwhile they discount the interaction extracted from extended texts. They put forward a reinforcement learning-based algorithm to establish a protein interaction network, where nodes represent proteins and edges denote interactions. During the evolutionary process, a node selects another node and the attained reward determines which predicted interaction should be reinforced. The topology of the network is updated by the agent until an optimal network is formed. They used texts downloaded from PubMed to construct a prostate cancer protein interaction network by the proposed methods. The results show that their method brought out pretty good matching rate. Network topology analysis results also demonstrate that the curves of node degree distribution, node degree probability and probability distribution of constructed network accord with those of the scale-free network well. PMID:26243825

  6. Configuration based Collisional-Radiative Model including configuration interaction

    NASA Astrophysics Data System (ADS)

    Busquet, Michel

    2007-11-01

    Atomic levels mixing through Configuration Interaction (CI) yields important effects. It transfers oscillator strengthes from allowed lines to forbidden lines, and produces strong shift and broadening of line arrays, although the total emissivity is almost insensitive to CI, being proportional to the average wave number. However for hi Z material, like Xe or Sn (potential xuv-ray source for micro-lithography), a non-LTE calculation accounting for all relevant levels wiill be untractable with billions of states. The model we constructed, CAVCRM (caf'e-crème), is a non-LTE C.R.M. where states are configurations but it includes C.I. to give full richness of spectral quantities, using the latest version of the HULLAC-v9 suite of codes and our newly developped algorithm for large set of states with as many as 50,000 states [1]. [1] M.Klapisch et al, this conference

  7. Fingerstroke time estimates for touchscreen-based mobile gaming interaction.

    PubMed

    Lee, Ahreum; Song, Kiburm; Ryu, Hokyoung Blake; Kim, Jieun; Kwon, Gyuhyun

    2015-12-01

    The growing popularity of gaming applications and ever-faster mobile carrier networks have called attention to an intriguing issue that is closely related to command input performance. A challenging mirroring game service, which simultaneously provides game service to both PC and mobile phone users, allows them to play games against each other with very different control interfaces. Thus, for efficient mobile game design, it is essential to apply a new predictive model for measuring how potential touch input compares to the PC interfaces. The present study empirically tests the keystroke-level model (KLM) for predicting the time performance of basic interaction controls on the touch-sensitive smartphone interface (i.e., tapping, pointing, dragging, and flicking). A modified KLM, tentatively called the fingerstroke-level model (FLM), is proposed using time estimates on regression models. PMID:26401615

  8. MINDS: A microcomputer interactive data system for 8086-based controllers

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.

    1985-01-01

    A microcomputer interactive data system (MINDS) software package for the 8086 family of microcomputers is described. To enhance program understandability and ease of code maintenance, the software is written in PL/M-86, Intel Corporation's high-level system implementation language. The MINDS software is intended to run in residence with real-time digital control software to provide displays of steady-state and transient data. In addition, the MINDS package provides classic monitor capabilities along with extended provisions for debugging an executing control system. The software uses the CP/M-86 operating system developed by Digital Research, Inc., to provide program load capabilities along with a uniform file structure for data and table storage. Finally, a library of input and output subroutines to be used with consoles equipped with PL/M-86 and assembly language is described.

  9. Human-Interaction Challenges in UAV-Based Autonomous Surveillance

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Harris, Robert; Shafto, Michael G.

    2004-01-01

    Autonomous UAVs provide a platform for intelligent surveillance in application domains ranging from security and military operations to scientific information gathering and land management. Surveillance tasks are often long duration, requiring that any approach be adaptive to changes in the environment or user needs. We describe a decision- theoretic model of surveillance, appropriate for use on our autonomous helicopter, that provides a basis for optimizing the value of information returned by the UAV. From this approach arise a range of challenges in making this framework practical for use by human operators lacking specialized knowledge of autonomy and mathematics. This paper describes our platform and approach, then describes human-interaction challenges arising from this approach that we have identified and begun to address.

  10. Emerging Supramolecular Therapeutic Carriers Based on Host-Guest Interactions.

    PubMed

    Karim, Anis Abdul; Dou, Qingqing; Li, Zibiao; Loh, Xian Jun

    2016-05-01

    Recent advances in host-guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non-covalent interactions provide vast possibilities of manipulating supramolecular self-assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self-assemblies through host-guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli-responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co-delivery and site-specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host-guest chemistry with biological interface science are proposed. PMID:26833861

  11. Inquiry and groups: student interactions in cooperative inquiry-based science

    NASA Astrophysics Data System (ADS)

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-03-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic inquiry based primary science class setting. Thirty-one upper primary students were videotaped working in cooperative inquiry based science activities. Cooperative talk and negotiation of the science content was analysed to identify any high-level group interactions. The data show that while all groups have incidences of high-level content-related group interactions, the frequency and duration of these interactions were limited. No specific pattern of preceding events was identified and no episodes of high-level content-related group interactions were immediately preceded by the teacher's interactions with the groups. This in situ study demonstrated that even without any kind of scaffolding, specific skills in knowing how to implement cooperative inquiry based science, high-level content-related group interactions did occur very briefly. Support for teachers to develop their knowledge and skills in facilitating cooperative inquiry based science learning is warranted to ensure that high-level content-related group interactions and the associated conceptual learning are not left to chance in science classrooms.

  12. Template-based structure modeling of protein-protein interactions

    PubMed Central

    Szilagyi, Andras; Zhang, Yang

    2014-01-01

    The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449

  13. Base sequence effects on interactions of aromatic mutagens with DNA

    SciTech Connect

    Geacintov, N.E.

    1992-09-30

    The chemical binding of bulky, mutagenic and carcinogenic polynuclear aromatic compounds to certain base-sequences in genomic DNA is known to inhibit DNA replication, and to induce mutations and cancer. In particular, sequences that contain multiple consecutive guanines appear to be hot spots of mutation. The objectives of this research are to determine how the base sequence around the mutagen-modified target bases influences the local DNA conformation and gives rise to mispairing of bases, or deletions, near the lesion. Oligonucleotides containing one, two, or three guanines were synthesized and chemically reacted with the mutagen anti-7,8-dihydroxy-9,10-epoxy-benzo(a)pyrene (BPDE), one of the most mutagenic and tumorigenic metabolites of benzo(a)pyrene. Adducts are formed in which only one of the guanines is modified by trans or cis addition to the exocyclic amino group. The BPDE-oligonucleotides are separated chromatographically, and the site of modification is established by Maxam-Gilbert high resolution gel electrophoresis techniques. The thermodynamic properties of duplexes using complementary, or partially complementary strands were examined. In the latter, the base opposite the modified guanine was varied in order to investigate the probability of mispairing of the modified G with A,T and G. The successful synthesis of stereospecific and site-specific mutagen-oligonucleotide adducts opens new possibilities for correlating adduct structure-biological activity relationships, and thus lead to a better understanding of base-sequence effects in mutagenesis induced by energy-related bulky polynuclear aromatic chemicals.

  14. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

    PubMed Central

    Li, Z. K.; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; Wang, A. M.; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.

    2015-01-01

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously. PMID:25758910

  15. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites

    NASA Astrophysics Data System (ADS)

    Li, Z. K.; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; Wang, A. M.; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.

    2015-03-01

    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on the W substrate surface. Sessile drop experiment proves the prediction and corresponding in-situ coating appears at the interface. Besides, the atomic interaction mechanism was proven to be effective in many other systems by the sessile drop technique. Considering the interfacial morphology, Nb was added into the alloy to fabricate W/Zr-based BMGCs. As expected, the Nb addition effectively suppressed the W-Zr reaction and damage to W fibers. Both the compressive and tensile properties are improved obviously.

  16. Dynamic Communication of Humanoid Robot with Multiple People Based on Interaction Distance

    NASA Astrophysics Data System (ADS)

    Tasaki, Tsuyoshi; Matsumoto, Shohei; Ohba, Hayato; Yamamoto, Shunichi; Toda, Mitsuhiko; Komatani, Kazunori; Ogata, Tetsuya; Okuno, Hiroshi G.

    Research on human-robot interaction is getting an increasing amount of attention. Since most research has dealt with communication between one robot and one person, quite few researchers have studied communication between a robot and multiple people. This paper presents a method that enables robots to communicate with multiple people using the ``selection priority of the interactive partner'' based on the concept of Proxemics. In this method, a robot changes active sensory-motor modalities based on the interaction distance between itself and a person. Our method was implemented into a humanoid robot, SIG2. SIG2 has various sensory-motor modalities to interact with humans. A demonstration of SIG2 showed that our method selected an appropriate interaction partner during interaction with multiple people.

  17. Ligand-target interaction-based weighting of substructures for virtual screening.

    PubMed

    Crisman, Thomas J; Sisay, Mihiret T; Bajorath, Jürgen

    2008-10-01

    A methodology is introduced to assign energy-based scores to two-dimensional (2D) structural features based on three-dimensional (3D) ligand-target interaction information and utilize interaction-annotated features in virtual screening. Database molecules containing such fragments are assigned cumulative scores that serve as a measure of similarity to active reference compounds. The Interaction Annotated Structural Features (IASF) method is applied to mine five high-throughput screening (HTS) data sets and often identifies more hits than conventional fragment-based similarity searching or ligand-protein docking. PMID:18821751

  18. EVA: An Interactive Web-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Arenas, Adolfo Guzman

    2002-01-01

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…

  19. Literature Mining and Ontology based Analysis of Host-Brucella Gene–Gene Interaction Network

    PubMed Central

    Karadeniz, İlknur; Hur, Junguk; He, Yongqun; Özgür, Arzucan

    2015-01-01

    Brucella is an intracellular bacterium that causes chronic brucellosis in humans and various mammals. The identification of host-Brucella interaction is crucial to understand host immunity against Brucella infection and Brucella pathogenesis against host immune responses. Most of the information about the inter-species interactions between host and Brucella genes is only available in the text of the scientific publications. Many text-mining systems for extracting gene and protein interactions have been proposed. However, only a few of them have been designed by considering the peculiarities of host–pathogen interactions. In this paper, we used a text mining approach for extracting host-Brucella gene–gene interactions from the abstracts of articles in PubMed. The gene–gene interactions here represent the interactions between genes and/or gene products (e.g., proteins). The SciMiner tool, originally designed for detecting mammalian gene/protein names in text, was extended to identify host and Brucella gene/protein names in the abstracts. Next, sentence-level and abstract-level co-occurrence based approaches, as well as sentence-level machine learning based methods, originally designed for extracting intra-species gene interactions, were utilized to extract the interactions among the identified host and Brucella genes. The extracted interactions were manually evaluated. A total of 46 host-Brucella gene interactions were identified and represented as an interaction network. Twenty four of these interactions were identified from sentence-level processing. Twenty two additional interactions were identified when abstract-level processing was performed. The Interaction Network Ontology (INO) was used to represent the identified interaction types at a hierarchical ontology structure. Ontological modeling of specific gene–gene interactions demonstrates that host–pathogen gene–gene interactions occur at experimental conditions which can be ontologically

  20. ANAP: An Integrated Knowledge Base for Arabidopsis Protein Interaction Network Analysis1[C][W][OA

    PubMed Central

    Wang, Congmao; Marshall, Alex; Zhang, Dabing; Wilson, Zoe A.

    2012-01-01

    Protein interactions are fundamental to the molecular processes occurring within an organism and can be utilized in network biology to help organize, simplify, and understand biological complexity. Currently, there are more than 10 publicly available Arabidopsis (Arabidopsis thaliana) protein interaction databases. However, there are limitations with these databases, including different types of interaction evidence, a lack of defined standards for protein identifiers, differing levels of information, and, critically, a lack of integration between them. In this paper, we present an interactive bioinformatics Web tool, ANAP (Arabidopsis Network Analysis Pipeline), which serves to effectively integrate the different data sets and maximize access to available data. ANAP has been developed for Arabidopsis protein interaction integration and network-based study to facilitate functional protein network analysis. ANAP integrates 11 Arabidopsis protein interaction databases, comprising 201,699 unique protein interaction pairs, 15,208 identifiers (including 11,931 The Arabidopsis Information Resource Arabidopsis Genome Initiative codes), 89 interaction detection methods, 73 species that interact with Arabidopsis, and 6,161 references. ANAP can be used as a knowledge base for constructing protein interaction networks based on user input and supports both direct and indirect interaction analysis. It has an intuitive graphical interface allowing easy network visualization and provides extensive detailed evidence for each interaction. In addition, ANAP displays the gene and protein annotation in the generated interactive network with links to The Arabidopsis Information Resource, the AtGenExpress Visualization Tool, the Arabidopsis 1,001 Genomes GBrowse, the Protein Knowledgebase, the Kyoto Encyclopedia of Genes and Genomes, and the Ensembl Genome Browser to significantly aid functional network analysis. The tool is available open access at http

  1. Multivalent interaction based carbohydrate biosensors for signal amplification

    PubMed Central

    Wang, Yanyan; Chalagalla, Srinivas; Li, Tiehai; Sun, Xue-long; Zhao, Wei; Wang, Peng; Zeng, Xiangqun

    2010-01-01

    Multivalent interaction between boronic acids immobilized on Quartz Crystal Microbalance (QCM) sensor surface and the carbohydrates modified Au - nanoparticle (AuNP) has been demonstrated for the development of a sensitive carbohydrate biosensor. Briefly, a boronic acid - containing polymer (boropolymer) as multivalent carbohydrate receptor was oriented immobilized on the cysteamine coated electrode through isourea bond formation. Carbohydrates were conjugated to AuNPs to generate a multivalent carbohydrates moiety to amplify the response signal. Thus, the binding of the carbohydrate conjugated AuNPs to the boropolymer surface are multivalent which could simultaneously increase the binding affinity and specificity. We systematically studied the binding between five carbohydrate conjugated AuNPs and the boropolymer. Our studies show that the associate constant (Ka) was in the order of fucose < glucose < mannose < galactose < maltose. A linear response in the range from 23 µM to 3.83 mM was observed for mannose conjugated AuNPs and the boropolymer recognition elements, with the lower detection limit of 1.5 µM for the carbohydrate analytes. Furthermore, the multivalent binding between carbohydrates and boronic acids are reversible and allow the regeneration of boropolymer surface by using 1M acetic acid so as to sequentially capture and release the carbohydrate analytes. PMID:20863680

  2. A Fast Goal Recognition Technique Based on Interaction Estimates

    NASA Technical Reports Server (NTRS)

    E-Martin, Yolanda; R-Moreno, Maria D.; Smith, David E.

    2015-01-01

    Goal Recognition is the task of inferring an actor's goals given some or all of the actor's observed actions. There is considerable interest in Goal Recognition for use in intelligent personal assistants, smart environments, intelligent tutoring systems, and monitoring user's needs. In much of this work, the actor's observed actions are compared against a generated library of plans. Recent work by Ramirez and Geffner makes use of AI planning to determine how closely a sequence of observed actions matches plans for each possible goal. For each goal, this is done by comparing the cost of a plan for that goal with the cost of a plan for that goal that includes the observed actions. This approach yields useful rankings, but is impractical for real-time goal recognition in large domains because of the computational expense of constructing plans for each possible goal. In this paper, we introduce an approach that propagates cost and interaction information in a plan graph, and uses this information to estimate goal probabilities. We show that this approach is much faster, but still yields high quality results.

  3. SimScience: Interactive educational modules based on large simulations

    NASA Astrophysics Data System (ADS)

    Warner, Simeon; Catterall, Simon; Gregory, Eric; Lipson, Edward

    2000-05-01

    SimScience is a collaboration between Cornell University and Syracuse University. It comprises four interactive educational modules on crack propagation, crackling noise, fluid flow, and membranes. Computer simulations are at the forefront of current research in all of these topics. Our aim is explain some elements of each subject and to show the relevance of computer simulations. The crack propagation module explores the mechanisms of dam failure. The crackling noise module uses everyday sounds to illustrate types of noise, and links this to noise created by jumps in magnetization processes. The fluid flow module describes various properties of flows and explains phenomena such as a curve ball in baseball. The membranes module leverages everyday experience with membranes such as soap bubbles to help explain biological membranes and the relevance of membranes to theories of gravity. We have used Java not only to produce small-scale versions of research simulations but also to provide models illustrating simpler concepts underlying the main subject matter. Web technology allows us to deliver SimScience both over the Internet and on CD-ROM. To accommodate a target audience spanning K-12 and university general science students, we have created three levels for each module. Efforts are underway to assess the SimScience modules with the help of teachers and students.

  4. Drug-DNA Interaction Studies of Acridone-Based Derivatives.

    PubMed

    Thimmaiah, Kuntebomanahalli; Ugarkar, Apoorva G; Martis, Elvis F; Shaikh, Mushtaque S; Coutinho, Evans C; Yergeri, Mayur C

    2015-01-01

    N10-alkylated 2-bromoacridones are a novel series of potent antitumor compounds. DNA binding studies of these compounds were carried out using spectrophotometric titrations, Circular dichroism (CD) measurements using Calf Thymus DNA (CT DNA). The binding constants were identified at a range of K=0.3 to 3.9×10(5) M(-1) and the percentage of hypochromism from the spectral titrations at 28-54%. This study has identified a compound 9 with the good binding affinity of K=0.39768×10(5) M(-1) with CT DNA. Molecular dynamics (MD) simulations have investigated the changes in structural and dynamic features of native DNA on binding to the active compound 9. All the synthesized compounds have increased the uptake of Vinblastine in MDR KBChR-8-5 cells to an extent of 1.25- to1.9-fold than standard modulator Verapamil of similar concentration. These findings allowed us to draw preliminary conclusions about the structural features of 2-bromoacridones and further chemical enhancement will improve the binding affinity of the acridone derivatives to CT-DNA for better drug-DNA interaction. The molecular modeling studies have shown mechanism of action and the binding modes of the acridones to DNA. PMID:25874941

  5. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    PubMed Central

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  6. Development of StopAdvisor: A theory-based interactive internet-based smoking cessation intervention.

    PubMed

    Michie, Susan; Brown, Jamie; Geraghty, Adam W A; Miller, Sascha; Yardley, Lucy; Gardner, Benjamin; Shahab, Lion; McEwen, Andy; Stapleton, John A; West, Robert

    2012-09-01

    Reviews of internet-based behaviour-change interventions have shown that they can be effective but there is considerable heterogeneity and effect sizes are generally small. In order to advance science and technology in this area, it is essential to be able to build on principles and evidence of behaviour change in an incremental manner. We report the development of an interactive smoking cessation website, StopAdvisor, designed to be attractive and effective across the social spectrum. It was informed by a broad motivational theory (PRIME), empirical evidence, web-design expertise, and user-testing. The intervention was developed using an open-source web-development platform, 'LifeGuide', designed to facilitate optimisation and collaboration. We identified 19 theoretical propositions, 33 evidence- or theory-based behaviour change techniques, 26 web-design principles and nine principles from user-testing. These were synthesised to create the website, 'StopAdvisor' (see http://www.lifeguideonline.org/player/play/stopadvisordemonstration). The systematic and transparent application of theory, evidence, web-design expertise and user-testing within an open-source development platform can provide a basis for multi-phase optimisation contributing to an 'incremental technology' of behaviour change. PMID:24073123

  7. Interactive voice response and web-based questionnaires for population-based infectious disease reporting.

    PubMed

    Bexelius, Christin; Merk, Hanna; Sandin, Sven; Nyrén, Olof; Kühlmann-Berenzon, Sharon; Linde, Annika; Litton, Jan-Eric

    2010-10-01

    The authors aimed to evaluate the web and an Interactive Voice Response (IVR) phone service as vehicles in population-based infectious disease surveillance. Fourteen thousand subjects were randomly selected from the Swedish population register and asked to prospectively report all respiratory tract infections, including Influenza-like Illness (ILI-clinical symptoms indicative of influenza but no laboratory confirmation), immediately as they occurred during a 36-week period starting October 2007. Participants were classified as belonging to the web or IVR group based on their choice of technology for initial registration. In all, 1,297 individuals registered via IVR while 2,044 chose the web. The latter were more often young and well-educated than those registered via IVR. Overall, 52% of the participants reported at least one infection episode. The risk of an infectious disease report was 14% (95% CI: 6, 22%) higher in the web group than in the IVR group. For ILI the excess was 27% (95% CI: 11, 47%). After adjustments for socio-demographic factors, statistically non-significant excesses of 1 and 8% remained, indicating trivial differences potentially attributable to the two reporting techniques. With attention to confounding, it should be possible to combine the web and IVR for simple reporting of infectious disease symptoms. PMID:20596884

  8. A Knowledge Based Interactive System for Complex Product Design

    NASA Astrophysics Data System (ADS)

    Gayretli, Ahmet

    This research presents a new Artificial Intelligence (AI) based product development approach for integrating mechanical design with electronic design to improve design and manufacture of electromechanical products by avoiding design conflicts in the early stages of the design process. The proposed approach has been implemented in a Delphi based environment integrated with a CAD system. The system assists designers from different disciplines in evaluating complex systems as far as parts relation, potential effects on each other, conflict management, costs, weight and physical constraints are concerned in the early design stages. This helps the designers to avoid design iterations leading to longer lead-time, hence increased cost. The developed system enables to rapidly develop and evaluate new complex products and add new functions to the existing products within given constraints.

  9. A novel interacting multiple model based network intrusion detection scheme

    NASA Astrophysics Data System (ADS)

    Xin, Ruichi; Venkatasubramanian, Vijay; Leung, Henry

    2006-04-01

    In today's information age, information and network security are of primary importance to any organization. Network intrusion is a serious threat to security of computers and data networks. In internet protocol (IP) based network, intrusions originate in different kinds of packets/messages contained in the open system interconnection (OSI) layer 3 or higher layers. Network intrusion detection and prevention systems observe the layer 3 packets (or layer 4 to 7 messages) to screen for intrusions and security threats. Signature based methods use a pre-existing database that document intrusion patterns as perceived in the layer 3 to 7 protocol traffics and match the incoming traffic for potential intrusion attacks. Alternately, network traffic data can be modeled and any huge anomaly from the established traffic pattern can be detected as network intrusion. The latter method, also known as anomaly based detection is gaining popularity for its versatility in learning new patterns and discovering new attacks. It is apparent that for a reliable performance, an accurate model of the network data needs to be established. In this paper, we illustrate using collected data that network traffic is seldom stationary. We propose the use of multiple models to accurately represent the traffic data. The improvement in reliability of the proposed model is verified by measuring the detection and false alarm rates on several datasets.

  10. Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Ke, Fengfeng; Im, Tami

    2013-01-01

    Employing the multiple-baseline across-subjects design, the authors examined the implementation and potential effect of a virtual-reality-based social interaction program on the interaction and communication performance of children with high functioning autism. The data were collected via behavior observation and analysis, questionnaires, and…

  11. Enhancing L2 Interaction in Avatar-Based Virtual Worlds: Student Teachers' Perceptions

    ERIC Educational Resources Information Center

    Tseng, Jun-Jie; Tsai, Ya-Hsun; Chao, Rih-Chang

    2013-01-01

    Three-dimensional (3-D) multi-user virtual environments (3-D MUVEs) have been used to provide language learners with realistic scenarios in which verbal and non-verbal interactions are simulated. However, little is known of the underlying factors that shape interaction in avatar-based virtual worlds. This study examined the perceptions of 38…

  12. SEAsite: Web-based Interactive Learning Resources for Southeast Asian Languages and Cultures.

    ERIC Educational Resources Information Center

    Henry, George; Zerwekh, Robert

    2002-01-01

    Discusses SEAsite, a Web-based interactive learning resource site for Southeast Asian Languages (Indonesian, Tagalog, Thai., Khmer, Lao, Burmese, and Vietnamese). Its language learning materials feature second language script support, streaming audio, pictures, and interactive exercise types that allow learners to test their understanding.…

  13. Seven-Step Problem-Based Learning in an Interaction Design Course

    ERIC Educational Resources Information Center

    Schultz, Nette; Christensen, Hans Peter

    2004-01-01

    The objective in this paper is the implementation of the highly structured seven-step problem-based learning (PBL) procedure as part of the learning process in a human-computer interaction (HCI) design course at the Technical University of Denmark, taking into account the common learning processes in PBL and the interaction design process. These…

  14. Effects of Varying Interactive Strategies Provided by Computer-Based Tutorials for a Software Application Program.

    ERIC Educational Resources Information Center

    Tiemann, Philip W.; Markle, Susan M.

    1990-01-01

    Discussion of interaction in computer-based tutorials (CBT) focuses on a study that compared the performance of adult learners from training with three CBTs that varied the level of interactivity. The degrees of learner control, system control, and domain control are discussed, and the Lotus spreadsheet tutorials used are described. (24…

  15. Creative Multimodal Learning Environments and Blended Interaction for Problem-Based Activity in HCI Education

    ERIC Educational Resources Information Center

    Ioannou, Andri; Vasiliou, Christina; Zaphiris, Panayiotis; Arh, Tanja; Klobucar, Tomaž; Pipan, Matija

    2015-01-01

    This exploratory case study aims to examine how students benefit from a multimodal learning environment while they engage in collaborative problem-based activity in a Human Computer Interaction (HCI) university course. For 12 weeks, 30 students, in groups of 5-7 each, participated in weekly face-to-face meetings and online interactions.…

  16. Learning with Web-Based Interactive Objects: An Investigation into Student Perceptions of Effectiveness

    ERIC Educational Resources Information Center

    Salajan, Florin D.; Perschbacher, Susanne; Cash, Mindy; Talwar, Reena; El-Badrawy, Wafa; Mount, Greg J.

    2009-01-01

    In its efforts to continue the modernization of its curriculum, the Faculty of Dentistry at the University of Toronto has developed a series of web-based interactive learning applications. This article presents the production cycle of these new interactive learning objects and the preliminary study conducted to measure the students' perception of…

  17. A Learner-Based Design Model for Interactive Multimedia Language Learning Packages.

    ERIC Educational Resources Information Center

    Watts, Noel

    1997-01-01

    Examines the design features of interactive multimedia packages for second language learning. Focuses on the possible components of a design model and highlights the implications for program design. Concludes that to realize the high potential for interactive language learning multimedia, designers must develop a more learner-based orientation.…

  18. Spin current source based on a quantum point contact with local spin-orbit interaction

    SciTech Connect

    Nowak, M. P.; Szafran, B.

    2013-11-11

    Proposal for construction of a source of spin-polarized current based on quantum point contact (QPC) with local spin-orbit interaction is presented. We show that spin-orbit interaction present within the narrowing acts like a spin filter. The spin polarization of the current is discussed as a function of the Fermi energy and the width of the QPC.

  19. The Design of an Intelligent Web-Based Interactive Language Learning System.

    ERIC Educational Resources Information Center

    Kuo, Chin-Hwa; Wible, David; Chen, Meng-Chang; Sung, Li-Chun; Tsao, Nai-Lung; Chio, Chia-Lin

    2002-01-01

    Describes the design of an intelligent Web-based interactive language learning system to support learning English as a second language on the Internet. Highlights include an interactive English writing environment; an authentic conversation learning environment; authoring tools to facilitate teachers' content preparation; system architecture; and…

  20. Managing Mutual Orientation in the Absence of Physical Copresence: Multiparty Voice-Based Chat Room Interaction

    ERIC Educational Resources Information Center

    Jenks, Christopher Joseph; Brandt, Adam

    2013-01-01

    This study investigates the interactional work involved in ratifying mutual participation in online, multiparty, voice-based chat rooms. The purpose of this article is to provide a preliminary sketch of how talk and participation is managed in a spoken communication environment that comprises interactants who are not physically copresent but are…

  1. Virtual Reality Simulations and Animations in a Web-Based Interactive Manufacturing Engineering Module

    ERIC Educational Resources Information Center

    Ong, S. K.; Mannan, M. A.

    2004-01-01

    This paper presents a web-based interactive teaching package that provides a comprehensive and conducive yet dynamic and interactive environment for a module on automated machine tools in the Manufacturing Division at the National University of Singapore. The use of Internet technologies in this teaching tool makes it possible to conjure…

  2. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for several other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.

  3. Thioarsenides: a case for long-range Lewis acid-base-directed van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Wallace, A. F.; Downs, R. T.; Ross, N. L.; Cox, D. F.; Rosso, K. M.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local-energy density properties have been calculated for a number of As4S n ( n = 3, 4 and 5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions, and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals (vdW) bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis-base regions) with aligned regions of locally depleted electron density (Lewis-acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for several other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long-range Lewis acid-base-directed vdW interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long-range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.

  4. Customizable Computer-Based Interaction Analysis for Coaching and Self-Regulation in Synchronous CSCL Systems

    ERIC Educational Resources Information Center

    Lonchamp, Jacques

    2010-01-01

    Computer-based interaction analysis (IA) is an automatic process that aims at understanding a computer-mediated activity. In a CSCL system, computer-based IA can provide information directly to learners for self-assessment and regulation and to tutors for coaching support. This article proposes a customizable computer-based IA approach for a…

  5. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    SciTech Connect

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  6. Counterpoise-corrected interaction energy analysis based on the fragment molecular orbital scheme

    NASA Astrophysics Data System (ADS)

    Okiyama, Yoshio; Fukuzawa, Kaori; Yamada, Haruka; Mochizuki, Yuji; Nakano, Tatsuya; Tanaka, Shigenori

    2011-06-01

    Basis set superposition error (BSSE) correction with counterpoise (CP) procedure under the environmental electrostatic potential is newly introduced to interfragment interaction energy (IFIE), which is important for interaction analysis in the fragment molecular orbital method. The CP correction for IFIE is applied to a stacked dimer of base pair and a protein-ligand complex of estrogen receptor and 17β-estradiol with scaled third-order Møller-Plesset perturbation theory. The BSSEs amount to about quarter of IFIE for hydrogen-bonding and electrostatic interactions and half or even more for dispersion interactions. Estimation of IFIE with the CP correction is therefore preferred for the quantitative discussion.

  7. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces

    NASA Astrophysics Data System (ADS)

    Olsen, Jeppe; Roos, Björn O.; Jørgensen, Poul; Jensen, Hans Jørgen Aa.

    1988-08-01

    A restricted active space (RAS) wave function is introduced, which encompasses many commonly used restricted CI expansions. A highly vectorized algorithm is developed for full CI and other RAS calculations. The algorithm is based on Slater determinants expressed as products of alphastrings and betastrings and lends itself to a matrix indexing C(Iα, Iβ ) of the CI vector. The major features are: (1) The intermediate summation over determinants is replaced by two intermediate summations over strings, the number of which is only the square root of the number of determinants. (2) Intermediate summations over strings outside the RAS CI space is avoided and RAS calculations are therefore almost as efficient as full CI calculations with the same number of determinants. (3) An additional simplification is devised for MS =0 states, halving the number of operations. For a case with all single and double replacements out from 415 206 Slater determinants yielding 1 136 838 Slater determinants each CI iteration takes 161 s on an IBM 3090/150(VF).

  8. Method of predicting Splice Sites based on signal interactions

    PubMed Central

    Churbanov, Alexander; Rogozin, Igor B; Deogun, Jitender S; Ali, Hesham

    2006-01-01

    Background Predicting and proper ranking of canonical splice sites (SSs) is a challenging problem in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to better understanding of splicing mechanism. We introduce several new approaches of combining a priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor information using Naive Bayesian Network, as implemented in our new tool SpliceScan. Results According to our tests, the Bayesian sensor outperforms the contemporary Maximum Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE) and Intronic (ISE) Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments indicates, that detected elements are on average more conserved as compared to other oligos, which supports our assumption of their functional importance. The tool has been shown to outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on the set of 5' UTR gene fragments. Conclusion Designed methods have many attractive properties, compared to existing approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our web site. Reviewers This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand. PMID:16584568

  9. Dendrite-separator interactions in lithium-based batteries

    NASA Astrophysics Data System (ADS)

    Jana, Aniruddha; Ely, David R.; García, R. Edwin

    2015-02-01

    The effect of separator pore size on lithium dendrite growth is assessed through the use of the phase field method (PFM). Dendrites are found to undergo concurrent electrodeposition and electrodissolution that define their local growth or shrinkage. Moreover, dendrites are observed to detach due to localized electrodissolution and generate metallic debris that is detrimental to battery performance. A critical current density exists below which dendrites are fully suppressed. An analytical model based on the performed PFM simulations allows to formulate the critical current density as a function of separator morphology and pore radius. Four distinct regimes of dendrite growth are identified: (i) the suppression regime, where dendrite growth is thermodynamically unfavorable; (ii) the permeable regime, where dendrite growth is prohibited beyond the first layer of the separator; (iii) the penetration regime, in which dendrites are stable within the channels of the separator; and (iv) the short circuit regime, where dendrites penetrate the entire width of the separator causing a short circuit. The identification of these regimes serve as a guideline to design improved separators.

  10. CaseWorld™: Interactive, media rich, multidisciplinary case based learning.

    PubMed

    Gillham, David; Tucker, Katie; Parker, Steve; Wright, Victoria; Kargillis, Christina

    2015-11-01

    Nurse educators are challenged to keep up with highly specialised clinical practice, emerging research evidence, regulation requirements and rapidly changing information technology while teaching very large numbers of diverse students in a resource constrained environment. This complex setting provides the context for the CaseWorld project, which aims to simulate those aspects of clinical practice that can be represented by e-learning. This paper describes the development, implementation and evaluation of CaseWorld, a simulated learning environment that supports case based learning. CaseWorld provides nursing students with the opportunity to view unfolding authentic cases presented in a rich multimedia context. The first round of comprehensive summative evaluation of CaseWorld is discussed in the context of earlier formative evaluation, reference group input and strategies for integration of CaseWorld with subject content. This discussion highlights the unique approach taken in this project that involved simultaneous prototype development and large scale implementation, thereby necessitating strong emphasis on staff development, uptake and engagement. The lessons learned provide an interesting basis for further discussion of broad content sharing across disciplines and universities, and the contribution that local innovations can make to global education advancement. PMID:26522447

  11. Interactive object modelling based on piecewise planar surface patches☆

    PubMed Central

    Prankl, Johann; Zillich, Michael; Vincze, Markus

    2013-01-01

    Detecting elements such as planes in 3D is essential to describe objects for applications such as robotics and augmented reality. While plane estimation is well studied, table-top scenes exhibit a large number of planes and methods often lock onto a dominant plane or do not estimate 3D object structure but only homographies of individual planes. In this paper we introduce MDL to the problem of incrementally detecting multiple planar patches in a scene using tracked interest points in image sequences. Planar patches are reconstructed and stored in a keyframe-based graph structure. In case different motions occur, separate object hypotheses are modelled from currently visible patches and patches seen in previous frames. We evaluate our approach on a standard data set published by the Visual Geometry Group at the University of Oxford [24] and on our own data set containing table-top scenes. Results indicate that our approach significantly improves over the state-of-the-art algorithms. PMID:24511219

  12. 4.1 Web-based interactive learning programmes.

    PubMed

    Nattestad, Anders; Attstrom, Rolf; Mattheos, Nikos; Ramseier, Christoph; Canegallo, Lorenza; Eaton, Ken; Feeney, Luke; Goffin, Guy; Markovska, Neda; Maixner, William; Persson, Rutger; Reynolds, Patricia; Ruotoistenmaki, Juha; Schittek, Martin; Spohn, Eric; Sudzina, Mike

    2002-01-01

    In the future, the training of competent dentists will need to take advantage of up-to-date digital technologies and learning practices. In order to accomplish this, the following goals should be considered: i) the design of 'customizable' web-based curriculum matrices that accommodate the training philosophies and resources of individual dental schools; ii) the development of digital instructional modules that can be incorporated or downloaded into specific parts of a curriculum; iii) the establishment of an e-consortium, which provides peer view and guidance in the design of teaching modules, and which is responsible for the storage, maintenance, and distribution of teaching modules within the consortium; iv) the development of central human and physical resources at each dental school to enable the seamless delivery of instructional modules in a variety of learning environments; and v) the assessment and provision of ICT training to students and faculty with respect to the use of computers and related digital technologies and educational software programmes. These goals should lead to the creation of a 'virtual dental school'. Within this project summative and formative evaluations should be performed during both the production and development of teaching material (e-learning material) and the learning process. During the learning process the following aspects should be measured and evaluated: i) students' behaviour; and ii) effectiveness, retention and the transfer of e-learned material into the clinical situation. To obtain evidence of the efficacy of e-learning material a certain amount of research has to be done in the near future. It is suggested that all parameters currently known have to be implemented during the development of a learning programme. Previous workers have evaluated the following elements with e-learning: i) planning, ii) programming and technical development, iii) learning behaviours, iv) learning outcomes of both the programme and the

  13. An interactive game-based shoulder wheel system for rehabilitation

    PubMed Central

    Chang, Chun-Ming; Chang, Yen-Ching; Chang, Hsiao-Yun; Chou, Li-Wei

    2012-01-01

    Background: Increases in the aging population and in the number of accidents have resulted in more people suffering from physical impairments or disabilities. Rehabilitation therapy thus attracts greater attention as a means of helping patients recover and return to a normal life. With the extremely long and tedious nature of traditional rehabilitation, patients are reluctant to continue the entire process, thus the expected effects of the therapy cannot be obtained. Games are well known to help patients improve their concentration and shift their attention away from the discomfort of their injuries during rehabilitation. Thus, incorporating game technology into a rehabilitation program may be a promising approach. Methods: In this study, a gaming system used for shoulder rehabilitation was developed. The mechanical parts and electric circuits were integrated to mimic the functionalities of a shoulder wheel. Several games were also designed to suit the rehabilitation needs of the patients based on the age and gender differences among the individual users, enabling individuals to undergo the rehabilitation process by playing games. Two surveys were conducted to evaluate the satisfaction of the participants regarding the gaming system. Results: The results of the online survey among a larger population coincide with the responses of the hands-on participants through a paper-and-pencil survey. Statistical results suggest that the participants are willing to accept this novel approach. Conclusion: This gaming system can distract a patient from the sensation of pain or anxiety, and increase their motivation to participate in the therapeutic program. Advantages in terms of low-cost and easy setup increase the attractiveness of this new equipment for various potential users. PMID:23226005

  14. A Comparison of Interaction in AV-based and Internet-based Distance Courses.

    ERIC Educational Resources Information Center

    Landis, Melodee

    2001-01-01

    Describes a study conducted at the University of Nebraska at Omaha that used questionnaires and interviews to compare and contrast the interaction that occurred in distance learning courses offered via two-way, fully interactive audio-video classrooms and online instruction through the Internet or World Wide Web. (Author/LRW)

  15. The Interactions between Imidazolium-Based Ionic Liquids and Stable Nitroxide Radical Species: A Theoretical Study.

    PubMed

    Zhang, Shaoze; Wang, Guimin; Lu, Yunxiang; Zhu, Weiliang; Peng, Changjun; Liu, Honglai

    2016-08-01

    In this work, the interactions between imidazolium-based ionic liquids and some stable radicals based on 2,2,6,6-tetramethylpiperidine-1-yloxyl (TEMPO) have been systematically investigated using density functional theory calculations at the level of M06-2x. Several different substitutions, such as hydrogen bonding formation substituent (OH) and ionic substituents (N(CH3)3(+) and OSO3(-)), are presented at the 4-position of the spin probe, which leads to additional hydrogen bonds or ionic interactions between these substitutions and ionic liquids. The interactions in the systems of the radicals containing ionic substitutions with ionic liquids are predicted much stronger than those in the systems of neutral radicals, resulting in a significant reduction of the mobility of ionic radicals in ionic liquids. To further understand the nature of these interactions, the natural bond order, atoms in molecules, noncovalent interaction index, electron density difference, energy decomposition analysis, and charge decomposition analysis schemes were employed. The additional ionic interactions between ionic radicals and counterions in ionic liquids are dominantly contributed from the electrostatic term, while the orbital interaction plays a major role in other interactions. The results reported herein are important to understand radical processes in ionic liquids and will be very useful in the design of task-specific ionic liquids to make the processes more efficient. PMID:27428048

  16. Protein-protein interactions prediction based on iterative clique extension with gene ontology filtering.

    PubMed

    Yang, Lei; Tang, Xianglong

    2014-01-01

    Cliques (maximal complete subnets) in protein-protein interaction (PPI) network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based method of prediction and gene ontology (GO) annotations to overcome the shortcoming and improve the accuracy of predictions. According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of predicted protein interactions. The proposed method is applied to the PPI network from the Database of Interacting Proteins (DIP) and most of the predicted interactions are verified by another biological database, BioGRID. The predicted protein interactions are appended to the original protein network, which leads to clique extension and shows the significance of biological meaning. PMID:24578640

  17. Homology-Based Prediction of Potential Protein–Protein Interactions between Human Erythrocytes and Plasmodium falciparum

    PubMed Central

    Ramakrishnan, Gayatri; Srinivasan, Narayanaswamy; Padmapriya, Ponnan; Natarajan, Vasant

    2015-01-01

    Plasmodium falciparum, a causative agent of malaria, is a well-characterized obligate intracellular parasite known for its ability to remodel host cells, particularly erythrocytes, to successfully persist in the host environment. However, the current levels of understanding from the laboratory experiments on the host–parasite interactions and the strategies pursued by the parasite to remodel host erythrocytes are modest. Several computational means developed in the recent past to predict host–parasite/pathogen interactions have generated testable hypotheses on feasible protein–protein interactions. We demonstrate the utility of protein structure-based protocol in the recognition of potential interacting proteins across P. falciparum and host erythrocytes. In concert with the information on the expression and subcellular localization of host and parasite proteins, we have identified 208 biologically feasible interactions potentially brought about by 59 P. falciparum and 30 host erythrocyte proteins. For selected cases, we have evaluated the physicochemical viability of the predicted interactions in terms of surface complementarity, electrostatic complementarity, and interaction energies at protein interface regions. Such careful inspection of molecular and mechanistic details generates high confidence on the predicted host–parasite protein–protein interactions. The predicted host–parasite interactions generate many experimentally testable hypotheses that can contribute to the understanding of possible mechanisms undertaken by the parasite in host erythrocyte remodeling. Thus, the key protein players recognized in P. falciparum can be explored for their usefulness as targets for chemotherapeutic intervention. PMID:26740742

  18. Content Interactivity: The Effect of Higher Levels of Interactivity on Learner Performance Outcomes and Satisfaction in Web-Based Military Training

    ERIC Educational Resources Information Center

    Kenyon, Peggy L.

    2012-01-01

    The effect of content interactivity on performance outcomes and satisfaction has been studied by researchers who compared the results of Web-based and computer-based learning to classroom learning. Few scholars have compared the effects of the same content produced at different levels (low and high) of interactivity and the resulting effects. The…

  19. Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review

    PubMed Central

    Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.

    2009-01-01

    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508

  20. Current Control for Utility Interactive Inverter Using Multisampling Method Based on FPGA

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tomoki; Komiyama, Tsuyoshi; Shimada, Eigo

    In this paper, a new control method is proposed for the utility interactive inverter based on the deadbeat control with the FPGA-based hardware controller to improve the control response of an utility current. Deadbeat control is one method to ensure the output voltage or current matches with the references at the sampling instant; therefore, by adopting this control law to the utility interactive inverter, the response of the system is much improved compared with the conventional PI control. The utility interactive inverter is linked to the commercial source via the interactive inductor, and so the inverter controls the output voltage based on the deadbeat control to regulate the output current through the interactive inductor. As a result, a very fast transient response of the utility current can be achieved. The current control method using voltage deadbeat control and PLL control with quasi dq transformation with multisampling parallel processing method are implemented in the FPGA-based hardware controller for the single phase utility interactive inverter.

  1. A Computer-Based Interactive Multimedia Program to Reduce HIV Transmission for Women with Intellectual Disability

    ERIC Educational Resources Information Center

    Wells, J.; Clark, K. D.; Sarno, K.

    2012-01-01

    Background: Despite recent recognition of the need for preventive sexual health materials for people with intellectual disability (ID), there have been remarkably few health-based interventions designed for people with mild to moderate ID. The purpose of this study was to evaluate the effects of a computer-based interactive multimedia (CBIM)…

  2. An Examination of the Characteristics of Student Interaction in Computer-Based Communication Assignments.

    ERIC Educational Resources Information Center

    Brown, Susan A.; Vician, Chelley

    Student interaction and computer-based communication tool appropriation patterns were examined in two different communication assignments requiring active use of computer-based communication tools. University students completed either: a set of communication assignments and activities with the instructor as sole audience; or a set of communication…

  3. Young Foreign Language Learners' Interactions during Task-Based Paired Assessments

    ERIC Educational Resources Information Center

    Butler, Yuko Goto; Zeng, Wei

    2014-01-01

    Despite the popularity of task-based language teaching (TBLT) in foreign language (FL) education at elementary school, it remains unclear how young learners' FL abilities can best be evaluated with tasks. The present study seeks to understand developmental differences in interactions among elementary-school students during task-based language…

  4. Development of an Interactive Computer-Based Learning Strategy to Assist in Teaching Water Quality Modelling

    ERIC Educational Resources Information Center

    Zigic, Sasha; Lemckert, Charles J.

    2007-01-01

    The following paper presents a computer-based learning strategy to assist in introducing and teaching water quality modelling to undergraduate civil engineering students. As part of the learning strategy, an interactive computer-based instructional (CBI) aid was specifically developed to assist students to set up, run and analyse the output from a…

  5. The Effect of Interactive Whiteboard-Based Instruction on Mathematics Performance of English Learners

    ERIC Educational Resources Information Center

    Link, Tammy

    2012-01-01

    A quasi-experimental research study was conducted to investigate the performance of English learners (ELs) on mathematics assessments when using interactive whiteboard (IWB)-based instruction as compared to text-based instruction. A sample of 47 seventh-and eighth-grade EL students from ABC Middle School (name has been changed) was included in…

  6. A Multiple-Sessions Interactive Computer-Based Learning Tool for Ability Cultivation in Circuit Simulation

    ERIC Educational Resources Information Center

    Xu, Q.; Lai, L. L.; Tse, N. C. F.; Ichiyanagi, K.

    2011-01-01

    An interactive computer-based learning tool with multiple sessions is proposed in this paper, which teaches students to think and helps them recognize the merits and limitations of simulation tools so as to improve their practical abilities in electrical circuit simulation based on the case of a power converter with progressive problems. The…

  7. A Framework for Spatial Interaction Analysis Based on Large-Scale Mobile Phone Data

    PubMed Central

    Li, Weifeng; Cheng, Xiaoyun; Guo, Gaohua

    2014-01-01

    The overall understanding of spatial interaction and the exact knowledge of its dynamic evolution are required in the urban planning and transportation planning. This study aimed to analyze the spatial interaction based on the large-scale mobile phone data. The newly arisen mass dataset required a new methodology which was compatible with its peculiar characteristics. A three-stage framework was proposed in this paper, including data preprocessing, critical activity identification, and spatial interaction measurement. The proposed framework introduced the frequent pattern mining and measured the spatial interaction by the obtained association. A case study of three communities in Shanghai was carried out as verification of proposed method and demonstration of its practical application. The spatial interaction patterns and the representative features proved the rationality of the proposed framework. PMID:25435865

  8. Solvent interaction analysis as a proteomic approach to structure-based biomarker discovery and clinical diagnostics.

    PubMed

    Zaslavsky, Boris Y; Uversky, Vladimir N; Chait, Arnon

    2016-01-01

    Proteins have several measurable features in biological fluids that may change under pathological conditions. The current disease biomarker discovery is mostly based on protein concentration in the sample as the measurable feature. Changes in protein structures, such as post-translational modifications and in protein-partner interactions are known to accompany pathological processes. Changes in glycosylation profiles are well-established for many plasma proteins in various types of cancer and other diseases. The solvent interaction analysis method is based on protein partitioning in aqueous two-phase systems and is highly sensitive to changes in protein structure and protein-protein- and protein-partner interactions while independent of the protein concentration in the biological sample. It provides quantitative index: partition coefficient representing changes in protein structure and interactions with partners. The fundamentals of the method are presented with multiple examples of applications of the method to discover and monitor structural protein biomarkers as disease-specific diagnostic indicators. PMID:26558960

  9. Signalling pathway impact analysis based on the strength of interaction between genes.

    PubMed

    Bao, Zhenshen; Li, Xianbin; Zan, Xiangzhen; Shen, Liangzhong; Ma, Runnian; Liu, Wenbin

    2016-08-01

    Signalling pathway analysis is a popular approach that is used to identify significant cancer-related pathways based on differentially expressed genes (DEGs) from biological experiments. The main advantage of signalling pathway analysis lies in the fact that it assesses both the number of DEGs and the propagation of signal perturbation in signalling pathways. However, this method simplifies the interactions between genes by categorising them only as activation (+1) and suppression (-1), which does not encompass the range of interactions in real pathways, where interaction strength between genes may vary. In this study, the authors used newly developed signalling pathway impact analysis (SPIA) methods, SPIA based on Pearson correlation coefficient (PSPIA), and mutual information (MSPIA), to measure the interaction strength between pairs of genes. In analyses of a colorectal cancer dataset, a lung cancer dataset, and a pancreatic cancer dataset, PSPIA and MSPIA identified more candidate cancer-related pathways than were identified by SPIA. Generally, MSPIA performed better than PSPIA. PMID:27444024

  10. Do surface-based match solution-based techniques? The case of drug-liposome interaction.

    PubMed

    Ermondi, Giuseppe; Caron, Giulia

    2016-07-11

    The aim of the study is to check if the information about drug/liposome interactions provided by Surface Plasmon Resonance (SPR) is comparable with that provided by potentiometry in which liposomes are not immobilized on a solid support. To reach our aim we apply QSPR and BR analysis to data extracted from the literature and carefully inspected for their reliability. Results show that log KD (SPR) is governed by a different balance of intermolecular interactions than log Dlip (potentiometry). PMID:27180234

  11. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach

    PubMed Central

    Tirupula, Kalyan C.; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S.

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor. PMID

  12. Research on gaze-based interaction to 3D display system

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Moo; Jeon, Kyeong-Won; Kim, Sung-Kyu

    2006-10-01

    There have been reported several researches on gaze tracking techniques using monocular camera or stereo camera. The most popular used gaze estimation techniques are based on PCCR (Pupil Center & Cornea Reflection). These techniques are for gaze tracking for 2D screen or images. In this paper, we address the gaze-based 3D interaction to stereo image for 3D virtual space. To the best of our knowledge, our paper first addresses the 3D gaze interaction techniques to 3D display system. Our research goal is the estimation of both of gaze direction and gaze depth. Until now, the most researches are focused on only gaze direction for the application to 2D display system. It should be noted that both of gaze direction and gaze depth should be estimated for the gaze-based interaction in 3D virtual space. In this paper, we address the gaze-based 3D interaction techniques with glassless stereo display. The estimation of gaze direction and gaze depth from both eyes is a new important research topic for gaze-based 3D interaction. We present our approach for the estimation of gaze direction and gaze depth and show experimentation results.

  13. Quantum Key Distribution Based on Interferometry and Interaction-Free Measurement

    NASA Astrophysics Data System (ADS)

    Li, Yan-Bing; Xu, Sheng-Wei; Wang, Qing-Le; Liu, Fang; Wan, Zong-Jie

    2016-01-01

    We propose a quantum key distribution based on Mach-Zehnder (MZ) interferometry and interaction-free measurement on single photon. The raw key comes from the photons on which MZ interferometry happened. And the interaction-free measurements are used to detect eavesdroppers. The analysis indicates that the protocol is secure, and can prevent some familiar attacks, such as photon number splitting (PNS) attack. This scheme is easy to be realized in current experiments.

  14. Web-based interactive visualization in a Grid-enabled neuroimaging application using HTML5.

    PubMed

    Siewert, René; Specovius, Svenja; Wu, Jie; Krefting, Dagmar

    2012-01-01

    Interactive visualization and correction of intermediate results are required in many medical image analysis pipelines. To allow certain interaction in the remote execution of compute- and data-intensive applications, new features of HTML5 are used. They allow for transparent integration of user interaction into Grid- or Cloud-enabled scientific workflows. Both 2D and 3D visualization and data manipulation can be performed through a scientific gateway without the need to install specific software or web browser plugins. The possibilities of web-based visualization are presented along the FreeSurfer-pipeline, a popular compute- and data-intensive software tool for quantitative neuroimaging. PMID:22942008

  15. Interaction of single walled carbon nanotubes with starch-based systems

    NASA Astrophysics Data System (ADS)

    Casey, A.; Farrell, G. F.; McNamara, M.; Byrne, H. J.; Chambers, G.

    2005-06-01

    The interaction of carbon nanotubes with soft organic molecules such as cyclodextrins and other saccharides has recently been shown to produce water-soluble composites. Such systems offer considerable advantages over polymer based composites due to their biocompatibility and non-covalent coupling which can potentially preserve the unique properties of the tubes. The mechanism of interaction of such systems has been proposed to be dominated by hydrophobic and hydrophilic interactions along the surface of the tube. In this study a number of composite systems have been formed with HiPco carbon nanotubes using starch.

  16. Interaction region design for a RHIC-based medium-energy electron-ion collider

    SciTech Connect

    Montag,C.; Beebe-Wang, J.

    2009-05-04

    As a first step in a staged approach towards a RHIC-based electron-ion collider, installation of a 4 GeV energy-recovery linac (ERL) in one of the RHIC interaction regions is currently under investigation. To minimize costs, the interaction region of this collider has to use the present RHIC magnets for focusing of the high-energy ion beam. Meanwhile, electron low-beta focusing needs to be added in the limited space available between the existing separator dipoles. We discuss the challenges and present the current design status of this e-A interaction region.

  17. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    PubMed

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  18. A Single Kernel-Based Approach to Extract Drug-Drug Interactions from Biomedical Literature

    PubMed Central

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng

    2012-01-01

    When one drug influences the level or activity of another drug this is known as a drug-drug interaction (DDI). Knowledge of such interactions is crucial for patient safety. However, the volume and content of published biomedical literature on drug interactions is expanding rapidly, making it increasingly difficult for DDIs database curators to detect and collate DDIs information manually. In this paper, we propose a single kernel-based approach to extract DDIs from biomedical literature. This novel kernel-based approach can effectively make full use of syntactic structural information of the dependency graph. In particular, our approach can efficiently represent both single subgraph topological information and the relation of two subgraphs in the dependency graph. Experimental evaluations showed that our single kernel-based approach can achieve state-of-the-art performance on the publicly available DDI corpus without exploiting multiple kernels or additional domain resources. PMID:23133662

  19. Poultry production: a model for developing interactive Internet-based distance education.

    PubMed

    Emmert, J L; Shortridge, A M; Sexton, S L

    2003-05-01

    Over the last several decades, many poultry science programs have merged with other departments, but the poultry industry has undergone tremendous expansion worldwide, leading to a growing instructional void with regard to poultry production information. The objective of this project was to address the demand for information by developing two Web-based poultry production courses that cover management of broilers, turkeys, breeders, and layers. The Internet was chosen as the platform because it is asynchronous and may be accessed from any connected site around the world. To be effective, web-based courseware must be theoretically grounded and interactive, but university-level web-based distance education courses often fail to meet these standards. During courseware development, the impact of instructional techniques and technologies on interactivity and learning outcomes was explored. A content expert, an instructional designer, and a graphic artist carefully reviewed a variety of instructional techniques to increase interactivity. Concept mapping was chosen because it has been shown to be a superior learning tool for enhancing the exchange of ideas and knowledge between instructors, students, and content. A unique instructional interface was established that includes threaded e-mail discussion, thought questions, animation, hypertext, rollover interactions, video clips, and concept mapping exercises. Results indicate that the integration of concept mapping into web-based learning environments successfully increased interactivity and learning outcomes. PMID:12762393

  20. Gene set enrichment and topological analyses based on interaction networks in pediatric acute lymphoblastic leukemia

    PubMed Central

    SUI, SHUXIANG; WANG, XIN; ZHENG, HUA; GUO, HUA; CHEN, TONG; JI, DONG-MEI

    2015-01-01

    Pediatric acute lymphoblastic leukemia (ALL) accounts for over one-quarter of all pediatric cancers. Interacting genes and proteins within the larger human gene interaction network of the human genome are rarely investigated by studies investigating pediatric ALL. In the present study, interaction networks were constructed using the empirical Bayesian approach and the Search Tool for the Retrieval of Interacting Genes/proteins database, based on the differentially-expressed (DE) genes in pediatric ALL, which were identified using the RankProd package. Enrichment analysis of the interaction network was performed using the network-based methods EnrichNet and PathExpand, which were compared with the traditional expression analysis systematic explored (EASE) method. In total, 398 DE genes were identified in pediatric ALL, and LIF was the most significantly DE gene. The co-expression network consisted of 272 nodes, which indicated genes and proteins, and 602 edges, which indicated the number of interactions adjacent to the node. Comparison between EASE and PathExpand revealed that PathExpand detected more pathways or processes that were closely associated with pediatric ALL compared with the EASE method. There were 294 nodes and 1,588 edges in the protein-protein interaction network, with the processes of hematopoietic cell lineage and porphyrin metabolism demonstrating a close association with pediatric ALL. Network enrichment analysis based on the PathExpand algorithm was revealed to be more powerful for the analysis of interaction networks in pediatric ALL compared with the EASE method. LIF and MLLT11 were identified as the most significantly DE genes in pediatric ALL. The process of hematopoietic cell lineage was the pathway most significantly associated with pediatric ALL. PMID:26788135

  1. Specular Andreev reflection in graphene-based superconducting junction with substate-induced spin orbit interaction

    NASA Astrophysics Data System (ADS)

    Bai, Chunxu; Yang, Yanling

    2016-08-01

    Based on the Dirac-Bogoliubov-de Gennes equation, the chirality-resolved transport properties through a ballistic graphene-based superconducting heterojunction with both the Rashba and the Dresselhaus spin orbit interaction have been investigated. Our results show that, in contrast to the retro-Andreev reflection suppressed by the spin orbit interaction (SOI), the specular Andreev reflection (SAR) can be enhanced largely by the SOI. Moreover, the Fabry-Perot interferences in the barrier region lead to the oscillating feature of the tunneling conductance. It is anticipated to apply the qualitative different results to diagnose the SAR in single layer graphene in the presence of both kinds of the SOI.

  2. Efficient fold-change detection based on protein-protein interactions.

    PubMed

    Buijsman, W; Sheinman, M

    2014-02-01

    Various biological sensory systems exhibit a response to a relative change of the stimulus, often referred to as fold-change detection. In the past few years, fold-change detecting mechanisms, based on transcriptional networks, have been proposed. Here we present a fold-change detecting mechanism, based on protein-protein interactions, consisting of two interacting proteins. This mechanism does not consume chemical energy and is not subject to transcriptional and translational noise, in contrast to previously proposed mechanisms. We show by analytical and numerical calculations that the mechanism is robust and can have a fast, precise, and efficient response for parameters that are relevant to eukaryotic cells. PMID:25353514

  3. Asymmetric nuclear matter based on chiral two- and three-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Drischler, C.; Hebeler, K.; Schwenk, A.

    2016-05-01

    We calculate the properties of isospin-asymmetric nuclear matter based on chiral nucleon-nucleon (NN) and three-nucleon (3N) interactions. To this end, we develop an improved normal-ordering framework that allows us to include general 3N interactions starting from a plane-wave partial-wave-decomposed form. We present results for the energy per particle for general isospin asymmetries based on a set of different Hamiltonians, study their saturation properties, the incompressibility, symmetry energy, and also provide an analytic parametrization for the energy per particle as a function of density and isospin asymmetry.

  4. A hybrid configuration interaction treatment based on seniority number and excitation schemes

    SciTech Connect

    Alcoba, Diego R.; Capuzzi, Pablo; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri

    2014-12-28

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.

  5. A hybrid configuration interaction treatment based on seniority number and excitation schemes

    NASA Astrophysics Data System (ADS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Capuzzi, Pablo; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri

    2014-12-01

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.

  6. A hybrid configuration interaction treatment based on seniority number and excitation schemes.

    PubMed

    Alcoba, Diego R; Torre, Alicia; Lain, Luis; Oña, Ofelia B; Capuzzi, Pablo; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri

    2014-12-28

    We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method. PMID:25554144

  7. Theoretical Studies on the Intermolecular Interactions of Potentially Primordial Base-Pair Analogues

    SciTech Connect

    Leszczynski, Jerzy; Sponer, Judit; Sponer, Jiri; Sumpter, Bobby G; Fuentes-Cabrera, Miguel A; Vazquez-Mayagoitia, Alvaro

    2010-01-01

    Recent experimental studies on the Watson Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high-level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two NH O hydrogen bonds separated by one NH N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pKa data of the bases and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pKa values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non-natural bases.

  8. Multi-atlas Based Segmentation Editing with Interaction-Guided Constraints

    PubMed Central

    Park, Sang Hyun; Gao, Yaozong; Shen, Dinggang

    2015-01-01

    We propose a novel multi-atlas based segmentation method to address the editing scenario, when given an incomplete segmentation along with a set of training label images. Unlike previous multi-atlas based methods, which depend solely on appearance features, we incorporate interaction-guided constraints to find appropriate training labels and derive their voting weights. Specifically, we divide user interactions, provided on erroneous parts, into multiple local interaction combinations, and then locally search for the training label patches well-matched with each interaction combination and also the previous segmentation. Then, we estimate the new segmentation through the label fusion of selected label patches that have their weights defined with respect to their respective distances to the interactions. Since the label patches are found to be from different combinations in our method, various shape changes can be considered even with limited training labels and few user interactions. Since our method does not need image information or expensive learning steps, it can be conveniently used for most editing problems. To demonstrate the positive performance, we apply our method to editing the segmentation of three challenging data sets: prostate CT, brainstem CT, and hippocampus MR. The results show that our method outperforms the existing editing methods in all three data sets. PMID:26942234

  9. Sequence-based prediction of protein-protein interaction sites with L1-logreg classifier.

    PubMed

    Dhole, Kaustubh; Singh, Gurdeep; Pai, Priyadarshini P; Mondal, Sukanta

    2014-05-01

    Protein-protein interactions are of central importance for virtually every process in a living cell. Information about the interaction sites in proteins improves our understanding of disease mechanisms and can provide the basis for new therapeutic approaches. Since a multitude of unique residue-residue contacts facilitate the interactions, protein-protein interaction sites prediction has become one of the most important and challenging problems of computational biology. Although much progress in this field has been reported, this problem is yet to be satisfactorily solved. Here, a novel method (LORIS: L1-regularized LOgistic Regression based protein-protein Interaction Sites predictor) is proposed, that identifies interaction residues, using sequence features and is implemented via the L1-logreg classifier. Results show that LORIS is not only quite effective, but also, performs better than existing state-of-the art methods. LORIS, available as standalone package, can be useful for facilitating drug-design and targeted mutation related studies, which require a deeper knowledge of protein interactions sites. PMID:24486250

  10. Improving vision-based motor rehabilitation interactive systems for users with disabilities using mirror feedback.

    PubMed

    Jaume-i-Capó, Antoni; Martínez-Bueso, Pau; Moyà-Alcover, Biel; Varona, Javier

    2014-01-01

    Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (T(s)) and time-to-complete (T(c))). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (T(s) = 7.09 (P < 0.001) and T(c) = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems. PMID:25295310

  11. Improving Vision-Based Motor Rehabilitation Interactive Systems for Users with Disabilities Using Mirror Feedback

    PubMed Central

    Martínez-Bueso, Pau; Moyà-Alcover, Biel

    2014-01-01

    Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (Ts) and time-to-complete (Tc)). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (Ts = 7.09 (P < 0.001) and Tc = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems. PMID:25295310

  12. Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers

    PubMed Central

    Gilbert, Dustin A.; Liao, Jung-Wei; Kirby, Brian J.; Winklhofer, Michael; Lai, Chih-Huang; Liu, Kai

    2016-01-01

    Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices. PMID:27604428

  13. Theory of energy transfer interactions near sphere and nanoshell based plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Shishodia, Manmohan S.; Fainberg, Boris D.; Nitzan, Abraham

    2011-10-01

    Theory of energy transfer interactions between a pair of two level molecules in the molecular nanojunction including surface plasmon (SP) dressed interaction of plasmonic nanostructure, replicating metallic leads is presented. Results on the modification of bare dipolar interaction, known to be responsible for molecular energy transfer processes, in the proximity of metallic nanosystem are presented. Specifically, the manuscript includes theoretical investigation of nanosphere (NSP) monomer, nanoshell (NSH) monomer, and coupled nanosphere pair (dimer) based nanosystems. Closed form analytical expressions for NSP and NSH structures tailored for molecular nanojunction geometry are derived in the theoretical framework of multipole spectral expansion (MSE) method, which is straightforwardly extendible to dimers and multimers. The role of size and dielectric environment on energy transfer is investigated and interpreted. Theory predicts that the monomer and dimer both enhance the dipolar interaction, yet, dimer geometry is favorable due to its spectral tuning potential originated from plasmon hybridization and true resemblance with typical molecular nanojunctions.

  14. Tangible Interaction in Learning Astronomy through Augmented Reality Book-Based Educational Tool

    NASA Astrophysics Data System (ADS)

    Sin, Aw Kien; Badioze Zaman, Halimah

    Live Solar System (LSS) is an Augmented Reality book-based educational tool. Augmented Reality (AR) has its own potential in the education field, because it can provide a seamless interaction between real and virtual objects. LSS applied the Tangible Augmented Reality approach in designing its user interface and interaction. Tangible Augmented Reality is an interface which combines the Tangible User Interface and Augmented Reality Interface. They are naturally complement each other. This paper highlights the tangible interaction in LSS. LSS adopts the 'cube' as the common physical object input device. Thus, LSS does not use the traditional computer input devices such as the mouse or keyboard. To give users a better exploration experience, Visual Information Seeking Mantra principle was applied in the design of LSS. Hence, LSS gives users an effective interactive-intuitive horizontal surface learning environment.

  15. Apparatus and method for interaction phenomena with world modules in data-flow-based simulation

    DOEpatents

    Xavier, Patrick G.; Gottlieb, Eric J.; McDonald, Michael J.; Oppel, III, Fred J.

    2006-08-01

    A method and apparatus accommodate interaction phenomenon in a data-flow-based simulation of a system of elements, by establishing meta-modules to simulate system elements and by establishing world modules associated with interaction phenomena. World modules are associated with proxy modules from a group of meta-modules associated with one of the interaction phenomenon. The world modules include a communication world, a sensor world, a mobility world, and a contact world. World modules can be further associated with other world modules if necessary. Interaction phenomenon are simulated in corresponding world modules by accessing member functions in the associated group of proxy modules. Proxy modules can be dynamically allocated at a desired point in the simulation to accommodate the addition of elements in the system of elements such as a system of robots, a system of communication terminals, or a system of vehicles, being simulated.

  16. Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers.

    PubMed

    Gilbert, Dustin A; Liao, Jung-Wei; Kirby, Brian J; Winklhofer, Michael; Lai, Chih-Huang; Liu, Kai

    2016-01-01

    Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices. PMID:27604428

  17. A CAPS-based binding assay provides semi-quantitative validation of protein-DNA interactions

    PubMed Central

    Xie, Yongyao; Zhang, Yaling; Zhao, Xiucai; Liu, Yao-Guang; Chen, Letian

    2016-01-01

    Investigation of protein-DNA interactions provides crucial information for understanding the mechanisms of gene regulation. Current methods for studying protein-DNA interactions, such as DNaseI footprinting or gel shift assays, involve labeling DNA with radioactive or fluorescent tags, making these methods costly, laborious, and potentially damaging to the environment. Here, we describe a novel cleaved amplified polymorphic sequence (CAPS)-based binding assay (CBA), which is a label-free method that can simplify the semi-quantitative validation of protein-DNA interactions. The CBA tests the interaction between a protein and its target DNA, based on the CAPS pattern produced due to differences in the accessibility of a restriction endonuclease site (intrinsic or artificial) in amplified DNA in the presence and absence of the protein of interest. Thus, the CBA can produce a semi-quantitative readout of the interaction strength based on the dose of the binding protein. We demonstrate the principle and feasibility of CBA using B3, MADS3 proteins and the corresponding RY or CArG-box containing DNAs. PMID:26877240

  18. Predicting protein-RNA interaction amino acids using random forest based on submodularity subset selection.

    PubMed

    Pan, Xiaoyong; Zhu, Lin; Fan, Yong-Xian; Yan, Junchi

    2014-11-13

    Protein-RNA interaction plays a very crucial role in many biological processes, such as protein synthesis, transcription and post-transcription of gene expression and pathogenesis of disease. Especially RNAs always function through binding to proteins. Identification of binding interface region is especially useful for cellular pathways analysis and drug design. In this study, we proposed a novel approach for binding sites identification in proteins, which not only integrates local features and global features from protein sequence directly, but also constructed a balanced training dataset using sub-sampling based on submodularity subset selection. Firstly we extracted local features and global features from protein sequence, such as evolution information and molecule weight. Secondly, the number of non-interaction sites is much more than interaction sites, which leads to a sample imbalance problem, and hence biased machine learning model with preference to non-interaction sites. To better resolve this problem, instead of previous randomly sub-sampling over-represented non-interaction sites, a novel sampling approach based on submodularity subset selection was employed, which can select more representative data subset. Finally random forest were trained on optimally selected training subsets to predict interaction sites. Our result showed that our proposed method is very promising for predicting protein-RNA interaction residues, it achieved an accuracy of 0.863, which is better than other state-of-the-art methods. Furthermore, it also indicated the extracted global features have very strong discriminate ability for identifying interaction residues from random forest feature importance analysis. PMID:25462339

  19. Protein-protein interaction studies based on molecular aptamers by affinity capillary electrophoresis.

    PubMed

    Huang, Chih-Ching; Cao, Zehui; Chang, Huan-Tsung; Tan, Weihong

    2004-12-01

    Protein-DNA/protein-protein interactions play critical roles in many biological processes. We report here the investigation of protein-protein interactions using molecular aptamers with affinity capillary electrophoresis (ACE). A human alpha-thrombin binding aptamer was labeled with 6-carboxyfluorescein and exploited as a selective fluorescent probe for studying thrombin-protein interactions using capillary electrophoresis with laser-induced fluorescence. A 15-mer binding DNA aptamer can be separated into two peaks in CE that correspond to the linear aptamer (L-Apt) and the thrombin-binding G-quadruplex structure in the presence of K(+) or Ba(2+). In a bare capillary, the peak area of G-quadruplex aptamer (G-Apt) was found to decrease with the addition of thrombin while that of L-Apt remained unchanged. Even though the peak of the G-Apt/thrombin binding complex is broad due to a weaker binding affinity between aptamer and thrombin, we were still able to quantify the thrombin and anti-thrombin proteins (human anti-thrombin III, AT III) based on the peak areas of free G-Apt. The detection limits of thrombin and AT III were 9.8 and 2.1 nM, respectively. The aptamer-based competitive ACE assay has also been applied to quantify thrombin-anti-thrombin III interaction and to monitor this reaction in real time. The addition of poly(ethylene glycol) to the sample matrix stabilized the complex of the G-Aptthrombin. This assay can be used to study the interactions between thrombin and proteins that do not disrupt G-Apt binding property at Exosit I site of the thrombin. Our aptamer-based ACE assay can be an effective approach for studying protein-protein interactions and for analyzing binding site and binding constant information in protein-protein and protein-DNA interaction studies. PMID:15571349

  20. Using a dual safeguard web-based interactive teaching approach in an introductory physics class

    NASA Astrophysics Data System (ADS)

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-06-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students' understanding of physics concepts, develop students' problem-solving abilities through instructor-student interactions, and identify students' misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.

  1. A Novel Graphene Oxide-Based Protein Interaction Measurement Using Atomic Force Microscopy.

    PubMed

    Han, Sung-Woong; Morita, Kyohei; Adachi, Taiji

    2015-02-01

    Graphene oxide (GO) is a promising material for biological applications because of its excellent physical/chemical properties such as aqueous processability, amphiphilicity, and surface functionalizability. Here we introduce a new biological application of GO, a novel GO-based technique for probing protein interactions using atomic force microscopy (AFM). GO sheets were intercalated between the protein-modified AFM probe and the polymer substrate in order to reduce the non-specific adhesion force observed during single-molecule force spectroscopy (SMFS). In this study, we used SMFS to probe the interaction of the actin filament and actin-related protein 2/3 complex (Arp2/3), an actin-binding protein. Our results confirm that the GO sheet reduces nonspecific adhesion of the probe to the substrate. Using the GO-based technique, we succeeded in estimating the dissociation constant of the actin filament-binding protein interaction. PMID:26353630

  2. Plume Interaction and Base Flow Analysis of a Twin Engine Flight Vehicle

    NASA Astrophysics Data System (ADS)

    Chandra Murty, Mamidi Sri Rama; Chakraborty, Debasis

    2016-06-01

    3D RANS simulations are performed to study the multi jet interactions of a twin engine gimbal configuration of an aerospace vehicle at different time instants. Simulations captured all the essential features of the flow field and interaction between the neighboring jets did not occur because of low altitudes and moderate under-expansion of the jets considered in the simulations. For higher gimbal angle, two jets were the closest but still did not interact. Detail exploration of the downstream flow field revealed that the distinct features of the jets are retained at the farthest downstream locations; although the pressure field reached the uniformity. Average base pressure ratios for the three different time instances are 0.91, 0.547 and 0.522 and maximum base temperature is of the order 800 K.

  3. Predicting Disease-Related Proteins Based on Clique Backbone in Protein-Protein Interaction Network

    PubMed Central

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases. PMID:25013377

  4. Scale-Free Correlations in Flocking Systems with Position-Based Interactions

    NASA Astrophysics Data System (ADS)

    Huepe, Cristián; Ferrante, Eliseo; Wenseleers, Tom; Turgut, Ali Emre

    2015-02-01

    We consider a model of self-propelled agents with spring-like interactions that depend only on relative positions, and not on relative orientations. We observe that groups of these agents self-organize to achieve collective motion (CM) through a mechanism based on the cascading of self-propulsion energy towards lower elastic modes. By computing the correlation functions of the speed and velocity fluctuations for different group sizes, we show that the corresponding correlation lengths are proportional to the linear size of the group and have no intrinsic length scale. We argue that such scale-free correlations are a natural consequence of the position-based interactions and associated CM dynamics. We hypothesize that this effect, acting in the context of more complex realistic interactions, could be at the origin of the scale-free correlations measured experimentally in flocks of starlings, instead of the previously argued proximity to a critical regime.

  5. A Nonlinear Model for Gene-Based Gene-Environment Interaction.

    PubMed

    Sa, Jian; Liu, Xu; He, Tao; Liu, Guifen; Cui, Yuehua

    2016-01-01

    A vast amount of literature has confirmed the role of gene-environment (G×E) interaction in the etiology of complex human diseases. Traditional methods are predominantly focused on the analysis of interaction between a single nucleotide polymorphism (SNP) and an environmental variable. Given that genes are the functional units, it is crucial to understand how gene effects (rather than single SNP effects) are influenced by an environmental variable to affect disease risk. Motivated by the increasing awareness of the power of gene-based association analysis over single variant based approach, in this work, we proposed a sparse principle component regression (sPCR) model to understand the gene-based G×E interaction effect on complex disease. We first extracted the sparse principal components for SNPs in a gene, then the effect of each principal component was modeled by a varying-coefficient (VC) model. The model can jointly model variants in a gene in which their effects are nonlinearly influenced by an environmental variable. In addition, the varying-coefficient sPCR (VC-sPCR) model has nice interpretation property since the sparsity on the principal component loadings can tell the relative importance of the corresponding SNPs in each component. We applied our method to a human birth weight dataset in Thai population. We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using the Bonferroni correction method and one suggestive interaction. The model performance was further evaluated through simulation studies. Our model provides a system approach to evaluate gene-based G×E interaction. PMID:27271617

  6. A Nonlinear Model for Gene-Based Gene-Environment Interaction

    PubMed Central

    Sa, Jian; Liu, Xu; He, Tao; Liu, Guifen; Cui, Yuehua

    2016-01-01

    A vast amount of literature has confirmed the role of gene-environment (G×E) interaction in the etiology of complex human diseases. Traditional methods are predominantly focused on the analysis of interaction between a single nucleotide polymorphism (SNP) and an environmental variable. Given that genes are the functional units, it is crucial to understand how gene effects (rather than single SNP effects) are influenced by an environmental variable to affect disease risk. Motivated by the increasing awareness of the power of gene-based association analysis over single variant based approach, in this work, we proposed a sparse principle component regression (sPCR) model to understand the gene-based G×E interaction effect on complex disease. We first extracted the sparse principal components for SNPs in a gene, then the effect of each principal component was modeled by a varying-coefficient (VC) model. The model can jointly model variants in a gene in which their effects are nonlinearly influenced by an environmental variable. In addition, the varying-coefficient sPCR (VC-sPCR) model has nice interpretation property since the sparsity on the principal component loadings can tell the relative importance of the corresponding SNPs in each component. We applied our method to a human birth weight dataset in Thai population. We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using the Bonferroni correction method and one suggestive interaction. The model performance was further evaluated through simulation studies. Our model provides a system approach to evaluate gene-based G×E interaction. PMID:27271617

  7. Interactive Computer Based Assessment Tasks: How Problem-Solving Process Data Can Inform Instruction

    ERIC Educational Resources Information Center

    Zoanetti, Nathan

    2010-01-01

    This article presents key steps in the design and analysis of a computer based problem-solving assessment featuring interactive tasks. The purpose of the assessment is to support targeted instruction for students by diagnosing strengths and weaknesses at different stages of problem-solving. The first focus of this article is the task piloting…

  8. Molecular Interactions between a Novel Soybean Oil-Based Polymer and Doxorubicin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel soybean oil-based polymer, hydrolyzed polymers of epoxidized soybean oil (HPESO), was developed and investigated for drug delivery. This work was aimed at determining the molecular interactions between HPESO and doxorubicin (DOX), an anticancer drug. Powder X-ray diffraction, ATR-FTIR and ...

  9. Development and Evaluation of an Interactive Internet-Based Pharmacokinetic Teaching Module.

    ERIC Educational Resources Information Center

    Hedaya, Mohsen A.

    1998-01-01

    Describes an Internet-based, interactive, learner-centered, asynchronous instructional module for pharmacokinetics that requires minimal computer knowledge to operate. Main components are concept presentation, a simulation exercise, and self-assessment questions. The module has been found effective in teaching the steady state concept at the…

  10. Inquiry and Groups: Student Interactions in Cooperative Inquiry-Based Science

    ERIC Educational Resources Information Center

    Woods-McConney, Amanda; Wosnitza, Marold; Sturrock, Keryn L.

    2016-01-01

    Science education research has recommended cooperative inquiry based science in the primary science context for more than two decades but after more than 20 years, student achievement in science has not substantially improved. This study, through direct observation and analysis, investigated content-related student interactions in an authentic…

  11. An Investigation of Interactive, Dialogue-Based Instruction for Undergraduate Art History

    ERIC Educational Resources Information Center

    Gioffre, Penelope

    2012-01-01

    This paper explores the feasibility and efficacy of incorporating an interactive, discussion-based instructional approach into an undergraduate art history survey course and investigates effects of the new pedagogic strategy on students' demonstrated comprehension and retention of required content. The action research project follows a systematic…

  12. Converting Equations and Graphs into Real Motion with Web-Based Interactive Activities.

    ERIC Educational Resources Information Center

    Chien, Cheng-Chih

    The physics learning problem that students usually regard equations and other symbols in physics as algebraic exercises rather than representations of real world phenomena is commonly known. This article discusses how the Web-based interactive instructional materials were used to help students connect the symbolic world and the real world. The…

  13. Relevant Term Suggestion in Interactive Web Search Based on Contextual Information in Query Session Logs.

    ERIC Educational Resources Information Center

    Huang, Chien-Kang; Chien, Lee-Feng; Oyang, Yen-Jen

    2003-01-01

    Proposes an effective term suggestion approach to interactive Web searches. Explains a log-based approach to relevant term extraction and term suggestion where relevant terms suggested for a user query are those that co-occur in similar query sessions from search engine logs rather than in the retrieved documents. (Author/LRW)

  14. Interactive Multimedia and Problem-Based Learning: Challenges for Instructional Design.

    ERIC Educational Resources Information Center

    Albion, Peter R.; Gibson, Ian W.

    Interactive multimedia (IMM) and problem-based learning (PBL) are both promoted in response to the current need to offer authentic and effective professional education. An emphasis on collaborative work in PBL contexts may have discouraged the application of IMM, more commonly designed for individual use. This paper describes preliminary…

  15. Web-Based Interactive System for Analyzing Achievement Gaps in Public Schools System

    ERIC Educational Resources Information Center

    Wang, Kening; Mulvenon, Sean W.; Stegman, Charles; Xia, Yanling

    2010-01-01

    The National Office for Research on Measurement and Evaluation Systems (NORMES) at the University of Arkansas developed a web-based interactive system to provide information on state, district, and school level achievement gaps between white students and black students, socioeconomically disadvantaged students and non-disadvantaged students, male…

  16. Interaction Analysis in a "Learning by Doing" Problem-Based Professional Development Context

    ERIC Educational Resources Information Center

    Donnelly, Roisin

    2010-01-01

    This paper explores the concept and practice of interaction within a blended problem-based learning (PBL) module for academic professional development in higher education. A qualitative study spanning two years of the lived experiences of 17 academic staff in a blended PBL module was considered likely to provide a much-needed analysis of current…

  17. A Descriptive Assessment of Instruction-Based Interactions in the Preschool Classroom

    ERIC Educational Resources Information Center

    Ndoro, Virginia W.; Hanley, Gregory P.; Tiger, Jeffrey H.; Heal, Nicole A.

    2006-01-01

    The current study describes preschool teacher-child interactions during several commonly scheduled classroom activities in which teachers deliver instructions. An observation system was developed that incorporated measurement of evidence-based compliance strategies and included the types of instructions delivered (e.g., integral or deficient…

  18. Rationale, Design and Implementation of a Computer Vision-Based Interactive E-Learning System

    ERIC Educational Resources Information Center

    Xu, Richard Y. D.; Jin, Jesse S.

    2007-01-01

    This article presents a schematic application of computer vision technologies to e-learning that is synchronous, peer-to-peer-based, and supports an instructor's interaction with non-computer teaching equipments. The article first discusses the importance of these focused e-learning areas, where the properties include accurate bidirectional…

  19. Look-Align: an interactive web-based multiple sequence alignment viewer with polymorphism analysis support

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed Look-Align, an interactive web-based viewer to display pre-computed multiple sequence alignments. Although initially developed to support the visualization needs of the maize diversity website Panzea (http://www.panzea.org), the viewer is a generic stand-alone tool that can be easi...

  20. Using a Dual Safeguard Web-Based Interactive Teaching Approach in an Introductory Physics Class

    ERIC Educational Resources Information Center

    Li, Lie-Ming; Li, Bin; Luo, Ying

    2015-01-01

    We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI) teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities…

  1. Study of Personalized Network Tutoring System Based on Emotional-cognitive Interaction

    NASA Astrophysics Data System (ADS)

    Qi, Manfei; Ma, Ding; Wang, Wansen

    Aiming at emotion deficiency in present Network tutoring system, a lot of negative effects is analyzed and corresponding countermeasures are proposed. The model of Personalized Network tutoring system based on Emotional-cognitive interaction is constructed in the paper. The key techniques of realizing the system such as constructing emotional model and adjusting teaching strategies are also introduced.

  2. Perceptions of the Effectiveness of System Dynamics-Based Interactive Learning Environments: An Empirical Study

    ERIC Educational Resources Information Center

    Qudrat-Ullah, Hassan

    2010-01-01

    The use of simulations in general and of system dynamics simulation based interactive learning environments (SDILEs) in particular is well recognized as an effective way of improving users' decision making and learning in complex, dynamic tasks. However, the effectiveness of SDILEs in classrooms has rarely been evaluated. This article describes…

  3. Personality Types and Learners' Interaction in Web-Based Threaded Discussion

    ERIC Educational Resources Information Center

    Lee, JeongMin; Lee, Youngmin

    2006-01-01

    This study examined the effects of group composition based on the learners' personality types as measured by the Myers-Briggs type indicator as they interacted in threaded discussions. Three groups comprised introverts, extroverts, and mixed introvert-extrovert classifications. Ninety-six participants were divided into 24 groups of 4 participants…

  4. Learning through Interaction in Children with Autism: Preliminary Data from a Social-Communication-Based Intervention

    ERIC Educational Resources Information Center

    Casenhiser, Devin M.; Shanker, Stuart G.; Stieben, Jim

    2013-01-01

    The study evaluates a social-communication-based approach to autism intervention aimed at improving the social interaction skills of children with autism spectrum disorder. We report preliminary results from an ongoing randomized controlled trial of 51 children aged 2 years 0 months to 4 years 11 months. Participants were assigned to either a…

  5. Specifying and Refining a Measurement Model for a Computer-Based Interactive Assessment

    ERIC Educational Resources Information Center

    Levy, Roy; Mislevy, Robert J.

    2004-01-01

    The challenges of modeling students' performance in computer-based interactive assessments include accounting for multiple aspects of knowledge and skill that arise in different situations and the conditional dependencies among multiple aspects of performance. This article describes a Bayesian approach to modeling and estimating cognitive models…

  6. Improving Classification of Protein Interaction Articles Using Context Similarity-Based Feature Selection

    PubMed Central

    Chen, Yifei; Sun, Yuxing; Han, Bing-Qing

    2015-01-01

    Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification. PMID:26339638

  7. Interactive Computer-Assisted Instruction in Acid-Base Physiology for Mobile Computer Platforms

    ERIC Educational Resources Information Center

    Longmuir, Kenneth J.

    2014-01-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ~20 screens of information, on the subjects…

  8. The Application Study of MCU in Visual Classroom Interactive Teaching Based on Virtual Experiment Platform

    NASA Astrophysics Data System (ADS)

    Ding, Diankuan; Li, Lixin

    Because many students are lacking in perceptual knowledge of MCU, they are difficult to engage themselves in classroom activities. The paper therefore offers an interactive teaching mode of proteus-based MCU virtual laboratory. The teaching mode is of help in arousing students' interests, improving their learning efficiency and practical abilities, and promoting the teaching reform of MCU subject.

  9. Levels of Interaction and Proximity: Content Analysis of Video-Based Classroom Cases

    ERIC Educational Resources Information Center

    Kale, Ugur

    2008-01-01

    This study employed content analysis techniques to examine video-based cases of two websites that exemplify learner-centered pedagogies for pre-service teachers to carry out in their teaching practices. The study focused on interaction types and physical proximity levels between students and teachers observed in the videos. The findings regarding…

  10. Learning Mathematics with Interactive Whiteboards and Computer-Based Graphing Utility

    ERIC Educational Resources Information Center

    Erbas, Ayhan Kursat; Ince, Muge; Kaya, Sukru

    2015-01-01

    The purpose of this study was to explore the effect of a technology-supported learning environment utilizing an interactive whiteboard (IWB) and NuCalc graphing software compared to a traditional direct instruction-based environment on student achievement in graphs of quadratic functions and attitudes towards mathematics and technology. Sixty-five…

  11. The TEACH Method: An Interactive Approach for Teaching the Needs-Based Theories Of Motivation

    ERIC Educational Resources Information Center

    Moorer, Cleamon, Jr.

    2014-01-01

    This paper describes an interactive approach for explaining and teaching the Needs-Based Theories of Motivation. The acronym TEACH stands for Theory, Example, Application, Collaboration, and Having Discussion. This method can help business students to better understand and distinguish the implications of Maslow's Hierarchy of Needs,…

  12. An Interactive Web-Based Program for Stepfamilies: Development and Evaluation of Efficacy

    ERIC Educational Resources Information Center

    Gelatt, Vicky A.; Adler-Baeder, Francesca; Seeley, John R.

    2010-01-01

    This study evaluated the efficacy of a family life education program for stepfamilies that is self-administered, interactive, and web-based. The program uses behavior-modeling videos to demonstrate effective couple, parenting, and stepparenting practices. A diverse sample of 300 parents/stepparents of a child aged 11-15 years were randomized into…

  13. Web-Based 3D and Haptic Interactive Environments for e-Learning, Simulation, and Training

    NASA Astrophysics Data System (ADS)

    Hamza-Lup, Felix G.; Sopin, Ivan

    Knowledge creation occurs in the process of social interaction. As our service-based society is evolving into a knowledge-based society, there is an acute need for more effective collaboration and knowledge-sharing systems to be used by geographically scattered people. We present the use of 3D components and standards, such as Web3D, in combination with the haptic paradigm, for e-Learning and simulation.

  14. ClicO FS: an interactive web-based service of Circos

    PubMed Central

    Cheong, Wei-Hien; Tan, Yung-Chie; Yap, Soon-Joo; Ng, Kee-Peng

    2015-01-01

    Summary: We present ClicO Free Service, an online web-service based on Circos, which provides a user-friendly, interactive web-based interface with configurable features to generate Circos circular plots. Availability and implementation: Online web-service is freely available at http://clicofs.codoncloud.com Contact: soonjoo.yap@codongenomics.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26227146

  15. Decoherence under many-body system-environment interactions: A stroboscopic representation based on a fictitiously homogenized interaction rate

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo A.; Danieli, Ernesto P.; Levstein, Patricia R.; Pastawski, Horacio M.

    2007-06-01

    An environment interacting with portions of a system leads to multiexponential interaction rates. Within the Keldysh formalism, we fictitiously homogenize the system-environment interaction yielding a uniform decay rate facilitating the evaluation of the propagators. Through an injection procedure we neutralize the fictitious interactions. This technique justifies a stroboscopic representation of the system-environment interaction which is useful for numerical implementation and converges to the natural continuous process. We apply this procedure to a fermionic two-level system and use the Jordan-Wigner transformation to solve a two-spin swapping gate in the presence of a spin environment.

  16. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

    PubMed Central

    Chou, Chih-Hung; Chang, Nai-Wen; Shrestha, Sirjana; Hsu, Sheng-Da; Lin, Yu-Ling; Lee, Wei-Hsiang; Yang, Chi-Dung; Hong, Hsiao-Chin; Wei, Ting-Yen; Tu, Siang-Jyun; Tsai, Tzi-Ren; Ho, Shu-Yi; Jian, Ting-Yan; Wu, Hsin-Yi; Chen, Pin-Rong; Lin, Nai-Chieh; Huang, Hsin-Tzu; Yang, Tzu-Ling; Pai, Chung-Yuan; Tai, Chun-San; Chen, Wen-Liang; Huang, Chia-Yen; Liu, Chun-Chi; Weng, Shun-Long; Liao, Kuang-Wen; Hsu, Wen-Lian; Huang, Hsien-Da

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts. PMID:26590260

  17. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    PubMed Central

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592

  18. A feature-based approach to modeling protein-protein interaction hot spots.

    PubMed

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions. PMID:19273533

  19. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.

    PubMed

    Zhang, Shu-Bo; Tang, Qiang-Rong

    2016-07-21

    Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction. PMID:27117309

  20. Physiologically Based Pharmacokinetic Modeling Framework for Quantitative Prediction of an Herb–Drug Interaction

    PubMed Central

    Brantley, S J; Gufford, B T; Dua, R; Fediuk, D J; Graf, T N; Scarlett, Y V; Frederick, K S; Fisher, M B; Oberlies, N H; Paine, M F

    2014-01-01

    Herb–drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb–drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb–drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions. PMID:24670388

  1. RKKY interaction in P-N junction based on surface states of 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhui; Yang, Wen; Chang, Kai

    The RKKY interaction mediated by conduction electrons supplies a mechanism to realize the long-range coupling of localized spins which is desired for the spin devices. Here, we examine the controllability of RKKY interaction in P-N junction (PNJ) based on surface states of 3D topological insulator (3DTI). In this study, through quantum way but not usual classical analogy to light propagation, the intuitive picture for electron waves across the interface of PNJ is obtained, e.g., Klein tunneling, negative refraction and focusing. Moreover, we perform the numerical calculations for all kinds of RKKY interaction including the Heisenberg, Ising, and Dzyaloshinskii-Moriya terms. We find the focusing of surface states leads to the local augmentation of RKKY interaction. Most importantly, a dimension transition occurs, i.e., the decay rate of RKKY interaction from the deserved 1/R 2 to 1/ R . In addition, the quadratic gate-dependence of RKKY interaction is also beneficial to the application of 3DTI PNJ in the fields of spintronics and quantum computation. This work was supported by the MOST (Grant No. 2015CB921503, and No. 2014CB848700) and NSFC (Grant No. 11434010, No. 11274036, No. 11322542, and No. 11504018).

  2. Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb-drug interaction.

    PubMed

    Brantley, S J; Gufford, B T; Dua, R; Fediuk, D J; Graf, T N; Scarlett, Y V; Frederick, K S; Fisher, M B; Oberlies, N H; Paine, M F

    2014-01-01

    Herb-drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb-drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb-drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions.CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e107; doi:10.1038/psp.2013.69; advance online publication 26 March 2014. PMID:24670388

  3. A PC-based high-quality and interactive virtual endoscopy navigating system using 3D texture based volume rendering.

    PubMed

    Hwang, Jin-Woo; Lee, Jong-Min; Kim, In-Young; Song, In-Ho; Lee, Yong-Hee; Kim, SunI

    2003-05-01

    As an alternative method to optical endoscopy, visual quality and interactivity are crucial for virtual endoscopy. One solution is to use the 3D texture map based volume rendering method that offers high rendering speed without reducing visual quality. However, it is difficult to apply the method to virtual endoscopy. First, 3D texture mapping requires a high-end graphic workstation. Second, texture memory limits reduce the frame-rate. Third, lack of shading reduces visual quality significantly. As 3D texture mapping has become available on personal computers recently, we developed an interactive navigation system using 3D texture mapping on a personal computer. We divided the volume data into small cubes and tested whether the cubes had meaningful data. Only the cubes that passed the test were loaded into the texture memory and rendered. With the amount of data to be rendered minimized, rendering speed increased remarkably. We also improved visual quality by implementing full Phong shading based on the iso-surface shading method without sacrificing interactivity. With the developed navigation system, 256 x 256 x 256 sized brain MRA data was interactively explored with good image quality. PMID:12725966

  4. Nurturing Healthy Relationships through a Community-based Interactive Theater Program

    PubMed Central

    Fredland, Nina M.

    2010-01-01

    Promoting healthy relationships and preventing unhealthy behaviors, such as bullying and teen dating violence, among young adolescents was the goal of this study. This developmentally appropriate project used interactive theater to deliver a healthy message. Students in 7th grade health classes (N = 114) participated in the interactive theater intervention, a program that consisted of three consecutive performances and one follow-up day. This article reports on community-based research related to the development of a theater script in collaboration with a local theater group, the feasibility of using this innovative format as an intervention method, and lessons learned in collaborating with community partners. PMID:20437291

  5. General theory based on fluctuational electrodynamics for van der Waals interactions in colloidal systems

    SciTech Connect

    Yannopapas, Vassilios

    2007-12-15

    A rigorous theory for the determination of the van der Waals interactions in colloidal systems is presented. The method is based on fluctuational electrodynamics and a multiple-scattering method which provides the electromagnetic Green's tensor. In particular, expressions for the Green's tensor are presented for arbitrary, finite collections of colloidal particles, for infinitely periodic or defected crystals, as well as for finite slabs of crystals. The presented formalism allows for ab initio calculations of the van der Waals interactions in colloidal systems since it takes fully into account retardation, many-body, multipolar, and near-field effects.

  6. Interactive Cosmetic Makeup of a 3D Point-Based Face Model

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Sik; Choi, Soo-Mi

    We present an interactive system for cosmetic makeup of a point-based face model acquired by 3D scanners. We first enhance the texture of a face model in 3D space using low-pass Gaussian filtering, median filtering, and histogram equalization. The user is provided with a stereoscopic display and haptic feedback, and can perform simulated makeup tasks including the application of foundation, color makeup, and lip gloss. Fast rendering is achieved by processing surfels using the GPU, and we use a BSP tree data structure and a dynamic local refinement of the facial surface to provide interactive haptics. We have implemented a prototype system and evaluated its performance.

  7. Highly Accurate Structure-Based Prediction of HIV-1 Coreceptor Usage Suggests Intermolecular Interactions Driving Tropism

    PubMed Central

    Kieslich, Chris A.; Tamamis, Phanourios; Guzman, Yannis A.; Onel, Melis; Floudas, Christodoulos A.

    2016-01-01

    HIV-1 entry into host cells is mediated by interactions between the V3-loop of viral glycoprotein gp120 and chemokine receptor CCR5 or CXCR4, collectively known as HIV-1 coreceptors. Accurate genotypic prediction of coreceptor usage is of significant clinical interest and determination of the factors driving tropism has been the focus of extensive study. We have developed a method based on nonlinear support vector machines to elucidate the interacting residue pairs driving coreceptor usage and provide highly accurate coreceptor usage predictions. Our models utilize centroid-centroid interaction energies from computationally derived structures of the V3-loop:coreceptor complexes as primary features, while additional features based on established rules regarding V3-loop sequences are also investigated. We tested our method on 2455 V3-loop sequences of various lengths and subtypes, and produce a median area under the receiver operator curve of 0.977 based on 500 runs of 10-fold cross validation. Our study is the first to elucidate a small set of specific interacting residue pairs between the V3-loop and coreceptors capable of predicting coreceptor usage with high accuracy across major HIV-1 subtypes. The developed method has been implemented as a web tool named CRUSH, CoReceptor USage prediction for HIV-1, which is available at http://ares.tamu.edu/CRUSH/. PMID:26859389

  8. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  9. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System

    PubMed Central

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications. PMID:27031694

  10. Design and Implementation of an Interactive Web-Based Near Real-Time Forest Monitoring System.

    PubMed

    Pratihast, Arun Kumar; DeVries, Ben; Avitabile, Valerio; de Bruin, Sytze; Herold, Martin; Bergsma, Aldo

    2016-01-01

    This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts. Social media leads to higher levels of user interaction and noticeably improves communication among stakeholders. Finally, an evaluation of the system confirms the usability of the system in Ethiopia. The implemented system can provide a foundation for an operational forest monitoring system at the national level for REDD+ MRV applications. PMID:27031694

  11. Interactive Web-based Learning Modules Prior to General Medicine Advanced Pharmacy Practice Experiences

    PubMed Central

    Walton, Alison M.; Nisly, Sarah A.

    2015-01-01

    Objective. To implement and evaluate interactive web-based learning modules prior to advanced pharmacy practice experiences (APPEs) on inpatient general medicine. Design. Three clinical web-based learning modules were developed for use prior to APPEs in 4 health care systems. The aim of the interactive modules was to strengthen baseline clinical knowledge before the APPE to enable the application of learned material through the delivery of patient care. Assessment. For the primary endpoint, postassessment scores increased overall and for each individual module compared to preassessment scores. Postassessment scores were similar among the health care systems. The survey demonstrated positive student perceptions of this learning experience. Conclusion. Prior to inpatient general medicine APPEs, web-based learning enabled the standardization and assessment of baseline student knowledge across 4 health care systems. PMID:25995515

  12. Approaches to Interactive Video Anchors in Problem-based Science Learning

    NASA Astrophysics Data System (ADS)

    Kumar, David Devraj

    2010-02-01

    This paper is an invited adaptation of the IEEE Education Society Distinguished Lecture Approaches to Interactive Video Anchors in Problem-Based Science Learning. Interactive video anchors have a cognitive theory base, and they help to enlarge the context of learning with information-rich real-world situations. Carefully selected movie clips and custom-developed regular videos and virtual simulations have been successfully used as anchors in problem-based science learning. Examples discussed include a range of situations such as Indiana Jones tackling a trap, a teenager misrepresenting lead for gold, an agriculture inspection at the US border, counterintuitive events, analyzing a river ecosystem for pollution, and finding the cause of illness in a nineteenth century river city. Suggestions for teachers are provided.

  13. Regulatory Interactions in ProKaryotes from RegTransBase

    DOE Data Explorer

    Dubchak, Inna; Gelfand, Mikhail

    RegTransBase, a manually curated database of regulatory interactions in prokaryotes, captures the knowledge in published scientific literature using a controlled vocabulary. RegTransBase describes a large number of regulatory interactions reported in many organisms and contains various types of experimental data, in particular: the activation or repression of transcription by an identified direct regulator determining the transcriptional regulatory function of a protein (or RNA) directly binding to DNA or RNA mapping or prediction of binding sites for a regulatory protein characterization of regulatory mutations. RegTransBase also contains manually created position weight matrices (PWM) that can be used to identify candidate regulatory sites in over 60 species. (Specialized Interface)

  14. Literature Based Drug Interaction Prediction with Clinical Assessment Using Electronic Medical Records: Novel Myopathy Associated Drug Interactions

    PubMed Central

    Subhadarshini, Abhinita; Karnik, Shreyas D.; Li, Xiaochun; Hall, Stephen D.; Jin, Yan; Callaghan, J. Thomas; Overhage, Marcus J.; Flockhart, David A.; Strother, R. Matthew; Quinney, Sara K.; Li, Lang

    2012-01-01

    Drug-drug interactions (DDIs) are a common cause of adverse drug events. In this paper, we combined a literature discovery approach with analysis of a large electronic medical record database method to predict and evaluate novel DDIs. We predicted an initial set of 13197 potential DDIs based on substrates and inhibitors of cytochrome P450 (CYP) metabolism enzymes identified from published in vitro pharmacology experiments. Using a clinical repository of over 800,000 patients, we narrowed this theoretical set of DDIs to 3670 drug pairs actually taken by patients. Finally, we sought to identify novel combinations that synergistically increased the risk of myopathy. Five pairs were identified with their p-values less than 1E-06: loratadine and simvastatin (relative risk or RR = 1.69); loratadine and alprazolam (RR = 1.86); loratadine and duloxetine (RR = 1.94); loratadine and ropinirole (RR = 3.21); and promethazine and tegaserod (RR = 3.00). When taken together, each drug pair showed a significantly increased risk of myopathy when compared to the expected additive myopathy risk from taking either of the drugs alone. Based on additional literature data on in vitro drug metabolism and inhibition potency, loratadine and simvastatin and tegaserod and promethazine were predicted to have a strong DDI through the CYP3A4 and CYP2D6 enzymes, respectively. This new translational biomedical informatics approach supports not only detection of new clinically significant DDI signals, but also evaluation of their potential molecular mechanisms. PMID:22912565

  15. Interaction of Schiff base ligand with tin dioxide nanoparticles: optical studies.

    PubMed

    Rani, J Suvetha; Ramakrishnan, V

    2013-10-01

    Interaction between 1,4 Bis ((2-Methyl) thio) Phenylamino methyl benzene (BMTPMB) Schiff base with tin dioxide nanoparticles (SnO2 NPs) of various concentrations in methanol have been studied using UV-Visible and Fluorescence spectroscopic techniques. The low value of Stern-Volmer quenching constant and non-linear plot of Benesi-Hildebrand equation suggests the less affinity of SnO2 NPs towards the adsorption of BMTPMB Schiff base. The Scott equation has been employed to determine molar absorptivity of the Schiff base-NPs system. PMID:23770505

  16. Interaction of Schiff base ligand with tin dioxide nanoparticles: Optical studies

    NASA Astrophysics Data System (ADS)

    Suvetha Rani, J.; Ramakrishnan, V.

    2013-10-01

    Interaction between 1,4 Bis ((2-Methyl) thio) Phenylamino methyl benzene (BMTPMB) Schiff base with tin dioxide nanoparticles (SnO2 NPs) of various concentrations in methanol have been studied using UV-Visible and Fluorescence spectroscopic techniques. The low value of Stern-Volmer quenching constant and non-linear plot of Benesi-Hildebrand equation suggests the less affinity of SnO2 NPs towards the adsorption of BMTPMB Schiff base. The Scott equation has been employed to determine molar absorptivity of the Schiff base-NPs system.

  17. The influence of arene-ring size on stacking interaction with canonical base pairs

    NASA Astrophysics Data System (ADS)

    Formánek, Martin; Burda, Jaroslav V.

    2014-04-01

    Stacking interactions between aromatic molecules (benzene, p-cymene, biphenyl, and di- and tetra-hydrogen anthracene) and G.C and A.T canonical Watson-Crick (WC) base pairs are explored. Two functionals with dispersion corrections: ω-B97XD and B3LYP-D3 are used. For a comparison also the MP2 and B3LYP-D3/PCM methods were used for the most stable p-cymene…WC geometries. It was found that the stacking interaction increases with the size of π-conjugation system. Its extent is in agreement with experimental finding on anticancer activity of Ru(II) piano-stool complexes where intercalation of these aromatic molecules should play an important role. The explored structures are considered as ternary system so that decomposition of the interaction energy to pairwise and non-additivity contributions is also examined.

  18. Quantifying molecule-surface interactions using AFM-based single-molecule manipulation

    NASA Astrophysics Data System (ADS)

    Tautz, F. S.; Wagner, C.; Temirov, R.; Fournier, N.; Green, M.; Esat, T.; Leinen, P.; Groetsch, A.; Ruiz, V. G.; Tkatchenko, A.; Li, C.; Muellen, K.; Rohlfing, M.

    2015-03-01

    Scanning probe microscopy plays an important role in the investigation of molecular adsorption. Promising, is the possibility to probe the molecule-surface interaction while tuning its strength through AFM tip-induced single-molecule manipulation. Here, we outline a strategy to achieve quantitative understanding of such manipulation experiments. The example of qPlus sensor based PTCDA molecule lifting experiments is used to demonstrate how different aspects of the molecule-surface interaction, namely the short-range adsorption potential, the asymptotic van der Waals potential, local chemical bonds which are the source of the surface corrugation, and molecule-molecule interactions can be measured with SPM and interpreted by the help of force-field simulations.

  19. Prediction of substrate-enzyme-product interaction based on molecular descriptors and physicochemical properties.

    PubMed

    Niu, Bing; Huang, Guohua; Zheng, Linfeng; Wang, Xueyuan; Chen, Fuxue; Zhang, Yuhui; Huang, Tao

    2013-01-01

    It is important to correctly and efficiently predict the interaction of substrate-enzyme and to predict their product in metabolic pathway. In this work, a novel approach was introduced to encode substrate/product and enzyme molecules with molecular descriptors and physicochemical properties, respectively. Based on this encoding method, KNN was adopted to build the substrate-enzyme-product interaction network. After selecting the optimal features that are able to represent the main factors of substrate-enzyme-product interaction in our prediction, totally 160 features out of 290 features were attained which can be clustered into ten categories: elemental analysis, geometry, chemistry, amino acid composition, predicted secondary structure, hydrophobicity, polarizability, solvent accessibility, normalized van der Waals volume, and polarity. As a result, our predicting model achieved an MCC of 0.423 and an overall prediction accuracy of 89.1% for 10-fold cross-validation test. PMID:24455714

  20. The research of distributed interactive simulation based on HLA in coal mine industry inherent safety

    NASA Astrophysics Data System (ADS)

    Dou, Zhi-Wu

    2010-08-01

    To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.

  1. Identifying protein complexes from interaction networks based on clique percolation and distance restriction

    PubMed Central

    2010-01-01

    Background Identification of protein complexes in large interaction networks is crucial to understand principles of cellular organization and predict protein functions, which is one of the most important issues in the post-genomic era. Each protein might be subordinate multiple protein complexes in the real protein-protein interaction networks. Identifying overlapping protein complexes from protein-protein interaction networks is a considerable research topic. Result As an effective algorithm in identifying overlapping module structures, clique percolation method (CPM) has a wide range of application in social networks and biological networks. However, the recognition accuracy of algorithm CPM is lowly. Furthermore, algorithm CPM is unfit to identifying protein complexes with meso-scale when it applied in protein-protein interaction networks. In this paper, we propose a new topological model by extending the definition of k-clique community of algorithm CPM and introduced distance restriction, and develop a novel algorithm called CP-DR based on the new topological model for identifying protein complexes. In this new algorithm, the protein complex size is restricted by distance constraint to conquer the shortcomings of algorithm CPM. The algorithm CP-DR is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Conclusion The proposed algorithm CP-DR based on clique percolation and distance restriction makes it possible to identify dense subgraphs in protein interaction networks, a large number of which correspond to known protein complexes. Compared to algorithm CPM, algorithm CP-DR has more outstanding performance. PMID:21047377

  2. Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins

    PubMed Central

    Ielasi, Francesco S.; Alioscha-Perez, Mitchel; Donohue, Dagmara; Claes, Sandra; Sahli, Hichem; Schols, Dominique

    2016-01-01

    ABSTRACT The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy—based on the construction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. PMID:27406561

  3. Similarity-based machine learning methods for predicting drug-target interactions: a brief review.

    PubMed

    Ding, Hao; Takigawa, Ichigaku; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2014-09-01

    Computationally predicting drug-target interactions is useful to select possible drug (or target) candidates for further biochemical verification. We focus on machine learning-based approaches, particularly similarity-based methods that use drug and target similarities, which show relationships among drugs and those among targets, respectively. These two similarities represent two emerging concepts, the chemical space and the genomic space. Typically, the methods combine these two types of similarities to generate models for predicting new drug-target interactions. This process is also closely related to a lot of work in pharmacogenomics or chemical biology that attempt to understand the relationships between the chemical and genomic spaces. This background makes the similarity-based approaches attractive and promising. This article reviews the similarity-based machine learning methods for predicting drug-target interactions, which are state-of-the-art and have aroused great interest in bioinformatics. We describe each of these methods briefly, and empirically compare these methods under a uniform experimental setting to explore their advantages and limitations. PMID:23933754

  4. A non-verbal Turing test: differentiating mind from machine in gaze-based social interaction.

    PubMed

    Pfeiffer, Ulrich J; Timmermans, Bert; Bente, Gary; Vogeley, Kai; Schilbach, Leonhard

    2011-01-01

    In social interaction, gaze behavior provides important signals that have a significant impact on our perception of others. Previous investigations, however, have relied on paradigms in which participants are passive observers of other persons' gazes and do not adjust their gaze behavior as is the case in real-life social encounters. We used an interactive eye-tracking paradigm that allows participants to interact with an anthropomorphic virtual character whose gaze behavior is responsive to where the participant looks on the stimulus screen in real time. The character's gaze reactions were systematically varied along a continuum from a maximal probability of gaze aversion to a maximal probability of gaze-following during brief interactions, thereby varying contingency and congruency of the reactions. We investigated how these variations influenced whether participants believed that the character was controlled by another person (i.e., a confederate) or a computer program. In a series of experiments, the human confederate was either introduced as naïve to the task, cooperative, or competitive. Results demonstrate that the ascription of humanness increases with higher congruency of gaze reactions when participants are interacting with a naïve partner. In contrast, humanness ascription is driven by the degree of contingency irrespective of congruency when the confederate was introduced as cooperative. Conversely, during interaction with a competitive confederate, judgments were neither based on congruency nor on contingency. These results offer important insights into what renders the experience of an interaction truly social: Humans appear to have a default expectation of reciprocation that can be influenced drastically by the presumed disposition of the interactor to either cooperate or compete. PMID:22096599

  5. A Non-Verbal Turing Test: Differentiating Mind from Machine in Gaze-Based Social Interaction

    PubMed Central

    Pfeiffer, Ulrich J.; Timmermans, Bert; Bente, Gary; Vogeley, Kai; Schilbach, Leonhard

    2011-01-01

    In social interaction, gaze behavior provides important signals that have a significant impact on our perception of others. Previous investigations, however, have relied on paradigms in which participants are passive observers of other persons’ gazes and do not adjust their gaze behavior as is the case in real-life social encounters. We used an interactive eye-tracking paradigm that allows participants to interact with an anthropomorphic virtual character whose gaze behavior is responsive to where the participant looks on the stimulus screen in real time. The character’s gaze reactions were systematically varied along a continuum from a maximal probability of gaze aversion to a maximal probability of gaze-following during brief interactions, thereby varying contingency and congruency of the reactions. We investigated how these variations influenced whether participants believed that the character was controlled by another person (i.e., a confederate) or a computer program. In a series of experiments, the human confederate was either introduced as naïve to the task, cooperative, or competitive. Results demonstrate that the ascription of humanness increases with higher congruency of gaze reactions when participants are interacting with a naïve partner. In contrast, humanness ascription is driven by the degree of contingency irrespective of congruency when the confederate was introduced as cooperative. Conversely, during interaction with a competitive confederate, judgments were neither based on congruency nor on contingency. These results offer important insights into what renders the experience of an interaction truly social: Humans appear to have a default expectation of reciprocation that can be influenced drastically by the presumed disposition of the interactor to either cooperate or compete. PMID:22096599

  6. Teacher-student interaction: The overlooked dimension of inquiry-based professional development

    NASA Astrophysics Data System (ADS)

    de Oliveira, Alandeom Wanderlei

    This study explores the teacher-student interactional dimension of inquiry-based science instruction. In it, microethnographic and grounded theory analyses are conducted in order to assess the impact of a professional development program designed to enhance in-service elementary teachers' interactional views (i.e., their understandings of inquiry-based social roles and relationships) and discursive practices (i.e., teachers' abilities to interact with student engaged in classroom inquiries) through a combination of expert instruction, immersion in scientific inquiry, and collaborative analysis of video-recorded classroom discourse. A sociolinguistic theoretical perspective on language use is adopted, viewing classroom discourse as comprising multiple linguistic signs (questions, responses, personal pronouns, hedges, backchannels, reactive tokens, directives, figures of speech, parallel repetitions) that convey not only semantic meanings (the literal information being exchanged) but also pragmatic meanings (information about teachers and students' social roles and relationships). A grounded theory analysis of the professional development activities uncovered a gradual shift in teachers' interactional views from a cognitive, monofunctional and decontextualized perspective to a social, multifunctional and contextualized conception of inquiry-based discourse. Furthermore, teachers developed increased levels of pragmatic awareness, being able to recognize the authoritative interactional functions served by discursive moves such as display questions, cued elicitation, convergent questioning, verbal cloze, affirmation, explicit evaluations of students' responses, verbatim repetitions, IRE triplets, IR couplets, second-person pronouns, "I/you" contrastive pairs, and direct or impolite directives. A comparative microethnographic analysis of teachers' classroom practices revealed that after participating in the program teachers demonstrated an improved ability to share

  7. ESI-MS Characterization of a Novel Pyrrole-Inosine Nucleoside that Interacts with Guanine Bases

    PubMed Central

    Pierce, Sarah E.; Sherman, Courtney L.; Jayawickramarajah, Janarthanan; Lawrence, Candace M.; Sessler, Jonathan L.; Brodbelt, Jennifer S.

    2008-01-01

    Based on binding studies undertaken by electrospray ionization-mass spectrometry, a synthetic pyrrole-inosine nucleoside, 1, capable of forming an extended three-point Hoogsteen-type hydrogen-bonding interaction with guanine, is shown to form specific complexes with two different quadruplex DNA structures [dTG4T]4 and d(T2G4)4 as well as guanine rich duplex DNA. The binding interactions of two other analogs were evaluated in order to unravel the structural features that contribute to specific DNA recognition. The importance of the Hoogsteen interactions was confirmed through the absence of specific binding when the pyrrole NH hydrogen-bonding site was blocked or removed. While 2, with a large blocking group, was not found to interact with virtually any form of DNA, 3, with the pyrrole functionality missing, was found to interact non-specifically with several types of DNA. The specific binding of 1 to guanine rich DNA emphasizes the necessity of careful ligand design for specific sequence recognition. PMID:18790136

  8. Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill †

    PubMed Central

    Kim, Jonghyun; Gravunder, Andrew; Park, Hyung-Soon

    2015-01-01

    Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject’s intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping. PMID:26393592

  9. Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill.

    PubMed

    Kim, Jonghyun; Gravunder, Andrew; Park, Hyung-Soon

    2015-01-01

    Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject's intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping. PMID:26393592

  10. Magnetic tweezers-based force clamp reveals mechanically distinct apCAM domain interactions.

    PubMed

    Kilinc, Devrim; Blasiak, Agata; O'Mahony, James J; Suter, Daniel M; Lee, Gil U

    2012-09-19

    Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in cell-cell interactions during nervous system development and function. The Aplysia CAM (apCAM), an invertebrate IgCAM, shares structural and functional similarities with vertebrate NCAM and therefore has been considered as the Aplysia homolog of NCAM. Despite these similarities, the binding properties of apCAM have not been investigated thus far. Using magnetic tweezers, we applied physiologically relevant, constant forces to apCAM-coated magnetic particles interacting with apCAM-coated model surfaces and characterized the kinetics of bond rupture. The average bond lifetime decreased with increasing external force, as predicted by theoretical considerations. Mathematical simulations suggest that the apCAM homophilic interaction is mediated by two distinct bonds, one involving all five immunoglobulin (Ig)-like domains in an antiparallel alignment and the other involving only two Ig domains. In summary, this study provides biophysical evidence that apCAM undergoes homophilic interactions, and that magnetic tweezers-based, force-clamp measurements provide a rapid and reliable method for characterizing relatively weak CAM interactions. PMID:22995484

  11. Effects of Coulomb interactions on the superconducting gaps in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Leong, Zhidong; Phillips, Philip

    2016-04-01

    Recent angle-resolved photoemission spectroscopy measurements of Co-doped LiFeAs report a large and robust superconducting gap on the Γ -centered hole band that lies 8 meV below the Fermi level. We show that, unlike a conventional superconductor described by BCS theory, a multiband system with strong interband Coulomb interactions can explain these observations. We model LiFeAs with a five-band model in which the shallow hole band is coupled with the other bands by only Coulomb interactions. Using Eliashberg theory, we find reasonable interaction parameters that reproduce the Tc and all five gaps of LiFeAs. The energy independence of the Coulomb interactions then ensures the robustness of the gap induced on the shallow band. Furthermore, due to the repulsive nature of the Coulomb interactions, the gap changes sign between the shallow band and the other hole pockets, corresponding to an unconventional s± gap symmetry. Unlike other families of iron-based superconductors, the gap symmetry of LiFeAs has not been ascertained experimentally. The experimental implications of this sign-changing state are discussed.

  12. Platoon Interactions and Real-World Traffic Simulation and Validation Based on the LWR-IM.

    PubMed

    Ng, Kok Mun; Reaz, Mamun Bin Ibne

    2016-01-01

    Platoon based traffic flow models form the underlying theoretical framework in traffic simulation tools. They are essentially important in facilitating efficient performance calculation and evaluation in urban traffic networks. For this purpose, a new platoon-based macroscopic model called the LWR-IM has been developed in [1]. Preliminary analytical validation conducted previously has proven the feasibility of the model. In this paper, the LWR-IM is further enhanced with algorithms that describe platoon interactions in urban arterials. The LWR-IM and the proposed platoon interaction algorithms are implemented in the real-world class I and class II urban arterials. Another purpose of the work is to perform quantitative validation to investigate the validity and ability of the LWR-IM and its underlying algorithms to describe platoon interactions and simulate performance indices that closely resemble the real traffic situations. The quantitative validation of the LWR-IM is achieved by performing a two-sampled t-test on queues simulated by the LWR-IM and real queues observed at these real-world locations. The results reveal insignificant differences of simulated queues with real queues where the p-values produced concluded that the null hypothesis cannot be rejected. Thus, the quantitative validation further proved the validity of the LWR-IM and the embedded platoon interactions algorithm for the intended purpose. PMID:26731745

  13. A Course-based Cross-Cultural Interaction among Pharmacy Students in Qatar and Canada

    PubMed Central

    Taylor, Jeff; Khalifa, Sherief I.; Jorgenson, Derek

    2015-01-01

    Objective. To develop, implement, and evaluate a course-based, cross-cultural student interaction using real-time videoconferencing between universities in Canada and Qatar. Design. A professional skills simulation practice session on smoking cessation was run for students in Qatar (n=22) and Canada (n=22). Students role played cases in small group situations and then interacted with colleagues from the other country regarding culturally challenging situations and communication strategies. Assessment. Students were assessed on analytical content and communication skills through faculty member and peer evaluation. Cultural competency outcomes were assessed using a postsession survey. Overall, 92.3% of respondents agreed that learning was enhanced through the cross-cultural exchange, and 94.9% agreed that insight was gained into the health-related issues and needs of people from another culture. Conclusion. A course-based, cross-cultural interaction was an effective method to incorporate cultural competency principles into student learning. Future initiatives should increase direct student interaction and focus on culturally sensitive topics. PMID:25861107

  14. A multiple-responsive self-healing supramolecular polymer gel network based on multiple orthogonal interactions.

    PubMed

    Zhan, Jiayi; Zhang, Mingming; Zhou, Mi; Liu, Bin; Chen, Dong; Liu, Yuanyuan; Chen, Qianqian; Qiu, Huayu; Yin, Shouchun

    2014-08-01

    Supramolecular polymer networks have attracted considerable attention not only due to their topological importance but also because they can show some fantastic properties such as stimuli-responsiveness and self-healing. Although various supramolecular networks are constructed by supramolecular chemists based on different non-covalent interactions, supramolecular polymer networks based on multiple orthogonal interactions are still rare. Here, a supramolecular polymer network is presented on the basis of the host-guest interactions between dibenzo-24-crown-8 (DB24C8) and dibenzylammonium salts (DBAS), the metal-ligand coordination interactions between terpyridine and Zn(OTf)2 , and between 1,2,3-triazole and PdCl2 (PhCN)2 . The topology of the networks can be easily tuned from monomer to main-chain supramolecular polymer and then to the supramolecular networks. This process is well studied by various characterization methods such as (1) H NMR, UV-vis, DOSY, viscosity, and rheological measurements. More importantly, a supramolecular gel is obtained at high concentrations of the supramolecular networks, which demonstrates both stimuli-responsiveness and self-healing properties. PMID:24943122

  15. Platoon Interactions and Real-World Traffic Simulation and Validation Based on the LWR-IM

    PubMed Central

    Ng, Kok Mun; Reaz, Mamun Bin Ibne

    2016-01-01

    Platoon based traffic flow models form the underlying theoretical framework in traffic simulation tools. They are essentially important in facilitating efficient performance calculation and evaluation in urban traffic networks. For this purpose, a new platoon-based macroscopic model called the LWR-IM has been developed in [1]. Preliminary analytical validation conducted previously has proven the feasibility of the model. In this paper, the LWR-IM is further enhanced with algorithms that describe platoon interactions in urban arterials. The LWR-IM and the proposed platoon interaction algorithms are implemented in the real-world class I and class II urban arterials. Another purpose of the work is to perform quantitative validation to investigate the validity and ability of the LWR-IM and its underlying algorithms to describe platoon interactions and simulate performance indices that closely resemble the real traffic situations. The quantitative validation of the LWR-IM is achieved by performing a two-sampled t-test on queues simulated by the LWR-IM and real queues observed at these real-world locations. The results reveal insignificant differences of simulated queues with real queues where the p-values produced concluded that the null hypothesis cannot be rejected. Thus, the quantitative validation further proved the validity of the LWR-IM and the embedded platoon interactions algorithm for the intended purpose. PMID:26731745

  16. Sensorless Interaction Force Control Based on B-Spline Function for Human-Robot Systems

    NASA Astrophysics Data System (ADS)

    Mitsantisuk, Chowarit; Katsura, Seiichiro; Ohishi, Kiyoshi

    In this paper, to provide precise force sensation of human operator, a twin direct-drive motor system with wire rope mechanism has been developed. The human-robot interaction force and the wire rope tension are independently controlled in acceleration dimension by realizing the dual disturbance observer based on modal space design. In the common mode, it is utilized for control of vibration suppression and wire rope tension. In the differential mode, the purity of human external force with compensation of friction force is obtained. This mode is useful for control of the interaction force of human. Furthermore, the human-robot system that has the ability of support of human interaction force is also proposed. The interaction force generation based on B-spline function is applied to automatically adjust the smooth force command corresponding to the adaptive parameters.
    To analyze the human movement stroke, the multi-sensor scheme is applied to fuse both two motor encoders and acceleration sensor signal by using Kalman filter. From the experimental results, the ability to design different level of assistive force makes it well suited to customized training programs due to time and human movement constraints.

  17. Critical temperature of trapped interacting bosons from large-N -based theories

    NASA Astrophysics Data System (ADS)

    Kim, Tom; Chien, Chih-Chun

    2016-03-01

    Ultracold atoms provide clues to an important many-body problem regarding the dependence of the Bose-Einstein condensation transition temperature Tc on interactions. However, cold atoms are trapped in harmonic potentials and theoretical evaluations of the Tc shift of trapped interacting Bose gases are challenging. While previous predictions of the leading-order shift have been confirmed, more recent experiments exhibit higher-order corrections beyond available mean-field theories. By implementing two large-N -based theories with the local density approximation (LDA), we extract next-order corrections of the Tc shift. The leading-order large-N theory produces results quantitatively different from the latest experimental data. The leading-order auxiliary-field (LOAF) theory, containing both normal and anomalous density fields, captures the Tc shift accurately in the weak-interaction regime. However, the LOAF theory shows incompatible behavior with the LDA, and forcing the LDA leads to density discontinuities in the trap profiles. We present a phenomenological model based on the LOAF theory, which repairs the incompatibility and provides a prediction of the Tc shift in the stronger-interaction regime.

  18. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    NASA Astrophysics Data System (ADS)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  19. Synthesis of bio-based aldehyde from seaweed polysaccharide and its interaction with bovine serum albumin.

    PubMed

    Kholiya, Faisal; Chaudhary, Jai Prakash; Vadodariya, Nilesh; Meena, Ramavatar

    2016-10-01

    Here, we demonstrate a successful synthesis of bio-based aldehyde namely dialdehyde-carboxymethylagarose (DCMA) using carboxymethyagarose (CMA). Further reaction parameters (i.e. reaction temperature, pH and periodate concentration) were optimized to achieve maximum aldehyde content and product yield. The synthesis of DCMA was confirmed by employing FTIR, (1)H NMR, XRD, SEM, AFM, TGA, DSC, EA and GPC techniques. To investigate the aldehyde functionality, DCMA was allowed to interact with BSA and obtained results were found to be comparable with that of synthetic aldehyde (Formaldehyde). Further interaction of DCMA with BSA was confirmed by using UV-vis, FTIR, fluorescent spectroscopy, CD and DLS analysis. Results of this study revealed that bio-based aldehyde behaves like formaldehyde. This study adds value to abundant marine biopolymers and opens the new research area for polymer researchers. PMID:27312639

  20. Prediction of human protein-protein interaction by a domain-based approach.

    PubMed

    Zhang, Xiaopan; Jiao, Xiong; Song, Jie; Chang, Shan

    2016-05-01

    Protein-protein interactions (PPIs) are vital to a number of biological processes. With computational methods, plenty of domain information can help us to predict and assess PPIs. In this study, we proposed a domain-based approach for the prediction of human PPIs based on the interactions between the proteins and the domains. In this method, an optimizing model was built with the information from InterDom, 3did, DOMINE and Pfam databases. With this model, for 147 proteins in the integrin adhesome PPI network, 736 probable PPIs have been predicted, and the corresponding confidence probabilities of these PPIs were also calculated. It provides an opportunity to visualize the PPIs by using network graphs, which were constructed with Cytoscape, so that we can indicate underlying pathways possible. PMID:26925814

  1. 1Click1View: Interactive Visualization Methodology for RNAi Cell-Based Microscopic Screening

    PubMed Central

    Zwolinski, Lukasz; Kozak, Marta; Kozak, Karol

    2013-01-01

    Technological advancements are constantly increasing the size and complexity of data resulting from large-scale RNA interference screens. This fact has led biologists to ask complex questions, which the existing, fully automated analyses are often not adequate to answer. We present a concept of 1Click1View (1C1V) as a methodology for interactive analytic software tools. 1C1V can be applied for two-dimensional visualization of image-based screening data sets from High Content Screening (HCS). Through an easy-to-use interface, one-click, one-view concept, and workflow based architecture, visualization method facilitates the linking of image data with numeric data. Such method utilizes state-of-the-art interactive visualization tools optimized for fast visualization of large scale image data sets. We demonstrate our method on an HCS dataset consisting of multiple cell features from two screening assays. PMID:23484084

  2. A coprecipitation-based validation methodology for interactions identified using protein microarrays.

    PubMed

    Marina, Ovidiu; Duke-Cohan, Jonathan S; Wu, Catherine J

    2011-01-01

    Candidate interactions identified by high-throughput protein microarray screening require rigorous -confirmation. Such validation is time-consuming and labor-intensive using conventional techniques. We describe a medium-throughput validation protocol based on coprecipitation of biotin-labeled -proteins synthesized in vitro using a rabbit reticulocyte lysate-coupled transcription and translation system. As our experimental system is based on screening for serum antibodies, we also present methods on purifying immunoglobulin from serum and quantifying the amount of coprecipitated (immunoprecipitated) target protein on Western blot. This technique provides a sensitive confirmatory test allowing for the rapid elimination of false positives prior to more extensive validation and analysis of target interactions in their native environment. PMID:21370070

  3. A computational approach for the annotation of hydrogen-bonded base interactions in crystallographic structures of the ribozymes

    NASA Astrophysics Data System (ADS)

    Hamdani, Hazrina Yusof; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2015-09-01

    A fundamental understanding of the atomic level interactions in ribonucleic acid (RNA) and how they contribute towards RNA architecture is an important knowledge platform to develop through the discovery of motifs from simple arrangements base pairs, to more complex arrangements such as triples and larger patterns involving non-standard interactions. The network of hydrogen bond interactions is important in connecting bases to form potential tertiary motifs. Therefore, there is an urgent need for the development of automated methods for annotating RNA 3D structures based on hydrogen bond interactions. COnnection tables Graphs for Nucleic ACids (COGNAC) is automated annotation system using graph theoretical approaches that has been developed for the identification of RNA 3D motifs. This program searches for patterns in the unbroken networks of hydrogen bonds for RNA structures and capable of annotating base pairs and higher-order base interactions, which ranges from triples to sextuples. COGNAC was able to discover 22 out of 32 quadruples occurrences of the Haloarcula marismortui large ribosomal subunit (PDB ID: 1FFK) and two out of three occurrences of quintuple interaction reported by the non-canonical interactions in RNA (NCIR) database. These and several other interactions of interest will be discussed in this paper. These examples demonstrate that the COGNAC program can serve as an automated annotation system that can be used to annotate conserved base-base interactions and could be added as additional information to established RNA secondary structure prediction methods.

  4. A computational approach for the annotation of hydrogen-bonded base interactions in crystallographic structures of the ribozymes

    SciTech Connect

    Hamdani, Hazrina Yusof; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2015-09-25

    A fundamental understanding of the atomic level interactions in ribonucleic acid (RNA) and how they contribute towards RNA architecture is an important knowledge platform to develop through the discovery of motifs from simple arrangements base pairs, to more complex arrangements such as triples and larger patterns involving non-standard interactions. The network of hydrogen bond interactions is important in connecting bases to form potential tertiary motifs. Therefore, there is an urgent need for the development of automated methods for annotating RNA 3D structures based on hydrogen bond interactions. COnnection tables Graphs for Nucleic ACids (COGNAC) is automated annotation system using graph theoretical approaches that has been developed for the identification of RNA 3D motifs. This program searches for patterns in the unbroken networks of hydrogen bonds for RNA structures and capable of annotating base pairs and higher-order base interactions, which ranges from triples to sextuples. COGNAC was able to discover 22 out of 32 quadruples occurrences of the Haloarcula marismortui large ribosomal subunit (PDB ID: 1FFK) and two out of three occurrences of quintuple interaction reported by the non-canonical interactions in RNA (NCIR) database. These and several other interactions of interest will be discussed in this paper. These examples demonstrate that the COGNAC program can serve as an automated annotation system that can be used to annotate conserved base-base interactions and could be added as additional information to established RNA secondary structure prediction methods.

  5. Model-based video segmentation for vision-augmented interactive games

    NASA Astrophysics Data System (ADS)

    Liu, Lurng-Kuo

    2000-04-01

    This paper presents an architecture and algorithms for model based video object segmentation and its applications to vision augmented interactive game. We are especially interested in real time low cost vision based applications that can be implemented in software in a PC. We use different models for background and a player object. The object segmentation algorithm is performed in two different levels: pixel level and object level. At pixel level, the segmentation algorithm is formulated as a maximizing a posteriori probability (MAP) problem. The statistical likelihood of each pixel is calculated and used in the MAP problem. Object level segmentation is used to improve segmentation quality by utilizing the information about the spatial and temporal extent of the object. The concept of an active region, which is defined based on motion histogram and trajectory prediction, is introduced to indicate the possibility of a video object region for both background and foreground modeling. It also reduces the overall computation complexity. In contrast with other applications, the proposed video object segmentation system is able to create background and foreground models on the fly even without introductory background frames. Furthermore, we apply different rate of self-tuning on the scene model so that the system can adapt to the environment when there is a scene change. We applied the proposed video object segmentation algorithms to several prototype virtual interactive games. In our prototype vision augmented interactive games, a player can immerse himself/herself inside a game and can virtually interact with other animated characters in a real time manner without being constrained by helmets, gloves, special sensing devices, or background environment. The potential applications of the proposed algorithms including human computer gesture interface and object based video coding such as MPEG-4 video coding.

  6. Powerful Set-Based Gene-Environment Interaction Testing Framework for Complex Diseases.

    PubMed

    Jiao, Shuo; Peters, Ulrike; Berndt, Sonja; Bézieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Lemire, Mathieu; Newcomb, Polly A; Potter, John D; Slattery, Martha L; Woods, Michael O; Hsu, Li

    2015-12-01

    Identification of gene-environment interaction (G × E) is important in understanding the etiology of complex diseases. Based on our previously developed Set Based gene EnviRonment InterAction test (SBERIA), in this paper we propose a powerful framework for enhanced set-based G × E testing (eSBERIA). The major challenge of signal aggregation within a set is how to tell signals from noise. eSBERIA tackles this challenge by adaptively aggregating the interaction signals within a set weighted by the strength of the marginal and correlation screening signals. eSBERIA then combines the screening-informed aggregate test with a variance component test to account for the residual signals. Additionally, we develop a case-only extension for eSBERIA (coSBERIA) and an existing set-based method, which boosts the power not only by exploiting the G-E independence assumption but also by avoiding the need to specify main effects for a large number of variants in the set. Through extensive simulation, we show that coSBERIA and eSBERIA are considerably more powerful than existing methods within the case-only and the case-control method categories across a wide range of scenarios. We conduct a genome-wide G × E search by applying our methods to Illumina HumanExome Beadchip data of 10,446 colorectal cancer cases and 10,191 controls and identify two novel interactions between nonsteroidal anti-inflammatory drugs (NSAIDs) and MINK1 and PTCHD3. PMID:26095235

  7. Self-healing supramolecular gels formed by crown ether based host-guest interactions.

    PubMed

    Zhang, Mingming; Xu, Donghua; Yan, Xuzhou; Chen, Jianzhuang; Dong, Shengyi; Zheng, Bo; Huang, Feihe

    2012-07-01

    Automatic repair: a polymer with pendent dibenzo[24]crown-8 units (purple in picture) was cross-linked by two bisammonium salts (green) to form two supramolecular gels based on host-guest interactions. These two gels are stimuli-responsive materials that respond to changes of the pH value and are also self-healing materials, as can be seen by eye and as evidenced by rheological data. PMID:22653895

  8. Epistatic Gene-Based Interaction Analyses for Glaucoma in eMERGE and NEIGHBOR Consortium.

    PubMed

    Verma, Shefali Setia; Cooke Bailey, Jessica N; Lucas, Anastasia; Bradford, Yuki; Linneman, James G; Hauser, Michael A; Pasquale, Louis R; Peissig, Peggy L; Brilliant, Murray H; McCarty, Catherine A; Haines, Jonathan L; Wiggs, Janey L; Vrabec, Tamara R; Tromp, Gerard; Ritchie, Marylyn D

    2016-09-01

    Primary open angle glaucoma (POAG) is a complex disease and is one of the major leading causes of blindness worldwide. Genome-wide association studies have successfully identified several common variants associated with glaucoma; however, most of these variants only explain a small proportion of the genetic risk. Apart from the standard approach to identify main effects of variants across the genome, it is believed that gene-gene interactions can help elucidate part of the missing heritability by allowing for the test of interactions between genetic variants to mimic the complex nature of biology. To explain the etiology of glaucoma, we first performed a genome-wide association study (GWAS) on glaucoma case-control samples obtained from electronic medical records (EMR) to establish the utility of EMR data in detecting non-spurious and relevant associations; this analysis was aimed at confirming already known associations with glaucoma and validating the EMR derived glaucoma phenotype. Our findings from GWAS suggest consistent evidence of several known associations in POAG. We then performed an interaction analysis for variants found to be marginally associated with glaucoma (SNPs with main effect p-value <0.01) and observed interesting findings in the electronic MEdical Records and GEnomics Network (eMERGE) network dataset. Genes from the top epistatic interactions from eMERGE data (Likelihood Ratio Test i.e. LRT p-value <1e-05) were then tested for replication in the NEIGHBOR consortium dataset. To replicate our findings, we performed a gene-based SNP-SNP interaction analysis in NEIGHBOR and observed significant gene-gene interactions (p-value <0.001) among the top 17 gene-gene models identified in the discovery phase. Variants from gene-gene interaction analysis that we found to be associated with POAG explain 3.5% of additional genetic variance in eMERGE dataset above what is explained by the SNPs in genes that are replicated from previous GWAS studies (which

  9. Genetic programming-based approach to elucidate biochemical interaction networks from data.

    PubMed

    Kandpal, Manoj; Kalyan, Chakravarthy Mynampati; Samavedham, Lakshminarayanan

    2013-02-01

    Biochemical systems are characterised by cyclic/reversible reciprocal actions, non-linear interactions and a mixed relationship structures (linear and non-linear; static and dynamic). Deciphering the architecture of such systems using measured data to provide quantitative information regarding the nature of relationships that exist between the measured variables is a challenging proposition. Causality detection is one of the methodologies that are applied to elucidate biochemical networks from such data. Autoregressive-based modelling approach such as granger causality, partial directed coherence, directed transfer function and canonical variate analysis have been applied on different systems for deciphering such interactions, but with limited success. In this study, the authors propose a genetic programming-based causality detection (GPCD) methodology which blends evolutionary computation-based procedures along with parameter estimation methods to derive a mathematical model of the system. Application of the GPCD methodology on five data sets that contained the different challenges mentioned above indicated that GPCD performs better than the other methods in uncovering the exact structure with less false positives. On a glycolysis data set, GPCD was able to fill the 'interaction gaps' which were missed by other methods. PMID:23848052

  10. iHand: an interactive bare-hand-based augmented reality interface on commercial mobile phones

    NASA Astrophysics Data System (ADS)

    Choi, Junyeong; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2013-02-01

    The performance of mobile phones has rapidly improved, and they are emerging as a powerful platform. In many vision-based applications, human hands play a key role in natural interaction. However, relatively little attention has been paid to the interaction between human hands and the mobile phone. Thus, we propose a vision- and hand gesture-based interface in which the user holds a mobile phone in one hand but sees the other hand's palm through a built-in camera. The virtual contents are faithfully rendered on the user's palm through palm pose estimation, and reaction with hand and finger movements is achieved that is recognized by hand shape recognition. Since the proposed interface is based on hand gestures familiar to humans and does not require any additional sensors or markers, the user can freely interact with virtual contents anytime and anywhere without any training. We demonstrate that the proposed interface works at over 15 fps on a commercial mobile phone with a 1.2-GHz dual core processor and 1 GB RAM.

  11. GIS-based interactive tool to map the advent of world conquerors

    NASA Astrophysics Data System (ADS)

    Lakkaraju, Mahesh

    The objective of this thesis is to show the scale and extent of some of the greatest empires the world has ever seen. This is a hybrid project between the GIS based interactive tool and the web-based JavaScript tool. This approach lets the students learn effectively about the emperors themselves while understanding how long and far their empires spread. In the GIS based tool, a map is displayed with various points on it, and when a user clicks on one point, the relevant information of what happened at that particular place is displayed. Apart from this information, users can also select the interactive animation button and can walk through a set of battles in chronological order. As mentioned, this uses Java as the main programming language, and MOJO (Map Objects Java Objects) provided by ESRI. MOJO is very effective as its GIS related features can be included in the application itself. This app. is a simple tool and has been developed for university or high school level students. D3.js is an interactive animation and visualization platform built on the Javascript framework. Though HTML5, CSS3, Javascript and SVG animations can be used to derive custom animations, this tool can help bring out results with less effort and more ease of use. Hence, it has become the most sought after visualization tool for multiple applications. D3.js has provided a map-based visualization feature so that we can easily display text-based data in a map-based interface. To draw the map and the points on it, D3.js uses data rendered in TOPO JSON format. The latitudes and longitudes can be provided, which are interpolated into the Map svg. One of the main advantages of doing it this way is that more information is retained when we use a visual medium.

  12. The Pathway Active Learning Environment: An interactive web-based tool for physics education

    NASA Astrophysics Data System (ADS)

    Nakamura, Christopher Matthew

    The work described here represents an effort to design, construct, and test an interactive online multimedia learning environment that can provide physics instruction to students in their homes. The system was designed with one-on-one human tutoring in mind as the mode of instruction. The system uses an original combination of a video-based tutor that incorporates natural language processing video-centered lessons and additional illustrative multimedia. Our Synthetic Interview (SI) tutor provides pre-recorded video answers from expert physics instructors in response to students' typed natural language questions. Our lessons cover Newton's laws and provide a context for the tutoring interaction to occur, connect physics ideas to real-world behavior of mechanical systems, and allow for quantitative testing of physics. Additional multimedia can be used to supplement the SI tutors' explanations and illustrate the physics of interest. The system is targeted at students of algebra-based and concept-based physics at the college and high school level. The system logs queries to the SI tutor, responses to lesson questions and several other interactions with the system, tagging those interactions with a username and timestamp. We have provided several groups of students with access to our system under several different conditions ranging from the controlled conditions of our interview facility to the naturalistic conditions of use at home. In total nearly two-hundred students have accessed the system. To gain insight into the ways students might use the system and understand the utility of its various components we analyzed qualitative interview data collected with 22 algebra-based physics students who worked with our system in our interview facility. We also performed a descriptive analysis of data from the system's log of user interactions. Finally we explored the use of machine learning to explore the possibility of using automated assessment to augment the interactive

  13. Technological applications arising from the interactions of DNA bases with metal ions.

    PubMed

    Park, Ki Soo; Park, Hyun Gyu

    2014-08-01

    An intense interest has grown in the unique interactions of nucleic acids with metal ions, which lead to the formation of metal-base pairs and the generation of fluorescent nanomaterials. In this review, different types of metal-base pairs, especially those formed from naturally occurring nucleosides, are described with emphasis also being given to recent advances made in employing these complexes to govern enzymatic reactions. The review also contains a comprehensive description of DNA-templated inorganic nanomaterials such as silver nanoclusters which possess excellent fluorescence properties. Finally, a summary is given about how these materials have led to recent advances in the field of nanobiotechnology. PMID:24832070

  14. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    NASA Astrophysics Data System (ADS)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural

  15. Interactive computer-assisted instruction in acid-base physiology for mobile computer platforms.

    PubMed

    Longmuir, Kenneth J

    2014-03-01

    In this project, the traditional lecture hall presentation of acid-base physiology in the first-year medical school curriculum was replaced by interactive, computer-assisted instruction designed primarily for the iPad and other mobile computer platforms. Three learning modules were developed, each with ∼20 screens of information, on the subjects of the CO2-bicarbonate buffer system, other body buffer systems, and acid-base disorders. Five clinical case modules were also developed. For the learning modules, the interactive, active learning activities were primarily step-by-step learner control of explanations of complex physiological concepts, usually presented graphically. For the clinical cases, the active learning activities were primarily question-and-answer exercises that related clinical findings to the relevant basic science concepts. The student response was remarkably positive, with the interactive, active learning aspect of the instruction cited as the most important feature. Also, students cited the self-paced instruction, extensive use of interactive graphics, and side-by-side presentation of text and graphics as positive features. Most students reported that it took less time to study the subject matter with this online instruction compared with subject matter presented in the lecture hall. However, the approach to learning was highly examination driven, with most students delaying the study of the subject matter until a few days before the scheduled examination. Wider implementation of active learning computer-assisted instruction will require that instructors present subject matter interactively, that students fully embrace the responsibilities of independent learning, and that institutional administrations measure instructional effort by criteria other than scheduled hours of instruction. PMID:24585467

  16. The Pathogen-Host Interactions database (PHI-base): additions and future developments

    PubMed Central

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  17. PEG and Thickeners: A Critical Interaction Between Polyethylene Glycol Laxative and Starch-Based Thickeners.

    PubMed

    Carlisle, Brian J; Craft, Garrett; Harmon, Julie P; Ilkevitch, Alina; Nicoghosian, Jenik; Sheyner, Inna; Stewart, Jonathan T

    2016-09-01

    Clinicians commonly encounter dysphagia and constipation in a skilled nursing population. Increasing the viscosity of liquids, usually with a starch- or xanthan gum-based thickener, serves as a key intervention for patients with dysphagia. We report a newly identified and potentially dangerous interaction between polyethylene glycol 3350 laxative (PEG) and starch-thickened liquids. A patient requiring nectar-thickened liquids became constipated, and medical staff prescribed PEG for constipation. His nurse observed that the thickened apple juice immediately thinned to near-water consistency when PEG was added. She obtained the same results with thickened water and coffee. We quantified this phenomenon by isothermal rotational rheology. Results confirmed a precipitous loss of thickening when PEG was added to starch-based thickeners but not with xanthan gum-based thickeners. Clinicians and front-line staff should be aware of this potentially critical interaction between PEG- and starch-based thickeners. Although confirmatory studies are needed, our preliminary data suggest that PEG may be compatible with xanthan gum-- based thickeners. PMID:27569713

  18. The Pathogen-Host Interactions database (PHI-base): additions and future developments.

    PubMed

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340

  19. Efficient techniques for wave-based sound propagation in interactive applications

    NASA Astrophysics Data System (ADS)

    Mehra, Ravish

    Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data

  20. Improving scientists' interaction with complex computational-visualization environments based on a distributed grid infrastructure.

    PubMed

    Kalawsky, R S; O'Brien, J; Coveney, P V

    2005-08-15

    The grid has the potential to transform collaborative scientific investigations through the use of closely coupled computational and visualization resources, which may be geographically distributed, in order to harness greater power than is available at a single site. Scientific applications to benefit from the grid include visualization, computational science, environmental modelling and medical imaging. Unfortunately, the diversity, scale and location of the required resources can present a dilemma for the scientific worker because of the complexity of the underlying technology. As the scale of the scientific problem under investigation increases so does the nature of the scientist's interaction with the supporting infrastructure. The increased distribution of people and resources within a grid-based environment can make resource sharing and collaborative interaction a critical factor to their success. Unless the technological barriers affecting user accessibility are reduced, there is a danger that the only scientists to benefit will be those with reasonably high levels of computer literacy. This paper examines a number of important human factors of user interaction with the grid and expresses this in the context of the science undertaken by RealityGrid, a project funded by the UK e-Science programme. Critical user interaction issues will also be highlighted by comparing grid computational steering with supervisory control systems for local and remote access to the scientific environment. Finally, implications for future grid developers will be discussed with a particular emphasis on how to improve the scientists' access to what will be an increasingly important resource. PMID:16099754

  1. Similarity-based modeling in large-scale prediction of drug-drug interactions.

    PubMed

    Vilar, Santiago; Uriarte, Eugenio; Santana, Lourdes; Lorberbaum, Tal; Hripcsak, George; Friedman, Carol; Tatonetti, Nicholas P

    2014-09-01

    Drug-drug interactions (DDIs) are a major cause of adverse drug effects and a public health concern, as they increase hospital care expenses and reduce patients' quality of life. DDI detection is, therefore, an important objective in patient safety, one whose pursuit affects drug development and pharmacovigilance. In this article, we describe a protocol applicable on a large scale to predict novel DDIs based on similarity of drug interaction candidates to drugs involved in established DDIs. The method integrates a reference standard database of known DDIs with drug similarity information extracted from different sources, such as 2D and 3D molecular structure, interaction profile, target and side-effect similarities. The method is interpretable in that it generates drug interaction candidates that are traceable to pharmacological or clinical effects. We describe a protocol with applications in patient safety and preclinical toxicity screening. The time frame to implement this protocol is 5-7 h, with additional time potentially necessary, depending on the complexity of the reference standard DDI database and the similarity measures implemented. PMID:25122524

  2. Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries

    NASA Astrophysics Data System (ADS)

    Li, Chia-Chen; Lin, Yu-Sheng

    2012-12-01

    The interactions of organic additives with active powders are investigated and are found to have great influence on the determination of the mixing process for preparing electrode slurries with good dispersion and electrochemical properties of lithium iron phosphate (LiFePO4) electrodes. Based on the analyses of zeta potential, sedimentation, and rheology, it is shown that LiFePO4 prefers to interact with styrene-butadiene rubber (SBR) relative to other organic additives such as sodium carboxymethyl cellulose (SCMC), and thus shows preferential adsorption by SBR, whereas SBR has much lower efficiency than SCMC in dispersing LiFePO4. Therefore, for SCMC to interact with and disperse LiFePO4 before the interaction of LiFePO4 with SBR, it is suggested to mix SCMC with LiFePO4 prior to the addition of SBR during the slurry preparation process. For the electrode prepared via the suggested process, i.e., the sequenced adding process in which SCMC is mixed with active powders prior to the addition of SBR, a much better electrochemical performance is obtained than that of the one prepared via the process referred as the simultaneous adding process, in which mixing of SCMC and SBR with active powders in simultaneous.

  3. Real-time interactive projection system based on infrared structured-light method

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaorui; Zhou, Qian; Ni, Kai; He, Liang; Wu, Guanhao; Mao, Leshan; Cheng, Xuemin; Ma, Jianshe

    2012-11-01

    Interactive technologies have been greatly developed in recent years, especially in projection field. However, at present, most interactive projection systems are based on special designed interactive pens or whiteboards, which is inconvenient and limits the improvement of user experience. In this paper, we introduced our recent progress on theoretically modeling a real-time interactive projection system. The system permits the user to easily operate or draw on the projection screen directly by fingers without any other auxiliary equipment. The projector projects infrared striping patterns onto the screen and the CCD captures the deformational image. We resolve the finger's position and track its movement by processing the deformational image in real-time. A new way to determine whether the finger touches the screen is proposed. The first deformational fringe on the fingertip and the first fringe at the finger shadow are the same one. The correspondence is obtained, so the location parameters can be decided by triangulation. The simulation results are given, and errors are analyzed.

  4. DINIES: drug–target interaction network inference engine based on supervised analysis

    PubMed Central

    Yamanishi, Yoshihiro; Kotera, Masaaki; Moriya, Yuki; Sawada, Ryusuke; Kanehisa, Minoru; Goto, Susumu

    2014-01-01

    DINIES (drug–target interaction network inference engine based on supervised analysis) is a web server for predicting unknown drug–target interaction networks from various types of biological data (e.g. chemical structures, drug side effects, amino acid sequences and protein domains) in the framework of supervised network inference. The originality of DINIES lies in prediction with state-of-the-art machine learning methods, in the integration of heterogeneous biological data and in compatibility with the KEGG database. The DINIES server accepts any ‘profiles’ or precalculated similarity matrices (or ‘kernels’) of drugs and target proteins in tab-delimited file format. When a training data set is submitted to learn a predictive model, users can select either known interaction information in the KEGG DRUG database or their own interaction data. The user can also select an algorithm for supervised network inference, select various parameters in the method and specify weights for heterogeneous data integration. The server can provide integrative analyses with useful components in KEGG, such as biological pathways, functional hierarchy and human diseases. DINIES (http://www.genome.jp/tools/dinies/) is publicly available as one of the genome analysis tools in GenomeNet. PMID:24838565

  5. Literature-based discovery of IFN-gamma and vaccine-mediated gene interaction networks.

    PubMed

    Ozgür, Arzucan; Xiang, Zuoshuang; Radev, Dragomir R; He, Yongqun

    2010-01-01

    Interferon-gamma (IFN-gamma) regulates various immune responses that are often critical for vaccine-induced protection. In order to annotate the IFN-gamma-related gene interaction network from a large amount of IFN-gamma research reported in the literature, a literature-based discovery approach was applied with a combination of natural language processing (NLP) and network centrality analysis. The interaction network of human IFN-gamma (Gene symbol: IFNG) and its vaccine-specific subnetwork were automatically extracted using abstracts from all articles in PubMed. Four network centrality metrics were further calculated to rank the genes in the constructed networks. The resulting generic IFNG network contains 1060 genes and 26313 interactions among these genes. The vaccine-specific subnetwork contains 102 genes and 154 interactions. Fifty six genes such as TNF, NFKB1, IL2, IL6, and MAPK8 were ranked among the top 25 by at least one of the centrality methods in one or both networks. Gene enrichment analysis indicated that these genes were classified in various immune mechanisms such as response to extracellular stimulus, lymphocyte activation, and regulation of apoptosis. Literature evidence was manually curated for the IFN-gamma relatedness of 56 genes and vaccine development relatedness for 52 genes. This study also generated many new hypotheses worth further experimental studies. PMID:20625487

  6. Structure of a protein (H2AX): a comparative study with knowledge-based interactions

    NASA Astrophysics Data System (ADS)

    Fritsche, Miriam; Heermann, Dieter; Farmer, Barry; Pandey, Ras

    2013-03-01

    The structural and conformational properties of the histone protein H2AX (with143 residues) is studied by a coarse-grained model as a function of temperature (T). Three knowledge-based phenomenological interactions (MJ, BT, and BFKV) are used as input to a generalized Lennard-Jones potential for residue-residue interactions. Large-scale Monte Carlo simulations are performed to identify similarity and differences in the equilibrium structures with these potentials. Multi-scale structures of the protein are examined by a detailed analysis of their structure functions. We find that the radius of gyration (Rg) of H2AX depends non-monotonically on temperature with a maximum at a characteristic value Tc, a common feature to each interaction. The characteristic temperature and the range of non-monotonic thermal response and decay pattern are, however, sensitive to interactions. A comparison of the structural properties emerging from three potentials will be presented in this talk. This work is supported by Air Force Research Laboratory.

  7. CLIMLAB: a Python-based software toolkit for interactive, process-oriented climate modeling

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2015-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The IPython notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields. However CLIMLAB is well suited to be deployed as a computational back-end for a graphical gaming environment based on earth-system modeling.

  8. A Force-Based, Parallel Assay for the Quantification of Protein-DNA Interactions

    PubMed Central

    Limmer, Katja; Pippig, Diana A.; Aschenbrenner, Daniela; Gaub, Hermann E.

    2014-01-01

    Analysis of transcription factor binding to DNA sequences is of utmost importance to understand the intricate regulatory mechanisms that underlie gene expression. Several techniques exist that quantify DNA-protein affinity, but they are either very time-consuming or suffer from possible misinterpretation due to complicated algorithms or approximations like many high-throughput techniques. We present a more direct method to quantify DNA-protein interaction in a force-based assay. In contrast to single-molecule force spectroscopy, our technique, the Molecular Force Assay (MFA), parallelizes force measurements so that it can test one or multiple proteins against several DNA sequences in a single experiment. The interaction strength is quantified by comparison to the well-defined rupture stability of different DNA duplexes. As a proof-of-principle, we measured the interaction of the zinc finger construct Zif268/NRE against six different DNA constructs. We could show the specificity of our approach and quantify the strength of the protein-DNA interaction. PMID:24586920

  9. Role of induced vortex interaction in a semi-active flapping foil based energy harvester

    NASA Astrophysics Data System (ADS)

    Wu, J.; Chen, Y. L.; Zhao, N.

    2015-09-01

    The role of induced vortex interaction in a semi-active flapping foil based energy harvester is numerically examined in this work. A NACA0015 airfoil, which acts as an energy harvester, is placed in a two-dimensional laminar flow. It performs an imposed pitching motion that subsequently leads to a plunging motion. Two auxiliary smaller foils, which rotate about their centers, are arranged above and below the flapping foil, respectively. As a consequence, the vortex interaction between the flapping foil and the rotating foil is induced. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between two auxiliary foils, the phase difference between the rotating motion and the pitching motion as well as the frequency of pitching motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency improvement of overall power extraction for the flapping foil with two auxiliary foils can be achieved. Based on the numerical analysis, it is indicated that the enhanced power extraction, which is caused by the increased lift force, thanks to the induced vortex interaction, directly benefits the efficiency enhancement.

  10. Development of Multilayer Microcapsules by a Phase Coacervation Method Based on Ionic Interactions for Textile Applications

    PubMed Central

    Chatterjee, Sudipta; Salaün, Fabien; Campagne, Christine

    2014-01-01

    The present study describes the development of multilayer microcapsules by 11 alternate additions of chitosan (Chi) and sodium dodecyl sulfate (SDS) in a combined emulsification and phase coacervation method based on ionic interactions. After an alkali treatment, microcapsules are applied on polyester (PET) fabric by a padding process to investigate their wash-durability on fabric. Air atmospheric plasma treatment is performed on PET fabric to modify the surface properties of the textiles. Zeta potential, X-ray photoelectron spectroscopy (XPS), wetting measurements, scanning electron microscopy (SEM), and atomic force microscopy (AFM) with surface roughness measurements are realized to characterize and determine wash durability of microcapsule samples onto PET. After alkali treatment, the microcapsules are selected for textile application because they are submicron sized with the desired morphology. The results obtained from various characterization techniques indicate that microcapsules are wash-durable on PET fabric pre activated by air plasma atmospheric as Chi based microcapsules can interact directly with PET by ionic interactions. PMID:24932719

  11. Nicotine-dopamine-transporter interactions during reward-based decision making.

    PubMed

    Kambeitz, Joseph; la Fougère, Christian; Werner, Natalie; Pogarell, Oliver; Riedel, Michael; Falkai, Peter; Ettinger, Ulrich

    2016-06-01

    Our everyday-life comprises a multitude of decisions that we take whilst trying to maximize advantageous outcomes, limit risks and update current needs. The cognitive processes that guide decision making as well as the brain circuits they are based on are only poorly understood. Numerous studies point to a potential role of dopamine and nicotine in decision making but less is known about their interactions. Here, 26 healthy male subjects performed the Iowa Gambling Task (IGT) in two sessions following the administration of either nicotine or placebo. Striatal dopamine transporter (DAT) binding was measured by single-photon emission computed tomography (SPECT). Results indicate that lower DAT levels were associated with better performance in the IGT (p=0.0004). Cognitive modelling analysis using the prospect valence learning (PVL) model indicated that low DAT subjects' performance deteriorated following nicotine administration as indicated by an increased learning rate and a decreased response consistency. Our results shed light on the neurochemistry underlying reward-based decision making in humans by demonstrating a significant interaction between nicotine and the DAT. The observed interaction is consistent with the hypothesized associations between DAT expression and extracellular dopamine levels, suggestive of an inverted U-shape relationship between baseline dopamine and magnitude in response to a pro-dopaminergic compound. Our findings are of particular interest in the context of psychiatric disorders where aberrant decision making represents a part of the core symptomatology, such as addiction, schizophrenia or depression. PMID:27112968

  12. A Development of Game-Based Learning Environment to Activate Interaction among Learners

    NASA Astrophysics Data System (ADS)

    Takaoka, Ryo; Shimokawa, Masayuki; Okamoto, Toshio

    Many studies and systems that incorporate elements such as “pleasure” and “fun” in the game to improve a learner's motivation have been developed in the field of learning environments. However, few are the studies of situations where many learners gather at a single computer and participate in a game-based learning environment (GBLE), and where the GBLE designs the learning process by controlling the interactions between learners such as competition, collaboration, and learning by teaching. Therefore, the purpose of this study is to propose a framework of educational control that induces and activates interaction between learners intentionally to create a learning opportunity that is based on the knowledge understanding model of each learner. In this paper, we explain the design philosophy and the framework of our GBLE called “Who becomes the king in the country of mathematics?” from a game viewpoint and describe the method of learning support control in the learning environment. In addition, we report the results of the learning experiment with our GBLE, which we carried out in a junior high school, and include some comments by a principal and a teacher. From the results of the experiment and some comments, we noticed that a game may play a significant role in weakening the learning relationship among students and creating new relationships in the world of the game. Furthermore, we discovered that learning support control of the GBLE has led to activation of the interaction between learners to some extent.

  13. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Sarna, K.; Russchenberg, H. W. J.

    2015-11-01

    A method for continuous observation of aerosol-cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of cloud microphysical changes due to the changing aerosol concentration. We use high resolution measurements from lidar, radar and radiometer which allow to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example study cases were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment at Graciosa Island, Azores, Portugal in 2009 to present the method. We show the Pearson Product-Moment Correlation Coefficient, r, and the Coefficient of Determination, r2 for data divided into bins of LWP, each of 10 g m-2. We explain why the commonly used way of quantity aerosol cloud interactions by use of an ACI index (ACIr,τ = dln re,τ/dlnα) is not the best way of quantifying aerosol-cloud interactions.

  14. Development of multilayer microcapsules by a phase coacervation method based on ionic interactions for textile applications.

    PubMed

    Chatterjee, Sudipta; Salaün, Fabien; Campagne, Christine

    2014-01-01

    The present study describes the development of multilayer microcapsules by 11 alternate additions of chitosan (Chi) and sodium dodecyl sulfate (SDS) in a combined emulsification and phase coacervation method based on ionic interactions. After an alkali treatment, microcapsules are applied on polyester (PET) fabric by a padding process to investigate their wash-durability on fabric. Air atmospheric plasma treatment is performed on PET fabric to modify the surface properties of the textiles. Zeta potential, X-ray photoelectron spectroscopy (XPS), wetting measurements, scanning electron microscopy (SEM), and atomic force microscopy (AFM) with surface roughness measurements are realized to characterize and determine wash durability of microcapsule samples onto PET. After alkali treatment, the microcapsules are selected for textile application because they are submicron sized with the desired morphology. The results obtained from various characterization techniques indicate that microcapsules are wash-durable on PET fabric pre activated by air plasma atmospheric as Chi based microcapsules can interact directly with PET by ionic interactions. PMID:24932719

  15. Can Interactive Web-based CAD Tools Improve the Learning of Engineering Drawing? A Case Study

    NASA Astrophysics Data System (ADS)

    Pando Cerra, Pablo; Suárez González, Jesús M.; Busto Parra, Bernardo; Rodríguez Ortiz, Diana; Álvarez Peñín, Pedro I.

    2014-06-01

    Many current Web-based learning environments facilitate the theoretical teaching of a subject but this may not be sufficient for those disciplines that require a significant use of graphic mechanisms to resolve problems. This research study looks at the use of an environment that can help students learn engineering drawing with Web-based CAD tools, including a self-correction component. A comparative study of 121 students was carried out. The students were divided into two experimental groups using Web-based interactive CAD tools and into two control groups using traditional learning tools. A statistical analysis of all the samples was carried out in order to study student behavior during the research and the effectiveness of these self-study tools in the learning process. The results showed that a greater number of students in the experimental groups passed the test and improved their test scores. Therefore, the use Web-based graphic interactive tools to learn engineering drawing can be considered a significant improvement in the teaching of this kind of academic discipline.

  16. Extracting Drug-Drug Interaction from the Biomedical Literature Using a Stacked Generalization-Based Approach

    PubMed Central

    He, Linna; Yang, Zhihao; Zhao, Zhehuan; Lin, Hongfei; Li, Yanpeng

    2013-01-01

    Drug-drug interaction (DDI) detection is particularly important for patient safety. However, the amount of biomedical literature regarding drug interactions is increasing rapidly. Therefore, there is a need to develop an effective approach for the automatic extraction of DDI information from the biomedical literature. In this paper, we present a Stacked Generalization-based approach for automatic DDI extraction. The approach combines the feature-based, graph and tree kernels and, therefore, reduces the risk of missing important features. In addition, it introduces some domain knowledge based features (the keyword, semantic type, and DrugBank features) into the feature-based kernel, which contribute to the performance improvement. More specifically, the approach applies Stacked generalization to automatically learn the weights from the training data and assign them to three individual kernels to achieve a much better performance than each individual kernel. The experimental results show that our approach can achieve a better performance of 69.24% in F-score compared with other systems in the DDI Extraction 2011 challenge task. PMID:23785452

  17. Tuning the metal-support interaction by structural recognition of cobalt-based catalyst precursors.

    PubMed

    Larmier, Kim; Chizallet, Céline; Raybaud, Pascal

    2015-06-01

    Controlling the nature and size of cobalt(II) polynuclear precursors on γ-alumina and silica-alumina supports represents a challenge for the synthesis of optimal cobalt-based heterogeneous catalysts. By density functional theory (DFT) calculations, we show how after drying the interaction of cobalt(II) precursor on γ-alumina is driven by a structural recognition phenomenon, leading to the formation of an epitaxial Co(OH)2 precipitate involving a Co-Al hydrotalcite-like interface. On a silica-alumina surface, this phenomenon is prevented due to the passivation effect of silica domains. This finding opens new routes to tune the metal-support interaction at the synthesis step of heterogeneous catalysts. PMID:25906826

  18. KIPSE1: A Knowledge-based Interactive Problem Solving Environment for data estimation and pattern classification

    NASA Technical Reports Server (NTRS)

    Han, Chia Yung; Wan, Liqun; Wee, William G.

    1990-01-01

    A knowledge-based interactive problem solving environment called KIPSE1 is presented. The KIPSE1 is a system built on a commercial expert system shell, the KEE system. This environment gives user capability to carry out exploratory data analysis and pattern classification tasks. A good solution often consists of a sequence of steps with a set of methods used at each step. In KIPSE1, solution is represented in the form of a decision tree and each node of the solution tree represents a partial solution to the problem. Many methodologies are provided at each node to the user such that the user can interactively select the method and data sets to test and subsequently examine the results. Otherwise, users are allowed to make decisions at various stages of problem solving to subdivide the problem into smaller subproblems such that a large problem can be handled and a better solution can be found.

  19. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis.

    PubMed

    Aykul, Senem; Martinez-Hackert, Erik

    2016-09-01

    Half-maximal inhibitory concentration (IC50) is the most widely used and informative measure of a drug's efficacy. It indicates how much drug is needed to inhibit a biological process by half, thus providing a measure of potency of an antagonist drug in pharmacological research. Most approaches to determine IC50 of a pharmacological compound are based on assays that utilize whole cell systems. While they generally provide outstanding potency information, results can depend on the experimental cell line used and may not differentiate a compound's ability to inhibit specific interactions. Here we show using the secreted Transforming Growth Factor-β (TGF-β) family ligand BMP-4 and its receptors as example that surface plasmon resonance can be used to accurately determine IC50 values of individual ligand-receptor pairings. The molecular resolution achievable wih this approach can help distinguish inhibitors that specifically target individual complexes, or that can inhibit multiple functional interactions at the same time. PMID:27365221

  20. Particle-particle interactions in electrorheological fluids based on surface conducting particles

    NASA Astrophysics Data System (ADS)

    Gonon, P.; Foulc, J.-N.; Atten, P.; Boissy, C.

    1999-12-01

    We develop a simple, analytical conduction model for the case of electrorheological fluids based on surface conducting particles. By modeling two contacting spheres in a dielectric liquid by a distributed impedances network we derive analytical expressions for the potential and current at the spheres surface, and for the electric field and the current in the liquid phase. The knowledge of the electric field in the dielectric liquid allows us to calculate the interparticle interaction force as a function of the applied voltage. The theoretical interaction force is compared with experimental results obtained on insulating spheres coated with a thin conducting polyaniline film. We find a good agreement between the theory and experiment. The materials properties which govern the response of the system are outlined. In this regard, the product of the liquid conductivity by the sheet resistance of the surface coating appears as a key parameter. Some applications of this model for the practical design of electrorheological fluids are given.

  1. Knowledge-Based, Interactive, Custom Anatomical Scene Creation for Medical Education: The Biolucida System

    PubMed Central

    Warren, Wayne; Brinkley, James F.

    2005-01-01

    Few biomedical subjects of study are as resource-intensive to teach as gross anatomy. Medical education stands to benefit greatly from applications which deliver virtual representations of human anatomical structures. While many applications have been created to achieve this goal, their utility to the student is limited because of a lack of interactivity or customizability by expert authors. Here we describe the first version of the Biolucida system, which allows an expert anatomist author to create knowledge-based, customized, and fully interactive scenes and lessons for students of human macroscopic anatomy. Implemented in Java and VRML, Biolucida allows the sharing of these instructional 3D environments over the internet. The system simplifies the process of authoring immersive content while preserving its flexibility and expressivity. PMID:16779148

  2. A flexible flight display research system using a ground-based interactive graphics terminal

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Elkins, H. C.; Batson, V. M.; Poole, W. L.

    1975-01-01

    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed.

  3. Generic mesoscopic neural networks based on statistical mechanics of neocortical interactions

    NASA Astrophysics Data System (ADS)

    Ingber, Lester

    1992-02-01

    A series of papers has developed a statistical mechanics of neocortical interactions (SMNI), deriving aggregate behavior of experimentally observed columns of neurons from statistical electrical-chemical properties of synaptic interactions, demonstrating its capability in describing large-scale properties of short-term memory and electroencephalographic systematics. This methodology also defines an algorithm to construct a mesoscopic neural network, based on realistic neocortical processes and parameters, to record patterns of brain activity and to compute the evolution of this system. Furthermore, this algorithm is quite generic and can be used to similarly process information in other systems, especially, but not limited to, those amenable to modeling by mathematical physics techniques alternatively described by path-integral Lagrangians, Fokker-Planck equations, or Langevin rate equations. This methodology is made possible and practical by a confluence of techniques drawn from SMNI itself, modern methods of functional stochastic calculus defining nonlinear Lagrangians, very fast simulated reannealing, and parallel-processing computation.

  4. Viscoelastic model based force control for soft tissue interaction and its application in physiological motion compensation.

    PubMed

    Moreira, Pedro; Zemiti, Nabil; Liu, Chao; Poignet, Philippe

    2014-09-01

    Controlling the interaction between robots and living soft tissues has become an important issue as the number of robotic systems inside the operating room increases. Many researches have been done on force control to help surgeons during medical procedures, such as physiological motion compensation and tele-operation systems with haptic feedback. In order to increase the performance of such controllers, this work presents a novel force control scheme using Active Observer (AOB) based on a viscoelastic interaction model. The control scheme has shown to be stable through theoretical analysis and its performance was evaluated by in vitro experiments. In order to evaluate how the force control scheme behaves under the presence of physiological motion, experiments considering breathing and beating heart disturbances are presented. The proposed control scheme presented a stable behavior in both static and moving environment. The viscoelastic AOB presented a compensation ratio of 87% for the breathing motion and 79% for the beating heart motion. PMID:24612709

  5. Vorticity-based correction for modelling of free-surface wave interacting with turbulent current

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    2014-11-01

    This paper describes a new vorticity-based correction model for studying the interaction between free-surface wave and turbulent current. To track free-surface movements, the volume of fluid (VOF) method is employed. The momentum equations are rewritten to avoid the numerically generated vorticity effects along the air-water interface. Simultaneously unsteady RANS equations are used, while standard k-epsilon model is adapted with modification to the production term by introducing the vorticity to limit the production of turbulent kinematic energy at free surface. To validate the numerical model used here, standalone wave and current cases are studied to ensure the accuracy of each component of the numerical model. The model is then used to simulate the interaction between the second-order stokes wave and turbulent current for both wave following and countering in a setting of shallow water wave flume. The results are compared with experimental measurement available in the literature.

  6. Identification of Biomarker and Co-Regulatory Motifs in Lung Adenocarcinoma Based on Differential Interactions

    PubMed Central

    Chang, Zhiqiang; Li, Kening; Zhang, Rui; Zhou, Yuanshuai; Qiu, Fujun; Han, Xiaole; Xu, Yan

    2015-01-01

    Changes in intermolecular interactions (differential interactions) may influence the progression of cancer. Specific genes and their regulatory networks may be more closely associated with cancer when taking their transcriptional and post-transcriptional levels and dynamic and static interactions into account simultaneously. In this paper, a differential interaction analysis was performed to detect lung adenocarcinoma-related genes. Furthermore, a miRNA-TF (transcription factor) synergistic regulation network was constructed to identify three kinds of co-regulated motifs, namely, triplet, crosstalk and joint. Not only were the known cancer-related miRNAs and TFs (let-7, miR-15a, miR-17, TP53, ETS1, and so on) were detected in the motifs, but also the miR-15, let-7 and miR-17 families showed a tendency to regulate the triplet, crosstalk and joint motifs, respectively. Moreover, several biological functions (i.e., cell cycle, signaling pathways and hemopoiesis) associated with the three motifs were found to be frequently targeted by the drugs for lung adenocarcinoma. Specifically, the two 4-node motifs (crosstalk and joint) based on co-expression and interaction had a closer relationship to lung adenocarcinoma, and so further research was performed on them. A 10-gene biomarker (UBC, SRC, SP1, MYC, STAT3, JUN, NR3C1, RB1, GRB2 and MAPK1) was selected from the joint motif, and a survival analysis indicated its significant association with survival. Among the ten genes, JUN, NR3C1 and GRB2 are our newly detected candidate lung adenocarcinoma-related genes. The genes, regulators and regulatory motifs detected in this work will provide potential drug targets and new strategies for individual therapy. PMID:26402252

  7. Microplate-Based Characterization of Protein-Phosphoinositide Binding Interactions Using a Synthetic Biotinylated Headgroup Analogue

    PubMed Central

    Gong, Denghuang; Smith, Matthew D.; Manna, Debasis; Bostic, Heidi E.; Cho, Wonhwa; Best, Michael D.

    2009-01-01

    Membrane lipids act as important regulators of a litany of important physiological and pathophysiological events. Many of them act as site-specific ligands for cytosolic proteins in binding events that recruit receptors to the cell surface and control both protein function and subcellular localization. Phosphatidylinositol phosphates (PIPns) are a family of signaling lipids that regulate numerous cellular processes by interacting with a myriad of protein binding modules. Characterization of PIPn-binding proteins has been hampered by the lack of a rapid and convenient quantitative assay. Herein, microplate-based detection is presented as an effective approach to characterizing protein-PIPn binding interactions at the molecular level. With this assay, the binding of proteins to isolated PIPn headgroups is detected with high sensitivity using a platform that is amenable to high-throughput screening. In the studies described herein, biotinylated PI-(4,5)-P2 headgroup analogue 1 was designed, synthesized and immobilized onto 96-well streptavidin-coated microplates to study receptor binding. This assay was used to characterize the binding of the PH domain of β-spectrin to this headgroup. The high affinity interaction that was detected for surface association (Kd, surf = 6 nM ±3), demonstrates that receptor binding modules can form high affinity interactions with lipid headgroups outside of a membrane environment. The results also indicate the feasibility of the assay for rapid characterization of PIPn-binding proteins as well as the promise for high-throughput analysis of protein-PIPn binding interactions. Finally, this assay was also employed to characterize the inhibition of the binding of receptors to the PIPn-derivatized microplates using solution phase competitors. This showcases the viability of this assay for rapid screening of inhibitors of PIPn-binding proteins. PMID:19182890

  8. Identification of tissue-specific cis-regulatory modules based on interactions between transcription factors

    PubMed Central

    Yu, Xueping; Lin, Jimmy; Zack, Donald J; Qian, Jiang

    2007-01-01

    Background Evolutionary conservation has been used successfully to help identify cis-acting DNA regions that are important in regulating tissue-specific gene expression. Motivated by increasing evidence that some DNA regulatory regions are not evolutionary conserved, we have developed an approach for cis-regulatory region identification that does not rely upon evolutionary sequence conservation. Results The conservation-independent approach is based on an empirical potential energy between interacting transcription factors (TFs). In this analysis, the potential energy is defined as a function of the number of TF interactions in a genomic region and the strength of the interactions. By identifying sets of interacting TFs, the analysis locates regions enriched with the binding sites of these interacting TFs. We applied this approach to 30 human tissues and identified 6232 putative cis-regulatory modules (CRMs) regulating 2130 tissue-specific genes. Interestingly, some genes appear to be regulated by different CRMs in different tissues. Known regulatory regions are highly enriched in our predicted CRMs. In addition, DNase I hypersensitive sites, which tend to be associated with active regulatory regions, significantly overlap with the predicted CRMs, but not with more conserved regions. We also find that conserved and non-conserved CRMs regulate distinct gene groups. Conserved CRMs control more essential genes and genes involved in fundamental cellular activities such as transcription. In contrast, non-conserved CRMs, in general, regulate more non-essential genes, such as genes related to neural activity. Conclusion These results demonstrate that identifying relevant sets of binding motifs can help in the mapping of DNA regulatory regions, and suggest that non-conserved CRMs play an important role in gene regulation. PMID:17996093

  9. D Modelling and Interactive Web-Based Visualization of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Koeva, M. N.

    2016-06-01

    Nowadays, there are rapid developments in the fields of photogrammetry, laser scanning, computer vision and robotics, together aiming to provide highly accurate 3D data that is useful for various applications. In recent years, various LiDAR and image-based techniques have been investigated for 3D modelling because of their opportunities for fast and accurate model generation. For cultural heritage preservation and the representation of objects that are important for tourism and their interactive visualization, 3D models are highly effective and intuitive for present-day users who have stringent requirements and high expectations. Depending on the complexity of the objects for the specific case, various technological methods can be applied. The selected objects in this particular research are located in Bulgaria - a country with thousands of years of history and cultural heritage dating back to ancient civilizations. This motivates the preservation, visualisation and recreation of undoubtedly valuable historical and architectural objects and places, which has always been a serious challenge for specialists in the field of cultural heritage. In the present research, comparative analyses regarding principles and technological processes needed for 3D modelling and visualization are presented. The recent problems, efforts and developments in interactive representation of precious objects and places in Bulgaria are presented. Three technologies based on real projects are described: (1) image-based modelling using a non-metric hand-held camera; (2) 3D visualization based on spherical panoramic images; (3) and 3D geometric and photorealistic modelling based on architectural CAD drawings. Their suitability for web-based visualization are demonstrated and compared. Moreover the possibilities for integration with additional information such as interactive maps, satellite imagery, sound, video and specific information for the objects are described. This comparative study

  10. Novel surface-based methodologies for investigating GH11 xylanase-lignin derivative interactions.

    PubMed

    Zeder-Lutz, G; Renau-Ferrer, S; Aguié-Béghin, V; Rakotoarivonina, H; Chabbert, B; Altschuh, D; Rémond, C

    2013-11-21

    The recalcitrance of lignocellulose to bioprocessing represents the core problem and remains the limiting factor in creating an economy based on lignocellulosic ethanol production. Lignin is responsible for unproductive interactions with enzymes, and understanding how lignin impairs the susceptibility of biomass to enzymatic hydrolysis represents a significant aim in optimising the biological deconstruction of lignocellulose. The objective of this study was to develop methodologies based on surface plasmon resonance (SPR), which provide novel insights into the interactions between xylanase (Tx-xyn11) and phenolic compounds or lignin oligomers. In a first approach, Tx-xyn11 was fixed onto sensor surfaces, and phenolic molecules were applied in the liquid phase. The results demonstrated weak affinity and over-stoichiometric binding, as several phenolic molecules bound to each xylanase molecule. This approach, requiring the use of soluble molecules in the liquid phase, is not applicable to insoluble lignin oligomers, such as the dehydrogenation polymer (DHP). An alternative approach was developed in which a lignin oligomer was fixed onto a sensor surface. Due to their hydrophobic properties, the preparation of stable lignin layers on the sensor surfaces represented a considerable challenge. Among the various chemical and physico-chemical approaches assayed, two approaches (physisorption via the Langmuir-Blodgett technique onto self-assembled monolayer (SAM)-modified gold and covalent coupling to a carboxylated dextran matrix) led to stable lignin layers, which allowed the study of its interactions with Tx-xyn11 in the liquid phase. Our results indicated the presence of weak and non-specific interactions between Tx-xyn11 and DHP. PMID:24071685

  11. VR-based interactive CFD data comparison of flow fields in a human nasal cavity

    NASA Astrophysics Data System (ADS)

    Gerndt, Andreas; Kuhlen, Torsten; van Reimersdahl, Thomas; Haack, Matthias; Bischof, Christian

    2004-05-01

    The Virtual Reality Center Aachen is developing a Virtual Reality based operation planning system in cooperation with aerodynamics scientists and physicians of several clinical centers. This system is meant to help the preparation of nose surgeries aimed at the elimination of respiratory diseases. A core part is the interactive comparison of experimental data and simulation data in the area of fluid dynamics. In a first step, data comparison is to depict the differences between healthy noses and diseased noses. Later on, data comparison should supply evidence for successful virtual surgeries, which finally results in guidance on the real operation. During virtual surgery sessions, scientists can interactively explore, analyze, annotate, and compare various medical and aerodynamics data sets. Image-based methods are used to extract several features in one image and between compared data sets. The determination of linked features between different data sets is a particular challenge because of their different time frames, scales, and distortions. An optimized human computer interface enables the user to interact intuitively within a virtual environment in order to select and deal with these data sets. Additionally to this interactive exploration, the system also allows automatic searches for cut plane and key frame candidates corresponding to given feature patterns. The comparison system makes use of an already implemented parallelized Computational Fluid Dynamics (CFD) postprocessing, which also extracts enhanced flow features that allow automatic detection of relevant flow regions. Beside vortex detection, the computation of critical points including flow field segmentation is a current research activity. These flow features are favored characteristics for the comparison and help considerably to classify different nose geometries and operation recommendations.

  12. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2013-01-01

    In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameter (κm0) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM) captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). Experimental results for pure organic particles (malonic acid, levoglucosan) and for mixed organic-inorganic particles (malonic acid - ammonium sulfate) are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions. The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I) a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II) a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III) a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity. For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary

  13. A state parameter-based model for static recrystallization interacting with precipitation

    NASA Astrophysics Data System (ADS)

    Buken, Heinrich; Sherstnev, Pavel; Kozeschnik, Ernst

    2016-03-01

    In the present work, we develop a state parameter-based model for the treatment of simultaneous precipitation and recrystallization based on a single-parameter representation of the total dislocation density and a multi-particle multi-component framework for precipitation kinetics. In contrast to conventional approaches, the interaction of particles with recrystallization is described with a non-zero grain boundary mobility even for the case where the Zener pressure exceeds the driving pressure for recrystallization. The model successfully reproduces the experimentally observed particle-induced recrystallization stasis and subsequent continuation in micro-alloyed steel with a single consistent set of input parameters. In addition, as a state parameter-based approach, our model naturally supports introspection into the physical mechanisms governing the competing recrystallization and recovery processes.

  14. Drug-SNPing: an integrated drug-based, protein interaction-based tagSNP-based pharmacogenomics platform for SNP genotyping.

    PubMed

    Yang, Cheng-Hong; Cheng, Yu-Huei; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2013-03-15

    Many drug or single nucleotide polymorphism (SNP)-related resources and tools have been developed, but connecting and integrating them is still a challenge. Here, we describe a user-friendly web-based software package, named Drug-SNPing, which provides a platform for the integration of drug information (DrugBank and PharmGKB), protein-protein interactions (STRING), tagSNP selection (HapMap) and genotyping information (dbSNP, REBASE and SNP500Cancer). DrugBank-based inputs include the following: (i) common name of the drug, (ii) synonym or drug brand name, (iii) gene name (HUGO) and (iv) keywords. PharmGKB-based inputs include the following: (i) gene name (HUGO), (ii) drug name and (iii) disease-related keywords. The output provides drug-related information, metabolizing enzymes and drug targets, as well as protein-protein interaction data. Importantly, tagSNPs of the selected genes are retrieved for genotyping analyses. All drug-based and protein-protein interaction-based SNP genotyping information are provided with PCR-RFLP (PCR-restriction enzyme length polymorphism) and TaqMan probes. Thus, users can enter any drug keywords/brand names to obtain immediate information that is highly relevant to genotyping for pharmacogenomics research. PMID:23418190

  15. An Interactive, Web-based High Performance Modeling Environment for Computational Epidemiology

    PubMed Central

    Deodhar, Suruchi; Bisset, Keith R.; Chen, Jiangzhuo; Ma, Yifei; Marathe, Madhav V.

    2014-01-01

    We present an integrated interactive modeling environment to support public health epidemiology. The environment combines a high resolution individual-based model with a user-friendly web-based interface that allows analysts to access the models and the analytics back-end remotely from a desktop or a mobile device. The environment is based on a loosely-coupled service-oriented-architecture that allows analysts to explore various counter factual scenarios. As the modeling tools for public health epidemiology are getting more sophisticated, it is becoming increasingly hard for non-computational scientists to effectively use the systems that incorporate such models. Thus an important design consideration for an integrated modeling environment is to improve ease of use such that experimental simulations can be driven by the users. This is achieved by designing intuitive and user-friendly interfaces that allow users to design and analyze a computational experiment and steer the experiment based on the state of the system. A key feature of a system that supports this design goal is the ability to start, stop, pause and roll-back the disease propagation and intervention application process interactively. An analyst can access the state of the system at any point in time and formulate dynamic interventions based on additional information obtained through state assessment. In addition, the environment provides automated services for experiment set-up and management, thus reducing the overall time for conducting end-to-end experimental studies. We illustrate the applicability of the system by describing computational experiments based on realistic pandemic planning scenarios. The experiments are designed to demonstrate the system's capability and enhanced user productivity. PMID:25530914

  16. Radical-radical interactions among oxidized guanine bases including guanine radical cation and dehydrogenated guanine radicals.

    PubMed

    Zhao, Jing; Wang, Mei; Yang, Hongfang; Zhang, Meng; Liu, Ping; Bu, Yuxiang

    2013-09-19

    We present here a theoretical investigation of the structural and electronic properties of di-ionized GG base pairs (G(•+)G(•+),G(-H1)(•)G(•+), and G(-H1)(•)G(-H1)(•)) consisting of the guanine cation radical (G(•+)) and/or dehydrogenated guanine radical (G(-H1)(•)) using density functional theory calculations. Different coupling modes (Watson-Crick/WC, Hoogsteen/Hoog, and minor groove/min hydrogen bonding, and π-π stacking modes) are considered. We infer that a series of G(•+)G(•+) complexes can be formed by the high-energy radiation. On the basis of density functional theory and complete active space self-consistent (CASSCF) calculations, we reveal that in the H-bonded and N-N cross-linked modes, (G(•+)G(•+))WC, (G(-H1)(•)G(-H1)(•))WC, (G(-H1)(•)G(-H1)(•))minI, and (G(-H1)(•)G(-H1)(•))minIII have the triplet ground states; (G(•+)G(•+))HoogI, (G(-H1)(•)G(•+))WC, (G(-H1)(•)G(•+))HoogI, (G(-H1)(•)G(•+))minI, (G(-H1)(•)G(•+))minII, and (G(-H1)(•)G(-H1)(•))minII possess open-shell broken-symmetry diradical-characterized singlet ground states; and (G(•+)G(•+))HoogII, (G(•+)G(•+))minI, (G(•+)G(•+))minII, (G(•+)G(•+))minIII, (G(•+)G(•+))HoHo, (G(-H1)(•)G(•+))minIII, (G(-H1)(•)G(•+))HoHo, and (G(-H1)(•)G(-H1)(•))HoHo are the closed-shell systems. For these H-bonded diradical complexes, the magnetic interactions are weak, especially in the diradical G(•+)G(•+) series and G(-H1)(•)G(-H1)(•) series. The magnetic coupling interactions of the diradical systems are controlled by intermolecular interactions (H-bond, electrostatic repulsion, and radical coupling). The radical-radical interaction in the π-π stacked di-ionized GG base pairs ((G(•+)G(•+))ππ, (G(-H1)(•)G(•+))ππ, and (G(-H1)(•)G(-H1)(•))ππ) are also considered, and the magnetic coupling interactions in these π-π stacked base pairs are large. This is the first theoretical prediction that some di

  17. Estimating Development Cost of an Interactive Website Based Cancer Screening Promotion Program

    PubMed Central

    Lairson, David R.; Chung, Tong Han; Smith, Lisa G.; Springston, Jeffrey K.; Champion, Victoria L.

    2015-01-01

    Objectives The aim of this study was to estimate the initial development costs for an innovative talk show format tailored intervention delivered via the interactive web, for increasing cancer screening in women 50 to 75 who were non-adherent to screening guidelines for colorectal cancer and/or breast cancer. Methods The cost of the intervention development was estimated from a societal perspective. Micro costing methods plus vendor contract costs were used to estimate cost. Staff logs were used to track personnel time. Non-personnel costs include all additional resources used to produce the intervention. Results Development cost of the interactive web based intervention was $.39 million, of which 77% was direct cost. About 98% of the cost was incurred in personnel time cost, contract cost and overhead cost. Conclusions The new web-based disease prevention medium required substantial investment in health promotion and media specialist time. The development cost was primarily driven by the high level of human capital required. The cost of intervention development is important information for assessing and planning future public and private investments in web-based health promotion interventions. PMID:25749548

  18. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation

    NASA Astrophysics Data System (ADS)

    Rokitskaya, Tatyana I.; Macrae, Michael X.; Blake, Steven; Egorova, Natalya S.; Kotova, Elena A.; Yang, Jerry; Antonenko, Yuri N.

    2010-11-01

    Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors.

  19. A unified set-based test with adaptive filtering for gene-environment interaction analyses.

    PubMed

    Liu, Qianying; Chen, Lin S; Nicolae, Dan L; Pierce, Brandon L

    2016-06-01

    In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate P-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228

  20. A unified set-based test with adaptive filtering for gene-environment interaction analyses

    PubMed Central

    Liu, Qianying; Chen, Lin S.; Nicolae, Dan L.; Pierce, Brandon L.

    2015-01-01

    Summary In genome-wide gene-environment interaction (GxE) studies, a common strategy to improve power is to first conduct a filtering test and retain only the SNPs that pass the filtering in the subsequent GxE analyses. Inspired by two-stage tests and gene-based tests in GxE analysis, we consider the general problem of jointly testing a set of parameters when only a few are truly from the alternative hypothesis and when filtering information is available. We propose a unified set-based test that simultaneously considers filtering on individual parameters and testing on the set. We derive the exact distribution and approximate the power function of the proposed unified statistic in simplified settings, and use them to adaptively calculate the optimal filtering threshold for each set. In the context of gene-based GxE analysis, we show that although the empirical power function may be affected by many factors, the optimal filtering threshold corresponding to the peak of the power curve primarily depends on the size of the gene. We further propose a resampling algorithm to calculate p-values for each gene given the estimated optimal filtering threshold. The performance of the method is evaluated in simulation studies and illustrated via a genome-wide gene-gender interaction analysis using pancreatic cancer genome-wide association data. PMID:26496228

  1. Interactive Web-based Floodplain Simulation System for Realistic Experiments of Flooding and Flood Damage

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2013-12-01

    Recent developments in web technologies make it easy to manage and visualize large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The floodplain simulation system is a web-based 3D interactive flood simulation environment to create real world flooding scenarios. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create and modify predefined scenarios, control environmental parameters, and evaluate flood mitigation techniques. The web-based simulation system provides an environment to children and adults learn about the flooding, flood damage, and effects of development and human activity in the floodplain. The system provides various scenarios customized to fit the age and education level of the users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various flooding and land use scenarios.

  2. Mechanistic insight into gramicidin-based detection of protein-ligand interactions via sensitized photoinactivation.

    PubMed

    Rokitskaya, Tatyana I; Macrae, Michael X; Blake, Steven; Egorova, Natalya S; Kotova, Elena A; Yang, Jerry; Antonenko, Yuri N

    2010-11-17

    Among the many challenges for the development of ion channel-based sensors is the poor understanding of how to engineer modified transmembrane pores with tailored functionality that can respond to external stimuli. Here, we use the method of sensitized photoinactivation of gramicidin A (gA) channels in planar bilayer lipid membranes to help elucidate the underlying mechanistic details for changes in macroscopic transmembrane ionic current observed upon interaction of C-terminally attached gA ligands with specific proteins in solution. Three different systems were studied: (i) carbonic anhydrase (CA) and gA-sulfonamide, (ii) PSD-95 protein (belonging to the 'PDZ domain-containing protein') and a gA analog carrying the KGGHRRSARYLESSV peptide sequence at the C-terminus, and (iii) an anti-biotin antibody and gA-biotin. The results challenge a previously proposed mechanistic hypothesis suggesting that protein-induced current suppression is due to steric blockage of the ion passage through gA channels, while they reveal new insight for consideration in alternative mechanistic models. Additionally, we demonstrate that the length of a linker between the ligand and the gA channel may be less important for gramicidin-based detection of monovalent compared to multivalent protein-ligand interactions. These studies collectively shed new light on the mechanism of protein-induced current alterations in bilayer recordings of gA derivatives, which may be important in the design of new gramicidin-based sensors. PMID:21339605

  3. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization

    SciTech Connect

    Barinka, Cyril; Byun, Youngjoo; Dusich, Crystal L.; Banerjee, Sangeeta R.; Chen, Ying; Castanares, Mark; Kozikowski, Alan P.; Mease, Ronnie C.; Pomper, Martin G.; Lubkowski, Jacek

    2009-01-21

    Urea-based, low molecular weight ligands of glutamate carboxypeptidase II (GCPII) have demonstrated efficacy in various models of neurological disorders and can serve as imaging agents for prostate cancer. To enhance further development of such compounds, we determined X-ray structures of four complexes between human GCPII and urea-based inhibitors at high resolution. All ligands demonstrate an invariant glutarate moiety within the S1{prime} pocket of the enzyme. The ureido linkage between P1 and P1{prime} inhibitor sites interacts with the active-site Zn{sub 1}{sup 2+} ion and the side chains of Tyr552 and His553. Interactions within the S1 pocket are defined primarily by a network of hydrogen bonds between the P1 carboxylate group of the inhibitors and the side chains of Arg534, Arg536, and Asn519. Importantly, we have identified a hydrophobic pocket accessory to the S1 site that can be exploited for structure-based design of novel GCPII inhibitors with increased lipophilicity.

  4. Identifying protein interaction subnetworks by a bagging Markov random field-based method

    PubMed Central

    Chen, Li; Xuan, Jianhua; Riggins, Rebecca B.; Wang, Yue; Clarke, Robert

    2013-01-01

    Identification of differentially expressed subnetworks from protein–protein interaction (PPI) networks has become increasingly important to our global understanding of the molecular mechanisms that drive cancer. Several methods have been proposed for PPI subnetwork identification, but the dependency among network member genes is not explicitly considered, leaving many important hub genes largely unidentified. We present a new method, based on a bagging Markov random field (BMRF) framework, to improve subnetwork identification for mechanistic studies of breast cancer. The method follows a maximum a posteriori principle to form a novel network score that explicitly considers pairwise gene interactions in PPI networks, and it searches for subnetworks with maximal network scores. To improve their robustness across data sets, a bagging scheme based on bootstrapping samples is implemented to statistically select high confidence subnetworks. We first compared the BMRF-based method with existing methods on simulation data to demonstrate its improved performance. We then applied our method to breast cancer data to identify PPI subnetworks associated with breast cancer progression and/or tamoxifen resistance. The experimental results show that not only an improved prediction performance can be achieved by the BMRF approach when tested on independent data sets, but biologically meaningful subnetworks can also be revealed that are relevant to breast cancer and tamoxifen resistance. PMID:23161673

  5. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Sarna, Karolina; Russchenberg, Herman W. J.

    2016-03-01

    A new method for continuous observation of aerosol-cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurement (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius (re) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m-2 wide. For every LWP bin we present the correlation coefficient between ln re and ln ATB, as well as ACIr (defined as ACIr = -d ln re/d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACIr are in the range 0.01-0.1. We show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol-cloud interactions.

  6. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries.

    PubMed

    Zheng, Jianming; Tian, Jian; Wu, Dangxin; Gu, Meng; Xu, Wu; Wang, Chongmin; Gao, Fei; Engelhard, Mark H; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2014-05-14

    Lithium-sulfur (Li-S) battery is one of the most promising energy storage systems because of its high specific capacity of 1675 mAh g(-1) based on sulfur. However, the rapid capacity degradation, mainly caused by polysulfide dissolution, remains a significant challenge prior to practical applications. This work demonstrates that a novel Ni-based metal organic framework (Ni-MOF), Ni6(BTB)4(BP)3 (BTB = benzene-1,3,5-tribenzoate and BP = 4,4'-bipyridyl), can remarkably immobilize polysulfides within the cathode structure through physical and chemical interactions at molecular level. The capacity retention achieves up to 89% after 100 cycles at 0.1 C. The excellent performance is attributed to the synergistic effects of the interwoven mesopores (∼2.8 nm) and micropores (∼1.4 nm) of Ni-MOF, which first provide an ideal matrix to confine polysulfides, and the strong interactions between Lewis acidic Ni(II) center and the polysulfide base, which significantly slow down the migration of soluble polysulfides out of the pores, leading to the excellent cycling performance of Ni-MOF/S composite. PMID:24702610

  7. Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries

    SciTech Connect

    Zheng, Jianming; Tian, Jian; Wu, Dangxin; Gu, Meng; Xu, Wu; Wang, Chongmin; Gao, Fei; Engelhard, Mark H.; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2014-05-14

    Lithium–sulfur (Li–S) battery is one of the most promising energy storage systems because of its high specific capacity of 1675 mAh g–1 based on sulfur. However, the rapid capacity degradation, mainly caused by polysulfide dissolution, remains a significant challenge prior to practical applications. This work demonstrates that a novel Ni-based metal organic framework (Ni-MOF), Ni6(BTB)4(BP)3 (BTB = benzene-1,3,5-tribenzoate and BP = 4,4'-bipyridyl), can remarkably immobilize polysulfides within the cathode structure through physical and chemical interactions at molecular level. The capacity retention achieves up to 89% after 100 cycles at 0.1 C. Finally, the excellent performance is attributed to the synergistic effects of the interwoven mesopores (~2.8 nm) and micropores (~1.4 nm) of Ni-MOF, which first provide an ideal matrix to confine polysulfides, and the strong interactions between Lewis acidic Ni(II) center and the polysulfide base, which significantly slow down the migration of soluble polysulfides out of the pores, leading to the excellent cycling performance of Ni-MOF/S composite.

  8. P450-Based Drug-Drug Interactions of Amiodarone and its Metabolites: Diversity of Inhibitory Mechanisms.

    PubMed

    McDonald, Matthew G; Au, Nicholas T; Rettie, Allan E

    2015-11-01

    In this study, IC50 shift and time-dependent inhibition (TDI) experiments were carried out to measure the ability of amiodarone (AMIO), and its circulating human metabolites, to reversibly and irreversibly inhibit CYP1A2, CYP2C9, CYP2D6, and CYP3A4 activities in human liver microsomes. The [I]u/Ki,u values were calculated and used to predict in vivo AMIO drug-drug interactions (DDIs) for pharmaceuticals metabolized by these four enzymes. Based on these values, the minor metabolite N,N-didesethylamiodarone (DDEA) is predicted to be the major cause of DDIs with xenobiotics primarily metabolized by CYP1A2, CYP2C9, or CYP3A4, while AMIO and its N-monodesethylamiodarone (MDEA) derivative are the most likely cause of interactions involving inhibition of CYP2D6 metabolism. AMIO drug interactions predicted from the reversible inhibition of the four P450 activities were found to be in good agreement with the magnitude of reported clinical DDIs with lidocaine, warfarin, metoprolol, and simvastatin. The TDI experiments showed DDEA to be a potent inactivator of CYP1A2 (KI = 0.46 μM, kinact = 0.030 minute(-1)), while MDEA was a moderate inactivator of both CYP2D6 (KI = 2.7 μM, kinact = 0.018 minute(-1)) and CYP3A4 (KI = 2.6 μM, kinact = 0.016 minute(-1)). For DDEA and MDEA, mechanism-based inactivation appears to occur through formation of a metabolic intermediate complex. Additional metabolic studies strongly suggest that CYP3A4 is the primary microsomal enzyme involved in the metabolism of AMIO to both MDEA and DDEA. In summary, these studies demonstrate both the diversity of inhibitory mechanisms with AMIO and the need to consider metabolites as the culprit in inhibitory P450-based DDIs. PMID:26296708

  9. Nanoscale switch based on interacting molecular dipoles: Cooperativity can improve the device characteristics

    NASA Astrophysics Data System (ADS)

    Mafé, , Salvador; Manzanares, , José A.; Reiss, Howard

    2011-02-01

    We propose a nanoscale switch, giving a nonlinear function with two conductive states separated by a sharp transition region, on the basis of an array of molecular dipoles. We show theoretically that the local interactions between dipoles result in cooperative phenomena that can significantly improve the switching characteristics. We demonstrate the general validity of the concept in the cases of (i) an electrical switch robust to the finite size and variability effects inherent to the nanoscale and (ii) a sensing layer based on the voltage and ligand concentration dependence of the dipole array conductance.

  10. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.

    PubMed

    Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing

    2014-10-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated. PMID:25322232

  11. Constraints on Neutron Star Radii Based on Chiral Effective Field Theory Interactions

    SciTech Connect

    Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A.

    2010-10-15

    We show that microscopic calculations based on chiral effective field theory interactions constrain the properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in commonly used equations of state. Combined with observed neutron star masses, our results lead to a radius R=9.7-13.9 km for a 1.4M{sub {center_dot}} star, where the theoretical range is due, in about equal amounts, to uncertainties in many-body forces and to the extrapolation to high densities.

  12. Fluid–Structure Interaction-Based Biomechanical Perception Model for Tactile Sensing

    PubMed Central

    Wang, Zheng

    2013-01-01

    The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the object's material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid–structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures. PMID:24260228

  13. Dual-responsive colloidal microcapsules based on host-guest interaction on solid templates.

    PubMed

    Li, Guangyu; Dong, Zhirui; Zhu, Yuting; Tong, Weijun; Gao, Changyou

    2016-08-01

    Colloidal microcapsules (MCs) have received considerable attention in the fields of microencapsulation, drug delivery as well as microreactors due to their unique nanoparticles-composed structure. In this study, dual-responsive colloidal MCs based on host-guest interaction were successfully fabricated via a layer-by-layer assembly method on sacrificial solid templates. Ferrocene-modified polyethylenimine (PEI-Fc) and cyclodextrin-modified polystyrene nanoparticles (PS-CD NPs) were used as building blocks for assembly. The colloidal MCs could be disassembled into nano-components upon addition of competitive adamantane (Ad) molecules or in the solution with a pH lower than 4. PMID:27175830

  14. Broadband optical-Internet-based modular interactive information system for research department in university environment

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Bury, Jaroslaw; Koprek, Waldemar; Orzelowski, Andrzej

    2004-07-01

    The work describes, standardized, modular and interactive, (optical) broadband Internet based, information system for a research and didactic unit active in the university environment. The logical structure of the system was designed and realized. The structure of logical interconnections between the scientific and didactic information was embedded in the database. New solutions for the broadband processing and presentations layers were proposed. The theoretical and design considerations were implemented practically for one of the research departments at the Warsaw University of Technology. Chosen examples of the system in action were quoted.

  15. Interactive identification protocol based on a quantum public-key cryptosystem

    NASA Astrophysics Data System (ADS)

    Wu, Chenmiao; Yang, Li

    2014-11-01

    We propose two interactive identification protocols based on a general construction of quantum public-key cryptosystem. Basic protocol contains set-up phase and authentication phase. Participants do operation with quantum computing of Boolean function in two-round transmission of authentication phase. Basic one only ensures completeness and soundness, but leaks information about private-key. We modify basic protocol with random string and random Boolean permutation. After modification, both transmitted states in two-round transmission can be proved to be ultimate mixed states. No participant or attacker will get useful information about private-key by measuring such states. Modified protocol achieves property of zero-knowledge.

  16. Decisional outcomes following use of an interactive web-based decision aid for prostate cancer screening.

    PubMed

    Tomko, Catherine; Davis, Kimberly; Ludin, Samantha; Kelly, Scott; Stern, Aaron; Luta, George; Taylor, Kathryn L

    2015-06-01

    Informed decision-making tools are recommended for men considering prostate cancer screening. We evaluated the extent to which use of an interactive, web-based decision aid was associated with decisional and screening outcomes. Participants (N = 253) were 57 (7.0) years old and completed telephone interviews at baseline, 1 month, and 13 months post-baseline. Tracking software captured minutes spent on the website (median = 33.9), sections viewed (median = 4.0/5.0), testimonials viewed (median = 4.0/6.0), and values clarification tool (VCT) use (77.3 %). In multivariable analyses, all four website use variables were positively associated with increased knowledge (p's < 0.05). Complete VCT use and number of informational sections were positively associated with greater decisional satisfaction (p's < 0.05). Decisional conflict and screening behavior were not associated with measures of website use. Increased use of informational content and interactive elements were related to improved knowledge and satisfaction. Methods to increase utilization of interactive website components may improve informed decision-making outcomes. PMID:26029281

  17. a Method to Estimate Temporal Interaction in a Conditional Random Field Based Approach for Crop Recognition

    NASA Astrophysics Data System (ADS)

    Diaz, P. M. A.; Feitosa, R. Q.; Sanches, I. D.; Costa, G. A. O. P.

    2016-06-01

    This paper presents a method to estimate the temporal interaction in a Conditional Random Field (CRF) based approach for crop recognition from multitemporal remote sensing image sequences. This approach models the phenology of different crop types as a CRF. Interaction potentials are assumed to depend only on the class labels of an image site at two consecutive epochs. In the proposed method, the estimation of temporal interaction parameters is considered as an optimization problem, whose goal is to find the transition matrix that maximizes the CRF performance, upon a set of labelled data. The objective functions underlying the optimization procedure can be formulated in terms of different accuracy metrics, such as overall and average class accuracy per crop or phenological stages. To validate the proposed approach, experiments were carried out upon a dataset consisting of 12 co-registered LANDSAT images of a region in southeast of Brazil. Pattern Search was used as the optimization algorithm. The experimental results demonstrated that the proposed method was able to substantially outperform estimates related to joint or conditional class transition probabilities, which rely on training samples.

  18. An interactive system for creating object models from range data based on simulated annealing

    SciTech Connect

    Hoff, W.A.; Hood, F.W.; King, R.H.

    1997-05-01

    In hazardous applications such as remediation of buried waste and dismantlement of radioactive facilities, robots are an attractive solution. Sensing to recognize and locate objects is a critical need for robotic operations in unstructured environments. An accurate 3-D model of objects in the scene is necessary for efficient high level control of robots. Drawing upon concepts from supervisory control, the authors have developed an interactive system for creating object models from range data, based on simulated annealing. Site modeling is a task that is typically performed using purely manual or autonomous techniques, each of which has inherent strengths and weaknesses. However, an interactive modeling system combines the advantages of both manual and autonomous methods, to create a system that has high operator productivity as well as high flexibility and robustness. The system is unique in that it can work with very sparse range data, tolerate occlusions, and tolerate cluttered scenes. The authors have performed an informal evaluation with four operators on 16 different scenes, and have shown that the interactive system is superior to either manual or automatic methods in terms of task time and accuracy.

  19. Truck-based mobile wireless sensor networks for the experimental observation of vehicle-bridge interaction

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Lynch, Jerome P.; Lee, Jong-Jae; Lee, Chang-Geun

    2011-06-01

    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle-bridge interaction. In recent years, interest in vehicle-bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle-bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle-bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm.

  20. Discovering Main Genetic Interactions with LABNet LAsso-Based Network Inference

    PubMed Central

    Gadaleta, Francesco; Van Steen, Kristel

    2014-01-01

    Genome-wide association studies can potentially unravel the mechanisms behind complex traits and common genetic diseases. Despite the valuable results produced thus far, many questions remain unanswered. For instance, which specific genetic compounds are linked to the risk of the disease under investigation; what biological mechanism do they act through; or how do they interact with environmental and other external factors? The driving force of computational biology is the constantly growing amount of big data generated by high-throughput technologies. A practical framework that can deal with this abundance of information and that consent to discovering genetic associations and interactions is provided by means of networks. Unfortunately, high dimensionality, the presence of noise and the geometry of data can make the aforementioned problem extremely challenging. We propose a penalised linear regression approach that can deal with the aforementioned issues that affect genetic data. We analyse the gene expression profiles of individuals with a common trait to infer the network structure of interactions among genes. The permutation-based approach leads to more stable and reliable networks inferred from synthetic microarray data. We show that a higher number of permutations determines the number of predicted edges, improves the overall sensitivity and controls the number of false positives. PMID:25369052

  1. GGIP: Structure and sequence-based GPCR-GPCR interaction pair predictor.

    PubMed

    Nemoto, Wataru; Yamanishi, Yoshihiro; Limviphuvadh, Vachiranee; Saito, Akira; Toh, Hiroyuki

    2016-09-01

    G Protein-Coupled Receptors (GPCRs) are important pharmaceutical targets. More than 30% of currently marketed pharmaceutical medicines target GPCRs. Numerous studies have reported that GPCRs function not only as monomers but also as homo- or hetero-dimers or higher-order molecular complexes. Many GPCRs exert a wide variety of molecular functions by forming specific combinations of GPCR subtypes. In addition, some GPCRs are reportedly associated with diseases. GPCR oligomerization is now recognized as an important event in various biological phenomena, and many researchers are investigating this subject. We have developed a support vector machine (SVM)-based method to predict interacting pairs for GPCR oligomerization, by integrating the structure and sequence information of GPCRs. The performance of our method was evaluated by the Receiver Operating Characteristic (ROC) curve. The corresponding area under the curve was 0.938. As far as we know, this is the only prediction method for interacting pairs among GPCRs. Our method could accelerate the analyses of these interactions, and contribute to the elucidation of the global structures of the GPCR networks in membranes. Proteins 2016; 84:1224-1233. © 2016 Wiley Periodicals, Inc. PMID:27191053

  2. The Effect of Acid-Base Interactions on Conformation of Adsorbed Polymer Chains

    NASA Astrophysics Data System (ADS)

    Dhopatkar, Nishad; Zhu, He; Dhinojwala, Ali

    Adsorption of polymer chains from solutions is of fundamental interest in polymer science. This absorption process is governed by the complex interplay between the solvent-polymer, polymer-substrate, and solvent-substrate interaction energies. In early 1970's, Fowkes and his coworkers have introduced the concept of acid base interactions in explaining why PMMA (basic) adsorption was extremely low on acidic substrates from acidic solvents. The acidic solvent molecules compete with the surface for binding with the basic polymer sites and this reduces the adsorption of PMMA. Here, by using interface-selective sum frequency generation spectroscopy (SFG) and attenuated-total-reflectance (ATR)-FTIR spectroscopy we directly measure whether the solvent or polymer molecules interact with the substrate in acidic, basic, and neutral solvents. Surprisingly, we find that the surface acidic site (hydroxyl) groups are still covered with PMMA chains in acidic solvent. The PMMA chains in acidic solvent adsorb with much higher fraction of chains as trains in comparison to loops and tails. Such differences in the static and dynamic conformations have consequences in understanding the exchange kinetics, colloidal stabilization, chromatographic separations, adhesion and friction, and stabilization of nanocomposites.

  3. Maskiton: Interactive, Web-based Classification of Single-Particle Electron Microscopy Images

    PubMed Central

    Yoshioka, Craig; Lyumkis, Dmitry; Carragher, Bridget; Potter, Clinton S.

    2013-01-01

    Electron microscopy (EM) is an important tool for determining the composition, arrangement and structure of biological macromolecules. When studying structurally heterogeneous samples using EM, classification is a critical step toward achieving higher resolution and identifying biologically significant conformations. We have developed an interactive, web-based tool, called Maskiton, for creating custom masks and performing 2D classifications on aligned single-particle EM images. The Maskiton interface makes it considerably easier and faster to explore the significance of heterogeneity in single-particle datasets. Maskiton features include: resumable uploads to facilitate transfer of large datasets to the server, custom mask creation in the browser, continual progress updates, and interactive viewing of classification results. To demonstrate the value of this tool, we provide examples of its use on several experimental datasets and include analyses of the independent terminus mobility within the Ltn1 E3 ubiquitin ligase, the in-vitro assembly of 30S ribosomal subunits, and classification complexity reduction within Immunoglobulin M. This work also serves as a proof-of-concept for the development of future cross-platform, interactive user interfaces for electron microscopy data processing. PMID:23428431

  4. A Context-Aware Interactive Health Care System Based on Ontology and Fuzzy Inference.

    PubMed

    Chiang, Tzu-Chiang; Liang, Wen-Hua

    2015-09-01

    In the present society, most families are double-income families, and as the long-term care is seriously short of manpower, it contributes to the rapid development of tele-homecare equipment, and the smart home care system gradually emerges, which assists the elderly or patients with chronic diseases in daily life. This study aims at interaction between persons under care and the system in various living spaces, as based on motion-sensing interaction, and the context-aware smart home care system is proposed. The system stores the required contexts in knowledge ontology, including the physiological information and environmental information of the person under care, as the database of decision. The motion-sensing device enables the person under care to interact with the system through gestures. By the inference mechanism of fuzzy theory, the system can offer advice and rapidly execute service, thus, implementing the EHA. In addition, the system is integrated with the functions of smart phone, tablet PC, and PC, in order that users can implement remote operation and share information regarding the person under care. The health care system constructed in this study enables the decision making system to probe into the health risk of each person under care; then, from the view of preventive medicine, and through a composing system and simulation experimentation, tracks the physiological trend of the person under care, and provides early warning service, thus, promoting smart home care. PMID:26265236

  5. [The study on the characters of membrane protein interaction and its network based on integrated intelligence method].

    PubMed

    Shen, Yizhen; Ding, Yongsheng; Hao, Kuangrong

    2011-08-01

    Membrane protein and its interaction network have become a novel research direction in bioinformatics. In this paper, a novel membrane protein interaction network simulator is proposed for system biology studies by integrated intelligence method including spectrum analysis, fuzzy K-Nearest Neighbor(KNN) algorithm and so on. We consider biological system as a set of active computational components interacting with each other and with the external environment. Then we can use the network simulator to construct membrane protein interaction networks. Based on the proposed approach, we found that the membrane protein interaction network almost has some dynamic and collective characteristics, such as small-world network, scale free distributing, and hierarchical module structure. These properties are similar to those of other extensively studied protein interaction networks. The present studies on the characteristics of the membrane protein interaction network will be valuable for its relatively biological and medical studies. PMID:21936357

  6. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions

    NASA Astrophysics Data System (ADS)

    Shipunova, V. O.; Nikitin, M. P.; Nikitin, P. I.; Deyev, S. M.

    2016-06-01

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions.Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method

  7. Interactions of selected policy-stakeholder groups implementing middle school science standards-based systemic reform

    NASA Astrophysics Data System (ADS)

    Boydston, Theodore Lewis, III

    1999-12-01

    This research is an interpretive inquiry into the views and interactions of stakeholders in a district office of a large school system responsible for implementing science systemic reform. Three major sources of data were used in this research: surveys, stakeholder interviews, and autobiographical reflection on experiences as part of the reform initiative. This is an emergent research that is evident in the shift in the focus of research questions and their supporting assumptions during the research. The literature review describes standards-based reform, arguments about reform, and the major dimensions of reform research. The results of the survey of stakeholders revealed that the views among the stakeholder groups followed the system hierarchy and could be separated into two large groups; staff responsible for implementing the reform initiative and the other stakeholder groups. Each of these groups was composed of identifiable subgroups. The interviews with stakeholders revealed how their different attitudes, values, and beliefs frame the context of stakeholder interactions. An over reliance on an authoritarian view of decision-making leaves many stakeholders feeling disempowered and critical of others. This atmosphere promotes blaming, which inhibits collegial interaction. Work experiences in the district office revealed how stakeholders' unaddressed assumptions, attitudes, and beliefs promote fragmentation and competition rather than cooperation. Hidden assumptions about management by control and mandate, competition, and teaching and learning appear to restrain the interactions of stakeholders. Support of the National Science Education Standards was identified as a unifying view among the stakeholders, yet the professional development program focused on content and pedagogical knowledge without addressing stakeholder concerns and beliefs about the intended constructivist framework of the program. Stakeholders' attitudes about the issue of equity demonstrated

  8. Homology-based prediction of interactions between proteins using Averaged One-Dependence Estimators

    PubMed Central

    2014-01-01

    Background Identification of protein-protein interactions (PPIs) is essential for a better understanding of biological processes, pathways and functions. However, experimental identification of the complete set of PPIs in a cell/organism (“an interactome”) is still a difficult task. To circumvent limitations of current high-throughput experimental techniques, it is necessary to develop high-performance computational methods for predicting PPIs. Results In this article, we propose a new computational method to predict interaction between a given pair of protein sequences using features derived from known homologous PPIs. The proposed method is capable of predicting interaction between two proteins (of unknown structure) using Averaged One-Dependence Estimators (AODE) and three features calculated for the protein pair: (a) sequence similarities to a known interacting protein pair (FSeq), (b) statistical propensities of domain pairs observed in interacting proteins (FDom) and (c) a sum of edge weights along the shortest path between homologous proteins in a PPI network (FNet). Feature vectors were defined to lie in a half-space of the symmetrical high-dimensional feature space to make them independent of the protein order. The predictability of the method was assessed by a 10-fold cross validation on a recently created human PPI dataset with randomly sampled negative data, and the best model achieved an Area Under the Curve of 0.79 (pAUC0.5% = 0.16). In addition, the AODE trained on all three features (named PSOPIA) showed better prediction performance on a separate independent data set than a recently reported homology-based method. Conclusions Our results suggest that FNet, a feature representing proximity in a known PPI network between two proteins that are homologous to a target protein pair, contributes to the prediction of whether the target proteins interact or not. PSOPIA will help identify novel PPIs and estimate complete PPI networks. The method

  9. An object-based interaction framework for the operation of multiple field robots

    NASA Astrophysics Data System (ADS)

    Jones, Henry Lee, II

    Today's field robots, such as the Sojourner Mars rover or the Predator unmanned aerial vehicle, work alone to accomplish dirty, dull, or dangerous missions. Plans for the next generation of robotic systems call for multiple field robots to conduct these missions cooperatively under the direction of a single operator. This research examines the role of the operator in multiple-robot missions and creates a human-robot interaction framework that supports this role---a vital step toward the successful deployment of these future robots. In a typical user-centered approach to the development of a human-robot interaction framework, the work practices of the robot operator would be observed, characterized, and integrated into the design. Unfortunately, there are no settings where one can study the operator of multiple robots at work because no such systems have been deployed. As an alternative, this research incorporated a surrogate setting that could be used to inform the early interaction design of multiple-robot systems. Police Special Weapons and Tactics (SWAT) teams were chosen as this setting, and an ethnographic study of SWAT commanders was conducted. Concepts from the interdisciplinary study of geographically distributed work, including common ground, shared mental models, and information sharing, were used to understand and characterize the ethnographic observations. Using lessons learned from the surrogate setting, an implementation of a new human-robot interaction framework was demonstrated on the Micro Autonomous Rovers (MAR) platform in the Aerospace Robotics Laboratory at Stanford University. This interaction framework, which is based on the sensing and manipulation of physical objects by the robots, was derived from the finding that references to physical objects serve as an essential communication and coordination tool for SWAT commanders. A human-computer interface that utilizes direct manipulation techniques and three-dimensional computer graphics was

  10. Amperometric glucose biosensor based on glucose oxidase-lectin biospecific interaction.

    PubMed

    Zhang, Juanjuan; Wang, Chengyan; Chen, Shihong; Yuan, Dehua; Zhong, Xia

    2013-03-01

    An amperometric glucose biosensor based on high electrocatalytic activity of gold/platinum hybrid functionalized zinc oxide nanorods (Pt-Au@ZnONRs) and glucose oxidase (GOx)-lectin biospecific interaction was proposed. The Pt-Au@ZnONRs, which were prepared through a multiple-step chemosynthesis, were modified onto the surface of glassy carbon electrode (GCE) by a simple casting method due to the excellent film forming ability of the Pt-Au@ZnONRs suspension. Subsequently, a layer of porous gold nanocrystals (pAu) film was assembled onto the Pt-Au@ZnONRs film by immersing the electrode in HAuCl(4) solution to perform the electrochemical deposition at a constant potential of -0.2V. Following that, Concanavalin A (ConA) was immobilized onto the surface of pAu film through physical adsorption and covalent binding interactions between gold nanomaterials and the amino groups or thiol groups of ConA protein. Finally, the GOx was easily immobilized on the ConA/pAu/Pt-Au@ZnONRs/GCE by the biospecific interaction between GOx and ConA. The Pt-Au@ZnONRs composites were characterized using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) was used to characterize the assembly process of the modified electrode. Proposed biosensor showed a high electrocatalytic activity to the glucose with a wide linear range covering from 1.8 μM to 5.15 mM, a low detection limit of 0.6 μM and a low apparent Michaelis-Menten constant (K(M)(app)) of 0.41 mM. Furthermore, the biosensor exhibited good reproducibility and long-term stability, as well as high selectivity. The integration of Pt-Au@ZnONRs and GOx-lectin biospecific interaction would offer potential promise for the fabrication of biosensors and biocatalysts. PMID:23410923

  11. Evaluation of interaction between imidazolium-based chloride ionic liquids and calf thymus DNA.

    PubMed

    Liu, Huijun; Dong, Ying; Wu, Jian; Chen, Caidong; Liu, Dingdong; Zhang, Qi; Du, Shaoting

    2016-10-01

    With ionic liquids (ILs) being widely used, the toxicity of many ILs has been studied and verified. However the mechanism underlying the interaction between ILs and DNA needs to be investigated. In this study, the interaction of three imidazolium-based ILs ([C8mim]Cl, [C12mim]Cl, and [C16mim]Cl) with calf thymus DNA (ctDNA) was investigated by UV absorption spectroscopy and fluorescence spectroscopy. An intense interaction between [Cnmim]Cl and ctDNA was observed, involving a hypochromic effect or even a hyperchromic effect, in the UV absorption spectrum of ctDNA at 260nm. The Tm of ctDNA increased over 10°C after binding with [Cnmim]Cl, and the KSV values of [Cnmim]Cl-ctDNA quenched by potassium iodide (KI) were lower than those of [Cnmim]Cl. The fluorescence intensity of ctDNA-ethidium bromide (EB) was gradually quenched as the [Cnmim]Cl concentration increased. The results indicated that ctDNA interacted with [Cnmim]Cl through an intercalation binding mode. The mechanism of fluorescence quenching of [Cnmim]Cl with ctDNA involved static quenching. The binding constant between [Cnmim]Cl and ctDNA were 1443, 11169, and 67189, and the number of binding sites were 0.89, 1.10, and 1.27 at 298K, for [C8mim]Cl, [C12mim]Cl, and [C16mim]Cl, respectively. The results indicated that the intercalation binding between the three [Cnmim]Cl and ctDNA increased with increasing IL-alkyl chain length. These results will aid in the understanding of the mechanism of toxicity and of the biologically mediated environmental processes of ILs. PMID:27203596

  12. MPQ-cytometry: a magnetism-based method for quantification of nanoparticle-cell interactions.

    PubMed

    Shipunova, V O; Nikitin, M P; Nikitin, P I; Deyev, S M

    2016-07-01

    Precise quantification of interactions between nanoparticles and living cells is among the imperative tasks for research in nanobiotechnology, nanotoxicology and biomedicine. To meet the challenge, a rapid method called MPQ-cytometry is developed, which measures the integral non-linear response produced by magnetically labeled nanoparticles in a cell sample with an original magnetic particle quantification (MPQ) technique. MPQ-cytometry provides a sensitivity limit 0.33 ng of nanoparticles and is devoid of a background signal present in many label-based assays. Each measurement takes only a few seconds, and no complicated sample preparation or data processing is required. The capabilities of the method have been demonstrated by quantification of interactions of iron oxide nanoparticles with eukaryotic cells. The total amount of targeted nanoparticles that specifically recognized the HER2/neu oncomarker on the human cancer cell surface was successfully measured, the specificity of interaction permitting the detection of HER2/neu positive cells in a cell mixture. Moreover, it has been shown that MPQ-cytometry analysis of a HER2/neu-specific iron oxide nanoparticle interaction with six cell lines of different tissue origins quantitatively reflects the HER2/neu status of the cells. High correlation of MPQ-cytometry data with those obtained by three other commonly used in molecular and cell biology methods supports consideration of this method as a prospective alternative for both quantifying cell-bound nanoparticles and estimating the expression level of cell surface antigens. The proposed method does not require expensive sophisticated equipment or highly skilled personnel and it can be easily applied for rapid diagnostics, especially under field conditions. PMID:27279427

  13. Interaction of key pathways in sorafenib-treated hepatocellular carcinoma based on a PCR-array

    PubMed Central

    Liu, Yan; Wang, Ping; Li, Shijie; Yin, Linan; Shen, Haiyang; Liu, Ruibao

    2015-01-01

    This study aimed to identify the key pathways and to explore the mechanism of sorafenib in inhibiting hepatocellular carcinoma (HCC). The gene expression profile of GSE33621, including 6 sorafenib treated group and 6 control samples, was downloaded from the GEO (Gene Expression Omnibus) database. The differentially expressed genes (DEGs) in HCC samples were screened using the ΔΔCt method with the homogenized internal GAPDH. Also, the functions and pathways of DEGs were analyzed using the DAVID. Moreover, the significant pathways of DEGs that involved in HCC were analyzed based on the Latent pathway identification analysis (LPIA). A total of 44 down-regulated DEGs were selected in HCC samples. Also, there were 84 biological pathways that these 44 DEGs involved in. Also, LPIA showed that Osteoclast differentiation and hsa04664-Fc epsilon RI signaling pathway was the most significant interaction pathways. Moreover, Apoptosis, Toll-like receptor signaling pathway, Chagas disease, and T cell receptor signaling pathway were the significant pathways that interacted with hsa04664. In addition, DEGs such as AKT1 (v-akt murine thymoma viral oncogene homolog 1), TNF (tumor necrosis factor), SYK (spleen tyrosine kinase), and PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1 (alpha)) were the common genes that involved in the significant pathways. Several pathway interaction pairs that caused by several downregulated genes such as SYK, PI3K, AKT1, and TNF, were identified play curial role in sorafenib treated HCC. Sorafenib played important inhibition roles in HCC by affecting a complicate pathway interaction network. PMID:26045814

  14. Population-based analysis of Alzheimer’s disease risk alleles implicates genetic interactions

    PubMed Central

    Ebbert, Mark T. W.; Ridge, Perry G.; Wilson, Andrew R.; Sharp, Aaron R.; Bailey, Matthew; Norton, Maria C.; Tschanz, JoAnn T.; Munger, Ronald G.; Corcoran, Christopher D.; Kauwe, John S. K.

    2013-01-01

    Background Reported odds ratios and population attributable fractions (PAF) for late-onset Alzheimer’s disease (LOAD) risk loci (BIN1, ABCA7, CR1, MS4A4E, CD2AP, PICALM, MS4A6A, CD33, and CLU) come from clinically ascertained samples. Little is known about the combined PAF for these LOAD risk alleles and the utility of these combined markers for case-control prediction. Here we evaluate these loci in a large population-based sample to estimate PAF and explore the effects of additive and non-additive interactions on LOAD status prediction performance. Methods 2,419 samples from the Cache County Memory Study were genotyped for APOE and nine LOAD risk loci from AlzGene.org. We used logistic regression and ROC analysis to assess the LOAD status prediction performance of these loci using additive and non-additive models, and compared ORs and PAFs between AlzGene.org and Cache County. Results Odds ratios were comparable between Cache County and AlzGene.org when identical SNPs were genotyped. PAFs from AlzGene.org ranged from 2.25–37%; those from Cache County ranged from 0.05–20%. Including non-APOE alleles significantly improved LOAD status prediction performance (AUC = 0.80) over APOE alone (AUC = 0.78) when not constrained to an additive relationship (p < 0.03). We identified potential allelic interactions (p-values uncorrected): CD33-MS4A4E (Synergy Factor = 5.31; p < 0.003) and CLU-MS4A4E (SF = 3.81; p < 0.016). Conclusions While non-additive interactions between loci significantly improve diagnostic ability, the improvement does not reach the desired sensitivity or specificity for clinical use. Nevertheless, these results suggest that understanding gene-gene interactions may be important in resolving Alzheimer’s disease etiology. PMID:23954108

  15. Structure-Based Design of Inhibitors of Protein–Protein Interactions: Mimicking Peptide Binding Epitopes

    PubMed Central

    Pelay-Gimeno, Marta; Glas, Adrian; Koch, Oliver; Grossmann, Tom N

    2015-01-01

    Protein–protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A–D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices. PMID:26119925

  16. A concept-based interactive biomedical image retrieval approach using visualness and spatial information

    NASA Astrophysics Data System (ADS)

    Rahman, Md M.; Antani, Sameer K.; Demner-Fushman, Dina; Thoma, George R.

    2015-03-01

    This paper presents a novel approach to biomedical image retrieval by mapping image regions to local concepts and represent images in a weighted entropy-based concept feature space. The term concept refers to perceptually distinguishable visual patches that are identified locally in image regions and can be mapped to a glossary of imaging terms. Further, the visual significance (e.g., visualness) of concepts is measured as Shannon entropy of pixel values in image patches and is used to refine the feature vector. Moreover, the system can assist user in interactively select a Region-Of-Interest (ROI) and search for similar image ROIs. Further, a spatial verification step is used as a post-processing step to improve retrieval results based on location information. The hypothesis that such approaches would improve biomedical image retrieval, is validated through experiments on a data set of 450 lung CT images extracted from journal articles from four different collections.

  17. Resonant cavity enhanced optical microsensor for molecular interactions based on porous silicon

    NASA Astrophysics Data System (ADS)

    de Stefano, Luca; Rea, Ilaria; Rendina, Ivo; Rotiroti, Lucia; Rossi, Mosè; D'Auria, Sabato

    2006-04-01

    The molecular binding between the glutamine binding-protein (GlnBP) from Escherichia coli and L-glutamine (Gln) is detected by means of an optical biosensor based on porous silicon technology. The binding event is optically transduced in the wavelength shift of the porous silicon optical microcavity (PSMC) reflectivity spectrum. The hydrophobic interaction links the GlnBP, which acts as a molecular probe for Gln, to the hydrogenated porous silicon surface area. We can thus avoid any preliminary surface functionalization process. The protein infiltrated PSMC results stable to oxidation at least for few cycles of wet measurements. The penetration of the proteins into the pores of the porous silicon matrix has been optimized: a strong base post-etch process increases the pore size and removes any nanostructure on top and inside the porous silicon multilayer while does not degrade the optical response and the quality of the microcavity.

  18. Acid-Base Interactions at the Molecular Level: Adhesion and Friction Studies with Interfacial Force Microscopy

    SciTech Connect

    Burns, A.R.; Carpick, R.W.; Houston, J.E.; Michalske, T.A.

    1998-12-09

    To examine the forces of acid-base adhesive interactions at the molecular level, we utilize the scanning probe Interracial Force Microscope (IFM). Unlike cantilever-based atomic force microscopes, the EM is a non-compliant, mechanically stable probe that provides a complete adhesive profile without jump-to-contact. In this way, we are able to quantitatively measure the work of adhesion and bond energies at well-defined, nanometer-scale single asperity contacts. In particular, we will discuss the displacement-controlled adhesive forces between self-assembled monolayer of functionalized alkanethiols strongly bound to a gold substrate and a similarly functionalized tip. We also discuss a method utilizing decoupled lateral and normal force sensors to simultaneously observe the onset of both friction and chemical bond formation. Measurements show that friction can be directly attributed to bond formation and rupture well before repulsive contact.

  19. FRIAA: A FRamework for Web-based Interactive Astronomy Analysis using AMQP Messaging

    NASA Astrophysics Data System (ADS)

    Young, M. D.; Gopu, A.; Hayashi, S.; Cox, J. A.

    2013-10-01

    This paper describes a web-based FRamework for Interactive Astronomy Analysis (FRIAA) being developed as part of the One Degree Imager - Pipeline, Portal, and Archive (ODI-PPA) Science Gateway. The framework provides astronomers with the ability to invoke data processing modules including IRAF and SExtractor on large data within their ODI-PPA web account without requiring them to download the data or to access remote compute resources. Currently available functionality includes contour plots, point source detection and photometry, surface photometry, and catalog source matching. The web browser front-end developed using the Zend PHP platform and the Bootstrap library makes Remote Procedure Calls (RPC) to the back-end modules using AMQP based messaging. The compute-intensive data processing codes are executed on powerful and dedicated nodes on a compute cluster at Indiana University.

  20. Interactive computer-based interventions for weight loss or weight maintenance in overweight or obese people

    PubMed Central

    Wieland, L. Susan; Falzon, Louise; Sciamanna, Chris N; Trudeau, Kimberlee J; Folse, Suzanne Brodney; Schwartz, Joseph E; Davidson, Karina W

    2014-01-01

    Background The World Health Organization (WHO) estimates that the number of obese or overweight individuals worldwide will increase to 1.5 billion by 2015. Chronic diseases associated with overweight or obesity include diabetes, heart disease, hypertension and stroke. Objectives To assess the effects of interactive computer-based interventions for weight loss or weight maintenance in overweight or obese people. Search methods We searched several electronic databases, including CENTRAL, MEDLINE, EMBASE, CINAHL, LILACS and PsycINFO, through 25 May 2011. We also searched clinical trials registries to identify studies. We scanned reference lists of included studies and relevant systematic reviews. Selection criteria Studies were included if they were randomized controlled trials or quasi-randomized controlled trials that evaluated interactive computer-based weight loss or weight maintenance programs in adults with overweight or obesity. We excluded trials if the duration of the intervention was less than four weeks or the loss to follow-up was greater than 20% overall. Data collection and analysis Two authors independently extracted study data and assessed risk of bias. Where interventions, control conditions, outcomes and time frames were similar between studies, we combined study data using meta-analysis. Main results We included 14 weight loss studies with a total of 2537 participants, and four weight maintenance studies with a total of 1603 participants. Treatment duration was between four weeks and 30 months. At six months, computer-based interventions led to greater weight loss than minimal interventions (mean difference (MD) −1.5 kg; 95% confidence interval (CI) −2.1 to −0.9; two trials) but less weight loss than in-person treatment (MD 2.1 kg; 95% CI 0.8 to 3.4; one trial). At six months, computer-based interventions were superior to a minimal control intervention in limiting weight regain (MD −0.7 kg; 95% CI −1.2 to −0.2; two trials), but not

  1. Model-based analysis of control/display interaction in the hover task

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Garg, Sanjay

    1987-01-01

    The effect of Control/Display interaction in the hover task is analyzed using an optimal control approach to modeling pilot control behavior. The control/display configurations considered are those previously evaluated in a flight research program. The experimental data-base is reviewed and the procedure for modeling the task and the displayed information is presented in detail. All model-based results, time-domain as well as frequency-domain, are found to correlate extremely well with the subjective pilot ratings and comments. Time-domain measures consist of root mean-square errors and control inputs, attention allocation to displayed quantities, and magnitudes of task objective function. Frequency-domain measures include bandwidth, stability margins, and pilot phase compensation. Results are also shown to agree with previous findings on task interference in multi-axis tasks.

  2. Robust interacting multiple model algorithms based on multi-sensor fusion criteria

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Liu, Mengmeng

    2016-01-01

    This paper is concerned with the state estimation problem for a class of Markov jump linear discrete-time stochastic systems. Three novel interacting multiple model (IMM) algorithms are proposed based on the H∞ technique, the correlation among estimation errors of mode-conditioned filters and the multi-sensor optimal information fusion criteria. Mode probabilities in the novel algorithms are derived based on the error cross-covariances instead of likelihood functions. The H∞ technique taking the place of Kalman filtering is applied to enhance the robustness of the new approaches. Theoretical analysis and Monte Carlo simulation results indicate that the proposed algorithms are effective and have an obvious advantage in velocity estimation when tracking a maneuvering target.

  3. Research on Interactive Knowledge-Based Indexing: The MedIndEx Prototype

    PubMed Central

    Humphrey, Susanne M.

    1989-01-01

    The general purpose of the MedIndEx (Medical Indexing Expert) Project at the National Library of Medicine (NLM) is to design, develop, and test interactive knowledge-based systems for computer-assisted indexing of literature in the MEDLINE® database using terms from the MeSH® (Medical Subject Headings) thesaurus. In conventional MEDLINE indexing, although indexers enter MeSH descriptors at computer terminals, they consult the thesaurus, indexing manual, and other tools in published form. In the MedIndEx research prototype, the thesaurus and indexing rules are incorporated into a computerized knowledge base (KB) which provides specific assistance not possible in the conventional indexing system. We expect such a system, which combines principles and methods of artificial intelligence and information retrieval, will facilitate expert indexing that takes place at NLM.

  4. Knowledge based and interactive control for the Superfluid Helium On-orbit Transfer Project

    NASA Technical Reports Server (NTRS)

    Castellano, Timothy P.; Raymond, Eric A.; Shapiro, Jeff C.; Robinson, Frank A.; Rosenthal, Donald A.

    1989-01-01

    NASA's Superfluid Helium On-Orbit Transfer (SHOOT) project is a Shuttle-based experiment designed to acquire data on the properties of superfluid helium in micro-gravity. Aft Flight Deck Computer Software for the SHOOT experiment is comprised of several monitoring programs which give the astronaut crew visibility into SHOOT systems and a rule based system which will provide process control, diagnosis and error recovery for a helium transfer without ground intervention. Given present Shuttle manifests, this software will become the first expert system to be used in space. The SHOOT Command and Monitoring System (CMS) software will provide a near real time highly interactive interface for the SHOOT principal investigator to control the experiment and to analyze and display its telemetry. The CMS software is targeted for all phases of the SHOOT project: hardware development, pre-flight pad servicing, in-flight operations, and post-flight data analysis.

  5. Docking of ethanamine Schiff base imines & metal (II) complexes, cytotoxicity & DNA interaction studies

    NASA Astrophysics Data System (ADS)

    Sujarani, S.; Ramu, A.

    2015-01-01

    The present study deals with a series of biologically and stereo chemically important novel transition metal (II) Schiff base chelates. The Cu (II), Co (II), Mn (II) and Ni (II) ions containing complexes were synthesized by using diphenylethanamine and 2-hydroxy/2, 4-dihydroxy/2-hydroxy-4-methoxybenzaldehydes. The synthesized complexes were characterized using micro analytical, IR, NMR, ESI-Mass, UV-Visible, cyclic voltammetry and the EPR spectroscopic techniques. The spectral data evidenced the action of ligands as a neutral bidentate Schiff bases, coordinating through azomethine nitrogen and oxygen atom of hydroxyl group. The interaction studies revealed the groove binding nature of complexes with CT-DNA. The ligand and synthesized metal complexes showed cytotoxicity against cancerous cells. The strong binding affinity of the imine and metal complexes was also confirmed by molecular docking studies.

  6. Multiresolution Techniques for Interactive Texture-Based Rendering of Arbitrarily Oriented Cutting Planes

    SciTech Connect

    LaMar, E; Duchaineau, M A; Hamann, B; Joy, K I

    2001-10-03

    We present a multiresolution technique for interactive texture based rendering of arbitrarily oriented cutting planes for very large data sets. This method uses an adaptive scheme that renders the data along a cutting plane at different resolutions: higher resolution near the point-of-interest and lower resolution away from the point-of-interest. The algorithm is based on the segmentation of texture space into an octree, where the leaves of the tree define the original data and the internal nodes define lower-resolution versions. Rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from it. We limit the artifacts introduced by this method by blending between different levels of resolution to produce a smooth image. This technique can be used to produce viewpoint-dependent renderings.

  7. Prediction of drug-target interactions and drug repositioning via network-based inference.

    PubMed

    Cheng, Feixiong; Liu, Chuang; Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun

    2012-01-01

    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709

  8. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

    PubMed Central

    Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun

    2012-01-01

    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709

  9. Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid

    SciTech Connect

    Allen, Jesse J; Schneider, Yanika; Kail, Brian W; Luebke, David R; Nulwala, Hunaid; Damodaran, Krishnan

    2013-04-11

    Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf{sub 2}N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain’s spin relaxation rates is attributed to cation–cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin–lattice relaxation time (T{sub 1}) measurements to calculate rotational correlation times for C–H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

  10. A 3D-Video-Based Computerized Analysis of Social and Sexual Interactions in Rats

    PubMed Central

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  11. A location system based on two-dimensional position sensitive detector used in interactive projection systems

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Zhou, Qian; Chen, Liangjun; Sun, Peng; Xu, Honglei; Gao, Yuan; Ma, Jianshe; Li, Yi; Liu, Minxia

    2010-11-01

    The interactive projection systems have been widely used in people's life. Currently the major type is based on interactive whiteboard (IWB). In recent years, a new type based on CCD/CMOS sensor is greatly developed. Compared to IWB, CCD/CMOS implements non-contact sensing, which can use any surface as the projection screen. This makes them more flexible in many applications. However, the main defect is that the location accuracy and tracing speed are limited by the resolution and frame rate of the CCD/CMOS. In this paper, we introduced our recent progress on constructing a new type of non-contact interactive projection system by using a two-dimensional position sensitive detector (PSD). The PSD is an analog optoelectronic position sensor utilizing photodiode surface resistance, which provides continuous position measuring and features high position resolution (better than 1.5μm) and high speed response (less than 1μs). By using the PSD, both high positioning resolution and high tracing speed can be easily achieved. A specially designed pen equipped with infrared LEDs is used as a cooperative target. A high precision signal processing system is designed and optimized. The nonlinearity of the PSD as well as the aberration of the camera lens is carefully measured and calibrated. Several anti-interference methods and algorithms are studied. Experimental results show that the positioning error is about 2mm over a 1200mm×1000mm projection screen, and the sampling rate is at least 100Hz.

  12. A 3D-video-based computerized analysis of social and sexual interactions in rats.

    PubMed

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  13. Interactive Dose Shaping - efficient strategies for CPU-based real-time treatment planning

    NASA Astrophysics Data System (ADS)

    Ziegenhein, P.; Kamerling, C. P.; Oelfke, U.

    2014-03-01

    Conventional intensity modulated radiation therapy (IMRT) treatment planning is based on the traditional concept of iterative optimization using an objective function specified by dose volume histogram constraints for pre-segmented VOIs. This indirect approach suffers from unavoidable shortcomings: i) The control of local dose features is limited to segmented VOIs. ii) Any objective function is a mathematical measure of the plan quality, i.e., is not able to define the clinically optimal treatment plan. iii) Adapting an existing plan to changed patient anatomy as detected by IGRT procedures is difficult. To overcome these shortcomings, we introduce the method of Interactive Dose Shaping (IDS) as a new paradigm for IMRT treatment planning. IDS allows for a direct and interactive manipulation of local dose features in real-time. The key element driving the IDS process is a two-step Dose Modification and Recovery (DMR) strategy: A local dose modification is initiated by the user which translates into modified fluence patterns. This also affects existing desired dose features elsewhere which is compensated by a heuristic recovery process. The IDS paradigm was implemented together with a CPU-based ultra-fast dose calculation and a 3D GUI for dose manipulation and visualization. A local dose feature can be implemented via the DMR strategy within 1-2 seconds. By imposing a series of local dose features, equal plan qualities could be achieved compared to conventional planning for prostate and head and neck cases within 1-2 minutes. The idea of Interactive Dose Shaping for treatment planning has been introduced and first applications of this concept have been realized.

  14. Comparison of Interactive Computer-Based and Classroom Training on Human Rights Awareness in Persons with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Tardif-Williams, Christine Y.; Owen, Frances; Feldman, Maurice; Tarulli, Donato; Griffiths, Dorothy; Sales, Carol; McQueen-Fuentes, Glenys; Stoner, Karen

    2007-01-01

    We tested the effectiveness of an interactive, video CD-ROM in teaching persons with intellectual disabilities (ID) about their human rights. Thirty-nine participants with ID were trained using both a classroom activity-based version of the training program and the interactive CD-ROM in a counterbalanced presentation. All individuals were pre- and…

  15. SIGI: Field Test and Evaluation of a Computer-Based System of Interactive Guidance and Information. Volume I: Report.

    ERIC Educational Resources Information Center

    Chapman, Warren; And Others

    The computer-based System of Interactive Guidance and Information (SIGI) was field tested and evaluated at five community colleges and one university. Developed by Educational Testing Service, SIGI assists students in the process of informed and rational career decision making. Interacting at a cathode-ray tube terminal with a computer, students…

  16. SIGI: Field Test and Evaluation of a Computer-Based System of Interactive Guidance and Information. Summary of Final Report.

    ERIC Educational Resources Information Center

    Chapman, Warren; And Others

    The computer-based System of Interactive Guidance and Information (SIGI) was field tested and evaluated at five community colleges and one university. Developed by Educational Testing Service, SIGI assists students in the process of informed and rational career decision making. Interacting at a cathode-ray tube terminal with a computer, students…

  17. Student Interaction and Knowledge Construction in Case-Based Learning in Educational Psychology Using Online Discussions: The Role of Structure

    ERIC Educational Resources Information Center

    Pena-Shaff, Judith; Altman, William

    2015-01-01

    We analyzed students' patterns of participation, interaction and knowledge construction in asynchronous online case-based discussions in two Educational Psychology classes with different participation and interaction guidelines. We conducted quantitative analyses of the outlines of postings and transcripts of online messages from these group…

  18. Entropy Based Genetic Association Tests and Gene-Gene Interaction Tests

    PubMed Central

    de Andrade, Mariza; Wang, Xin

    2011-01-01

    In the past few years, several entropy-based tests have been proposed for testing either single SNP association or gene-gene interaction. These tests are mainly based on Shannon entropy and have higher statistical power when compared to standard χ2 tests. In this paper, we extend some of these tests using a more generalized entropy definition, Rényi entropy, where Shannon entropy is a special case of order 1. The order λ (>0) of Rényi entropy weights the events (genotype/haplotype) according to their probabilities (frequencies). Higher λ places more emphasis on higher probability events while smaller λ (close to 0) tends to assign weights more equally. Thus, by properly choosing the λ, one can potentially increase the power of the tests or the p-value level of significance. We conducted simulation as well as real data analyses to assess the impact of the order λ and the performance of these generalized tests. The results showed that for dominant model the order 2 test was more powerful and for multiplicative model the order 1 or 2 had similar power. The analyses indicate that the choice of λ depends on the underlying genetic model and Shannon entropy is not necessarily the most powerful entropy measure for constructing genetic association or interaction tests. PMID:23089811

  19. Development of interactive patient-based multimedia computer programs in veterinary orthopedic radiology.

    PubMed

    Kraft, S L; Hoskinson, J J; Mussman, J M; Michaels, W E; McLaughlin, R; Gaughan, E M; Roush, J K

    1998-01-01

    Three computerized multimedia programs on large and small animal veterinary orthopedic radiology were developed and implemented for the radiology curriculum as an alternative to traditional film-based laboratory learning. Programs utilized "hot words" (colored text words that displayed an overlaid image label that highlighted lesions) and interactive quizzes which responded appropriately to selected answers. "Hot words" helped students develop confidence in accurate lesion detection and the interactive quizzes transformed learning from a passive to an active process. Multiple examples were provided for reinforcement and concepts were incorporated from other clinical disciplines for curriculum integration. Programs were written using a presentation software program, Toolbook for DOS based platform, and contained radiographic images made by laser-scanning digitization. Multiple students could simultaneously access the programs through a network server. These pilot programs were implemented successfully and computerized multimedia presentation proved to be well suited to teaching radiology. Development of the programs required attention to a number of hardware, software, time and cost factors. PMID:9548135

  20. Entropy based genetic association tests and gene-gene interaction tests.

    PubMed

    de Andrade, Mariza; Wang, Xin

    2011-01-01

    In the past few years, several entropy-based tests have been proposed for testing either single SNP association or gene-gene interaction. These tests are mainly based on Shannon entropy and have higher statistical power when compared to standard χ2 tests. In this paper, we extend some of these tests using a more generalized entropy definition, Rényi entropy, where Shannon entropy is a special case of order 1. The order λ (>0) of Rényi entropy weights the events (genotype/haplotype) according to their probabilities (frequencies). Higher λ places more emphasis on higher probability events while smaller λ (close to 0) tends to assign weights more equally. Thus, by properly choosing the λ, one can potentially increase the power of the tests or the p-value level of significance. We conducted simulation as well as real data analyses to assess the impact of the order λ and the performance of these generalized tests. The results showed that for dominant model the order 2 test was more powerful and for multiplicative model the order 1 or 2 had similar power. The analyses indicate that the choice of λ depends on the underlying genetic model and Shannon entropy is not necessarily the most powerful entropy measure for constructing genetic association or interaction tests. PMID:23089811

  1. Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach.

    PubMed

    Kim, Sun; Liu, Haibin; Yeganova, Lana; Wilbur, W John

    2015-06-01

    Identifying unknown drug interactions is of great benefit in the early detection of adverse drug reactions. Despite existence of several resources for drug-drug interaction (DDI) information, the wealth of such information is buried in a body of unstructured medical text which is growing exponentially. This calls for developing text mining techniques for identifying DDIs. The state-of-the-art DDI extraction methods use Support Vector Machines (SVMs) with non-linear composite kernels to explore diverse contexts in literature. While computationally less expensive, linear kernel-based systems have not achieved a comparable performance in DDI extraction tasks. In this work, we propose an efficient and scalable system using a linear kernel to identify DDI information. The proposed approach consists of two steps: identifying DDIs and assigning one of four different DDI types to the predicted drug pairs. We demonstrate that when equipped with a rich set of lexical and syntactic features, a linear SVM classifier is able to achieve a competitive performance in detecting DDIs. In addition, the one-against-one strategy proves vital for addressing an imbalance issue in DDI type classification. Applied to the DDIExtraction 2013 corpus, our system achieves an F1 score of 0.670, as compared to 0.651 and 0.609 reported by the top two participating teams in the DDIExtraction 2013 challenge, both based on non-linear kernel methods. PMID:25796456

  2. Extracting drug-drug interactions from literature using a rich feature-based linear kernel approach

    PubMed Central

    Kim, Sun; Yeganova, Lana; Wilbur, W. John

    2015-01-01

    Identifying unknown drug interactions is of great benefit in the early detection of adverse drug reactions. Despite existence of several resources for drug-drug interaction (DDI) information, the wealth of such information is buried in a body of unstructured medical text which is growing exponentially. This calls for developing text mining techniques for identifying DDIs. The state-of-the-art DDI extraction methods use Support Vector Machines (SVMs) with non-linear composite kernels to explore diverse contexts in literature. While computationally less expensive, linear kernel-based systems have not achieved a comparable performance in DDI extraction tasks. In this work, we propose an efficient and scalable system using a linear kernel to identify DDI information. The proposed approach consists of two steps: identifying DDIs and assigning one of four different DDI types to the predicted drug pairs. We demonstrate that when equipped with a rich set of lexical and syntactic features, a linear SVM classifier is able to achieve a competitive performance in detecting DDIs. In addition, the one-against-one strategy proves vital for addressing an imbalance issue in DDI type classification. Applied to the DDIExtraction 2013 corpus, our system achieves an F1 score of 0.670, as compared to 0.651 and 0.609 reported by the top two participating teams in the DDIExtraction 2013 challenge, both based on non-linear kernel methods. PMID:25796456

  3. Lipid-based nanocarrier for quercetin delivery: system characterization and molecular interactions studies.

    PubMed

    Hädrich, Gabriela; Monteiro, Samantha Oliveira; Rodrigues, Marisa Raquel; de Lima, Vânia Rodrigues; Putaux, Jean-Luc; Bidone, Juliana; Teixeira, Helder Ferreira; Muccillo-Baisch, Ana Luiza; Dora, Cristiana Lima

    2016-07-01

    The flavonoid quercetin (QU) is a naturally occurring compound with several biological activities. However, the oral bioavailability of this compound is very low due to the high pre-systemic metabolism in the colon and liver and its low water solubility. In this context, the development of QU-loaded nanocarriers (NEs) is a promising approach to improve the drug oral bioavailability. This study investigates the variation of the concentration of 12-hydroxystearic acid-polyethylene glycol copolymer, lecithin and castor oil (CO) as to increase the amount of QU encapsulated while maintaining physicochemical characteristics described in previous studies. To better understand the ability to load and release the drug, we investigated the molecular interactions between QU and NE. Lipid-based NEs were prepared using CO as oily phase and PEG 660-stearate and lecithin as surfactants. Hot solvent diffusion and phase inversion temperature were methods employed to produce NEs. The QU-NEs were investigated for physicochemical characteristics and in vitro drug release. Molecular interactions between QU and the NEs were monitored through the complementary infrared (Fourier transform infrared) and NMR. The results revealed that it was possible to incorporate higher amounts of QU in a lipid-based NE with a reduced size (20 nm). The system developed allow a sustained release of QU probably due to the shell formed by the surfactants around the NE and the flavonoid ordering effect in the emulsion hydrophobic regions, which may reduce the system permeability. PMID:26571009

  4. Interactive web-based programs to teach functional anatomy: the pterygopalatine fossa.

    PubMed

    Sinav, Ahmet; Ambron, Richard

    2004-07-01

    Certain areas of the body contain structures that are difficult to envision in their proper spatial orientations and whose functions are complex and difficult to grasp. This is especially true in the head, where many structures are relatively small and inaccessible. To address this problem, we are designing Web-based programs that consist of high-resolution interactive bitmap illustrations, prepared using Adobe Photoshop, and vector-based animations, prepared via Macromedia Flash. Flash action script language is used for the animations. We have used this approach to prepare a program on the pterygopalatine fossa, an important neurovascular junction in the deep face that is especially difficult to approach by dissection and to depict in static images in an atlas. The program can be viewed online at http://cds.osr.columbia.edu/anatomy/ppfossa/. A table of contents simplifies navigation through the program and a menu enables the user to identify each of the vascular and neuronal components and either to insert or to remove each from its position in the fossa. The functional anatomy of the nerves in the fossa is animated. For example, users can activate and subsequently follow action potentials as they course along axons to their targets. This high degree of interactivity helps promote learning. PMID:15278936

  5. UTOPIAN: user-driven topic modeling based on interactive nonnegative matrix factorization.

    PubMed

    Choo, Jaegul; Lee, Changhyun; Reddy, Chandan K; Park, Haesun

    2013-12-01

    Topic modeling has been widely used for analyzing text document collections. Recently, there have been significant advancements in various topic modeling techniques, particularly in the form of probabilistic graphical modeling. State-of-the-art techniques such as Latent Dirichlet Allocation (LDA) have been successfully applied in visual text analytics. However, most of the widely-used methods based on probabilistic modeling have drawbacks in terms of consistency from multiple runs and empirical convergence. Furthermore, due to the complicatedness in the formulation and the algorithm, LDA cannot easily incorporate various types of user feedback. To tackle this problem, we propose a reliable and flexible visual analytics system for topic modeling called UTOPIAN (User-driven Topic modeling based on Interactive Nonnegative Matrix Factorization). Centered around its semi-supervised formulation, UTOPIAN enables users to interact with the topic modeling method and steer the result in a user-driven manner. We demonstrate the capability of UTOPIAN via several usage scenarios with real-world document corpuses such as InfoVis/VAST paper data set and product review data sets. PMID:24051765

  6. Explaining Earth and Space Science Concepts to Middle School Children Through Interactive web Based Stories

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Gens, R.; Gupta, A.

    2005-05-01

    The role of story telling in educating, entertaining, and stimulating young minds needs no proof. Unwritten stories have carried from one generation to another preserving old traditions and cultural heritages. Advancements in technology have now brought computers and internet to homes, and tools for education and entertainment have adapted accordingly. Combining science content in web based interactive stories, provides a great way to capture the interest and curiosity of young minds, and in the process intrigue them to take up careers in science. 'Alaska: a Birds Eye View', and 'Treasure Hunt in Alaska' are two interactive web based stories designed for middle school children. Both stories are set up for the State of Alaska, but convey earth and space science concepts that are of relevance for everyone. Whereas the first story tells about the significance of satellite observations made in the optical and thermal part of the electromagnetic spectrum for mapping, monitoring volcanic eruption, studying impacts of sea ice edge changes in relation to global climate changes, the second story focuses on the significance of satellite data acquired in the microwave region of the spectrum for target detection. Creative art work has added to the visual appeal of the stories. Both stories provide a unique blend of earth and space science topics.

  7. Interactive breast cancer segmentation based on relevance feedback: from user-centered design to evaluation

    NASA Astrophysics Data System (ADS)

    Gouze, A.; Kieffer, S.; Van Brussel, C.; Moncarey, R.; Grivegnée, A.; Macq, B.

    2009-02-01

    Computer systems play an important role in medical imaging industry since radiologists depend on it for visualization, interpretation, communication and archiving. In particular, computer-aided diagnosis (CAD) systems help in lesion detection tasks. This paper presents the design and the development of an interactive segmentation tool for breast cancer screening and diagnosis. The tool conception is based upon a user-centered approach in order to ensure that the application is of real benefit to radiologists. The analysis of user expectations, workflow and decision-making practices give rise to the need for an interactive reporting system based on the BIRADS, that would not only include the numerical features extracted from the segmentation of the findings in a structured manner, but also support human relevance feedback as well. This way, the numerical results from segmentation can be either validated by end-users or enhanced thanks to domain-experts subjective interpretation. Such a domain-expert centered system requires the segmentation to be sufficiently accurate and locally adapted, and the features to be carefully selected in order to best suit user's knowledge and to be of use in enhancing segmentation. Improving segmentation accuracy with relevance feedback and providing radiologists with a user-friendly interface to support image analysis are the contributions of this work. The preliminary result is first the tool conception, and second the improvement of the segmentation precision.

  8. Two-Way Gene Interaction From Microarray Data Based on Correlation Methods

    PubMed Central

    Alavi Majd, Hamid; Talebi, Atefeh; Gilany, Kambiz; Khayyer, Nasibeh

    2016-01-01

    Background Gene networks have generated a massive explosion in the development of high-throughput techniques for monitoring various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network information from high-throughput genomic data is an important and difficult task. Objectives The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation coefficients. The first step in constructing a Gene Co-expression Network is to score all pairs of gene vectors. The second step is to select a score threshold and connect all gene pairs whose scores exceed this value. Materials and Methods In the foundation-application study, we constructed two-way gene networks using nonparametric methods, such as Spearman’s rank correlation coefficient and Blomqvist’s measure, and compared them with Pearson’s correlation coefficient. We surveyed six genes of venous thrombosis disease, made a matrix entry representing the score for the corresponding gene pair, and obtained two-way interactions using Pearson’s correlation, Spearman’s rank correlation, and Blomqvist’s coefficient. Finally, these methods were compared with Cytoscape, based on BIND, and Gene Ontology, based on molecular function visual methods; R software version 3.2 and Bioconductor were used to perform these methods. Results Based on the Pearson and Spearman correlations, the results were the same and were confirmed by Cytoscape and GO visual methods; however, Blomqvist’s coefficient was not confirmed by visual methods. Conclusions Some results of the correlation coefficients are not the same with visualization. The reason may be due to the small number of data. PMID:27621916

  9. A responsive supramolecular polymer formed by orthogonal metal-coordination and cryptand-based host-guest interaction.

    PubMed

    Wei, Peifa; Xia, Binyuan; Zhang, Yanyan; Yu, Yihua; Yan, Xuzhou

    2014-04-18

    Herein, a cation responsive linear supramolecular polymer was constructed in an orthogonal fashion by unifying the themes of coordination-driven self-assembly and cryptand-based host-guest interaction. PMID:24609282

  10. The interaction of acute and chronic stress impairs model-based behavioral control.

    PubMed

    Radenbach, Christoph; Reiter, Andrea M F; Engert, Veronika; Sjoerds, Zsuzsika; Villringer, Arno; Heinze, Hans-Jochen; Deserno, Lorenz; Schlagenhauf, Florian

    2015-03-01

    It is suggested that acute stress shifts behavioral control from goal-directed, model-based toward habitual, model-free strategies. Recent findings indicate that interindividual differences in the cortisol stress response influence model-based decision-making. Although not yet investigated in humans, animal studies show that chronic stress also shifts decision-making toward more habitual behavior. Here, we ask whether acute stress and individual vulnerability factors, such as stress reactivity and previous exposure to stressful life events, impact the balance between model-free and model-based control systems. To test this, 39 male participants (21-30 years old) were exposed to a potent psychosocial stressor (Trier Social Stress Test) and a control condition in a within-subjects design before they performed a sequential decision-making task which evaluates the balance between the two systems. Physiological and subjective stress reactivity was assessed before, during, and after acute stress exposure. By means of computational modeling, we demonstrate that interindividual variability in stress reactivity predicts impairments in model-based decision-making. Whereas acute psychosocial stress did not alter model-based behavioral control, we found chronic and acute stress to interact in their detrimental effect on decision-making: subjects with high but not low chronic stress levels as indicated by stressful life events exhibited reduced model-based control in response to acute psychosocial stress. These findings emphasize that stress reactivity and chronic stress play an important role in mediating the relationship between stress and decision-making. Our results might stimulate new insights into the interplay between chronic and acute stress, attenuated model-based control, and the pathogenesis of various psychiatric diseases. PMID:25662093

  11. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  12. Structure of unstable nuclei around N = 28 described by a shell model with the monopole-based universal interaction

    SciTech Connect

    Utsuno, Yutaka; Otsuka, Takaharu; Brown, B. Alex; Honma, Michio; Mizusaki, Takahiro

    2011-05-06

    The structure of exotic nuclei around N = 28 is investigated in the sd-pf shell-model space using a new effective interaction. The cross-shell part of the interaction is provided by the monopole-based universal interaction which has been successful in accounting for single-particle evolution in several mass regions. Focusing on the nuclear structure that is sensitive to the shell evolution, we show successful results for the proton-hole states in K isotopes and large deformation in {sup 42}Si. The results demonstrate that the present scheme may be a promising way for constructing an effective interaction for other mass regions.

  13. Lanthanide-based imaging of protein-protein interactions in live cells.

    PubMed

    Rajendran, Megha; Yapici, Engin; Miller, Lawrence W

    2014-02-17

    In order to deduce the molecular mechanisms of biological function, it is necessary to monitor changes in the subcellular location, activation, and interaction of proteins within living cells in real time. Förster resonance energy-transfer (FRET)-based biosensors that incorporate genetically encoded, fluorescent proteins permit high spatial resolution imaging of protein-protein interactions or protein conformational dynamics. However, a nonspecific fluorescence background often obscures small FRET signal changes, and intensity-based biosensor measurements require careful interpretation and several control experiments. These problems can be overcome by using lanthanide [Tb(III) or Eu(III)] complexes as donors and green fluorescent protein (GFP) or other conventional fluorophores as acceptors. Essential features of this approach are the long-lifetime (approximately milliseconds) luminescence of Tb(III) complexes and time-gated luminescence microscopy. This allows pulsed excitation, followed by a brief delay, which eliminates nonspecific fluorescence before the detection of Tb(III)-to-GFP emission. The challenges of intracellular delivery, selective protein labeling, and time-gated imaging of lanthanide luminescence are presented, and recent efforts to investigate the cellular uptake of lanthanide probes are reviewed. Data are presented showing that conjugation to arginine-rich, cell-penetrating peptides (CPPs) can be used as a general strategy for the cellular delivery of membrane-impermeable lanthanide complexes. A heterodimer of a luminescent Tb(III) complex, Lumi4, linked to trimethoprim and conjugated to nonaarginine via a reducible disulfide linker rapidly (∼10 min) translocates into the cytoplasm of Maden Darby canine kidney cells from the culture medium. With this reagent, the intracellular interaction between GFP fused to FK506 binding protein 12 (GFP-FKBP12) and the rapamycin binding domain of mTOR fused to Escherichia coli dihydrofolate reductase (FRB

  14. Two tri-spin complexes based on gadolinium and nitronyl nitroxide radicals: Structure and ferromagnetic interactions

    SciTech Connect

    Zhou Na; Ma Yue; Wang Chao; Xu Gongfeng; Tang Jinkui; Yan Shiping; Liao Daizheng

    2010-04-15

    Three Radical-Ln(III)-Radical complexes based on nitronyl nitroxide radicals have been synthesized, structurally and magnetically characterized: [Gd(hfac){sub 3}(NITPhOEt){sub 2}] (1) (hfac=hexafluoroacetylacetonate, and NITPhOEt=4'-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), [Gd(hfac){sub 3}(NITPhOCH{sub 2}Ph){sub 2}] (2) (NITPhOCH{sub 2}Ph=4'-benzyloxy-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl-3-oxide) and [Lu(hfac){sub 3}(NITPhOCH{sub 2}Ph){sub 2}] (3). The X-ray crystal structure analyses show that the structures of the three compounds are similar and all consist of the isolated molecules, in which central ions Gd{sup III} or Lu{sup III} are coordinated by six oxygen atoms from three hfac and two oxygen atoms from nitronyl radicals. The magnetic studies show that in both of the two Gd{sup III} complexes, there are ferromagnetic Gd{sup III}-Rad interactions and antiferro-magnetic Rad-Rad interactions in the molecules (with J{sub Rad-Gd}=0.27 cm{sup -1}, j{sub Rad-Rad}=-2.97 cm{sup -1} for 1: and J{sub Rad-Gd}=0.62 cm{sup -1}, j{sub Rad-Rad}=-7.01 cm{sup -1} for 2). An analogous complex of [Lu(hfac){sub 3} (NITPhOCH{sub 2}Ph){sub 2}] (3) containing diamagnetic Lu{sup III} ions has also been introduced for further demonstrating the nature of magnetic coupling between radicals. - Graphical abstract: Two tri-spin complexes based on gadolinium-radical have been synthesized and characterized, the magnetic studies show that in the two complexes the Gd-radical interaction is ferromagnetic and the radical-radical interaction is antiferromagnetic. An analogous complex containing the diamagnetic Lu{sup III} ions has also been synthesized to further demonstrate the nature of the magnetic coupling between radicals.

  15. Role of interaction energy in the specificity of transcription. I-The Watson Crick G-C base pair template.

    PubMed Central

    Sanyal, N K; Kumar, U; Roychoudhury, M

    1980-01-01

    The purpose of this work is to show that the selectivity of the nucleotide bases in RNA transcription c an be inferred, in principle, from the DNA base pair - RNA base interaction. The catalytic role of enzymes in this process is, therefore, only to form the sugar - phosphate backbone. A systematic study for the evaluation of the interaction energy of the DNA base pair with the enterant RNA bases have been undertaken to elucidate the aforesaid mechanism. Electrostatic hard sphere approximation of Nash and Bradley 1 has been employed. Non bonded induced dipole and London dispersion forces are not taken into account. The present communication gives the results of computations of the interaction energy of the four RNA bases. The results have been discussed with reference to Stent's and Zubay's schemes of RNA transcription. PMID:7443519

  16. Interaction of sodium and potassium ions with sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads.

    PubMed

    Meyer, Michael; Hocquet, Alexandre; Sühnel, Jürgen

    2005-03-01

    Nucleic acid tetraplexes and lipophilic self-assembling G-quadruplexes contain stacked base tetrads with intercalated metal ions as basic building blocks. Thus far, quantum-chemical studies have been used to explore the geometric and energetic properties of base tetrads with and without metal ions. Recently, for the first time, work on a sandwiched G-tetrad complex has been studied. We report here results of a systematic B3LYP density functional study on sandwiched G-, C-, U-, and T-tetrads with Na+ and K+ at different symmetries that substantially extend the recent work. The results include detailed information on total energies as well as on metal ion tetrad and base-base interaction energies. The geometrical parameters of the sandwiched metal ion complexes are compared to both experimental structures and to calculated geometries of complexes of single tetrads with metal ions. A microsolvation model explains the ion selectivity preference of K+ over Na+ in a qualitative sense. PMID:15648098

  17. Web-based interactive 2D/3D medical image processing and visualization software.

    PubMed

    Mahmoudi, Seyyed Ehsan; Akhondi-Asl, Alireza; Rahmani, Roohollah; Faghih-Roohi, Shahrooz; Taimouri, Vahid; Sabouri, Ahmad; Soltanian-Zadeh, Hamid

    2010-05-01

    There are many medical image processing software tools available for research and diagnosis purposes. However, most of these tools are available only as local applications. This limits the accessibility of the software to a specific machine, and thus the data and processing power of that application are not available to other workstations. Further, there are operating system and processing power limitations which prevent such applications from running on every type of workstation. By developing web-based tools, it is possible for users to access the medical image processing functionalities wherever the internet is available. In this paper, we introduce a pure web-based, interactive, extendable, 2D and 3D medical image processing and visualization application that requires no client installation. Our software uses a four-layered design consisting of an algorithm layer, web-user-interface layer, server communication layer, and wrapper layer. To compete with extendibility of the current local medical image processing software, each layer is highly independent of other layers. A wide range of medical image preprocessing, registration, and segmentation methods are implemented using open source libraries. Desktop-like user interaction is provided by using AJAX technology in the web-user-interface. For the visualization functionality of the software, the VRML standard is used to provide 3D features over the web. Integration of these technologies has allowed implementation of our purely web-based software with high functionality without requiring powerful computational resources in the client side. The user-interface is designed such that the users can select appropriate parameters for practical research and clinical studies. PMID:20022133

  18. Relative importance and interactions of furan precursors in sterilised, vegetable-based food systems.

    PubMed

    Palmers, Stijn; Grauwet, Tara; Buvé, Carolien; Vanratingen, Koen; Kebede, Biniam T; Goos, Peter; Hendrickx, Marc E; Van Loey, Ann

    2016-01-01

    Mitigation strategies aimed at an intervention in the reaction pathways for furan formation (e.g., by adjusting precursor concentrations) might offer an additional route for furan reduction in sterilised, vegetable-based foods, without adverse effects on other food safety or quality attributes. As a first step towards product reformulation, the aim of the present study was to determine the relative importance and interactions of possible furan precursors in these types of foods. Based on an I-optimal experimental design, potato purée (naturally low in furan precursors) was spiked with known amounts of sugars, ascorbic acid, olive oil and β-carotene, and subjected to a thermal sterilisation. Significant correlations were observed between furan concentrations after thermal treatment and starting concentrations of ascorbic acid and monosaccharides (i.e., fructose and glucose). Ascorbic acid had a clear furan-reducing effect as an antioxidant by protecting (polyunsaturated) fatty acids against oxidative degradation. Fructose and glucose were the main precursors, which can most probably be attributed to their high, but realistic, concentrations in the product. The contributions of fatty acids and β-carotene were strongly dependent on redox interactions with other food constituents. In the same potato purées, only low concentrations (0-2 ng g(-1) purée) of 2-methylfuran were detected, indicating that the direct importance of the spiked food constituents as a precursor for methylfuran formation was rather small. Based on the results of this study, reducing the amount of monosaccharides or adjusting the redox conditions of the matrix are suggested as two possible approaches for furan mitigation on the product side. PMID:26605424

  19. Ground-based remote sensing scheme for monitoring aerosol–cloud interactions

    DOE PAGESBeta

    Sarna, Karolina; Russchenberg, Herman W. J.

    2016-03-14

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurementmore » (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius (re) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m–2 wide. For every LWP bin we present the correlation coefficient between ln re and ln ATB, as well as ACIr (defined as ACIr = –d ln re/d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACIr are in the range 0.01–0.1. Lastly, we show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol–cloud interactions.« less

  20. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.

    PubMed

    Nap, R J; Tagliazucchi, M; Szleifer, I

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  1. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers

    SciTech Connect

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I.

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  2. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers

    NASA Astrophysics Data System (ADS)

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I.

    2014-01-01

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  3. Impact of cation-π interactions on the cell voltage of carbon nanotube-based Li batteries.

    PubMed

    Gao, Shaohua; Shi, Guosheng; Fang, Haiping

    2016-01-21

    Carbon nanotube (CNT)-based Li batteries have attracted wide attention because of their high capacity, high cyclability and high energy density and are believed to be one of the most promising electrochemical energy storage systems. In CNT-based Li batteries, the main interaction between the Li(+) ions and the CNT is the cation-π interaction. However, up to now, it is still not clear how this interaction affects the storage characteristics of CNT-based Li batteries. Here, using density functional theory (DFT) calculations, we report a highly favorable impact of cation-π interactions on the cell voltage of CNT-based Li batteries. Considering both Li(+)-π interaction and Li-π interaction, we show that cell voltage enhances with the increase of the CNT diameter. In addition, when the Li(+) ion adsorbs on the external wall, the cell voltage is larger than that when it adsorbs on the internal wall. This suggests that CNTs with a large diameter and a low array density are more advantageous to enhance storage performance of CNT-based Li batteries. Compared with Li(+) ions on the (4,4) CNT internal wall, the cell voltage of Li(+) on the (10,10) CNT external wall is 0.55 V higher, which indicates an improvement of about 38%. These results will be helpful for the design of more efficient CNT-based Li batteries. PMID:26676257

  4. Effects of surface charge on interfacial interactions related to membrane fouling in a submerged membrane bioreactor based on thermodynamic analysis.

    PubMed

    Cai, Huihui; Fan, Hao; Zhao, Leihong; Hong, Huachang; Shen, Liguo; He, Yiming; Lin, Hongjun; Chen, Jianrong

    2016-03-01

    Effects of both membrane and sludge foulant surface zeta potentials on interfacial interactions between membrane and sludge foulant in different interaction scenarios were systematically investigated based on thermodynamic methods. Under conditions in this study, it was found that zeta potential had marginal effects on total interfacial interaction between two infinite planar surfaces, and the total interfacial interaction between foulant particles and membrane would be more repulsive with increase of absolute value of zeta potential. Adhesion of foulant particles on membrane surface should overcome an energy barrier. There exists a critical zeta potential below which energy barrier would disappear. Results also showed that rough surface membrane corresponded to significantly low strength of interfacial interactions. This study not only provided a series of methods to quantitatively assess the interfacial interactions between membrane and sludge foulants, but also reconciled the contradictory conclusions regarding effects of zeta potential in literature, giving important implications for membrane fouling mitigation. PMID:26641562

  5. A prototype of an interactive web-based risk analysis tool for floods and landslides

    NASA Astrophysics Data System (ADS)

    Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri

    2015-04-01

    Within the framework of the European project CHANGES, we developed a prototype web-GIS based risk analysis tool for natural hazards, in particular for floods and landslides, based on open-source geospatial software and technologies. This tool is developed based on Boundless (Opengeo) framework and its client side SDK environment with customized plugins for the risk analysis and data management modules of the web based decision support platform. Free and open source components were applied: PostGIS spatial database, GeoServer and GeoWebCache for application servers with tile cache and GeoExt and OpenLayers for user interface development of the platform. The aim of the presented tool is to assist the experts (risk managers) in analyzing the impacts and consequences of a certain hazard event in the considered region as well as to support the responsible authorities and decision makers in making decisions for selection of risk management strategies to be implemented in the region. Within the platform, the users can provide (upload) the necessary maps and data such as hazard maps, elements at risk maps and vulnerability information. For the vulnerability component of the platform, the users can not only upload the vulnerability tables of a certain elements at risk for a given range of hazard intensity values but also create own vulnerability curves by giving the parameter values of a built-in vulnerability function of the platform. Based on these provided input information, the losses (amount of damages and number of people killed) of a certain hazard scenario are calculated on-the-fly and visualized interactively in the web-GIS interface of the platform. The annualized risk per year can also be obtained based on the combination of these calculated loss scenarios with different return periods of a hazard event. The application of the tool at a regional scale is demonstrated using one of the case study sites, Fella River of North Eastern Italy, of the CHANGES project.

  6. Interaction between Artemether-Lumefantrine and Nevirapine-Based Antiretroviral Therapy in HIV-1-Infected Patients▿

    PubMed Central

    Kredo, T.; Mauff, K.; Van der Walt, J. S.; Wiesner, L.; Maartens, G.; Cohen, K.; Smith, P.; Barnes, K. I.

    2011-01-01

    Artemether-lumefantrine and nevirapine-based antiretroviral therapy (ART) are the most commonly recommended first-line treatments for malaria and HIV, respectively, in Africa. Artemether, lumefantrine, and nevirapine are metabolized by the cytochrome P450 3A4 enzyme system, which nevirapine induces, creating potential for important drug interactions. In a parallel-design pharmacokinetic study, concentration-time profiles were obtained in two groups of HIV-infected patients: ART-naïve patients and those stable on nevirapine-based therapy. Both groups received the recommended artemether-lumefantrine dose. Patients were admitted for intense pharmacokinetic sampling (0 to 72 h) with outpatient sampling until 21 days. Concentrations of lumefantrine, artemether, dihydroartemisinin, and nevirapine were determined by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The primary outcome was observed day 7 lumefantrine concentrations, as these are associated with therapeutic response in malaria. We enrolled 36 patients (32 females). Median (range) day 7 lumefantrine concentrations were 622 ng/ml (185 to 2,040 ng/ml) and 336 ng/ml (29 to 934 ng/ml) in the nevirapine and ART-naïve groups, respectively (P = 0.0002). The median artemether area under the plasma concentration-time curve from 0 to 8 h [AUC(0-8 h)] (P < 0.0001) and dihydroartemisinin AUC(60-68 h) (P = 0.01) were lower in the nevirapine group. Combined artemether and dihydroartemisinin exposure decreased over time only in the nevirapine group (geometric mean ratio [GMR], 0.76 [95% confidence interval {CI}, 0.65 to 0.90]; P < 0.0001) and increased with the weight-adjusted artemether dose (GMR, 2.12 [95% CI, 1.31 to 3.45]; P = 0.002). Adverse events were similar between groups, with no difference in electrocardiographic Fridericia corrected QT and P-R intervals at the expected time of maximum lumefantrine concentration (Tmax). Nevirapine-based ART decreased artemether and dihydroartemisinin

  7. Interaction between artemether-lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients.

    PubMed

    Kredo, T; Mauff, K; Van der Walt, J S; Wiesner, L; Maartens, G; Cohen, K; Smith, P; Barnes, K I

    2011-12-01

    Artemether-lumefantrine and nevirapine-based antiretroviral therapy (ART) are the most commonly recommended first-line treatments for malaria and HIV, respectively, in Africa. Artemether, lumefantrine, and nevirapine are metabolized by the cytochrome P450 3A4 enzyme system, which nevirapine induces, creating potential for important drug interactions. In a parallel-design pharmacokinetic study, concentration-time profiles were obtained in two groups of HIV-infected patients: ART-naïve patients and those stable on nevirapine-based therapy. Both groups received the recommended artemether-lumefantrine dose. Patients were admitted for intense pharmacokinetic sampling (0 to 72 h) with outpatient sampling until 21 days. Concentrations of lumefantrine, artemether, dihydroartemisinin, and nevirapine were determined by validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The primary outcome was observed day 7 lumefantrine concentrations, as these are associated with therapeutic response in malaria. We enrolled 36 patients (32 females). Median (range) day 7 lumefantrine concentrations were 622 ng/ml (185 to 2,040 ng/ml) and 336 ng/ml (29 to 934 ng/ml) in the nevirapine and ART-naïve groups, respectively (P = 0.0002). The median artemether area under the plasma concentration-time curve from 0 to 8 h [AUC((0-8 h))] (P < 0.0001) and dihydroartemisinin AUC((60-68 h)) (P = 0.01) were lower in the nevirapine group. Combined artemether and dihydroartemisinin exposure decreased over time only in the nevirapine group (geometric mean ratio [GMR], 0.76 [95% confidence interval {CI}, 0.65 to 0.90]; P < 0.0001) and increased with the weight-adjusted artemether dose (GMR, 2.12 [95% CI, 1.31 to 3.45]; P = 0.002). Adverse events were similar between groups, with no difference in electrocardiographic Fridericia corrected QT and P-R intervals at the expected time of maximum lumefantrine concentration (T(max)). Nevirapine-based ART decreased artemether and

  8. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.

    PubMed

    Jiang, Yuexu; Wang, Yan; Pang, Wei; Chen, Liang; Sun, Huiyan; Liang, Yanchun; Blanzieri, Enrico

    2015-07-15

    Essential proteins play a crucial role in cellular survival and development process. Experimentally, essential proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to the target organisms. Regarding this, an alternative yet important approach to essential protein identification is through computational prediction. Existing computational methods predict essential proteins based on their relative densities in a protein-protein interaction (PPI) network. Degree, betweenness, and other appropriate criteria are often used to measure the relative density. However, no matter what criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein-protein interactions by integrating their edge weights, and then identified sub PPI networks consisting of those highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We evaluated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better performance than the state-of-the-art methods in terms of precision-recall and Jackknife measures. We had also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant modules by its highly-ranked protein-protein interactions for S. cerevisiae, E. coli, and C. elegans. We believe that, with sufficient data provided, IEW can be used to any other organisms' essential protein identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html. PMID:25892709

  9. Computational Analysis of Structure-Based Interactions for Novel H₁-Antihistamines.

    PubMed

    Yang, Yinfeng; Li, Yan; Pan, Yanqiu; Wang, Jinghui; Lin, Feng; Wang, Chao; Zhang, Shuwei; Yang, Ling

    2016-01-01

    As a chronic disorder, insomnia affects approximately 10% of the population at some time during their lives, and its treatment is often challenging. Since the antagonists of the H₁ receptor, a protein prevalent in human central nervous system, have been proven as effective therapeutic agents for treating insomnia, the H₁ receptor is quite possibly a promising target for developing potent anti-insomnia drugs. For the purpose of understanding the structural actors affecting the antagonism potency, presently a theoretical research of molecular interactions between 129 molecules and the H₁ receptor is performed through three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques. The ligand-based comparative molecular similarity indices analysis (CoMSIA) model (Q² = 0.525, R²ncv = 0.891, R²pred = 0.807) has good quality for predicting the bioactivities of new chemicals. The cross-validated result suggests that the developed models have excellent internal and external predictability and consistency. The obtained contour maps were appraised for affinity trends for the investigated compounds, which provides significantly useful information in the rational drug design of novel anti-insomnia agents. Molecular docking was also performed to investigate the mode of interaction between the ligand and the active site of the receptor. Furthermore, as a supplementary tool to study the docking conformation of the antagonists in the H₁ receptor binding pocket, molecular dynamics simulation was also applied, providing insights into the changes in the structure. All of the models and the derived information would, we hope, be of help for developing novel potent histamine H₁ receptor antagonists, as well as exploring the H₁-antihistamines interaction mechanism. PMID:26797608

  10. Computational Analysis of Structure-Based Interactions for Novel H1-Antihistamines

    PubMed Central

    Yang, Yinfeng; Li, Yan; Pan, Yanqiu; Wang, Jinghui; Lin, Feng; Wang, Chao; Zhang, Shuwei; Yang, Ling

    2016-01-01

    As a chronic disorder, insomnia affects approximately 10% of the population at some time during their lives, and its treatment is often challenging. Since the antagonists of the H1 receptor, a protein prevalent in human central nervous system, have been proven as effective therapeutic agents for treating insomnia, the H1 receptor is quite possibly a promising target for developing potent anti-insomnia drugs. For the purpose of understanding the structural actors affecting the antagonism potency, presently a theoretical research of molecular interactions between 129 molecules and the H1 receptor is performed through three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques. The ligand-based comparative molecular similarity indices analysis (CoMSIA) model (Q2 = 0.525, R2ncv = 0.891, R2pred = 0.807) has good quality for predicting the bioactivities of new chemicals. The cross-validated result suggests that the developed models have excellent internal and external predictability and consistency. The obtained contour maps were appraised for affinity trends for the investigated compounds, which provides significantly useful information in the rational drug design of novel anti-insomnia agents. Molecular docking was also performed to investigate the mode of interaction between the ligand and the active site of the receptor. Furthermore, as a supplementary tool to study the docking conformation of the antagonists in the H1 receptor binding pocket, molecular dynamics simulation was also applied, providing insights into the changes in the structure. All of the models and the derived information would, we hope, be of help for developing novel potent histamine H1 receptor antagonists, as well as exploring the H1-antihistamines interaction mechanism. PMID:26797608

  11. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.

    PubMed

    Mineev, Konstantin S; Lesovoy, Dmitry M; Usmanova, Dinara R; Goncharuk, Sergey A; Shulepko, Mikhail A; Lyukmanova, Ekaterina N; Kirpichnikov, Mikhail P; Bocharov, Eduard V; Arseniev, Alexander S

    2014-01-01

    Knowledge of the energetic parameters of transmembrane helix-helix interactions is necessary for the establishment of a structure-energy relationship for α-helical membrane domains. A number of techniques have been developed to measure the free energies of dimerization and oligomerization of transmembrane α-helices, and all of these have their advantages and drawbacks. In this study we propose a methodology to determine the magnitudes of the free energy of interactions between transmembrane helices in detergent micelles. The suggested approach employs solution nuclear magnetic resonance (NMR) spectroscopy to determine the population of the oligomeric states of the transmembrane domains and introduces a new formalism to describe the oligomerization equilibrium, which is based on the assumption that both the dimerization of the transmembrane domains and the dissociation of the dimer can occur only upon the collision of detergent micelles. The technique has three major advantages compared with other existing approaches: it may be used to analyze both weak and relatively strong dimerization/oligomerization processes, it works well for the analysis of complex equilibria, e.g. when monomer, dimer and high-order oligomer populations are simultaneously present in the solution, and it can simultaneously yield both structural and energetic characteristics of the helix-helix interaction under study. The proposed methodology was applied to investigate the oligomerization process of transmembrane domains of fibroblast growth factor receptor 3 (FGFR3) and vascular endothelium growth factor receptor 2 (VEGFR2), and allowed the measurement of the free energy of dimerization of both of these objects. In addition the proposed method was able to describe the multi-state oligomerization process of the VEGFR2 transmembrane domain. PMID:24036227

  12. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton.

    PubMed

    Labonté, Jessica M; Swan, Brandon K; Poulos, Bonnie; Luo, Haiwei; Koren, Sergey; Hallam, Steven J; Sullivan, Matthew B; Woyke, Tanja; Wommack, K Eric; Stepanauskas, Ramunas

    2015-11-01

    Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus-host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. A combination of comparative genomics, metagenomic fragment recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus-host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage-host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. Our study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host-virus interactions in complex microbial communities. PMID:25848873

  13. Single-cell genomics-based analysis of virus–host interactions in marine surface bacterioplankton

    PubMed Central

    Labonté, Jessica M; Swan, Brandon K; Poulos, Bonnie; Luo, Haiwei; Koren, Sergey; Hallam, Steven J; Sullivan, Matthew B; Woyke, Tanja; Eric Wommack, K; Stepanauskas, Ramunas

    2015-01-01

    Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus–host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. A combination of comparative genomics, metagenomic fragment recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus–host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage–host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. Our study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host–virus interactions in complex microbial communities. PMID:25848873

  14. In silico studies toward understanding the interactions of DNA base pairs with protonated linear/cyclic diamines.

    PubMed

    Sen, Anik; Sahu, Debashis; Ganguly, Bishwajit

    2013-08-29

    Protonated amino groups are ubiquitous in nature and important in the fields of chemistry and biology. In search of efficient polyamine analogues, we have performed DFT calculations on the interactions of some simple cyclic and constrained protonated diamines with the DNA base pairs and compared the results with those obtained for the corresponding interactions involving linear diamines, which mimic biogenic polyamines such as spermine. The interactions are mainly governed by the strong hydrogen bonding between the ligand and the DNA base pairs. The DFT calculations suggest that the major-groove N7 interaction (GC base pair) with linear diamine is energetically more favored than other possible interactions, as reported with spermine. The cyclic diamines exhibited better interactions with the N7 site of the AT and GC base pairs of DNA than the linear diamines. The net atomic charges calculated for the protonated amine hydrogens were higher for the cyclic systems than for the linear diamines, inducing better binding affinity with the DNA base pairs. The stable conformers of cyclic diamines were predicted using the MP2/aug-cc-pVDZ level of theory. The positions of the protonated diamine groups in these cyclic systems are crucial for effective binding with the DNA base pairs. The DFT-calculated results show that diequatorial (ee) 1,2-cyclohexadiamine (CHDA) is a promising candidate as a polyamine analogue for biogenic polyamines. Molecular dynamics simulations were performed using explicit water molecules for the interaction of representative ligands with the DNA base pairs to examine the influence of solvent molecules on such interactions. PMID:23909683

  15. Mutual Lewis acid-base interactions of cations and anions in ionic liquids.

    PubMed

    Holzweber, Markus; Lungwitz, Ralf; Doerfler, Denise; Spange, Stefan; Koel, Mihkel; Hutter, Herbert; Linert, Wolfgang

    2013-01-01

    Solute properties are known to be strongly influenced by solvent molecules due to solvation. This is due to mutual interaction as both the properties of the solute and of the solvent strongly depend on each other. The present paper is based on the idea that ionic liquids are cations solvated by anions and anions solvated by cations. To show this (in this system strongly pronounced) interaction the long time established donor-acceptor concept for solvents and ions in solution by Viktor Gutmann is extended to ionic liquids. A number of solvent parameters, such as the Kamlet-Abboud-Taft and the Dimroth-Reichardt E(T) scale for ionic liquids neglect this mutual influence, which, however, seems to be in fact necessary to get a proper description of ionic liquid properties. It is shown how strong such parameters vary when the influence of the counter ion is taken into account. Furthermore, acceptor and donor numbers for ionic liquids are presented. PMID:23180598

  16. A feature-based approach to modeling protein-DNA interactions.

    PubMed

    Sharon, Eilon; Lubliner, Shai; Segal, Eran

    2008-01-01

    Transcription factor (TF) binding to its DNA target site is a fundamental regulatory interaction. The most common model used to represent TF binding specificities is a position specific scoring matrix (PSSM), which assumes independence between binding positions. However, in many cases, this simplifying assumption does not hold. Here, we present feature motif models (FMMs), a novel probabilistic method for modeling TF-DNA interactions, based on log-linear models. Our approach uses sequence features to represent TF binding specificities, where each feature may span multiple positions. We develop the mathematical formulation of our model and devise an algorithm for learning its structural features from binding site data. We also developed a discriminative motif finder, which discovers de novo FMMs that are enriched in target sets of sequences compared to background sets. We evaluate our approach on synthetic data and on the widely used TF chromatin immunoprecipitation (ChIP) dataset of Harbison et al. We then apply our algorithm to high-throughput TF ChIP data from mouse and human, reveal sequence features that are present in the binding specificities of mouse and human TFs, and show that FMMs explain TF binding significantly better than PSSMs. Our FMM learning and motif finder software are available at http://genie.weizmann.ac.il/. PMID:18725950

  17. Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.

    PubMed

    Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal

    2015-01-01

    Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo. PMID:26684462

  18. A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media

    SciTech Connect

    Y. Wu; L. Pan; K. Pruess

    2004-03-16

    Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.

  19. A Physically Based Approach for Modeling Multiphase Fracture-Matrix Interaction in Fractured Porous Media

    SciTech Connect

    Wu, Yu-Shu; Pan, Lehua; Pruess, Karsten

    2004-03-15

    Modeling fracture-matrix interaction within a complex multiple phase flow system is a key issue for fractured reservoir simulation. Commonly used mathematical models for dealing with such interactions employ a dual- or multiple-continuum concept, in which fractures and matrix are represented as overlapping, different, but interconnected continua, described by parallel sets of conservation equations. The conventional single-point upstream weighting scheme, in which the fracture relative permeability is used to represent the counterpart at the fracture-matrix interface, is the most common scheme by which to estimate flow mobility for fracture-matrix flow terms. However, such a scheme has a serious flaw, which may lead to unphysical solutions or significant numerical errors. To overcome the limitation of the conventional upstream weighting scheme, this paper presents a physically based modeling approach for estimating physically correct relative permeability in calculating multiphase flow between fractures and the matrix, using continuity of capillary pressure at the fracture-matrix interface. The proposed approach has been implemented into two multiphase reservoir simulators and verified using analytical solutions and laboratory experimental data. The new method is demonstrated to be accurate, numerically efficient, and easy to implement in dual- or multiple-continuum models.

  20. Micellar interactions in water-AOT based droplet microemulsions containing hydrophilic and amphiphilic polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Spehr, Tinka Luise; Wipf, Robert; Moers, Christian; Frey, Holger; Stühn, Bernd

    2013-11-01

    We investigate the influence of addition of hydrophilic and amphiphilic polymer on percolation behavior and micellar interactions in AOT-based water-in-oil droplet microemulsions. We focus on two series of samples having constant molar water to surfactant ratio W = 20 and constant droplet volume fraction Φ = 30%, respectively. From dielectric spectroscopy experiments, we extract the bending rigidity of the surfactant shell by percolation temperature measurements. Depending on droplet size, we find stabilization and destabilization of the surfactant shell upon addition of hydrophilic poly(ethylene glycol) (PEG) (Mn = 3100 g mol-1) and amphiphilic poly(styrene)-b-poly(ethylene glycol) copolymer with comparable length of the hydrophilic block. Complementary small angle X-ray scattering experiments corroborate the finding of stabilization for smaller droplets and destabilization of larger droplets. Subsequent analysis of dielectric spectra enables us to extract detailed information about micellar interactions and clustering by evaluating the dielectric high frequency shell relaxation. We interpret the observed results as a possible modification of the inter-droplet charge transfer efficiency by addition of PEG polymer, while the amphiphilic polymer shows a comparable, but dampened effect.

  1. Prediction of protein-protein interactions based on protein-protein correlation using least squares regression.

    PubMed

    Huang, De-Shuang; Zhang, Lei; Han, Kyungsook; Deng, Suping; Yang, Kai; Zhang, Hongbo

    2014-01-01

    In order to transform protein sequences into the feature vectors, several works have been done, such as computing auto covariance (AC), conjoint triad (CT), local descriptor (LD), moran autocorrelation (MA), normalized moreaubroto autocorrelation (NMB) and so on. In this paper, we shall adopt these transformation methods to encode the proteins, respectively, where AC, CT, LD, MA and NMB are all represented by '+' in a unified manner. A new method, i.e. the combination of least squares regression with '+' (abbreviated as LSR(+)), will be introduced for encoding a protein-protein correlation-based feature representation and an interacting protein pair. Thus there are totally five different combinations for LSR(+), i.e. LSRAC, LSRCT, LSRLD, LSRMA and LSRNMB. As a result, we combined a support vector machine (SVM) approach with LSR(+) to predict protein-protein interactions (PPI) and PPI networks. The proposed method has been applied on four datasets, i.e. Saaccharomyces cerevisiae, Escherichia coli, Homo sapiens and Caenorhabditis elegans. The experimental results demonstrate that all LSR(+) methods outperform many existing representative algorithms. Therefore, LSR(+) is a powerful tool to characterize the protein-protein correlations and to infer PPI, whilst keeping high performance on prediction of PPI networks. PMID:25059329

  2. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  3. Study of wave-particle interaction between fast Magnetosonic and energetic electrons based on numerical simulation

    NASA Astrophysics Data System (ADS)

    Fu, S.

    2015-12-01

    There are many energetic electrons in the radiation belt of Earth. When the geomagnetic activity becomes stronger, the energy flux of energetic electrons will increase to more than ten times in the outer radiation belt, therefore it is very important to study how the energetic electrons generate and the lifetime of energetic electrons for space weather research. The acceleration of electrons in radiation belt is mainly depending on wave-particle interaction: the whistler mode chorus is the main driver for local acceleration mechanism, which could accelerate and loss energetic electrons; the geomagnetic pulsation ULF wave will cause energetic electron inward radial diffusion which will charge the electrons; recently observation results show us that the fast magnetosonic waves may also accelerate energetic electrons. For the reason that we try to study the wave-particle interaction between fast Magnetosonic and energetic electrons based on numerical simulation, in which the most important past is at the storm time the combination of highly warped Earth magnetic field and fast magnetosonic wave field will be applied for the electromagnetic environment of moving test particles. The energy, pitch angle and cross diffusion coefficients will be calculated respectively in this simulation to study how the electrons receive energy from fast magnetosonic wave. The diffusion coefficients within different dipole Earth magnetic field and non-dipole storm magnetic field are compared, while dynamics of electrons at selected initial energys are shown in our study.

  4. Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test

    NASA Astrophysics Data System (ADS)

    Ji, Dongmei; Zhang, Lai-Chang; Ren, Jianxing; Wang, Dexian

    2015-04-01

    This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.

  5. Nuclear interactions in heavy ion transport and event-based risk models.

    PubMed

    Cucinotta, Francis A; Plante, Ianik; Ponomarev, Artem L; Kim, Myung-Hee Y

    2011-02-01

    The physical description of the passage of heavy ions in tissue and shielding materials is of interest in radiobiology, cancer therapy and space exploration, including a human mission to Mars. Galactic cosmic rays (GCRs) consist of a large number of ion types and energies. Energy loss processes occur continuously along the path of heavy ions and are well described by the linear energy transfer (LET), straggling and multiple scattering algorithms. Nuclear interactions lead to much larger energy deposition than atomic-molecular collisions and alter the composition of heavy ion beams while producing secondary nuclei often in high multiplicity events. The major nuclear interaction processes of importance for describing heavy ion beams was reviewed, including nuclear fragmentation, elastic scattering and knockout-cascade processes. The quantum multiple scattering fragmentation model is shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections and is studied for application to thick target experiments. A new computer model, which was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL), called the GCR Event Risk-Based Model (GERMcode) is described. PMID:21242169

  6. Benchmark data base for accurate van der Waals interaction in inorganic fragments

    NASA Astrophysics Data System (ADS)

    Brndiar, Jan; Stich, Ivan

    2012-02-01

    A range of inorganic materials, such as Sb, As, P, S, Se are built from van der Waals (vdW) interacting units forming the crystals, which neither the standard DFT GGA description as well as cheap quantum chemistry methods, such as MP2, do not describe correctly. We use this data base, for which have performed ultra accurate CCSD(T) calculations in complete basis set limit, to test the alternative approximate theories, such as Grimme [1], Langreth-Lundqvist [2], and Tkachenko-Scheffler [3]. While none of these theories gives entirely correct description, Grimme consistently provides more accurate results than Langreth-Lundqvist, which tend to overestimate the distances and underestimate the interaction energies for this set of systems. Contrary Tkachenko-Scheffler appear to yield surprisingly accurate and computationally cheap and convenient description applicable also for systems with appreciable charge transfer. [4pt] [1] S. Grimme, J. Comp. Chem. 27, 1787 (2006) [0pt] [2] K. Lee, et al., Phys. Rev. B 82 081101 (R) (2010) [0pt] [3] Tkachenko and M. Scheffler Phys. Rev. Lett. 102 073005 (2009).

  7. A digital interactive human brain atlas based on Chinese visible human datasets for anatomy teaching.

    PubMed

    Li, Qiyu; Ran, Xu; Zhang, Shaoxiang; Tan, Liwen; Qiu, Mingguo

    2014-01-01

    As we know, the human brain is one of the most complicated organs in the human body, which is the key and difficult point in neuroanatomy and sectional anatomy teaching. With the rapid development and extensive application of imaging technology in clinical diagnosis, doctors are facing higher and higher requirement on their anatomy knowledge. Thus, to cultivate medical students to meet the needs of medical development today and to improve their ability to read and understand radiographic images have become urgent challenges for the medical teachers. In this context, we developed a digital interactive human brain atlas based on the Chinese visible human datasets for anatomy teaching (available for free download from http://www.chinesevisiblehuman.com/down/DHBA.rar). The atlas simultaneously provides views in all 3 primary planes of section. The main structures of the human brain have been anatomically labeled in all 3 views. It is potentially useful for anatomy browsing, user self-testing, and automatic student assessment. In a word, it is interactive, 3D, user friendly, and free of charge, which can provide a new, intuitive means for anatomy teaching. PMID:24336036

  8. Elucidating Host–Pathogen Interactions Based on Post-Translational Modifications Using Proteomics Approaches

    PubMed Central

    Ravikumar, Vaishnavi; Jers, Carsten; Mijakovic, Ivan

    2015-01-01

    Microbes with the capability to survive in the host tissue and efficiently subvert its innate immune responses can cause various health hazards. There is an inherent need to understand microbial infection patterns and mechanisms in order to develop efficient therapeutics. Microbial pathogens display host specificity through a complex network of molecular interactions that aid their survival and propagation. Co-infection states further lead to complications by increasing the microbial burden and risk factors. Quantitative proteomics based approaches and post-translational modification analysis can be efficiently applied to gain an insight into the molecular mechanisms involved. The measurement of the proteome and post-translationally modified proteome dynamics using mass spectrometry, results in a wide array of information, such as significant changes in protein expression, protein abundance, the modification status, the site occupancy level, interactors, functional significance of key players, potential drug targets, etc. This mini review discusses the potential of proteomics to investigate the involvement of post-translational modifications in bacterial pathogenesis and host–pathogen interactions. PMID:26635773

  9. Fuzzy Integral-Based Gaze Control of a Robotic Head for Human Robot Interaction.

    PubMed

    Yoo, Bum-Soo; Kim, Jong-Hwan

    2015-09-01

    During the last few decades, as a part of effort to enhance natural human robot interaction (HRI), considerable research has been carried out to develop human-like gaze control. However, most studies did not consider hardware implementation, real-time processing, and the real environment, factors that should be taken into account to achieve natural HRI. This paper proposes a fuzzy integral-based gaze control algorithm, operating in real-time and the real environment, for a robotic head. We formulate the gaze control as a multicriteria decision making problem and devise seven human gaze-inspired criteria. Partial evaluations of all candidate gaze directions are carried out with respect to the seven criteria defined from perceived visual, auditory, and internal inputs, and fuzzy measures are assigned to a power set of the criteria to reflect the user defined preference. A fuzzy integral of the partial evaluations with respect to the fuzzy measures is employed to make global evaluations of all candidate gaze directions. The global evaluation values are adjusted by applying inhibition of return and are compared with the global evaluation values of the previous gaze directions to decide the final gaze direction. The effectiveness of the proposed algorithm is demonstrated with a robotic head, developed in the Robot Intelligence Technology Laboratory at Korea Advanced Institute of Science and Technology, through three interaction scenarios and three comparison scenarios with another algorithm. PMID:25312975

  10. Glycodendritic structures based on Boltorn hyperbranched polymers and their interactions with Lens culinaris lectin.

    PubMed

    Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier

    2003-01-01

    Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies. PMID:12862436

  11. Fluorescent reversible regulation based on the interactions of topotecan hydrochloride, neutral red and quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Shen, Yizhong; Liu, Shaopu; Yang, Jidong; Liang, Wanjun; Li, Dan; He, Youqiu

    2015-02-01

    The interactions of topotecan hydrochloride (THC), neutral red (NR) and thioglycolic acid (TGA) capped CdTe/CdS quantum dots (QDs) built a solid base for the controlling of the fluorescent reversible regulation of the system. This study was developed by means of ultraviolet-visible (UV-vis) absorption, fluorescence (FL), resonance Rayleigh scattering (RRS) spectroscopy and transmission electron microscopy (TEM). Corresponding experimental results revealed that the fluorescence of TGA-CdTe/CdS QDs could be effectively quenched by NR, while the RRS of the QDs enhanced gradually with the each increment of NR concentration. After the addition of THC, the strong covalent conjugation between NR and THC which was in carboxylate state enabled NR to be dissociated from the surface of TGA-CdTe/CdS QDs to form more stable complex with THC, thereby enhancing the fluorescence of the TGA-CdTe/CdS QDs-NR system. What is more, through analyzing the optical properties and experimental data of the reaction between TGA-CdTe/CdS QDs and NR, the possible reaction mechanism of the whole system was discussed. This combination of multiple spectroscopic techniques could contribute to the investigation for the fluorescent reversible regulation of QDs and a method could also be established to research the interactions between camptothecin drugs and dyes.

  12. Influences of acid-base property of membrane on interfacial interactions related with membrane fouling in a membrane bioreactor based on thermodynamic assessment.

    PubMed

    Zhao, Leihong; Qu, Xiaolu; Zhang, Meijia; Lin, Hongjun; Zhou, Xiaoling; Liao, Bao-Qiang; Mei, Rongwu; Hong, Huachang

    2016-08-01

    Failure of membrane hydrophobicity in predicting membrane fouling requires a more reliable indicator. In this study, influences of membrane acid base (AB) property on interfacial interactions in two different interaction scenarios in a submerged membrane bioreactor (MBR) were studied according to thermodynamic approaches. It was found that both the polyvinylidene fluoride (PVDF) membrane and foulant samples in the MBR had relatively high electron donor (γ(-)) component and low electron acceptor (γ(+)) component. For both of interaction scenarios, AB interaction was the major component of the total interaction. The results showed that, the total interaction monotonically decreased with membrane γ(-), while was marginally affected by membrane γ(+), suggesting that γ(-) could act as a reliable indicator for membrane fouling prediction. This study suggested that membrane modification for fouling mitigation should orient to improving membrane surface γ(-) component rather than hydrophilicity. PMID:27155263

  13. Sequential Model-Based Parameter Optimization: an Experimental Investigation of Automated and Interactive Approaches

    NASA Astrophysics Data System (ADS)

    Hutter, Frank; Bartz-Beielstein, Thomas; Hoos, Holger H.; Leyton-Brown, Kevin; Murphy, Kevin P.

    This work experimentally investigates model-based approaches for optimizing the performance of parameterized randomized algorithms. Such approaches build a response surface model and use this model for finding good parameter settings of the given algorithm. We evaluated two methods from the literature that are based on Gaussian process models: sequential parameter optimization (SPO) (Bartz-Beielstein et al. 2005) and sequential Kriging optimization (SKO) (Huang et al. 2006). SPO performed better "out-of-the-box," whereas SKO was competitive when response values were log transformed. We then investigated key design decisions within the SPO paradigm, characterizing the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and a log-transformed objective function. In a domain for which performance results for other (modelfree) parameter optimization approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance. Finally, we compare this automated parameter tuning approach to an interactive, manual process that makes use of classical

  14. Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies

    SciTech Connect

    Wu, Q.; Ayers, P.W.; Zhang, Y.

    2009-10-28

    The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.

  15. Properties of Apolar Solutes in Alkyl Imidazolium-Based Ionic Liquids: The Importance of Local Interactions.

    PubMed

    Lesch, Volker; Heuer, Andreas; Holm, Christian; Smiatek, Jens

    2016-02-01

    The solvation and the dynamic properties of apolar model solutes in alkyl imidazolium-based ionic liquids (IL) are studied by using all-atom molecular dynamics simulations. In regards to specific IL effects, we focused on the often used 1-ethyl-3-methyl imidazolium cation in combination with the anions tetrafluoroborate, acetate, and bis(trifluoromethanesulfonyl)imide. Our findings reveal that the size of the anion crucially influences the accumulation behavior of the cations, which results in modified IL solvation properties. Deviations between the different alkyl imidazolium-based IL combinations can be also observed with regard to the results for the radial distribution functions, the number of surrounding molecules, and the molecular orientation. The analysis of the van Hove function further shows pronounced differences in the dynamic behavior of the solutes. The simulations verify that the solute mobilities are mainly influenced by the composition of the local solvent shell and the properties of the underlying Lennard-Jones interactions. Additional simulations with regard to modified short-range dispersion energies for alkyl imidazolium-based ILs validate our conclusions. PMID:26639367

  16. Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach.

    PubMed

    Cao, Ran; Wang, Yanli

    2016-06-20

    The computational prediction of molecular targets for small-molecule drugs remains a great challenge. Herein we describe a ligand-based interaction fingerprint (LIFt) approach for target prediction. Together with physics-based docking and sampling methods, we assessed the performance systematically by modeling the polypharmacology of 12 kinase inhibitors in three stages. First, we examined the capacity of this approach to differentiate true targets from false targets with the promiscuous binder staurosporine, based on native complex structures. Second, we performed large-scale profiling of kinase selectivity on the clinical drug sunitinib by means of computational simulation. Third, we extended the study beyond kinases by modeling the cross-inhibition of bromodomain-containing protein 4 (BRD4) for 10 well-established kinase inhibitors. On this basis, we made prospective predictions by exploring new kinase targets for the anticancer drug candidate TN-16, originally known as a colchicine site binder and microtubule disruptor. As a result, p38α was highlighted from a panel of 187 different kinases. Encouragingly, our prediction was validated by an in vitro kinase assay, which showed TN-16 as a low-micromolar p38α inhibitor. Collectively, our results suggest the promise of the LIFt approach in predicting potential targets for small-molecule drugs. PMID:26222196

  17. Application of Biologically Based Lumping To Investigate the Toxicokinetic Interactions of a Complex Gasoline Mixture.

    PubMed

    Jasper, Micah N; Martin, Sheppard A; Oshiro, Wendy M; Ford, Jermaine; Bushnell, Philip J; El-Masri, Hisham

    2016-03-15

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course toxicokinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 nontarget chemicals. The same biologically based lumping approach can be used to simplify any complex mixture with tens, hundreds, or thousands of constituents. PMID:26889718

  18. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction.

    PubMed

    Leonard, T R; Herzog, W

    2010-07-01

    For the past half century, the sliding filament-based cross-bridge theory has been the cornerstone of our understanding of how muscles contract. According to this theory, active force can only occur if there is overlap between the contractile filaments, actin and myosin. Otherwise, forces are thought to be caused by passive structural elements and are assumed to vary solely because of the length of the muscle. We observed increases in muscle force by a factor of 3 to 4 above the purely passive forces for activated and stretched myofibrils in the absence of actin-myosin overlap. We show that this dramatic increase in force is crucially dependent on the presence of the structural protein titin, cannot be explained with calcium activation, and is regulated by actin-myosin-based cross-bridge forces before stretching. We conclude from these observations that titin is a strong regulator of muscle force and propose that this regulation is based on cross-bridge force-dependent titin-actin interactions. These results suggest a mechanism for stability of sarcomeres on the "inherently unstable" descending limb of the force-length relationship, and they further provide an explanation for the protection of muscles against stretch-induced muscle injuries. PMID:20357181

  19. Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA.

    PubMed

    Xu, Weijia; Ozer, Stuart; Gutell, Robin R

    2009-01-01

    With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure. PMID:20502534

  20. An interactive web-based system using cloud for large-scale visual analytics

    NASA Astrophysics Data System (ADS)

    Kaseb, Ahmed S.; Berry, Everett; Rozolis, Erik; McNulty, Kyle; Bontrager, Seth; Koh, Youngsol; Lu, Yung-Hsiang; Delp, Edward J.

    2015-03-01

    Network cameras have been growing rapidly in recent years. Thousands of public network cameras provide tremendous amount of visual information about the environment. There is a need to analyze this valuable information for a better understanding of the world around us. This paper presents an interactive web-based system that enables users to execute image analysis and computer vision techniques on a large scale to analyze the data from more than 65,000 worldwide cameras. This paper focuses on how to use both the system's website and Application Programming Interface (API). Given a computer program that analyzes a single frame, the user needs to make only slight changes to the existing program and choose the cameras to analyze. The system handles the heterogeneity of the geographically distributed cameras, e.g. different brands, resolutions. The system allocates and manages Amazon EC2 and Windows Azure cloud resources to meet the analysis requirements.

  1. A vorticity based approach to handle the fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Farahbakhsh, Iman; Ghassemi, Hassan; Sabetghadam, Fereidoun

    2016-02-01

    A vorticity based approach for the numerical solution of the fluid-structure interaction problems is introduced in which the fluid and structure(s) can be viewed as a continuum. Retrieving the vorticity field and recalculating a solenoidal velocity field, specially at the fluid-structure interface, are the kernel of the proposed algorithm. In the suggested method, a variety of constitutive equations as a function of left Cauchy-Green deformation tensor can be applied for modeling the structure domain. A nonlinear Mooney-Rivlin and Saint Venant-Kirchhoff model are expressed in terms of the left Cauchy-Green deformation tensor and the presented method is able to model the behavior of a visco-hyperelastic structure in the incompressible flow. Some numerical experiments, with considering the neo-Hookean model for structure domain, are executed and the results are validated via the available results from literature.

  2. Authentication Based on Non-Interactive Zero-Knowledge Proofs for the Internet of Things.

    PubMed

    Martín-Fernández, Francisco; Caballero-Gil, Pino; Caballero-Gil, Cándido

    2016-01-01

    This paper describes the design and analysis of a new scheme for the authenticated exchange of confidential information in insecure environments within the Internet of Things, which allows a receiver of a message to authenticate the sender and compute a secret key shared with it. The proposal is based on the concept of a non-interactive zero-knowledge proof, so that in a single communication, relevant data may be inferred to verify the legitimacy of the sender. Besides, the new scheme uses the idea under the Diffie-Hellman protocol for the establishment of a shared secret key. The proposal has been fully developed for platforms built on the Android Open Source Project, so it can be used in any device or sensor with this operating system. This work provides a performance study of the implementation and a comparison between its promising results and others obtained with similar schemes. PMID:26751454

  3. Biological interaction of living cells with COSAN-based synthetic vesicles

    PubMed Central

    Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J.

    2015-01-01

    Cobaltabisdicarbollide (COSAN) [3,3′-Co(1,2-C2B9H11)2]−, is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes. PMID:25588708

  4. Increasing condom use in heterosexual men: development of a theory-based interactive digital intervention.

    PubMed

    Webster, R; Michie, S; Estcourt, C; Gerressu, M; Bailey, J V

    2016-09-01

    Increasing condom use to prevent sexually transmitted infections is a key public health goal. Interventions are more likely to be effective if they are theory- and evidence-based. The Behaviour Change Wheel (BCW) provides a framework for intervention development. To provide an example of how the BCW was used to develop an intervention to increase condom use in heterosexual men (the MenSS website), the steps of the BCW intervention development process were followed, incorporating evidence from the research literature and views of experts and the target population. Capability (e.g. knowledge) and motivation (e.g. beliefs about pleasure) were identified as important targets of the intervention. We devised ways to address each intervention target, including selecting interactive features and behaviour change techniques. The BCW provides a useful framework for integrating sources of evidence to inform intervention content and deciding which influences on behaviour to target. PMID:27528531

  5. An agent-based interaction model for Chinese personal income distribution

    NASA Astrophysics Data System (ADS)

    Zou, Yijiang; Deng, Weibing; Li, Wei; Cai, Xu

    2015-10-01

    The personal income distribution in China was studied by employing the data from China Household Income Projects (CHIP) between 1990 and 2002. It was observed that the low and middle income regions could be described by the log-normal law, while the large income region could be well fitted by the power law. To characterize these empirical findings, a stochastic interactive model with mean-field approach was discussed, and the analytic result shows that the wealth distribution is of the Pareto type. Then we explored the agent-based model on networks, in which the exchange of wealth among agents depends on their connectivity. Numerical results suggest that the wealth of agents would largely rely on their connectivity, and the Pareto index of the simulated wealth distributions is comparable to those of the empirical data. The Pareto behavior of the tails of the empirical wealth distributions is consistent with that of the 'mean-field' model, as well as numerical simulations.

  6. An Interactive Method Based on the Live Wire for Segmentation of the Breast in Mammography Images

    PubMed Central

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps. PMID:25024740

  7. A dehydrogenation mechanism of metal hydrides based on interactions between Hdelta+ and H-.

    PubMed

    Lu, Jun; Fang, Zhigang Zak; Sohn, Hong Yong

    2006-10-16

    This paper describes a reaction mechanism that explains the dehydrogenation reactions of alkali and alkaline-earth metal hydrides. These light metal hydrides, e.g., lithium-based compounds such as LiH, LiAlH4, and LiNH2, are the focus of intense research recently as the most promising candidate materials for on-board hydrogen storage applications. Although several interesting and promising reactions and materials have been reported, most of these reported reactions and materials have been discovered by empirical means because of a general lack of understanding of any underlying principles. This paper describes an understanding of the dehydrogenation reactions on the basis of the interaction between negatively charged hydrogen (H-, electron donor) and positively charged hydrogen (Hdelta+, electron acceptor) and experimental evidence that captures and explains many observations that have been reported to date. This reaction mechanism can be used as a guidance for screening new material systems for hydrogen storage. PMID:17029387

  8. MacPASCO - A Macintosh-based, interactive graphic preprocessor for structural analysis and sizing

    NASA Technical Reports Server (NTRS)

    Lucas, S. H.; Davis, R. C.

    1991-01-01

    MacPASCO, an interactive, graphic preprocessor for panel design is described. MacPASCO creates input for PASCO, an existing computer code for structural analysis and optimization of longitudinal stiffened composite panels. By using a graphical user interface, MacPASCO simplifies the specification of panel geometry and reduces user input errors, thus making the modeling and analysis of panel designs more efficient. The user draws the initial structural geometry on the computer screen, then uses a combination of graphic and text inputs to: refine the structural geometry, specify information required for analysis such as panel load conditions, and define design variables and constraints for minimum-mass optimization. Composite panel design is an ideal application because the graphical user interface can: serve as a visual aid, eliminate the tedious aspects of text-based input, and eliminate many sources of input errors.

  9. X based interactive computer graphics applications for aerodynamic design and education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Higgs, C. Fred, III

    1995-01-01

    Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.

  10. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction

    SciTech Connect

    Gao, Wei E-mail: zhuzhihandd@sina.com; Mu, Chunyuan; Yang, Yuqiang; Li, Hongwei; Zhu, Zhihan E-mail: zhuzhihandd@sina.com

    2015-07-27

    A high fidelity amplification of beams carrying orbital angular momentum (OAM) is very crucial for OAM multiplexing and other OAM-based applications. Here, we report a demonstration of stimulated Brillouin amplification for OAM beams, and the energy conversion efficiency of photon-phonon coupling and the phase structure of amplified signals are investigated in collinear and noncollinear frame systems, respectively. Our results demonstrate that the OAM signals can be efficiently amplified without obvious noise introduced, and the modes of output signal are independent of the pump modes or the geometrical frames. Meanwhile, an OAM state depending on the optical modes and the geometrical frames is loaded into phonons by coherent light-acoustic interaction, which reveals more fundamental significance and a great application potential in OAM-multiplexing.

  11. AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL

    PubMed Central

    Zhang, Tao; Chen, Liping; Li, Yao

    2015-01-01

    This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV. PMID:26729120

  12. Authentication Based on Non-Interactive Zero-Knowledge Proofs for the Internet of Things

    PubMed Central

    Martín-Fernández, Francisco; Caballero-Gil, Pino; Caballero-Gil, Cándido

    2016-01-01

    This paper describes the design and analysis of a new scheme for the authenticated exchange of confidential information in insecure environments within the Internet of Things, which allows a receiver of a message to authenticate the sender and compute a secret key shared with it. The proposal is based on the concept of a non-interactive zero-knowledge proof, so that in a single communication, relevant data may be inferred to verify the legitimacy of the sender. Besides, the new scheme uses the idea under the Diffie–Hellman protocol for the establishment of a shared secret key. The proposal has been fully developed for platforms built on the Android Open Source Project, so it can be used in any device or sensor with this operating system. This work provides a performance study of the implementation and a comparison between its promising results and others obtained with similar schemes. PMID:26751454

  13. AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL.

    PubMed

    Zhang, Tao; Chen, Liping; Li, Yao

    2015-01-01

    This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV. PMID:26729120

  14. Methods for simulation-based analysis of fluid-structure interaction.

    SciTech Connect

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.

  15. Interactive web-based mapping: bridging technology and data for health

    PubMed Central

    2011-01-01

    Background The Community Health Information System (CHIS) online mapping system was first launched in 1998. Its overarching goal was to provide researchers, residents and organizations access to health related data reflecting the overall health and well-being of their communities within the Greater Houston area. In September 2009, initial planning and development began for the next generation of CHIS. The overarching goal for the new version remained to make health data easily accessible for a wide variety of research audiences. However, in the new version we specifically sought to make the CHIS truly interactive and give the user more control over data selection and reporting. Results In July 2011, a beta version of the next-generation of the application was launched. This next-generation is also a web based interactive mapping tool comprised of two distinct portals: the Breast Health Portal and Project Safety Net. Both are accessed via a Google mapping interface. Geographic coverage for the portals is currently an 8 county region centered on Harris County, Texas. Data accessed by the application include Census 2000, Census 2010 (underway), cancer incidence from the Texas Cancer Registry (TX Dept. of State Health Services), death data from Texas Vital Statistics, clinic locations for free and low-cost health services, along with service lists, hours of operation, payment options and languages spoken, uninsured and poverty data. Conclusions The system features query on the fly technology, which means the data is not generated until the query is provided to the system. This allows users to interact in real-time with the databases and generate customized reports and maps. To the author's knowledge, the Breast Health Portal and Project Safety Net are the first local-scale interactive online mapping interfaces for public health data which allow users to control the data generated. For example, users may generate breast cancer incidence rates by Census tract, in real

  16. Reducing aggression and impulsivity through school-based prevention programs: a gene by intervention interaction.

    PubMed

    Musci, Rashelle J; Bradshaw, Catherine P; Maher, Brion; Uhl, George R; Kellam, Sheppard G; Ialongo, Nicholas S

    2014-12-01

    A variety of school-based, universal preventive interventions have been developed to address behavioral and mental health problems. Unfortunately, few have been evaluated within the context of randomized controlled trials with long-term follow-up. Even fewer still have examined the potential genetic factors that may drive differential impact of the intervention. In the present analysis, we examine the extent to which the longitudinal effects of two elementary school-based interventions were moderated by the brain-derived neurotrophic factor (BDNF) gene, which has been linked with aggression and impulsive behaviors. The sample included 678 urban, primarily African American children who were randomly assigned along with their teachers to one of three first grade classroom conditions: classroom-centered (CC) intervention, Family School Partnership (FSP), or a control condition. The teacher ratings of the youth's aggressive and impulsive behavior were obtained at baseline and in grades 6-12. Single-nucleotide polymorphisms (SNPs) from the BDNF gene were extracted from the genome-wide data. Longitudinal latent trait-state-error models indicated a significant interaction between a particular profile of the BDNF SNP cluster (46 % of sample) and CC intervention on impulsivity (β = -.27, p < .05). A similar interaction was observed for the BDNF SNP cluster and the CC intervention on aggression (β = -.14, p < .05). The results suggest that the impacts of preventive interventions in early elementary school on late adolescent outcomes of impulsivity and aggression can be potentially modified by genetic factors, such as BDNF. However, replication of these results is necessary before firm conclusions can be drawn. PMID:24178584

  17. Reducing Aggression and Impulsivity Through School-based Prevention Programs: A Gene by Intervention Interaction

    PubMed Central

    Musci, Rashelle J.; Bradshaw, Catherine P.; Maher, Brion; Uhl, George R.; Kellam, Sheppard G.; Ialongo, Nicholas S.

    2013-01-01

    A variety of school-based, universal preventive interventions have been developed to address behavioral and mental health problems. Unfortunately, few have been evaluated within the context of randomized controlled trials with long term follow-up. Even fewer still have examined the potential genetic factors that may drive differential impact of the intervention. In the present analysis, we examine the extent to which the longitudinal effects of two elementary school-based interventions were moderated by the brain derived neurotrophic factor (BDNF) gene, which has been linked with aggression and impulsive behaviors. The sample included 678 urban, primarily African American children who were randomly assigned along with their teachers to one of three first grade classrooms conditions: classroom-centered (CC) intervention, Family School Partnership (FSP), or a control condition. Teacher ratings of youth’s aggressive and impulsive behavior were obtained at baseline and in grades 6-12. Single nucleotide polymorphisms (SNPs) from the BDNF gene were extracted from the genome wide data. Longitudinal latent trait-state error models indicated a significant interaction between a particular profile of the BDNF SNP cluster (46% of sample) and CC intervention on impulsivity (β = −.27, p < .05). A similar interaction was observed for the BDNF SNP cluster and the CC intervention on aggression (β = −.14, p < .05). The results suggest that the impacts of preventive interventions in early elementary school on late adolescent outcomes of impulsivity and aggression can be potentially modified by genetic factors, such as BDNF. However, replication of these results is necessary before firm conclusions can be drawn. PMID:24178584

  18. Prediction of renal transporter mediated drug-drug interactions for pemetrexed using physiologically based pharmacokinetic modeling.

    PubMed

    Posada, Maria M; Bacon, James A; Schneck, Karen B; Tirona, Rommel G; Kim, Richard B; Higgins, J William; Pak, Y Anne; Hall, Stephen D; Hillgren, Kathleen M

    2015-03-01

    Pemetrexed, an anionic anticancer drug with a narrow therapeutic index, is eliminated mainly by active renal tubular secretion. The in vitro to in vivo extrapolation approach used in this work was developed to predict possible drug-drug interactions (DDIs) that may occur after coadministration of pemetrexed and nonsteroidal anti-inflammatory drugs (NSAIDs), and it included in vitro assays, risk assessment models, and physiologically based pharmacokinetic (PBPK) models. The pemetrexed transport and its inhibition parameters by several NSAIDs were quantified using HEK-PEAK cells expressing organic anion transporter (OAT) 3 or OAT4. The NSAIDs were ranked according to their DDI index, calculated as the ratio of their maximum unbound concentration in plasma over the concentration inhibiting 50% (IC50) of active pemetrexed transport. A PBPK model for ibuprofen, the NSAID with the highest DDI index, was built incorporating active renal secretion in Simcyp Simulator. The bottom-up model for pemetrexed underpredicted the clearance by 2-fold. The model we built using a scaling factor of 5.3 for the maximal uptake rate (Vmax) of OAT3, which estimated using plasma concentration profiles from patients given a 10-minute infusion of 500 mg/m(2) of pemetrexed supplemented with folic acid and vitamin B12, recovered the clinical data adequately. The observed/predicted increases in Cmax and the area under the plasma-concentration time curve (AUC0-inf) of pemetrexed when ibuprofen was coadministered were 1.1 and 1.0, respectively. The coadministration of all other NSAIDs was predicted to have no significant impact on the AUC0-inf based on their DDI indexes. The PBPK model reasonably reproduced pemetrexed concentration time profiles in cancer patients and its interaction with ibuprofen. PMID:25504564

  19. The Effects of Computer-Supported Inquiry-Based Learning Methods and Peer Interaction on Learning Stellar Parallax

    ERIC Educational Resources Information Center

    Ruzhitskaya, Lanika

    2011-01-01

    The presented research study investigated the effects of computer-supported inquiry-based learning and peer interaction methods on effectiveness of learning a scientific concept. The stellar parallax concept was selected as a basic, and yet important in astronomy, scientific construct, which is based on a straightforward relationship of several…

  20. The Effects of Web-Based Interactive Virtual Tours on the Development of Prospective Mathematics Teachers' Spatial Skills

    ERIC Educational Resources Information Center

    Kurtulus, Aytac

    2013-01-01

    The aim of this study was to investigate the effects of web-based interactive virtual tours on the development of prospective mathematics teachers' spatial skills. The study was designed based on experimental method. The "one-group pre-test post-test design" of this method was taken as the research model. The study was conducted with 3rd year…