Science.gov

Sample records for murine leukemia virus-induced

  1. Immunotherapy of murine leukemia. Efficacy of passive serum therapy of Friend leukemia virus-induced disease in immunocompromised mice

    SciTech Connect

    Genovesi, E.V.; Livnat, D.; Collins, J.J.

    1983-02-01

    Previous studies have demonstrated that the passive therapy of Friend murine leukemia virus (F-MuLV)-induced disease with chimpanzee anti-F-MuLV serum is accompanied by the development of host antiviral humoral and cellular immunity, the latter measurable in adoptive transfer protocols and by the ability of serum-protected mice to resist virus rechallenge. The present study was designed to further examine the contribution of various compartments of the host immune system to serum therapy itself, as well as to the acquired antiviral immunity that develops in serum-protected mice, through the use of naturally immunocompromised animals (e.g., nude athymic mice and natural killer (NK)-deficient beige mutant mice) or mice treated with immunoabrogating agents such as sublethal irradiation, cyclophosphamide (Cytoxan (Cy)), cortisone, and /sup 89/Sr. The studies in nude mice indicate that while mature T-cells are not needed for effective serum therapy, they do appear to be necessary for the long-term resistance of serum-protected mice to virus rechallenge and for the generation of the cell population(s) responsible for adoptive transfer of antiviral immunity. Furthermore, this acquired resistance is not due to virus neutralization by serum antibodies since antibody-negative, Cy-treated, serum-protected mice still reject the secondary virus infection. Lastly, while the immunocompromise systems examined did effect various host antiviral immune responses, none of them, including the NK-deficient beige mutation, significantly diminished the efficacy of the passive serum therapy of F-MuLV-induced disease.

  2. Immunomodulatory and Antioxidant Effects of Purple Sweet Potato Extract in LP-BM5 Murine Leukemia Virus-Induced Murine Acquired Immune Deficiency Syndrome.

    PubMed

    Kim, Ok-Kyung; Nam, Da-Eun; Yoon, Ho-Geun; Baek, Sun Jung; Jun, Woojin; Lee, Jeongmin

    2015-08-01

    The immunomodulatory effects of a dietary supplement of purple sweet potato extract (PSPE) in LP-BM5 murine leukemia virus (MuLV)-induced immune-deficient mice were investigated. Mice were divided into six groups: normal control, infected control (LP-BM5 MuLV infection), positive control (LP-BM5 MuLV infection+dietary supplement of red ginseng 300 mg/kg), purple sweet potato water extract (PSPWE) (LP-BM5 MuLV infection+dietary supplement of PSPE 300 mg/kg), PSP10EE (LP-BM5 MuLV infection+dietary supplement of 10% ethanol PSPE 300 mg/kg), and PSP80EE (LP-BM5 MuLV infection+dietary supplement of 80% ethanol PSPE 300 mg/kg). Dietary supplementation began on the day of LP-BM5 MuLV infection and continued for 12 weeks. Dietary supplementation of PSPE inhibited LP-BM5 MuLV-induced splenomegaly and lymphadenopathy and attenuated the suppression of T- and B-cell proliferation and T helper 1/T helper 2 cytokine imbalance in LP-BM5 MuLV-infected mice. Dietary supplement of PSPE increased the activity of the antioxidant enzymes, superoxide dismutase and glutathione peroxidase. The data suggest that PSPE may ameliorate immune dysfunction due to LP-BM5 MuLV infection by modulating antioxidant defense systems. PMID:26076116

  3. Comparative analysis of radiation- and virus-induced leukemias in BALB/c mice

    SciTech Connect

    Newcomb, E.W.; Binari, R.; Fleissner, E.

    1985-01-15

    Endogenous murine leukemia virus (MuLV) proviral copies were analyzed in thymomas induced in normal BALB/c (Fv-1b) and in Fv-1n congenic mice by X-irradiation. Both strains of mice developed leukemia with similar kinetics, indicating that N-tropism of endogenous MuLV was not a rate-limiting factor in development of disease. Southern blot analysis, using a probe specific for ecotropic virus and for ecotropic-specific sequences retained in pathogenic, env-recombinant viruses, showed that the majority of radiation leukemias lacked newly acquired, clonally integrated, proviruses. This was in contrast to virus-induced leukemias, which routinely exhibited several new proviral integration sites. When an internal proviral DNA restriction fragment was monitored, some radiation leukemias showed evidence of nonclonal infection, accounting for more frequent isolation of infectious virus from such leukemias. Differences in expression of T-cell surface antigens were found in X-ray-induced and virus-induced leukemias. All radiation leukemias were TL positive, whereas virus-induced leukemias were primarily negative for TL. Some differences were also found in Lyt-1 and Lyt-2 expression. The data as a whole suggest that, in the majority of cases, radiation leukemogenesis is not initiated by a viral route--that is, the sort of viral mechanism for which exogenous infection by known pathogenic MuLV is the paradigm.

  4. Detection of a unique antigen on radiation leukemia virus-induced leukemia B6RV2

    SciTech Connect

    Nakayama, E.; Uenaka, A.; Stockert, E.; Obata, Y.

    1984-11-01

    Radiation leukemia virus-induced leukemia of a male C57BL/6 mouse, B6RV2, is immunogenic to female BALB/c X C57BL/6 F1 mice. In these mice, B6RV2 tumors regressed after initial growth, and after tumor regression the mice were resistant to repeated inocula of up to 10(8) B6RV2 cells. Serum from these mice reacted with B6RV2 in mixed hemadsorption or protein A assays, and absorption analysis indicated that the antigen was restricted to B6RV2; it could not be detected in normal thymocytes or spleen concanavalin A blasts from different inbred strains, nor in 16 C57BL/6 or BALB/c leukemias. Spleen cells from mice in which the tumor had regressed were cytotoxic to B6RV2 after in vitro stimulation with B6RV2, as shown by /sup 51/chromium release assay. This cytotoxicity was eliminated by pretreatment of the cells with anti-Thy-1.2, anti-Lyt-2.2, anti-Lyt-3.2, and complement, indicating that the effector cells were T-cells. The specificity of T-cell killing of B6RV2 was examined by competitive inhibition assays with unlabeled cells; only B6RV2 inhibited killing, while eight other C57BL/6 leukemias did not inhibit. Thus, the antigen on B6RV2 defined serologically and by cytotoxic T-cells is a unique antigen. However, it was not revealed by antibody-blocking test whether the unique determinant defined serologically was related to that recognized by T-cells; B6RV2 antiserum did not block lytic activity in the absence of added complement, irrespective of whether the target cells were untreated or anti-H-2b-treated B6RV2. H-2Kb antisera, but not H-2Db antisera, blocked lysis. This indicated that the H-2Kb molecule was exclusively involved in recognition of B6RV2 by cytotoxic T-cell.

  5. Sex-specific quantitative trait loci govern susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination.

    PubMed Central

    Butterfield, Russell J; Roper, Randall J; Rhein, Dominic M; Melvold, Roger W; Haynes, Lia; Ma, Runlin Z; Doerge, R W; Teuscher, Cory

    2003-01-01

    Susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination (TMEVD), a mouse model for multiple sclerosis (MS), is genetically controlled. Through a mouse-human comparative mapping approach, identification of candidate susceptibility loci for MS based on the location of TMEVD susceptibility loci may be possible. Composite interval mapping (CIM) identified quantitative trait loci (QTL) controlling TMEVD severity in male and female backcross populations derived from susceptible DBA/2J and resistant BALBc/ByJ mice. We report QTL on chromosomes 1, 5, 15, and 16 affecting male mice. In addition, we identified two QTL in female mice located on chromosome 1. Our results support the existence of three linked sex-specific QTL on chromosome 1 with opposing effects on the severity of the clinical signs of TMEV-induced disease in male and female mice. PMID:12663542

  6. Theiler's murine encephalomyelitis virus-induced cardiac and skeletal muscle disease.

    PubMed Central

    Gómez, R M; Rinehart, J E; Wollmann, R; Roos, R P

    1996-01-01

    The DA strain of Theiler's murine encephalomyelitis virus, a member of the cardiovirus genus of picornaviruses, induces a restricted and persistent infection associated with a demyelinating process following intracerebral inoculation of mice; both virus infection and the immune response are believed to contribute to the late white matter disease. We now report that intraperitoneal inoculation with DA produces an acute myositis that progresses to a chronic inflammatory muscle disease in CD-1 mice as well as several inbred mouse strains. Some mouse strains also develop central nervous system white matter disease and a focal myocarditis. Infectious virus in skeletal muscle falls to undetectable levels 3 weeks postinoculation (p.i.), although viral genome persists for at least 12 weeks p.i., the longest period of observation. Severe combined immunodeficient animals have evidence of muscle pathology as long as 5 weeks p.i., suggesting that DA virus is capable of inducing chronic muscle disease in the absence of an immune response. The presence in immunocompetent mice, however, of prominent muscle inflammation in the absence of infectious virus suggests that the immune system also contributes to the pathology. T lymphocytes are the predominant cell type infiltrating the skeletal muscle during the chronic disease. This murine model may further our understanding of virus-induced chronic myositis and help to clarify the pathogenesis of human inflammatory myopathies. PMID:8971022

  7. Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation from Latency by Preventing Virus-Induced Systemic Inflammation.

    PubMed

    Park, Sunmin; Buck, Michael D; Desai, Chandni; Zhang, Xin; Loginicheva, Ekaterina; Martinez, Jennifer; Freeman, Michael L; Saitoh, Tatsuya; Akira, Shizuo; Guan, Jun-Lin; He, You-Wen; Blackman, Marcia A; Handley, Scott A; Levine, Beth; Green, Douglas R; Reese, Tiffany A; Artyomov, Maxim N; Virgin, Herbert W

    2016-01-13

    Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine gammaherpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by interferon-γ (IFN-γ). Using a lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16l1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5 deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ, and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency. PMID:26764599

  8. ESCRT Requirements for Murine Leukemia Virus Release

    PubMed Central

    Bartusch, Christina; Prange, Reinhild

    2016-01-01

    The Murine Leukemia Virus (MLV) is a gammaretrovirus that hijack host components of the endosomal sorting complex required for transport (ESCRT) for budding. To determine the minimal requirements for ESCRT factors in MLV viral and viral-like particles (VLP) release, an siRNA knockdown screen of ESCRT(-associated) proteins was performed in MLV-producing human cells. We found that MLV VLPs and virions primarily engage the ESCRT-I factor Tsg101 and marginally the ESCRT-associated adaptors Nedd4-1 and Alix to enter the ESCRT pathway. Conversely, the inactivation of ESCRT-II had no impact on VLP and virion egress. By analyzing the effects of individual ESCRT-III knockdowns, VLP and virion release was profoundly inhibited in CHMP2A- and CHMP4B-knockdown cells. In contrast, neither the CHMP2B and CHMP4A isoforms nor CHMP3, CHMP5, and CHMP6 were found to be essential. In case of CHMP1, we unexpectedly observed that the CHMP1A isoform was specifically required for virus budding, but dispensable for VLP release. Hence, MLV utilizes only a subset of ESCRT factors, and viral and viral-like particles differ in ESCRT-III factor requirements. PMID:27096867

  9. ESCRT Requirements for Murine Leukemia Virus Release.

    PubMed

    Bartusch, Christina; Prange, Reinhild

    2016-01-01

    The Murine Leukemia Virus (MLV) is a gammaretrovirus that hijack host components of the endosomal sorting complex required for transport (ESCRT) for budding. To determine the minimal requirements for ESCRT factors in MLV viral and viral-like particles (VLP) release, an siRNA knockdown screen of ESCRT(-associated) proteins was performed in MLV-producing human cells. We found that MLV VLPs and virions primarily engage the ESCRT-I factor Tsg101 and marginally the ESCRT-associated adaptors Nedd4-1 and Alix to enter the ESCRT pathway. Conversely, the inactivation of ESCRT-II had no impact on VLP and virion egress. By analyzing the effects of individual ESCRT-III knockdowns, VLP and virion release was profoundly inhibited in CHMP2A- and CHMP4B-knockdown cells. In contrast, neither the CHMP2B and CHMP4A isoforms nor CHMP3, CHMP5, and CHMP6 were found to be essential. In case of CHMP1, we unexpectedly observed that the CHMP1A isoform was specifically required for virus budding, but dispensable for VLP release. Hence, MLV utilizes only a subset of ESCRT factors, and viral and viral-like particles differ in ESCRT-III factor requirements. PMID:27096867

  10. Dimethyl fumarate suppresses Theiler's murine encephalomyelitis virus-induced demyelinating disease by modifying the Nrf2-Keap1 pathway.

    PubMed

    Kobayashi, Kunitoshi; Tomiki, Hiroki; Inaba, Yuji; Ichikawa, Motoki; Kim, Byung S; Koh, Chang-Sung

    2015-07-01

    Dimethyl fumarate (DMF) is a modifier of the nuclear factor (erythroid-derived 2)-2 (Nrf2)-kelch-like ECH-associated protein 1 (Keap1) pathway. DMF treatment in the effector phase significantly suppressed the development of Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) both clinically and histologically. DMF treatment leads to an enhanced Nrf2 antioxidant response in TMEV-IDD mice. DMF treatment in the effector phase significantly suppressed the level of IL-17A mRNA. DMF is known to inhibit differentiation of T helper 17 (Th17) cells via suppressing NF-κB. Taken together, our data suggest that DMF treatment in the effector phase may suppress TMEV-IDD not only via enhancing the antioxidant response but also via suppressing IL-17A. PMID:25721871

  11. Oncogene Activation in Myeloid Leukemias by Graffi Murine Leukemia Virus Proviral Integration

    PubMed Central

    Denicourt, Catherine; Edouard, Elsy; Rassart, Eric

    1999-01-01

    The Graffi murine leukemia virus (MuLV) is a nondefective retrovirus that induces granulocytic leukemia in BALB/c and NFS mice. To identify genes involved in Graffi MuLV-induced granulocytic leukemia, tumor cell DNAs were examined for genetic alterations at loci described as common proviral integration sites in MuLV-induced myeloid, lymphoid, and erythroid leukemias. Southern blot analysis revealed rearrangements in c-myc, Fli-1, Pim-1, and Spi-1/PU.1 genes in 20, 10, 3.3, and 3.3% of the tumors tested, respectively. These results demonstrate for the first time the involvement of those genes in granulocytic leukemia. PMID:10196342

  12. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    NASA Astrophysics Data System (ADS)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  13. Murine immunodeficiency virus-induced peripheral neuropathy and the associated cytokine responses.

    PubMed

    Cao, Ling; Butler, M Brady; Tan, Leonard; Draleau, Kyle S; Koh, Woon Yuen

    2012-10-01

    Distal symmetrical polyneuropathy is the most common form of HIV infection-associated peripheral neuropathy and is often associated with pain. C57BL/6 (B6) mice infected with LP-BM5, a murine retroviral isolate, develop a severe immunodeficiency syndrome similar to that in humans infected with HIV-1, hence the term murine AIDS. We investigated the induction of peripheral neuropathy after LP-BM5 infection in B6 mice. Infected B6 mice, like HIV-infected humans, exhibited behavioral (increased sensitivity to mechanical and heat stimuli) and pathological (transient loss of intraepidermal nerve fibers) signs of peripheral neuropathy. The levels of viral gag RNA were significantly increased in all tissues tested, including spleen, paw skin, lumbar dorsal root ganglia, and lumbar spinal cord, postinfection (p.i.). Correlated with the development of peripheral neuropathy, the tissue levels of several cytokines, including IFN-γ, IL-1β, IL-6, and IL-12, were significantly elevated p.i. These increases had cytokine-specific and tissue-specific profiles and kinetics. Further, treatment with the antiretroviral agent zidovudine either significantly reduced or completely reversed the aforementioned behavioral, pathologic, and cytokine changes p.i. These data suggest that LP-BM5 infection is a potential mouse model of HIV-associated distal symmetrical polyneuropathy that can be used for investigating the roles of various cytokines in infection-induced neuropathic pain. Further investigation of this model could give a better understanding of, and lead to more effective treatments for, HIV infection-associated painful peripheral neuropathy. PMID:22956581

  14. Infection of Murine Macrophages by Salmonella enterica Serovar Heidelberg Blocks Murine Norovirus Infectivity and Virus-induced Apoptosis

    PubMed Central

    Agnihothram, Sudhakar S.; Basco, Maria D. S.; Mullis, Lisa; Foley, Steven L.; Hart, Mark E.; Sung, Kidon; Azevedo, Marli P.

    2015-01-01

    Gastroenteritis caused by bacterial and viral pathogens constitutes a major public health threat in the United States accounting for 35% of hospitalizations. In particular, Salmonella enterica and noroviruses cause the majority of gastroenteritis infections, with emergence of sporadic outbreaks and incidence of increased infections. Although mechanisms underlying infections by these pathogens have been individually studied, little is known about the mechanisms regulating co-infection by these pathogens. In this study, we utilized RAW 264.7 murine macrophage cells to investigate the mechanisms governing co-infection with S. enterica serovar Heidelberg and murine norovirus (MNV). We demonstrate that infection of RAW 264.7 cells with S. enterica reduces the replication of MNV, in part by blocking virus entry early in the virus life cycle, and inducing antiviral cytokines later in the infection cycle. In particular, bacterial infection prior to, or during MNV infection affected virus entry, whereas MNV entry remained unaltered when the virus infection preceded bacterial invasion. This block in virus entry resulted in reduced virus replication, with the highest impact on replication observed during conditions of co-infection. In contrast, bacterial replication showed a threefold increase in MNV-infected cells, despite the presence of antibiotic in the medium. Most importantly, we present evidence that the infection of MNV-infected macrophages by S. enterica blocked MNV-induced apoptosis, despite allowing efficient virus replication. This apoptosis blockade was evidenced by reduction in DNA fragmentation and absence of poly-ADP ribose polymerase (PARP), caspase 3 and caspase 9 cleavage events. Our study suggests a novel mechanism of pathogenesis whereby initial co-infection with these pathogens could result in prolonged infection by either of these pathogens or both together. PMID:26658916

  15. Infection of Murine Macrophages by Salmonella enterica Serovar Heidelberg Blocks Murine Norovirus Infectivity and Virus-induced Apoptosis.

    PubMed

    Agnihothram, Sudhakar S; Basco, Maria D S; Mullis, Lisa; Foley, Steven L; Hart, Mark E; Sung, Kidon; Azevedo, Marli P

    2015-01-01

    Gastroenteritis caused by bacterial and viral pathogens constitutes a major public health threat in the United States accounting for 35% of hospitalizations. In particular, Salmonella enterica and noroviruses cause the majority of gastroenteritis infections, with emergence of sporadic outbreaks and incidence of increased infections. Although mechanisms underlying infections by these pathogens have been individually studied, little is known about the mechanisms regulating co-infection by these pathogens. In this study, we utilized RAW 264.7 murine macrophage cells to investigate the mechanisms governing co-infection with S. enterica serovar Heidelberg and murine norovirus (MNV). We demonstrate that infection of RAW 264.7 cells with S. enterica reduces the replication of MNV, in part by blocking virus entry early in the virus life cycle, and inducing antiviral cytokines later in the infection cycle. In particular, bacterial infection prior to, or during MNV infection affected virus entry, whereas MNV entry remained unaltered when the virus infection preceded bacterial invasion. This block in virus entry resulted in reduced virus replication, with the highest impact on replication observed during conditions of co-infection. In contrast, bacterial replication showed a threefold increase in MNV-infected cells, despite the presence of antibiotic in the medium. Most importantly, we present evidence that the infection of MNV-infected macrophages by S. enterica blocked MNV-induced apoptosis, despite allowing efficient virus replication. This apoptosis blockade was evidenced by reduction in DNA fragmentation and absence of poly-ADP ribose polymerase (PARP), caspase 3 and caspase 9 cleavage events. Our study suggests a novel mechanism of pathogenesis whereby initial co-infection with these pathogens could result in prolonged infection by either of these pathogens or both together. PMID:26658916

  16. Bovine leukemia virus-induced clinical signs and morphological changes of encephalitozoonosis in rabbits.

    PubMed

    Levkut, M; Lesník, F; Bálent, P; Zajac, V; Korim, P; Sláviková, K

    1997-01-01

    Fourteen three-month-old rabbits spontaneously-infected with the microsporidium Encephalitozoon cuniculi Levaditi, Nicolau et Schoen, 1923 were inoculated intravenously with lymphocytes (Ly) from seropositive bovine leukemia virus infected cattle (Ly/BLV) or with fetal lamb kidney cells infected with bovine fetal leukemia (FLK/BLV). Thirteen rabbits were seropositive to BLV at least for a period of three months. Six rabbits died of pulmonary lesions. Chronic inflammatory lesions of encephalitozoonosis were found in six rabbits killed between 454 and 548 days of the observation period. Five animals bore subcutaneous granulomas. Immunohistochemically, E. cuniculi was demonstrated in the inflammatory lesions of rabbits studied. Control animals also spontaneously infected with E. cuniculi did not show clinical signs of encephalitozoonosis. Morphological changes were found incidentally in the form of small glial foci and focal interstitial nephritis in these animals. The combined action of BLV-E. cuniculi on the bodies of rabbits is proposed as a suitable model for the study of encephalitozoonosis in man with human immunodeficiency virus (HIV) infection. PMID:9437837

  17. Murine models of acute leukemia: important tools in current pediatric leukemia research.

    PubMed

    Jacoby, Elad; Chien, Christopher D; Fry, Terry J

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  18. Murine Models of Acute Leukemia: Important Tools in Current Pediatric Leukemia Research

    PubMed Central

    Jacoby, Elad; Chien, Christopher D.; Fry, Terry J.

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  19. Even transcriptionally competent proviruses are silent in bovine leukemia virus-induced sheep tumor cells.

    PubMed Central

    Van den Broeke, A; Cleuter, Y; Chen, G; Portetelle, D; Mammerickx, M; Zagury, D; Fouchard, M; Coulombel, L; Kettmann, R; Burny, A

    1988-01-01

    To investigate the role of proviral integration and expression in cellular transformation induced by bovine leukemia virus (BLV), three BLV-induced tumors harboring a single proviral copy were selected upon restriction and hybridization analysis. Tumors 344 and 395 were shown to contain a full-size proviral copy, whereas in tumor 1345 the provirus appeared to be heavily deleted. RNA gel blot hybridization with an antisense RNA probe showed no transcription of the viral sequences in the fresh tumors or in sheep tumor cells growing in vitro. The proviruses were cloned and transfected in mammalian cell lines. Transient-expression experiments revealed that the complete proviruses were still able to express the trans-activating protein (Tat) as well as structural proteins, demonstrating that the nonexpression of a provirus in a tumor cell does not necessarily imply a structural alteration of the viral information. In contrast, sequence analysis of the provirus with a large deletion and transient-expression assays proved that this truncated provirus, isolated from a tumor, was unable to code for viral proteins. These data indicate that expression of viral genes, including tat, is not required for the maintenance of the transformed state. Images PMID:2848258

  20. Activation of the c-H-ras proto-oncogene by retrovirus insertion and chromosomal rearrangement in a Moloney leukemia virus-induced T-cell leukemia.

    PubMed Central

    Ihle, J N; Smith-White, B; Sisson, B; Parker, D; Blair, D G; Schultz, A; Kozak, C; Lunsford, R D; Askew, D; Weinstein, Y

    1989-01-01

    A rearrangement of the c-H-ras locus was detected in a T-cell line (DA-2) established from a Moloney leukemia virus-induced tumor. This rearrangement was associated with the high-level expression of H-ras RNA and the H-ras gene product, p21. DNA from DA-2 cells transformed fibroblasts in DNA transfection experiments, and the transformed fibroblasts contained the rearranged H-ras locus. The rearrangement involved one allele and was present in tissue from the primary tumor from which the cell line was isolated. Cloning and sequencing of the rearranged allele and comparison with the normal allele demonstrated that the rearrangement was complex and probably resulted from the integration of a retrovirus in the H-ras locus between a 5' noncoding exon and the first coding exon and a subsequent homologous recombination between this provirus and another newly acquired provirus also located on chromosome 7. These events resulted in the translocation of the coding exons of the H-ras locus away from the 5' noncoding exon region to a new genomic site on chromosome 7. Sequencing of the coding regions of the gene failed to detect mutations in the 12th, 13th, 59th, or 61st codons. The possible reasons for the complexity of the rearrangement and the significance of the activation of the H-ras locus to T-cell transformation are discussed. Images PMID:2542606

  1. Replication of the Moloney murine sarcoma-leukemia virus in XC cells.

    PubMed

    Trowbridge, S T; Benyesh-Melnick, M; Biswal, N

    1973-01-01

    The XC rat cell line was found to support the replication of a strain of the Moloney murine sarcoma-leukemia virus. In growth curve experiments cytopathology was paralleled by the production of murine sarcoma virus and leukemia virus progeny having the biologic, antigenic, and biophysical properties of the infecting virus. PMID:4346280

  2. Mechanisms for virus-induced liver disease: tumor necrosis factor-mediated pathology independent of natural killer and T cells during murine cytomegalovirus infection.

    PubMed Central

    Orange, J S; Salazar-Mather, T P; Opal, S M; Biron, C A

    1997-01-01

    The contribution of endogenous NK cells and cytokines to virus-induced liver pathology was evaluated during murine cytomegalovirus infections of mice. In immunocompetent C57BL/6 mice, the virus induced a self-limited liver disease characterized by hepatitis, with focal inflammation, and large grossly visible subcapsular necrotic foci. The inflammatory foci were most numerous and contained the greatest number of cells 3 days after infection; they colocalized with areas of viral antigen expression. The largest number of necrotic foci was found 2 days after infection. Overall hepatic damage, assessed as increased expression of liver enzymes in serum, accompanied the development of inflammatory and necrotic foci. Experiments with neutralizing antibodies demonstrated that although virus-induced tumor necrosis factor (TNF) can have antiviral effects, it also mediated significant liver pathology. TNF was required for development of hepatic necrotic foci and increased levels of liver enzymes in serum but not for increased numbers of inflammatory foci. The necrotic foci and liver enzyme indications of pathology occurred independently of NK and T cells, because mice rendered NK-cell deficient by treatment with antibodies, T- and B-cell-deficient Rag-/- mice, and NK- and T-cell-deficient E26 mice all manifested both parameters of disease. Development of necrotic foci and maximally increased levels of liver enzymes in serum also were TNF dependent in NK-cell-deficient mice. Moreover, in the immunodeficient E26 mice, virus-induced liver disease was progressive, with eventual death of the host, and neutralization of TNF significantly increased longevity. These results establish conditions separating hepatitis from significant liver damage and demonstrate a cytokine-mediated component to viral pathogenesis. PMID:9371583

  3. An HSEF for murine myeloid leukemia

    SciTech Connect

    Bond, V.P.; Cronkite, E.P.; Bullis, J.E.; Wuu, C.S.; Marino, S.A.; Zaider, M.

    1996-10-01

    In the past decade, a large amount of effort has gone into the development of hit size effectiveness functions (HSEFs), with the ultimate aim of replacing the present absorbed dose-RBE-Q system. However, the absorbed dose determined at the tissue level is incapable of providing information on single hits on (doses to) the single cell. As a result, it is necessary to resort to microdosimetry, which is capable of providing not only the number of hits on cells, but the distribution of hit sizes as well. From this information, an HSEF can be derived. However, to date there have been no sets of data available on animals exposed to radiations of several qualities, and for which microdosimetric data were available. The objective of the present set of experiments was to remedy this situation. Large numbers of mice were exposed to radiations of several different qualities, and were observed throughout their entire lifespan for the appearance of myeloid leukemia. The HSEF developed for this neoplasm is presented and discussed.

  4. Genetic determinants of feline leukemia virus-induced lymphoid tumors: patterns of proviral insertion and gene rearrangement.

    PubMed

    Tsatsanis, C; Fulton, R; Nishigaki, K; Tsujimoto, H; Levy, L; Terry, A; Spandidos, D; Onions, D; Neil, J C

    1994-12-01

    The genetic basis of feline leukemia virus (FeLV)-induced lymphoma was investigated in a series of 63 lymphoid tumors and tumor cell lines of presumptive T-cell origin. These were examined for virus-induced rearrangements of the c-myc, flvi-2 (bmi-1), fit-1, and pim-1 loci, for T-cell receptor (TCR) gene rearrangements, and for the presence of env recombinant FeLV (FeLV-B). The myc locus was most frequently affected in naturally occurring lymphomas (32%; n = 38) either by transduction (21%) or by proviral insertion (11%). Proviral insertions were also common at flvi-2 (24%). The two other loci were occupied in a smaller number of the naturally occurring tumors (fit-1, 8%; pim-1, 5%). Examination of the entire set of tumors showed that significant numbers were affected at two (19%) or three (5%) of the loci. Occupation of the fit-1 locus was observed most frequently in tumors induced by FeLV-myc strains, while flvi-2 insertions occurred with similar frequency in the presence or absence of obvious c-myc activation. These results suggest a hierarchy of mutational events in the genesis of feline T-cell lymphomas by FeLV and implicate insertion at fit-1 as a late progression step. The strongest links observed were with T-cell development, as monitored by rearrangement status of the TCR beta-chain gene, which was positively associated with activation of myc (P < 0.001), and with proviral insertion at flvi-2 (P = 0.02). This analysis also revealed a genetically distinct subset of thymic lymphomas with unrearranged TCR beta-chain genes in which the known target loci were involved very infrequently. The presence of env recombinant FeLV (FeLV-B) showed a negative correlation with proviral insertion at fit-1, possibly due to the rapid onset of these tumors. These results shed further light on the multistep process of FeLV leukemogenesis and the relationships between lymphoid cell maturation and susceptibility to FeLV transformation. PMID:7966623

  5. Proviral activation of the c-myb proto-oncogene is detectable in preleukemic mice infected neonatally with Moloney murine leukemia virus but not in resulting end stage T lymphomas.

    PubMed

    Belli, B; Wolff, L; Nazarov, V; Fan, H

    1995-08-01

    Moloney murine leukemia virus induces myeloid leukemia when inoculated intravenously into pristane-primed adult BALB/c mice. One hundred percent of these tumors show insertional activation of the c-myb proto-oncogene, and reverse transcriptase PCR assays have shown that the c-myb activation could be detected soon after infection. We tested BALB/c and NIH Swiss mice that had been inoculated as newborns with Moloney murine leukemia virus, under which conditions they develop T lymphomas exclusively. Reverse transcriptase-PCR assays indicated that c-myb activations were detectable soon after neonatal infection. However, none of the resulting T lymphomas contained c-myb activations. The implications of these results to the timing of proto-oncogene activations in leukemogenesis and the specificity of proto-oncogene activations for different diseases are discussed. PMID:7609084

  6. Cross-protective murine graft-versus-leukemia responses to phenotypically distinct myeloid leukemia lines.

    PubMed

    Patterson, A E; Korngold, R

    2000-01-01

    A c-myc retrovirus-transformed myeloid leukemia line, MMB3.19, of C57BL/6 (B6) origin, was developed to investigate graft-versus-leukemia (GVL) activity in murine bone marrow transplantation (BMT) models. It was previously determined that both naive and leukemia-presensitized CD4+-enriched T cells are capable of mediating GVL activity to MMB3.19 challenge in both syngeneic (B6) and allogeneic (C3H.SW-->B6) strain combinations, with the latter coinciding with minimal graft-versus-host disease. In the present study, MMB3.19 and 2 other similarly derived, yet phenotypically diverse, B6 myeloid leukemia lines (MMB1.10 and MMB2.18) were investigated for potential shared tumor antigens in the syngeneic GVL model. Morphologically, all 3 tumor lines are blastic with high cytoplasmic:nuclear ratios, but MMB2.18 displays dendritic processes, whereas MMB1.10 and MMB3.19 have a more rounded appearance. Flow cytometric analysis of the 3 lines revealed constitutive surface molecule expression of Mac-1, Mac-2, F4/80, LFA-1, B7-1, B7-2, H2Kb, H2Db, and macrophage scavenger receptor, consistent with macrophage/monocyte lineages. Furthermore, each of the lines expresses H2I-Ab, but to varying degrees, with MMB2.18 cells having the lowest percentage (31.6%). In vitro 51Cr release assays using MMB3.19-primed T-cell effectors demonstrated equivalent specific lysis of all 3 leukemia-line target cells. In addition, enzyme-linked immunospot analysis of MMB3.19-primed CD4+ T cells revealed significantly increased frequencies of tumor-stimulated interleukin (IL)-2-, IL-4-, and interferon-gamma-secreting cells when restimulated with each of the 3 leukemia lines. Furthermore, when MMB3.19-primed CD4+ T cells were administered in a BMT setting, a protective GVL effect was seen in those mice challenged with MMB1.10, MMB2.18, or MMB3.19. Therefore, in vitro and in vivo experiments indicate that the 3 distinct myeloid leukemia lines share 1 or more common major histocompatibility complex class II

  7. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  8. A Linkage Map of Endogenous Murine Leukemia Proviruses

    PubMed Central

    Frankel, W. N.; Stoye, J. P.; Taylor, B. A.; Coffin, J. M.

    1990-01-01

    Thirty endogenous proviruses belonging to the modified polytropic (Mpmv) class of murine leukemia virus (MLV) were identified by proviral-cellular DNA junction fragment segregation in several sets of recombinant inbred mice. Twenty-six Mpmv loci were mapped to chromosomal regions by matching proviral strain distribution patterns to those of previously assigned genes. Like other endogenous nonecotropic MLVs, Mpmv loci were present on several chromosomes in all strains examined. We pooled recombinant inbred strain linkage data from 110 MLV loci and selected marker genes in order to construct a chromosomal linkage map. Every mouse chromosome was found to harbor at least one proviral insertion, and several regions contained multiple integrations. However, the overall distribution of the 110 mapped proviruses did not deviate significantly from a random distribution. Because of their polymorphism in inbred strains of mice, and the ability to score as many as 57 proviruses per strain using only three hybridization probes, the nonecotropic MLVs mapped in common strains of mice offer a significant advantage over older methods (e.g., biochemical or individual restriction fragment polymorphisms) as genetic markers. These endogenous insertion elements should also be useful for assessing strain purity, and for studying the relatedness of common and not-so-common inbred strains. PMID:2155154

  9. Human APOBEC3G incorporation into murine leukemia virus particles

    SciTech Connect

    Kremer, Melanie; Schnierle, Barbara S. . E-mail: schba@pei.de

    2005-06-20

    The human APOBEC3G protein exhibits broad antiretroviral activity against a variety of retroviruses. It is packaged into viral particles and executes its antiviral function in the target cell. The packaging of APOBEC3G into different viral particles requires a mechanism that confers this promiscuity. Here, APOBEC3G incorporation into murine leukemia virus (MLV) was studied using retroviral vectors. APOBEC3G uptake did not require either its cytidine deaminase activity or the presence of a retroviral vector genome. Results from immunoprecipitation and co-localization studies of APOBEC3G with a MLV Gag-CFP (cyan fluorescent protein) fusion protein imply an interaction between both proteins. RNase A treatment did not inhibit the co-precipitation of Gag-CFP and APOBEC3G, suggesting that the interaction is RNA independent. Like human immunodeficiency virus (HIV) Gag, the MLV Gag precursor protein appears to interact with APOBEC3G, indicating that Gag contains conserved structures which are used to encapsidate APOBEC3G into different retroviral particles.

  10. Mechanical Properties of Murine Leukemia Virus Particles: Effect of Maturation

    PubMed Central

    Kol, Nitzan; Gladnikoff, Micha; Barlam, David; Shneck, Roni Z.; Rein, Alan; Rousso, Itay

    2006-01-01

    After budding from the host cell, retroviruses undergo a process of internal reorganization called maturation, which is prerequisite to infectivity. Viral maturation is accompanied by dramatic morphological changes, which are poorly understood in physical/mechanistic terms. Here, we study the mechanical properties of live mature and immature murine leukemia virus particles by indentation-type experiments conducted with an atomic force microscope tip. We find that both mature and immature particles have an elastic shell. Strikingly, the virus shell is twofold stiffer in the immature (0.68 N/m) than the mature (0.31 N/m) form. However, finite-element simulation shows that the average Young's modulus of the immature form is more than fourfold lower than that of the mature form. This finding suggests that per length unit, the protein-protein interactions in the mature shell are stronger than those in the immature shell. We also show that the mature virus shell is brittle, since it can be broken by application of large loading forces, by firm attachment to a substrate, or by repeated application of force. Our results are the first analysis of the mechanical properties of an animal virus, and demonstrate a linkage between virus morphology and mechanical properties. PMID:16632508

  11. Resistance to cyclopentenylcytosine in murine leukemia L1210 cells.

    PubMed

    Zhang, H; Cooney, D A; Zhang, M H; Ahluwalia, G; Ford, H; Johns, D G

    1993-12-01

    Cyclopentenyl cytosine (CPEC) exhibits oncological activity in murine and human tumor cells and has now entered Phase I clinical trials. Its mode of action as an antitumor agent appears to be inhibition by its triphosphate (CPEC-TP) of CTP synthase, the enzyme which converts UTP to CTP. In an attempt to elucidate the mechanism of resistance to CPEC, a murine leukemia cell line resistant to CPEC (L1210/CPEC) was developed by N-methyl-N-nitro-N-nitrosoguanidine-induced mutagenesis and subsequent selection by cultivation of the L1210 cells in the presence of 2 microM CPEC. Resistant clones were maintained in CPEC-free medium for 6 generations before biochemical studies were performed. The resistant clone selected for further studies was approximately 13,000-fold less sensitive to growth inhibition by CPEC than the parental cells, and the concentration of CPEC required to deplete CTP in the resistant cells was 50-fold higher than in the sensitive cells. A comparison of the kinetic properties of CTP synthase from sensitive and resistant cells indicated alteration in the properties of the enzyme from the latter; the median inhibitory concentration for CPEC-TP increased from 2 to 14 microM, Km for UTP decreased from 126 to 50 microM, and Vmax increased 12-fold from 0.2 to 2.3 nmol/mg/min. Northern blot analyses of polyadenylated RNA from the resistant and sensitive cells indicated a 3-fold increase in transcripts of the CTP synthase gene in the resistant line. Consistent with these alterations in the properties of the enzyme, the resistant cells exhibited significantly expanded CTP and dCTP pools (4- 5-fold) when compared with the sensitive cells. No change was observed, however, in the properties of uridine-cytidine kinase, the enzyme responsible for the initial phosphorylation of CPEC; despite this, however, cellular uptake of CPEC was greatly decreased, and phosphorylation of CPEC and its incorporation into RNA were 10-fold less than in the parental cells. These latter

  12. Leukemia induction by a new strain of Friend mink cell focus-inducing virus: synergistic effect of Friend ecotropic murine leukemia virus.

    PubMed Central

    Chesebro, B; Wehrly, K; Nishio, J; Evans, L

    1984-01-01

    A new strain of Friend recombinant mink cell focus-inducing retrovirus, FMCF -1-E, was found to induce leukemias in NFS and IRW mice. Although the isolate was obtained from a stock of FMCF -1 ( Troxler et al., J. Exp. Med. 148:639-653, 1978), FMCF -1-E was distinguishable from FMCF -1 by oligonucleotide fingerprinting and antigenic analysis, using monoclonal antibodies. These analyses suggested that FMCF -1-E is a distinct FMCF isolate rather than a simple variant of FMCF -1. After neonatal inoculation, the latency for leukemia induction was 3 to 8 months. A similar long latency was also seen when Friend murine leukemia virus 57 was inoculated into adult (6-week-old) IRW mice. However, sequential inoculation of FMCF -1-E at birth followed by Friend murine leukemia 57 at 6 weeks of age led to a shortened latency period (2.5 to 4 months). Only neonatal inoculation of Friend murine leukemia virus 57 was able to induce a more rapid appearance of leukemia. The leukemia cell type in the majority of cases, regardless of virus inoculation protocol, was erythroid, but occasional myeloid, lymphoid, and mixed leukemias were also observed. In contrast to NFS and IRW mice, BALB/c mice were resistant to leukemia induction by FMCF -1-E and also showed some transient resistance to leukemia induction by Friend murine leukemia virus 57. Images PMID:6202886

  13. Unstable resistance of G mouse fibroblasts to ecotropic murine leukemia virus infection.

    PubMed Central

    Yoshikura, H; Naito, Y; Moriwaki, K

    1979-01-01

    G mouse cells were resistant to N- and NB-tropic Friend leukemia viruses and to B-tropic WN 1802B. Though the cells were resistant to focus formation by the Moloney isolate of murine sarcoma virus, they were relatively sensitive to helper component murine leukemia virus. To amphotropic murine leukemia virus and to focus formation by amphotropic murine sarcoma virus, G mouse cells were fully permissive. When the cell lines were established starting from the individual embryos, most cell lines were not resistant to the murine leukemia viruses. Only one resistant line was established. Cloning of this cell line indicated that the resistant cells constantly segregated sensitive cells during the culture; i.e., the G mouse cell cultures were probably always mixtures of sensitive and resistant cells. Among the sensitive cell clones, some were devoid of Fv-1 restriction. Such dually permissive cells, and also feral mouse-derived SC-1 cells, retained glucose-6-phosphate dehydrogenase-1 and apparently normal number 4 chromosomes. The loss of Fv-1 restriction in these mouse cells was not brought about by any gross structural changes in the vicinity of Fv-1 on number 4 chromosomes. Images PMID:221667

  14. The target cell of transformation is distinct from the leukemia stem cell in murine CALM/AF10 leukemia models.

    PubMed

    Dutta, S; Krause, A; Vosberg, S; Herold, T; Ksienzyk, B; Quintanilla-Martinez, L; Tizazu, B; Chopra, M; Graf, A; Krebs, S; Blum, H; Greif, P A; Vetter, A; Metzeler, K; Rothenberg-Thurley, M; Schneider, M R; Dahlhoff, M; Spiekermann, K; Zimber-Strobl, U; Wolf, E; Bohlander, S K

    2016-05-01

    The CALM/AF10 fusion gene is found in various hematological malignancies including acute myeloid leukemia (AML), T-cell acute lymphoblastic leukemia and malignant lymphoma. We have previously identified the leukemia stem cell (LSC) in a CALM/AF10-driven murine bone marrow transplant AML model as B220+ lymphoid cells with B-cell characteristics. To identify the target cell for leukemic transformation or 'cell of origin of leukemia' (COL) in non-disturbed steady-state hematopoiesis, we inserted the CALM/AF10 fusion gene preceded by a loxP-flanked transcriptional stop cassette into the Rosa26 locus. Vav-Cre-induced panhematopoietic expression of the CALM/AF10 fusion gene led to acute leukemia with a median latency of 12 months. Mice expressing CALM/AF10 in the B-lymphoid compartment using Mb1-Cre or CD19-Cre inducer lines did not develop leukemia. Leukemias had a predominantly myeloid phenotype but showed coexpression of the B-cell marker B220, and had clonal B-cell receptor rearrangements. Using whole-exome sequencing, we identified an average of two to three additional mutations per leukemia, including activating mutations in known oncogenes such as FLT3 and PTPN11. Our results show that the COL for CALM/AF10 leukemia is a stem or early progenitor cell and not a cell of B-cell lineage with a phenotype similar to that of the LSC in CALM/AF10+ leukemia. PMID:26686248

  15. A Multicenter Blinded Analysis Indicates No Association between Chronic Fatigue Syndrome/Myalgic Encephalomyelitis and either Xenotropic Murine Leukemia Virus-Related Virus or Polytropic Murine Leukemia Virus

    PubMed Central

    Alter, Harvey J.; Mikovits, Judy A.; Switzer, William M.; Ruscetti, Francis W.; Lo, Shyh-Ching; Klimas, Nancy; Komaroff, Anthony L.; Montoya, Jose G.; Bateman, Lucinda; Levine, Susan; Peterson, Daniel; Levin, Bruce; Hanson, Maureen R.; Genfi, Afia; Bhat, Meera; Zheng, HaoQiang; Wang, Richard; Li, Bingjie; Hung, Guo-Chiuan; Lee, Li Ling; Sameroff, Stephen; Heneine, Walid; Coffin, John; Hornig, Mady; Lipkin, W. Ian

    2012-01-01

    ABSTRACT The disabling disorder known as chronic fatigue syndrome or myalgic encephalomyelitis (CFS/ME) has been linked in two independent studies to infection with xenotropic murine leukemia virus-related virus (XMRV) and polytropic murine leukemia virus (pMLV). Although the associations were not confirmed in subsequent studies by other investigators, patients continue to question the consensus of the scientific community in rejecting the validity of the association. Here we report blinded analysis of peripheral blood from a rigorously characterized, geographically diverse population of 147 patients with CFS/ME and 146 healthy subjects by the investigators describing the original association. This analysis reveals no evidence of either XMRV or pMLV infection. PMID:22991430

  16. Myxoma virus induces type I interferon production in murine plasmacytoid dendritic cells via a TLR9/MyD88-, IRF5/IRF7-, and IFNAR-dependent pathway.

    PubMed

    Dai, Peihong; Cao, Hua; Merghoub, Taha; Avogadri, Francesca; Wang, Weiyi; Parikh, Tanvi; Fang, Chee-Mun; Pitha, Paula M; Fitzgerald, Katherine A; Rahman, Masmudur M; McFadden, Grant; Hu, Xiaoyu; Houghton, Alan N; Shuman, Stewart; Deng, Liang

    2011-10-01

    Poxviruses are large DNA viruses that replicate in the cytoplasm of infected cells. Myxoma virus is a rabbit poxvirus that belongs to the Leporipoxvirus genus. It causes a lethal disease called myxomatosis in European rabbits but cannot sustain any detectable infection in nonlagomorphs. Vaccinia virus is a prototypal orthopoxvirus that was used as a vaccine to eradicate smallpox. Myxoma virus is nonpathogenic in mice, whereas systemic infection with vaccinia virus can be lethal even in immunocompetent mice. Plasmacytoid dendritic cells (pDCs) are potent type I interferon (IFN)-producing cells that play important roles in antiviral innate immunity. How poxviruses are sensed by pDCs to induce type I IFN production is not well understood. Here we report that infection of primary murine pDCs with myxoma virus, but not with vaccinia virus, induces IFN-α, IFN-β, tumor necrosis factor (TNF), and interleukin-12p70 (IL-12p70) production. Using pDCs derived from genetic knockout mice, we show that the myxoma virus-induced innate immune response requires the endosomal DNA sensor TLR9 and its adaptor MyD88, transcription factors IRF5 and IRF7, and the type I IFN positive-feedback loop mediated by IFNAR1. It is independent of the cytoplasmic RNA sensing pathway mediated by the mitochondrial adaptor molecule MAVS, the TLR3 adaptor TRIF, or the transcription factor IRF3. Using pharmacological inhibitors, we demonstrate that myxoma virus-induced type I IFN and IL-12p70 production in murine pDCs is also dependent on phosphatidylinositol 3-kinase (PI3K) and Akt. Furthermore, our results reveal that the N-terminal Z-DNA/RNA binding domain of vaccinia virulence factor E3, which is missing in the orthologous M029 protein expressed by myxoma virus, plays an inhibitory role in poxvirus sensing and innate cytokine production by murine pDCs. PMID:21835795

  17. Sox4 cooperates with PU.1 haploinsufficiency in murine myeloid leukemia

    PubMed Central

    Aue, Georg; Du, Yang; Cleveland, Susan M.; Smith, Stephen B.; Davé, Utpal P.; Liu, Delong; Weniger, Marc A.; Metais, Jean Yves; Jenkins, Nancy A.; Copeland, Neal G.

    2011-01-01

    Cooperation of multiple mutations is thought to be required for cancer development. In previous studies, murine myeloid leukemias induced by transducing wild-type bone marrow progenitors with a SRY sex determining region Y-box 4 (Sox4)–expressing retrovirus frequently carried proviral insertions at Sfpi1, decreasing its mRNA levels, suggesting that reduced Sfpi1 expression cooperates with Sox4 in myeloid leukemia induction. In support of this hypothesis, we show here that mice receiving Sox4 virus-infected Sfpi1ko/+ bone marrow progenitors developed myeloid leukemia with increased penetrance and shortened latency. Interestingly, Sox4 expression further decreased Sfpi1 transcription. Ectopic SOX4 expression reduced endogenous PU.1 mRNA levels in HL60 promyelocytes, and decreased Sfpi1 mRNA levels were also observed in the spleens of leukemic and preleukemic mice receiving Sox4 virus-infected wild-type bone marrow cells. In addition, Sox4 protein bound to a critical upstream regulatory element of Sfpi1 in ChIP assays. Such cooperation probably occurs in de novo human acute myeloid leukemias, as an analysis of 285 acute myeloid leukemia patient samples found a significant negative correlation between SOX4 and PU.1 expression. Our results establish a novel cooperation between Sox4 and reduced Sfpi1 expression in myeloid leukemia development and suggest that SOX4 could be an important new therapeutic target in human acute myeloid leukemia. PMID:21878674

  18. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model

    SciTech Connect

    Orozco, Johnnie J.; Back, Tom; Kenoyer, Aimee L.; Balkin, Ethan R.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Frayo, Shani; Hylarides, Mark; Green, Damian J.; Gopal, Ajay K.; Press, Oliver W.; Pagel, John M.

    2013-05-15

    Anti-CD45 Radioimmunotherapy using an Alpha-Emitting Radionuclide 211At Combined with Bone Marrow Transplantation Prolongs Survival in a Disseminated Murine Leukemia Model ABSTRACT Despite aggressive chemotherapy combined with hematopoietic cell transplant (HCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using antibodies (Ab) labeled primarily with beta-emitting radionuclides has been explored to reduce relapse.

  19. Biochemical analysis of murine leukemia viruses isolated from radiation-induced leukemias of strain BALB/c

    SciTech Connect

    Ellis, R.W.; Hopkins, N.; Fleissner, E.

    1980-02-01

    Murine leukemia viruses isolated from radiation-induced BALB/c leukemias were characterized with respect to viral proteins and RNA. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the viral structural proteins revealed that for p12, p15, p30, and gp70, three to four electrophoretic variants of each could be detected. There was no correlation found between any of these mobilities and N- or B-tropism of the viruses. Proteins of all xenotropic viral isolates were identical in their gel electrophoretic profiles. The similar phenotypes of multiple viral clones from individual leukemias and of isolates grown in different cells suggest that the polymorphism of ecotropic viruses was generated in vivo rather than during in vitro virus growth. By two-dimensional fingerprinting of RNase T1-resistant oligonucleotides from 70S viral RNA, the previously reported association of N- and B-tropism with two distinct oligonucleotides was confirmed. The presence of two other oligonucleotides was correlated with positive and negative phenotypes of the virus-coded G/sub IX/ cell surface antigen. The RNAs of two B-tropic isolates with distinctive p15 and p12 phenotypes differed from the RNA of a prototype N-tropic virus by the absence of three oligonucleotides mapping in the 5' portion (gag region) of the prototype RNA. In addition, one small-plaque B-tropic virus displayed extensive changes in the RNA sequences associated with the env region of the prototype.

  20. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  1. Murine leukemia virus envelope gp70 is a shared biomarker for the high-sensitivity quantification of murine tumor burden

    PubMed Central

    Scrimieri, Francesca; Askew, David; Corn, David J; Eid, Saada; Bobanga, Iuliana D; Bjelac, Jaclyn A; Tsao, Matthew L; Allen, Frederick; Othman, Youmna S; Wang, Shih-Chung G; Huang, Alex Y

    2013-01-01

    The preclinical development of anticancer drugs including immunotherapeutics and targeted agents relies on the ability to detect minimal residual tumor burden as a measure of therapeutic efficacy. Real-time quantitative (qPCR) represents an exquisitely sensitive method to perform such an assessment. However, qPCR-based applications are limited by the availability of a genetic defect associated with each tumor model under investigation. Here, we describe an off-the-shelf qPCR-based approach to detect a broad array of commonly used preclinical murine tumor models. In particular, we report that the mRNA coding for the envelope glycoprotein 70 (gp70) encoded by the endogenous murine leukemia virus (MuLV) is universally expressed in 22 murine cancer cell lines of disparate histological origin but is silent in 20 out of 22 normal mouse tissues. Further, we detected the presence of as few as 100 tumor cells in whole lung extracts using qPCR specific for gp70, supporting the notion that this detection approach has a higher sensitivity as compared with traditional tissue histology methods. Although gp70 is expressed in a wide variety of tumor cell lines, it was absent in inflamed tissues, non-transformed cell lines, or pre-cancerous lesions. Having a high-sensitivity biomarker for the detection of a wide range of murine tumor cells that does not require additional genetic manipulations or the knowledge of specific genetic alterations present in a given neoplasm represents a unique experimental tool for investigating metastasis, assessing antitumor therapeutic interventions, and further determining tumor recurrence or minimal residual disease. PMID:24482753

  2. Isolation of Naturally Occurring Viruses of the Murine Leukemia Virus Group in Tissue Culture

    PubMed Central

    Hartley, Janet W.; Rowe, Wallace P.; Capps, Worth I.; Huebner, Robert J.

    1969-01-01

    A tissue culture cell system for isolation and identification of members of the murine leukemia virus group (the complement fixation for murine leukemia test) was modified to permit the isolation of naturally occurring virus from leukemic and normal mice. The important factors for increasing the sensitivity of the test were the use of National Institutes of Health (NIH) strain Webster Swiss embryo cell cultures and the selection of rat-immune sera having complement-fixing antibodies to tissue culture antigens of both the Gross and FMR subgroups. In all, 163 strains of mouse leukemia virus, from 11 inbred mouse strains, have been isolated. Representative virus isolates were shown to possess the properties of the murine leukemia virus group; i.e., they were chloroform-sensitive, noncytopathic agents which replicated in mouse embryo tissue culture and produced group-reactive, complement-fixing antigen and budding C-type particles visible by electron microscopy. These viruses could serve as helpers in the rescue of Moloney sarcoma virus genome from non-producer hamster sarcoma cells, yielding pseudotypes. All of the 19 field isolates tested were neutralized by Gross passage A antiserum but not by potent antisera to the Moloney, Rauscher, and Friend strains. Virus was recovered regularly from embryos and from the plasma and spleen of adult mice of high leukemic strains. In low leukemic mouse strains, different patterns of virus detection were observed. In C3H/He mice, virus was occasionally present in embryos and was found in 40% of adult spleens. BALB/c mice were virus-negative as fetuses or weanlings, but spleens of more than half of the mice over 6 months of age yielded virus. NIH mice have never yielded virus. In reciprocal matings between AKR and BALB/c mice, virus recovery from embryos was maternally determined. The development of tissue culture isolation procedures made possible for the first time the application of classical infectious disease methods to the

  3. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  4. Genomic complexities of murine leukemia and sarcoma, reticuloendotheliosis, and visna viruses.

    PubMed Central

    Beemon, K L; Faras, A J; Hasse, A T; Duesberg, P H; Maisel, J E

    1976-01-01

    The genetic complexities of several ribodeoxyviruses were measured by quantitative analysis of unique RNase T1-resistant oligonucleotides from 60-70S viral RNAs. Moloney murine leukemia virus was found to have an RNA complexity of 3.5 x 10(6) daltons, whereas Moloney murine sarcoma virus had a significantly smaller genome size of 2.3 x 10(6). Reticuleondotheliosis and visna virus RNAs had complexities of 3.9 x 10(6), respectively. Analysis of RNase A-resistant oligonucleotides of Rous sarcoma virus RNA gave a complexity of 3.6 x 10(6), similar to that previously obtained with RNase T1-resistant oligonucleotides. Since each of these viruses was found to have a unique sequence genomic complexity near the molecular weight of a single 30-40S viral RNA subunit, it was concluded that ribodeoxyvirus genomes are at least largely polyploid. Images PMID:176429

  5. Histological and In Vivo Microscopic Analysis of the Bone Marrow Microenvironment in a Murine Model of Chronic Myelogenous Leukemia.

    PubMed

    Weissenberger, Eva S; Krause, Daniela S

    2016-01-01

    Imaging of the leukemic bone marrow microenvironment, also called the leukemic bone marrow niche, is an essential method to determine and to evaluate the progression of chronic myelogenous leukemia (CML) and other leukemias in murine models. In this chapter we introduce the murine model of CML primarily used in our laboratory by describing blood and bone marrow analysis as well as the method of histological sectioning and immunohistochemistry in combination with various stainings that can help to understand the complex interaction between leukemic cells, their normal hematopoietic counterparts, and the bone marrow microenvironment. We conclude with describing how to image the bone marrow niche using in vivo microscopy. PMID:27581139

  6. Typhonium flagelliforme inhibits the proliferation of murine leukemia WEHI-3 cells in vitro and induces apoptosis in vivo.

    PubMed

    Mohan, Syam; Abdul, Ahmad Bustamam; Abdelwahab, Siddig Ibrahim; Al-Zubairi, Adel S; Aspollah Sukari, Mohamed; Abdullah, Rasedee; Taha, Manal Mohamed Elhassan; Beng, Ng Kuan; Isa, Nurbaity Mohd

    2010-11-01

    Typhonium flagelliforme (TF) is a tropical plant, traditionally used by the ethnic population of Malaysia for the cure of various cancers. This plant had shown to induce antiproliferative effect as well as apoptosis in cancer cells. However, there is no available information to address that TF affects murine leukemia cells in vitro and in vivo. Here, we investigated in vitro and in vivo effects of TF on murine leukemia WEHI-3 cells. It was found that the growth of leukemia cells in vitro was inhibited by the various extracts of TF. Among these fractions, the dichloromethane (DCM) tuber extracts of TF showed the lowest IC(50) (24.0 ± 5.2 μg/ml) and had demonstrated apoptogenic effect when observed under fluorescent microscope. We investigated the in vivo effects of DCM tuber extracts of TF on murine leukemia cells, and the results showed that the counts of immature granulocytes and monocytes were significantly decreased in peripheral blood of BALB/c leukemia mice after the oral administration of DCM tuber extracts of TF for 28 days with three doses (200, 400 and 800 mg/kg). These results were confirmed by observing the spleen histopathology and morphology of enlarged spleen and liver in leukemia mice when compared with the control. Furthermore, the cell death mechanism in the spleen tissue of treated mice was found via apoptosis. PMID:20569984

  7. Antileukemic effect of zerumbone-loaded nanostructured lipid carrier in WEHI-3B cell-induced murine leukemia model

    PubMed Central

    Rahman, Heshu Sulaiman; Rasedee, Abdullah; How, Chee Wun; Zeenathul, Nazariah Allaudin; Chartrand, Max Stanley; Yeap, Swee Keong; Abdul, Ahmad Bustamam; Tan, Sheau Wei; Othman, Hemn Hassan; Ajdari, Zahra; Namvar, Farideh; Arulselvan, Palanisamy; Fakurazi, Sharida; Mehrbod, Parvaneh; Daneshvar, Nasibeh; Begum, Hasina

    2015-01-01

    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers. PMID:25767386

  8. Receptor choice determinants in the envelope glycoproteins of amphotropic, xenotropic, and polytropic murine leukemia viruses.

    PubMed Central

    Battini, J L; Heard, J M; Danos, O

    1992-01-01

    The envelope glycoproteins (SU) of mammalian type C retroviruses possess an amino-terminal domain of about 200 residues, which is involved in binding a cell surface receptor. In this domain, highly conserved amino acid sequences are interrupted by two segments of variable length and sequence, VRA and VRB. We have studied the role of these variable regions in receptor recognition and binding by constructing chimeric molecules in which portions of the amino-terminal domains from amphotropic (4070A), xenotropic (NZB), and polytropic (MCF 247) murine leukemia virus SU proteins were permuted. These chimeras, which exchanged either one or two variable regions, were expressed at the surface of replication-defective viral particles by a pseudotyping assay. Wild-type or recombinant env genes were transfected into a cell line producing Moloney murine leukemia virus particles devoid of envelope glycoproteins in which a retrovirus vector genome carrying an Escherichia coli lacZ gene was packaged. The host range and sensitivity to interference of pseudotyped virions were assayed, and we observed which permutations resulted in receptor switch or loss of function. Our results indicate that the determinants of receptor choice are found within the just 120 amino acids of SU proteins. Downstream sequences contribute to the stabilization of the receptor-specific structure. PMID:1310758

  9. Viral genome RNA serves as messenger early in the infectious cycle of murine leukemia virus.

    PubMed Central

    Shurtz, R; Dolev, S; Aboud, M; Salzberg, S

    1979-01-01

    When NIH/3T3 mouse fibroblasts were infected with the Moloney strain of murine leukemia virus, part of the viral genome RNA molecules were detected in polyribosomes of the infected cells early in the infectious cycle. The binding appears to be specific, since we could demonstrate the release of viral RNA from polyribosomes with EDTA. Moreover, when infection occurred in the presence of cycloheximide, most viral RNA molecules were detected in the free cytoplasm. Size analysis on polyribosomal viral RNA molecules indicated that two size class molecules, 38S and 23S, are present in polyribosomes at 3 h after infection. Analysis of the polyriboadenylate [poly(rA)] content of viral RNA extracted from infected polyribosomes demonstrated that such molecules bind with greatest abundance at 3 h after infection, as has been detected with total viral RNA. No molecules lacking poly(rA) stretches could be detected in polyribosomes. Furthermore, when a similar analysis was performed on unbound molecules present in the free cytoplasm, identical results were obtained. We conclude that no selection towards poly(rA)-containing viral molecules is evident on binding to polyribosomes. These findings suggest that the incoming viral genome of the Moloney strain of murine leukemia virus may serve as a messenger for the synthesis of one or more virus-specific proteins early after infection of mouse fibroblasts. PMID:117118

  10. BCL1, a murine model of prolymphocytic leukemia. I. Effect of splenectomy on growth kinetics and organ distribution.

    PubMed Central

    Muirhead, M. J.; Isakson, P. C.; Krolick, K. A.; Uhr, J. W.; Vitetta, E. S.

    1981-01-01

    BCL1 is a transplantable murine B-cell leukemia that closely resembles human prolymphocytic leukemia (PLL). Syngeneic mice injected with BCL1 cells develop massively enlarged spleens followed by leukemia. Splenectomy performed either prior to BCL1 transplantation or prior to the leukemic phase of transplanted BCL1 results in a markedly altered clinical syndrome: the onset of leukemia is delayed by about 2 months; the leukemia is low-grade; and the lymph nodes, which are not prominently involved in leukemic animals with intact spleens, are massively infiltrated in the splenectomized transplant recipient. The immunologic phenotype of the BCL1 cell is not altered by splenectomy and thus does not appear to account for the altered tissue distribution of BCL1 in the splenectomized host. However, the results indicate a striking dependence of BCL1 on microenvironmental influences of the host lymphoid tissues. Images Figure 1 Figure 2 PMID:7032308

  11. p27kip1 Maintains a Subset of Leukemia Stem Cells in the Quiescent State in Murine MLL-Leukemia

    PubMed Central

    Zhang, Jun; Seet, Christopher; Sun, Clare; Li, Jing; You, Dewen; Volk, Andrew; Breslin, Peter; Li, Xingyu; Wei, Wei; Qian, Zhijian; Zeleznik-Le, Nancy J.; Zhang, Zhou; Zhang, Jiwang

    2013-01-01

    MLL (mixed-lineage leukemia)-fusion genes induce the development of leukemia through deregulation of normal MLL target genes, such as HOXA9 and MEIS1. Both HOXA9 and MEIS1 are required for MLL-fusion gene-induced leukemogenesis. Co-expression of HOXA9 and MEIS1 induces acute myeloid leukemia (AML) similar to that seen in mice in which MLL-fusion genes are over-expressed. p27kip1 (p27 hereafter), a negative regulator of the cell cycle, has also been defined as an MLL target, the expression of which is up-regulated in MLL leukemic cells (LCs). To investigate whether p27 plays a role in the pathogenesis of MLL-leukemia, we examined the effects of p27 deletion (p27-/-) on MLL-AF9 (MA9)-induced murine AML development. HOXA9/MEIS1 (H/M)-induced, p27 wild-type (p27+/+) and p27-/- AML were studied in parallel as controls. We found that LCs from both MA9-AML and H/M-AML can be separated into three fractions, a CD117-CD11bhi differentiated fraction as well as CD117+CD11bhi and CD117+CD11blo, two less differentiated fractions. The CD117+CD11blo fraction, comprising only 1-3% of total LCs, expresses higher levels of early hematopoietic progenitor markers but lower levels of mature myeloid cell markers compared to other populations of LCs. p27 is expressed and is required for maintaining the quiescent and drug-resistant states of the CD117+CD11blo fraction of MA9-LCs but not of H/M-LCs. p27 deletion significantly compromises the leukemogenic capacity of CD117+CD11blo MA9-LCs by reducing the frequency of leukemic stem cells (LSCs) but does not do so in H/M-LCs. In addition, we found that p27 is highly expressed and required for cell cycle arrest in the CD117-CD11bhi fraction in both types of LCs. Furthermore, we found that c-Myc expression is required for maintaining LCs in an undifferentiated state independently of proliferation. We concluded that p27 represses the proliferation of LCs, which is specifically required for maintaining the quiescent and drug-resistant states of a

  12. Leukemia

    MedlinePlus

    ... version of this page please turn Javascript on. Leukemia What Is Leukemia? Leukemia is a cancer of the blood cells. ... diagnosed with leukemia are over 50 years old. Leukemia Starts in Bone Marrow Click for more information ...

  13. Preclinical activity of the novel B-cell-specific Moloney murine leukemia virus integration site 1 inhibitor PTC-209 in acute myeloid leukemia: Implications for leukemia therapy.

    PubMed

    Nishida, Yuki; Maeda, Aya; Chachad, Dhruv; Ishizawa, Jo; Qiu, Yi Hua; Kornblau, Steven M; Kimura, Shinya; Andreeff, Michael; Kojima, Kensuke

    2015-12-01

    Curing patients with acute myeloid leukemia (AML) remains a therapeutic challenge. The polycomb complex protein B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is required for the self-renewal and maintenance of leukemia stem cells. We investigated the prognostic significance of BMI-1 in AML and the effects of a novel small molecule selective inhibitor of BMI-1, PTC-209. BMI-1 protein expression was determined in 511 newly diagnosed AML patients together with 207 other proteins using reverse-phase protein array technology. Patients with unfavorable cytogenetics according to Southwest Oncology Group criteria had higher levels of BMI-1 compared to those with favorable (P = 0.0006) or intermediate cytogenetics (P = 0.0061), and patients with higher levels of BMI-1 had worse overall survival (55.3 weeks vs. 42.8 weeks, P = 0.046). Treatment with PTC-209 reduced protein level of BMI-1 and its downstream target mono-ubiquitinated histone H2A and triggered several molecular events consistent with the induction of apoptosis, this is, loss of mitochondrial membrane potential, caspase-3 cleavage, BAX activation, and phosphatidylserine externalization. PTC-209 induced apoptosis in patient-derived CD34(+)CD38(low/-) AML cells and, less prominently, in CD34(-) differentiated AML cells. BMI-1 reduction by PTC-209 directly correlated with apoptosis induction in CD34(+) primary AML cells (r = 0.71, P = 0.022). However, basal BMI-1 expression was not a determinant of AML sensitivity. BMI-1 inhibition, which targets a primitive AML cell population, might offer a novel therapeutic strategy for AML. PMID:26450753

  14. Characterization and expression of a murine gene homologous to human EPA/TIMP: a virus-induced gene in the mouse.

    PubMed Central

    Gewert, D R; Coulombe, B; Castelino, M; Skup, D; Williams, B R

    1987-01-01

    A genomic clone encompassing the entire coding region of a murine gene homologous to human erythroid potentiating activity/tissue inhibitor of metalloproteinase (EPA/TIMP) was isolated and sequenced. Based on alignment with human EPA/TIMP cDNAs we deduce a structure comprising five exons and four introns extending over 4.3 kb of DNA. In mouse and hamster cell lines transcription from this gene and interferon genes is induced by Newcastle Disease virus (NDV). Examination of the 5'-flanking sequences of the gene reveals a set of repeated elements with structural similarity to those previously described as inducer-responsive elements in the human IFN-beta 1 gene. The 4.3-kb DNA fragment encompassing the homologous murine EPA/TIMP gene was transfected into human T98G cells and transfectants tested for NDV inducibility. In contrast to the endogenous human gene, the integrated murine EPA/TIMP gene was NDV-inducible and TIMP activity was detectable in the cell culture fluid. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. Fig. 9. PMID:3034603

  15. Removal of xenotropic murine leukemia virus by nanocellulose based filter paper.

    PubMed

    Asper, M; Hanrieder, T; Quellmalz, A; Mihranyan, A

    2015-11-01

    The removal of xenotrpic murine leukemia virus (xMuLV) by size-exclusion filter paper composed of 100% naturally derived cellulose was validated. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. algae. The filter paper was characterized using atomic force microscopy, scanning electron microscopy, helium pycnometry, and model tracer (100 nm latex beads and 50 nm gold nanoparticles) retention tests. Following the filtration of xMuLV spiked solutions, LRV ≥5.25 log10 TCID50 was observed, as limited by the virus titre in the feed solution and sensitivity of the tissue infectivity test. The results of the validation study suggest that the nanocellulose filter paper is useful for removal of endogenous rodent retroviruses and retrovirus-like particles during the production of recombinant proteins. PMID:26328471

  16. Purification of the Moloney and Rauscher Murine Leukemia Viruses by Use of Zonal Ultracentrifuge Systems

    PubMed Central

    Toplin, I.

    1967-01-01

    The B-IV and B-IX zonal ultracentrifuge rotors were applied to the concentration and purification of the Moloney and Rauscher murine leukemia viruses from large volumes of infected tissue culture fluids and animal materials. Potassium tartrate, potassium citrate and sucrose gradients were used to obtain viral concentrates from the density 1.16 to 1.18 zone. Proteolytic enzyme digestion of tissue culture preparations prior to zonal ultracentrifuge processing was effective in releasing virus from cell debris and producing highly purified, though nonleukemogenic, viral concentrates. Infected Rauscher mouse plasma was processed to give highly purified infectious virus fractions. A single centrifugation of crude Rauscher mouse spleen homogenates resulted in partially purified infectious concentrates with high virus particle counts. Images Fig. 4 PMID:6035050

  17. A flavone derivative from Sesbania sesban leaves and its cytotoxicity against murine leukemia P-388 cells

    NASA Astrophysics Data System (ADS)

    Dianhar, Hanhan; Syah, Yana Maolana; Mujahidin, Didin; Hakim, Euis Holisotan; Juliawaty, Lia Dewi

    2014-03-01

    Sesbania sesban, locally named as Jayanti, is one of Indonesia plants belonging to Fabaceae family. This species is traditionally used by Indonesian people to cure digestive disorders, fever, or headache. Jayanti can grow well in tropical to subtropical region, such as in Asia and Africa. Based on literature, qualitative analysis of the methanol extract of leaves of S. sesban showed that it contained flavonoids, alkaloids, saponins and glycosides. In addition, the activity assay of extracts of different tissues of this species showed antitumor, antimalarial, and antidiabetic activityies (leaves and seed extracts), antioxidants (flower extract), and analgesic (wood extract). Though the extracts of S. sesban parts showed interesting activities, chemical study of those extracts have not been widely reported. Therefore, the objective of this research was to isolate the secondary metabolites from methanol extract of leaves of S. sesban and to determine their cytotoxicity against murine leukemia P-388 cells. One compound has been obtained and identified as 3-hydroxy-4',7-dimethoxyflavone (1), a new isolated compound from nature. This compound was obtained through separation of methanol extract using various chromatographic techniques, such as vacuum liquid chromatography and radial chromatography. The structure elucidation of isolated compound was based on 1D NMR (1H-NMR and 13C-NMR) and 2D NMR (HMBC). The cytotoxicity of methanol extract and compound 1 against murine leukemia P-388 cells examined through MTT assay showed IC50 value of 60.04 μg/mL and 5.40 μg/mL, respectively.

  18. A flavone derivative from Sesbania sesban leaves and its cytotoxicity against murine leukemia P-388 cells

    SciTech Connect

    Dianhar, Hanhan Syah, Yana Maolana Mujahidin, Didin Hakim, Euis Holisotan Juliawaty, Lia Dewi

    2014-03-24

    Sesbania sesban, locally named as Jayanti, is one of Indonesia plants belonging to Fabaceae family. This species is traditionally used by Indonesian people to cure digestive disorders, fever, or headache. Jayanti can grow well in tropical to subtropical region, such as in Asia and Africa. Based on literature, qualitative analysis of the methanol extract of leaves of S. sesban showed that it contained flavonoids, alkaloids, saponins and glycosides. In addition, the activity assay of extracts of different tissues of this species showed antitumor, antimalarial, and antidiabetic activityies (leaves and seed extracts), antioxidants (flower extract), and analgesic (wood extract). Though the extracts of S. sesban parts showed interesting activities, chemical study of those extracts have not been widely reported. Therefore, the objective of this research was to isolate the secondary metabolites from methanol extract of leaves of S. sesban and to determine their cytotoxicity against murine leukemia P-388 cells. One compound has been obtained and identified as 3-hydroxy-4',7-dimethoxyflavone (1), a new isolated compound from nature. This compound was obtained through separation of methanol extract using various chromatographic techniques, such as vacuum liquid chromatography and radial chromatography. The structure elucidation of isolated compound was based on 1D NMR ({sup 1}H-NMR and {sup 13}C-NMR) and 2D NMR (HMBC). The cytotoxicity of methanol extract and compound 1 against murine leukemia P-388 cells examined through MTT assay showed IC{sub 50} value of 60.04 μg/mL and 5.40 μg/mL, respectively.

  19. Characterization of mouse cellular deoxyribonucleic acid homologous to Abelson murine leukemia virus-specific sequences.

    PubMed Central

    Dale, B; Ozanne, B

    1981-01-01

    The genome of Abelson murine leukemia virus (A-MuLV) consists of sequences derived from both BALB/c mouse deoxyribonucleic acid and the genome of Moloney murine leukemia virus. Using deoxyribonucleic acid linear intermediates as a source of retroviral deoxyribonucleic acid, we isolated a recombinant plasmid which contained 1.9 kilobases of the 3.5-kilobase mouse-derived sequences found in A-MuLV (A-MuLV-specific sequences). We used this clone, designated pSA-17, as a probe restriction enzyme and Southern blot analyses to examine the arrangement of homologous sequences in BALB/c deoxyribonucleic acid (endogenous Abelson sequences). The endogenous Abelson sequences within the mouse genome were interrupted by noncoding regions, suggesting that a rearrangement of the cell sequences was required to produce the sequence found in the virus. Endogenous Abelson sequences were arranged similarly in mice that were susceptible to A-MuLV tumors and in mice that were resistant to A-MuLV tumors. An examination of three BALB/c plasmacytomas and a BALB/c early B-cell tumor likewise revealed no alteration in the arrangement of the endogenous Abelson sequences. Homology to pSA-17 was also observed in deoxyribonucleic acids prepared from rat, hamster, chicken, and human cells. An isolate of A-MuLV which encoded a 160,000-dalton transforming protein (P160) contained 700 more base pairs of mouse sequences than the standard A-MuLV isolate, which encoded a 120,000-dalton transforming protein (P120). Images PMID:9279386

  20. Murine Leukemias with Retroviral Insertions at Lmo2 Are Predictive of the Leukemias Induced in SCID-X1 Patients Following Retroviral Gene Therapy

    PubMed Central

    Davé, Utpal P.; Akagi, Keiko; Tripathi, Rati; Cleveland, Susan M.; Thompson, Mary A.; Yi, Ming; Stephens, Robert; Downing, James R.; Jenkins, Nancy A.; Copeland, Neal G.

    2009-01-01

    Five X-linked severe combined immunodeficiency patients (SCID-X1) successfully treated with autologous bone marrow stem cells infected ex vivo with an IL2RG-containing retrovirus subsequently developed T-cell leukemia and four contained insertional mutations at LMO2. Genetic evidence also suggests a role for IL2RG in tumor formation, although this remains controversial. Here, we show that the genes and signaling pathways deregulated in murine leukemias with retroviral insertions at Lmo2 are similar to those deregulated in human leukemias with high LMO2 expression and are highly predictive of the leukemias induced in SCID-X1 patients. We also provide additional evidence supporting the notion that IL2RG and LMO2 cooperate in leukemia induction but are not sufficient and require additional cooperating mutations. The highly concordant nature of the genetic events giving rise to mouse and human leukemias with mutations at Lmo2 are an encouraging sign to those wanting to use mice to model human cancer and may help in designing safer methods for retroviral gene therapy. PMID:19461887

  1. Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain.

    PubMed Central

    Bedigian, H G; Taylor, B A; Meier, H

    1981-01-01

    Among 12 recombinant inbred strains of mice derived from crossing two strains, C57BL/6J and C3H/HeJ, which have a low incidence of neoplastic disease, one strain (BXH-2) has been found to have a high incidence of lymphoma, of non-T-cell origin, at an early age. The BXH-2 strain carries the Fv-1b allele and spontaneously expresses a B-tropic murine leukemia virus beginning at as early as 10 days of gestation and continuing throughout their life. No significant differences in ecotropic virus titers were observed at any age tested (16 to 17 days of gestation through 7 months), whereas xenotropic virus was first detected in lymphoid tissues of 2-month-old mice and virus titers increased with age. Dual tropic virus(es), which induced cytopathic changes on mink lung cells, was isolated from BXH-2 lymphomatous tissues. Unlike AKR mink lung focus-forming virus (N-tropic recombinant), BXH-2 dual tropic virus is B tropic and induces cytopathic changes in mouse fibroblast cultures as well. The BXH-2 mouse provides a model system for studying the role of replication-competent viruses in spontaneously occurring leukemias of non-T-cell lineage and neurological disease. Images PMID:6268848

  2. Effects of murine leukemia virus env gene proteins on macrophage-mediated cytotoxicity in vitro

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    F5b Tumor cells were incubated with concentrated culture supernatants taken from cells resistant (F5m) or sensitive (F5b) to contact-dependent macrophage cytotoxicity. Macrophage cell line B6MP102 and murine peritoneal macrophages killed targets incubated with supernatants taken from sensitive cells but poorly killed cells incubated in supernatants isolated from resistant cells. Membranes from cells resistant to macrophage killing, F5m, were fused into F5b cells. The fused F5b cells were killed significantly less than F5b cells fused with F5b cell membranes or untreated F5b cells. The decreased killing of F5b cells corresponded to increased concentrations of gp70(a) molecules on F5b cells. Affinity purified gp70(a) was added to cytotoxicity assays but failed to inhibit macrophage cytotoxicity. P15E molecules were detectable on both F5b and F5m cells. In addition, a synthetic peptide found to exhibit the inhibitory properties of p15E was added to cytotoxicity assays. P15E synthetic peptide also did not inhibit macrophage cytotoxicity. Therefore, env gene proteins of murine leukemia virus do not appear responsible for inducing tumor cell resistance to activated macrophage contact-dependent cytotoxicity.

  3. Structural and biochemical characterization of the inhibitor complexes of xenotropic murine leukemia virus-related virus protease

    SciTech Connect

    Li, Mi; Gustchina, Alla; Matúz, Krisztina; Tözsér, Jozsef; Namwong, Sirilak; Goldfarb, Nathan E.; Dunn, Ben M.; Wlodawer, Alexander

    2012-10-23

    Interactions between the protease (PR) encoded by the xenotropic murine leukemia virus-related virus and a number of potential inhibitors have been investigated by biochemical and structural techniques. It was observed that several inhibitors used clinically against HIV PR exhibit nanomolar or even subnanomolar values of K{sub i}, depending on the exact experimental conditions. Both TL-3, a universal inhibitor of retroviral PRs, and some inhibitors originally shown to inhibit plasmepsins were also quite potent, whereas inhibition by pepstatin A was considerably weaker. Crystal structures of the complexes of xenotropic murine leukemia virus-related virus PR with TL-3, amprenavir and pepstatin A were solved at high resolution and compared with the structures of complexes of these inhibitors with other retropepsins. Whereas TL-3 and amprenavir bound in a predictable manner, spanning the substrate-binding site of the enzyme, two molecules of pepstatin A bound simultaneously in an unprecedented manner, leaving the catalytic water molecule in place.

  4. Free and integrated recombinant murine leukemia virus DNAs appear in preleukemic thymuses of AKR/J mice.

    PubMed Central

    Herr, W; Gilbert, W

    1984-01-01

    We studied the appearance and structure of murine leukemia viral genomes in preleukemic AKR/J mice by Southern hybridization. Up to an average of one to two copies per thymocyte of unintegrated murine leukemia virus DNA appears in the thymuses of preleukemic mice beginning at 4 to 5 months of age and disappears in leukemic thymuses. The free viral genomes are absent in the spleens, livers, and brains of preleukemic mice. Using a series of ecotropic and nonecotropic murine leukemia virus hybridization probes, we showed that the unintegrated viral genomes are structurally analogous to those of recombinant mink cell focus-forming viruses that appear as proviruses in leukemic AKR thymocytes, suggesting that these free viral DNAs are the direct precursors to the leukemia-specific proviruses. The mosaic of ecotropic and nonecotropic sequences within these unintegrated viral DNAs varies from one preleukemic thymus to another but often appears structurally homogeneous within individual thymuses, indicating that often each thymus was being infected by a unique mink cell focus-forming virus. Analysis of high-molecular-weight DNA shows that recombinant proviruses reside in the chromosomal DNA of thymocytes within the preleukemic thymus, with the number rising to an average of several copies per thymocyte, but we do not detect any preferred integration sites. These results suggest that, in general, before the development of thymic leukemias in AKR mice there is a massive infection by a unique mink cell focus-forming virus which then integrates into many different sites of individual thymocytes, one of which grows out to become a tumor. Images PMID:6321787

  5. Sendai Virus Induces Persistent Olfactory Dysfunction in a Murine Model of PVOD via Effects on Apoptosis, Cell Proliferation, and Response to Odorants

    PubMed Central

    Tian, Jun; Pinto, Jayant M.; Cui, Xiaolan; Zhang, Henghui; Li, Li; Liu, Yulong; Wu, Chan; Wei, Yongxiang

    2016-01-01

    Background Viral infection is a common cause of olfactory dysfunction. The complexities of studying post-viral olfactory loss in humans have impaired further progress in understanding the underlying mechanism. Recently, evidence from clinical studies has implicated Parainfluenza virus 3 as a causal agent. An animal model of post viral olfactory disorders (PVOD) would allow better understanding of disease pathogenesis and represent a major advance in the field. Objective To develop a mouse model of PVOD by evaluating the effects of Sendai virus (SeV), the murine counterpart of Parainfluenza virus, on olfactory function and regenerative ability of the olfactory epithelium. Methods C57BL/6 mice (6–8 months old) were inoculated intranasally with SeV or ultraviolet (UV)-inactivated virus (UV-SeV). On days 3, 10, 15, 30 and 60 post-infection, olfactory epithelium was harvested and analyzed by histopathology and immunohistochemical detection of S-phase nuclei. We also measured apoptosis by TUNEL assay and viral load by real-time PCR. The buried food test (BFT) was used to measure olfactory function of mice at day 60. In parallel, cultured murine olfactory sensory neurons (OSNs) infected with SeV or UV-SeV were tested for odorant-mixture response by measuring changes in intracellular calcium concentrations indicated by fura-4 AM assay. Results Mice infected with SeV suffered from olfactory dysfunction, peaking on day 15, with no loss observed with UV-SeV. At 60 days, four out of 12 mice infected with SeV still had not recovered, with continued normal function in controls. Viral copies of SeV persisted in both the olfactory epithelium (OE) and the olfactory bulb (OB) for at least 60 days. At day 10 and after, both unit length labeling index (ULLI) of apoptosis and ULLI of proliferation in the SeV group was markedly less than the UV-SeV group. In primary cultured OSNs infected by SeV, the percentage of cells responding to mixed odors was markedly lower in the SeV group

  6. NMR study of xenotropic murine leukemia virus-related virus protease in a complex with amprenavir

    SciTech Connect

    Furukawa, Ayako; Okamura, Hideyasu; Morishita, Ryo; Matsunaga, Satoko; Kobayashi, Naohiro; Ikegami, Takahisa; Kodaki, Tsutomu; Takaori-Kondo, Akifumi; Ryo, Akihide; Nagata, Takashi; Katahira, Masato

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Protease (PR) of XMR virus (XMRV) was successfully synthesized with cell-free system. Black-Right-Pointing-Pointer Interface of XMRV PR with an inhibitor, amprenavir (APV), was identified with NMR. Black-Right-Pointing-Pointer Structural heterogeneity is induced for two PR protomers in the APV:PR = 1:2 complex. Black-Right-Pointing-Pointer Structural heterogeneity is transmitted even to distant regions from the interface. Black-Right-Pointing-Pointer Long-range transmission of structural change may be utilized for drug discovery. -- Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a virus created through recombination of two murine leukemia proviruses under artificial conditions during the passage of human prostate cancer cells in athymic nude mice. The homodimeric protease (PR) of XMRV plays a critical role in the production of functional viral proteins and is a prerequisite for viral replication. We synthesized XMRV PR using the wheat germ cell-free expression system and carried out structural analysis of XMRV PR in a complex with an inhibitor, amprenavir (APV), by means of NMR. Five different combinatorially {sup 15}N-labeled samples were prepared and backbone resonance assignments were made by applying Otting's method, with which the amino acid types of the [{sup 1}H, {sup 15}N] HSQC resonances were automatically identified using the five samples (Wu et al., 2006) . A titration experiment involving APV revealed that one APV molecule binds to one XMRV PR dimer. For many residues, two distinct resonances were observed, which is thought to be due to the structural heterogeneity between the two protomers in the APV:XMRV PR = 1:2 complex. PR residues at the interface with APV have been identified on the basis of chemical shift perturbation and identification of the intermolecular NOEs by means of filtered NOE experiments. Interestingly, chemical shift heterogeneity between the two protomers of XMRV PR has

  7. The murine model for Hantaan virus-induced lethal disease shows two distinct paths in viral evolutionary trajectory with and without ribavirin treatment.

    PubMed

    Chung, Dong-Hoon; Västermark, Åke; Camp, Jeremy V; McAllister, Ryan; Remold, Susanna K; Chu, Yong-Kyu; Bruder, Carl; Jonsson, Colleen B

    2013-10-01

    In vitro, ribavirin acts as a lethal mutagen in Hantaan virus (HTNV)-infected Vero E6 cells, resulting in an increased mutation load and viral population extinction. In this study, we asked whether ribavirin treatment in the lethal, suckling mouse model of HTNV infection would act similarly. The HTNV genomic RNA (vRNA) copy number and infectious virus were measured in lungs of untreated and ribavirin-treated mice. In untreated, HTNV-infected mice, the vRNA copy number increased for 10 days postinfection (dpi) and thereafter remained constant through 26 dpi. Surprisingly, in ribavirin-treated, HTNV-infected mice, vRNA levels were similar to those in untreated mice between 10 and 26 dpi. Infectious virus levels, however, were different: in ribavirin-treated mice, the amount of infectious HTNV was significantly decreased relative to that in untreated mice, suggesting that ribavirin reduced the specific infectivity of the virus (amount of infectious virus produced per vRNA copy). Mutational analysis revealed a ribavirin-associated elevation in mutation frequency in HTNV vRNA similar to that previously reported in vitro. Codon-based analyses of rates of nonsynonymous (dN) and synonymous (dS) substitutions in the S segment revealed a positive selection for codons within the HTNV N protein gene in the ribavirin-treated vRNA population. In contrast, the vRNA population in untreated, HTNV-infected mice showed a lower level of diversity, reflecting purifying selection for the wild-type genome. In summary, these experiments show two different evolutionary paths that Hantavirus may take during infection in a lethal murine model of disease, as well as the importance of the in vivo host environment in the evolution of the virus, which was not apparent in our prior in vitro model system. PMID:23903835

  8. The BET family of proteins targets Moloney Murine Leukemia Virus integration near transcription start sites

    PubMed Central

    De Rijck, Jan; de Kogel, Christine; Demeulemeester, Jonas; Vets, Sofie; Ashkar, Sara El; Malani, Nirav; Bushman, Frederic D; Landuyt, Bart; Husson, Steven J.; Busschots, Katrien; Gijsbers, Rik; Debyser, Zeger

    2014-01-01

    Summary A hallmark of retroviral replication is integration of the viral genome in the host cell DNA. This characteristic makes retrovirus-based vectors attractive delivery vehicles for gene therapy. However, adverse events in gene therapeutic trials, caused by activation of proto-oncogenes due to Murine Leukemia Virus (MLV)-derived vector integration, hamper their application. Here we show that bromodomain and extraterminal (BET) proteins (BRD2, BRD3 and BRD4) and MLV integrase specifically interact and co-localize within the nucleus of the cell. Inhibition of the BET proteins chromatin interaction via specific bromodomain inhibitors blocks MLV virus replication at the integration step. MLV integration site distribution parallels the chromatin binding profile of BET proteins, and expression of an artificial fusion protein of the BET integrase binding domain with the chromatin interaction domain of the lentiviral targeting factor LEDGF/p75, retargets MLV integration away from TSS and into the body of actively transcribed genes, conform to the Human Immunodeficiency Virus (HIV) integration pattern. Together these data validate BET proteins as MLV integration targeting factors. PMID:24183673

  9. Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes.

    PubMed

    Larue, Ross C; Plumb, Matthew R; Crowe, Brandon L; Shkriabai, Nikoloz; Sharma, Amit; DiFiore, Julia; Malani, Nirav; Aiyer, Sriram S; Roth, Monica J; Bushman, Frederic D; Foster, Mark P; Kvaratskhelia, Mamuka

    2014-04-01

    The importance of understanding the molecular mechanisms of murine leukemia virus (MLV) integration into host chromatin is highlighted by the development of MLV-based vectors for human gene-therapy. We have recently identified BET proteins (Brd2, 3 and 4) as the main cellular binding partners of MLV integrase (IN) and demonstrated their significance for effective MLV integration at transcription start sites. Here we show that recombinant Brd4, a representative of the three BET proteins, establishes complementary high-affinity interactions with MLV IN and mononucleosomes (MNs). Brd4(1-720) but not its N- or C-terminal fragments effectively stimulate MLV IN strand transfer activities in vitro. Mass spectrometry- and NMR-based approaches have enabled us to map key interacting interfaces between the C-terminal domain of BRD4 and the C-terminal tail of MLV IN. Additionally, the N-terminal fragment of Brd4 binds to both DNA and acetylated histone peptides, allowing it to bind tightly to MNs. Comparative analyses of the distributions of various histone marks along chromatin revealed significant positive correlations between H3- and H4-acetylated histones, BET protein-binding sites and MLV-integration sites. Our findings reveal a bimodal mechanism for BET protein-mediated MLV integration into select chromatin locations. PMID:24520112

  10. Xenotropic Murine Leukemia Virus-Related Virus (XMRV) and the Safety of the Blood Supply.

    PubMed

    Johnson, Andrew D; Cohn, Claudia S

    2016-10-01

    In 2006, a new virus, xenotropic murine leukemia virus-related virus (XMRV), was discovered in a cohort of U.S. men with prostate cancer. Soon after this initial finding, XMRV was also detected in samples from patients with chronic fatigue syndrome (CFS). The blood community, which is highly sensitive to the threat of emerging infectious diseases since the HIV/AIDS crisis, recommended indefinite deferral of all blood donors with a history of CFS. As XMRV research progressed, conflicting results emerged regarding the importance of this virus in the pathophysiology of prostate cancer and/or CFS. Molecular biologists traced the development of XMRV to a recombination event in a laboratory mouse that likely occurred circa 1993. The virus was propagated via cell lines derived from a tumor present in this mouse and spread through contamination of laboratory samples. Well-controlled experiments showed that detection of XMRV was due to contaminated samples and was not a marker of or a causal factor in prostate cancer or CFS. This paper traces the development of XMRV in the prostate and CFS scientific communities and explores the effect it had on the blood community. PMID:27358491

  11. Expression of mink cell focus-forming murine leukemia virus-related transcripts in AKR mice

    SciTech Connect

    Khan, A.S.; Laigret, F.; Rodi, C.P.

    1987-03-01

    The authors used a synthetic 16-base-pair mink cell focus-forming (MCF) env-specific oligomer as radiolabeled probe to study MCF murine leukemia virus (MuLV)-related transcripts in brain, kidney, liver, spleen, and thymus tissues of AKR mice ranging from 5 weeks to 6 months (mo) of age. Tissue-specific expression of poly(A)/sup +/ RNAs was seen. In addition, all the tissues tested contained 3.0-kb messages. The transcription of these MCF-related mRNAs was independent of the presence of ecotropic and xenotropic MuLVs. In general, expression of the MCF env-related transcripts appeared to peak at 2 mo of age; these messages were barely detectable in brain, kidney, liver, and spleen tissues after 2 mo and in thymus tissue after 4 mo of age. All of the subgenomic MCF env-related mRNAs appeared to contain the 190-base-pair cellular DNA insert, characteristic of the long terminal repeats associated with endogenous MCF env-related proviruses. No genomic-size (8.4-kb) transcripts corresponding to endogenous MCF-related proviruses were detected. An 8.4-kb MCF env-related mRNA was first seen at 3 mo of age, exclusively in thymus tissue. This species most likely represents the first appearance of a recombinant MCF-related MuLV genome. The transcripts which were detected in thymus tissue might be involved in the generation of leukemogenic MCF viruses.

  12. Functional dissection of the Moloney murine leukemia virus envelope protein gp70.

    PubMed

    Bae, Y; Kingsman, S M; Kingsman, A J

    1997-03-01

    The envelope protein of Moloney murine leukemia virus (Mo-MLV) is a complex glycoprotein that mediates receptor binding and entry via fusion with cell membranes. By using a series of substitution mutations and truncations in the Mo-MLV external envelope surface protein gp70, we have identified regions important for these processes. Firstly, truncations of gp70 revealed that the minimal continuous receptor-binding region is amino acids 9 to 230, in broad agreement with other studies. Secondly, within this region there are two key basic amino acids, Arg-83 and Arg-95, that are essential for receptor binding and may interact with a negatively charged residue(s) or with the pi electrons of the aromatic ring on a hydrophobic residue(s) in the basic amino acid transporter protein that is the Mo-MLV ecotropic receptor. Finally, we showed that outside the minimal receptor-binding region at amino acids 2 to 8, there is a region that is essential for postbinding fusion events. PMID:9032341

  13. Insights into the nuclear export of murine leukemia virus intron-containing RNA

    PubMed Central

    Pessel-Vivares, Lucie; Houzet, Laurent; Lainé, Sébastien; Mougel, Marylène

    2015-01-01

    The retroviral genome consists of an intron-containing transcript that has essential cytoplasmic functions in the infected cell. This viral transcript can escape splicing, circumvent the nuclear checkpoint mechanisms and be transported to the cytoplasm by hijacking the host machinery. Once in the cytoplasm, viral unspliced RNA acts as mRNA to be translated and as genomic RNA to be packaged into nascent viruses. The murine leukemia virus (MLV) is among the first retroviruses discovered and is classified as simple Retroviridae due to its minimal encoding capacity. The oncogenic and transduction abilities of MLV are extensively studied, whereas surprisingly the crucial step of its nuclear export has remained unsolved until 2014. Recent work has revealed the recruitment by MLV of the cellular NXF1/Tap-dependent pathway for export. Unconventionally, MLV uses of Tap to export both spliced and unspliced viral RNAs. Unlike other retroviruses, MLV does not harbor a unique RNA signal for export. Indeed, multiple sequences throughout the MLV genome appear to promote export of the unspliced MLV RNA. We review here the current understanding of the export mechanism and highlight the determinants that influence MLV export. As the molecular mechanism of MLV export is elucidated, we will gain insight into the contribution of the export pathway to the cytoplasmic fate of the viral RNA. PMID:26158194

  14. Solution Properties of Murine Leukemia Virus Gag Protein: Differences from HIV-1 Gag▿

    PubMed Central

    Datta, Siddhartha A. K.; Zuo, Xiaobing; Clark, Patrick K.; Campbell, Stephen J.; Wang, Yun-Xing; Rein, Alan

    2011-01-01

    Immature retrovirus particles are assembled from the multidomain Gag protein. In these particles, the Gag proteins are arranged radially as elongated rods. We have previously characterized the properties of HIV-1 Gag in solution. In the absence of nucleic acid, HIV-1 Gag displays moderately weak interprotein interactions, existing in monomer-dimer equilibrium. Neutron scattering and hydrodynamic studies suggest that the protein is compact, and biochemical studies indicate that the two ends can approach close in three-dimensional space, implying the need for a significant conformational change during assembly. We now describe the properties of the Gag protein of Moloney murine leukemia virus (MLV), a gammaretrovirus. We found that this protein is very different from HIV-1 Gag: it has much weaker protein-protein interaction and is predominantly monomeric in solution. This has allowed us to study the protein by small-angle X-ray scattering and to build a low-resolution molecular envelope for the protein. We found that MLV Gag is extended in solution, with an axial ratio of ∼7, comparable to its dimensions in immature particles. Mutational analysis suggests that runs of prolines in its matrix and p12 domains and the highly charged stretch at the C terminus of its capsid domain all contribute to this extended conformation. These differences between MLV Gag and HIV-1 Gag and their implications for retroviral assembly are discussed. PMID:21917964

  15. Murine leukemia virus in organs of senescence-prone and -resistant mouse strains.

    PubMed

    Carp, R I; Meeker, H C; Chung, R; Kozak, C A; Hosokawa, M; Fujisawa, H

    2002-03-31

    A series of inbred strains of mice have been developed that are either prone (SAMP) or resistant (SAMR) to accelerated senescence. All of these strains originated from an inadvertent cross or crosses between the AKR/J mouse strain and an unknown strain(s). The characteristics of the nine senescence-prone lines differ, with all strains showing generalized aspects of accelerated aging but with each line having a specific aging-related change that is emphasized, e.g. learning and memory deficits, osteoporosis and senile amyloidosis. The senescence-resistant strains have normal patterns of aging and do not show the specific aging-related changes seen in SAMP strains. The fact that AKR mice have high levels of endogenous, ecotropic murine leukemia virus (MuLV) prompted an examination of the expression levels of MuLV in SAM strains. Analysis of brain, spleen and thymus samples revealed that seven of nine SAMP strains had high levels of MuLV and contained the Emv11 provirus (previously termed Akv1) that encodes the predominant MuLV found in AKR mice. In contrast, none of the SAMR strains had Emv11 or significant amounts of virus. The current findings represent an initial step in determining the role of MuLV in the accelerated senescence seen in SAMP strains. PMID:11850021

  16. Fv-1 restriction and its effects on murine leukemia virus integration in vivo and in vitro.

    PubMed Central

    Pryciak, P M; Varmus, H E

    1992-01-01

    We have investigated the mechanisms by which alleles at the mouse Fv-1 locus restrict replication of murine leukemia viruses. Inhibition of productive infection is closely paralleled by reduced accumulation of integrated proviral DNA as well as by reduced levels of linear viral DNA in a cytoplasmic fraction. Nevertheless, viral DNA is present at nearly normal levels in a nuclear fraction, and total amounts of viral DNA are only mildly affected in restrictive infections, suggesting a block in integration to account for reduced levels of proviral DNA. However, integrase (IN)-dependent trimming of 3' ends of viral DNA occurs normally in vivo during restrictive infections, demonstrating that not all IN-mediated events are prevented in vivo. Furthermore, viral integration complexes present in nuclear extracts of infected restrictive cells are fully competent to integrate their DNA into a heterologous target in vitro. Thus, the Fv-1-dependent activity that restricts integration in vivo may be lost in vitro; alternatively, Fv-1 restriction may prevent a step required for integration in vivo that is bypassed in vitro. Images PMID:1326652

  17. Solution Properties of Murine Leukemia Virus Gag Protein: Differences from HIV-1 Gag

    SciTech Connect

    Datta, Siddhartha A.K.; Zuo, Xiaobing; Clark, Patrick K.; Campbell, Stephen J.; Wang, Yun-Xing; Rein, Alan

    2012-05-09

    Immature retrovirus particles are assembled from the multidomain Gag protein. In these particles, the Gag proteins are arranged radially as elongated rods. We have previously characterized the properties of HIV-1 Gag in solution. In the absence of nucleic acid, HIV-1 Gag displays moderately weak interprotein interactions, existing in monomer-dimer equilibrium. Neutron scattering and hydrodynamic studies suggest that the protein is compact, and biochemical studies indicate that the two ends can approach close in three-dimensional space, implying the need for a significant conformational change during assembly. We now describe the properties of the Gag protein of Moloney murine leukemia virus (MLV), a gammaretrovirus. We found that this protein is very different from HIV-1 Gag: it has much weaker protein-protein interaction and is predominantly monomeric in solution. This has allowed us to study the protein by small-angle X-ray scattering and to build a low-resolution molecular envelope for the protein. We found that MLV Gag is extended in solution, with an axial ratio of {approx}7, comparable to its dimensions in immature particles. Mutational analysis suggests that runs of prolines in its matrix and p12 domains and the highly charged stretch at the C terminus of its capsid domain all contribute to this extended conformation. These differences between MLV Gag and HIV-1 Gag and their implications for retroviral assembly are discussed.

  18. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus

    NASA Astrophysics Data System (ADS)

    Tang, Xuhua; Zhu, Yiping; Baker, Stacey L.; Bowler, Matthew W.; Chen, Benjamin Jieming; Chen, Chen; Hogg, J. Robert; Goff, Stephen P.; Song, Haiwei

    2016-06-01

    Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag-Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins.

  19. Structure of glycosylated and unglycosylated gag polyproteins of Rauscher murine leukemia virus: carbohydrate attachment sites.

    PubMed Central

    Schultz, A M; Lockhart, S M; Rabin, E M; Oroszlan, S

    1981-01-01

    The structural relationships among the gag polyproteins Pr65gag, Pr75gag, and gPr80gag of Rauscher murine leukemia virus were studied by endoglycosidase H digestion and formic acid cleavage. Fragments were identified by precipitation with specific antisera to constituent virion structural proteins followed by one-dimensional mapping. Endoglycosidase H reduced the size of gPr80gag to that of Pr75gag. By comparing fragments of gPr80gag and the apoprotein Pr75gag, the former was shown to contain two mannose-rich oligosaccharide units. By comparing fragments of Pr65gag and Pr75gag, the latter was shown to differ from Pr65gag at the amino terminus by the presence of a leader peptide approximately 7,000 daltons in size. The internal and carboxyl-terminal peptides of the two unglycosylated polyproteins were not detectably different. The location of the two N-linked carbohydrate chains in gPr80gag has been specified. One occurs in the carboxyl-terminal half of the polyprotein at asparagine177 of the p30 sequence and the other is found in a 23,000-dalton fragment located in the amino-terminal region of gPr80gag and containing the additional amino acid sequences not found in Pr65gag plus a substantial portion of p15. Images PMID:7241663

  20. In Vitro Assembly of Virus-Like Particles of a Gammaretrovirus, the Murine Leukemia Virus XMRV

    PubMed Central

    Hadravová, Romana; de Marco, Alex; Ulbrich, Pavel; Štokrová, Jitka; Doležal, Michal; Pichová, Iva; Ruml, Tomáš

    2012-01-01

    Immature retroviral particles are assembled by self-association of the structural polyprotein precursor Gag. During maturation the Gag polyprotein is proteolytically cleaved, yielding mature structural proteins, matrix (MA), capsid (CA), and nucleocapsid (NC), that reassemble into a mature viral particle. Proteolytic cleavage causes the N terminus of CA to fold back to form a β-hairpin, anchored by an internal salt bridge between the N-terminal proline and the inner aspartate. Using an in vitro assembly system of capsid-nucleocapsid protein (CANC), we studied the formation of virus-like particles (VLP) of a gammaretrovirus, the xenotropic murine leukemia virus (MLV)-related virus (XMRV). We show here that, unlike other retroviruses, XMRV CA and CANC do not assemble tubular particles characteristic of mature assembly. The prevention of β-hairpin formation by the deletion of either the N-terminal proline or 10 initial amino acids enabled the assembly of ΔProCANC or Δ10CANC into immature-like spherical particles. Detailed three-dimensional (3D) structural analysis of these particles revealed that below a disordered N-terminal CA layer, the C terminus of CA assembles a typical immature lattice, which is linked by rod-like densities with the RNP. PMID:22090120

  1. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus.

    PubMed

    Tang, Xuhua; Zhu, Yiping; Baker, Stacey L; Bowler, Matthew W; Chen, Benjamin Jieming; Chen, Chen; Hogg, J Robert; Goff, Stephen P; Song, Haiwei

    2016-01-01

    Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag-Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins. PMID:27329342

  2. Assembly and composition of intracellular particles formed by Moloney murine leukemia virus.

    PubMed Central

    Hansen, M; Jelinek, L; Jones, R S; Stegeman-Olsen, J; Barklis, E

    1993-01-01

    Assembly of type C retroviruses such as Moloney murine leukemia virus (M-MuLV) ordinarily occurs at the plasma membranes of infected cells and absolutely requires the particle core precursor protein, Pr65gag. Previously we have shown that Pr65gag is membrane associated and that at least a portion of intracellular Pr65gag protein appears to be routed to the plasma membrane by a vesicular transport pathway. Here we show that intracellular particle formation can occur in M-MuLV-infected cells. M-MuLV immature particles were observed by electron microscopy budding into and within rough endoplasmic reticulum, Golgi, and vacuolar compartments. Biochemical fractionation studies indicated that intracellular Pr65gag was present in nonionic detergent-resistant complexes of greater than 150S. Additionally, viral RNA and polymerase functions appeared to be associated with intracellular particles, as were Gag-beta-galactosidase fusion proteins which have the capacity to be incorporated into virions. Immature intracellular particles in postnuclear lysates could be proteolytically processed in vitro to mature forms, while extracellular immature M-MuLV particles remained immature as long as 10 h during incubations. The occurrence of M-MuLV-derived intracellular particles demonstrates that Pr65gag can associate with intracellular membranes and indicates that if a plasma membrane Pr65gag receptor exists, it also can be found in other membrane compartments. These results support the hypothesis that intracellular particles may serve as a virus reservoir during in vivo infections. Images PMID:8350394

  3. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus

    PubMed Central

    Tang, Xuhua; Zhu, Yiping; Baker, Stacey L.; Bowler, Matthew W.; Chen, Benjamin Jieming; Chen, Chen; Hogg, J. Robert; Goff, Stephen P.; Song, Haiwei

    2016-01-01

    Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag–Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins. PMID:27329342

  4. Effect of internal genomic sequences of the Moloney murine leukemia virus on replication

    SciTech Connect

    Fomin, I.K.; Lobanova, A.B.; Voitenok, N.N.

    1995-11-01

    Construction and use of retrovirus vectors derived from the Moloney murine leukemia virus (MoMuLV) are described. These vectors, designated minimal vectors, contain the left and right long terminal repeats (LTRs), a binding site for proline tRNA, a polypurine tract (PPT), and a dominant marker for selective introduction of vectors into a packaging cell line, but lack the internal sequences of the virus genome. The experiments showed that the minimal vectors can be replicated and that their titer was approximately 1500-fold lower than that of wild-type vectors. The minimal vectors were shown to contain all the cis-acting sequences necessary for correct reverse transcription. One infectious virion, like wild-type viruses, produced only one provirus. Unlike the avian reticuloendotheliosis virus (REV), {Psi}{sup +} and {Psi}{sup {minus}} genomes of MoMuLV did not compete for virion proteins in the {Psi}2 packaging cell line. When an insert was introduced into a central part of the LTR U5 region, the titer of the minimal vector remained the same, while the titer of the wild-type vector decreased approximately 40-fold. 28 refs., 2 figs., 2 tabs.

  5. Xenotropic Murine Leukemia Virus-Related Virus in Chronic Fatigue Syndrome and Prostate Cancer

    PubMed Central

    2010-01-01

    Xenotropic murine leukemia virus-related virus (XMRV) is a γ retrovirus that has been associated with chronic fatigue syndrome (CFS) and prostate cancer. The search for viral causes of these syndromes was reignited by the finding that RNase L activity was low in hereditary prostate cancer and some CFS patients. The six strains of XMRV that have been sequenced have greater than 99% identity, indicating a new human infection rather than laboratory contamination. DNA, RNA, and proteins from XMRV have been detected in 50% to 67% of CFS patients and in about 3.7% of healthy controls. XMRV infections could be transmitted to permissive cell lines from CFS plasma, suggesting the potential for communicable and blood-borne spread of the virus and potentially CFS. This troubling concept is currently under intense evaluation. The most important steps now are to independently confirm the initial findings; develop reliable assays of biomarkers; and to move on to investigations of XMRV pathophysiology and treatment in CFS, prostate cancer, and potentially other virus-related syndromes, if they exist. PMID:20425007

  6. Sequence-specific binding of DNA by the Moloney murine leukemia virus integrase protein.

    PubMed Central

    Krogstad, P A; Champoux, J J

    1990-01-01

    Genetic studies have indicated that integration of retroviral DNA into the host genome depends on the presence of the inverted repeats at the free termini of the long terminal repeats on the unintegrated DNA and on the product of the 3' end of the pol gene (the integrase [IN] protein). While the precise function of the Moloney murine leukemia virus IN protein is uncertain, others have shown that it is a DNA-binding protein and functions in the processing of the inverted repeats prior to integration. By using site-directed mutagenesis, we cloned and expressed the IN protein in Escherichia coli. Crude extracts of total cellular protein were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose filters, denatured in guanidine, renatured, and incubated with oligonucleotide probes. Single- and double-stranded oligonucleotides corresponding to the termini of unintegrated linear viral DNA were specifically bound by the IN protein in this assay. These data suggest that the role of the Moloney IN protein in the early steps of integration involves sequence-specific recognition of the DNA sequences found at the ends of the long terminal repeats. Images PMID:2186176

  7. Targeting the apoptotic pathway with BCL-2 inhibitors sensitizes primary chronic lymphocytic leukemia cells to vesicular stomatitis virus-induced oncolysis.

    PubMed

    Tumilasci, Vanessa Fonseca; Olière, Stephanie; Nguyên, Thi Lien-Ahn; Shamy, April; Bell, John; Hiscott, John

    2008-09-01

    Chronic lymphocytic leukemia (CLL) is characterized by clonal accumulation of CD5(+) CD19(+) B lymphocytes that are arrested in the G(0)/G(1) phase of the cell cycle and fail to undergo apoptosis because of overexpression of the antiapoptotic B-cell CLL/lymphoma 2 (BCL-2) protein. Oncolytic viruses, such as vesicular stomatitis virus (VSV), have emerged as potential anticancer agents that selectively target and kill malignant cells via the intrinsic mitochondrial pathway. Although primary CLL cells are largely resistant to VSV oncolysis, we postulated that targeting the apoptotic pathway via inhibition of BCL-2 may sensitize CLL cells to VSV oncolysis. In the present study, we examined the capacity of EM20-25--a small-molecule antagonist of the BCL-2 protein--to overcome CLL resistance to VSV oncolysis. We demonstrate a synergistic effect of the two agents in primary ex vivo CLL cells (combination index of 0.5; P < 0.0001). In a direct comparison of peripheral blood mononuclear cells from healthy volunteers with primary CLL, the two agents combined showed a therapeutic index of 19-fold; furthermore, the combination of VSV and EM20-25 increased apoptotic cell death in Karpas-422 and Granta-519 B-lymphoma cell lines (P < 0.005) via the intrinsic mitochondrial pathway. Mechanistically, EM20-25 blocked the ability of the BCL-2 protein to dimerize with proapoptotic BAX protein, thus sensitizing CLL to VSV oncolytic stress. Together, these data indicate that the use of BCL-2 inhibitors may improve VSV oncolysis in treatment-resistant hematological malignancies, such as CLL, with characterized defects in the apoptotic response. PMID:18579592

  8. Murine AIDS Protects Mice Against Experimental Cerebral Malaria: Down-Regulation by Interleukin 10 a T-Helper Type 1 CD4^+ Cell-Mediated Pathology

    NASA Astrophysics Data System (ADS)

    Eckwalanga, Michel; Marussig, Myriam; Dias Tavares, Marisa; Bouanga, Jean Claude; Hulier, Elisabeth; Henriette Pavlovitch, Jana; Minoprio, Paola; Portnoi, Denis; Renia, Laurent; Mazier, Dominique

    1994-08-01

    The retrovirus LP-BM5 murine leukemia virus induces murine AIDS in C57BL/6 mice that has many similarities with human AIDS; Plasmodium berghei ANKA causes experimental cerebral malaria in the same strain of mice. The outcome of malaria infection was studied in mice concurrently infected with the two pathogens. The retrovirus significantly reduced the gravity of the neurological manifestations associated with Plasmodium berghei ANKA infection. The protection against experimental cerebral malaria induced by murine AIDS increased with duration of viral infection and, hence, with the severity of the immunodeficiency. Interleukin 10, principally from splenic T cells, was shown to play a crucial role in this protection.

  9. Construction and characterization of the recombinant Moloney murine leukemia viruses bearing the mouse Fv-4 env gene.

    PubMed Central

    Masuda, M; Yoshikura, H

    1990-01-01

    A nucleotide sequence of the mouse Fv-4 env gene was completed. Structural comparison revealed a close relationship of Fv-4 to the ecotropic Cas-Br-E murine leukemia virus isolated from a wild mouse in southern California. Various portions of the env gene of Moloney murine leukemia virus were replaced by the corresponding Fv-4 env sequence to construct recombinant murine leukemia virus clones. Infectivity of these recombinants was checked by the S+L- cell focus induction assay and the XC cell syncytium formation assay. Recombinants bearing the following Fv-4 env sequence retained ecotropic infectivity; the AccI-BamHI and BamHI-BalI regions coding for the N- and C-terminal halves of Fv-4 gp70SU, respectively; and the BalI-NcoI region encoding the cleavage site between gp70SU and p15(E)TM of the Fv-4 env. However, when the Fv-4 sequence was substituted for the p15(E)TM-coding NcoI-EcoRV region or the AccI-EcoRV region covering almost the entire env gene, infectivity was undetectable in our assays. The recombinant clone containing the Fv-4 AccI-EcoRV region, i.e., almost the entire Fv-4 env sequence, was introduced with pSV2neo into NIH 3T3 cells, and a G418r cell line named NIH(Fv4)-2 was isolated. The NIH(Fv4)-2 cell released viral particles that contained reverse transcriptase, Fv-4 env molecules as well as the other viral proteins, and viral genomic RNA. However, proviral DNA synthesis was not detected upon inoculation of this virus in NIH 3T3 cells. The loss of infectivity of the recombinant virus bearing the Fv-4 AccI-EcoRV region appeared to be caused by failure in an early step of replication. Images PMID:2304138

  10. Splicing of Friend Murine Leukemia Virus env-mRNA Enhances Its Ability to Form Polysomes

    PubMed Central

    Machinaga, Akihito; Ishihara, Syuhei; Shirai, Akiko; Takase-Yoden, Sayaka

    2016-01-01

    Friend murine leukemia virus (MLV) belongs to the gamma retroviruses of the Retroviridae family. The positive-sense RNA of its genome contains a 5′ long terminal repeat (LTR), 5′ leader sequence, gag, pol, env, and 3′ LTR. Transcription from proviral DNA begins from the R region of the 5′ LTR and ends at the polyadenylation signal located at the R region of the other end of the 3′ LTR. There is a 5′ splice site in the 5′ leader sequence and a 3′ splice site at the 3′ end of the pol region. Both full-length unspliced mRNAs and a singly spliced mRNA (env-mRNA) are produced in MLV-infected cells. The MLV Env protein plays important roles both in viral adsorption to host cells and in neuropathogenic disease in MLV-infected mice and rats. Understanding the regulatory mechanisms controlling Env expression is important for determining the functions of the Env protein. We have previously shown that splicing increases env-mRNA stability and translation efficiency. Generally, mRNA polysome formation correlates with translation efficiency. Therefore, here we investigated the effects of env-mRNA splicing on polysome formation to identify mechanisms for Env up-regulation due to splicing. We performed polysome profile analyses using Env-expression plasmids producing spliced or unspliced env-mRNA and showed that the former formed polysomes more efficiently than the latter. Thus, splicing of env-mRNA facilitated polysome formation, suggesting that this contributes to up-regulation of Env expression. We replaced the env region of the expression plasmids with a luciferase (luc) gene, and found that in this case both unspliced and spliced luc-mRNA formed polysomes to a similar extent. Thus, we conclude that whether mRNA polysome formation is affected by splicing depends on the structure of gene in question. PMID:26909075

  11. Genomic stability of murine leukemia viruses containing insertions at the Env-3' untranslated region boundary.

    PubMed

    Logg, C R; Logg, A; Tai, C K; Cannon, P M; Kasahara, N

    2001-08-01

    Retroviruses containing inserts of exogenous sequences frequently eliminate the inserted sequences upon spread in susceptible cells. We have constructed replication-competent murine leukemia virus (MLV) vectors containing internal ribosome entry site (IRES)-transgene cassettes at the env-3' untranslated region boundary in order to examine the effects of insert sequence and size on the loss of inserts during viral replication. A virus containing an insertion of 1.6 kb replicated with greatly attenuated kinetics relative to wild-type virus and lost the inserted sequences in a single infection cycle. In contrast, MLVs containing inserts of 1.15 to 1.30 kb replicated with kinetics only slightly attenuated compared to wild-type MLV and exhibited much greater stability, maintaining their genomic integrity over multiple serial infection cycles. Eventually, multiple species of deletion mutants were detected simultaneously in later infection cycles; once detected, these variants rapidly dominated the population and thereafter appeared to be maintained at a relative equilibrium. Sequence analysis of these variants identified preferred sites of recombination in the parental viruses, including both short direct repeats and inverted repeats. One instance of insert deletion through recombination with an endogenous retrovirus was also observed. When specific sequences involved in these recombination events were eliminated, deletion variants still arose with the same kinetics upon virus passage and by apparently similar mechanisms, although at different locations in the vectors. Our results suggest that while lengthened, insert-containing genomes can be maintained over multiple replication cycles, preferential deletions resulting in loss of the inserted sequences confer a strong selective advantage. PMID:11435579

  12. No Evidence of Murine Leukemia Virus-Related Viruses in Live Attenuated Human Vaccines

    PubMed Central

    Switzer, William M.; Zheng, HaoQiang; Simmons, Graham; Zhou, Yanchen; Tang, Shaohua; Shankar, Anupama; Kapusinszky, Beatrix; Delwart, Eric L.; Heneine, Walid

    2011-01-01

    Background The association of xenotropic murine leukemia virus (MLV)-related virus (XMRV) in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents. Results All eight live attenuated vaccines, including Japanese encephalitis virus (JEV) (SA-14-14-2), varicella (Varivax), measles, mumps, and rubella (MMR-II), measles (Attenuvax), rubella (Meruvax-II), rotavirus (Rotateq and Rotarix), and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells. Conclusions We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans. PMID:22216219

  13. Crystal Structure of the Moloney Murine Leukemia Virus RNase H Domain

    SciTech Connect

    Lim,D.; Gregorio, G.; Bingman, C.; Martinez-Hackert, E.; Hendrickson, W.; Goff, S.

    2006-01-01

    A crystallographic study of the Moloney murine leukemia virus (Mo-MLV) RNase H domain was performed to provide information about its structure and mechanism of action. These efforts resulted in the crystallization of a mutant Mo-MLV RNase H lacking the putative helix C ({Delta}C). The 1.6-{angstrom} resolution structure resembles the known structures of the human immunodeficiency virus type 1 (HIV-1) and Escherichia coli RNase H. The structure revealed the coordination of a magnesium ion within the catalytic core comprised of the highly conserved acidic residues D524, E562, and D583. Surface charge mapping of the Mo-MLV structure revealed a high density of basic charges on one side of the enzyme. Using a model of the Mo-MLV structure superimposed upon a structure of HIV-1 reverse transcriptase bound to an RNA/DNA hybrid substrate, Mo-MLV RNase H secondary structures and individual amino acids were examined for their potential roles in binding substrate. Identified regions included Mo-MLV RNase H {beta}1-{beta}2, {alpha}A, and {alpha}B and residues from {alpha}B to {alpha}D and its following loop. Most of the identified substrate-binding residues corresponded with residues directly binding nucleotides in an RNase H from Bacillus halodurans as observed in a cocrystal structure with RNA/DNA. Finally, superimposition of RNases H of Mo-MLV, E. coli, and HIV-1 revealed that a loop of the HIV-1 connection domain resides within the same region of the Mo-MLV and E. coli C-helix. The HIV-1 connection domain may serve to recognize and bind the RNA/DNA substrate major groove.

  14. Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70SU.

    PubMed Central

    Ott, D; Rein, A

    1992-01-01

    Murine leukemia viruses (MuLVs) initiate infection of NIH 3T3 cells by binding of the viral envelope (Env) protein to a cell surface receptor. Interference assays have shown that MuLVs can be divided into four groups, each using a distinct receptor: ecotropic, polytropic, amphotropic, and 10A1. In this study, we have attempted to map the determinants within viral Env proteins by constructing chimeric env genes. Chimeras were made in all six pairwise combinations between Moloney MCF (a polytropic MuLV), amphotropic MuLV, and 10A1, using a conserved EcoRI site in the middle of the Env coding region. The receptor specificity of each chimera was determined by using an interference assay. We found that amphotropic receptor specificity of each chimera was determined by using an interference assay. We found that amphotropic receptor specificity seems to map to the N-terminal portion of surface glycoprotein gp70SU. The difference between amphotropic and 10A1 receptor specificity can be attributed to one or more of only six amino acid differences in this region. Nearly all other cases showed evidence of interaction between Env domains in the generation of receptor specificity. Thus, a chimera composed exclusively of MCF and amphotropic sequences was found to exhibit 10A1 receptor specificity. None of the chimeras were able to infect cells by using the MCF receptor; however, two chimeras containing the C-terminal portion of MCF gp70SU could bind to this receptor, while they were able to infect cells via the amphotropic receptor. This result raises the possibility that receptor binding maps to the C-terminal portion of MCF gp70SU but requires MCF N-terminal sequences for a functional interaction with the MCF receptor. Images PMID:1321266

  15. Splicing of Friend Murine Leukemia Virus env-mRNA Enhances Its Ability to Form Polysomes.

    PubMed

    Machinaga, Akihito; Ishihara, Syuhei; Shirai, Akiko; Takase-Yoden, Sayaka

    2016-01-01

    Friend murine leukemia virus (MLV) belongs to the gamma retroviruses of the Retroviridae family. The positive-sense RNA of its genome contains a 5' long terminal repeat (LTR), 5' leader sequence, gag, pol, env, and 3' LTR. Transcription from proviral DNA begins from the R region of the 5' LTR and ends at the polyadenylation signal located at the R region of the other end of the 3' LTR. There is a 5' splice site in the 5' leader sequence and a 3' splice site at the 3' end of the pol region. Both full-length unspliced mRNAs and a singly spliced mRNA (env-mRNA) are produced in MLV-infected cells. The MLV Env protein plays important roles both in viral adsorption to host cells and in neuropathogenic disease in MLV-infected mice and rats. Understanding the regulatory mechanisms controlling Env expression is important for determining the functions of the Env protein. We have previously shown that splicing increases env-mRNA stability and translation efficiency. Generally, mRNA polysome formation correlates with translation efficiency. Therefore, here we investigated the effects of env-mRNA splicing on polysome formation to identify mechanisms for Env up-regulation due to splicing. We performed polysome profile analyses using Env-expression plasmids producing spliced or unspliced env-mRNA and showed that the former formed polysomes more efficiently than the latter. Thus, splicing of env-mRNA facilitated polysome formation, suggesting that this contributes to up-regulation of Env expression. We replaced the env region of the expression plasmids with a luciferase (luc) gene, and found that in this case both unspliced and spliced luc-mRNA formed polysomes to a similar extent. Thus, we conclude that whether mRNA polysome formation is affected by splicing depends on the structure of gene in question. PMID:26909075

  16. Preparation and characterization of the RNase H domain of Moloney murine leukemia virus reverse transcriptase.

    PubMed

    Nishimura, Kosaku; Yokokawa, Kanta; Hisayoshi, Tetsuro; Fukatsu, Kosuke; Kuze, Ikumi; Konishi, Atsushi; Mikami, Bunzo; Kojima, Kenji; Yasukawa, Kiyoshi

    2015-09-01

    Moloney murine leukemia virus reverse transcriptase (MMLV RT) contains fingers, palm, thumb, and connection subdomains as well as an RNase H domain. The DNA polymerase active site resides in the palm subdomain, and the RNase H active site is located in the RNase H domain. The RNase H domain contains a positively charged α-helix called the C helix (H(594)GEIYRRR(601)), that is thought to be involved in substrate recognition. In this study, we expressed three versions of the RNase H domain in Escherichia coli, the wild-type domain (WT) (residues Ile498-Leu671) and two variants that lack the regions containing the C helix (Ile593-Leu603 and Gly595-Thr605, which we called ΔC1 and ΔC2, respectively) with a strep-tag at the N-terminus and a deca-histidine tag at the C-terminus. These peptides were purified from the cells by anion-exchange, Ni(2+) affinity, and Strep-Tactin affinity column chromatography, and then the tags were removed by proteolysis. In an RNase H assay using a 25-bp RNA-DNA heteroduplex, WT, ΔC1, and ΔC2 produced RNA fragments ranging from 7 to 16 nucleotides (nt) whereas the full-length MMLV RT (Thr24-Leu671) produced 14-20-nt RNA fragments, suggesting that elimination of the fingers, palm, thumb, and connection subdomains affects the binding of the RNase H domain to the RNA-DNA heteroduplex. The activity levels of WT, ΔC1, and ΔC2 were estimated to be 1%, 0.01%, and 0.01% of full-length MMLV RT activity, indicating that the C helix is important, but not critical, for the activity of the isolated RNase H domain. PMID:25959458

  17. Characterization of a novel murine leukemia virus-related subgroup within mammals.

    PubMed Central

    Tristem, M; Kabat, P; Lieberman, L; Linde, S; Karpas, A; Hill, F

    1996-01-01

    The murine leukemia virus (MuLV)-related retroviruses are one of seven genera which together constitute the family Retroviridae. They are widespread as both endogenous and exogenous agents within vertebrates and have been associated with a variety of malignancies and other disorders. We isolated and characterized 12 endogenous representatives of this genus from a number of mammalian hosts. Subsequent sequence analysis revealed that the isolated viruses cluster into two clearly distinct groups. All of the exogenous MuLV-related retroviruses which have been isolated to date, as well as several endogenous examples, fall into the first group, whereas the second group is represented solely by endogenous representatives, including human endogenous retrovirus type E (HERV.E). The two groups are widespread within mammals, with both often present within one animal species. Despite this, there is no evidence to date that recombination between members of the different groups has occurred. Genetic distances and several other properties of the HERV.E genome suggest that if exogenous members of this subgroup exist, they are likely to have biological properties different from those of the other exogenous viruses of this genus. Several of these viruses are known to have been integrated within their hosts' genomes for a long period of time, and a most recent divergence date for the MuLV and HERV.E subgroups can thus be proposed. This date, approximately 30 million years ago, is the most recent date possible, and it is probable that the actual period of time since their divergence is significantly longer. PMID:8892961

  18. Physical properties of moloney murine leukemia virus high-molecular-weight RNA: a two subunit structure.

    PubMed Central

    Riggin, C H; Bondurant, M; Mitchell, W M

    1975-01-01

    The high-molecular-weight RNA of Moloney murine leukemia virus (MuLV) was analyzed by sedimentation equilibrium ultracentrifugation. Molecular weights of 7.2 x 10(6) and 3.4 x 10(6) were found for the native and subunit forms, respectively, indicating that the native structure is a dimer. S20,w and frictional coefficients were determined for MuLV RNA by analytical velocity centrifugation as a function of ionic strength. The apparent S20,w of native MuLV RNA was 47.3, 57.4, and 66.5 in 0.01, 0.1, and 0.20 M Na+, respectively; the corresponding frictional coefficients were 5.44, 4.48, and 3.87. Native RNA was estimated by circular dichroism to be 85% helical, whereas denatured RNA was 54% helical. Thermal denaturation profiles were obtained from uv absorbance scans. Melting temperatures of 57 and 68 C were obtained for high-molecular-weight RNA in 0.01 M Na+ and 0.122 M Na+, 1mM Mg2+, respectively. van't Hoff plots of the thermal denaturation data gave enthalpies for the helix-coil transition of 21,600 cal (ca. 90,500 J) per mol of cooperatively melting unit in high salt and 19,600 cal (ca. 82,100 J) per mol in low salt, consistent with both base stacking and pairing. The melting of Mu LV RNA occurred over a broad temprange and van't Hoff plots were linear over most of the melting range, indicating a noncooperative process of helix stabilization. PMID:1202247

  19. Generation of mink cell focus-forming viruses by Friend murine leukemia virus: recombination with specific endogenous proviral sequences.

    PubMed Central

    Evans, L H; Cloyd, M W

    1984-01-01

    A family of recombinant mink cell focus-forming viruses (MCF) was derived by inoculation of NFS mice with a Friend murine leukemia virus, and their genomes were analyzed by RNase T1-resistant oligonucleotide fingerprinting. The viruses were obtained from the thymuses and spleens of preleukemic and leukemic animals and were evaluated for dualtropism and oncogenicity. All these isolates induced cytopathic foci on mink cells but could be classified into two groups based on their relative infectivities for SC-1 (mouse) or mink (ATCC CCL64) cells. One group of Friend MCFs (F-MCFs) (group I) exhibited approximately equal infectivities for SC-1 and mink cells, whereas a second group (group II) infected mink cells 1,000- to 10,000-fold more efficiently than SC-1 cells. Structural analyses of the F-MCFs revealed that group I and group II viruses correlated with recombination of Friend murine leukemia virus with two distinct, but closely related, endogenous NFS proviral sequences. No correlation was found between the type of F-MCF and the tissue of origin or the disease state of the animal. Furthermore, none of the F-MCF isolates were found to be oncogenic in NFS/N or AKR/J mice. F-MCFs of both groups underwent extensive substitution of ecotropic sequences, involving much of the gag and env genes of group I F-MCFs and most of the gag, pol, and env genes of group II F-MCFs. All F-MCF isolates retained the 3' terminal U3 region of Friend murine leukemia virus. Comparison of the RNAs of the F-MCFs with RNAs of MCFs derived from NFS.Akv-1 or NFS.Akv-2 mice indicated that the F-MCFs were derived from NFS proviral sequences which are distinct from the sequences contained in NFS.Akv MCF isolates. This result suggested that recombination with particular endogenous proviral sequences to generate MCFs may be highly specific for a given murine leukemia virus. Images PMID:6422051

  20. Leukemia.

    PubMed

    Juliusson, Gunnar; Hough, Rachael

    2016-01-01

    Leukemias are a group of life threatening malignant disorders of the blood and bone marrow. In the adolescent and young adult (AYA) population, the acute leukemias are most prevalent, with chronic myeloid leukemia being infrequently seen. Factors associated with more aggressive disease biology tend to increase in frequency with increasing age, whilst tolerability of treatment strategies decreases. There are also challenges regarding the effective delivery of therapy specific to the AYA group, consequences on the unique psychosocial needs of this age group, including compliance. This chapter reviews the current status of epidemiology, pathophysiology, treatment strategies and outcomes of AYA leukemia, with a focus on acute lymphoblastic leukemia and acute myeloid leukemia. PMID:27595359

  1. Identification of homeodomain proteins, PBX1 and PREP1, involved in the transcription of murine leukemia virus.

    PubMed

    Chao, Sheng-Hao; Walker, John R; Chanda, Sumit K; Gray, Nathanael S; Caldwell, Jeremy S

    2003-02-01

    Cyclin-dependent kinase inhibitors (CDKIs) have been shown to block human immunodeficiency virus and herpes simplex virus. It is hypothesized that CDKIs block viral replication by inhibiting transcription of specific cellular genes. Here we find that three CDKIs, flavopiridol, purvalanol A, and methoxy-roscovitine, block Moloney murine leukemia virus (MLV) transcription events. Using gene expression microarray technology to examine the inhibitory effects of CDKIs, we observed a cellular gene, the pre-B-cell leukemia transcription factor 1 (Pbx1) gene, down-regulated by CDKI treatment. The PBX consensus element (PCE), TGATTGAC, is conserved in the long terminal repeats of several murine retroviruses, including Moloney MLV. Mutations in the PCE completely inhibited viral transcription whereas overexpression of PBX1 and a PBX1-associated protein, PREP1, enhanced viral transcription. The interaction between the PCE and PBX1-PREP1 proteins was confirmed by gel shift experiments. Blocking PBX1 protein synthesis resulted in a significant decrease in viral transcription. Collectively, our results represent the first work demonstrating that the homeodomain proteins PBX1 and PREP1 are cellular factors involved in Moloney MLV transcription regulation. PMID:12529389

  2. Androgen-independent proliferation of LNCaP prostate cancer cells infected by xenotropic murine leukemia virus-related virus

    SciTech Connect

    Kakoki, Katsura; Kamiyama, Haruka; Izumida, Mai; Yashima, Yuka; Hayashi, Hideki; Yamamoto, Naoki; Matsuyama, Toshifumi; Igawa, Tsukasa; Sakai, Hideki; Kubo, Yoshinao

    2014-04-25

    Highlights: • XMRV infection induces androgen-independent growth in LNCaP cells. • XMRV infection reduces expression of androgen receptor. • XMRV promotes appearance of androgen blocker-resistant prostate cancer cells. - Abstract: Xenotropic murine leukemia virus-related virus (XMRV) is a novel gammaretrovirus that was originally isolated from human prostate cancer. It is now believed that XMRV is not the etiologic agent of prostate cancer. An analysis of murine leukemia virus (MLV) infection in various human cell lines revealed that prostate cancer cell lines are preferentially infected by XMRV, and this suggested that XMRV infection may confer some sort of growth advantage to prostate cancer cell lines. To examine this hypothesis, androgen-dependent LNCaP cells were infected with XMRV and tested for changes in certain cell growth properties. We found that XMRV-infected LNCaP cells can proliferate in the absence of the androgen dihydrotestosterone. Moreover, androgen receptor expression is significantly reduced in XMRV-infected LNCaP cells. Such alterations were not observed in uninfected and amphotropic MLV-infected LNCaP cells. This finding explains why prostate cancer cell lines are preferentially infected with XMRV.

  3. Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  4. Infectious Entry by Amphotropic as well as Ecotropic Murine Leukemia Viruses Occurs through an Endocytic Pathway

    PubMed Central

    Katen, Louis J.; Januszeski, Michael M.; Anderson, W. French; Hasenkrug, Kim J.; Evans, Leonard H.

    2001-01-01

    Infectious entry of enveloped viruses is thought to proceed by one of two mechanisms. pH-dependent viruses enter the cells by receptor-mediated endocytosis and are inhibited by transient treatment with agents that prevent acidification of vesicles in the endocytic pathway, while pH-independent viruses are not inhibited by such agents and are thought to enter the cell by direct fusion with the plasma membrane. Nearly all retroviruses, including amphotropic murine leukemia virus (MuLV) and human immunodeficiency virus type 1, are classified as pH independent. However, ecotropic MuLV is considered to be a pH-dependent virus. We have examined the infectious entry of ecotropic and amphotropic MuLVs and found that they were equally inhibited by NH4Cl and bafilomycin A. These agents inhibited both viruses only partially over the course of the experiments. Agents that block the acidification of endocytic vesicles also arrest vesicular trafficking. Thus, partial inhibition of the MuLVs could be the result of virus inactivation during arrest in this pathway. In support of this contention, we found that that the loss of infectivity of the MuLVs during treatment of target cells with the drugs closely corresponded to the loss of activity due to spontaneous inactivation at 37°C in the same period of time. Furthermore, the drugs had no effect on the efficiency of infection under conditions in which the duration of infection was held to a very short period to minimize the effects of spontaneous inactivation. These results indicate that the infectious processes of both ecotropic and amphotropic MuLVs were arrested rather than aborted by transient treatment of the cells with the drugs. We also found that infectious viruses were efficiently internalized during treatment. This indicated that the arrest occurred in an intracellular compartment and that the infectious process of both the amphotropic and ecotropic MuLVs very likely involved endocytosis. An important aspect of this study

  5. Mutational analysis of the putative receptor-binding domain of Moloney murine leukemia virus glycoprotein gp70.

    PubMed

    Panda, B R; Kingsman, S M; Kingsman, A J

    2000-07-20

    The entry of Moloney murine leukemia virus (MoMuLV) to murine cells is mediated by the binding of its envelope glycoprotein gp70 to its receptor, the cationic amino acid transporter MCAT-1. The binding property of the envelope protein lies mainly in the N-terminal half of the protein. To identify essential residues involved in the binding of gp70 to its receptor, we have mutated amino acids within the putative receptor-binding domain of MoMuLV gp70. Changes in the residues P94 and W100 resulted in lower viral titers in comparison to the wild-type virions. Single, double, or triple point mutations involving the residue W100 make the envelope protein severely defective in binding to its receptor. Binding studies and cell fusion experiments with murine XC cells suggested that the residue W100 might play an important role in the process of infection by making contact between gp70 and its receptor. PMID:10891411

  6. Expression of murine leukemia viruses in RFM mice with host versus graft disease after perinatal inoculation of (T6 X RFM)F1 lymphohemopoietic cells.

    PubMed Central

    Cross, S S; Brede, G; Tucker, H S; Maloney, M; Montour, J L; Hard, R C

    1983-01-01

    Host versus graft disease is the fatal syndrome of altered immunity that follows the perinatal inoculation of related F1 hybrid spleen cells to susceptible strains of inbred mice. The allogenic reaction results in severe depletion of T-lymphocytes, but causes hyperplasia and hypersecretion of B-cells. Among the long-term survivors of acute host versus graft reactions, there is a high incidence of nonthymic lymphomas associated with ecotropic murine leukemia virus that may be of donor F1 origin. The present studies were done to determine whether ecotropic murine leukemia virus played any role in the pathogenesis of acute host versus graft disease in RFM mice perinatally inoculated with (T6 X RFM)F1 spleen cells. In RFM/(T6 X RFM)F1 chimeras, N-tropic murine leukemia virus can be detected as early as 3 days. The progression of the disease was accompanied by increasing viral expression. The inoculation of N-tropic virus of F1 donor origin into RFM neonates failed to induce disease, although the virus proliferated. Detection of progressively rising titers of antibody to murine leukemia virus linked the virus to the development of hyperimmunoglobulinemia by virtue of its ability to serve as a replicating source of antigens. These and other studies provided evidence that the seemingly paradoxical appearance of hyperimmunoglobulinemia in T-cell-deficient mice with the host versus graft syndrome is due, at least in part, to the stimulation of presensitized F1 donor B-cells, which are not destroyed in the allogenic reaction, as are the T-cells. Another unusual finding was the detection of polytropic murine leukemia virus in 25-day-old RFM/(T6 X RFM)F1 chimeras. It is suggested that the allogenic host versus graft reaction favored the formation of recombinants. PMID:6135664

  7. Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models*

    PubMed Central

    Yun, Jason P.; Behan, James W.; Heisterkamp, Nora; Butturini, Anna; Klemm, Lars; Ji, Lingyun; Groffen, John; Müschen, Markus; Mittelman, Steven D.

    2010-01-01

    Obesity is associated with an increased incidence of many cancers, including leukemia, though it is unknown whether leukemia incidence is increased directly by obesity, or rather by associated genetic, lifestyle, health, or socio-economic factors. We developed animal models of obesity and leukemia to test whether obesity could directly accelerate acute lymphoblastic leukemia (ALL) using BCR/ABL transgenic and AKR/J mice weaned onto a high-fat diet. Mice were observed until development of progressive ALL. Although obese and control BCR/ABL mice had similar median survival, older obese mice had accelerated ALL onset, implying a time-dependent effect of obesity on ALL. Obese AKR mice developed ALL significantly earlier than controls. The effect of obesity was not explained by WBC count, thymus/spleen weight, or ALL phenotype. However, obese AKR mice had higher leptin, insulin, and IL-6 levels than controls, and these obesity-related hormones all have potential roles in leukemia pathogenesis. In conclusion, obesity directly accelerates presentation of ALL, likely by increasing the risk of an early event in leukemogenesis. This is the first study to demonstrate that obesity can directly accelerate the progression of ALL. Thus, the observed associations between obesity and leukemia incidence are likely to be directly related to biological effects of obesity. PMID:20823291

  8. Capsid is an important determinant for functional complementation of murine leukemia virus and spleen necrosis virus Gag proteins.

    PubMed

    Lee, Sook-Kyung; Boyko, Vitaly; Hu, Wei-Shau

    2007-04-10

    In this report, we examined the abilities and requirements of heterologous Gag proteins to functionally complement each other to support viral replication. Two distantly related gammaretroviruses, murine leukemia virus (MLV) and spleen necrosis virus (SNV), were used as a model system because SNV proteins can support MLV vector replication. Using chimeric or mutant Gag proteins that could not efficiently support MLV vector replication, we determined that a homologous capsid (CA) domain was necessary for the functional complementation of MLV and SNV Gag proteins. Findings from the bimolecular fluorescence complementation assay revealed that MLV and SNV Gag proteins were capable of colocalizing and interacting in cells. Taken together, our results indicated that MLV and SNV Gag proteins can interact in cells; however, a homologous CA domain is needed for functional complementation of MLV and SNV Gag proteins to complete virus replication. This requirement of homologous Gag most likely occurs at a postassembly step(s) of the viral replication. PMID:17156810

  9. Expression of Moloney Murine Leukemia Virus RNase H Rescues the Growth Defect of an Escherichia coli Mutant

    PubMed Central

    Campbell, Andrew G.

    2001-01-01

    A 157-amino-acid fragment of Moloney murine leukemia virus reverse transcriptase encoding RNase H is shown to rescue the growth-defective phenotype of an Escherichia coli mutant. In vitro assays of the recombinant wild-type protein purified from the conditionally defective mutant confirm that it is catalytically active. Mutagenesis of one of the presumptive RNase H-catalytic residues results in production of a protein variant incapable of rescue and which lacks activity in vitro. Analyses of additional active site mutants demonstrate that their encoded variant proteins lack robust activity yet are able to rescue the bacterial mutant. These results suggest that genetic complementation may be useful for in vivo screening of mutant viral RNase H gene fragments and in evaluating their function under conditions that more closely mimic physiological conditions. The rescue system may also be useful in verifying the functional outcomes of mutations based on protein structural predictions and modeling. PMID:11390625

  10. Atomic resolution structure of Moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins.

    PubMed

    Riffel, Nico; Harlos, Karl; Iourin, Oleg; Rao, Zihe; Kingsman, Alan; Stuart, David; Fry, Elizabeth

    2002-12-01

    Matrix proteins associated with the viral membrane are important in the formation of the viral particle and in virus maturation. The 1.0 A crystal structure of the ecotropic Gammaretrovirus Moloney murine leukemia virus (M-MuLV) matrix protein reveals the conserved topology of other retroviral matrix proteins, despite undetectable sequence similarity. The N terminus (normally myristylated) is exposed and adjacent to a basic surface patch, features likely to contribute to membrane binding. The four proteins in the asymmetric unit make varied contacts. The M-MuLV matrix structure is intermediate, between those of the lentiviruses and other retroviruses. The protein fold appears to be maintained, in part, by the conservation of side chain packing, which may provide a useful tool for searching for weak distant similarities in proteins. PMID:12467570

  11. Virus-Specific Messenger RNA and Nascent Polypeptides in Polyribosomes of Cells Replicating Murine Sarcoma-Leukemia Viruses

    PubMed Central

    Vecchio, G.; Tsuchida, N.; Shanmugam, G.; Green, M.

    1973-01-01

    We present evidence that virus-specific RNA is present in polyribosomes of transformed cells replicating the murine sarcoma-leukemia virus complex and that it serves as messenger RNA for the synthesis of viral-coded proteins. Both virus-specific RNA (detected by hybridization with the [3H]DNA product of the viral RNA-directed DNA polymerase) and nascent viral polypeptides (measured by precipitation with antiserum to purified virus) were found in membrane-bound and free polyribosomes. Membrane-bound polyribosomes contained a higher content of both virus-specific RNA and nascent viral polypeptides. From 60 to 70% of viral RNA sequences were released from polyribosomes with EDTA, consistent with a function as messenger RNA. Maximum amounts of both virus-specific RNA and nascent viral polypeptides were found in the polyribosome region sedimenting at about 350 S. PMID:4352969

  12. Murine leukemia virus mutant with a frameshift in the reverse transcriptase coding region: implications for pol gene structure.

    PubMed Central

    Levin, J G; Hu, S C; Rein, A; Messer, L I; Gerwin, B I

    1984-01-01

    The molecular defect in the nonconditional B-tropic MuLV pol mutant, clone 23 (Gerwin et al., J. Virol. 31:741-751, 1979), has been characterized by recombinant DNA technology. The entire mutant genome was cloned from an EcoRI digest of integrated cellular DNA into bacteriophage lambda Charon 4A and then subcloned at the EcoRI site of pBR322. NIH-3T3 cells transfected with the plasmid clone, termed pRTM (RTM, reverse transcriptase mutant), reproduced the properties of clone 23 virus-infected cells. In vivo ligation experiments involving cotransfection of subclones of pRTM and wild-type murine leukemia virus localized the defect in the clone 23 genome to an approximately 400-base-pair region in the pol gene between the SalI and XhoI sites. Sequence analysis of this region in the wild-type and mutant genomes revealed that the mutant has one additional C residue located 231 bases downstream of the last base of the SalI recognition site. This 1-base insertion brings three TGA termination codons into phase. Thus, the mutation in clone 23 leads to premature termination of translation, explaining the presence in clone 23 virions of a truncated polymerase with low levels of enzymatic activity. It was previously shown that the gag precursor is cleaved normally in clone 23-infected cells; therefore, if a virus-coded protease is involved in this cleavage, it must be encoded by sequences upstream of the reverse transcriptase region of the pol gene. This consideration, coupled with the observed molecular weight of the mutant polymerase and our precise determination of its C terminus, have led to a proposal for the genetic organization of the murine leukemia virus pol gene. Images PMID:6205170

  13. Etomidate induces cytotoxic effects and gene expression in a murine leukemia macrophage cell line (RAW264.7).

    PubMed

    Wu, Rick Sai-Chuen; Wu, King-Chuen; Yang, Jai-Sing; Chiou, Shang-Ming; Yu, Chun-Shu; Chang, Shu-Jen; Chueh, Fu-Shin; Chung, Jing-Gung

    2011-06-01

    Etomidate is an important tool in the arsenal of the emergency physician, and it has been used in a variety of scenarios for both intubation and procedural sedation. In the present study, we investigated the cytotoxicity of etomidate including induction of apoptosis, and levels of protein and gene expressions associated with apoptotic cell death in murine leukemia RAW264.7 cells in vitro. Cytotoxic and apoptotic responses to etomidate of RAW264.7 cells, including cell morphological changes and cell viability were examined and measured by phase-contrast microscopy and flow cytometric assay, respectively. Results indicated that etomidate increased apoptotic cell morphological changes and reduced cell viability in RAW264.7 cells. 4',6-Diamidino-2-phenylindole (DAPI) staining also showed that etomidate induced the formation of apoptotic bodies, a characteristic of apoptosis. Results from Western blotting indicated that etomidate enhanced the levels of cytochrome c, apoptosis-inducing factor (AIF), endonuclease G (Endo G), caspase-9, caspase-3 active form and Bax proteins, but it inhibited the expression of Bcl-xl, leading to apoptosis. DNA microarray assay indicated that etomidate increased the expression of 17 genes (LOC676175; Gm14636; 2810021G02Rik; Iltifb; Olfr1167; Ttc30b; Olfr766; Gas5; Rgs1; LOC280487; V1rd4; Hist1h2bc; V1rj3; Gm10366; Olfr192; Gm10002 and Cspp1) and reduced the expression of 15 genes: (Gm10152; Gm5334; Olfr216; Lcn9; Gm10683; Gm5100; Tdgf1; Cypt2; Gm5595; 1700018F24Rik; Gm10417; Maml2; Olfr591; Trdn and Apol7c). In conclusion, etomidate induced cytotoxic and apoptotic effects the in murine leukemia RAW264.7 cells in vitro. PMID:21737642

  14. Structure of glycosylated and unglycosylated gag and gag-pol precursor proteins of Moloney murine leukemia virus.

    PubMed Central

    Saris, C J; van Eenbergen, J; Liskamp, R M; Bloemers, H P

    1983-01-01

    Precursor polyproteins containing translational products of the gag gene of Moloney murine leukemia virus were purified by gel electrophoresis and cleaved into large fragments by hydroxylamine, mild acid hydrolysis, or cyanogen bromide. The hydroxylamine cleavage method (specific for asparagine-glycine bonds) was adapted especially for this study. The electrophoretic mobility and antigenicity of the fragments and, in some cases, the presence or absence of [35S]methionine revealed detailed information on the structure of Pr65gag, gPr80gag, and Pr75gag (the unglycosylated variant of gPr80gag formed in vivo in the presence of tunicamycin or in vitro in a reticulocyte cell-free system). When compared with Pr65gag, gPr80gag contains 7,000 daltons of additional amino acids, presumably as, or as part of, a leader sequence at or very close to its N terminus. We present evidence that this leader may have replaced part of the p15 sequence. Furthermore, gPr80gag contains three separate carbohydrate groups. One is attached to the presumed leader sequence or to the p15 domain, and two are attached to the p30 domain. Each of the Moloney murine leukemia virus gag precursor proteins Pr65gag, gPr80gag, and Pr75gag corresponds with a read-through product into the pol gene. We designated these products Pr180gag-pol, gPr200gag-pol, and Pr190gag-pol (the unglycosylated variant of gPr200gag-pol), respectively. gPr200gag-pol contains all of the extra amino acids and carbohydrate groups present in gPr80gag and at least one carbohydrate group in its pol sequences. Images PMID:6602220

  15. No Evidence for Xenotropic Murine Leukemia-Related Virus Infection in Sweden Using Internally Controlled Multiepitope Suspension Array Serology

    PubMed Central

    Blomberg, Fredrik; Sjösten, Anna; Sheikholvaezin, Ali; Bölin-Wiener, Agnes; Elfaitouri, Amal; Hessel, Sanna; Gottfries, Carl-Gerhard; Zachrisson, Olof; Öhrmalm, Christina; Jobs, Magnus; Pipkorn, Rüdiger

    2012-01-01

    Many syndromes have a large number of differential diagnoses, a situation which calls for multiplex diagnostic systems. Myalgic encephalomyelitis (ME), also named chronic fatigue syndrome (CFS), is a common disease of unknown etiology. A mouse retrovirus, xenotropic murine leukemia-related virus (XMRV), was found in ME/CFS patients and blood donors, but this was not corroborated. However, the paucity of serological investigations on XMRV in humans prompted us to develop a serological assay which cover many aspects of XMRV antigenicity. It is a novel suspension array method, using a multiplex IgG assay with nine recombinant proteins from the env and gag genes of XMRV and 38 peptides based on known epitopes of vertebrate gammaretroviruses. IgG antibodies were sought in 520 blood donors and 85 ME/CFS patients and in positive- and negative-control sera from animals. We found no differences in seroreactivity between blood donors and ME/CFS patients for any of the antigens. This did not support an association between ME/CFS and XMRV infection. The multiplex serological system had several advantages: (i) biotinylated protein G allowed us to run both human and animal sera, which is essential because of a lack of XMRV-positive humans; (ii) a novel quality control was a pan-peptide positive-control rabbit serum; and (iii) synthetic XMRV Gag peptides with degenerate positions covering most of the variation of murine leukemia-like viruses did not give higher background than nondegenerate analogs. The principle may be used for creation of variant tolerant peptide serologies. Thus, our system allows rational large-scale serological assays with built-in quality control. PMID:22787191

  16. Selection of functional tRNA primers and primer binding site sequences from a retroviral combinatorial library: identification of new functional tRNA primers in murine leukemia virus replication

    PubMed Central

    Lund, Anders H.; Duch, Mogens; Pedersen, Finn Skou

    2000-01-01

    Retroviral reverse transcription is initiated from a cellular tRNA molecule and all known exogenous isolates of murine leukemia virus utilise a tRNAPro molecule. While several studies suggest flexibility in murine leukemia virus primer utilisation, studies on human immunodeficiency virus and avian retroviruses have revealed evidence of molecular adaptation towards the specific tRNA isoacceptor used as replication primer. In this study, murine leukemia virus tRNA utilisation is investigated by in vivo screening of a retroviral vector combinatorial library with randomised primer binding sites. While most of the selected primer binding sites are complementary to the 3′-end of tRNAPro, we also retrieved PBS sequences matching four other tRNA molecules and demonstrate that Akv murine leukemia virus vectors may efficiently replicate using tRNAArg(CCU), tRNAPhe(GAA) and a hitherto unknown human tRNASer(CGA). PMID:10637332

  17. Monoclonal antibody to the amino-terminal L sequence of murine leukemia virus glycosylated gag polyproteins demonstrates their unusual orientation in the cell membrane.

    PubMed Central

    Pillemer, E A; Kooistra, D A; Witte, O N; Weissman, I L

    1986-01-01

    To analyze cell surface murine leukemia virus gag protein expression, we have prepared monoclonal antibodies against the spontaneous AKR T lymphoma KKT-2. One of these antibodies, 43-13, detects an AKR-specific viral p12 determinant. A second monoclonal antibody, 43-17, detects a novel murine leukemia virus-related antigen found on glycosylated gag polyproteins (gp95gag, gp85gag, and gp55gag) on the surface of cells infected with and producing ecotropic endogenous viruses, but does not detect antigens within these virions. The 43-17 antibody immunoprecipitates the precursor of the cell surface gag protein whether in its glycosylated or unglycosylated state, but does not detect the cytoplasmic precursor of the virion gag proteins (Pr65gag). Based on these findings, we have localized the 43-17 determinant to the unique amino-terminal part of the glycosylated gag polyprotein (the L domain). We have determined that gp95gag contains L-p15-p12-p30-p10 determinants, whereas gp85gag lacks the carboxyterminal p10 determinant, and gp55gag lacks both p30 and p10 carboxy terminal determinants. Analysis of cell surface gag expression with the 43-17 antibody leads us to propose that the L domain plays a crucial role in (i) the insertion and orientation of murine leukemia virus gag polyproteins in the cell membrane and (ii) the relative abundance of expression of AKR leukemia virus versus Moloney murine leukemia virus glycosylated gag polyproteins in infected cells. Images PMID:2418213

  18. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model

    PubMed Central

    Orozco, Johnnie J.; Bäck, Tom; Kenoyer, Aimee; Balkin, Ethan R.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Frayo, Shani L.; Hylarides, Mark D.; Green, Damian J.; Gopal, Ajay K.; Press, Oliver W.

    2013-01-01

    Despite aggressive chemotherapy combined with hematopoietic stem cell transplantation (HSCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using monoclonal antibodies labeled with β-emitting radionuclides has been explored to reduce relapse. β emitters are limited by lower energies and nonspecific cytotoxicity from longer path lengths compared with α emitters such as 211At, which has a higher energy profile and shorter path length. We evaluated the efficacy and toxicity of anti-CD45 RIT using 211At in a disseminated murine AML model. Biodistribution studies in leukemic SJL/J mice showed excellent localization of 211At-anti-murine CD45 mAb (30F11) to marrow and spleen within 24 hours (18% and 79% injected dose per gram of tissue [ID/g], respectively), with lower kidney and lung uptake (8.4% and 14% ID/g, respectively). In syngeneic HSCT studies, 211At-B10-30F11 RIT improved the median survival of leukemic mice in a dose-dependent fashion (123, 101, 61, and 37 days given 24, 20, 12, and 0 µCi, respectively). This approach had minimal toxicity with nadir white blood cell counts >2.7 K/µL 2 weeks after HSCT and recovery by 4 weeks. These data suggest that 211At-anti-CD45 RIT in conjunction with HSCT may be a promising therapeutic option for AML. PMID:23471305

  19. Anti-CD45 radioimmunotherapy using (211)At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model.

    PubMed

    Orozco, Johnnie J; Bäck, Tom; Kenoyer, Aimee; Balkin, Ethan R; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Frayo, Shani L; Hylarides, Mark D; Green, Damian J; Gopal, Ajay K; Press, Oliver W; Pagel, John M

    2013-05-01

    Despite aggressive chemotherapy combined with hematopoietic stem cell transplantation (HSCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using monoclonal antibodies labeled with β-emitting radionuclides has been explored to reduce relapse. β emitters are limited by lower energies and nonspecific cytotoxicity from longer path lengths compared with α emitters such as (211)At, which has a higher energy profile and shorter path length. We evaluated the efficacy and toxicity of anti-CD45 RIT using (211)At in a disseminated murine AML model. Biodistribution studies in leukemic SJL/J mice showed excellent localization of (211)At-anti-murine CD45 mAb (30F11) to marrow and spleen within 24 hours (18% and 79% injected dose per gram of tissue [ID/g], respectively), with lower kidney and lung uptake (8.4% and 14% ID/g, respectively). In syngeneic HSCT studies, (211)At-B10-30F11 RIT improved the median survival of leukemic mice in a dose-dependent fashion (123, 101, 61, and 37 days given 24, 20, 12, and 0 µCi, respectively). This approach had minimal toxicity with nadir white blood cell counts >2.7 K/µL 2 weeks after HSCT and recovery by 4 weeks. These data suggest that (211)At-anti-CD45 RIT in conjunction with HSCT may be a promising therapeutic option for AML. PMID:23471305

  20. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia.

    PubMed

    Shen, Weiwei; Patnaik, Mrinal M; Ruiz, Autumn; Russell, Stephen J; Peng, Kah-Whye

    2016-03-17

    Patients with relapsed acute myeloid leukemia (AML) have limited therapeutic options. Vesicular stomatitis virus (VSV)-interferon β (IFNβ)-sodium iodide symporter (NIS) is an oncolytic VSV encoding IFNβ and the NIS reporter. Syngeneic AML C1498 tumors responded to IV therapy with VSV-murine IFNβ (mIFNβ)-NIS in a dose-dependent manner. Imaging for NIS expression showed robust virus infection within the tumors. Virus infection did not increase programmed death ligand 1 (PD-L1) on tumor cells. Combining VSV-mIFNβ-NIS with anti-PD-L1 antibody (Ab) therapy enhanced antitumor activity compared with treatment with virus alone or Ab alone; this enhancement was not significant at higher VSV-mIFNβ-NIS doses. Systemic VSV therapy reduced systemic C1498-green fluorescent protein (GFP) tumor burden in the blood, bone marrow, spleen, and liver of mice with AML. Combination VSV-mIFNβ-NIS and anti-PD-L1 Ab therapy significantly enhanced the survival of these mice with no evidence of toxicity, compared with isotype control, anti-PD-L1, or virus alone. There was an increase in tumor-infiltrating CD4 and CD8 cells. Single-agent VSV-mIFNβ-NIS virotherapy induced both VSV-specific and GFP-specific CD8 T cells as determined by IFN-γ enzyme-linked immunospot, pentamer, and intracellular IFN-γ staining assays. Both of these responses were further enhanced by addition of anti-PD-L1 Ab. Depletion of CD8 or natural killer cells, but not CD4 cells, resulted in loss of antitumor activity in the VSV/anti-PD-L1 group. Clinical samples from chronic myelomonocytic leukemia and acute myelomonocytic leukemia appear to be especially susceptible to VSV. Overall, our studies show that oncolytic virotherapy combined with immune checkpoint blockade is a promising approach to AML therapy. PMID:26712908

  1. Murine leukemia virus-based Tat-inducible long terminal repeat replacement vectors: a new system for anti-human immunodeficiency virus gene therapy.

    PubMed Central

    Cannon, P M; Kim, N; Kingsman, S M; Kingsman, A J

    1996-01-01

    We have constructed new murine leukemia virus (MLV)-based vectors (TIN vectors) which, following integration, contain human immunodeficiency virus (HIV) type 1 U3 and R sequences in place of the MLV U3 and R regions. This provides, for the first time, single transcriptional unit retroviral vectors under the control of Tat. TIN vectors have several advantages for anti-HIV gene therapy applications. PMID:8892960

  2. Murine leukemia virus-based Tat-inducible long terminal repeat replacement vectors: a new system for anti-human immunodeficiency virus gene therapy.

    PubMed

    Cannon, P M; Kim, N; Kingsman, S M; Kingsman, A J

    1996-11-01

    We have constructed new murine leukemia virus (MLV)-based vectors (TIN vectors) which, following integration, contain human immunodeficiency virus (HIV) type 1 U3 and R sequences in place of the MLV U3 and R regions. This provides, for the first time, single transcriptional unit retroviral vectors under the control of Tat. TIN vectors have several advantages for anti-HIV gene therapy applications. PMID:8892960

  3. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia

    PubMed Central

    Lee, Benjamin H.; Tothova, Zuzana; Levine, Ross L.; Anderson, Kristina; Buza-Vidas, Natalija; Cullen, Dana E.; McDowell, Elizabeth P.; Adelsperger, Jennifer; Fröhling, Stefan; Huntly, Brian J.P.; Beran, Miloslav; Jacobsen, Sten Eirik; Gilliland, D. Gary

    2007-01-01

    SUMMARY Despite their known transforming properties, the effects of leukemogenic FLT3-ITD mutations on hematopoietic stem and multipotent progenitor cells and on hematopoietic differentiation are not well understood. We report a mouse model harboring an ITD in the murine Flt3 locus that develops myeloproliferative disease resembling CMML and further identified FLT3-ITD mutations in a subset of human CMML. These findings correlated with an increase in number, cell cycling and survival of multipotent stem and progenitor cells in an ITD dose-dependent manner in animals that exhibited alterations within their myeloid progenitor compartments and a block in normal B-cell development. This model provides insights into the consequences of constitutive signaling by an oncogenic tyrosine kinase on hematopoietic progenitor quiescence, function, and cell fate. SIGNIFICANCE Activating FLT3 mutations are among the most common genetic events in AML and confer a poor clinical prognosis. Essential to our understanding of how these lesions contribute to myeloid leukemia is the development of a Flt3-ITD ‘knock-in’ murine model that has allowed examination of the consequences of constitutive FLT3 signaling on primitive hematopoietic progenitors when expressed at appropriate physiologic levels. These animals informed us to the existence of FLT3-ITD-positive human CMML, which has clinical importance given the availability of FLT3 small molecule inhibitors. This model will not only serve as a powerful biological tool to identify mutations that cooperate with FLT3 in leukemogenesis, but also to assess molecular therapies that target either FLT3 or components of its signaling pathways. PMID:17936561

  4. Tandemization of a Subregion of the Enhancer Sequences from SRS 19-6 Murine Leukemia Virus Associated with T-Lymphoid but Not Other Leukemias

    PubMed Central

    Granger, Steven W.; Bundy, Linda M.; Fan, Hung

    1999-01-01

    Most simple retroviruses induce tumors of a single cell type when infected into susceptible hosts. The SRS 19-6 murine leukemia virus (MuLV), which originated in mainland China, induces leukemias of multiple cellular origins. Indeed, infected mice often harbor more than one tumor type. Since the enhancers of many MuLVs are major determinants of tumor specificity, we tested the role of the SRS 19-6 MuLV enhancers in its broad disease specificity. The enhancer elements of the Moloney MuLV (M-MuLV) were replaced by the 170-bp enhancers of SRS 19-6 MuLV, yielding the recombinants ΔMo+SRS+ and ΔMo+SRS− M-MuLV. M-MuLV normally induces T-lymphoid tumors in all infected mice. Surprisingly, when neonatal mice were inoculated with ΔMo+SRS+ or ΔMo+SRS− M-MuLV, all tumors were of T-lymphoid origin, typical of M-MuLV rather than SRS 19-6 MuLV. Thus, the SRS 19-6 MuLV enhancers did not confer the broad disease specificity of SRS 19-6 MuLV to M-MuLV. However, all tumors contained ΔMo+SRS M-MuLV proviruses with common enhancer alterations. These alterations consisted of tandem multimerization of a subregion of the SRS 19-6 enhancers, encompassing the conserved LVb and core sites and adjacent sequences. Moreover, when tumors induced by the parental SRS 19-6 MuLV were analyzed, most of the T-lymphoid tumors had similar enhancer alterations in the same region whereas tumors of other lineages retained the parental SRS 19-6 MuLV enhancers. These results emphasize the importance of a subregion of the SRS 19-6 MuLV enhancer in induction of T-cell lymphoma. The relevant sequences were consistent with crucial sequences for T-cell lymphomagenesis identified for other MuLVs such as M-MuLV and SL3-3 MuLV. These results also suggest that other regions of the SRS 19-6 MuLV genome contribute to its broad leukemogenic spectrum. PMID:10438804

  5. Variable regions A and B in the envelope glycoproteins of feline leukemia virus subgroup B and amphotropic murine leukemia virus interact with discrete receptor domains.

    PubMed Central

    Tailor, C S; Kabat, D

    1997-01-01

    The surface (SU) envelope glycoproteins of feline leukemia virus subgroup B (FeLV-B) and amphotropic murine leukemia virus (A-MLV) are highly related, even in the variable regions VRA and VRB that have been shown to be required for receptor recognition. However, FeLV-B and A-MLV use different sodium-dependent phosphate symporters, Pit1 and Pit2, respectively, as receptors for infection. Pit1 and Pit2 are predicted to have 10 membrane-spanning domains and five extracellular loops. The close relationship of the retroviral envelopes enabled us to generate pseudotype virions carrying chimeric FeLV-B/A-MLV envelope glycoproteins. We found that some of the pseudotype viruses could not use Pit1 or Pit2 proteins but could efficiently utilize specific chimeric Pit1/Pit2 proteins as receptors. By studying Mus dunni tail fibroblasts expressing chimeric Pit1/Pit2 proteins and pseudotype virions carrying chimeric FeLV-B/A-MLV envelopes, we show that FeLV-B and A-MLV VRA and VRB interact in a modular manner with specific receptor domains. Our results suggest that FeLV-B VRA interacts with Pit1 extracellular loops 4 and 5 and that residues Phe-60 and Pro-61 of FeLV-B VRA are essential for receptor choice. However, this interaction is insufficient for infection, and an additional interaction between FeLV-B VRB and Pit1 loop 2 is essential. Similarly, A-MLV infection requires interaction of A-MLV VRA with Pit2 loops 4 and 5 and VRB with Pit2 loop 2, with residues Tyr-60 and Val-61 of A-MLV VRA being critical for receptor recognition. Together, our results suggest that FeLV-B and A-MLV infections require two major discrete interactions between the viral SU envelope glycoproteins and their respective receptors. We propose a common two-step mechanism for interaction between retroviral envelope glycoproteins and cell surface receptors. PMID:9371598

  6. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis

    PubMed Central

    Watson, Neva B.; Schneider, Karin M.; Massa, Paul T.

    2015-01-01

    Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the central nervous system causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator SHP-1, which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler’s murine encephalomyelitis virus infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification with loss of ambulation in wild type mice. Surprisingly, although similar extensive myofiber infection and inflammation is observed in SHP-1-deficient (SHP-1−/−) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1−/− muscle, and an increased infiltration of immature monocytes/macrophages correlated with absence of clinical disease in SHP-1−/− mice, while mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced myopathy. PMID:25681345

  7. Effects of 3′ Untranslated Region Mutations on Plus-Strand Priming during Moloney Murine Leukemia Virus Replication

    PubMed Central

    Robson, Nicole D.; Telesnitsky, Alice

    1999-01-01

    A conserved purine-rich motif located near the 3′ end of retroviral genomes is involved in the initiation of plus-strand DNA synthesis. We mutated sequences both within and flanking the Moloney murine leukemia virus polypurine tract (PPT) and determined the effects of these alterations on viral DNA synthesis and replication. Our results demonstrated that both changes in highly conserved PPT positions and a mutation that left only the cleavage-proximal half of the PPT intact led to delayed replication and reduced the colony-forming titer of replication defective retroviral vectors. A mutation that altered the cleavage proximal half of the PPT and certain 3′ untranslated region mutations upstream of the PPT were incompatible with or severely impaired viral replication. To distinguish defects in plus-strand priming from other replication defects and to assess the relative use of mutant and wild-type PPTs, we examined plus-strand priming from an ectopic, secondary PPT inserted in U3. The results demonstrated that the analyzed mutations within the PPT primarily affected plus-strand priming whereas mutations upstream of the PPT appeared to affect both plus-strand priming and other stages of viral replication. PMID:9882295

  8. The "putative" leucine zipper region of murine leukemia virus transmembrane protein (P15e) is essential for viral infectivity.

    PubMed

    Ramsdale, E E; Kingsman, S M; Kingsman, A J

    1996-06-01

    In order to determine the role of the putative leucine zipper region of murine leukemia virus (MLV) transmembrane protein p15E, nine mutations in this region were introduced by site-directed mutagenesis. None of these mutations affected the expression or transport of the envelope protein or incorporation into virions. The mutants were analyzed for their ability to infect NIH3T3 cells and to induce cell fusion in a rat XC cell fusion assay. Mutations removing the charge of the hydrophilic residues reduced infectivity in NIH3T3 cells but had either no effect or a minor effect on envelope-induced XC cell fusion. Six mutations of hydrophobic residues of the putative leucine zipper region were constructed; four completely abolished the ability to infect NIH3T3 cells and these mutant envelopes were also unable to induce cell fusion in the XC cell fusion assay. These data demonstrate the absolute requirement for the putative leucine zipper region for both fusion and infection of MLV. PMID:8659102

  9. Mutagenesis analysis of the murine leukemia virus matrix protein: identification of regions important for membrane localization and intracellular transport.

    PubMed

    Soneoka, Y; Kingsman, S M; Kingsman, A J

    1997-07-01

    We have created two sets of substitution mutations in the Moloney murine leukemia virus (Mo-MuLV) matrix protein in order to identify domains involved in association with the plasma membrane and in incorporation of the viral envelope glycoproteins into virus particles. The first set of mutations was targeted at putative membrane-associating regions similar to those of the human immunodeficiency virus type 1 matrix protein, which include a polybasic region at the N terminus of the Mo-MuLV matrix protein and two regions predicted to form beta strands. The second set of mutations was created within hydrophobic residues to test for the production of virus particles lacking envelope proteins, with the speculation of an involvement of the membrane-spanning region of the envelope protein in incorporation into virus particles. We have found that mutation of the N-terminal polybasic region redirected virus assembly to the cytoplasm, and we show that tryptophan residues may also play a significant role in the intracellular transport of the matrix protein. In total, 21 mutants of the Mo-MuLV matrix protein were produced, but we did not observe any mutant virus particles lacking the envelope glycoproteins, suggesting that a direct interaction between the Mo-MuLV matrix protein and envelope proteins either may not exist or may occur through multiple redundant interactions. PMID:9188629

  10. Basic Residues in the Matrix Domain and Multimerization Target Murine Leukemia Virus Gag to the Virological Synapse

    PubMed Central

    Li, Fei; Jin, Jing; Herrmann, Christin

    2013-01-01

    Murine leukemia virus (MLV) can efficiently spread in tissue cultures by polarizing assembly to virological synapses. The viral envelope glycoprotein (Env) establishes cell-cell contacts and subsequently recruits Gag by a process that depends on its cytoplasmic tail. MLV Gag is recruited to virological synapses through the matrix domain (MA) (J. Jin, F. Li, and W. Mothes, J. Virol. 85:7672–7682, 2011). However, how MA targets Gag to sites of cell-cell contact remains unknown. Here we report that basic residues within MA are critical for directing MLV Gag to virological synapses. Alternative membrane targeting domains (MTDs) containing multiple basic residues can efficiently substitute MA to direct polarized assembly. Similarly, mutations in the polybasic cluster of MA that disrupt Gag polarization can be rescued by N-terminal addition of MTDs containing basic residues. MTDs containing basic residues alone fail to be targeted to the virological synapse. Systematic deletion experiments reveal that domains within Gag known to mediate Gag multimerization are also required. Thus, our data predict the existence of a specific “acidic” interface at virological synapses that mediates the recruitment of MLV Gag via the basic cluster of MA and Gag multimerization. PMID:23616653

  11. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. PMID:24861204

  12. Crystal structures of the reverse transcriptase-associated ribonuclease H domain of xenotropic murine leukemia-virus related virus

    SciTech Connect

    Zhou, Dongwen; Chung, Suhman; Miller, Maria; Le Grice, Stuart F.J.; Wlodawer, Alexander

    2012-06-19

    The ribonuclease H (RNase H) domain of retroviral reverse transcriptase (RT) plays a critical role in the life cycle by degrading the RNA strands of DNA/RNA hybrids. In addition, RNase H activity is required to precisely remove the RNA primers from nascent (-) and (+) strand DNA. We report here three crystal structures of the RNase H domain of xenotropic murine leukemia virus-related virus (XMRV) RT, namely (i) the previously identified construct from which helix C was deleted, (ii) the intact domain, and (iii) the intact domain complexed with an active site {alpha}-hydroxytropolone inhibitor. Enzymatic assays showed that the intact RNase H domain retained catalytic activity, whereas the variant lacking helix C was only marginally active, corroborating the importance of this helix for enzymatic activity. Modeling of the enzyme-substrate complex elucidated the essential role of helix C in binding a DNA/RNA hybrid and its likely mode of recognition. The crystal structure of the RNase H domain complexed with {beta}-thujaplicinol clearly showed that coordination by two divalent cations mediates recognition of the inhibitor.

  13. Immunoprophylactic potential of wheat grass extract on benzene-induced leukemia: An in vivo study on murine model

    PubMed Central

    Khan, Neelofar; Ganeshpurkar, Aditya; Dubey, Nazneen; Bansal, Divya

    2015-01-01

    Objectives: Wheat grass (Triticum aestivum) is a gift of nature given to mankind. A number of scientific research on wheatgrass establishes its anticancer and antioxidant potential. Current work was focused to determine antileukemic effect of wheat grass. Materials and Methods: The commercial wheatgrass powder was extracted with 95% of methanol. Methanol extract of wheat grass was studied for acute oral toxicity as per revised Organization for Economic Cooperation and Development Guidelines number 423. Leukemia was successfully induced in Wister rats by intravenous injection of benzene. The blood was collected and analyzed for hematological parameters. Phagocytotic activity of the extract was determined. Results: Phytochemical screening revealed the presence of flavonoids, phenolics, carbohydrates, and amino acids. From acute toxicity studies, it was found that the methanol extract of wheatgrass was safe up to a dose level of 2000 mg/kg of body weight. Outcomes of hematological parameters in various experimental groups of murine model demonstrated antileukemic effect of extract. Methanol extract of wheatgrass aroused the process of phagocytosis of killed Candida albicans and also demonstrated a significant chemotactic activity at all tested concentrations. Conclusion: In the current work, methanol extract of wheat grass demonstrated antileukemic potential that might be due to the presence of flavonoids and polyphenolics in it. Further isolation, structural characterization of active constituents is necessary to extrapolate the mechanism of action. PMID:26288471

  14. Retroviral reverse transcriptase inhibitory activity in Thai herbs and spices: screening with Moloney murine leukemia viral enzyme.

    PubMed

    Suthienkul, O; Miyazaki, O; Chulasiri, M; Kositanont, U; Oishi, K

    1993-12-01

    Fifty-seven Thai herbs and spices were examined for their retroviral reverse transcriptase inhibitory activity. All herbs and spices were extracted with hot-water and methanol. Reverse transcriptase inhibitory activity of the extracts was determined by using Moloney Murine Leukemia Virus reverse transcriptase (M-MuLV-RT) reacted with 3H-dTTP and radioactivity measured with a scintillation counter. Eighty-one per cent (46/57) of hot-water extracts and 54% (31/57) of methanol extracts showed inhibitory activities. At a concentration of 125 micrograms/ml, 13% (6/46) of hot-water extracts, namely Eugenia caryophyllus Bullock et Harrison, Phyllanthus urinaria Linn., Terminalia belerica Roxb., Nelumbo nucifera Gaertn., Psidium guajava Linn. and Lawsonia inermis Linn., had a relative inhibitory ratio (IR) over 50%. They showed ratios of 100%, 91%, 75%, 74%, 61% and 60%, respectively. For methanol extracts, only 10% (3/31) had IR values over 50%. They were T. belerica, E. caryophyllus and N. nucifera which exhibited IR values of 83%, 54% and 54%, respectively. PMID:7524165

  15. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) Kinases Promote Human T Helper 1 Cell Differentiation*

    PubMed Central

    Tahvanainen, Johanna; Kyläniemi, Minna K.; Kanduri, Kartiek; Gupta, Bhawna; Lähteenmäki, Hanna; Kallonen, Teemu; Rajavuori, Anna; Rasool, Omid; Koskinen, Päivi J.; Rao, Kanury V. S.; Lähdesmäki, Harri; Lahesmaa, Riitta

    2013-01-01

    The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets. PMID:23209281

  16. Tyrosine phosphorylation of HSC70 and its interaction with RFC mediates methotrexate resistance in murine L1210 leukemia cells.

    PubMed

    Liu, Tuoen; Singh, Ratan; Rios, Zechary; Bhushan, Alok; Li, Mengxiong; Sheridan, Peter P; Bearden, Shawn E; Lai, James C K; Agbenowu, Senyo; Cao, Shousong; Daniels, Christopher K

    2015-02-01

    We previously identified and characterized a 66-68 kDa membrane-associated, tyrosine phosphorylated protein in murine leukemia L1210 cells as HSC70 which is a methotrexate (MTX)-binding protein. In order to further characterize the functional role of HSC70 in regulating MTX resistance in L1210 cells, we first showed that HSC70 colocalizes and interacts with reduced folate carrier (RFC) in L1210 cells by confocal laser scanning microscopy and Duolink in situ proximity ligation assay. The tyrosine phosphorylation status of HSC70 found in the membrane fraction was different from the parental L1210/0 and cisplatin (CDDP)-MTX cross resistant L1210/DDP cells. In MTX-binding assays, HSC70 from L1210/DDP cells showed less affinity for MTX-agarose beads than that of L1210/0 cells. In addition, genistein (a tyrosine phosphorylation inhibitor) significantly enhanced the resistance of L1210/0 cells to MTX. Moreover, site-directed mutation studies indicated the importance of tyrosine phosphorylation of HSC70 in regulating its binding to MTX. These findings suggest that tyrosine phosphorylation of HSC70 regulates the transportation of MTX into the cells via the HSC70-RFC system and contributes to MTX resistance in L1210 cells. PMID:25444929

  17. Multiparameter analyses of spontaneous nonthymic lymphomas occurring in NFS/N mice congenic for ecotropic murine leukemia viruses.

    PubMed Central

    Fredrickson, T. N.; Morse, H. C.; Yetter, R. A.; Rowe, W. P.; Hartley, J. W.; Pattengale, P. K.

    1985-01-01

    Mouse strains congenic for ecotropic retrovirus genes have a much higher frequency of spontaneous lymphomas than the background NFS/N strain. In this study, most of these lymphomas have been identified as B-cell in origin by morphologic features, identification of immunoglobulin class, and cell-surface antigens. The classification suggested by Pattengale and Taylor proved to be applicable to the lymphomas studied. Most were of large follicular center cells and are considered typical of the type formerly designated as "reticulum cell sarcoma, type B." Many lymphomas contained a large proportion of nonneoplastic cells which partially obscured their neoplastic component. The role of ecotropic murine leukemia viruses as etiologic agents for B-cell lymphomas remains equivocal. However, because the only difference between the NFS/N and congenic mice is the expression of viruses in the latter, it appears that these viruses are somehow involved in induction of B-cell lymphomas. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 9 Figure 10 PMID:2998195

  18. Sodium-Dependent myo-Inositol Transporter 1 Is a Cellular Receptor for Mus cervicolor M813 Murine Leukemia Virus

    PubMed Central

    Hein, Sibyll; Prassolov, Vladimir; Zhang, Yuanming; Ivanov, Dmitry; Löhler, Jürgen; Ross, Susan R.; Stocking, Carol

    2003-01-01

    Retrovirus infection is initiated by binding of the surface (SU) portion of the viral envelope glycoprotein (Env) to specific receptors on cells. This binding triggers conformational changes in the transmembrane portion of Env, leading to membrane fusion and cell entry, and is thus a major determinant of retrovirus tissue and species tropism. The M813 murine leukemia virus (MuLV) is a highly fusogenic gammaretrovirus, isolated from Mus cervicolor, whose host range is limited to mouse cells. To delineate the molecular mechanisms of its restricted host range and its high fusogenic potential, we initiated studies to characterize the cell surface protein that mediates M813 infection. Screening of the T31 mouse-hamster radiation hybrid panel for M813 infectivity localized the receptor gene to the distal end of mouse chromosome 16. Expression of one of the likely candidate genes (slc5a3) within this region in human cells conferred susceptibility to both M813 infection and M813-induced fusogenicity. slc5a3 encodes sodium myo-inositol transporter 1 (SMIT1), thus adding another sodium-dependent transporter to the growing list of proteins used by MuLVs for cell entry. Characterization of SMIT1 orthologues in different species identified several amino acid variations within two extracellular loops that may restrict susceptibility to M813 infection. PMID:12719585

  19. Pbx3 and Meis1 cooperate through multiple mechanisms to support Hox-induced murine leukemia

    PubMed Central

    Garcia-Cuellar, Maria-Paz; Steger, Julia; Füller, Elisa; Hetzner, Katrin; Slany, Robert K.

    2015-01-01

    Hox homeobox transcription factors drive leukemogenesis efficiently only in the presence of Meis or Pbx proteins. Here we show that Pbx3 and Meis1 need to dimerize to support Hox-induced leukemia and we analyze the molecular details of this cooperation. In the absence of Pbx3, Meis1 was highly unstable. As shown by a deletion analysis Meis1 degradation was contingent on a motif coinciding with the Pbx-binding domain. Either deletion of this sequence or binding to Pbx3 prolonged the half-life of Meis1 by preventing its ubiquitination. Meis1 break-down could also be blocked by inhibition of the ubiquitin proteasome system, indicating tight post-transcriptional control. In addition, Meis1 and Pbx3 cooperated genetically as overexpression of Pbx3 induced endogenous Meis1 transcription. These functional interactions translated into in vivo activity. Blocking Meis1/Pbx3 dimerization abrogated the ability to enhance proliferation and colony-forming cell numbers in primary cells transformed by Hoxa9. Furthermore, expression of Meis1 target genes Flt3 and Trib2 was dependent on Pbx3/Meis1 dimerization. This correlated with the requirement of Meis1 to bind Pbx3 in order to form high affinity DNA/Hoxa9/Meis1/Pbx3 complexes in vitro. Finally, kinetics and severity of disease in transplantation assays indicated that Pbx3/Meis1 dimers are rate-limiting factors for Hoxa9-induced leukemia. PMID:25911551

  20. Vaccination of adult and newborn mice of a resistant strain (C57BL/6J) against challenge with leukemias induced by Moloney murine leukemia virus

    SciTech Connect

    Reif, A.E.

    1985-01-01

    Adult or newborn C57BL/6J mice were immunized with isogenic Moloney strain MuLV-induced leukemia cells irradiated with 10,000 rads or treated with low concentrations of formalin. Groups of immunized and control mice were challenged with a range of doses of viable leukemia cells, and tumor deaths were recorded for 90 days after challenge. Then, the doses of challenge cells which produced 50% tumor deaths were calculated for immunized and control mice. The logarithm of their ratio quantified the degree of protection provided by immunization. For adult C57BL/6J mice, a single immunization with MuLV-induced leukemia cells was not effective; either cells plus Bacillus Calmette-Guerin or Corynebacterium parvum, or else two immunizations with irradiated leukemia cells were needed to produce statistically significant increases in the values of the doses of challenge cells which produced 50% tumor deaths. Cross-protection was obtained by immunization with other isogenic MuLV-induced leukemias, but not by immunization with isogenic carcinogen-induced tumors or with an isogenic spontaneous leukemia. For newborn mice, a single injection of irradiated leukemia cells provided 1.3 to 1.5 logs of protection, and admixture of B. Calmette-Guerin or C. parvum increased this protection to 2.4 to 2.7 logs. Since irradiated and frozen-thawed MuLV-induced leukemia cells contained viable MuLV, leukemia cells treated with 0.5 or 1.0% formalin were tested as an alternative. A single injection of formalin-treated isogenic leukemia cells admixed with C. parvum provided between 1.7 and 2.8 logs of protection. These results demonstrate that a single vaccination of newborn animals against a highly antigenic virally induced leukemia produces strong protection against a subsequent challenge with viable leukemia cells.

  1. Host proteins interacting with the Moloney murine leukemia virus integrase: Multiple transcriptional regulators and chromatin binding factors

    PubMed Central

    Studamire, Barbara; Goff, Stephen P

    2008-01-01

    Background A critical step for retroviral replication is the stable integration of the provirus into the genome of its host. The viral integrase protein is key in this essential step of the retroviral life cycle. Although the basic mechanism of integration by mammalian retroviruses has been well characterized, the factors determining how viral integration events are targeted to particular regions of the genome or to regions of a particular DNA structure remain poorly defined. Significant questions remain regarding the influence of host proteins on the selection of target sites, on the repair of integration intermediates, and on the efficiency of integration. Results We describe the results of a yeast two-hybrid screen using Moloney murine leukemia virus integrase as bait to screen murine cDNA libraries for host proteins that interact with the integrase. We identified 27 proteins that interacted with different integrase fusion proteins. The identified proteins include chromatin remodeling, DNA repair and transcription factors (13 proteins); translational regulation factors, helicases, splicing factors and other RNA binding proteins (10 proteins); and transporters or miscellaneous factors (4 proteins). We confirmed the interaction of these proteins with integrase by testing them in the context of other yeast strains with GAL4-DNA binding domain-integrase fusions, and by in vitro binding assays between recombinant proteins. Subsequent analyses revealed that a number of the proteins identified as Mo-MLV integrase interactors also interact with HIV-1 integrase both in yeast and in vitro. Conclusion We identify several proteins interacting directly with both MoMLV and HIV-1 integrases that may be common to the integration reaction pathways of both viruses. Many of the proteins identified in the screen are logical interaction partners for integrase, and the validity of a number of the interactions are supported by other studies. In addition, we observe that some of the

  2. Effect of Host Modification and Age on Airway Epithelial Gene Transfer Mediated by a Murine Leukemia Virus-Derived Vector

    PubMed Central

    Johnson, Larry G.; Mewshaw, Jennifer P.; Ni, Hong; Friedmann, Theodore; Boucher, Richard C.; Olsen, John C.

    1998-01-01

    To study retroviral gene transfer to airway epithelia, we used a transient transfection technique to generate high titers (∼109 infectious units/ml after concentration) of murine leukemia virus (MuLV)-derived vectors pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G). Transformed (CFT1) and primary airway epithelial cells were efficiently transduced by a VSV-G-pseudotyped lacZ vector (HIT-LZ) in vitro. CFT1 cells and primary cystic fibrosis (CF) airway cell monolayers infected with a vector (HIT-LCFSN) containing human CF transmembrane conductance regulator (CFTR) in the absence of selection expressed CFTR, as assessed by Western blot analysis, and exhibited functional correction of CFTR-mediated Cl− secretion. In vitro studies of persistence suggested that pseudotransduction was not a significant problem with our vector preparations. In a sulfur dioxide (SO2) inhalational injury model, bromodeoxyuridine (BrdU) incorporation rates were measured and found to exceed 50% in SO2-injured murine tracheal epithelium. HIT-LZ vector (multiplicity of infection of ∼10) instilled into the SO2-injured tracheas of anesthetized mice transduced 6.1% ± 1.3% of superficial airway cells in tracheas of weanling mice (3 to 4 weeks old; n = 10), compared to 1.4 ± 0.9% in mice 5 weeks of age (n = 4) and 0.2% in mice older than 6 weeks (n = 15). No evidence for gene transfer following delivery of HIT-LZ to tracheas of either weanling or older mice not injured with SO2 was detected. Because only a small fraction of BrdU-labeled airway cells were transduced, we examined the stability of the vector. No significant loss of vector infectivity over intervals (2 h) paralleling those of in vivo protocols was detected in in vitro assays using CFT1 cells. In summary, high-titer vectors permitted complementation of defective CFTR-mediated Cl− transport in CF airway cells in vitro without selection and demonstrated that the age of the animal appeared to be a major

  3. Pretargeted Radioimmunotherapy Using Anti-CD45 Monoclonal Antibodies to Deliver Radiation to Murine Hematolymphoid Tissues and Human Myeloid Leukemia

    SciTech Connect

    Pagel, John M.; Matthews, Dana C.; Kenoyer, Aimee L.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Gopal, Ajay K.; Lin, Yukang; Saganic, Laura; Appelbaum, Frederick R.; Press, Oliver W.

    2009-01-01

    The efficacy of radioimmunotherapy (RIT) for treatment of patients with hematological malignancies frequently fails because of disease recurrence. We therefore conducted pretargeted RIT studies to augment the efficacy in mice of therapy using a pretargeted anti-human (h)CD45 antibody (Ab)-streptavidin (SA) conjugate followed by delivery of a biotinylated clearing agent and radiolabeled-DOTA-biotin. Tumor-to-blood ratios at 24 hours were 20:1 using pretargeted anti-hCD45 RIT and <1:1 with conventional RIT. In vivo imaging studies confirmed that the pretargeted RIT approach provided high-contrast tumor images with minimal blood-pool activity, whereas directly-labeled anti-hCD45 Ab produced distinct tumor images but the blood pool retained a large amount of labeled antibody for a prolonged time. Therapy experiments demonstrated that 90Y-DOTA-biotin significantly prolonged survival of mice treated pretargeted with anti-hCD45 Ab-SA compared to mice treated with conventional RIT using 90Y-labeled anti-hCD45 Ab at the maximally tolerated dose (400 µCi). Since human CD45 antigens are confined to xenograft tumor cells in this model, and all murine tissues are devoid of hCD45 and will not bind anti-hCD45 Ab, we also compared one-step and pretargeted RIT using an anti-murine (m)CD45 Ab (A20 ) in a model where the target antigen is present on normal hematopoietic tissues. After 24 hours, 27.3 ± 2.8% of the injected dose of radionuclide was delivered per gram (% ID/g) of lymph node using 131I-A20-Ab compared with 40.0 ± 5.4% ID/g for pretargeted 111In-DOTA-biotin (p value). These data suggest that multi-step pretargeted methods for delivering RIT are superior to conventional RIT when targeting CD45 for the treatment of leukemia and may allow for the intensification of therapy, while minimizing toxicities.

  4. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation.

    PubMed

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. PMID:26968634

  5. Effect of Doxorubicin/Pluronic SP1049C on Tumorigenicity, Aggressiveness, DNA Methylation and Stem Cell Markers in Murine Leukemia

    PubMed Central

    Li, Shu; Kabanov, Alexander V.

    2013-01-01

    Purpose Pluronic block copolymers are potent sensitizers of multidrug resistant cancers. SP1049C, a Pluronic-based micellar formulation of doxorubicin (Dox) has completed Phase II clinical trial and demonstrated safety and efficacy in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. This study elucidates the ability of SP1049C to deplete cancer stem cells (CSC) and decrease tumorigenicity of cancer cells in vivo. Experimental Design P388 murine leukemia ascitic tumor was grown in BDF1 mice. The animals were treated with: (a) saline, (b) Pluronics alone, (c) Dox or (d) SP1049C. The ascitic cancer cells were isolated at different passages and examined for 1) in vitro colony formation potential, 2) in vivo tumorigenicity and aggressiveness, 3) development of drug resistance and Wnt signaling activation 4) global DNA methylation profiles, and 5) expression of CSC markers. Results SP1049C treatment reduced tumor aggressiveness, in vivo tumor formation frequency and in vitro clonogenic potential of the ascitic cells compared to drug, saline and polymer controls. SP1049C also prevented overexpression of BCRP and activation of Wnt-β-catenin signaling observed with Dox alone. Moreover, SP1049C significantly altered the DNA methylation profiles of the cells. Finally, SP1049C decreased CD133+ P388 cells populations, which displayed CSC-like properties and were more tumorigenic compared to CD133− cells. Conclusions SP1049C therapy effectively suppresses the tumorigenicity and aggressiveness of P388 cells in a mouse model. This may be due to enhanced activity of SP1049C against CSC and/or altered epigenetic regulation restricting appearance of malignant cancer cell phenotype. PMID:23977261

  6. Benzoyl peroxide increases UVA-induced plasma membrane damage and lipid oxidation in murine leukemia L1210 cells.

    PubMed

    Ibbotson, S H; Lambert, C R; Moran, M N; Lynch, M C; Kochevar, I E

    1998-01-01

    Ultraviolet A radiation induces oxidative stress and cell damage. The purpose of this investigation was to examine whether ultraviolet A-induced cell injury was amplified by the presence of a non-ultraviolet A absorbing molecule capable of generating free radicals. Benzoyl peroxide was used as a lipid soluble potential radical-generating agent. Plasma membrane permeability assessed by trypan blue uptake was used to measure cell damage in murine leukemia L1210 cells. Cells were irradiated with a pulsed Nd/YAG laser at 355 nm using 0-160 J per cm2. The ratio of the fluence-response slope in the presence of 40 microM benzoyl peroxide to that of irradiated controls was 4.3 +/- 2.6. Benzoyl peroxide alone or benzoyl peroxide added after irradiation did not cause increased trypan blue uptake. The ratio of the fluence-response slopes in the presence of 40 microM benzoyl peroxide to that of irradiated controls was 4.7 +/- 1.4 when cells were irradiated (0-43 J per cm2) with a xenon lamp, filtered to remove wavelengths <320 nm. The increased trypan blue uptake in 355 nm-irradiated cells in the presence of benzoyl peroxide was inhibited in a concentration-dependent manner by butylated hydroxytoluene, vitamin E, and trolox, a water-soluble vitamin E derivative. Lipid oxidation, assessed as thiobarbituric acid reactive substances, was significantly increased in samples irradiated with ultraviolet A in the presence of benzoyl peroxide at fluences >34 J per cm2. The increased trypan blue uptake and thiobarbituric acid reactive substances were inhibited by butylated hydroxytoluene. These results suggest that agents not absorbing ultraviolet A radiation may enhance ultraviolet A-initiated oxidative stress in cells. PMID:9424093

  7. Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus.

    PubMed Central

    Gerard, G F; Grandgenett, D P

    1975-01-01

    Two RNase H (RNA-DNA hybrid ribonucleotidohydrolase, EC 3.1.4.34) activities separable by Sephadex G-100 gel filtration were identified in lysates of Moloney murine sarcoma-leukemia virus (MSV). The larger enzyme, which we have called RNase H-I, represented about 10% of the RNase H activity in the virion. RNase H-I (i) copurified with RNA-directed DNA polymerase from the virus, (ii) had a sedimentation coefficient of 4.4S (corresponds to an apparent mol wt of 70,000), (iii) required Mn-2+ (2 mM optimum) for activity with a [3-h]poly(A)-poly(dT) substrate, (iv) eluted from phosphocellulose at 0.2 M KC1, and (v) degraded [3-H]poly(A)-poly(dT) and [3-H]poly(C)-poly(dG) at approximately equal rates. The smaller enzyme, designated RNase H-II, which represented the majority of the RNase H activity in the virus preparation, was shown to be different since it (i) had no detectable, associated DNA polymerase activity, (ii) had a sedmimentation coefficient of 2.6S (corresponds to an apparent mol wt of 30,000), (iii) preferred Mg-2+ (10 to 15 mM optimum) over Mn-2+ (5 to 10 mM optimum) 2.5-fold for the degradation of [3-H]poly(A)-poly(dT), and (iv) degraded [3-H]poly(A)-poly(dT) 6 and 60 times faster than [3-H]poly(C)-poly(dG) in the presence of Mn-2+ and Mg-2+, respectively. Moloney MSV DNA polymerase (RNase H-I), purified by Sephadex G-100 gel filtration followed by phosphocellulose, poly(A)-oligo(dT)-cellulose, and DEAE-cellulose chromatography, transcribed heteropolymeric regions of avian myeloblastosis virus 70S RNA at a rate comparable to avian myeloblastosis virus DNA polymerase purified by the same procedure. PMID:46924

  8. Oxygen radical detoxification enzymes in doxorubicin-sensitive and -resistant P388 murine leukemia cells

    SciTech Connect

    Ramu, A.; Cohen, L.; Glaubiger, D.

    1984-05-01

    One of the proposed mechanisms for the cytotoxic effects of anthracycline compounds suggests that the effect is mediated through the formation of intracellular superoxide radicals. It is therefore possible that doxorubicin resistance is associated with increased intracellular enzyme capacity to convert these superoxide radicals to inactive metabolites. We have measured the relative activities of superoxide dismutase, glutathione peroxidase, and catalase in P388 mouse leukemia cells and in a doxorubicin-resistant subline. Since oxygen-reactive metabolites also play a role in mediating the cytotoxicity of ionizing radiation, the radiosensitivity of both cell lines was also studied. No significant differences in superoxide dismutase activity between these cell lines was observed, indicating that they have a similar capacity to convert superoxide anion radicals to hydrogen peroxide. P388 cells that are resistant to doxorubicin have 1.5 times the glutathione content and 1.5 times the activity of glutathione peroxidase measured in drug-sensitive P388 cells. However, incubation with 1-chloro-2,4-dinitrobenzene, which covalently binds glutathione, had no effect on the sensitivity of either cell line to doxorubicin. Measured catalase activity in drug-resistant P388 cells was one-third of the activity measured in doxorubicin-sensitive P388 cells. The activity of this enzyme was much higher than that of glutathione peroxidase in terms of H/sub 2/O/sub 2/ deactivation in both cell lines. It is therefore unlikely that doxorubicin-resistant P388 cells have an increased ability to detoxify reactive oxygen metabolites when compared to drug-sensitive cells. Doxorubicin-resistant P388 cells were significantly more sensitive to X-irradiation than were drug-sensitive P388 cells. These observations suggest that the difference in catalase activity in these cell lines may be associated with the observed differences in radiosensitivity.

  9. Anti-CD45 Radioimmunotherapy with 90Y but Not 177Lu Is Effective Treatment in a Syngeneic Murine Leukemia Model

    PubMed Central

    Orozco, Johnnie J.; Balkin, Ethan R.; Gooley, Ted A.; Kenoyer, Aimee; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Hylarides, Mark D.; Shadman, Mazyar; Green, Damian J.; Gopal, Ajay K.; Press, Oliver W.; Pagel, John M.

    2014-01-01

    Radioimmunotherapy (RIT) for treatment of hematologic malignancies has primarily employed monoclonal antibodies (Ab) labeled with 131I or 90Y which have limitations, and alternative radionuclides are needed to facilitate wider adoption of RIT. We therefore compared the relative therapeutic efficacy and toxicity of anti-CD45 RIT employing 90Y and 177Lu in a syngeneic, disseminated murine myeloid leukemia (B6SJLF1/J) model. Biodistribution studies showed that both 90Y- and 177Lu-anti-murine CD45 Ab conjugates (DOTA-30F11) targeted hematologic tissues, as at 24 hours 48.8±21.2 and 156±14.6% injected dose per gram of tissue (% ID/g) of 90Y-DOTA-30F11 and 54.2±9.5 and 199±11.7% ID/g of 177Lu-DOTA-30F11 accumulated in bone marrow (BM) and spleen, respectively. However, 90Y-DOTA-30F11 RIT demonstrated a dose-dependent survival benefit: 60% of mice treated with 300 µCi 90Y-DOTA-30F11 lived over 180 days after therapy, and mice treated with 100 µCi 90Y-DOTA-30F11 had a median survival 66 days. 90Y-anti-CD45 RIT was associated with transient, mild myelotoxicity without hepatic or renal toxicity. Conversely, 177Lu- anti-CD45 RIT yielded no long-term survivors. Thus, 90Y was more effective than 177Lu for anti-CD45 RIT of AML in this murine leukemia model. PMID:25460570

  10. Safrole suppresses murine myelomonocytic leukemia WEHI-3 cells in vivo, and stimulates macrophage phagocytosis and natural killer cell cytotoxicity in leukemic mice.

    PubMed

    Yu, Fu-Shun; Yang, Jai-Sing; Yu, Chun-Shu; Chiang, Jo-Hua; Lu, Chi-Cheng; Chung, Hsiung-Kwang; Yu, Chien-Chih; Wu, Chih-Chung; Ho, Heng-Chien; Chung, Jing-Gung

    2013-11-01

    Many anticancer drugs are obtained from phytochemicals and natural products. However, some phytochemicals have mutagenic effects. Safrole, a component of Piper betle inflorescence, has been reported to be a carcinogen. We have previously reported that safrole induced apoptosis in human oral cancer cells in vitro and inhibited the human oral tumor xenograft growth in vivo. Until now, there is no information addressing if safrole promotes immune responses in vivo. To evaluate whether safrole modulated immune function, BALB/c mice were intraperitoneally injected with murine myelomonocytic WEHI-3 leukemia cells to establish leukemia and then were treated with or without safrole at 4 and 16 mg/kg. Animals were sacrificed after 2 weeks post-treatment with safrole for examining the immune cell populations, phagocytosis of macrophages and the natural killer (NK) cells' cytotoxicity. Results indicated that safrole increased the body weight, and decreased the weights of spleen and liver in leukemic mice. Furthermore, safrole promoted the activities of macrophages phagocytosis and NK cells' cytotoxicity in leukemic mice when compared with untreated leukemic mice. After determining the cell marker population, we found that safrole promoted the levels of CD3 (T cells), CD19 (B cells) and Mac-3 (macrophages), but it did not affect CD11b (monocytes) in leukemic mice. In conclusion, safrole altered the immune modulation and inhibited the leukemia WEHI-3 cells in vivo. PMID:24150866

  11. The Icsbp locus is a common proviral insertion site in mature B-cell lymphomas/plasmacytomas induced by exogenous murine leukemia virus

    SciTech Connect

    Ma Shiliang; Sorensen, Annette Balle; Kunder, Sandra; Sorensen, Karina Dalsgaard; Quintanilla-Martinez, Leticia; Morris, David W.; Schmidt, Joerg; Pedersen, Finn Skou . E-mail: fsp@mb.au.dk

    2006-09-01

    ICSBP (interferon consensus sequence binding protein)/IRF8 (interferon regulatory factor 8) is an interferon gamma-inducible transcription factor expressed predominantly in hematopoietic cells, and down-regulation of this factor has been observed in chronic myelogenous leukemia and acute myeloid leukemia in man. By screening about 1200 murine leukemia virus (MLV)-induced lymphomas, we found proviral insertions at the Icsbp locus in 14 tumors, 13 of which were mature B-cell lymphomas or plasmacytomas. Only one was a T-cell lymphoma, although such tumors constituted about half of the samples screened. This indicates that the Icsbp locus can play a specific role in the development of mature B-lineage malignancies. Two proviral insertions in the last Icsbp exon were found to act by a poly(A)-insertion mechanism. The remaining insertions were found within or outside Icsbp. Since our results showed expression of Icsbp RNA and protein in all end-stage tumor samples, a simple tumor suppressor function of ICSBP is not likely. Interestingly, proviral insertions at Icsbp have not been reported from previous extensive screenings of mature B-cell lymphomas induced by endogenous MLVs. We propose that ICSBP might be involved in an early modulation of an immune response to exogenous MLVs that might also play a role in proliferation of the mature B-cell lymphomas.

  12. Effects of diallyl trisulfide on induction of apoptotic death in murine leukemia WEHI-3 cells in vitro and alterations of the immune responses in normal and leukemic mice in vivo.

    PubMed

    Hung, Fang-Ming; Shang, Hung-Sheng; Tang, Nou-Ying; Lin, Jen-Jyh; Lu, Kung-Wen; Lin, Jing-Pin; Ko, Yang-Ching; Yu, Chien-Chih; Wang, Hai-Lung; Liao, Jung-Chi; Lu, Hsu-Feng; Chung, Jing-Gung

    2015-11-01

    Diallyl trisulfide (DATS), a chemopreventive dietary constituent and extracted from garlic, has been shown to against cultured many types of human cancer cell liens but the fate of apoptosis in murine leukemia cells in vitro and immune responses in leukemic mice remain elusive. Herein, we clarified the actions of DATS on growth inhibition of murine leukemia WEHI-3 cells in vitro and used WEHI-3 cells to generate leukemic mice in vivo, following to investigate the effects of DATS in animal model. In in vitro study, DATS induced apoptosis of WEHI-3 cells through the G0/G1 phase arrest and induction of caspase-3 activation. In in vivo study DATS decreased the weight of spleen of leukemia mice but did not affect the spleen weight of normal mice. DATS promoted the immune responses such as promotions of the macrophage phagocytosis and NK cell activities in WEHI-3 leukemic and normal mice. However, DATS only promotes NK cell activities in normal mice. DATS increases the surface markers of CD11b and Mac-3 in leukemia mice but only promoted CD3 in normal mice. In conclusion, the present study indicates that DATS induces cell death through induction of apoptosis in mice leukemia WHEI-3 cells. DATS also promotes immune responses in leukemia and normal mice in vivo. PMID:24890016

  13. No association found between the detection of either xenotropic murine leukemia virus-related virus or polytropic murine leukemia virus and chronic fatigue syndrome in a blinded, multi-site, prospective study by the establishment and use of the SolveCFS BioBank

    PubMed Central

    2014-01-01

    Background In 2009, a retrospective study reported the detection of xenotropic murine leukemia virus-related virus (XMRV) in clinical isolates derived from individuals with chronic fatigue syndrome or myalgic encephalomyelitis (CFS). While many efforts to confirm this observation failed, one report detected polytropic murine leukemia virus (pMLV), instead of XMRV. In both studies, Polymerase Chain Reaction (PCR)-based methods were employed which could provide the basis for the development of a practical diagnostic tool. To confirm these studies, we hypothesized that the ability to detect these viruses will not only depend upon the technical details of the methods employed but also on the criteria used to diagnose CFS and the availability of well characterized clinical isolates. Methods A repository of clinical isolates from geographically distinct sites was generated by the collection of fresh blood samples from well characterized CFS and healthy subjects. Molecular techniques were used to generate assay positive controls and to determine the lower limit of detection (LLOD) for murine retroviral and Intracisternal A particle (Cell 12(4):963-72, 1977) detection methods. Results We report the establishment of a repository of well-defined, clinical isolates from five, geographically distinct regions of the US, the comparative determination of the LLODs and validation efforts for the previously reported detection methods and the results of an effort to confirm the association of these retroviral signatures in isolates from individuals with CFS in a blinded, multi-site, prospective study. We detected various, murine retroviral DNA signatures but were unable to resolve a difference in the incidence of their detection between isolates from CFS (5/72; 6.7%) and healthy (2/37; 5.4%) subjects (Fisher’s Exact Test, p-value = 1). The observed sequences appeared to reflect the detection of endogenous murine retroviral DNA, which was not identical to either XMRV or p

  14. B-cell-specific Moloney murine leukemia virus integration site 1: potential stratification factor and therapeutic target for epithelial ovarian cancer.

    PubMed

    Zhao, Qianying; Gui, Ting; Qian, Qiuhong; Li, Lei; Shen, Keng

    2016-01-01

    Epithelial ovarian cancer, a vexing challenge for clinical management, still lacks biomarkers for early diagnosis, precise stratification, and prognostic evaluation of patients. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), a member of the polycomb group of proteins, engages in diverse cellular processes, including proliferation, differentiation, senescence, and stem cell renewal. In addition, BMI1, as a cancer stem-cell marker, participates in tumorigenesis through various pathways. Rewardingly, recent studies have also revealed a relationship between BMI1 expression and the clinical grade/stage, therapy response, and survival outcome in a majority of human malignancies, including epithelial ovarian cancer. Therefore, BMI1 might serve as a potential stratification factor and treatment target for epithelial ovarian cancer, pending evidence from further investigations. PMID:27578986

  15. A human TRIM5alpha B30.2/SPRY domain mutant gains the ability to restrict and prematurely uncoat B-tropic murine leukemia virus.

    PubMed

    Diaz-Griffero, Felipe; Perron, Michel; McGee-Estrada, Kathleen; Hanna, Robert; Maillard, Pierre V; Trono, Didier; Sodroski, Joseph

    2008-09-01

    Human TRIM5alpha restricts N-tropic murine leukemia virus (N-MLV) but not B-tropic MLV (B-MLV) infection. Here we study B30.2/SPRY domain mutants of human TRIM5alpha that acquire the ability to inhibit B-MLV infection prior to reverse transcription without losing the ability to restrict N-MLV infection. Remarkably, these mutants gain the ability to decrease the amount of particulate B-MLV capsids in the cytosol of infected cells. In addition, these mutants gain the ability to restrict SIV(mac) and HIV-2 infection. B-MLV and SIV(mac) infections were blocked by the mutant TRIM5alpha proteins prior to reverse transcription. Thus, the range of retroviruses restricted by human TRIM5alpha can be increased by changes in the B30.2/SPRY domain, which also result in the ability to cause premature uncoating of the restricted retroviral capsid. PMID:18586294

  16. B-cell-specific Moloney murine leukemia virus integration site 1: potential stratification factor and therapeutic target for epithelial ovarian cancer

    PubMed Central

    Zhao, Qianying; Gui, Ting; Qian, Qiuhong; Li, Lei; Shen, Keng

    2016-01-01

    Epithelial ovarian cancer, a vexing challenge for clinical management, still lacks biomarkers for early diagnosis, precise stratification, and prognostic evaluation of patients. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), a member of the polycomb group of proteins, engages in diverse cellular processes, including proliferation, differentiation, senescence, and stem cell renewal. In addition, BMI1, as a cancer stem-cell marker, participates in tumorigenesis through various pathways. Rewardingly, recent studies have also revealed a relationship between BMI1 expression and the clinical grade/stage, therapy response, and survival outcome in a majority of human malignancies, including epithelial ovarian cancer. Therefore, BMI1 might serve as a potential stratification factor and treatment target for epithelial ovarian cancer, pending evidence from further investigations. PMID:27578986

  17. Extract of Hedyotis diffusa Willd influences murine leukemia WEHI-3 cells in vivo as well as promoting T- and B-cell proliferation in leukemic mice.

    PubMed

    Lin, Chin-Chung; Kuo, Chao-Lin; Lee, Mau-Hva; Hsu, Shu-Chun; Huang, An-Cheng; Tang, Nou-Ying; Lin, Jing-Pin; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Chueh, Fu-Shin; Chung, Jing-Gung

    2011-01-01

    Medicinal plants and herbs are widely used in the treatment of various types of cancer in Taiwan, China and many other countries. Hedyotis diffusa Willd (HDW) has been known as a traditional Chinese medicine for a long time, and possesses various bioactivities and anticancer activity. There is no available information on the effects of HDW extracts in leukemic mice and on immune responses in vivo. In this study, we established murine WEHI-3 leukemia in BALB/c mice and hypothesized that an aqueous HDW extract might have antileukemia effects on leukemic animals in vivo. The major characteristic of leukemic mice was an enlarged spleen after intraperitoneal injection with WEHI-3 cells. HDW extract reduced the weights of spleen and liver, but had no significant effect on body weight in WEHI-3 leukemic mice. HDW extract increased the percentage of CD11b cell surface marker (monocytes), but it reduced the percentage of CD3 (T-cell) and CD19 (B-cell) markers. However, HDW extract did not affect the level of Mac-3 and there was no influence on phagocytosis by macrophages from peripheral blood mononuclear cells and the peritoneal cavity in leukemic mice. The isolated splenocytes from HDW extract-treated leukemic mice demonstrated an increase of T- and B-cell proliferation in vivo. Based on these results, HDW extract would appear to have antileukemia activity in WEHI-3 cell-induced leukemia in vivo. PMID:21709007

  18. Further evidence for the existence of 'homing' receptors on murine leukemia cells which mediate adherence to normal bone marrow stromal cells.

    PubMed

    Kamenov, B; Longenecker, B M

    1985-01-01

    A significant proportion of 131IUDR-labelled cells from murine leukemia cell lines L1210 and P388, but not the L5178Y lymphoma cell line, are retained in the bone marrow (B.M.) following i.v. injection into syngeneic mice. Following this, L1210 and P388 cells grow and rapidly replace the normal hematopoietic cells of the B.M. L1210 and P388 cells, but not several lymphoma cell lines, also bind avidly to monolayers of B.M. stromal cells (Dexter cultures) and soon overgrow the cultures following rapid cell proliferation. P388 cells bound equally well to confluent monolayers of B.M., whole mouse embryo and newborn mouse kidney while L1210 cells bound well to B.M. and whole mouse embryo but showed little binding to newborn kidney monolayers. The accumulation of the two leukemia cell lines in the B.M. was constant and indistinguishable over a 48-h period. In contrast, in both spleen and liver the number of L1210 cells decreased during the same period while P388 cells were retained at a constant level. Generally there was a lack of correlation of B.M. metastasis of a cell line and its metastasis to other organs although P388 cells, but not L1210 cells, demonstrated a tremendous capacity for metastatic growth in both spleen and liver. Normal B.M. cells were fused with the syngeneic SP2/0 murine myeloma fusor line and 10 hybridomas plus the SP2/0 parent were tested for in-vitro adherence to B.M. monolayers and in-vivo metastatic behavior. The same 3 (out of 10) hybridomas showed a high level of adherence to B.M. monolayers, high levels of retention of cells in the B.M. following i.v. injection, and rapid growth and takeover of the normal B.M. In marked contrast, neither the SP2/0 parent nor the remaining 7 hybridomas show significant adherence, B.M. retention or growth in the B.M. A distinct lack of correlation of B.M. vs liver or spleen metastasis was once again noted for the hybridomas although all of the hybridomas showed much less metastatic growth in the liver than

  19. In vivo localization of ⁹⁰Y and ¹⁷⁷Lu radioimmunoconjugates using Cerenkov luminescence imaging in a disseminated murine leukemia model.

    PubMed

    Balkin, Ethan R; Kenoyer, Aimee; Orozco, Johnnie J; Hernandez, Alexandra; Shadman, Mazyar; Fisher, Darrell R; Green, Damian J; Hylarides, Mark D; Press, Oliver W; Wilbur, D Scott; Pagel, John M

    2014-10-15

    Cerenkov radiation generated by positron-emitting radionuclides can be exploited for a molecular imaging technique known as Cerenkov luminescence imaging (CLI). Data have been limited, however, on the use of medium- to high-energy β-emitting radionuclides of interest for cancer imaging and treatment. We assessed the use of CLI as an adjunct to determine localization of radioimmunoconjugates to hematolymphoid tissues. Radiolabeled (177)Lu- or (90)Y-anti-CD45 antibody (Ab; DOTA-30F11) was administered by tail vein injection to athymic mice bearing disseminated murine myeloid leukemia, with CLI images acquired at times afterward. Gamma counting of individual organs showed preferential uptake in CD45(+) tissues with significant retention of radiolabeled Ab in sites of leukemia (spleen and bone marrow). This result was confirmed in CLI images with 1.35 × 10(5) ± 2.2 × 10(4) p/s/cm(2)/sr and 3.45 × 10(3) ± 7.0 × 10(2) p/s/cm(2)/sr for (90)Y-DOTA-30F11 and (177)Lu-DOTA-30F11, respectively, compared with undetectable signal for both radionuclides using the nonbinding control Ab. Results showed that CLI allows for in vivo visualization of localized β-emissions. Pixel intensity variability resulted from differences in absorbed doses of the associated energies of the β-emitting radionuclide. Overall, our findings offer a preclinical proof of concept for the use of CLI techniques in tandem with currently available clinical diagnostic tools. PMID:25261237

  20. New class of leukemogenic ecotropic recombinant murine leukemia virus isolated from radiation-induced thymomas of C57BL/6 mice

    SciTech Connect

    Rassart, E.; Sankar-Mistry, P.; Lemay, G.; DesGroseillers, L.; Jalicoeur, P.

    1983-02-01

    We previously reported the establishment of several lymphoid cell lines from X-ray-induced thymomas of C57BL/Ka mice, and all, except one, produce retroviruses. Biological characterization of five of these new primary radiation leukemia viruses (RadLVs) indicated that they had a B-tropic, fibrotropic, and ecotropic host range and were leukemogenic when reinjected into C57BL/Ka newborn mice. The leukemogenic potential of one isolate (G/sub 6/T/sub 2/) was further assessed and shown to be retained after prolonged passaging on fibroblasts in vitro. Restriction endonuclease analysis of the DNA of four of our new RadLV isolates (G/sub 6/T/sub 2/, Ti-7, Ti-8, and Ti-9) revealed that G/sub 6/T/sub 2/ and Ti-7 murine leukemia virus (MuLV) genomes had identical restriction maps, whereas Ti-8 and Ti-9 genomes were different from each other and from the G/sub 6/T/sub 2/ and Ti-7 genomes. The physical maps of these genomes were similar to that of known ecotropic MuLV genomes (including the C57BL/Ka endogenous ecotropic MuLV) within their long terminal repeats, env, the right portion of pol, and the left portion of gag. However, a region covering the end of gag and the beginning of pol was different and showed several similarities with xenotropic MuLV genomes of BALB/c, AKR, and C58 mice previously mapped. Our results suggest that these primary RadLV genomes are recombinants between the parental ecotropic MuLV genome and a nonecotropic (xenotropic) sequence. To further study the leukemic potential of these RadLVs, the genome of one of them (G/sub 6/T/sub 2/) was cloned in Charon 21A as an infectious molecule.

  1. In vivo Localization of 90Y- and 177Lu-Radioimmunoconjugates Using Cerenkov Luminescence Imaging in a Disseminated Murine Leukemia Model

    PubMed Central

    Balkin, Ethan R.; Kenoyer, Aimee; Orozco, Johnnie J.; Hernandez, Alexandra; Shadman, Mazyar; Fisher, Darrell R.; Green, Damian J.; Hylarides, Mark D.; Press, Oliver W.; Wilbur, D. Scott; Pagel, John M.

    2014-01-01

    Cerenkov radiation generated by positron-emitting radionuclides can be exploited for a molecular imaging technique known as Cerenkov Luminescence Imaging (CLI). Data have been limited, however, on the use of medium-to-high energy β-emitting radionuclides of interest for cancer imaging and treatment. We assessed the use of CLI as an adjunct to determine localization of radioimmunoconjugates to hematolymphoid tissues. Radiolabeled 177Lu- or 90Y-anti-CD45 antibody (Ab; DOTA-30F11) was administered by tail vein injection to athymic mice bearing disseminated murine myeloid leukemia with CLI images acquired at times afterward. Gamma counting of individual organs showed preferential uptake in CD45+ tissues with significant retention of radiolabeled Ab in sites of leukemia (spleen and bone marrow). This result was confirmed in CLI images with 1.35 × 105 ± 2.2 × 104 p/sec/cm2/sr and 3.45 × 103 ± 7.0 × 102 p/sec/cm2/sr for 90Y-DOTA-30F11 and 177Lu-DOTA-30F11, respectively, compared to undetectable signal for both radionuclides using the non-binding control Ab. Results showed that CLI allows for in vivo visualization of localized β-emissions. Pixel intensity variability resulted from differences in absorbed doses of the associated energies of the β-emitting radionuclide. Overall, our findings offer a preclinical proof of concept for the use of CLI techniques in tandem with currently available clinical diagnostic tools. PMID:25261237

  2. Novel Quinazolinone MJ-29 Triggers Endoplasmic Reticulum Stress and Intrinsic Apoptosis in Murine Leukemia WEHI-3 Cells and Inhibits Leukemic Mice

    PubMed Central

    Lu, Chi-Cheng; Yang, Jai-Sing; Chiang, Jo-Hua; Hour, Mann-Jen; Lin, Kuei-Li; Lin, Jen-Jyh; Huang, Wen-Wen; Tsuzuki, Minoru

    2012-01-01

    The present study was to explore the biological responses of the newly compound, MJ-29 in murine myelomonocytic leukemia WEHI-3 cells in vitro and in vivo fates. We focused on the in vitro effects of MJ-29 on ER stress and mitochondria-dependent apoptotic death in WEHI-3 cells, and to hypothesize that MJ-29 might fully impair the orthotopic leukemic mice. Our results indicated that a concentration-dependent decrease of cell viability was shown in MJ-29-treated cells. DNA content was examined utilizing flow cytometry, whereas apoptotic populations were determined using annexin V/PI, DAPI staining and TUNEL assay. Increasing vital factors of mitochondrial dysfunction by MJ-29 were further investigated. Thus, MJ-29-provaked apoptosis of WEHI-3 cells is mediated through the intrinsic pathway. Importantly, intracellular Ca2+ release and ER stress-associated signaling also contributed to MJ-29-triggered cell apoptosis. We found that MJ-29 stimulated the protein levels of calpain 1, CHOP and p-eIF2α pathways in WEHI-3 cells. In in vivo experiments, intraperitoneal administration of MJ-29 significantly improved the total survival rate, enhanced body weight and attenuated enlarged spleen and liver tissues in leukemic mice. The infiltration of immature myeloblastic cells into splenic red pulp was reduced in MJ-29-treated leukemic mice. Moreover, MJ-29 increased the differentiations of T and B cells but decreased that of macrophages and monocytes. Additionally, MJ-29-stimulated immune responses might be involved in anti-leukemic activity in vivo. Based on these observations, MJ-29 suppresses WEHI-3 cells in vitro and in vivo, and it is proposed that this potent and selective agent could be a new chemotherapeutic candidate for anti-leukemia in the future. PMID:22662126

  3. Nucleotide Sequence of the Envelope Gene of Gardner-Arnstein Feline Leukemia Virus B Reveals Unique Sequence Homologies with a Murine Mink Cell Focus-Forming Virus †

    PubMed Central

    Elder, John H.; Mullins, James I.

    1983-01-01

    The nucleotide sequence of the envelope gene and the adjacent 3′ long terminal repeat (LTR) of Gardner-Arnstein feline leukemia virus of subgroup B (GA-FeLV-B) has been determined. Comparison of the derived amino acid sequence of the gp70-p15E polyprotein to those of several previously reported murine retroviruses revealed striking homologies between GA-FeLV-B gp70 and the gp70 of a Moloney virus-derived mink cell focus-forming virus. These homologies were located within the substituted (presumably xenotropic) portion of the mink cell focus-forming virus envelope gene and comprised amino acid sequences not present in three ecotropic virus gp70s. In addition, areas of insertions and deletions, in general, were the same between GA-FeLV-B and Moloney mink cell focus-forming virus, although the sizes of the insertions and deletions differed. Homologies between GA-FeLV-B and mink cell focus-forming virus gp70s is functionally significant in that they both possess expanded host ranges, a property dictated by gp70. The amino acid sequence of FeLV-B contains 12 Asn-X-Ser/Thr sequences, indicating 12 possible sites of N-linked glycosylation as compared with 7 or 8 for its murine counterparts. Comparison of the 3′ LTR of GA-FeLV-B to AKR and Moloney virus LTRs revealed extensive conservation in several regions including the “CCAAT” and Goldberg-Hogness (TATA) boxes thought to be involved in promotion of transcription and in the repeat region of the LTR. The inverted repeats that flanked the LTR of GA-FeLV-B were identical to the murine inverted repeats, but were one base longer than the latter. The region of U3 corresponding to the approximately 75-nucleotide “enhancer sequence” is present in GA-FeLV-B, but contains deletions relative to AKR and Moloney virus and is not repeated. An interesting pallindrome in the repeat region immediately 3′ to the U3 region was noted in all the LTRs, but was particularly pronounced in GA-FeLV-B. Possible roles for this

  4. The prognostic value of polycomb group protein B-cell-specific moloney murine leukemia virus insertion site 1 in stage II colon cancer patients.

    PubMed

    Espersen, Maiken L M; Linnemann, Dorte; Christensen, Ib J; Alamili, Mahdi; Troelsen, Jesper T; Høgdall, Estrid

    2016-07-01

    The aim of this study was to investigate the prognostic value of B-cell-specific moloney murine leukemia virus insertion site 1 (BMI1) protein expression in primary tumors of stage II colon cancer patients. BMI1 protein expression was assessed by immunohistochemistry in a retrospective patient cohort consisting of 144 stage II colon cancer patients. BMI1 expression at the invasive front of the primary tumors correlated with mismatch repair status of the tumors. Furthermore, BMI1 expression at the luminal surface correlated with T-stage, tumor location, and the histological subtypes of the tumors. In a univariate Cox proportional hazard analysis, no statistical significant association between risk of relapse and BMI1 protein expression at the invasive front (HR: 1.12; 95% CI 0.78-1.60; p = 0.53) or at the luminal surface of the tumor (HR: 1.06; 95% CI 0.75-1.48; p = 0.70) was found. Likewise, there was no association between 5-year overall survival and BMI1 expression at the invasive front (HR: 1.12; 95% CI 0.80-1.56; p = 0.46) or at the luminal surface of the tumor (HR: 1.16; 95% CI 0.86-1.60; p = 0.33). In conclusion, BMI1 expression in primary tumors of stage II colon cancer patients could not predict relapse or overall survival of the patients, thus having a limited prognostic value in stage II colon cancer patients. PMID:27102362

  5. Phosphorylation of mouse SAMHD1 regulates its restriction of human immunodeficiency virus type 1 infection, but not murine leukemia virus infection.

    PubMed

    Wang, Feifei; St Gelais, Corine; de Silva, Suresh; Zhang, Hong; Geng, Yu; Shepard, Caitlin; Kim, Baek; Yount, Jacob S; Wu, Li

    2016-01-01

    Human SAMHD1 (hSAMHD1) restricts HIV-1 infection in non-dividing cells by depleting intracellular dNTPs to limit viral reverse transcription. Phosphorylation of hSAMHD1 at threonine (T) 592 by cyclin-dependent kinase (CDK) 1 and CDK2 negatively regulates HIV-1 restriction. Mouse SAMHD1 (mSAMHD1) restricts HIV-1 infection in non-dividing cells, but whether its phosphorylation regulates retroviral restriction is unknown. Here we identified six phospho-sites of mSAMHD1, including T634 that is homologous to T592 of hSAMHD1 and phosphorylated by CDK1 and CDK2. We found that wild-type (WT) mSAMHD1 and a phospho-ablative mutant, but not a phospho-mimetic mutant, restricted HIV-1 infection in differentiated U937 cells. Murine leukemia virus (MLV) infection of dividing NIH3T3 cells was modestly restricted by mSAMHD1 WT and phospho-mutants, but not by a dNTPase-defective mutant. Our results suggest that phosphorylation of mSAMHD1 at T634 by CDK1/2 negatively regulates its HIV-1 restriction in differentiated cells, but does not affect its MLV restriction in dividing cells. PMID:26580513

  6. Early Detection of a Two-Long-Terminal-Repeat Junction Molecule in the Cytoplasm of Recombinant Murine Leukemia Virus-Infected Cells

    PubMed Central

    Serhan, Fatima; Penaud, Magalie; Petit, Caroline; Leste-Lasserre, Thierry; Trajcevski, Stéphane; Klatzmann, David; Duisit, Ghislaine; Sonigo, Pierre; Moullier, Philippe

    2004-01-01

    We showed that a U5-U3 junction was reproducibly detected by a PCR assay as early as 1 to 2 h postinfection with a DNase-treated murine leukemia virus (MLV)-containing supernatant in aphidicolin-arrested NIH 3T3 cells, as well as in nonarrested cells. Such detection is azidothymidine sensitive and corresponded to neosynthesized products of the reverse transcriptase. This observation was confirmed in two additional human cell lines, TE671 and ARPE-19. Using cell fractionation combined with careful controls, we found that a two-long-terminal-repeat (two-LTR) junction molecule was detectable in the cytoplasm as early as 2 h post virus entry. Altogether, our data indicated that the neosynthesized retroviral DNA led to the early formation of structures including true two-LTR junctions in the cytoplasm of MLV-infected cells. Thus, the classical assumption that two-LTR circles are a mitosis-dependent dead-end product accumulating in the nucleus must be reconsidered. MLV-derived products containing a two-LTR junction can no longer be used as an exclusive surrogate for the preintegration complex nuclear translocation event. PMID:15163712

  7. Serologic and PCR testing of persons with chronic fatigue syndrome in the United States shows no association with xenotropic or polytropic murine leukemia virus-related viruses

    PubMed Central

    2011-01-01

    In 2009, a newly discovered human retrovirus, xenotropic murine leukemia virus (MuLV)-related virus (XMRV), was reported by Lombardi et al. in 67% of persons from the US with chronic fatigue syndrome (CFS) by PCR detection of gag sequences. Although six subsequent studies have been negative for XMRV, CFS was defined more broadly using only the CDC or Oxford criteria and samples from the US were limited in geographic diversity, both potentially reducing the chances of identifying XMRV positive CFS cases. A seventh study recently found polytropic MuLV sequences, but not XMRV, in a high proportion of persons with CFS. Here we tested blood specimens from 45 CFS cases and 42 persons without CFS from over 20 states in the United States for both XMRV and MuLV. The CFS patients all had a minimum of 6 months of post-exertional malaise and a high degree of disability, the same key symptoms described in the Lombardi et al. study. Using highly sensitive and generic DNA and RNA PCR tests, and a new Western blot assay employing purified whole XMRV as antigen, we found no evidence of XMRV or MuLV in all 45 CFS cases and in the 42 persons without CFS. Our findings, together with previous negative reports, do not suggest an association of XMRV or MuLV in the majority of CFS cases. PMID:21342521

  8. Molecular cloning of two paralytogenic, temperature-sensitive mutants, ts1 and ts7, and the parental wild-type Moloney murine leukemia virus.

    PubMed Central

    Yuen, P H; Malehorn, D; Nau, C; Soong, M M; Wong, P K

    1985-01-01

    ts1 and ts7, the paralytogenic, temperature-sensitive mutants of Moloney murine leukemia virus (MoMuLV), together with their wild-type parent, MoMuLV-TB, were molecularly cloned. ts1-19, ts7-22, and wt-25, the infectious viruses obtained on transfection to NIH/3T3 cells of the lambda Charon 21A recombinants of ts1, ts7, and wt, were found to have retained the characteristics of their non-molecularly cloned parents. In contrast to the wt virus, ts1-19 and ts7-22 are temperature-sensitive, inefficient in the intracellular processing of Pr80env at the restrictive temperature, and able to induce paralysis in CFW/D mice. Like the non-molecularly cloned ts7, the ts7-22 virion was also shown to be heat labile. The heat lability of the ts7 virion distinguishes it from ts1. Endonuclease restriction mapping with 11 endonucleases demonstrated that the base composition of MoMuLV-TB differs from that of the standard MoMuLV, but no difference was detected between the molecularly cloned ts1 and ts7 genomes. However, ts1 and ts7 differ from MoMuLV in the loss or acquisition of four different restriction sites, whereas they differ from MoMuLV-TB in the loss or acquisition of three different restriction sites. Images PMID:2983112

  9. Nuclear Import of Moloney Murine Leukemia Virus DNA Mediated by Adenovirus Preterminal Protein Is Not Sufficient for Efficient Retroviral Transduction in Nondividing Cells

    PubMed Central

    Lieber, André; Kay, Mark A.; Li, Zong-Yi

    2000-01-01

    Moloney murine leukemia virus (MoMLV)-derived vectors require cell division for efficient transduction, which may be related to an inability of the viral DNA-protein complex to cross the nuclear membrane. In contrast, adenoviruses (Ad) can efficiently infect nondividing cells. This property may be due to the presence of multiple nuclear translocation signals in a number of Ad proteins, which are associated with the incoming viral genomes. Of particular interest is the Ad preterminal protein (pTP), which binds alone or in complex with the Ad polymerase to specific sequences in the Ad inverted terminal repeat. The goal of this study was to test whether coexpression of pTP with retroviral DNA carrying pTP-binding sites would facilitate nuclear import of the viral preintegration complex and transduction of quiescent cells. In preliminary experiments, we demonstrated that the karyophylic pTP can coimport plasmid DNA into the nuclei of growth-arrested cells. Retroviral transduction studies were performed with G1/S-arrested LTA cells or stationary-phase human primary fibroblasts. These studies demonstrated that pTP or pTP-Ad polymerase conferred nuclear import of retroviral DNA upon arrested cells when the retrovirus vector contained the corresponding binding motifs. However, pTP-mediated nuclear translocation of MoMLV DNA in nondividing cells was not sufficient for stable transduction. Additional cellular factors activated during S phase or DNA repair synthesis were required for efficient retroviral integration. PMID:10623734

  10. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins.

    PubMed

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2016-01-01

    Microcell-mediated chromosome transfer (MMCT) is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs) as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell. PMID:27271046

  11. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Dolai, Sibasish; Delgado-Martin, Cristina; Vincent, Tiffaney; Robbins, Alissa; Selvanathan, Arthavan; Ryan, Theresa; Hall, Junior; Wood, Andrew C.; Tasian, Sarah K.; Hunger, Stephen P.; Loh, Mignon L.; Mullighan, Charles G.; Wood, Brent L.; Hermiston, Michelle L.; Grupp, Stephan A.; Lock, Richard B.

    2015-01-01

    Early T-cell precursor (ETP) acute lymphoblastic leukemia (ALL) is a recently described subtype of T-ALL characterized by a unique immunophenotype and genomic profile, as well as a high rate of induction failure. Frequent mutations in cytokine receptor and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways led us to hypothesize that ETP-ALL is dependent on JAK/STAT signaling. Here we demonstrate aberrant activation of the JAK/STAT pathway in ETP-ALL blasts relative to non-ETP T-ALL. Moreover, ETP-ALL showed hyperactivation of STAT5 in response to interleukin-7, an effect that was abrogated by the JAK1/2 inhibitor ruxolitinib. In vivo, ruxolitinib displayed activity in 6 of 6 patient-derived murine xenograft models of ETP-ALL, with profound single-agent efficacy in 5 models. Ruxolitinib treatment decreased peripheral blast counts relative to pretreatment levels and compared with control (P < .01) in 5 of 6 ETP-ALL xenografts, with marked reduction in mean splenic blast counts (P < .01) in 6 of 6 samples. Surprisingly, both JAK/STAT pathway activation and ruxolitinib efficacy were independent of the presence of JAK/STAT pathway mutations, raising the possibility that the therapeutic potential of ruxolitinib in ETP-ALL extends beyond those cases with JAK mutations. These findings establish the preclinical in vivo efficacy of ruxolitinib in ETP-ALL, a biologically distinct subtype for which novel therapies are needed. PMID:25645356

  12. The conserved His8 of the Moloney murine leukemia virus Env SU subunit directs the activity of the SU-TM disulphide bond isomerase

    SciTech Connect

    Li Kejun; Zhang, Shujing; Kronqvist, Malin; Ekstroem, Maria; Wallin, Michael; Garoff, Henrik . E-mail: henrik.garoff@cbt.ki.se

    2007-04-25

    Murine leukemia virus (MLV) fusion is controlled by isomerization of the disulphide bond between the receptor-binding surface (SU) and fusion-active transmembrane subunits of the Env-complex. The bond is in SU linked to a CXXC motif. This carries a free thiol that upon receptor binding can be activated (ionized) to attack the disulphide and rearrange it into a disulphide isomer within the motif. To find out whether His8 in the conserved SPHQ sequence of Env directs thiol activation, we analyzed its ionization in MLV vectors with wtEnv and Env with His8 deleted or substituted for Tyr or Arg, which partially or completely arrests fusion. The ionization was monitored by following the pH effect on isomerization in vitro by Ca{sup 2+} depletion or in vivo by receptor binding. We found that wtEnv isomerized optimally at slightly basic pH whereas the partially active mutant required higher and the inactive mutants still higher pH. This suggests that His8 directs the ionization of the CXXC thiol.

  13. Retrovirus gene expression during the cell cycle. I. Virus production, synthesis, and expression of viral proteins in Rauscher murine leukemia virus-infected mouse cells.

    PubMed Central

    Balazs, I; Caldarella, J

    1981-01-01

    Synchronized mouse cells (JLS-V9) chronically infected with Rauscher murine leukemia virus were used to study virus production, the synthesis of gag and env precursor proteins, and the expression of env protein on the cell surface during the cell cycle. The amount of virus released into the medium by synchronized cells during a 30-min interval was determined by using the XC plaque assay and by measuring reverse transcriptase activity. The results show that virus production occurs during mitosis. Labeling of the cell surface of synchronized cells with 125I or with fluorescein-conjugated antiserum shows that the amount of gp 70env on the cell surface parallels cellular growth. Therefore, the cell cycle-dependent release of virus is not accompanied by similar variations in the amount of viral envelope protein on the cell surface. Immunoprecipitation of cells labeled with [35S]methionine, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was used to measure viral protein synthesis during the cell cycle. The rate of synthesis of gag precursor proteins show three maximums corresponding to the G1, middle S, and late S to G2 phases of the cell cycle. The rate of synthesis of env precursor proteins does not change, suggesting that in these cells the synthesis of these two gene products is controlled separately. Images PMID:7288918

  14. trans-dominant interference with virus infection at two different stages by a mutant envelope protein of Friend murine leukemia virus.

    PubMed Central

    Matano, T; Odawara, T; Ohshima, M; Yoshikura, H; Iwamoto, A

    1993-01-01

    A dominant negative mutant Friend murine leukemia virus (FMLV) env gene was cloned from an immunoselected Friend erythroleukemia cell. The mutant env had a point mutation which resulted in a Cys-to-Arg substitution at the 361st amino acid in the FMLV envelope protein (Env). The mutant Env was retained in the endoplasmic reticulum (ER) and accumulated because of its slow degradation. The NIH 3T3 cells expressing the mutant env were resistant to ecotropic Moloney MLV (MoMLV) penetration, suggesting that the mutant Env traps the ecotropic MLV receptors in the ER. When the mutant env gene was transfected into and expressed in the cells persistently infected with MoMLV, the wild-type Env was trapped in the ER, and the MoMLV production was suppressed. Thus, the mutant Env accumulating in the ER trans-dominantly and efficiently interfered with the ecotropic MLV infection at both the early and the late stages. Images PMID:8445721

  15. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins

    PubMed Central

    Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2016-01-01

    Microcell-mediated chromosome transfer (MMCT) is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs) as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell. PMID:27271046

  16. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage

    SciTech Connect

    Sorensen, Karina Dalsgaard; Kunder, Sandra; Quintanilla-Martinez, Leticia; Sorensen, Jonna; Schmidt, Joerg; Pedersen, Finn Skou . E-mail: fsp@mb.au.dk

    2007-05-25

    This study investigates the role of the proviral transcriptional enhancer for B-lymphoma induction by exogenous Akv murine leukemia virus. Infection of newborn inbred NMRI mice with Akv induced 35% plasma cell proliferations (PCPs) (consistent with plasmacytoma), 33% diffuse large B-cell lymphomas, 25% follicular B-cell lymphomas and few splenic marginal zone and small B-cell lymphomas. Deleting one copy of the 99-bp proviral enhancer sequence still allowed induction of multiple B-cell tumor types, although PCPs dominated (77%). Additional mutation of binding sites for the glucocorticoid receptor, Ets, Runx, or basic helix-loop-helix transcription factors in the proviral U3 region, however, shifted disease induction to almost exclusively PCPs, but had no major influence on tumor latency periods. Southern analysis of immunoglobulin rearrangements and ecotropic provirus integration patterns showed that many of the tumors/cell proliferations induced by each virus were polyclonal. Our results indicate that enhancer mutations weaken the ability of Akv to induce mature B-cell lymphomas prior to the plasma cell stage, whereas development of plasma cell proliferations is less dependent of viral enhancer strength.

  17. A. cantoniensis inhibits the proliferation of murine leukemia WEHI-3 cells in vivo and promotes immunoresponses in vivo.

    PubMed

    Tan, Tzu-Wei; Lin, Yuh-Tzy; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Wu, Chang-Lin; Lin, Jing-Pin; Tang, Nou-Ying; Yeh, Chin-Chung; Fan, Ming-Jen; Chung, Jing-Gung

    2009-01-01

    Ampelopsis cantoniensis (AC) has been used as a folk medicine for reducing pain in the Taiwanese population. Our previous studies have shown that the crude extract of AC induced apoptosis in human promyelocytic leukemia HL-60 cells. In this study, the in vivo effects of AC on leukemia WEHI-3 cells and immune responses such as phagocytosis and natural killer (NK) cell activity were investigated. The weights of the livers and spleens were decreased in the AC-treated groups compared to the control groups. The AC treatment increased the percentage of CD3 and CD19 marker cells in WEHI-3-injected mice, indicating that the precursors of T and B cells were inhibited. The AC treatment promoted the activity of macrophage phagocytosis in the peripheral blood mononuclear cells (PBMC) and peritoneal cells. It was found that the NK cells from mice after treatment with AC can kill the YAC-1 target cells. Therefore, the AC treatment increased NK cell activity. In conclusion, AC can affect WEHI-3 cells in vivo and promote macrophage and NK cell activities. PMID:19567391

  18. Induction of murine p30 by superinfecting herpesviruses.

    PubMed Central

    Reed, C L; Rapp, F

    1976-01-01

    The interaction of endogenous type C viruses with superinfecting herpes simplex virus type 2 (HSV-2) was investigated in two murine cell lines. Replication of HSV-2 was suboptimal in random-bred Swiss/3T3A cells and, in initial experiments, infection with a low virus-to-cell ratio resulted in carrier cultures with enhanced murine leukemia virus (MuLV) p30 expression. Immunofluorescence tests with Swiss/3T3A cells productively infected with HSV-2 also showed HSV-associated cytoplasmic antigens and enhanced MuLV p30 expression when compared with uninfected controls. Inactivation of HSV-2 with UV light did not abolish this reaction, although the number of cells expressing p30 was reduced. HSV-2 replicated more efficiently in a line of NIH Swiss cells (N c1 A c1 10). These cells are not readily inducible for type C expression by conventional methods; however, untreated and UV-inactivated HSV-2 induced both HSV-2-associated antigens and MuLV p30 in these cells. Although the Birch strain of human cytomegalovirus induced MuLV p30, neither mouse cytomegalovirus nor vesicular stomatitis virus induced MuLV p30 in either cell line. Images PMID:184296

  19. Virus-induced gene complementation in tomato

    PubMed Central

    Kong, Jinhua; Chen, Weiwei; Shen, Jiajia; Qin, Cheng; Lai, Tongfei; Zhang, Pengcheng; Wang, Ying; Wu, Chaoqun; Yang, Xin; Hong, Yiguo

    2013-01-01

    Virus-induced gene complementation (VIGC), a plant virus technology based on Potato virus X for transient overexpression of endogenous genes complemented tomato mutants, resulting in non-ripening fruits to ripen. This efficient “gain-of-function” approach involves no stable transformation, and reveals a fruit-specific transcriptional network that may exist among key transcription factors in modulating tomato ripening. Thus, VIGC represents a novel and feasible strategy for gene functional analysis in plants. PMID:24305652

  20. New Class of Leukemogenic Ecotropic Recombinant Murine Leukemia Virus Isolated from Radiation-Induced Thymomas of C57BL/6 Mice

    PubMed Central

    Rassart, E.; Sankar-Mistry, P.; Lemay, G.; DesGroseillers, L.; Jolicoeur, P.

    1983-01-01

    We previously reported the establishment of several lymphoid cell lines from X-ray-induced thymomas of C57BL/Ka mice, and all, except one, produce retroviruses (P. Sankar-Mistry and P. Jolicoeur, J. Virol.35:270-275, 1980). Biological characterization of five of these new primary radiation leukemia viruses (RadLVs) indicated that they had a B-tropic, fibrotropic, and ecotropic host range and were leukemogenic when reinjected into C57BL/Ka newborn mice. The leukemogenic potential of one isolate (G6T2) was further assessed and shown to be retained after prolonged passaging on fibroblasts in vitro. Restriction endonuclease analysis of the DNA of four of our new RadLV isolates (G6T2, Ti-7, Ti-8, and Ti-9) revealed that G6T2 and Ti-7 murine leukemia virus (MuLV) genomes had identical restriction maps, whereas Ti-8 and Ti-9 genomes were different from each other and from the G6T2 and Ti-7 genomes. The physical maps of these genomes were similar to that of known ecotropic MuLV genomes (including the C57BL/Ka endogenous ecotropic MuLV) within their long terminal repeats, env, the right portion of pol, and the left portion of gag. However, a region covering the end of gag and the beginning of pol was different and showed several similarities with xenotropic MuLV genomes of BALB/c, AKR, and C58 mice previously mapped. Our results suggest that these primary RadLV genomes are recombinants between the parental ecotropic MuLV genome and a nonecotropic (xenotropic) sequence. This nonecotropic gag-pol region might be important in conferring the leukemogenic potential to these isolates. Therefore, these RadLVs appear to form a new class of leukemogenic recombinant MuLVs recovered from leukemic tissues of mice. They appear to be distinct from the recombinant AKR mink cell focus-inducing MuLVs which have a dual-tropic host range and harbor xenotropic env sequences. To further study the leukemogenic potential of these RadLVs, the genome of one of them (G6T2) was cloned in Charon 21A

  1. Induction of donor-type chimerism in murine recipients of bone marrow allografts by different radiation regimens currently used in treatment of leukemia patients

    SciTech Connect

    Salomon, O.; Lapidot, T.; Terenzi, A.; Lubin, I.; Rabi, I.; Reisner, Y. )

    1990-11-01

    Three radiation protocols currently used in treatment of leukemia patients before bone marrow transplantation (BMT) were investigated in a murine model (C57BL/6----C3H/HeJ) for BM allograft rejection. These include (a) a single dose of total body irradiation (8.5 Gy TBI delivered at a dose rate of 0.2 Gy/min), (b) fractionated TBI 12 Gy administered in six fractions, 2 Gy twice a day in 3 days, delivered at a dose rate of 0.1 Gy/min, and (c) hyperfractionated TBI (14.4 Gy administered in 12 fractions, 1.2 Gy three times a day in 3 days, delivered at a dose rate of 0.1 Gy/min). Donor-type chimerism 6 to 8 weeks after BMT and hematologic reconstitution on day 12 after BMT found in these groups were compared with results obtained in mice conditioned with 8 Gy TBI delivered at a dose rate of 0.67 Gy/min, routinely used in this murine model. The results in both parameters showed a marked advantage for the single dose 8.5 Gy TBI over all the other treatments. This advantage was found to be equivalent to three- to fourfold increment in the BM inoculum when compared with hyperfractionated radiation, which afforded the least favorable conditions for development of donor-type chimerism. The fractionated radiation protocol was equivalent in its efficacy to results obtained in mice irradiated by single-dose 8 Gy TBI, both of which afforded a smaller but not significant advantage over the hyperfractionated protocol. This model was also used to test the effect of radiation dose rate on the development of donor-type chimerism. A significant enhancement was found after an increase in dose rate from 0.1 to 0.7 Gy/min. Further enhancement could be achieved when the dose rate was increased to 1.3 Gy/min, but survival at this high dose rate was reduced.

  2. Atomic force microscopy investigation of fibroblasts infected with wild-type and mutant murine leukemia virus (MuLV).

    PubMed Central

    Kuznetsov, Yurii G; Datta, Shoibal; Kothari, Natantara H; Greenwood, Aaron; Fan, Hung; McPherson, Alexander

    2002-01-01

    NIH 3T3 cells were infected in culture with the oncogenic retrovirus, mouse leukemia virus (MuLV), and studied using atomic force microscopy (AFM). Cells fixed with glutaraldehyde alone, and those postfixed with osmium tetroxide, were imaged under ethanol according to procedures that largely preserved their structures. With glutaraldehyde fixation alone, the lipid bilayer was removed and maturing virions were seen emerging from the cytoskeletal matrix. With osmium tetroxide postfixation, the lipid bilayer was maintained and virions were observable still attached to the cell surfaces. The virions on the cell surfaces were imaged at high resolution and considerable detail of the arrangement of protein assemblies on their surfaces was evident. Infected cells were also labeled with primary antibodies against the virus env surface protein, followed by secondary antibodies conjugated with colloidal gold particles. Other 3T3 cells in culture were infected with MuLV containing a mutation in the gPr80(gag) gene. Those cells were observed by AFM not to produce normal MuLV on their surfaces, or at best, only at very low levels. The cell surfaces, however, became covered with tubelike structures that appear to result from a failure of the virions to properly undergo morphogenesis, and to fail in budding completely from the cell's surfaces. PMID:12496133

  3. Evaluation of infectivity and reverse transcriptase real-time polymerase chain reaction assays for detection of xenotropic murine leukemia virus used in virus clearance validation.

    PubMed

    Anwaruzzaman, Mohammad; Wang, Wensheng; Wang, Eunice; Erfe, Lolita; Lee, Janice; Liu, Shengjiang

    2015-07-01

    Infectivity and reverse transcriptase quantitative real-time polymerase chain reaction (qRT-PCR) assays have been optimized and validated for xenotropic murine leukemia virus (X-MuLV) detection. We have evaluated the assays systematically with regard to specificity, linearity, lower limit of detection (LLOD), lower limit of quantification (LLOQ), and precision. Both assays are specific for X-MuLV detection, with a linear detection range of 0.6-5.6 log(10) TCID(50)/mL for the infectivity assay, and 1.4-6.5 log(10) particles/mL for the qRT-PCR assay. The LLOD and LLOQ of the infectivity and the qRT-PCR assays are determined as 0.5 and 1.0 log(10)/mL, and 1.4 and 2.2 log(10)/mL. The inter-assay repeatability of qRT-PCR assay (4.2% coefficient of variation [CV]) is higher than the infectivity assay (7.9% CV). We have shown that both assays are closely correlated (r = 0.85, P < 0.05, n = 22). The particle/infectivity ratio is determined as 66. Both assays were applied to evaluate virus removal using virus clearance samples of chromatographic and filtration processes. Here, we have demonstrated that the qRT-PCR assay is much faster in testing and is approximately 8-fold more sensitive than the infectivity assay. Therefore, the qRT-PCR assay can replace the infectivity assay in many cases, but both assays are complementary in elucidating the mechanism of virus inactivation and removal in virus clearance validation. PMID:25997567

  4. The neurovirulent determinants of ts1, a paralytogenic mutant of Moloney murine leukemia virus TB, are localized in at least two functionally distinct regions of the genome.

    PubMed Central

    Yuen, P H; Tzeng, E; Knupp, C; Wong, P K

    1986-01-01

    To better understand the molecular mechanism involved in retrovirus ts1-induced paralytic disease in mice, we constructed a panel of recombinant viruses between ts1 and the wild-type viruses Moloney murine leukemia virus (MoMuLV) and MoMuLV-TB, a strain of MoMuLV. These recombinant viruses were constructed in an attempt to identify the sequence(s) in the genome of ts1 which contains the critical mutation(s) responsible for the neurovirulence of ts1. Two functionally distinct sequences in the genome of ts1 were found to be responsible for its paralytogenic ability. One of these sequences, the 0.77-kilobase-pair XbaI-BamHI (nucleotides 5765 to 6537) fragment which encodes the 5' half of gp70 and 11 base pairs upstream of the env gene coding sequence, determines the inability of ts1 to process Pr80env. The other sequence, the 2.30-kilobase-pair BamHI-PstI (nucleotides 538 to 8264 and 1 to 567) fragment, which comprises nearly two-thirds of the env gene, the long terminal repeat, and the 5' noncoding sequence, determines the enhanced neurotropism of ts1. Replacement of any one of these two regions with the homologous region from either one of the two wild-type viruses resulted in recombinant viruses which either totally failed to induce paralysis or induced a greatly attenuated form of paresis in some of the infected mice. Images PMID:3712556

  5. Susceptibility of muridae cell lines to ecotropic murine leukemia virus and the cationic amino acid transporter 1 viral receptor sequences: implications for evolution of the viral receptor.

    PubMed

    Kakoki, Katsura; Shinohara, Akio; Izumida, Mai; Koizumi, Yosuke; Honda, Eri; Kato, Goro; Igawa, Tsukasa; Sakai, Hideki; Hayashi, Hideki; Matsuyama, Toshifumi; Morita, Tetsuo; Koshimoto, Chihiro; Kubo, Yoshinao

    2014-06-01

    Ecotropic murine leukemia viruses (Eco-MLVs) infect mouse and rat, but not other mammalian cells, and gain access for infection through binding the cationic amino acid transporter 1 (CAT1). Glycosylation of the rat and hamster CAT1s inhibits Eco-MLV infection, and treatment of rat and hamster cells with a glycosylation inhibitor, tunicamycin, enhances Eco-MLV infection. Although the mouse CAT1 is also glycosylated, it does not inhibit Eco-MLV infection. Comparison of amino acid sequences between the rat and mouse CAT1s shows amino acid insertions in the rat protein near the Eco-MLV-binding motif. In addition to the insertion present in the rat CAT1, the hamster CAT1 has additional amino acid insertions. In contrast, tunicamycin treatment of mink and human cells does not elevate the infection, because their CAT1s do not have the Eco-MLV-binding motif. To define the evolutionary pathway of the Eco-MLV receptor, we analyzed CAT1 sequences and susceptibility to Eco-MLV infection of other several murinae animals, including the southern vole (Microtus rossiaemeridionalis), large Japanese field mouse (Apodemus speciosus), and Eurasian harvest mouse (Micromys minutus). Eco-MLV infection was enhanced by tunicamycin in these cells, and their CAT1 sequences have the insertions like the hamster CAT1. Phylogenetic analysis of mammalian CAT1s suggested that the ancestral CAT1 does not have the Eco-MLV-binding motif, like the human CAT1, and the mouse CAT1 is thought to be generated by the amino acid deletions in the third extracellular loop of CAT1. PMID:24469466

  6. A deletion mutation in the 5' part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins.

    PubMed Central

    Crawford, S; Goff, S P

    1985-01-01

    Deletion mutations in the 5' part of the pol gene of Moloney murine leukemia virus were generated by restriction enzyme site-directed mutagenesis of cloned proviral DNA. DNA sequence analysis indicated that one such deletion was localized entirely within the 5' part of the pol gene, did not affect the region encoding reverse transcriptase, and preserved the translational reading frame downstream of the mutation. The major viral precursor polyproteins (Pr65gag, Pr200gag-pol, and gPr80env) were synthesized at wild-type levels in cell lines carrying the mutant genome. These cell lines assembled and released wild-type levels of virion particles into the medium. Cleavage of both Pr65gag and Pr200gag-pol precursors to the mature proteins was completely blocked in the mutant virions. Surprisingly, these virions contained high levels of active reverse transcriptase; examination of the endogenous reverse transcription products synthesized by the mutant virions revealed normal amounts of minus-strand strong-stop DNA, indicating that the RNA genome was packaged and that reverse transcription in detergent-permeabilized virions was not significantly impaired. Processing of gPr80env to gP70env and P15E was not affected by the mutation, but cleavage of P15E to P12E was not observed. The mutant particles were poorly infectious; analysis indicated that infection was blocked at an early stage. The data are consistent with the idea that the 5' part of the pol gene encodes a protease directly responsible for processing Pr65gag, and possibly Pr200gag-pol, to the structural virion proteins. It appears that cleavage of the gag gene product is not required for budding and release of virions and that complete processing of the pol gene product to the mature form of reverse transcriptase is not required for its functional activation. Images PMID:3882995

  7. The Homopolyadenylate and Adjacent Nucleotides at the 3′-Terminus of 30-40S RNA Subunits in the Genome of Murine Sarcoma-Leukemia Virus

    PubMed Central

    Rho, Hyune Mo; Green, Maurice

    1974-01-01

    Adenosine is the major 3′OH-terminal nucleoside of the 60-70S RNA genome of the murine sarcoma-leukemia virus, its 30-40S RNA subunits, and the poly(A) segments derived by RNase treatment of both RNA species, as determined by periodate oxidation-[3H]-borohydride reduction. The binding 30-40S RNA to oligo(dT)-cellulose suggests that most viral RNA subunits contain poly(A). The molecular weight of poly(A) derived from viral RNA by digestion with RNase and purified by affinity chromatography is 64,000-68,000, as determined by gel electrophoresis. From the size of poly(A) and the poly(A) content of viral RNA (1.6%), it is estimated that there is about one poly(A) segment for each viral 30-40S RNA subunit. The results of 3′-termini labeling with [3H]borohydride, in vivo labeling with [3H]adenosine, and base composition of [32P]poly(A) indicate that a homopoly(A) segment is located at the 3′-end of a 30-40S RNA subunit. The homogeneous poly(A) segments isolated from RNase T1 digests of 60-70S [32P]RNA consist of one cytidylate, one uridylate, and about 190 adenylate residues, while those isolated from RNase A digests consist exclusively of adenylate residues. These results indicate that -G(C,U)A190AOH is the 3′-terminal nucleotide sequence of the viral 30-40S RNA subunits. PMID:4366765

  8. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner.

    PubMed

    Erikson, Elina; Wratil, Paul R; Frank, Martin; Ambiel, Ina; Pahnke, Katharina; Pino, Maria; Azadi, Parastoo; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Meier, Chris; Schnaar, Ronald L; Crocker, Paul R; Reutter, Werner; Keppler, Oliver T

    2015-11-01

    Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction. PMID:26370074

  9. Hydrodynamic diameters of murine mammary, Rous sarcoma, and feline leukemia RNA tumor viruses: studies by laser beat frequency light-scattering spectroscopy and electron microscopy.

    PubMed Central

    Salmeen, I; Rimai, L; Luftig, R B; Libes, L; Retzel, E; Rich, M; McCormick, J J

    1976-01-01

    We have studied purified preparations of murine mammary tumor virus (MuMTV), Rous sarcoma virus (RSV; Prague strain), and feline leukemia virus (FeLV) by laser beat frequency light-scattering spectroscopy, ultra-centrifugation, and electron microscopy. The laser beat frequency light-scattering spectroscopy measurements yield the light-scattering intensity, weighted diffusion coefficients. The corresponding average hydrodynamic diameters, as calculated from the diffusion coefficients by the Stokes-Einstein equation for MuMTV, RSV, and FeLV, respectively, are: 144 +/- 6 nm, 147 +/- 7 nm, and 168 +/- 6 nm. Portions of the purified RSV and MuMTV preparations, from which light-scattering samples were obtained, and portions of the actual FeLV light-scattering samples were examined by negatively stained, catalase crystal-calibrated electron microscopy. The light-scattering intensity weighted averages of the electron micrograph size distributions were calculated by weighing each size by its theoretical relative scattering intensity, as obtained from published tables computed according to the Mie scattering theory. These averages and the experimentally observed hydrodynamic diameters agreed to within +/- 5%, which is the combined experimental error in the electron microscopic and light-scattering techniques. We conclude that the size distributions of singlet particles observed in the electron micrographs are statistically true representations of the sedimentation-purified solution size distributions. The sedimentation coefficients (S20, w) for MuMTV, RSV, and FeLV, respectively, are: 595 +/- 29S, 689 +/- 35S, and 880 +/- 44S. Virus partial specific volumes were taken as the reciprocals of the buoyant densities, determined in sucrose density gradients. The Svedberg equation was used to calculate particle weights from the measured diffusion and sedimentation coefficients. The particle weights for MuMTV, RSV, and FeLV, respectively, are: (3.17 +/- 0.32) x 10(8), (4.17 +/- 0

  10. Negative regulatory element associated with potentially functional promoter and enhancer elements in the long terminal repeats of endogenous murine leukemia virus-related proviral sequences.

    PubMed Central

    Ch'ang, L Y; Yang, W K; Myer, F E; Yang, D M

    1989-01-01

    Three series of recombinant DNA clones were constructed, with the bacterial chloramphenicol acetyltransferase (CAT) gene as a quantitative indicator, to examine the activities of promoter and enhancer sequence elements in the 5' long terminal repeat (LTR) of murine leukemia virus (MuLV)-related proviral sequences isolated from the mouse genome. Transient CAT expression was determined in mouse NIH 3T3, human HT1080, and mink CCL64 cultured cells transfected with the LTR-CAT constructs. The 700-base-pair (bp) LTRs of three polytropic MuLV-related proviral clones and the 750-bp LTRs of four modified polytropic proviral clones, in complete structures either with or without the adjacent downstream sequences, all showed very little or negligible activities for CAT expression, while ecotropic MuLV LTRs were highly active. The MuLV-related LTRs were divided into three portions and examined separately. The 3' portion of the MuLV-related LTRs that contains the CCAAC and TATAA boxes was found to be a functional promoter, being about one-half to one-third as active as the corresponding portion of ecotropic MuLV LTRs. A MboI-Bg/II fragment, representing the distinct 190- to 200-bp inserted segment in the middle, was found to be a potential enhancer, especially when examined in combination with the simian virus 40 promoter in CCL64 cells. A PstI-MboI fragment of the 5' portion, which contains the protein-binding motifs of the enhancer segment as well as the upstream LTR sequences, showed moderate enhancer activities in CCL6 cells but was virtually inactive in NIH 3T3 cells and HT1080 cells; addition of this fragment to the ecotropic LTR-CAT constructs depressed CAT expression. Further analyses using chimeric LTR constructs located the presence of a strong negative regulatory element within the region containing the 5' portion of the enhancer and the immediate upstream sequences in the MuLV-related LTRs. Images PMID:2542587

  11. Murine acute leukemia cell line with megakaryocytic differentiation (MK-8057) induced by whole-body irradiation in C sup 3 H/He mice: Cytological properties and kinetics of its leukemic stem cells

    SciTech Connect

    Hirabayashi, Y.; Inoue, T.; Yoshida, K.; Sasaki, H.; Kubo, S.; Kanisawa, M.; Seki, M. )

    1991-01-01

    Five cases of murine leukemia with megakaryocytic differentiation were observed among the 417 cases of radiation-induced leukemias which developed in 30% of C{sup 3}H/HeMs mice exposed at 8 to 10 weeks to 0.5 to 5 gy total body irradiation. Cells from individual leukemic colonies in the spleen of the irradiated mice, and cells from colonies in methylcellulose (MC) culture in vitro, derived from one of these leukemias, MK-8057, were injected into mice; both types of cells caused the deaths of the recipient mice by inducing the same type of leukemia. MK-8057 can be maintained in Dexter-type liquid culture with a feeder layer of irradiated bone marrow cells. There was a linear reciprocal relationship between the increasing number of MK-8057 cells injected versus the survival of the recipient mice. A reciprocal relationship also was seen between an increasing number of leukemic stem cells, corresponding to the number of MK-8057 cells, and the survival of mice injected with MK-8057. Giant nuclear megakaryocytes developed during the course of colony growth in the spleen as they did in the MC culture. Such megakaryocytes were acetylcholinesterase positive, whereas leukemic cells in the peripheral blood showed no sign of platelet production nor of a positive reaction to acetylcholinesterase. Cells maintained in culture were entirely positive in platelet glycoprotein IIb/IIIa when anti-human antibody was used. The larger cells in a splenic cell suspension derived from a moribund mouse were separated and enriched by velocity sedimentation using centrifugal elutriation (CE), and then subjected to flow cytometry using propidium iodide staining. Cells with up to 32N-DNA content were detected. After separating MK-8057 by counter-flow CE, the larger cell fraction produced more leukemic colonies when injected into irradiated mice than did the small cell fraction.

  12. Genome structure of mink cell focus-forming murine leukemia virus in epithelial mink lung cells transformed vitro by iododeoxyuridine-induced C3H/MuLV cells.

    PubMed Central

    Rapp, U R; Birkenmeier, E; Bonner, T I; Gonda, M A; Gunnell, M

    1983-01-01

    We characterized mink cell focus-forming murine leukemia viruses that were isolated from C3H/MCA-5 cells after induction with 5-iododeoxyuridine in culture. Mink lung epithelial cells malignantly transformed in vitro by induced virus were the source of four molecular clones of mink cell focus-forming virus. CI-1, CI-2, CI-3, and CI-4. Three clones, CI-1, CI-2, and CI-3, had full-length mink cell focus-forming viral genomes, one of which (CI-3) was infectious. In addition, we obtained a defective viral genome (CI-4) which had a deletion in the envelope gene. A comparison between the envelope genes of CI-4 and those of spleen focus-forming virus by heteroduplex mapping showed close homology in the substitution region and defined the deletion as being identical to the p15E deletion of spleen focus-forming virus. The recombinant mink cell focus-forming genomes are not endogenous in C3H/MCA-5 cells and therefore must have been formed in culture after induction by 5-iododeoxyuridine. CI-3, the infectious clone of mink cell focus-forming murine leukemia virus, was dualtropic, and mink cells infected with CI-3 were altered in their response to epidermal growth factor. In the presence of epidermal growth factor at 10 ng/ml, uninfected mink cells retained their epithelial morphology in monolayer culture and did not form colonies in soft agar. In contrast, CI-3 virus-infected mink cells grew with fibroblastic morphology in monolayer culture and showed an increased growth rate in soft agar in the presence of epidermal growth factor. Images PMID:6300431

  13. Lessons from T cell responses to virus induced tumours for cancer eradication in general.

    PubMed

    Melief, C J; Kast, W M

    1992-01-01

    Immunotherapy of virus induced tumours by adoptive transfer of virus specific cytotoxic T cells (CTL) is now feasible in experimental murine systems. These CTL recognize viral peptide sequences of defined length presented in the groove of MHC class I molecules. Effective eradication of large tumour masses requires coadministration of IL-2. In essence, T cell immunity against virus induced tumours does not differ from anti-viral T cell immunity in general. Tumour escape strategies are numerous but, in various instances, can be counteracted by defined measures. Initiation of CTL responses against poorly immunogenic non-virus induced tumours (the majority of human cancer) requires novel strategies to overcome T cell inertia. Rather than waiting to see whether tumour specific CTL (against unknown antigens) can be cultured from TIL, we propose an alternative strategy in which CTL are raised against target molecules of choice, including differentiation antigens of restricted tissue distribution (autoantigens) or mutated/overexpressed oncogene products. The various steps proposed include: (a) identification of target molecules of choice; (b) identification in these target molecules of MHC allele specific peptide motifs involved in peptide binding to MHC molecules; (c) evaluation of actual binding of such peptides to specific MHC class I molecules; (d) in vitro CTL response induction by such peptides, presented either by highly efficient antigen presenting cells (such as processing defective cells, which carry empty MHC class I molecules) loaded with a single peptide or by dendritic cells, both cell types being capable of primary CTL response induction in vitro and (e) adoptive transfer of tumour specific CTL generated in vivo or, more conveniently, vaccination with immunodominant peptides. The latter possibility seems to be feasible because peptide vaccination with a single immunodominant viral peptide can install CTL memory and confer protection against lethal virus

  14. Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25.

    PubMed

    Zhang, Zhuo; Zhang, Meili; Garmestani, Kayhan; Talanov, Vladimir S; Plascjak, Paul S; Beck, Barbara; Goldman, Carolyn; Brechbiel, Martin W; Waldmann, Thomas A

    2006-08-01

    Adult T-cell leukemia (ATL) consists of an overabundance of T cells, which express CD25. Therapeutic efficacy of astatine-211 ((211)At)-labeled murine monoclonal antibody 7G7/B6 alone and in combination with daclizumab was evaluated in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice given injections of MET-1 human T-cell leukemia cells. Daclizumab and 7G7/B6 are directed toward different epitopes of CD25. Either a single dose of 12 microCi (0.444 MBq) (211)At-7G7/B6 per mouse given intravenously or receptor-saturating doses of daclizumab given at 100 microg weekly for 4 weeks intravenously inhibited tumor growth as monitored by serum levels of human beta-2 microglobulin (beta(2)mu) and by prolonged survival of leukemia-bearing mice compared with the control groups (P < .001). The combination of 2 agents enhanced the antitumor effect when compared with groups treated with 12 microCi (0.444 MBq) of (211)At-7G7/B6 (P < .05) or daclizumab alone (P < .05). The median survival duration of the PBS group was 62.6 days and 61.5 days in the radiolabeled nonspecific antibody (211)At-11F11-treated group. In contrast, 91% of mice in the combination group survived through day 94. These results that demonstrate a significantly improved therapeutic efficacy by combining (211)At-7G7/B6 with daclizumab support a clinical trial of this regimen in patients with ATL. PMID:16569769

  15. Leukemia -- Eosinophilic

    MedlinePlus

    ... Leukemia - Eosinophilic: Overview Request Permissions Print to PDF Leukemia - Eosinophilic: Overview Approved by the Cancer.Net Editorial ... Platelets that help the blood to clot About leukemia Types of leukemia are named after the specific ...

  16. Expression of Interferon Consensus Sequence Binding Protein (ICSBP) Is Downregulated in Bcr-Abl-Induced Murine Chronic Myelogenous Leukemia-Like Disease, and Forced Coexpression of ICSBP Inhibits Bcr-Abl-Induced Myeloproliferative Disorder

    PubMed Central

    Hao, Sheryl X.; Ren, Ruibao

    2000-01-01

    Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder resulting from the neoplastic transformation of a hematopoietic stem cell. The majority of cases of CML are associated with the (9;22) chromosome translocation that generates the bcr-abl chimeric gene. Alpha interferon (IFN-α) treatment induces hematological remission and prolongs life in 75% of CML patients in the chronic phase. It has been shown that mice deficient in interferon consensus sequence binding protein (ICSBP), a member of the interferon regulatory factor family, manifest a CML-like syndrome. We have shown that expression of Bcr-Abl in bone marrow (BM) cells from 5-fluorouracil (5-FU)-treated mice by retroviral transduction efficiently induces a myeloproliferative disease in mice resembling human CML. To directly test whether icsbp can function as a tumor suppressor gene, we examined the effect of ICSBP on Bcr-Abl-induced CML-like disease using this murine model for CML. We found that expression of the ICSBP protein was significantly decreased in Bcr-Abl-induced CML-like disease. Forced coexpression of ICSBP inhibited the Bcr-Abl-induced colony formation of BM cells from 5-FU-treated mice in vitro and Bcr-Abl-induced CML-like disease in vivo. Interestingly, coexpression of ICSBP and Bcr-Abl induced a transient B-lymphoproliferative disorder in the murine model of Bcr-Abl-induced CML-like disease. Overexpression of ICSBP consistently promotes rather than inhibits Bcr-Abl-induced B lymphoproliferation in a murine model where BM cells from non-5-FU-treated donors were used, indicating that ICSBP has a specific antitumor activity toward myeloid neoplasms. We also found that overexpression of ICSBP negatively regulated normal hematopoiesis. These data provide direct evidence that ICSBP can act as a tumor suppressor that regulates normal and neoplastic proliferation of hematopoietic cells. PMID:10648600

  17. Leukemia - B-Cell Prolymphocytic Leukemia and Hairy Cell Leukemia

    MedlinePlus

    ... Leukemia: Introduction Request Permissions Print to PDF Leukemia - B-cell Prolymphocytic Leukemia and Hairy Cell Leukemia: Introduction ... Research and Advocacy Survivorship Blog About Us Leukemia - B-cell Prolymphocytic Leukemia and Hairy Cell Leukemia Guide ...

  18. Effects of 28Si Ions, 56Fe Ions, and Protons on the Induction of Murine Acute Myeloid Leukemia and Hepatocellular Carcinoma

    PubMed Central

    Weil, Michael M.; Ray, F. Andrew; Genik, Paula C.; Yu, Yongjia; McCarthy, Maureen; Fallgren, Christina M.; Ullrich, Robert L.

    2014-01-01

    Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.1, 0.2, 0.4, or 1 Gy of 300 MeV/n 28Si ions, 600 MeV/n 56Fe ions or 1 or 2 Gy of protons simulating the 1972 solar particle event (1972SPE) at the NASA Space Radiation Laboratory. Additional mice were irradiated with 137Cs gamma rays at doses of 1, 2, or 3 Gy. All groups were followed until they were moribund or reached 800 days of age. We found that 28Si or 56Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia. However, 28Si or 56Fe ion irradiated mice had a much higher incidence of hepatocellular carcinoma than gamma ray irradiated or proton irradiated mice. These data demonstrate a clear difference in the effects of these HZE ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. Also seen in this study was an increase in metastatic hepatocellular carcinoma in the 28Si and 56Fe ion irradiated mice compared with those exposed to gamma rays or 1972SPE protons, a finding with important implications for setting radiation exposure limits for space-flight crew members. PMID:25126721

  19. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma.

    PubMed

    Weil, Michael M; Ray, F Andrew; Genik, Paula C; Yu, Yongjia; McCarthy, Maureen; Fallgren, Christina M; Ullrich, Robert L

    2014-01-01

    Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.1, 0.2, 0.4, or 1 Gy of 300 MeV/n 28Si ions, 600 MeV/n 56Fe ions or 1 or 2 Gy of protons simulating the 1972 solar particle event (1972SPE) at the NASA Space Radiation Laboratory. Additional mice were irradiated with 137Cs gamma rays at doses of 1, 2, or 3 Gy. All groups were followed until they were moribund or reached 800 days of age. We found that 28Si or 56Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia. However, 28Si or 56Fe ion irradiated mice had a much higher incidence of hepatocellular carcinoma than gamma ray irradiated or proton irradiated mice. These data demonstrate a clear difference in the effects of these HZE ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. Also seen in this study was an increase in metastatic hepatocellular carcinoma in the 28Si and 56Fe ion irradiated mice compared with those exposed to gamma rays or 1972SPE protons, a finding with important implications for setting radiation exposure limits for space-flight crew members. PMID:25126721

  20. Virus-Induced Gene Silencing in Hexaploid Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional genomics analysis in hexaploid wheat is greatly impeded by the genetic redundancy of polyploidy and the difficulties in generating large numbers of transgenic plants required in insertional mutagenesis strategies. Virus-induced gene silencing (VIGS), however, is a strategy for creating g...

  1. Virus-Induced Gene Silencing in Ornametal Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-Induced Gene Silencing (VIGS) provides an attractive tool for high throughput analysis of the functional effects of gene knock-down. Virus genomes are engineered to include fragments of target host genes, and the infected plant recognizes and silences the target genes as part of its viral defe...

  2. Virus-induced gene silencing (VIGS) in barley seedling leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is one of the most potent reverse genetics technologies for gene functional characterization. This method exploits a dsRNA-mediated antiviral defense mechanism in plants. Using this method allows researchers to generate rapid phenotypic data in a relatively rapid ...

  3. Measles Virus Induces Functional TRAIL Production by Human Dendritic Cells

    PubMed Central

    Vidalain, Pierre-Olivier; Azocar, Olga; Lamouille, Barbara; Astier, Anne; Rabourdin-Combe, Chantal; Servet-Delprat, Christine

    2000-01-01

    Measles virus infection induces a profound immunosuppression that can lead to serious secondary infections. Here we demonstrate that measles virus induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression in human monocyte-derived dendritic cells. Moreover, measles virus-infected dendritic cells are shown to be cytotoxic via the TRAIL pathway. PMID:10590149

  4. Virus-Induced gene silencing in ornamental plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-Induced Gene Silencing (VIGS) provides an attractive tool for high throughput analysis of the functional effects of gene knock-down. Virus genomes are engineered to include fragments of target host genes, and the infected plant recognizes and silences the target genes as part of its viral defe...

  5. Nucleotide sequences of gag-pol regions that determine the Fv-1 host range property of BALB/c N-tropic and B-tropic murine leukemia viruses

    SciTech Connect

    Ou, C.Y.; Boone, L.R.; Koh, C.K.; Tennant, R.W.; Yang, W.K.

    1983-12-01

    Previously, in virto recombinant DNA studies demonstrated that genetic determinants of N-tropism and B-tropism, or Fv-1-related host range properties of murine leukemia viruses, were located in a BamHI-HindIII DNA segment derived from the 5' portion of the coloned viral genome. We sequenced this segment and its immediate 5' region from cloned DNA of two BALB/c mouse C-type viruses (WN1802N and WN1802B) and found base differences at 12 positions out of the otherwise identical 1390-base-pair sequences. Analysis of the most likely reading frame showed that 6 of the 12 base differences would result in four encoded amino acid changes, three of which occur at positions 109 (glutamine in WN1802N versus threonine in WN1802B), 110 (arginine in WN1802N versus glutamic acid in WN1802B), and 159 (glutamic acid in WN1802N versus glycine in WN1802B) of the p30 protein. The remaining one is located at position 36 (threonine in WN1802N versus isoleucine in WN1802B) of the viral polymerase protein. Significant conformational alteration of the p30 protein could be predicted from these amino acid changes.

  6. Nucleotide sequences of gag-pol regions that determine the Fv-1 host range property of BALB/c N-tropic and B-tropic murine leukemia viruses.

    PubMed Central

    Ou, C Y; Boone, L R; Koh, C K; Tennant, R W; Yang, W K

    1983-01-01

    Previously, in vitro recombinant DNA studies demonstrated that genetic determinants of N-tropism and B-tropism, or Fv-1-related host range properties of murine leukemia viruses, were located in a BamHI-HindIII DNA segment derived from the 5' portion of the cloned viral genome. We sequenced this segment and its immediate 5' region from cloned DNA of two BALB/c mouse C-type viruses (WN1802N and WN1802B) and found base differences at 12 positions out of the otherwise identical 1,390-base-pair sequences. Analysis of the most likely reading frame showed that 6 of the 12 base differences would result in four encoded amino acid changes, three of which occur at positions 109 (glutamine in WN1802N versus threonine in WN1802B), 110 (arginine in WN1802N versus glutamic acid in WN1802B), and 159 (glutamic acid in WN1802N versus glycine in WN1802B) of the p30 protein. The remaining one is located at position 36 (threonine in WN1802N versus isoleucine in WN1802B) of the viral polymerase protein. Significant conformational alteration of the p30 protein could be predicted from these amino acid changes. PMID:6313971

  7. Localization of the leukemogenic determinants of SL3-3, an ecotropic, XC-positive murine leukemia virus of AKR mouse origin.

    PubMed Central

    Lenz, J; Haseltine, W A

    1983-01-01

    SL3-3 is a potent leukemogenic retrovirus that closely resembles the non-leukemogenic virus Akv. Both viruses were isolated from AKR mice, have ecotropic host ranges, and form plaques in the XC assay. They differ at only 1 to 2% of the nucleotides in the viral genomes but differ markedly in virulence properties. SL3-3 induces leukemia in a high percentage of inoculated AKR, C3H, CBA, and NFS mice, whereas Akv does not induce disease in any of these strains. To determine which region of the genome accounts for the leukemogenic potential of SL3-3, we constructed recombinant genomes between molecular clones of SL3-3 and Akv. Recombinant, viral DNA genomes were cloned and then were transfected onto NIH 3T3 fibroblasts to generate infectious virus. The recombinant viruses were tested for leukemogenicity in AKR/J, CBA/J, and C3Hf/Bi mice. We localized the primary leukemogenic determinant to a 3.8-kilobase fragment of the SL3-3 genome containing the viral long terminal repeat, 5' untranslated sequences, gag gene, and 5', 30% of the pol gene. Reciprocal recombinants containing the equivalent region from Akv, linked to the env gene and the remainder of the pol gene from SL3-3, did not induce leukemia. We conclude that the primary virulence determinant of SL3-3 lies outside the region of the genome that encodes the envelope proteins gp70 and p15E. PMID:6312068

  8. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    SciTech Connect

    Price, E.M. ); Ratnam, M.; Rodeman, K.M.; Freisheim, J.H. )

    1988-10-04

    A radioiodinated photoaffinity analogue of methotrexate, N{sup {alpha}}-(4-amino-4-deoxy-10-methyl-pteroyl)-N{sup {epsilon}}-(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K band only in the parent cells. However, when whole cells were UV irradiated at various times at 37{degree}C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37{degree}C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets.

  9. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. PMID:25075043

  10. Importance of a Specific Amino Acid Pairing for Murine MLL Leukemias Driven by MLLT1/3 or AFF1/4

    PubMed Central

    Lokken, Alyson A.; Achille, Nicholas J.; Chang, Ming-jin; Lin, Jeffrey J.; Kuntimaddi, Aravinda; Leach, Benjamin I.; Malik, Bhavna; Nesbit, Jacqueline B.; Zhang, Shubin; Bushweller, John H.; Zeleznik-Le, Nancy J.; Hemenway, Charles S.

    2014-01-01

    Acute leukemias caused by translocations of the MLL gene at chromosome 11 band q23 (11q23) are characterized by a unique gene expression profile. More recently, data from several laboratories indicate that the most commonly encountered MLL fusion proteins, MLLT1, MLLT3, and AFF1 are found within a molecular complex that facilitates the elongation phase of mRNA transcription. Mutational analyses suggest that interaction between the MLLT1/3 proteins and AFF family proteins are required for experimental transformation of hematopoietic progenitor cells (HPCs). Here, we define a specific pairing of two amino acids that creates a salt bridge between MLLT1/3 and AFF proteins that is critically important for MLL-mediated transformation of HPCs. Our findings, coupled with the newly defined structure of MLLT3 in complex with AFF1, should facilitate the development of small molecules that block this amino acid interaction and interfere with the activity of the most common MLL oncoproteins. PMID:25282333

  11. Gan-Lu-Yin Inhibits Proliferation and Migration of Murine WEHI-3 Leukemia Cells and Tumor Growth in BALB/C Allograft Tumor Model

    PubMed Central

    Liu, Fon-Chang; Pan, Chun-Hsu; Lai, Ming-Tsung; Chang, Shu-Jen; Chung, Jing-Gung; Wu, Chieh-Hsi

    2013-01-01

    The aim of this study was to explore the antitumor effect of Gan-Lu-Yin (GLY), a traditional Chinese herbal formula, on leukemia. Ethanolic extract of GLY was applied to evaluate its regulatory mechanisms in proliferation, migration, and differentiation of WEHI-3 leukemic cells as well as antitumor effect on BALB/c mice model. The results showed that GLY markedly reduced cell proliferation and migration with induced differentiation of WEHI-3 cells. The expression level of phosphorylated FAK, Akt, ERK1/2, and Rb was decreased p21 expression while level was increased in WEHI-3 treated with GLY. The results of cell cycle analysis revealed that GLY treatment could markedly induce G1 phase arrest and decrease cell population in S phase. Moreover, experimental results demonstrated that GLY decreased the protein expression and enzyme activity of MMP-2 and MMP-9. GLY treatment also reduced WEHI-3 leukemic infiltration in liver and spleen and tumor growth in animal model. Accordingly, GLY demonstrated an inhibitory effect on tumor growth with a regulatory mechanism partially through inhibiting FAK, Akt, and ERK expression in WEHI-3 cells. GLY may provide a promising antileukemic approach in the clinical application. PMID:23573143

  12. Synergistic Activity of Deguelin and Fludarabine in Cells from Chronic Lymphocytic Leukemia Patients and in the New Zealand Black Murine Model

    PubMed Central

    Rebolleda, Nerea; Losada-Fernandez, Ignacio; Perez-Chacon, Gema; Castejon, Raquel; Rosado, Silvia; Morado, Marta; Vallejo-Cremades, Maria Teresa; Martinez, Andrea; Vargas-Nuñez, Juan A.

    2016-01-01

    B-cell chronic lymphocytic leukemia (CLL) remains an incurable disease, and despite the improvement achieved by therapeutic regimes developed over the last years still a subset of patients face a rather poor prognosis and will eventually relapse and become refractory to therapy. The natural rotenoid deguelin has been shown to induce apoptosis in several cancer cells and cell lines, including primary human CLL cells, and to act as a chemopreventive agent in animal models of induced carcinogenesis. In this work, we show that deguelin induces apoptosis in vitro in primary human CLL cells and in CLL-like cells from the New Zealand Black (NZB) mouse strain. In both of them, deguelin dowregulates AKT, NFκB and several downstream antiapoptotic proteins (XIAP, cIAP, BCL2, BCL-XL and survivin), activating the mitochondrial pathway of apoptosis. Moreover, deguelin inhibits stromal cell-mediated c-Myc upregulation and resistance to fludarabine, increasing fludarabine induced DNA damage. We further show that deguelin has activity in vivo against NZB CLL-like cells in an experimental model of CLL in young NZB mice transplanted with spleen cells from aged NZB mice with lymphoproliferation. Moreover, the combination of deguelin and fludarabine in this model prolonged the survival of transplanted mice at doses of both compounds that were ineffective when administered individually. These results suggest deguelin could have potential for the treatment of human CLL. PMID:27101369

  13. Pure enantiomers of benzoylamino-tranylcypromine: LSD1 inhibition, gene modulation in human leukemia cells and effects on clonogenic potential of murine promyelocytic blasts.

    PubMed

    Valente, Sergio; Rodriguez, Veronica; Mercurio, Ciro; Vianello, Paola; Saponara, Bruna; Cirilli, Roberto; Ciossani, Giuseppe; Labella, Donatella; Marrocco, Biagina; Monaldi, Daria; Ruoppolo, Giovanni; Tilset, Mats; Botrugno, Oronza A; Dessanti, Paola; Minucci, Saverio; Mattevi, Andrea; Varasi, Mario; Mai, Antonello

    2015-04-13

    The pure enantiomers of the N-(2-, 3-, and 4-(2-aminocyclopropyl)phenyl)benzamides hydrochlorides 11a-j were prepared and tested against LSD1 and MAO enzymes. The evaluation of the regioisomers 11a-j highlighted a net increase of the anti-LSD1 potency by shifting the benzamide moiety from ortho to meta and mainly to para position of tranylcypromine phenyl ring, independently from their trans or cis stereochemistry. In particular, the para-substituted 11a,b (trans) and 11g,h (cis) compounds displayed LSD1 and MAO-A inhibition at low nanomolar levels, while were less potent against MAO-B. The meta analogs 11c,d (trans) and 11i,j (cis) were in general less potent, but more efficient against MAO-A than against LSD1. In cellular assays, all the para and meta enantiomers were able to inhibit LSD1 by inducing Gfi-1b and ITGAM gene expression, with 11b,c and 11g-i giving the highest effects. Moreover, 11b and 11g,h strongly inhibited the clonogenic potential of murine promyelocytic blasts. PMID:25768700

  14. Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control

    PubMed Central

    Mishra, Rabinarayan; Polic, Bojan; Welsh, Raymond M.; Szomolanyi-Tsuda, Eva

    2013-01-01

    Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell) -RAE-1 (target cell) - dependent manner, but in T cell-deficient mice NK cells only delay but do not prevent the development of PyV-induced tumors. Here we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that down-regulate RAE-1. These factors include the pro-inflammatory cytokines IL-1α, IL-1β, IL-33, and TNF. Each of these cytokines down-regulate RAE-1 expression and susceptibility to NK cell mediated cytotoxicity. CD11b+F4/80+ macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1β and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors. PMID:23772039

  15. Chronic myelogenous leukemia (CML)

    MedlinePlus

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  16. Childhood Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. It is the most common type of childhood cancer. ... blood cells help your body fight infection. In leukemia, the bone marrow produces abnormal white blood cells. ...

  17. Epidemiology of virus-induced asthma exacerbations: with special reference to the role of human rhinovirus

    PubMed Central

    Saraya, Takeshi; Kurai, Daisuke; Ishii, Haruyuki; Ito, Anri; Sasaki, Yoshiko; Niwa, Shoichi; Kiyota, Naoko; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Goto, Hajime; Takizawa, Hajime

    2014-01-01

    Viral respiratory infections may be associated with the virus-induced asthma in adults as well as children. Particularly, human rhinovirus is strongly suggested a major candidate for the associations of the virus-induced asthma. Thus, in this review, we reviewed and focused on the epidemiology, pathophysiology, and treatment of virus-induced asthma with special reference on human rhinovirus. Furthermore, we added our preliminary data regarding the clinical and virological findings in the present review. PMID:24904541

  18. Allogeneic Transplantation for Patients With Acute Leukemia or Chronic Myelogenous Leukemia (CML)

    ClinicalTrials.gov

    2016-06-14

    Leukemia, Lymphocytic, Acute; Leukemia; Leukemia Acute Promyelocytic Leukemia (APL); Leukemia Acute Lymphoid Leukemia (ALL); Leukemia Chronic Myelogenous Leukemia (CML); Leukemia Acute Myeloid Leukemia (AML); Leukemia Chronic Lymphocytic Leukemia (CLL)

  19. Primary polyoma virus-induced murine thymic epithelial tumors. A tumor model of thymus physiology.

    PubMed Central

    Hoot, G. P.; Kettman, J. R.

    1989-01-01

    Thymic tumors were induced in C3'/Bittner mice by neonatal inoculation with polyoma virus. The objective of this study was to identify the phenotypes of the cells within the tumors and to attempt to determine the origin of the neoplastic cell population(s). At the ultrastructural level, the neoplastic cells resembled normal thymic epithelium with tonofilaments and desmosomes. Immunoperoxidase staining demonstrated the presence of cytokeratin, Iak, -beta 2-microglobulin, -asialo-GM1, the thymic cortical epithelial marker ER-TR4, and the medullary epithelial marker ER-TR5. Islands of normal cortical thymocytes supported by residual normal cortical epithelium and acid phosphatase-positive cortical macrophages were interspersed in the tumors. Residual islands of normal medullary architecture with nonspecific esterase-positive IDCs were rarely identified in tumors. Most lymphocytes in the tumors were normal immature cortical thymocytes with the phenotype Tdt+, PNA+, Thy 1.2bright, Ly-1dull, H-2Kkdull, ThB+, J11d+, and Lyt-2+L3T4+. Lymphocytes in the tumors were steroid-sensitive like normal thymocytes. The proportions of Lyt-2+L3T4- and Lyt-2-L3T4+ cells were generally larger in the tumors than in normal thymus and reflected the higher frequency of lymphocytes in the tumors capable of proliferating in vitro in response to Con A plus IL-2. The data were consistent with the hypothesis that the neoplasia originates from thymic epithelium that is interspersed with normal, developing thymic lymphocytes. Images Figure 4 p[688]-a Figure 1 Figure 2 Figure 3 p687-a Figure 7 PMID:2552813

  20. Murine viral hepatitis involves NK cell depletion associated with virus-induced apoptosis

    PubMed Central

    LEHOUX, M; JACQUES, A; LUSIGNAN, S; LAMONTAGNE, L

    2004-01-01

    Mouse hepatitis virus type 3 (MHV3), a coronavirus, is an excellent animal model for the study of immunological disorders related to acute and chronic hepatitis. In this study, we have verified if the fulminant hepatitis induced by MHV3 could be related to an impairment of innate immunity. Groups of three C57BL/6 mice were infected with the pathogenic L2-MHV3 or attenuated YAC-MHV3 viruses, and the natural killer (NK) cell populations from liver, spleen and bone marrow were analysed. The percentage of intrahepatic NK1·1+T cell receptor (TCR)− cells did not increase while NK1·1+TCRinter cells decreased in both L2-MHV3- and YAC-MHV3-infected mice. Concurrently, splenic and myeloid NK1·1+ cells decreased in L2-MHV3-infected mice. However, the cytotoxic activity of NK cells increased in liver and decreased in bone marrow from pathogenic L2-MHV3-infected mice while no modification was detected in YAC-MHV3-infected mice. Flow cytometric analysis revealed that both normal and larger splenic or myeloid NK cells decreased more in pathogenic L2-MHV3-infected mice than in attenuated YAC-MHV3-infected mice. In vitro viral infections of interleukin (IL)-15-stimulated lymphoid cells from liver and bone marrow revealed that L2-MHV3 induced higher decreases in cell viability of NK1·1+ cells than the YAC-MHV3 variant. The NK cell decreases were due to the viral permissivity leading to cytopathic effects characterized by cell rounding, syncytia formation and apoptosis. Larger NK+ syncytia were observed in L2-MHV3-infected cells than in YAC-MHV3-infected cells. These results suggest that NK cell production is impaired by viral infection favouring fulminant hepatitis. PMID:15196242

  1. The reduced virulence of the thymotropic Moloney murine leukemia virus derivative MoMuLV-TB is mapped to 11 mutations within the U3 region of the long terminal repeat.

    PubMed Central

    Yuen, P H; Szurek, P F

    1989-01-01

    Chimeric constructs were generated by exchanging genomic fragments between the potent T-cell lymphoma inducer Moloney murine leukemia virus (MoMuLV) and its derivative MoMuLV-TB, which induces T-cell lymphoma after a relatively longer latent period. Analysis of the T-cell lymphoma-inducing potential of the hybrid viruses that were obtained localized the primary determinant critical to efficient T-cell lymphoma induction to the MoMuLV ClaI-XbaI fragment which comprises 48 nucleotides (nt) of p15E, p2E, the 3'-noncoding sequence, and 298 nt of U3. The 438-base-pair ClaI-XbaI fragments of MoMuLV and MoMuLV-TB differed in only 11 nt. Nine mutations were found within the enhancer. These mutations occurred within the two CORE, the two GRE-LVa, and two of the four NF1 nuclear factor-binding motifs. MoMuLV-TB replicated better than MoMuLV in thymus-bone marrow (TB) cells, a cultured cell line of lymphoid origin. In addition, MoMuLV-TB and NwtTB-2, a recombinant virus with the ClaI-SmaI fragment of MoMuLV-TB in a MoMuLV background, replicated in thymocytes as efficiently as did MoMuLV or TBNwt-2, the reciprocal recombinant virus, with the ClaI-SmaI fragment of MoMuLV in a MoMuLV-TB background. Like NwtTB-4, a recombinant virus with the ClaI-XbaI fragment of MoMuLV-TB in a MoMuLV background, NwtTB-2 induced lymphoma after a long latent period. The finding given above suggests that thymotropism is not the only factor that determines the T-cell lymphoma-inducing potential of MoMuLV. It appears likely that mutations in one or more of the MoMuLV-TB nuclear factor-binding motifs may have altered the interaction of the enhancer with specific nuclear factors; this, in turn, may affect the T-cell lymphoma-inducing potential of MoMuLV-TB. PMID:2783465

  2. Acute myelogenous leukemia (AML) - children

    MedlinePlus

    Acute myelogenous leukemia - children; AML; Acute myeloid leukemia - children; Acute granulocytic leukemia - children; Acute myeloblastic leukemia - children; Acute non-lymphocytic leukemia (ANLL) - children

  3. Virus -induced plankton dynamic and sea spray oragnics

    NASA Astrophysics Data System (ADS)

    Facchini, Maria Cristina; O'Dowd, Colin; Danovaro, Roberto

    2015-04-01

    The processes that link phytoplankton biomass and productivity to the organic matter enrichment in sea spray aerosol are far from being understood and modelling predictions remain highly uncertain at the moment. While some studies have asserted that the enrichment of OM in sea spray aerosol is independent on marine productivity, others, on the contrary, have shown significant correlation with phytoplankton biomass and productivity (Chl-a retrieved by satellites). Here we show that viral infection of prokaryotes and phytoplankton, by inducing the release of large quantities of surfaceactive organic matter (cell debris, exudates and other colloidal gel-forming material), in part due to cell lysis and plankton defence reactions, and in part from rapid virus multiplication, triggers the organic matter (OM) enrichment in the sea-spray particles during blooms. We show that virus-induced bloom dynamics may explain the contrasting results present in literature on the link between primary productivity and OM sea spray enrichment.

  4. Ligand Modulation of the Epstein-Barr Virus-induced Seven-transmembrane Receptor EBI2

    PubMed Central

    Benned-Jensen, Tau; Smethurst, Christopher; Holst, Peter J.; Page, Kevin R.; Sauls, Howard; Sivertsen, Bjørn; Schwartz, Thue W.; Blanchard, Andy; Jepras, Robert; Rosenkilde, Mette M.

    2011-01-01

    The Epstein-Barr virus-induced receptor 2 (EBI2) is a constitutively active seven-transmembrane receptor, which was recently shown to orchestrate the positioning of B cells in the follicle. To date, no ligands, endogenously or synthetic, have been identified that modulate EBI2 activity. Here we describe an inverse agonist, GSK682753A, which selectively inhibited the constitutive activity of EBI2 with high potency and efficacy. In cAMP-response element-binding protein-based reporter and guanosine 5′-3-O-(thio)triphosphate (GTPγS) binding assays, the potency of this compound was 2.6–53.6 nm, and its inhibitory efficacy was 75%. In addition, we show that EBI2 constitutively activated extracellular signal-regulated kinase (ERK) in a pertussis toxin-insensitive manner. Intriguingly, GSK682753A inhibited ERK phosphorylation, GTPγS binding, and cAMP-response element-binding protein activation with similar potency. Overexpression of EBI2 profoundly potentiated antibody-stimulated ex vivo proliferation of murine B cells compared with WT cells, whereas this was equivalently reduced for EBI2-deficient B cells. Inhibition of EBI2 constitutive activity suppressed the proliferation in all cases. Importantly, the suppression was of much higher potency (32-fold) in WT or EBI2-overexpressing B cells compared with EBI2-deficient counterparts. Finally, we screened GSK682753A against an EBI2 mutant library to determine putative molecular binding determinants in EBI2. We identified Phe111 at position III:08/3.32 as being crucial for GSK682753A inverse agonism because Ala substitution resulted in a >500-fold decrease in IC50. In conclusion, we present the first ligand targeting EBI2. In turn, this molecule provides a useful tool for further characterization of EBI2 as well as serving as a potent lead compound. PMID:21673108

  5. What Is Childhood Leukemia?

    MedlinePlus

    ... key statistics for childhood leukemia? What is childhood leukemia? Cancer starts when cells start to grow out ... start making antibodies to fight them. Types of leukemia in children Leukemia is often described as being ...

  6. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants.

    PubMed

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo; Liu, Yule

    2016-07-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. PMID:27225900

  7. Efficient Virus-Induced Gene Silencing in Solanum rostratum

    PubMed Central

    Meng, Lan-Huan; Wang, Rui-Heng; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Solanum rostratum is a “super weed” that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum. PMID:27258320

  8. Vaccinia Virus Induces Programmed Necrosis in Ovarian Cancer Cells

    PubMed Central

    Whilding, Lynsey M; Archibald, Kyra M; Kulbe, Hagen; Balkwill, Frances R; Öberg, Daniel; McNeish, Iain A

    2013-01-01

    The mechanisms by which oncolytic vaccinia virus induces tumor cell death are poorly understood. We have evaluated cell death pathways following infection of ovarian cancer cells with both wild-type and thymidine kinase-deleted (dTK) Lister strain vaccinia. We show that death does not rely upon classical apoptosis despite the appearances of some limited apoptotic features, including phosphatidylserine externalization and appearance of sub-G1 DNA populations. Vaccinia infection induces marked lipidation of LC3 proteins, but there is no general activation of the autophagic process and cell death does not rely upon autophagy induction. We show that vaccinia induces necrotic morphology on transmission electron microscopy, accompanied by marked by reductions in intracellular adenosine triphosphate, altered mitochondrial metabolism, and release of high mobility group box 1 (HMGB1) protein. This necrotic cell death appears regulated, as infection induces formation of a receptor interacting protein (RIP1)/caspase-8 complex. In addition, pharmacological inhibition of both RIP1 and substrates downstream of RIP1, including MLKL, significantly attenuate cell death. Blockade of TNF-α, however, does not alter virus efficacy, suggesting that necrosis does not result from autocrine cytokine release. Overall, these results show that, in ovarian cancer cells, vaccinia virus causes necrotic cell death that is mediated through a programmed series of events. PMID:23985697

  9. Virus-induced gene silencing in eggplant (Solanum melongena).

    PubMed

    Liu, Haiping; Fu, Daqi; Zhu, Benzhong; Yan, Huaxue; Shen, Xiaoying; Zuo, Jinhua; Zhu, Yi; Luo, Yunbo

    2012-06-01

    Eggplant (Solanum melongena) is an economically important vegetable requiring investigation into its various genomic functions. The current limitation in the investigation of genomic function in eggplant is the lack of effective tools available for conducting functional assays. Virus-induced gene silencing (VIGS) has played a critical role in the functional genetic analyses. In this paper, TRV-mediated VIGS was successfully elicited in eggplant. We first cloned the CDS sequence of PDS (PHYTOENE DESATURASE) in eggplant and then silenced the PDS gene. Photo-bleaching was shown on the newly-developed leaves four weeks after agroinoculation, indicating that VIGS can be used to silence genes in eggplant. To further illustrate the reliability of VIGS in eggplant, we selected Chl H, Su and CLA1 as reporters to elicit VIGS using the high-pressure spray method. Suppression of Chl H and Su led to yellow leaves, while the depletion of CLA1 resulted in albino. In conclusion, four genes, PDS, Chl H, Su (Sulfur), CLA1, were down-regulated significantly by VIGS, indicating that the VIGS system can be successfully applied in eggplant and is a reliable tool for the study of gene function. PMID:22268843

  10. Virus-Induced Dormancy in the Archaeon Sulfolobus islandicus

    PubMed Central

    Bautista, Maria A.; Zhang, Changyi

    2015-01-01

    ABSTRACT We investigated the interaction between Sulfolobus spindle-shaped virus (SSV9) and its native archaeal host Sulfolobus islandicus. We show that upon exposure to SSV9, S. islandicus strain RJW002 has a significant growth delay where the majority of cells are dormant (viable but not growing) for 24 to 48 hours postinfection (hpi) compared to the growth of controls without virus. We demonstrate that in this system, dormancy (i) is induced by both active and inactive virus particles at a low multiplicity of infection (MOI), (ii) is reversible in strains with active CRISPR-Cas immunity that prevents the establishment of productive infections, and (iii) results in dramatic and rapid host death if virus persists in the culture even at low levels. Our results add a new dimension to evolutionary models of virus-host interactions, showing that the mere presence of a virus induces host cell stasis and death independent of infection. This novel, highly sensitive, and risky bet-hedging antiviral response must be integrated into models of virus-host interactions in this system so that the true ecological impact of viruses can be predicted and understood. PMID:25827422

  11. Efficient Virus-Induced Gene Silencing in Solanum rostratum.

    PubMed

    Meng, Lan-Huan; Wang, Rui-Heng; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Solanum rostratum is a "super weed" that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum. PMID:27258320

  12. Childhood Leukemia

    MedlinePlus

    ... acute types. Symptoms include Infections Fever Loss of appetite Tiredness Easy bruising or bleeding Swollen lymph nodes Night sweats Shortness of breath Pain in the bones or joints Risk factors for childhood leukemia include having a brother ...

  13. Analysis of herpes simplex virus-induced mRNA destabilizing activity using an in vitro mRNA decay system.

    PubMed Central

    Sorenson, C M; Hart, P A; Ross, J

    1991-01-01

    Most host mRNAs are degraded soon after infection of cells with herpes simplex virus type 1 (HSV-1). This early shutoff or early destabilization response is induced by a virion component, the virion host shutoff (vhs) protein. HSV-1 mutants, vhs1 and vhs-delta Sma, which produce defective or inactive vhs protein, fail to induce early shutoff. We have used an in vitro mRNA decay system to analyze the destabilization process. Polysomes from uninfected human erythroleukemia cells, used as a source of target mRNAs, were mixed with polysomes or with post-polysomal supernatant (S130) from HSV-1- or mock-infected murine erythroleukemia cells. Normally stable gamma-globin mRNA was destabilized by approximately 15-fold with S130 from wild-type virus-infected cells but was not destabilized with S130 from mock-infected cells or from cells infected with either of the two HSV mutants. The virus-induced destabilizing activity had no significant effect on the in vitro half-lives of two normally unstable mRNAs, histone and c-myc. No destabilizing activity was detected in polysomes from infected cells. We conclude that a virus-induced destabilizer activity can function in vitro, is located in the S130 of infected cells, and accelerates the decay rates of some, but not all, polysome-associated host mRNAs. Images PMID:1653415

  14. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  15. Induction of macrophage procoagulant activity by murine hepatitis virus strain 3: role of tyrosine phosphorylation.

    PubMed Central

    Dackiw, A P; Zakrzewski, K; Nathens, A B; Cheung, P Y; Fingerote, R; Levy, G A; Rotstein, O D

    1995-01-01

    The induction of a unique macrophage procoagulant molecule by murine hepatitis virus strain 3 correlates with the severity of viral hepatitis. The role of tyrosine phosphorylation in the signalling pathway leading to procoagulant expression was studied. Murine hepatitis virus strain 3 initiated a rapid increase in phosphotyrosine accumulation. Tyrosine kinase inhibition precluded this increase and abrogated expression of the virus-induced procoagulant mouse fibrinogen-like protein (musfiblp) gene. These findings suggest that manipulation of this signalling pathway in vivo might represent a novel approach to treating this disease. PMID:7543590

  16. Understanding Leukemia

    MedlinePlus

    ... a second cancer, including melanoma, sarcoma, colorectal cancer, lung cancer, basal cell cancer, squamous cell skin cancer or myeloma. {{ See your primary care doctor to keep up with other healthcare needs. Understanding Leukemia I page 21 {{ Talk with family and friends about how ...

  17. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death.

    PubMed

    Hatsugai, Noriyuki; Kuroyanagi, Miwa; Yamada, Kenji; Meshi, Tetsuo; Tsuda, Shinya; Kondo, Maki; Nishimura, Mikio; Hara-Nishimura, Ikuko

    2004-08-01

    Programmed cell death (PCD) in animals depends on caspase protease activity. Plants also exhibit PCD, for example as a response to pathogens, although a plant caspase remains elusive. Here we show that vacuolar processing enzyme (VPE) is a protease essential for a virus-induced hypersensitive response that involves PCD. VPE deficiency prevented virus-induced hypersensitive cell death in tobacco plants. VPE is structurally unrelated to caspases, although VPE has a caspase-1 activity. Thus, plants have evolved a regulated cellular suicide strategy that, unlike PCD of animals, is mediated by VPE and the cellular vacuole. PMID:15297671

  18. Methods for Virus-Induced Gene Silencing in Hexaploid Wheat using barley stripe mosaic virus vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is a useful functional genomics tool for rapidly creating gene knockout phenotypes that can be used to infer gene function. Until recently, VIGS has only been possible in dicotyledonous plants. However, the development of vectors based on barley stripe mosaic vi...

  19. Gene expression profiling reveals insight into how distinct viruses induce symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant viruses induce a wide array of disease symptoms and cytopathic effects including alterations of chloroplasts, ribosomes, and cellular architecture. While some of these changes are virus specific, many are common even among diverse viruses, and in most cases, the molecular determinants respons...

  20. Co-silencing the mirabilis antiviral protein permits virus-induced gene silencing in Mirabilis jalapa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is an attractive and rapid technique for loss of function assay that can reveal the phenotype of embryo-lethal sequences and avoids the need for time consuming transformation and regeneration processes. Among various VIGS vectors that have been explored, the tobac...

  1. Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

  2. Anti-apoptotic Bcl-XL but not Mcl-1 contributes to protection against virus-induced apoptosis.

    PubMed

    Ohmer, Michaela; Weber, Arnim; Sutter, Gerd; Ehrhardt, Katrin; Zimmermann, Albert; Häcker, Georg

    2016-01-01

    Infection of mammalian cells with viruses often induces apoptosis. How the recognition of viruses leads to apoptosis of the infected cell and which host cell factors regulate this cell death is incompletely understood. In this study, we focussed on two major anti-apoptotic proteins of the host cell, whose abundance and activity are important for cell survival, the Bcl-2-like proteins Mcl-1 and Bcl-XL. During infection of epithelial cells and fibroblasts with modified vaccinia virus Ankara (MVA), Mcl-1 protein levels dropped but the MVA Bcl-2-like protein F1L could replace Mcl-1 functionally; a similar activity was found in vaccinia virus (VACV)-infected cells. During infection with murine cytomegalovirus (MCMV), Mcl-1-levels were not reduced but a viral Mcl-1-like activity was also generated. Infection of mouse macrophages with any of these viruses, on the other hand, induced apoptosis. Virus-induced macrophage apoptosis was unaltered in the absence of Mcl-1. However, apoptosis was substantially increased in infected Bcl-XL-deficient macrophages or macrophages treated with the Bcl-2/Bcl-XL-inhibitor ABT-737. Genetic loss of Bcl-XL or treatment of macrophages with ABT-737 reduced the generation of infectious VACV. These data show that Mcl-1 is dispensable for the regulation of apoptosis during infection with different large DNA viruses, either because the viruses replace its function (in fibroblasts and epithelial cells) or because the pro-apoptotic activity generated by the infection appears not to be blocked by it (in macrophages). Bcl-XL, on the other hand, can be important to maintain survival of virus-infected cells, and its activity can determine outcome of the infection. PMID:27537523

  3. Leukemia revisited

    SciTech Connect

    Cronkite, E P

    1980-01-01

    Selected features of the historical development of our knowledge of leukemia are discussed. The use of different methodologies for study of the nature of leukemic cell proliferation are analyzed. The differences between older cell kinetic data using tritiated thymidine and autoradiography and the newer cell culture methods are more apparent than real. It is suggested that tritiated thymidine and extracorporeal irradiation of the blood may be useful for therapeutic agents that have not been given an adequate trial. Radiation leukemogenesis presents an opportunity for study of the nature of leukemogenesis that has not been exploited adequately.

  4. The leukemias: Epidemiologic aspects

    SciTech Connect

    Linet, M.S.

    1984-01-01

    Particularly geared to physicians and cancer researchers, this study of the epidemiology and etiology of leukemia analyzes the four major leukemia subtypes in terms of genetic and familial determinant factors and examines the incidence, distribution and frequency of reported leukemia clusters. Linet discusses the connection between other types of malignancies, their treatments, and the subsequent development of leukemia and evaluates the impact on leukemia onset of such environmental factors as radiation therapy, drugs, and occupational hazards.

  5. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  6. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis.

    PubMed

    Gagnidze, Khatuna; Hajdarovic, Kaitlyn H; Moskalenko, Marina; Karatsoreos, Ilia N; McEwen, Bruce S; Bulloch, Karen

    2016-05-17

    Certain components and functions of the immune system, most notably cytokine production and immune cell migration, are under circadian regulation. Such regulation suggests that circadian rhythms may have an effect on disease onset, progression, and resolution. In the vesicular stomatitis virus (VSV)-induced encephalitis model, the replication, caudal penetration, and survivability of intranasally applied VSV depends on both innate and adaptive immune mechanisms. In the current study, we investigated the effect of circadian time of infection on the progression and outcome of VSV-induced encephalitis and demonstrated a significant decrease in the survival rate in mice infected at the start of the rest cycle, zeitgeber time 0 (ZT0). The lower survival rate in these mice was associated with higher levels of circulating chemokine (C-C motif) ligand 2 (CCL2), a greater number of peripherally derived immune cells accumulating in the olfactory bulb (OB), and increased production of proinflammatory cytokines, indicating an immune-mediated pathology. We also found that the acrophase of molecular circadian clock component REV-ERBα mRNA expression in the OB coincides with the start of the active cycle, ZT12, when VSV infection results in a more favorable outcome. This result led us to hypothesize that REV-ERBα may mediate the circadian effect on survival following VSV infection. Blocking REV-ERBα activity before VSV administration resulted in a significant increase in the expression of CCL2 and decreased survival in mice infected at the start of the active cycle. These data demonstrate that REV-ERBα-mediated inhibition of CCL2 expression during viral-induced encephalitis may have a protective effect. PMID:27143721

  7. Neonatal testicular cell transplantation restores murine spermatogenesis damaged in the course of herpes simplex virus-induced orchitis.

    PubMed

    Malolina, Ekaterina A; Kulibin, Andrey Yu; Kushch, Alla A

    2016-04-01

    Genital tract infection and inflammation may affect male fertility, causing germ and Sertoli cell loss. We determined if testicular cell transplantation is effective at repairing testicular injury induced by herpes simplex virus (HSV) orchitis. ROSA26 mice were used as donors and the recipients were C57BL/6 mice after HSV testicular inoculation; some of the recipients were treated with the antiviral drug acyclovir (ACV). ACV reduced the amount of HSV antigen in testes on Day 3 after transplantation and enhanced the efficacy of transplantation at Day 30. In recipient testes, donor Sertoli cells formed new seminiferous tubules; significantly more new tubules were observed in the testes of ACV-treated mice compared with mice not treated with ACV (17.8% vs 3.6%). Over half (50.4%) of new tubules in ACV-treated testes contained germ cells and round spermatids were detected in 14.2% of new tubules compared with 15.9% and 5.3% in testes not treated with ACV, respectively. At Day 150 the seminiferous epithelium was completely recovered in some donor tubules and elongated spermatids were observed inside it. Thus, our findings reveal the effectiveness of the combination of antiviral therapy with neonatal testis-cell transplantation for the restoration of spermatogenesis damaged by viral infection. PMID:25399480

  8. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... about acute myeloid leukemia? What is acute myeloid leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  9. What Is Chronic Myeloid Leukemia?

    MedlinePlus

    ... leukemia? Next Topic Normal bone marrow and blood What is chronic myeloid leukemia? Cancer starts when cells ... their treatment is the same as for adults. What is leukemia? Leukemia is a cancer that starts ...

  10. The role of arachidonic acid metabolism in virus-induced alveolar macrophage dysfunction

    SciTech Connect

    Laegreid, W.W.

    1988-01-01

    Alveolar macrophages (AM) recovered from virus-infected lungs have decreased phagocytic, respiratory burst and bactericidal activities. The studies described below investigated the role of eicosanoids in virus induced AM bactericidal dysfunction. The spectrum of eicosanoid metabolites which bovine AM are capable of producing was determined. Cultured AM were exposed to {sup 3}H-arachidonate for 1 hour, stimulated for 4 hours with A23187, phorbol myristate acetate or zymosan and the supernatants extracted and analyzed by HPLC. All stimuli tested caused the release of these cyclooxygenase metabolites: thromboxane B{sub 2}, PGF{sub 2}, PGE{sub 2}, PGD{sub 2} and HHT. The effect of this enhanced release of arachidonate metabolites on the ability of AM to kill bacteria was evaluated. Preincubation with cyclooxygenase inhibitors or dual cyclooxygenase and lipoxygenase inhibitors resulted in partial reversal of the virus-induced bactericidal deficit in PI3 infected AM.