Science.gov

Sample records for murine sertoli cells

  1. Sertoli cells as biochambers

    NASA Technical Reports Server (NTRS)

    Cameron, Don F. (Inventor); Sanberg, Paul R. (Inventor); Saporta, Samuel (Inventor); Hushen, Joelle J. (Inventor)

    2004-01-01

    According to the present invention, there is provided a biological chamber system having a biochamber defined by outer walls of Sertoli cells. Also provided is a transplantation facilitator including a biochamber. A method of making biochambers by co-culturing facilitator cells and therapeutic cells and then aggregating the facilitator celes is also provided. Also provided is a method of transplanting cells by incorporating transplant cells into a biochamber and transplanting the biochamber containing the transplant cells.

  2. Genetically engineered immune privileged Sertoli cells

    PubMed Central

    Kaur, Gurvinder; Long, Charles R.; Dufour, Jannette M.

    2012-01-01

    Sertoli cells are immune privileged cells, important for controlling the immune response to male germ cells as well as maintaining the tolerogenic environment in the testis. Additionally, ectopic Sertoli cells have been shown to survive and protect co-grafted cells when transplanted across immunological barriers. The survival of ectopic Sertoli cells has led to the idea that they could be used in cell based gene therapy. In this review, we provide a brief overview of testis immune privilege and Sertoli cell transplantation, factors contributing to Sertoli cell immune privilege, the challenges faced by viral vector gene therapy, the use of immune privileged cells in cell based gene therapy and describe several recent studies on the use of genetically engineered Sertoli cells to provide continuous delivery of therapeutic proteins. PMID:22553487

  3. Sertoli cell only syndrome with ambiguous genitalia.

    PubMed

    Gurbuz, Fatih; Ceylaner, Serdar; Erdogan, Seyda; Topaloglu, Ali Kemal; Yuksel, Bilgin

    2016-07-01

    The Sertoli cell only syndrome (SCOS) is a rare genetic disorder with a variable phenotype ranging from a severe ambiguous genitalia to a normal male phenotype with infertility. SCOS is diagnosed on testicular histopathology as germ cells are absent without histological impairment of Sertoli or Leydig cells. The SRY positive XX male syndrome is usually diagnosed in adulthood during infertility investigations. Here, we report a rare case of 46,XX maleness with ambiguous genitalia due to Sertoli cell only syndrome (SCOS). PMID:27124672

  4. Germ cell binding to rat Sertoli cells in vitro

    SciTech Connect

    DePhilip, R.M.; Danahey, D.G.

    1987-12-01

    The interaction between male germ cells and Sertoli cells was studied in vitro by co-incubation experiments using isolated rat germ cells and primary cultures of Sertoli cells made germ cell-free by the differential sensitivity of germ cells to hypotonic shock. The germ cell/Sertoli cell interaction was examined morphologically with phase-contrast and scanning electron microscopy and then quantified by measuring radioactivity bound to Sertoli cell cultures after co-incubation with added (/sup 3/H)leucine-labeled germ cells. Germ cell binding to Sertoli cell cultures was the result of specific adhesion between these two cell types, and several features of this specific adhesion were observed. First, germ cells adhered to Sertoli cell cultures under conditions during which spleen cells and red blood cells did not. Second, germ cells had a greater affinity for Sertoli cell cultures than they had for cultures of testicular peritubular cells or cerebellar astrocytes. Third, germ cells fixed with paraformaldehyde adhered to live Sertoli cultures while similarly fixed spleen cells adhered less tightly. Neither live nor paraformaldehyde-fixed germ cells adhered to fixed Sertoli cell cultures. Fourth, germ cell binding to Sertoli cell cultures was not immediate but increased steadily and approached a maximum at 4 h of co-incubation. Saturation of germ cell binding to Sertoli cell cultures occurred when more than 4200 germ cells were added per mm2 of Sertoli cell culture surface. Finally, germ cell binding to Sertoli cell cultures was eliminated when co-incubation was performed on ice. Based on these observations, we concluded that germ cell adhesion to Sertoli cells was specific, temperature-dependent, and required a viable Sertoli cell but not necessarily a viable germ cell.

  5. Sertoli cell tumour in an Amur tiger.

    PubMed

    Scudamore, C L; Meredith, A L

    2001-01-01

    The histological and immunohistochemical characteristics of a malignant Sertoli cell tumour in a 17-year-old Amur tiger (Panthera tigris altaica) are described. Histological examination of the primary lesion in the right testis and metastatic lesions throughout the internal organs showed a variable cellular pattern with an admixture of tubular structures divided by fine stroma filled with fusiform to stellate cells, and sheets of polygonal cells with abundant vacuolated cytoplasm. Immunohistochemical techniques demonstrated strong positive staining for neuron-specific enolase and variable positive staining for vimentin in neoplastic cells, supporting a diagnosis of a tumour of Sertoli cell origin. PMID:11428192

  6. Sertoli Cell Differentiation in Pubertal Boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meishan boars experience puberty at a younger age than crossbred (BX) boars in association with earlier cessation of Sertoli cell proliferation and smaller post pubertal testicular size. The current study defined changes in expression, assessed by immunohistochemistry, of anti-Mullerian hormone (AMH...

  7. [CO-CULTURE OF BOAR SPERMATOGONIAL CELLS WITH SERTOLI CELLS].

    PubMed

    Savchenkova, I P; Vasil'eva, S A

    2016-01-01

    In the present study, we developed in vitro culture conditions using co-culture of boar spermatogonial cells with Sertoli cells. Testes from 60-day-old crossbred boar were used. A spermatogonia-enriched culture was achieved by enzymatic digestion method and purification by density gradient centrifugation using a discontinuous Percoll gradient and differentiated adherence technique. Lipid drops were detected in isolated Sertoli cells by Oil Red O staining. We have found that the cultivation of boar spermatogonia in the presence of Sertoli cells (up to 35 days) leads to their differentiation as well as in vivo in testis. Association of cells in groups, formation of chains and suspension clusters of the spermatogenic cells were observed on the 10th day. Spermatogonial cellular colonies were noted at the same time. These cellular colonies were analyzed for the expression of genes: Nanog and Plzf in RT PCR. The expression of the Nanog gene in the experimental cellular clones obtained by short-term culture of spermatogonial cells in the presence of Sertoli cells was 200 times higher than the expression of this gene in the freshly isolated spermatogonial cells expression was found in freshly isolated germ cells and in cellular clones derived in vitro. We have found that, in the case of longer cultivation of these cells on Sertoli cells, in vitro process of differentiation of germ cells and formation of single mobile boar spermatozoa occurs at 30-33 days. Cellular population is heterogeneous at this stage. Spermatogenic differentiation in vitro without Sertoli cells stays on the 7th day of cultivation. The results show that co-culture of boar spermatogonia-enriched cells with Sertoli cells can induce their differentiation into spermatozoa in vitro and facilitate obtaining of porcine germ cell culture. PMID:27228660

  8. Defined pattern of Sertoli cell differentiation in pubertal porcine testes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Number of Sertoli cells is a primary determinant of mature testicular size and sperm production. In boars, formation of the blood/testis barrier, which occurs by 4 mo of age in commercial breeds, signals the end of Sertoli cell proliferation. Previous studies established that expression of p27Kip1, ...

  9. Testicular Sertoli cell function in ankylosing spondylitis.

    PubMed

    Almeida, Breno Pires; Saad, Carla Gonçalves Schahin; Souza, Fernando Henrique Carlos; Moraes, Julio Cesar Bertacini; Nukumizu, Lucia Akemi; Viana, Vilma Santos Trindade; Bonfá, Eloísa; Silva, Clovis Artur

    2013-07-01

    To assess the testicular Sertoli cell function according to inhibin B levels in ankylosing spondylitis (AS) patients and the possible effect of anti-TNF therapy on this hormone production, 20 consecutive AS patients and 24 healthy controls were evaluated. At study entry, AS patients were not receiving sulfasalazine/methotrexate and never have used biological/cytotoxic agents. They were assessed by serum inhibin B levels, hormone profile, urological examination, testicular ultrasound, seminal parameters, and clinical features. Ten of these patients received anti-TNF treatment and they were reevaluated for Sertoli function and disease parameters at 6 months. Four of them agreed to repeat sperm analysis. At study entry, the median of inhibin B (68 vs. 112.9 pg/mL, p = 0.111), follicle-stimulating hormone levels (3.45 vs. 3.65 IU/L, p = 0.795), and the other hormones was comparable in AS patients and controls (p > 0.05). Sperm analysis was similar in AS patients and controls (p > 0.05) with one AS patient presenting borderline low inhibin B levels. Further analysis at 6 months of the 10 patients referred for anti-TNF therapy, including one with borderline inhibin B, revealed that median inhibin B levels remained stable (116.5 vs. 126.5 pg/mL, p = 0.431) with a significant improvement in C-reactive protein (27.8 vs. 2.27 mg/L, p = 0.039). Sperm motility and concentration were preserved in the four patients who repeated this analysis after TNF blockage. In conclusion, this was the first study to report, using a specific marker, a normal testicular Sertoli cell function in AS patients with mild to moderate disease activity. PMID:23417428

  10. Sertoli-Leydig cell tumor

    MedlinePlus

    ... the testes, release a male sex hormone called testosterone . These cells are also found in a woman's ... the levels of female and male hormones, including testosterone . An ultrasound or another imaging test will likely ...

  11. Characterization and Functionality of Proliferative Human Sertoli Cells

    PubMed Central

    Chui, Kitty; Trivedi, Alpa; Cheng, C. Yan; Cherbavaz, Diana B.; Dazin, Paul F.; Huynh, Ai Lam Thu; Mitchell, James B.; Rabinovich, Gabriel A.; Noble-Haeusslein, Linda J.; John, Constance M.

    2014-01-01

    It has long been thought that mammalian Sertoli cells are terminally differentiated and nondividing postpuberty. For most previous in vitro studies immature rodent testes have been the source of Sertoli cells and these have shown little proliferative ability when cultured. We have isolated and characterized Sertoli cells from human cadaveric testes from seven donors ranging from 12 to 36 years of age. The cells proliferated readily in vitro under the optimized conditions used with a doubling time of approximately 4 days. Nuclear 5-ethynyl-2′-deoxyuridine (EdU) incorporation confirmed that dividing cells represented the majority of the population. Classical Sertoli cell ultrastructural features, lipid droplet accumulation, and immunoexpression of GATA-4, Sox9, and the FSH receptor (FSHr) were observed by electron and fluorescence microscopy, respectively. Flow cytometry revealed the expression of GATA-4 and Sox9 by more than 99% of the cells, and abundant expression of a number of markers indicative of multipotent mesenchymal cells. Low detection of endogenous alkaline phosphatase activity after passaging showed that few peritubular myoid cells were present. GATA-4 and SOX9 expression were confirmed by reverse transcription polymerase chain reaction (RT-PCR), along with expression of stem cell factor (SCF), glial cell line-derived neurotrophic factor (GDNF), and bone morphogenic protein 4 (BMP4). Tight junctions were formed by Sertoli cells plated on transwell inserts coated with fibronectin as revealed by increased transepithelial electrical resistance (TER) and polarized secretion of the immunoregulatory protein, galectin-1. These primary Sertoli cell populations could be expanded dramatically in vitro and could be cryopreserved. The results show that functional human Sertoli cells can be propagated in vitro from testicular cells isolated from adult testis. The proliferative human Sertoli cells should have important applications in studying infertility

  12. Sertoli cells- Immunological sentinels of spermatogenesis

    PubMed Central

    Kaur, Gurvinder; Thompson, Lea Ann; Dufour, Jannette M.

    2014-01-01

    Testicular germ cells, which appear after the establishment of central tolerance, express novel cell surface and intracellular proteins that can be recognized as ‘foreign antigens’ by the host’s immune system. However, normally these germ cells do not evoke an auto-reactive immune response. The focus of this manuscript is to review the evidence that the Blood-Testis-Barrier (BTB)/Sertoli cell (SC) barrier along with the SCs ability to modulate the immune response is vital for protecting auto-antigenic germ cells. In normal testis, the BTB/SC barrier protects the majority of the auto-antigenic germ cells by limiting access by the immune system and sequestering these ‘new antigens’. SCs also modulate testis immune cells (induce regulatory immune cells) by expressing several immunoregulatory factors, thereby creating a local tolerogenic environment optimal for survival of nonsequesetred auto-antigenic germ cells. Collectively, the fortress created by the BTB/SC barrier along with modulation of the immune response is pivotal for completion of spermatogenesis and species survival. PMID:24603046

  13. Sertoli cells--immunological sentinels of spermatogenesis.

    PubMed

    Kaur, Gurvinder; Thompson, Lea Ann; Dufour, Jannette M

    2014-06-01

    Testicular germ cells, which appear after the establishment of central tolerance, express novel cell surface and intracellular proteins that can be recognized as 'foreign antigens' by the host's immune system. However, normally these germ cells do not evoke an auto-reactive immune response. The focus of this manuscript is to review the evidence that the blood-testis-barrier (BTB)/Sertoli cell (SC) barrier along with the SCs ability to modulate the immune response is vital for protecting auto-antigenic germ cells. In normal testis, the BTB/SC barrier protects the majority of the auto-antigenic germ cells by limiting access by the immune system and sequestering these 'new antigens'. SCs also modulate testis immune cells (induce regulatory immune cells) by expressing several immunoregulatory factors, thereby creating a local tolerogenic environment optimal for survival of nonsequesetred auto-antigenic germ cells. Collectively, the fortress created by the BTB/SC barrier along with modulation of the immune response is pivotal for completion of spermatogenesis and species survival. PMID:24603046

  14. Sertoli cells secrete both testis-specific and serum proteins.

    PubMed Central

    Wright, W W; Musto, N A; Mather, J P; Bardin, C W

    1981-01-01

    The secretions of the Sertoli cell were examined with two polyvalent antisera--one prepared against proteins in rat serum and the other against testis-specific proteins in rete testis fluid. These antisera detected 12 serum and 9 testis-specific proteins in rete testis fluid. To determine the origin of these proteins, primary cultures enriched in Sertoli cells were incubated with [35S]methionine, and the radiolabeled proteins in the medium were immunoprecipitated. Gel electrophoresis of the two immunoprecipitates resolved eight serum and nine testis-specific proteins. These two sets of proteins were specifically bound to their respective antiserum and were immunologically distinct. Medium from Sertoli cell cultures contained 10 times more of the testis-specific proteins than did cultures enriched for testicular myoid or interstitial cells. The concentration of the serum proteins in Sertoli cell medium was 5 and 10 times greater, respectively, than in myoid or interstitial cell preparations. The proteins from Sertoli cells were next characterized on two-dimensional gels. Seven of the proteins recognized by antiserum against serum proteins had identical molecular weights and isoelectric points as serum proteins. Three of these proteins were ceruloplasmin, transferrin, and glycoprotein 2. In addition to the proteins immunoprecipitated by the two antisera, more than 60 other proteins were detected on two-dimensional gels of the total secretory proteins. We conclude that the Sertoli cell secretes many proteins, some of which are specific to the testis and others of which are similar to serum proteins. Images PMID:6950398

  15. A Rare Cause of Prepubertal Gynecomastia: Sertoli Cell Tumor

    PubMed Central

    Dursun, Fatma; Su Dur, Şeyma Meliha; Şahin, Ceyhan; Kırmızıbekmez, Heves; Karabulut, Murat Hakan; Yörük, Asım

    2015-01-01

    Prepubertal gynecomastia due to testis tumors is a very rare condition. Nearly 5% of the patients with testicular mass present with gynecomastia. Sertoli cell tumors are sporadic in 60% of the reported cases, while the remaining is a component of multiple neoplasia syndromes such as Peutz-Jeghers syndrome and Carney complex. We present a 4-year-old boy with gynecomastia due to Sertoli cell tumor with no evidence of Peutz-Jeghers syndrome or Carney complex. PMID:26366315

  16. Autophagy is required for ectoplasmic specialization assembly in sertoli cells.

    PubMed

    Liu, Chao; Wang, Hongna; Shang, Yongliang; Liu, Weixiao; Song, Zhenhua; Zhao, Haichao; Wang, Lina; Jia, Pengfei; Gao, Fengyi; Xu, Zhiliang; Yang, Lin; Gao, Fei; Li, Wei

    2016-05-01

    The ectoplasmic specialization (ES) is essential for Sertoli-germ cell communication to support all phases of germ cell development and maturity. Its formation and remodeling requires rapid reorganization of the cytoskeleton. However, the molecular mechanism underlying the regulation of ES assembly is still largely unknown. Here, we show that Sertoli cell-specific disruption of autophagy influenced male mouse fertility due to the resulting disorganized seminiferous tubules and spermatozoa with malformed heads. In autophagy-deficient mouse testes, cytoskeleton structures were disordered and ES assembly was disrupted. The disorganization of the cytoskeleton structures might be caused by the accumulation of a negative cytoskeleton organization regulator, PDLIM1, and these defects could be partially rescued by Pdlim1 knockdown in autophagy-deficient Sertoli cells. Altogether, our works reveal that the degradation of PDLIM1 by autophagy in Sertoli cells is important for the proper assembly of the ES, and these findings define a novel role for autophagy in Sertoli cell-germ cell communication. PMID:26986811

  17. Isolation of Sertoli Cells and Peritubular Cells from Rat Testes.

    PubMed

    Bhushan, Sudhanshu; Aslani, Ferial; Zhang, Zhengguo; Sebastian, Tim; Elsässer, Hans-Peter; Klug, Jörg

    2016-01-01

    The testis, and in particular the male gamete, challenges the immune system in a unique way because differentiated sperm first appear at the time of puberty - more than ten years after the establishment of systemic immune tolerance. Spermatogenic cells express a number of proteins that may be seen as non-self by the immune system. The testis must then be able to establish tolerance to these neo-antigens on the one hand but still be able to protect itself from infections and tumor development on the other hand. Therefore the testis is one of a few immune privileged sites in the body that tolerate foreign antigens without evoking a detrimental inflammatory immune response. Sertoli cells play a key role for the maintenance of this immune privileged environment of the testis and also prolong survival of cotransplanted cells in a foreign environment. Therefore primary Sertoli cells are an important tool for studying the immune privilege of the testis that cannot be easily replaced by established cell lines or other cellular models. Here we present a detailed and comprehensive protocol for the isolation of Sertoli cells - and peritubular cells if desired - from rat testes within a single day. PMID:26890157

  18. Reprogramming of Sertoli cells to fetal-like Leydig cells by Wt1 ablation

    PubMed Central

    Zhang, Lianjun; Chen, Min; Wen, Qing; Li, Yaqiong; Wang, Yaqing; Wang, Yanbo; Qin, Yan; Cui, Xiuhong; Yang, Lin; Huff, Vicki; Gao, Fei

    2015-01-01

    Sertoli and Leydig cells, the two major somatic cell types in the testis, have different morphologies and functions. Both are essential for gonad development and spermatogenesis. However, whether these cells are derived from the same progenitor cells and the mechanism regulating the differentiation between these two cell types during gonad development remains unclear. A previous study showed that overactivation of Ctnnb1 (cadherin-associated protein, beta 1) in Sertoli cells resulted in Sertoli cell tumors. Surprisingly, in the present study, we found that simultaneous deletion of Wilms’ Tumor Gene 1 (Wt1) and overactivation of Ctnnb1 in Sertoli cells led to Leydig cell-like tumor development. Lineage tracing experiments revealed that the Leydig-like tumor cells were derived from Sertoli cells. Further studies confirmed that Wt1 is required for the maintenance of the Sertoli cell lineage and that deletion of Wt1 resulted in the reprogramming of Sertoli cells to Leydig cells. Consistent with this interpretation, overexpression of Wt1 in Leydig cells led to the up-regulation of Sertoli cell-specific gene expression and the down-regulation of steroidogenic gene expression. These results demonstrate that the distinction between Sertoli cells and Leydig cells is regulated by Wt1, implying that these two cell types most likely originate from the same progenitor cells. This study thus provides a novel concept for somatic cell fate determination in testis development that may also represent an etiology of male infertility in human patients. PMID:25775596

  19. Sertoli Cell-Only Syndrome: Behind the Genetic Scenes

    PubMed Central

    Stouffs, Katrien; Gheldof, Alexander; Tournaye, Herman; Vandermaelen, Deborah; Bonduelle, Maryse; Lissens, Willy; Seneca, Sara

    2016-01-01

    Sertoli cell-only syndrome is defined by the complete absence of germ cells in testicular tissues and always results in male infertility. The aetiology often remains unknown. In this paper, we have investigated possible causes of Sertoli cell-only syndrome with a special focus on genetic causes. Our results show that, for a large part of the patients (>23% in an unselected group), the sex chromosomes are involved. The majority of patients had a Klinefelter syndrome, followed by patients with Yq microdeletions. Array comparative genomic hybridization in a selected group of “idiopathic patients” showed no known infertility related copy number variations. PMID:26925412

  20. Sertoli Cells Maintain Leydig Cell Number and Peritubular Myoid Cell Activity in the Adult Mouse Testis

    PubMed Central

    Monteiro, Ana; Milne, Laura; Cruickshanks, Lyndsey; Jeffrey, Nathan; Guillou, Florian; Freeman, Tom C.; Mitchell, Rod T.; Smith, Lee B.

    2014-01-01

    The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health. PMID:25144714

  1. Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling

    PubMed Central

    Chen, Su-Ren; Tang, Ji-Xin; Cheng, Jin-Mei; Li, Jian; Jin, Cheng; Li, Xiao-Yu; Deng, Shou-Long; Zhang, Yan; Wang, Xiu-Xia; Liu, Yi-Xun

    2015-01-01

    Sertoli cells, the primary somatic cell in the seminiferous epithelium, provide the spermatogonial stem cell (SSC) microenvironment (niche) through physical support and the expression of paracrine factors. However, the regulatory mechanisms within the SSC niche, which is primarily controlled by Sertoli cells, remain largely unknown. GATA4 is a Sertoli cell marker, involved in genital ridge initiation, sex determination and differentiation during the embryonic stage. Here, we showed that neonatal mice with a targeted disruption of Gata4 in Sertoli cells (Gata4flox/flox; Amh-Cre; hereafter termed Gata4 cKO) displayed a loss of the establishment and maintenance of the SSC pool and apoptosis of both gonocyte-derived differentiating spermatogonia and meiotic spermatocytes. Thus, progressive germ cell depletion and a Sertoli-cell-only syndrome were observed as early as the first wave of murine spermatogenesis. Transplantation of germ cells from postnatal day 5 (P5) Gata4 cKO mice into KitW/W-v recipient seminiferous tubules restored spermatogenesis. In addition, microarray analyses of P5 Gata4 cKO mouse testes showed alterations in chemokine signaling factors, including Cxcl12, Ccl3, Cxcr4 (CXCL12 receptor), Ccr1 (CCL3 receptor), Ccl9, Xcl1 and Ccrl2. Deletion of Gata4 in Sertoli cells markedly attenuated Sertoli cell chemotaxis, which guides SSCs or prospermatogonia to the stem cell niche. Finally, we showed that GATA4 transcriptionally regulated Cxcl12 and Ccl9, and the addition of CXCL12 and CCL9 to an in vitro testis tissue culture system increased the number of PLZF+ undifferentiated spermatogonia within Gata4 cKO testes. Together, these results reveal a novel role for GATA4 in controlling the SSC niche via the transcriptional regulation of chemokine signaling shortly after birth. PMID:26473289

  2. Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro.

    PubMed

    McCabe, Mark J; Foo, Caroline Fh; Dinger, Marcel E; Smooker, Peter M; Stanton, Peter G

    2016-01-01

    The Sertoli cell tight junction (TJ) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P < 0.01), 51% (P < 0.01), and 62% (P < 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P < 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P < 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function. PMID:26585695

  3. Claudin-11 and occludin are major contributors to Sertoli cell tight junction function, in vitro

    PubMed Central

    McCabe, Mark J; Foo, Caroline FH; Dinger, Marcel E; Smooker, Peter M; Stanton, Peter G

    2016-01-01

    The Sertoli cell tight junction (TJ) is the key component of the blood-testis barrier, where it sequesters developing germ cells undergoing spermatogenesis within the seminiferous tubules. Hormonally regulated claudin-11 is a critical transmembrane protein involved in barrier function and its murine knockout results in infertility. We aimed to assess quantitatively the significance of the contribution of claudin-11 to TJ function, in vitro, using siRNA-mediated gene silencing. We also conducted an analysis of the contribution of occludin, another intrinsic transmembrane protein of the TJ. Silencing of claudin-11 and/or occludin was conducted using siRNA in an immature rat Sertoli cell culture model. Transepithelial electrical resistance was used to assess quantitatively TJ function throughout the culture. Two days after siRNA treatment, cells were fixed for immunocytochemical localization of junction proteins or lyzed for RT-PCR assessment of mRNA expression. Silencing of claudin-11, occludin, or both resulted in significant decreases in TJ function of 55% (P < 0.01), 51% (P < 0.01), and 62% (P < 0.01), respectively. Data were concomitant with significant decreases in mRNA expression and marked reductions in the localization of targeted proteins to the Sertoli cell TJ. We provide quantitative evidence that claudin-11 contributes significantly (P < 0.01) to Sertoli cell TJ function in vitro. Interestingly, occludin, which is hormonally regulated but not implicated in infertility until late adulthood, is also a significant (P < 0.01) contributor to barrier function. Our data are consistent with in vivo studies that clearly demonstrate a role for these proteins in maintaining normal TJ barrier structure and function. PMID:26585695

  4. The action of calcitonin on the TM4 Sertoli cell line and on rat Sertoli cell-enriched cultures.

    PubMed

    Nakhla, A M; Mather, J P; Jäne, O A; Bardin, C W

    1989-01-01

    The effects of synthetic salmon calcitonin on primary Sertoli cell-enriched cultures and on an established cell line (TM4 cells, derived from immature mouse Sertoli cells) were studied. Synthetic salmon calcitonin stimulated the conversion of [3H]adenine to [3H]cyclic AMP in both cell systems. In addition, this peptide stimulated the secretion of rABP in primary Sertoli cell-enriched cultures prepared from rat testis. Calcitonin also increased the total concentration of both androgen and estrogen receptors in TM4 cells. Because cAMP analogs decreased androgen and estrogen receptor concentrations, the effect of calcitonin on sex steroid receptors may not be mediated by its effect on cyclic AMP in these cells. The possibility that the action of synthetic salmon calcitonin on the receptors might be mediated by a change in cellular Ca2+ was investigated. Lowering extracellular Ca2+ concentrations from 1.5 mM to less than 0.01 mM markedly reduced the concentration of androgen and estrogen receptors; restoration of Ca2+ to 1.5 mM returned receptor levels to normal. When the receptor concentrations were decreased by lowering extracellular Ca2+ concentrations to 0.5 mM, treatment with the calcium ionophore, A23187, restored receptor levels to normal. Although the calcium channel blocker, verapamil, decreased receptor levels, calcitonin partially counteracted its effect. Trifluoperazine, an inhibitor of calmodulin, also diminished androgen and estrogen receptor, levels in the cytosol of TM4 cells. It was concluded that calcitonin stimulates the formation of cyclic AMP and the secretion of rABP by Sertoli cells. This peptide also increases the concentration of androgen and estrogen receptors, possibly by a mechanism that is, in part, Ca2+ -mediated. These results, along with those on Leydig cells, suggest that calcitonin could be a regulator of testicular function. PMID:2550404

  5. Sertoli cells promote proliferation of bone marrow-derived mesenchymal stem cells in co-culture.

    PubMed

    Zhang, Fenxi; Lu, Ming; Liu, Hengxing; Ren, Tongming; Miao, Yingying; Wang, Jingjing

    2016-05-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) are a major source for cell transplantation. The proliferative ability of BMSCs is an important determinant of the efficiency of transplant therapy. Sertoli cells are "nurse" cells for development of sperm cells. Our recent study showed that Sertoli cells promoted proliferation of human umbilical cord mesenchymal stem cells (hUCMSCs) in co-culture. Studies by other groups also showed that Sertoli cells promoted growth of endothelial cells and neural stem cells. In this study, we investigated the effect of Sertoli cells on proliferation of BMSCs. Our results showed that Sertoli cells in co-culture significantly enhanced proliferation of BMSCs (P < 0.01). Moreover, co-culture with Sertoli cells also markedly increased mRNA and/or protein expressions of Mdm2, p-Akt and Cyclin D1, and decreased p53 expression in BMSCs (P < 0.01 or < 0.05). These findings indicate that Sertoli cells have the potential to enhance proliferation of BMSCs. PMID:27319049

  6. Clinicopathologic features of ovarian Sertoli-Leydig cell tumors

    PubMed Central

    Zhang, Hai-Yan; Zhu, Jia-Er; Huang, Wen; Zhu, Jin

    2014-01-01

    Background: Ovarian Stertoli-Ledig cell tumor (SLCT) is a rare type of sex cord-stromal tumor of the ovary. The present study was to evaluate clinicalopahologic features and prognosis of patients with Sertoli-Leydig cell tumor treated by surgery and adjuvant chemotherapy during short term follow-up. Methods: A total of sixteen patients with ovarian Sertoli-Leydig cell tumor treated at the Obstetrics and Gynecology Hospital, Shanghai, China, between Jan 2001 and Dec 2011 were reviewed. The clinical data, treatment and prognosis were obtained from medical records. Results: The median age of the patients with ovarian Sertoli-Leydig cell tumor was about 27.5 years old in non-menopausal women, while the median age of menopausal women was about 63 years old. The most common complaint was with hormonal-related symptoms in the form of secondary amenorrhea and infinity, features of virilization, abdominal mass or irregular vaginal bleeding. All of sixteen patients underwent surgical staging and all were found to have stage I disease at the time of diagnosis. Eleven patients with intermediate and two patients with poorly differentiated tumors received adjuvant chemotherapy. There were differences found in operative time, blood loss and postoperative recovery time between laparotomy and laparoscopy. There were no disease-related deaths and all patients were under complete remission at the last follow-up. Conclusions: Ovarian Sertoli-Leydig cell tumors could happen in any period age of women. However, the tumors typically occur in the single side while still at the early stage, a favorable outcome could be achieved by surgery and adjuvant chemotherapy. Laparoscopy has similar surgical effects as laparotomy, but has a number of advantages. PMID:25400781

  7. Three-dimensional reconstruction of a rat stage V Sertoli cell: III. A study of specific cellular relationships.

    PubMed

    Russell, L D; Tallon-Doran, M; Weber, J E; Wong, V; Peterson, R N

    1983-06-01

    Specific Sertoli--Sertoli and Sertoli--germ-cell contacts and/or junctions were investigated employing micrographs used to reconstruct serially a model of a rat stage V Sertoli cell. The Sertoli--Sertoli junctional contact areas occurred in a belt-like arrangement near the base of the Sertoli cell. This configuration is consistent with their proposed function as a sealing element limiting the passage of materials toward the tubular lumen. Sertoli ectoplasmic specializations also formed a continuous belt, or band, around the reconstructed cell at the junctional contact area. Eighteen Sertoli--Sertoli tubulobulbar complexes were found; some (12 in number) invaginated the reconstructed cell, while others (6) emanated from it. Of 37 round germ cells that were sectioned in their entirety and adjoined the reconstructed cell, 23 displayed desmosome-gap junctions with either the reconstructed cell or an adjoining cell. Since there were multiple junctions connecting some germ cells to Sertoli cells, the total number of junctions was much greater (35). Desmosome-gap junctions of the Sertoli cell were numerous connecting pachytene spermatocytes, less numerous connecting type B spermatogonia, and even less numerous connecting step 5 spermatids; and none was seen joining Sertoli cells with elongate spermatids. Most desmosome-gap junctions join germ cells to the body of the Sertoli cell at its basal aspect. Their numbers and position indicate that they play a role in the maintenance of the integrity of the seminiferous epithelium and may provide a route for cell-to-cell communication. Ectoplasmic specializations of the reconstructed cell were seen facing only 3 of 37 round germ cells, and 7 ectoplasmic specializations from adjoining Sertoli cells faced these germ cells, all of which were step 5 spermatids. That there were no ectoplasmic specializations facing pachytene cells indicates that ectoplasmic specializations are not acquired as these cells pass through Sertoli--Sertoli

  8. Characterization of swine testicular cell line as immature porcine Sertoli cell line.

    PubMed

    Ma, Changping; Song, Huibin; Guan, Kaifeng; Zhou, Jiawei; Xia, Xuanyan; Li, Fenge

    2016-04-01

    Swine testicular (ST) cell line is isolated from swine fetal testes and has been widely used in biomedical research fields related to pig virus infection. However, the potential benefit and utilization of ST cells in boar reproductive studies has not been fully explored. As swine fetal testes mainly contain multiple types of cells such as Leydig cells, Sertoli cells, gonocytes, and peritubular myoid cells, it is necessary to clarify the cell type of ST cell line. In this study, we identified ST cell line was a collection of Sertoli cells by analyzing the unique morphological characteristic with satellite karyosomes and determining the protein expression of two markers (androgen-binding protein, ABP; Fas ligand, FASL) of Sertoli cells. Then ST cells were further confirmed to be immature Sertoli cells by examining the expression of three markers (anti-Mullerian hormone, AMH; keratin 18, KRT18; follicle-stimulating hormone receptor, FSHR). In conclusion, ST cells are a collection of immature Sertoli cells which can be good experimental materials for the researches involved in Sertoli cell functions and maturation, or even in boar reproductions. PMID:26744029

  9. Effects of simulated microgravity on mouse Sertoli cells in culture

    NASA Astrophysics Data System (ADS)

    Angela, Masini Maria; Prato, Paola; Linda, Scarabelli; Lanza, Cristina; Palmero, Silvio; Pointis, Georges; Ricci, Franco; Strollo, Felice

    With the advent of space flights questions concerning the effects of microgravity (0xG) on hu-man reproduction physiology have got priority Spermatogenesis is a complex, highly ordered process of cell division and differentiation by which spermatogonial cells give rise to mature spermatozoa. Sertoli cells play a crucial role in the development of germ cells and the regulation of spermatogenesis. In this study the influence of 0xG on Sertoli cells was evaluated. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal (using the 3D reconstruction generated from a stack of confocal images) and SHBG changes by immunohistochemistry, for antioxidant agents by RT-PCR and for culture medium lactate concentrations by wet chemistry. Cells were cultured for 6, 24 and 48 hrs on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1xG) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or RNA-extracted or used for culture medium lactate measurements as needed. At 0xG Sertoli cytoskeleton got disorganized, microtubules fragmented and SHBG undetectable already after 24 hrs, with alterations wors-ening further until 48 hrs; various antioxidant systems (SOD, GST, PARP, MTs) appreciably increased during the first 24 hrs but significantly decreased at 48 hrs. No changes occurred in 1xG samples. At least initially, 0xG seems to perturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0xG slightly decreased only after 24 hrs. Further experiments need to be carried out in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out eventually pending male infertility consequences, which would be a problem nowadays, when life expectancy increases and male fertility might become a social issue often extending into 60 years

  10. The sertolian epithelium in the testis of men affected by 'Sertoli-cell-only syndrome'.

    PubMed

    Tedde, G; Montella, A; Fiocca, D; Delrio, A N

    1993-01-01

    Because of the architectural complexity of the seminiferous epithelium, the Sertoli cell is extremely difficult to study. The individual cellular constituents of the tubular wall are intimately associated with one another; especially Sertoli cells and germinal cells are tightly connected. As implied by the name, Sertoli-cell-only syndrome (SCOS) is characterized by the presence of only Sertoli cells in the seminiferous tubule. The absence of germinal cells makes this condition ideal for the morphological study of Sertoli cell. Testicular biopsy specimens of subjects affected by SCOS were studied under light and electron microscopy. The Sertoli cells appeared to be morphologically normal, except for their shape, that appears to be columnar as result of the complete absence of the germinal cells. The cellular outlines were irregular, particularly at the base, but the cytoplasm contained normal organelles and inclusions. The presence of both pale and dark elements was evident. These differences in staining reflect the variability in concentration of glycogen particles and intermediate microfilaments in the cytoplasm. In spite of these differences between Sertoli cells in SCOS and those in normal subjects, SCOS represents a satisfactory model for the morphological and functional analysis of the Sertoli cells. PMID:7694556

  11. Androgen Receptor Coactivator ARID4B Is Required for the Function of Sertoli Cells in Spermatogenesis.

    PubMed

    Wu, Ray-Chang; Zeng, Yang; Pan, I-Wen; Wu, Mei-Yi

    2015-09-01

    Defects in spermatogenesis, a process that produces spermatozoa inside seminiferous tubules of the testis, result in male infertility. Spermatogenic progression is highly dependent on a microenvironment provided by Sertoli cells, the only somatic cells and epithelium of seminiferous tubules. However, genes that regulate such an important activity of Sertoli cells are poorly understood. Here, we found that AT-rich interactive domain 4B (ARID4B), is essential for the function of Sertoli cells to regulate spermatogenesis. Specifically, we generated Sertoli cell-specific Arid4b knockout (Arid4bSCKO) mice, and showed that the Arid4bSCKO male mice were completely infertile with impaired testis development and significantly reduced testis size. Importantly, severe structural defects accompanied by loss of germ cells and Sertoli cell-only phenotype were found in many seminiferous tubules of the Arid4bSCKO testes. In addition, maturation of Sertoli cells was significantly delayed in the Arid4bSCKO mice, associated with delayed onset of spermatogenesis. Spermatogenic progression was also defective, showing an arrest at the round spermatid stage in the Arid4bSCKO testes. Interestingly, we showed that ARID4B functions as a "coactivator" of androgen receptor and is required for optimal transcriptional activation of reproductive homeobox 5, an androgen receptor target gene specifically expressed in Sertoli cells and critical for spermatogenesis. Together, our study identified ARID4B to be a key regulator of Sertoli cell function important for male germ cell development. PMID:26258622

  12. Retinoblastoma Protein Plays Multiple Essential Roles in the Terminal Differentiation of Sertoli Cells

    PubMed Central

    Nalam, Roopa L.; Andreu-Vieyra, Claudia; Braun, Robert E.; Akiyama, Haruhiko; Matzuk, Martin M.

    2009-01-01

    Retinoblastoma protein (RB) plays crucial roles in cell cycle control and cellular differentiation. Specifically, RB impairs the G1 to S phase transition by acting as a repressor of the E2F family of transcriptional activators while also contributing towards terminal differentiation by modulating the activity of tissue-specific transcription factors. To examine the role of RB in Sertoli cells, the androgen-dependant somatic support cell of the testis, we created a Sertoli cell-specific conditional knockout of Rb. Initially, loss of RB has no gross effect on Sertoli cell function because the mice are fertile with normal testis weights at 6 wk of age. However, by 10–14 wk of age, mutant mice demonstrate severe Sertoli cell dysfunction and infertility. We show that mutant mature Sertoli cells continue cycling with defective regulation of multiple E2F1- and androgen-regulated genes and concurrent activation of apoptotic and p53-regulated genes. The most striking defects in mature Sertoli cell function are increased permeability of the blood-testis barrier, impaired tissue remodeling, and defective germ cell-Sertoli cell interactions. Our results demonstrate that RB is essential for proper terminal differentiation of Sertoli cells. PMID:19819985

  13. Effects of relaxin in a co-culture of Sertoli and germ cells.

    PubMed

    Pimenta, Maristela T; Porto, Catarina S; Lazari, Maria F M

    2013-01-01

    Spermatogenesis is controlled by FSH, testosterone and paracrine factors produced by Sertoli cells. The knockout of relaxin decreases sperm maturation in mice. Studies from our laboratory have shown that relaxin and its receptor RXFP1 are expressed in rat Sertoli cells, and exogenous relaxin stimulates Sertoli cell proliferation. Relaxin receptors are also detected in the rat germ cells at specific stages of development. Relaxin could therefore affect spermatogenesis either indirectly, by stimulating Sertoli cell proliferation, or directly, by affecting germ cells. The aim of the present study was to explore a role of relaxin at specific stages of spermatogenesis using a co-culture of rat Sertoli and germ cells. Relaxin seems to increase the number of pre-meiotic and meiotic cells. PMID:24640566

  14. In vitro effects of simulated microgravity on Sertoli cell function

    NASA Astrophysics Data System (ADS)

    Masini, M. A.; Prato, P.; Scarabelli, L.; Lanza, C.; Palmero, S.; Pointis, G.; Ricci, F.; Strollo, F.

    2011-02-01

    With the advent of space flights questions concerning the effects of microgravity (0×G) on human reproductive physiology have received great attention. The aim of this study was to evaluate the influence of 0×G on Sertoli cells. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal and Sex Hormone Binding Globilin (SHBG) changes by immunohistochemistry, for antioxidant content by RT-PCR and for culture medium lactate concentrations by protein chemistry. Cells were cultured for 6, 24 and 48 h on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1×G) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or lysed and RNA-extracted or used for culture medium lactate measurements as needed. At 0×G, Sertoli cytoskeleton became disorganized, microtubules fragmented and SHBG undetectable already after 24 h, with alterations worsening by 48 h. It was evident that various antioxidant systems appreciably increased during the first 24 h but significantly decreased at 48 h. No changes occurred in the 1×G samples. Initially, 0×G seemed to disturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0×G slightly decreased after 24 h. Further experiments are needed in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out male infertility as a possible consequence, which could be a problem, as life expectancy increases.

  15. Delivery of a Therapeutic Protein by Immune-Privileged Sertoli Cells

    PubMed Central

    Halley, Katelyn; Dyson, Emily L.; Kaur, Gurvinder; Mital, Payal; Uong, Peter M.; Dass, Brinda; Crowell, Sherry N.; Dufour, Jannette M.

    2011-01-01

    Immune-privileged Sertoli cells survive long term after allogeneic or xenogeneic transplantation without the use of immunosuppressive drugs, suggesting they could be used as a vehicle to deliver therapeutic proteins. As a model to test this, we engineered Sertoli cells to transiently produce basal levels of insulin and then examined their ability to lower blood glucose levels after transplantation into diabetic SCID mice. Mouse and porcine Sertoli cells transduced with a recombinant adenoviral vector containing furin-modified human proinsulin cDNA expressed insulin mRNA and secreted insulin protein. Transplantation of 5–20 million insulin-expressing porcine Sertoli cells into diabetic SCID mice significantly decreased blood glucose levels in a dose-dependent manner, with 20 million Sertoli cells decreasing blood glucose levels to 9.8 ± 2.7 mM. Similar results were obtained when 20 million insulin-positive, BALB/c mouse Sertoli cells were transplanted; blood glucose levels dropped to 6.3 ± 2.4 mM and remained significantly lower for 5 days. To our knowledge, this is the first study to demonstrate Sertoli cells can be engineered to produce and secrete a clinically relevant factor that has a therapeutic effect, thus supporting the concept of using immune-privileged Sertoli cells as a potential vehicle for gene therapy. PMID:20719072

  16. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3

    PubMed Central

    Yao, Chencheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Chen, Zheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    Sertoli cells play critical roles in regulating spermatogenesis and they can be reprogrammed to the cells of other lineages, highlighting that they have significant applications in reproductive and regenerative medicine. The fate determinations of Sertoli cells are regulated precisely by epigenetic factors. However, the expression, roles, and targets of microRNA (miRNA) in human Sertoli cells remain unknown. Here we have for the first time revealed that 174 miRNAs were distinctly expressed in human Sertoli cells between Sertoli-cell-only syndrome (SCOS) patients and obstructive azoospermia (OA) patients with normal spermatogenesis using miRNA microarrays and real time PCR, suggesting that these miRNAs may be associated with the pathogenesis of SCOS. MiR-133b is upregulated in Sertoli cells of SCOS patients compared to OA patients. Proliferation assays with miRNA mimics and inhibitors showed that miR-133b enhanced the proliferation of human Sertoli cells. Moreover, we demonstrated that GLI3 was a direct target of miR-133b and the expression of Cyclin B1 and Cyclin D1 was enhanced by miR-133b mimics but decreased by its inhibitors. Gene silencing of GLI3 using RNA inference stimulated the growth of human Sertoli cells. Collectively, miR-133b promoted the proliferation of human Sertoli cells by targeting GLI3. This study thus sheds novel insights into epigenetic regulation of human Sertoli cells and the etiology of azoospermia and offers new targets for treating male infertility PMID:26755652

  17. Long-term culture and analysis of cashmere goat Sertoli cells.

    PubMed

    Su, Huimin; Luo, Fenhua; Bao, Jiajing; Wu, Sachula; Zhang, Xueming; Zhang, Yan; Duo, Shuguang; Wu, Yingji

    2014-12-01

    Sertoli cells have important functions in the testis for spermatogenesis. Thus, Sertoli cell culture systems have been established in many animals, such as rat, mouse, human, dog, cow, and pig, but a goat culture has not been reported. This study describes the isolation and culture of Sertoli cells from 3- to 4-month-old cashmere goat (Capra hircus) testes. These proliferative cells were expanded for 20 passages and repeatedly cryopreserved in vitro, in contrast to previous study in human, of which maintain steady growth for up to seven passages and only passages 1 to 5 could be refrozen. The microstructure and ultrastructure of the culture were typical of Sertoli cells, bearing irregular nuclei and a cytoplasm that was rich in smooth and rough endoplasmic reticulum, mitochondria, Golgi, lysosomes, lipid drops, and glycogenosomes. By immunofluorescence analysis, the all cells expressed SRY-related HMG box gene 9 (Sox9). Growth curves and 5-bromo-2'-deoxyuridine (BrdU) incorporation were used to analyze the proliferation of the cultured cells. With increasing passage times, the proliferation of the Sertoli cells declined, but the transcription of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF), and β1-integrin was constant. By flow cytometry, the cells retained the ability to proliferate after 5 yr of cryopreservation. Thus, cashmere goat Sertoli cells have significant proliferative potential in vitro, expressing germ cell regulatory factors and have important applications in studying Sertoli cell-germ cell interactions, spermatogenesis, reproductive toxicology, and male infertility. PMID:25164184

  18. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    SciTech Connect

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan

    2011-01-21

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells

  19. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    SciTech Connect

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  20. Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity

    SciTech Connect

    Zhou, Yuan; Wang, Hui; Wang, Cong; Qiu, Xuefeng; Benson, Mikael; Yin, Xiaoqin; Xiang, Zou; Li, Dongmei; and others

    2015-08-15

    Microcystin (MC)-LR, a cyclic heptapeptide, is a potent reproductive system toxin. To understand the molecular mechanisms of MC-induced reproductive system cytotoxicity, we evaluated global changes of miRNA and mRNA expression in mouse Sertoli cells following MC-LR treatment. Our results revealed that the exposure to MC-LR resulted in an altered miRNA expression profile that might be responsible for the modulation of mRNA expression. Bio-functional analysis indicated that the altered genes were involved in specific cellular processes, including cell death and proliferation. Target gene analysis suggested that junction injury in Sertoli cells exposed to MC-LR might be mediated by miRNAs through the regulation of the Sertoli cell-Sertoli cell pathway. Collectively, these findings may enhance our understanding on the modes of action of MC-LR on mouse Sertoli cells as well as the molecular mechanisms underlying the toxicity of MC-LR on the male reproductive system. - Highlights: • miRNAs were altered in Sertoli cells exposed to MC-LR. • Alerted genes were involved in different cell functions including the cell morphology. • MC-LR adversely affected Sertoli cell junction formation through the regulating miRNAs.

  1. Intracellular signaling pathways involved in the relaxin-induced proliferation of rat Sertoli cells.

    PubMed

    Nascimento, Aline Rosa; Pimenta, Maristela Taliari; Lucas, Thais F G; Royer, Carine; Porto, Catarina Segreti; Lazari, Maria Fatima Magalhaes

    2012-09-15

    Regulation of Sertoli cell number is a key event to determine normal spermatogenesis. We have previously shown that relaxin and its G-protein coupled receptor RXFP1 are expressed in rat Sertoli cells, and that relaxin stimulates Sertoli cell proliferation. This study examined the mechanisms underlying the mitogenic effect of relaxin in a primary culture of Sertoli cells removed from testes of immature rats. Stimulation with exogenous relaxin increased Sertoli cell number and the expression of the proliferating cell nuclear antigen (PCNA), but did not affect the mRNA level of the differentiation markers cadherins 1 and 2. Relaxin-induced Sertoli cell proliferation was blocked by inhibition of MEK/ERK1/2 or PI3K/AKT pathways, but not by inhibition of PKC or EGFR activity. Relaxin induced a rapid and transient activation of ERK1/2 phosphorylation, which was MEK and SRC-dependent, and involved upstream activation of G(i). AKT activation could be detected 5 min after relaxin stimulation, and was still detected after 24h of stimulation with relaxin. Relaxin-induced AKT phosphorylation was G(i)- but not PKA-dependent, and it was blocked by both PI3K and MEK inhibitors. In conclusion, the mitogenic effect of relaxin in Sertoli cell involves coupling to G(i) and activation of both MEK/ERK1/2 and PI3K/AKT pathways. PMID:22819701

  2. Expression of Genomic Functional Estrogen Receptor 1 in Mouse Sertoli Cells

    PubMed Central

    Lin, Jing; Zhu, Jia; Li, Xian; Li, Shengqiang; Lan, Zijian; Ko, Jay

    2014-01-01

    There is no consensus whether Sertoli cells express estrogen receptor 1 (Esr1). Reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence demonstrated that mouse Sertoli cell lines, TM4, MSC-1, and 15P-1, and purified primary mouse Sertoli cells (PSCs) contained Esr1 messenger RNA and proteins. Incubation of Sertoli cells with 17β-estradiol (E2) or ESR1 agonist stimulated the expression of an estrogen responsive gene Greb1, which was prevented by ESR inhibitor or ESR1 antagonist. Overexpression of Esr1 in MSC-1 enhanced E2-induced Greb1 expression, while knockdown of Esr1 by small interfering RNA in TM4 attenuated the response. Furthermore, E2-induced Greb1 expression was abolished in the PSCs isolated from Amh-Cre/Esr1-floxed mice in which Esr1 in Sertoli cells were selectively deleted. Chromatin immunoprecipitation assays indicated that E2-induced Greb1 expression in Sertoli cells was mediated by binding of ESR1 to estrogen responsive elements. In summary, ligand-dependent nuclear ESR1 was present in mouse Sertoli cells and mediates a classical genomic action of estrogens. PMID:24615934

  3. Induction of midbrain dopaminergic neurons from primate embryonic stem cells by coculture with sertoli cells.

    PubMed

    Yue, Fengming; Cui, Li; Johkura, Kohei; Ogiwara, Naoko; Sasaki, Katsunori

    2006-07-01

    The aim of this study was to produce dopaminergic neurons from primate embryonic stem (ES) cells following coculture with mouse Sertoli cells. After 3 weeks of induction, immunostaining revealed that 90% +/- 9% of the colonies contained tyrosine hydroxylase-positive (TH(+)) neurons, and 60% +/- 7% of the tubulin beta III-positive (Tuj III(+)) neurons were TH(+). Reverse transcription-polymerase chain reaction analyses showed that Sertoli-induced neurons expressed midbrain dopaminergic neuron markers, including TH, dopamine transporter, aromatic amino acid decarboxylase (AADC), receptors such as TrkB and TrkC, and transcription factors NurrI and Lmx1b. Neurons that had been differentiated on Sertoli cells were positive for Pax2, En1, and AADC, midbrain-related markers, and negative for dopamine-beta-hydroxylase, a marker of noradrenergic neurons. These Sertoli cell-induced dopaminergic cells can release dopamine when depolarized by high K(+). Sertoli cell-conditioned medium contained glial cell line-derived neurotrophic factor (GDNF) and supported neuronal differentiation. After pretreatment with anti-GDNF antibody, the percentage of Tuj III(+) colonies was reduced to 14%. Thus, GDNF contributed significantly to inducing primate ES cells into dopaminergic neurons. When transplanted into a 6-hydroxydopamine-treated Parkinson's disease model, primate-derived dopaminergic neurons integrated into the mouse striatum. Two weeks after transplantation, surviving TH(+) cells were present. These TH(+) cells survived for 2 months. Therefore, the induction method of coculture ES cells with Sertoli cells provides an unlimited source of primate cells for the study of pathogenesis and transplantation in Parkinson's disease. PMID:16822882

  4. The Warburg Effect Revisited—Lesson from the Sertoli Cell

    PubMed Central

    Oliveira, Pedro F.; Martins, Ana D.; Moreira, Ana C.; Cheng, C. Yan; Alves, Marco G.

    2016-01-01

    Otto Warburg observed that cancerous cells prefer fermentative instead of oxidative metabolism of glucose, although the former is in theory less efficient. Since Warburg’s pioneering works, special attention has been given to this difference in cell metabolism. The Warburg effect has been implicated in cell transformation, immortalization, and proliferation during tumorigenesis. Cancer cells display enhanced glycolytic activity, which is correlated with high proliferation, and thus, glycolysis appears to be an excellent candidate to target cancer cells. Nevertheless, little attention has been given to noncancerous cells that exhibit a “Warburg-like” metabolism with slight, but perhaps crucial, alterations that may provide new directions to develop new and effective anticancer therapies. Within the testis, the somatic Sertoli cell (SC) presents several common metabolic features analogous to cancer cells, and a clear “Warburg-like” metabolism. Nevertheless, SCs actively proliferate only during a specific time period, ceasing to divide in most species after puberty, when they become terminally differentiated. The special metabolic features of SC, as well as progression from the immature but proliferative state, to the mature nonproliferative state, where a high glycolytic activity is maintained, make these cells unique and a good model to discuss new perspectives on the Warburg effect. Herein we provide new insight on how the somatic SC may be a source of new and exciting information concerning the Warburg effect and cell proliferation. PMID:25043918

  5. Establishment and applications of male germ cell and Sertoli cell lines.

    PubMed

    Wang, Hong; Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; He, Zuping

    2016-08-01

    Within the seminiferous tubules there are two major cell types, namely male germ cells and Sertoli cells. Recent studies have demonstrated that male germ cells and Sertoli cells can have significant applications in treating male infertility and other diseases. However, primary male germ cells are hard to proliferate in vitro and the number of spermatogonial stem cells is scarce. Therefore, methods that promote the expansion of these cell populations are essential for their use from the bench to the bed side. Notably, a number of cell lines for rodent spermatogonia, spermatocytes and Sertoli cells have been developed, and significantly we have successfully established a human spermatogonial stem cell line with an unlimited proliferation potential and no tumor formation. This newly developed cell line could provide an abundant source of cells for uncovering molecular mechanisms underlying human spermatogenesis and for their utilization in the field of reproductive and regenerative medicine. In this review, we discuss the methods for establishing spermatogonial, spermatocyte and Sertoli cell lines using various kinds of approaches, including spontaneity, transgenic animals with oncogenes, simian virus 40 (SV40) large T antigen, the gene coding for a temperature-sensitive mutant of p53, telomerase reverse gene (Tert), and the specific promoter-based selection strategy. We further highlight the essential applications of these cell lines in basic research and translation medicine. PMID:27069011

  6. The Sertoli cell: one hundred fifty years of beauty and plasticity.

    PubMed

    França, L R; Hess, R A; Dufour, J M; Hofmann, M C; Griswold, M D

    2016-03-01

    It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways. PMID:26846984

  7. Implications of Sertoli cell induced germ cell apoptosis to testicular pathology

    PubMed Central

    Murphy, Caitlin J; Richburg, John H

    2014-01-01

    After exposure to toxicants, degenerating germ cells represents the most common testicular histopathological alteration, regardless of the mechanism of toxicity. Therefore, deciphering the primary toxicant cellular target and mechanism of action can be extremely difficult. However, most testicular toxicants display a cell-specific and a stage-specific pattern of damage, which is the best evidence for identifying the primary cellular target (i.e. germ cell, Sertoli cell, peritubular myoid cell, or Leydig cell). Some toxicant-induced Sertoli cell injury presents with germ cell apoptosis occurring primarily in spermatocytes in rats in stages XI-XIV, I and II. Although some toxicants result in spermatid degeneration and apoptosis, it is still unclear if spermatid apoptosis is a result of Sertoli cell-selective apoptosis or a direct effect of toxicants on spermatids, therefore if this is seen as the earliest change, one cannot infer the mechanism of apoptosis. This review summarizes some of the distinguishing features of Sertoli cell-induced germ cell apoptosis and the associated mechanisms of cell death to provide the toxicologist observing similar cell death, with evidence about a potential mode of action. PMID:26413394

  8. Sertoli cells in the testis of caecilians, Ichthyophis tricolor and Uraeotyphlus cf. narayani (Amphibia: Gymnophiona): light and electron microscopic perspective.

    PubMed

    Smita, Mathew; Oommen, Oommen V; George, Jancy M; Akbarsha, M A

    2003-12-01

    The caecilians have evolved a unique pattern of cystic spermatogenesis in which cysts representing different stages in spermatogenesis coexist in a testis lobule. We examined unsettled issues relating to the organization of the caecilian testis lobules, including the occurrence of a fatty matrix, the possibility of both peripheral and central Sertoli cells, the origin of Sertoli cells from follicular cells, and the disengagement of older Sertoli cells to become loose central Sertoli cells. We subjected the testis of Ichthyophis tricolor (Ichthyophiidae) and Uraeotyphlus cf. narayani (Uraeotyphliidae) from the Western Ghats of Kerala, India, to light and transmission electron microscopic studies. Irrespective of the functional state of the testis, whether active or regressed, Sertoli cells constitute a permanent feature of the lobules. The tall Sertoli cells adherent to the basal lamina with basally located pleomorphic nuclei extend deeper into the lobule to meet at the core. There they provide for association of germ cells at different stages of differentiation, an aspect that has earlier been misconceived as the fatty matrix. Germ cells up to the 4-cell stage remain in the intercalating region of the Sertoli cells and they are located at the apices of the Sertoli cells from the 8-cell stage onwards. The developing germ cells are intimately associated with the Sertoli cell adherent to the basal lamina until spermiation. There are ameboid cells in the core of the lobules that appear to interact with the germ cells at the face opposite to their attachment with the Sertoli cells. Adherence of the Sertoli cells to the basal lamina is a permanent feature of the caecilian testicular lobules. The ameboid cells in the core are neither Sertoli cells nor their degeneration products. PMID:14584033

  9. Sertoli cells have a functional NALP3 inflammasome that can modulate autophagy and cytokine production

    PubMed Central

    Hayrabedyan, Soren; Todorova, Krassimira; Jabeen, Asma; Metodieva, Gergana; Toshkov, Stavri; Metodiev, Metodi V.; Mincheff, Milcho; Fernández, Nelson

    2016-01-01

    Sertoli cells, can function as non-professional tolerogenic antigen-presenting cells, and sustain the blood-testis barrier formed by their tight junctions. The NOD-like receptor family members and the NALP3 inflammasome play a key role in pro-inflammatory innate immunity signalling pathways. Limited data exist on NOD1 and NOD2 expression in human and mouse Sertoli cells. Currently, there is no data on inflammasome expression or function in Sertoli cells. We found that in primary pre-pubertal Sertoli cells and in adult Sertoli line, TLR4\\NOD1 and NOD2 crosstalk converged in NFκB activation and elicited a NALP3 activation, leading to de novo synthesis and inflammasome priming. This led to caspase-1 activation and IL-1β secretion. We demonstrated this process was controlled by mechanisms linked to autophagy. NOD1 promoted pro-IL-1β restriction and autophagosome maturation arrest, while NOD2 promoted caspase-1 activation, IL-1β secretion and autophagy maturation. NALP3 modulated NOD1 and pro-IL-1β expression, while NOD2 inversely promoted IL-1β. This study is proof of concept that Sertoli cells, upon specific stimulation, could participate in male infertility pathogenesis via inflammatory cytokine induction. PMID:26744177

  10. Elevated expression of the Sertoli cell androgen receptor disrupts male fertility.

    PubMed

    Hazra, Rasmani; Upton, Dannielle; Desai, Reena; Noori, Omar; Jimenez, Mark; Handelsman, David J; Allan, Charles M

    2016-08-01

    Recently, we created a unique gain-of-function mouse model with Sertoli cell-specific transgenic androgen receptor expression (TgSCAR) showing that SCAR activity controls the synchronized postnatal development of somatic Sertoli and Leydig cells and meiotic-postmeiotic germ cells. Moderate TgSCAR (TgSCAR(m)) expression reduced testis size but had no effect on male fertility. Here, we reveal that higher TgSCAR expression (TgSCAR(H)) causes male infertility. Higher SCAR activity, shown by upregulated AR-dependent transcripts (Rhox5, Spinw1), resulted in smaller adult TgSCAR(H) testes (50% of normal) despite normal or elevated circulating and intratesticular testosterone levels. Unlike fertile TgSCAR(m) males, testes of adult TgSCAR(H) males exhibited focal regions of interstitial hypertrophy featuring immature adult Leydig cells and higher intratesticular dihydrotestosterone and 5α-androstane 3α,17β-diol levels that are normally associated with pubertal development. Mature TgSCAR(H) testes also exhibited markedly reduced Sertoli cell numbers (70%), although meiotic and postmeiotic germ cell/Sertoli cell ratios were twofold higher than normal, suggesting that elevated TgSCAR activity supports excessive spermatogenic development. Concurrent with the higher germ cell load of TgSCAR(H) Sertoli cells were increased levels of apoptotic germ cells in TgSCAR(H) relative to TgSCAR(m) testes. In addition, TgSCAR(H) testes displayed unique morphological degeneration that featured accumulated cellular and spermatozoa clusters in dilated channels of rete testes, consistent with reduced epididymal sperm numbers. Our findings reveal for the first time that excessive Sertoli cell AR activity in mature testes can reach a level that disturbs Sertoli/germ cell homeostasis, impacts focal Leydig cell function, reduces sperm output, and disrupts male fertility. PMID:27354237

  11. Primary rat Sertoli and interstitial cells exhibit a differential response to cadmium

    SciTech Connect

    Clough, S.R.; Welsh, M.J.; Payne, A.H.; Brown, C.D.; Brabec, M.J. )

    1990-01-01

    Two cell types central to the support of spermatogenesis, the Sertoli cell and the interstitial (Leydig) cell, were isolated from the same cohort of young male rats and challenged with cadmium chloride to compare their susceptibility to the metal. Both cell types were cultured under similar conditions, and similar biochemical endpoints were chosen to minimize experimental variability. These endpoints include the uptake of 109Cd, reduction of the vital tetrazolium dye MTT, incorporation of 3H-leucine, change in heat-stable cadmium binding capacity, and production of lactate. Using these parameters, it was observed that the Sertoli cell cultures were adversely affected in a dose-and time-dependent manner, while the interstitial cell cultures, treated with identical concentrations of CdCl2, were less affected. The 72-hr LC50's for Sertoli cells and interstitial cells were 4.1 and 19.6 microM CdCl2, respectively. Thus, different cell populations within the same tissue may differ markedly in susceptibility to a toxicant. These in vitro data suggest that the Sertoli cell, in relation to the interstitium, is particularly sensitive to cadmium. Because the Sertoli cell provides functional support for the seminiferous epithelium, the differential sensitivity of this cell type may, in part, explain cadmium-induced testicular dysfunction, particularly at doses that leave the vascular epithelium intact.

  12. Establishment and characterization of a testicular Sertoli cell line from olive flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Peng, Limin; Zheng, Yuan; You, Feng; Wu, Zhihao; Zou, Yuxia; Zhang, Peijun

    2015-11-01

    The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical "S" shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.

  13. Establishment and characterization of a testicular Sertoli cell line from olive flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Peng, Limin; Zheng, Yuan; You, Feng; Wu, Zhihao; Zou, Yuxia; Zhang, Peijun

    2016-09-01

    The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical "S" shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.

  14. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends.

    PubMed

    Bernardino, Raquel L; Marinelli, Raul A; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G; Svelto, Maria; Oliveira, Pedro F; Calamita, Giuseppe

    2016-01-01

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field. PMID:27409609

  15. Hepatocyte and Sertoli Cell Aquaporins, Recent Advances and Research Trends

    PubMed Central

    Bernardino, Raquel L.; Marinelli, Raul A.; Maggio, Anna; Gena, Patrizia; Cataldo, Ilaria; Alves, Marco G.; Svelto, Maria; Oliveira, Pedro F.; Calamita, Giuseppe

    2016-01-01

    Aquaporins (AQPs) are proteinaceous channels widespread in nature where they allow facilitated permeation of water and uncharged through cellular membranes. AQPs play a number of important roles in both health and disease. This review focuses on the most recent advances and research trends regarding the expression and modulation, as well as physiological and pathophysiological functions of AQPs in hepatocytes and Sertoli cells (SCs). Besides their involvement in bile formation, hepatocyte AQPs are involved in maintaining energy balance acting in hepatic gluconeogenesis and lipid metabolism, and in critical processes such as ammonia detoxification and mitochondrial output of hydrogen peroxide. Roles are played in clinical disorders including fatty liver disease, diabetes, obesity, cholestasis, hepatic cirrhosis and hepatocarcinoma. In the seminiferous tubules, particularly in SCs, AQPs are also widely expressed and seem to be implicated in the various stages of spermatogenesis. Like in hepatocytes, AQPs may be involved in maintaining energy homeostasis in these cells and have a major role in the metabolic cooperation established in the testicular tissue. Altogether, this information represents the mainstay of current and future investigation in an expanding field. PMID:27409609

  16. Connexin-43: A possible mediator of heat stress effects on ram Sertoli cells

    PubMed Central

    Hassanpour, Hossain; Kadivar, Ali; Mirshokraei, Pejman; Nazari, Hassan; Afzali, Azita; Badisanaye, Maryam

    2015-01-01

    Sertoli cells are an essential group of cells in seminiferous epithelium which provide nutritional and structural supports for spermatogenic cells via cell junctions. In this study, the gene expression of connexin-43, the most abundantly distributed gap junction protein of cells, was investigated in ram Sertoli cells under mild and severe heat stresses with real-time quantitative PCR. Sertoli cells were isolated from testes of 10 lambs. After culture and 3 passages, they were treated with mild (39 ˚C) and severe (42 ˚C) heat stress for 6 hr. The results showed a significant reduction in the percentage of live cells under severe heat stress compared to the control group (32 ˚C), (p <0.05). Relative quantification analysis revealed significantly higher (3.80 fold increase) values of connexin-43 transcripts in severely heat stressed group than control group (p <0.05). It is concluded that challenging Sertoli cells with 42 ˚C heat could threaten their survival, and overexpression of connexin-43 may cause dysfunction of Sertoli cells due to heat stress. These findings can be useful to identify the molecular mechanisms involved in adverse effects of heat stress on male reproduction and enhance our understanding of its pathogenesis. PMID:26261707

  17. The ultrastructure of the Sertoli cell of the vervet monkey, Chlorocebus aethiops.

    PubMed

    Lebelo, S L; van der Horst, G

    2010-12-01

    The ultrastructure of the Sertoli cell of the vervet monkey was studied using both scanning and transmission electron microscopic techniques. SEM micrographs revealed perforated sleeve-like processes which encased mature elongated spermatids which are ready for spermiation. TEM micrographs showed a large Sertoli cell nucleus characterized by many lobes (4-5) and consisting of a homogenous nucleoplasm and a distinctive nucleolus. The nucleus occupies a significant portion of the basal region of the cell. The distribution of chromatin clearly shows high activity of these cells. Lipid droplets and free ribosomes are also found scattered throughout the cytoplasm. Well-developed Golgi apparatus is found in the basal region of the cell. There is phagocytic activity in the Sertoli cells as revealed by the presence of numerous phagosomes. Numerous mitochondria with well-developed tubular cristae are found on the basal side of the nucleus, whereas few mitochondria are located on the apical side of the nucleus. Distinct desmosomes are located between cells. A well-developed smooth endoplasmic reticulum and granular endoplasmic reticulum are frequently found in the cytoplasm of the Sertoli cells. The results of this investigation showed that Sertoli cells of the vervet monkey are almost similar to those of humans and show many similarities with other mammalian species. PMID:20828773

  18. Reduced endogenous estrogen and hemicastration interact synergistically to increase porcine sertoli cell proliferation.

    PubMed

    Berger, Trish; Conley, Alan

    2014-05-01

    Both reduced endogenous estrogen and hemicastration stimulate proliferation of porcine Sertoli cells. The objective of these experiments was to compare the temporal patterns of response to each stimulus with the response to the combined stimuli as indications of shared or separate mechanisms. Within a replicate, one littermate was treated weekly with canola oil vehicle and remained intact; a second littermate was treated weekly with vehicle, and one testis was removed at Day 8; a third littermate was treated weekly with the aromatase inhibitor letrozole to reduce endogenous estrogens and remained intact; and the fourth littermate was treated weekly with letrozole, and one testis was removed at Day 8. Four replicates were evaluated at 2 wk of age, five replicates evaluated at 6.5 wk of age, and five replicates were evaluated at 11 wk of age, with treatment ceasing at 6 wk of age. Numbers of Sertoli cells were determined following GATA4 labeling using the optical dissector method. Levels of estradiol, estrogen conjugates, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and inhibin were determined by radioimmunoassay. Hemicastration appeared to have a rapid effect on Sertoli cell proliferation, but letrozole treatment had no apparent effect on Sertoli cell numbers at 2 wk of age. Both letrozole treatment and hemicastration had stimulated Sertoli cell proliferation by 6.5 wk of age, although the magnitude of the hemicastration response was much greater. Letrozole appeared to have minimal interaction with hemicastration at this age. Letrozole and hemicastration together increased Sertoli cell numbers at 11 wk of age compared with either treatment alone. Estradiol and estrogen conjugates were dramatically reduced by aromatase inhibition as anticipated; treatment-induced changes in inhibin, LH, or FSH were minimal. Differences in timing of response and positive interaction at 11 wk of age suggest that hemicastration and letrozole stimulate proliferation of

  19. Altered lipid homeostasis in Sertoli cells stressed by mild hyperthermia.

    PubMed

    Vallés, Ana S; Aveldaño, Marta I; Furland, Natalia E

    2014-01-01

    Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC). Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days) of rat testes to 43 °C led to accumulation of neutral lipids. This SC-specific lipid function took 1-2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43 °C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin) and microfilament (f-actin) organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster. PMID:24690895

  20. Altered Lipid Homeostasis in Sertoli Cells Stressed by Mild Hyperthermia

    PubMed Central

    Vallés, Ana S.; Aveldaño, Marta I.; Furland, Natalia E.

    2014-01-01

    Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC). Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days) of rat testes to 43°C led to accumulation of neutral lipids. This SC-specific lipid function took 1–2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43°C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin) and microfilament (f-actin) organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster. PMID:24690895

  1. Altered protein prenylation in Sertoli cells is associated with adult infertility resulting from childhood mumps infection.

    PubMed

    Wang, Xiu-Xing; Ying, Pu; Diao, Fan; Wang, Qiang; Ye, Dan; Jiang, Chen; Shen, Ning; Xu, Na; Chen, Wei-Bo; Lai, Shan-Shan; Jiang, Shan; Miao, Xiao-Li; Feng, Jin; Tao, Wei-Wei; Zhao, Ning-Wei; Yao, Bing; Xu, Zhi-Peng; Sun, Hai-Xiang; Li, Jian-Min; Sha, Jia-Hao; Huang, Xing-Xu; Shi, Qing-Hua; Tang, Hong; Gao, Xiang; Li, Chao-Jun

    2013-07-29

    Mumps commonly affects children 5-9 yr of age, and can lead to permanent adult sterility in certain cases. However, the etiology of this long-term effect remains unclear. Mumps infection results in progressive degeneration of the seminiferous epithelium and, occasionally, Sertoli cell-only syndrome. Thus, the remaining Sertoli cells may be critical to spermatogenesis recovery after orchitis healing. Here, we report that the protein farnesylation/geranylgeranylation balance is critical for patients' fertility. The expression of geranylgeranyl diphosphate synthase 1 (GGPPS) was decreased due to elevated promoter methylation in the testes of infertile patients with mumps infection history. When we deleted GGPPS in mouse Sertoli cells, these cells remained intact, whereas the adjacent spermatogonia significantly decreased after the fifth postnatal day. The proinflammatory MAPK and NF-κB signaling pathways were constitutively activated in GGPPS(-/-) Sertoli cells due to the enhanced farnesylation of H-Ras. GGPPS(-/-) Sertoli cells secreted an array of cytokines to stimulate spermatogonia apoptosis, and chemokines to induce macrophage invasion into the seminiferous tubules. Invaded macrophages further blocked spermatogonia development, resulting in a long-term effect through to adulthood. Notably, this defect could be rescued by GGPP administration in EMCV-challenged mice. Our results suggest a novel mechanism by which mumps infection during childhood results in adult sterility. PMID:23825187

  2. Receptors and signaling pathways involved in proliferation and differentiation of Sertoli cells

    PubMed Central

    Lucas, Thaís FG; Nascimento, Aline R; Pisolato, Raisa; Pimenta, Maristela T; Lazari, Maria Fatima M; Porto, Catarina S

    2014-01-01

    The identification of the hormones and other factors regulating Sertoli cell survival, proliferation, and maturation in neonatal, peripubertal, and pubertal life remains one of the most critical questions in testicular biology. The regulation of Sertoli cell proliferation and differentiation is thought to be controlled by cell–cell junctions and a set of circulating and local hormones and growth factors. In this review, we will focus on receptors and intracellular signaling pathways activated by androgen, follicle-stimulating hormone, thyroid hormone, activin, retinoids, insulin, insulin-like growth factor, relaxin, and estrogen, with special emphasis on estrogen receptors. Estrogen receptors activate intracellular signaling pathways that converge on cell cycle and transcription factors and play a role in the regulation of Sertoli cell proliferation and differentiation. PMID:25225624

  3. Sertoli cell tumor causing precocious puberty in a girl with Peutz-Jeghers syndrome.

    PubMed

    Zung, A; Shoham, Z; Open, M; Altman, Y; Dgani, R; Zadik, Z

    1998-09-01

    Distinctive ovarian and cervical tumors are associated with Peutz-Jeghers syndrome (PJS). The most common gynecological tumors in this syndrome are adenoma malignum of the uterine cervix and ovarian sex cord tumor, particularly sex cord tumor with annular tubules (SCTAT). Other kinds of ovarian tumors have been rarely reported in association of PJS, including Sertoli cell tumors. We report a case of a 4.5-year-old girl with PJS who presented with isosexual precocious puberty (IPP) due to ovarian lipid-rich Sertoli cell tumor. In addition to estrinizing effect of the tumor, the patient had decidual reaction secondary to tumor-derived progesterone secretion. The literature on gonadal tumors in PJS is reviewed, including one previous report of ovarian lipid-rich Sertoli cell tumor associated with this syndrome. PMID:9790799

  4. A substance secreted by rat Sertoli cells induces feminization of embryonic chick testes in vitro.

    PubMed

    Sánchez, A; Jiménez, R; Burgos, M; Díaz de la Guardia, R

    1994-06-01

    Male and female gonads from 7- to 9-day-old chick embryos were cultured for 6 days in Sertoli cell-conditioned medium or in serum-free medium to investigate the possible effect of substances secreted by rat Sertoli cells on chick gonad development. Histological analysis showed that whereas all female gonads proceed through normal ovarian development in both culture media, most of male gonads showed clear feminization only when cultured in Sertoli cell-conditioned medium; male gonads cultured in serum-free medium developed as normal testes. Because the only substance detected in our conditioned medium with the potential to cause these effects was sex-specific antigen (Sxs), our results provide further evidence that Sxs antigen may play a role in sexual differentiation in birds, and probably in mammals. PMID:7978357

  5. Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells

    PubMed Central

    Ma, Yi; Yang, Hao-Zheng; Xu, Long-Mei; Huang, Yi-Ran; Dai, Hui-Li; Kang, Xiao-Nan

    2015-01-01

    Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells. PMID:25745956

  6. Specific deficiency of Plzf paralog, Zbtb20, in Sertoli cells does not affect spermatogenesis and fertility in mice

    PubMed Central

    Jiang, Xiaohua; Zhang, Huan; Yin, Shi; Zhang, Yuanwei; Yang, Weimei; Zheng, Wei; Wang, Liu; Wang, Zheng; Bukhari, Ihtisham; Cooke, Howard J.; Iqbal, Furhan; Shi, Qinghua

    2014-01-01

    Ztbt20 is a POK family transcription factor and primarily functions through its conserved C2H2 Krüppel type zinc finger and BTB/POZ domains. The present study was designed to define the function of the Zbtb20, in vivo, during mouse spermatogenesis. Immunohistochemical studies revealed that ZBTB20 protein was localized specifically in the nuclei of Sertoli cells in seminiferous tubules. To investigate its role during spermatogenesis, we crossed Amh-Cre transgenic mice with Zbtb20 floxp mice to generate conditionally knockout mice (cKO) in which Zbtb20 was specifically deleted in Sertoli cells. The cKO mice were fertile and did not show any detectable abnormalities in spermatogenesis. Taken together, though specific deletion of transcription factor Zbtb20 in Sertoli cells has no apparent influence on spermatogenesis, its specific localization in Sertoli cells makes Zbtb20 a useful marker for the identification of Sertoli cells in seminiferous tubules. PMID:25395169

  7. NODAL secreted by male germ cells regulates the proliferation and function of human Sertoli cells from obstructive azoospermia and nonobstructive azoospermia patients.

    PubMed

    Tian, Ru-Hui; Yang, Shi; Zhu, Zi-Jue; Wang, Jun-Long; Liu, Yun; Yao, Chencheng; Ma, Meng; Guo, Ying; Yuan, Qingqing; Hai, Yanan; Huang, Yi-Ran; He, Zuping; Li, Zheng

    2015-01-01

    This study was designed to explore the regulatory effects of male germ cell secreting factor NODAL on Sertoli cell fate decisions from obstructive azoospermia (OA) and nonobstructive azoospermia (NOA) patients. Human Sertoli cells and male germ cells were isolated using two-step enzymatic digestion and SATPUT from testes of azoospermia patients. Expression of NODAL and its multiple receptors in human Sertoli cells and male germ cells were characterized by reverse transcription-polymerase chain reaction (RT-PCR) and immunochemistry. Human recombinant NODAL and its receptor inhibitor SB431542 were employed to probe their effect on the proliferation of Sertoli cells using the CCK-8 assay. Quantitative PCR and Western blots were utilized to assess the expression of Sertoli cell functional genes and proteins. NODAL was found to be expressed in male germ cells but not in Sertoli cells, whereas its receptors ALK4, ALK7, and ACTR-IIB were detected in Sertoli cells and germ cells, suggesting that NODAL plays a regulatory role in Sertoli cells and germ cells via a paracrine and autocrine pathway, respectively. Human recombinant NODAL could promote the proliferation of human Sertoli cells. The expression of cell cycle regulators, including CYCLIN A, CYCLIN D1 and CYCLIN E, was not remarkably affected by NODAL signaling. NODAL enhanced the expression of essential growth factors, including GDNF, SCF, and BMP4, whereas SB431542 decreased their levels. There was not homogeneity of genes changes by NODAL treatment in Sertoli cells from OA and Sertoli cell-only syndrome (SCO) patients. Collectively, this study demonstrates that NODAL produced by human male germ cells regulates proliferation and numerous gene expression of Sertoli cells. PMID:26289399

  8. Nucleoside transport at the blood-testis barrier studied with primary-cultured sertoli cells.

    PubMed

    Kato, Ryo; Maeda, Tomoji; Akaike, Toshihiro; Tamai, Ikumi

    2005-02-01

    Nucleosides are essential for nucleotide synthesis in testicular spermatogenesis. In the present study, the mechanism of the supply of nucleosides to the testicular system across the blood-testis barrier was studied using primary-cultured Sertoli cells from rats and TM4 cells from mice. Uptake of uridine by these cells was time- and concentration-dependent. Uridine uptake was decreased under Na(+)-free conditions, and the system was presumed to be high affinity, indicating an Na(+)-dependent concentrative nucleoside transporter (CNT) is involved. On the other hand, nitrobenzylthioinosine, a potent inhibitor of Na(+)-independent equilibrative nucleoside transporters (ENTs), inhibited uridine uptake by the Sertoli cells in a concentration-dependent manner. Expression of nucleoside transporters ENT1, ENT2, ENT3, CNT1, CNT2, and CNT3 was detected in Sertoli cells by reverse transcriptase-polymerase chain reaction analysis. Inhibition studies of the uptake of uridine by various nucleosides both in the presence and absence of Na(+) indicated that the most of those expressed nucleoside transporters, ENTs and CNTs, are involved functionally. These results demonstrated that Sertoli cells are equipped with multiple nucleoside transport systems, including ENT1, ENT2, and CNTs, to provide nucleosides for spermatogenesis. PMID:15547112

  9. Regulation of Sertoli-Germ Cell Adhesion and Sperm Release by FSH and Nonclassical Testosterone Signaling

    PubMed Central

    Shupe, John; Cheng, Jing; Puri, Pawan; Kostereva, Nataliya

    2011-01-01

    Testosterone and FSH act in synergy to produce the factors required to maximize the production of spermatozoa and male fertility. However, the molecular mechanisms by which these hormones support spermatogenesis are not well established. Recently, we identified a nonclassical mechanism of testosterone signaling in cultured rat Sertoli cells. We found that testosterone binding to the androgen receptor recruits and activates Src tyrosine kinase. Src then causes the activation of the epidermal growth factor receptor, which results in the phosphorylation and activation of the ERK MAPK and the cAMP response element-binding protein transcription factor. In this report, we find that FSH inhibits testosterone-mediated activation of ERK and the MAPK pathway in Sertoli cells via the protein kinase A-mediated inhibition of Raf kinase. In addition, FSH, as well as inhibitors of Src and ERK kinase activity, reduced germ cell attachment to Sertoli cells in culture. Using pathway-specific androgen receptor mutants we found that the nonclassical pathway is required for testosterone-mediated increases in germ cell attachment to Sertoli cells. Studies of seminiferous tubule explants determined that Src kinase, but not ERK kinase, activity is required for the release of sperm from seminiferous tubule explants. These findings suggest the nonclassical testosterone-signaling pathway acts via Src and ERK kinases to facilitate the adhesion of immature germ cells to Sertoli cells and through Src to permit the release of mature spermatozoa. In contrast, FSH acts to limit testosterone-mediated ERK kinase activity and germ cell attachment. PMID:21177760

  10. Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants.

    PubMed

    Fiorini, Céline; Tilloy-Ellul, Anne; Chevalier, Stephan; Charuel, Claude; Pointis, Georges

    2004-05-01

    In the testis, Sertoli cells establish intercellular junctions that are essential for spermatogenesis. The SerW3 Sertoli cell line displays some features of native Sertoli cells. Western blot and immunofluorescence analyses showed that SerW3 Sertoli cells expressed typical components of tight (occludin and zonula occludens-1), anchoring (N-cadherin) and gap (connexin 43) junctions. Testicular toxicants (DDT, pentachlorophenol, dieldrin, dinitrobenzene, cadmium chloride, cisplatin, gossypol, bisphenol A and tert-octylphenol) affected intercellular junctions by either reducing the amount or inducing aberrant intracellular localization of these membranous proteins. Phosphodiesterase inhibitors (isobutyl methylxantine, rolipram, zaprinast, zardaverine) did not alter junctional-complex component levels but caused a rapid and reversible redistribution of these proteins to the cytoplasmic compartment. The present study showed that occludin, ZO-1, N-cadherin and specifically Cx43 could be early targets for testicular toxicants. The SerW3 cell line therefore appears as a useful in vitro model to evaluate molecules with potential anti-reproductive effects. PMID:15082077

  11. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of sertoli cells.

    PubMed

    Zheng, WangLong; Pan, ShunYe; Wang, Guangguang; Wang, Ya Jun; Liu, Qing; Gu, JianHong; Yuan, Yan; Liu, Xue Zhong; Liu, Zong Ping; Bian, Jian Chun

    2016-03-01

    The aim of this study was to investigate the effects of ZEA on the cytoskeletal structure, and factors specifically expressed by Sertoli cells. Primary Sertoli cells from rats aged 18-21 days were exposed to increasing ZEA concentrations (0, 5, 10, 20 μg mL(-1)) for 24 h. The results of immunofluorescence showed disruption of α-tubulin filaments and F-actin bundles, and damage to the nucleus of Sertoli cells on exposure to ZEA. In the control group, the protein level expression of androgen-binding protein (ABP), transferrin, vimentin, N-cadherin, and follicle-stimulating hormone receptor (FSHR) were decreased significantly (p<0.05, p<0.01). The mRNA levels of ABP, transferrin, vimentin, N-cadherin, and FSHR varied significantly in the experimental group (p<0.05). The results of enzyme-linked immunosorbent assay indicated a significant decrease in the levels of inhibin-β and transferrin in the cultural supernatants (p<0.05). Additionally, the ultrastructural analysis indicated the absence of mitochondria and Golgi apparatus, and presence of vacuoles in the cytoplasm. These findings showed that ZEA treatment can damage the cytoskeletal structure and affect specific secretory functions of Sertoli cells, which may be an underlying cause of ZEA-induced reproductive toxicity. PMID:26851377

  12. Dynamin 2 is required for actin assembly in phagocytosis in Sertoli cells

    SciTech Connect

    Otsuka, Atsushi; Abe, Tadashi; Watanabe, Masami; Yagisawa, Hitoshi; Takei, Kohji; Yamada, Hiroshi

    2009-01-16

    Dynamin 2 has been reported to be implicated in phagocytosis. However, the mode of action of dynamin is poorly understood. In this study, we examined whether dynamin 2 participates in actin assembly during phagocytosis in Sertoli cells. In the presence of dynasore, a dynamin inhibitor, phagocytosis was reduced by 60-70% in Sertoli cells and macrophages. Scanning electron microscopy revealed that Sertoli cells treated with dynasore were unable to form phagocytic cups. In addition, dysfunction of dynamin 2 reduced both actin polymerization and recruitment of actin and dynamin 2 to phosphatidylinositol (4,5) bisphosphate [PI(4,5)P{sub 2}]-containing liposomes. The formation of dynamin 2-positive ruffles of Sertoli cells was decreased by 60-70% by sequestering PI(4,5)P{sub 2} either by expression of PH domain of PLC{delta} or treatment with neomycin. These results strongly suggest that dynamin 2 is involved in actin dynamics and the formation of dynamin 2-positive ruffles during phagocytosis.

  13. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells

    PubMed Central

    Yuan, Beilei; Gu, Hao; Xu, Bo; Tang, Qiuqin; Wu, Wei; Ji, Xiaoli; Xia, Yankai; Hu, Lingqing; Chen, Daozhen; Wang, Xinru

    2016-01-01

    Gold nanorods (GNRs) are among the most commonly used nanomaterials. However, thus far, little is known about their harmful effects on male reproduction. Studies from our laboratory have demonstrated that GNRs could decrease glycine synthesis, membrane permeability, mitochondrial membrane potential and disrupt blood-testis barrier factors in TM-4 Sertoli cells. Imprinted genes play important roles in male reproduction and have been identified as susceptible loci to environmental insults by chemicals because they are functionally haploid. In this original study, we investigated the extent to which imprinted genes become deregulated in TM-4 Sertoli cells when treated with low dose of GNRs. The expression levels of 44 imprinted genes were analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) GNRs treatment for 24 h. We found significantly diminished expression of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3 and Slc22a2, while Plagl1 was significantly overexpressed. Additionally, four (Kcnq1, Slc22a18, Pwcr1 and Peg3) of 10 abnormally expressed imprinted genes were found to be located on chromosome 7. However, no significant difference of imprinted miRNA genes was observed between the GNRs treated group and controls. Our study suggested that aberrant expression of imprinted genes might be an underlying mechanism for the GNRs-induced reproductive toxicity in TM-4 Sertoli cells. PMID:26938548

  14. Reactive oxygen species (ROS) production triggered by prostaglandin D2 (PGD2) regulates lactate dehydrogenase (LDH) expression/activity in TM4 Sertoli cells.

    PubMed

    Rossi, Soledad P; Windschüttl, Stefanie; Matzkin, María E; Rey-Ares, Verónica; Terradas, Claudio; Ponzio, Roberto; Puigdomenech, Elisa; Levalle, Oscar; Calandra, Ricardo S; Mayerhofer, Artur; Frungieri, Mónica B

    2016-10-15

    Reactive oxygen species (ROS) regulate testicular function in health and disease. We previously described a prostaglandin D2 (PGD2) system in Sertoli cells. Now, we found that PGD2 increases ROS and hydrogen peroxide (H2O2) generation in murine TM4 Sertoli cells, and also induces antioxidant enzymes expression suggesting that defense systems are triggered as an adaptive stress mechanism that guarantees cell survival. ROS and specially H2O2 may act as second messengers regulating signal transduction pathways and gene expression. We describe a stimulatory effect of PGD2 on lactate dehydrogenase (LDH) expression via DP1/DP2 receptors, which is prevented by the antioxidant N-acetyl-L-cysteine and the PI3K/Akt pathway inhibitor LY 294002. PGD2 also enhances Akt and CREB/ATF-1 phosphorylation. Our results provide evidence for a role of PGD2 in the regulation of the oxidant/antioxidant status in Sertoli cells and, more importantly, in the modulation of LDH expression which takes place through ROS generation and the Akt-CREB/ATF-1 pathway. PMID:27329155

  15. Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes.

    PubMed

    Shima, Yuichi; Miyabayashi, Kanako; Haraguchi, Shogo; Arakawa, Tatsuhiko; Otake, Hiroyuki; Baba, Takashi; Matsuzaki, Sawako; Shishido, Yurina; Akiyama, Haruhiko; Tachibana, Taro; Tsutsui, Kazuyoshi; Morohashi, Ken-ichirou

    2013-01-01

    Testosterone is a final product of androgenic hormone biosynthesis, and Leydig cells are known to be the primary source of androgens. In the mammalian testis, two distinct populations of Leydig cells, the fetal and the adult Leydig cells, develop sequentially, and these two cell types differ both morphologically and functionally. It is well known that the adult Leydig cells maintain male reproductive function by producing testosterone. However, it has been controversial whether fetal Leydig cells can produce testosterone, and the synthetic pathway of testosterone in the fetal testis is not fully understood. In the present study, we generated transgenic mice in which enhanced green fluorescence protein was expressed under the control of a fetal Leydig cell-specific enhancer of the Ad4BP/SF-1 (Nr5a1) gene. The transgene construct was prepared by mutating the LIM homeodomain transcription factor (LHX9)-binding sequence in the promoter, which abolished promoter activity in the undifferentiated testicular cells. These transgenic mice were used to collect highly pure fetal Leydig cells. Gene expression and steroidogenic enzyme activities in the fetal Leydig cells as well as in the fetal Sertoli cells and adult Leydig cells were analyzed. Our results revealed that the fetal Leydig cells synthesize only androstenedione because they lack expression of Hsd17b3, and fetal Sertoli cells convert androstenedione to testosterone, whereas adult Leydig cells synthesize testosterone by themselves. The current study demonstrated that both Leydig and Sertoli cells are required for testosterone synthesis in the mouse fetal testis. PMID:23125070

  16. Basolateral Uptake of Nucleosides by Sertoli Cells Is Mediated Primarily by Equilibrative Nucleoside Transporter 1

    PubMed Central

    Klein, David M.; Evans, Kristen K.; Hardwick, Rhiannon N.; Dantzler, William H.; Wright, Stephen H.

    2013-01-01

    The blood-testis barrier (BTB) prevents the entry of many xenobiotic compounds into seminiferous tubules thereby protecting developing germ cells. Understanding drug transport across the BTB may improve drug delivery into the testis. Members of one class of drug, nucleoside reverse transcriptase inhibitors (NRTIs), do penetrate the BTB, presumably through interaction with physiologic nucleoside transporters. By investigating the mechanism of nucleoside transport, it may be possible to design other drugs to bypass the BTB in a similar manner. We present a novel ex vivo technique to study transport at the BTB that employs isolated, intact seminiferous tubules. Using this system, we found that over 80% of total uptake by seminiferous tubules of the model nucleoside uridine could be inhibited by 100 nM nitrobenzylmercaptopurine riboside (NBMPR, 6-S-[(4-nitrophenyl)methyl]-6-thioinosine), a concentration that selectively inhibits equilibrative nucleoside transporter 1 (ENT1) activity. In primary cultured rat Sertoli cells, 100 nM NBMPR inhibited all transepithelial transport and basolateral uptake of uridine. Immunohistochemical staining showed ENT1 to be located on the basolateral membrane of human and rat Sertoli cells, whereas ENT2 was located on the apical membrane of Sertoli cells. Transepithelial transport of uridine by rat Sertoli cells was partially inhibited by the NRTIs zidovudine, didanosine, and tenofovir disoproxil fumarate, consistent with an interaction between these drugs and ENT transporters. These data indicate that ENT1 is the primary route for basolateral nucleoside uptake into Sertoli cells and a possible mechanism for nucleosides and nucleoside-based drugs to undergo transepithelial transport. PMID:23639800

  17. AB46. Screening and identification for the target genes of androgen receptor in mouse Sertoli cells

    PubMed Central

    Gui, Yaoting; Mou, Lisha; Zhang, Qiaoxia; Yang, Lihua; Wang, Yadong; Cai, Zhiming

    2014-01-01

    Androgen and androgen receptor (AR) play important roles in spermatogenesis, yet detailed androgen/AR signals in Sertoli cells remain unclear. To identify AR target genes in Sertoli cells, we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR) and their littermate wild-type (WT) mice. Digital gene expression analysis identified 2,276 genes downregulated and 2,865 genes upregulated in the S-AR mice testis compared to WT ones. To further nail down the difference within Sertoli cells, we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells. Interestingly, additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing ten times more androgen sensitivity than TM4 cells. In the condition where maximal androgen response was demonstrated, we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone. Among these genes, 603 androgen-/AR-regulated genes, including 164 up-regulated and 439 down-regulated, were found in both S-AR mice testis and TM4/AR cells. Ubiquitin-conjugating enzyme E2B (Ube2b) is one of the regulated genes from the digital gene expression analysis. The expression of UBE2B was decreased in the testes of the S-AR mice analyzed by quantitative RT-PCR (qRT-PCR) and immunofluorescence. The up-regulation of Ube2b gene by testosterone was further demonstrated by Western blot and qRT-PCR in TM4 cells. Moreover, luciferase assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay validated that the ligand-bound AR activated Ube2b transcription via directly binding to the androgen-responsive element of the Ube2b promoter. In vitro analyses showed that testosterone increased UBE2B expression and activated H2A

  18. Condensation behavior of the human x chromosome in male germ cells and Sertoli cells examined by flourescence in situ hybridisation

    SciTech Connect

    Kofman-Alfaro, S.; Cervantes, A.; Speed, R.M.

    1994-09-01

    The chromatin condensation behavior of the human x chromosome has been studied by FISH analysis in germ cells and Sertoli cells of the adult testes. Comparisons are made with previous findings for the human Y chromosome and for chromosome 7. In meiotic prophase, the X chromosome can be seen to extend greatly at zygotene and to contract through pachytene into the sex vesicle. Such extension, which has also been noted for the human Y chromosome at this state of meiosis, could be a prerequisite for XY pairing crossing-over. In patients with {open_quotes}Sertoli-cell-only{close_quotes} syndrome, the sex chromosomes, by in situ hybridization analysis, appear extremely contracted compared with their normal extended state seen in adult Sertoli cells of fertile men. By contrast, the state of expansion of chromosome 7 in Sertoli cells appears identical for sterile and fertile testes. This could suggest an association between gene-controlled germ cell losses and failure of expansion of the sex chromosome axes. The variable patterns of extension and contraction for the X and Y chromosome axes in germ cells and Sertoli cells might provide underlying clues to pattern of expression noted for sex-linked genes in the human testis.

  19. Sertoli cells are the target of environmental toxicants in the testis – a mechanistic and therapeutic insight

    PubMed Central

    Gao, Ying; Mruk, Dolores D; Cheng, C Yan

    2016-01-01

    Introduction Sertoli cells support germ cell development in the testis via an elaborate network of cell junctions that confers structural, communicating, and signaling support. However, Sertoli cell junctions and cytoskeletons are the target of environmental toxicants. Because germ cells rely on Sertoli cells for the provision of structural/functional/nutritional support, exposure of males to toxicants leads to germ cell exfoliation due to Sertoli cell injuries. Interestingly, the molecular mechanism(s) by which toxicants induce cytoskeletal disruption that leads to germ cell exfoliation is unclear, until recent years, which are discussed herein. This information can possibly be used to therapeutically manage toxicant-induced infertility/subfertility in human males. Areas covered In this review, we provide a brief update on the use of Sertoli cell system developed for rodents and humans in vitro, which can be deployed in any research laboratory with minimal upfront setup costs. These systems can be used to collect reliable data applicable to studies in vivo. We also discuss the latest findings on the mechanisms by which toxicants induce Sertoli cell injury, in particular cytoskeletal disruption. We also identify candidate molecules that are likely targets of toxicants. Expert opinion We provide two hypothetical models delineating the mechanism by which toxicants induce germ cell exfoliation and blood–testis barrier disruption. We also discuss molecules that are the targets of toxicants as therapeutic candidates. PMID:25913180

  20. Role of the basic helix-loop-helix protein ITF2 in the hormonal regulation of Sertoli cell differentiation.

    PubMed

    Muir, Terla; Sadler-Riggleman, Ingrid; Stevens, Jeffrey D; Skinner, Michael K

    2006-04-01

    Sertoli cells are a post-mitotic terminally differentiated cell population that forms the seminiferous tubules in the adult testis and provides the microenvironment and structural support for developing germ cells. During pubertal development, Sertoli cells are responsive to follicle-stimulating hormone (FSH) to promote the expression of differentiated gene products. The basic helix-loop-helix (bHLH) and inhibitors of differentiation (Id) transcription factors are involved in the differentiation of a variety of cell lineages during development. Both bHLH and Id transcription factors have been identified in Sertoli cells. A yeast two-hybrid screen was conducted using a rat Sertoli cell cDNA library to identify bHLH dimerization partners for the Id1 transcription factor. The ubiquitous bHLH protein ITF2 (i.e., E2-2) was identified as one of the interacting partners. The current study investigates the expression and function of ITF2 in Sertoli cells. ITF2 was found to be ubiquitously expressed in all testicular cell types including germ cells, peritubular myoid cells, and Sertoli cells. Stimulation of cultured Sertoli cells with FSH or dibutryl cAMP resulted in a transient decrease in expression of ITF2 mRNA levels followed by a rise in expression with FSH treatment. ITF2 expression was at its highest in mid-pubertal 20-day-old rat Sertoli cells. ITF2 was found to directly bind to negative acting Id HLH proteins and positive acting bHLH proteins such as scleraxis. Transient overexpression of ITF2 protein in cultured Sertoli cells stimulated transferrin promoter activity, which is a marker of Sertoli cell differentiation. Co-transfections of ITF2 and Id proteins sequestered the inhibitory effects of the Id family of proteins. Observations suggest ITF2 can enhance FSH actions through suppressing the inhibitory actions of the Id family of proteins and increasing the actions of stimulatory bHLH proteins (i.e., scleraxis) in Sertoli cells. PMID:16425294

  1. Interaction of rat Sertoli cells with a collagen lattice in vitro.

    PubMed

    Borland, K; Ehrlich, H P; Muffly, K; Dills, W L; Hall, P F

    1986-11-01

    Sertoli cells from rats aged 15, 20, and 25 d were subcultured onto collagen-coated, plastic dishes. If the collagen was released from the plastic surface by rimming, the floating rafts of collagen showed uniform shrinkage. If the collagen was allowed to remain attached to the plastic, holes appeared in the collagen with cells from rats aged 25 d but not with those of 15 d. Cells from rats aged 20 d caused fewer and smaller holes to appear. The holes were associated with the formation of clumps of spherical cells from which elongated Sertoli cells extended into the surrounding collagen to end near holes. Rhodamine-phalloidin revealed diffusely distributed actin in the spherical cells in contrast to well-developed microfilaments in the peripheral elongated cells. Addition of cytochalasin B (5 micrograms/ml) to the medium prevented contraction of the floating rafts and the development of holes in the attached collagen. In addition, cytochalasin B caused the peripheral cells to become spherical and to separate from the clumps. Moreover, rhodamine-phalloidin revealed that actin in the peripheral cells occurred as clumps without microfilaments when cytochalasin B was present. When Sertoli cells were subcultured onto silicone rubber films, the cells produced wrinkling of the rubber surface within 4 h of plating. These observations were interpreted to mean that Sertoli cells exert local tractional forces on various substrata. These forces require actin, presumably acting by a contractile mechanism. When the collagen is attached to plastic and the cells are organized into clumps with radiating elongated cells (cells from rats aged 25 d), the tractional forces in the elongated cells reorganize the collagen fibers to produce holes. When cells are uniformly distributed (cells from rats aged 15 d), holes are not formed. When the collagen is released from the plastic surface, tractional forces cause the floating rafts to shrink. These interactions of the cells with collagen are

  2. A spontaneously occurring malignant ovarian Sertoli cell tumor in a young Sprague Dawley rat

    PubMed Central

    Kinoshita, Yuichi; Yoshizawa, Katsuhiko; Emoto, Yuko; Yuki, Michiko; Yuri, Takashi; Shikata, Nobuaki; Elmore, Susan A.; Tsubura, Airo

    2015-01-01

    Primary ovarian tumors are generally uncommon in rats used in toxicologic studies. A malignant Sertoli cell tumor was present in the ovary of a 19-week-old female Sprague Dawley rat. Macroscopically, the mass was white and firm, 10 × 13 × 17 mm in size, and located in the right ovary. Histopathologically, the mass was composed of nests of pleomorphic cells, which formed seminiferous-like tubules separated by a thin fibrovascular stroma. The tubules were lined by tumor cells, which had basally located nuclei and abundant eosinophilic and vacuolated cytoplasm. In some areas, the tumor cells were arranged in a retiform growth pattern, mimicking a rete testis/ovarii. Disseminated metastases to the surfaces of the mesentery, spleen and liver were also present. Immunohistochemically, many tumor cells were strongly positive for vimentin, estrogen receptor α and Ki 67. Some tumor cells were positive for pancytokeratin and inhibin α. These findings closely resemble those of an ovarian-derived human malignant Sertoli cell tumor. From our review of the literature, we believe this is the first report of a spontaneous malignant Sertoli cell tumor in the ovary of a young laboratory rat. This case might provide useful historical control information for rat toxicity studies. PMID:26989303

  3. Large moderately-differentiated ovarian Sertoli-Leydig cell tumor in a 13-year-old female: A case report

    PubMed Central

    ZHANG, HUI; HAO, JING; LI, CHUN-YAN; LI, TAO; MU, YU-LAN

    2016-01-01

    Sertoli-Leydig cell tumor of the ovary, also known as androblastoma, is a rare neoplasm from the group of sex cord-stromal tumors of the ovary. The tumor accounts for <0.5% of all primary ovarian neoplasms. The clinical signs and symptoms of Sertoli-Leydig cell tumors can be associated with either hormonal production or the presence of a mass-occupying lesion. In the current study, a 13-year-old female was diagnosed with a stage Ic ovarian Sertoli-Leydig cell tumor following abdominal pain and distension. One month after a right oophorectomy, the follow-up magnetic resonance imaging scan was negative for residual or recurrent tumor. The overall 5-year survival rate for moderately-differentiated (grade 2) and poorly-differentiated (grade 3) Sertoli-Leydig cell tumors is 80%, and long-term follow-up is therefore highly advised in this patient. PMID:26893701

  4. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier.

    PubMed

    Li, Nan; Lee, Will M; Cheng, C Yan

    2016-04-01

    Throughout the epithelial cycle of spermatogenesis, actin microfilaments arranged as bundles near the Sertoli cell plasma membrane at the Sertoli cell-cell interface that constitute the blood-testis barrier (BTB) undergo extensive re-organization by converting between bundled and unbundled/branched configuration to give plasticity to the F-actin network. This is crucial to accommodate the transport of preleptotene spermatocytes across the BTB. Herein, we sought to examine changes in the actin microfilament organization at the Sertoli cell BTB using an in vitro model since Sertoli cells cultured in vitro is known to establish a functional tight junction (TJ)-permeability barrier that mimics the BTB in vivo. Plastin 3, a known actin microfilament cross-linker and bundling protein, when overexpressed in Sertoli cells using a mammalian expression vector pCI-neo was found to perturb the Sertoli cell TJ-barrier function even though its overexpression increased the overall actin bundling activity in these cells. Furthermore, plastin 3 overexpression also perturbed the localization and distribution of BTB-associated proteins, such as occludin-ZO1 and N-cadherin-β-catenin, this thus destabilized the barrier function. Collectively, these data illustrate that a delicate balance of actin microfilaments between organized in bundles vs. an unbundled/branched configuration is crucial to confer the homeostasis of the BTB and its integrity. PMID:27559491

  5. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells

    PubMed Central

    Wu, Han; Shi, Lili; Wang, Qing; Cheng, Lijing; Zhao, Xiang; Chen, Qiaoyuan; Jiang, Qian; Feng, Min; Li, Qihan; Han, Daishu

    2016-01-01

    Mumps virus (MuV) infection frequently causes orchitis and impairs male fertility. However, the mechanisms underlying the innate immune responses to MuV infection in the testis have yet to be investigated. This study showed that MuV induced innate immune responses in mouse Sertoli and Leydig cells through TLR2 and retinoic acid-inducible gene I (RIG-I) signaling, which result in the production of proinflammatory cytokines and chemokines, including TNF-α, IL-6, MCP-1, CXCL10, and type 1 interferons (IFN-α and IFN-β). By contrast, MuV did not induce the cytokine production in male germ cells. In response to MuV infection, Sertoli cells produced higher levels of proinflammatory cytokines and chemokines but lower levels of type 1 IFNs than Leydig cells did. The MuV-induced cytokine production by Sertoli and Leydig cells was significantly reduced by the knockout of TLR2 or the knockdown of RIG-I signaling. The local injection of MuV into the testis triggered the testicular innate immune responses in vivo. Moreover, MuV infection suppressed testosterone synthesis by Leydig cells. This is the first study examining the innate immune responses to MuV infection in testicular cells. The results provide novel insights into the mechanisms underlying the MuV-induced innate immune responses in the testis. PMID:26776505

  6. Prenatal and lactation nicotine exposure affects Sertoli cell and gonadotropin levels in rats.

    PubMed

    Paccola, C C; Miraglia, S M

    2016-02-01

    Nicotine is largely consumed in the world as a component of cigarettes. It can cross the placenta and reach the milk of smoking mothers. This drug induces apoptosis, affects sex hormone secretion, and leads to male infertility. To investigate the exposure to nicotine during the whole intrauterine and lactation phases in Sertoli cells, pregnant rats received nicotine (2 mg/kg per day) through osmotic minipumps. Male offsprings (30, 60, and 90 days old) had blood collected for hormonal analysis (FSH and LH) and their testes submitted for histophatological study, analysis of the frequency of the stages of seminiferous epithelium cycle, immunolabeling of apoptotic epithelial cells (TUNEL and Fas/FasL), analysis of the function and structure of Sertoli cells (respectively using transferrin and vimentin immunolabeling), and analysis of Sertoli-germ cell junctional molecule (β-catenin immunolabeling). The exposure to nicotine increased the FSH and LH plasmatic levels in adult rats. Although nicotine had not changed the number of apoptotic cells, neither in Fas nor FasL expression, it provoked an intense sloughing of epithelial cells and also altered the frequency of some stages of the seminiferous epithelium cycle. Transferrin and β-catenin expressions were not changed, but vimentin was significantly reduced in the early stages of the seminiferous cycle of the nicotine-exposed adult rats. Thus, we concluded that nicotine exposure during all gestational and lactation periods affects the structure of Sertoli cells by events causing intense germ cell sloughing observed in the tubular lumen and can compromise the fertility of the offspring. PMID:26556892

  7. Lycopene supplementation prevents reactive oxygen species mediated apoptosis in Sertoli cells of adult albino rats exposed to polychlorinated biphenyls

    PubMed Central

    Krishnamoorthy, Gunasekaran; Selvakumar, Kandaswamy; Venkataraman, Prabhu; Elumalai, Perumal

    2013-01-01

    Sertoli cell proliferation is attenuated before attaining puberty and the number is fixed in adult testes. Sertoli cells determine both testis size and daily sperm production by providing physical and metabolic support to spermatogenic cells. Polychlorinated biphenyls (PCBs) exposure disrupts functions of Sertoli cells causing infertility with decreased sperm count. On the other hand, lycopene is improving sperm count and motility by reducing oxidative stress in humans and animals. Hence we hypothesized that PCBs-induced infertility might be due to Sertoli cell apoptosis mediated by oxidative stress and lycopene might prevent PCBs-induced apoptosis by acting against oxidative stress. To test this hypothesis, animals were treated with vehicle control, lycopene, PCBs and PCBs + lycopene for 30 days. After the experimental period, the testes and cauda epididymidis were removed for isolation of Sertoli cells and sperm, respectively. We observed increased levels of oxidative stress markers (H2O2 and LPO) levels, increased expression of apoptotic molecules (caspase-8, Bad, Bid, Bax, cytochrome C and caspase-3), decreased anti-apoptotic (Bcl2) molecule and elevated apoptotic marker activity (caspase-3) in Sertoli cells of PCBs-exposed animals. These results were associated with decreased sperm count and motility in PCBs exposed animals. On the other hand, lycopene prevented the elevation of Sertoli cellular apoptotic parameters and prevented the reduction of sperm parameters (count and motility). The data confirmed that lycopene as an antioxidant scavenged reactive oxygen substances, prevented apoptosis, maintained normal function in Sertoli cells and helped to provide physical and metabolic support for sperm production, thereby treating infertility in men. PMID:24179434

  8. Classification of several types of maturational arrest of spermatogonia according to Sertoli cell morphology: an approach to aetiology.

    PubMed

    Nistal, M; De Mora, J C; Paniagua, R

    1998-12-01

    Bilateral testicular biopsies and clinical histories from 34 adult men with maturational arrest of spermatogonia were examined. According to the morphology of Sertoli cell nuclei, five testicular types of spermatogonial maturational arrest were established. In type I lesion, Sertoli cells resembled the immature Sertoli cells of infant testes. These cells had a round, regularly outlined, dark nucleus with a small nucleolus. The seminiferous tubules showed no apparent lumen and a poorly developed lamina propria lacking in elastic fibres. This lesion was found in patients exhibiting a eunuchoid phenotype, with small tests and low serum levels of gonadotrophins and testosterone (hypogonadotrophic hypogonadism). Type II lesion showed morphologically normal, mature, adult Sertoli cells which had a pale, irregularly outlined nucleus, many often triangle-shaped, with a large, centrally located nucleolus. The seminiferous tubules were reduced in diameter and showed a few spermatocytes and spermatids. This lesion was found in patients with varicocoele, epididymitis, testicular trauma or idiopathic infertility. Serum FSH levels were normal or increased while LH and testosterone levels were normal. In type III lesion, Sertoli cells resembled the involuting Sertoli cells found in the testes of aging men, and displayed very infolded nuclei, with abundant dense chromatin patches and a large nucleolus. The seminiferous tubules showed a slightly dilated lumen and a normal tubular wall. The most relevant clinical findings in patients with this lesion were alcoholism, varicocoele, falciform cell anaemia, epididymitis and germ cell tumour. Serum follicle stimulating hormone (FSH) levels were normal or increased while luteinizing hormone (LH) and testosterone levels were normal. Type IV lesion Sertoli cells presented with a de-differentiated appearance. These cells had a small, round euchromatic nucleus with a small nucleolus and vacuolated cytoplasm. The seminiferous tubules were

  9. Temporal role of Sertoli cell androgen receptor expression in spermatogenic development.

    PubMed

    Hazra, Rasmani; Corcoran, Lisa; Robson, Mat; McTavish, Kirsten J; Upton, Dannielle; Handelsman, David J; Allan, Charles M

    2013-01-01

    Sertoli cell (SC) androgen receptor (AR) activity is vital for spermatogenesis. We created a unique gain-of-function transgenic (Tg) mouse model to determine the temporal role of SCAR expression in testicular development. The SC-specific rat Abpa promoter directed human Tg AR [Tg SC-specific AR (TgSCAR)] expression, providing strong premature postnatal AR immunolocalized to SC nuclei. Independent Tg lines revealed that TgSCAR dose dependently reduced postnatal and mature testis size (to 60% normal), whereas androgen-dependent mature seminal vesicle weights and serum testosterone levels remained normal. Total SC numbers were reduced in developing and mature TgSCAR testes, despite normal or higher Fshr mRNA and circulating FSH levels. Postnatal TgSCAR testes exhibited elevated levels of AR-regulated Rhox5 and Spinlw1 transcripts, and precocious SC function was demonstrated by early seminiferous tubular lumen formation and up-regulated expression of crucial SC tight-junction (Cldn11 and Tjp1) and phagocytic (Elmo1) transcripts. Early postnatal Amh expression was elevated but declined to normal levels in peripubertal-pubertal TgSCAR vs. control testes, indicating differential age-related regulation featuring AR-independent Amh down-regulation. TgSCAR induced premature postnatal spermatogenic development, shown by increased levels of meiotic (Dmc1 and Spo11) and postmeiotic (Capza3 and Prm1) germ cell transcripts, elevated meiotic-postmeiotic germ:Sertoli cell ratios, and accelerated spermatid development. Meiotic germ:Sertoli cell ratios were further increased in adult TgSCAR mice, indicating predominant SCAR-mediated control of meiotic development. However, postmeiotic germ:Sertoli cell ratios declined below normal. Our unique TgSCAR paradigm reveals that atypical SC-specific temporal AR expression provides a direct molecular mechanism for induction of precocious testicular development, leading to reduced adult testis size and decreased postmeiotic development. PMID

  10. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice

    PubMed Central

    Rebourcet, Diane; Wu, Junxi; Cruickshanks, Lyndsey; Smith, Sarah E.; Milne, Laura; Fernando, Anuruddika; Wallace, Robert J.; Gray, Calum D.; Hadoke, Patrick W. F.; Mitchell, Rod T.; O'Shaughnessy, Peter J.

    2016-01-01

    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship. PMID:27145015

  11. Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice.

    PubMed

    Rebourcet, Diane; Wu, Junxi; Cruickshanks, Lyndsey; Smith, Sarah E; Milne, Laura; Fernando, Anuruddika; Wallace, Robert J; Gray, Calum D; Hadoke, Patrick W F; Mitchell, Rod T; O'Shaughnessy, Peter J; Smith, Lee B

    2016-06-01

    The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship. PMID:27145015

  12. Identification of the Functions of Liver X Receptor-β in Sertoli Cells Using a Targeted Expression-Rescue Model.

    PubMed

    Maqdasy, Salwan; El Hajjaji, Fatim-Zohra; Baptissart, Marine; Viennois, Emilie; Oumeddour, Abdelkader; Brugnon, Florence; Trousson, Amalia; Tauveron, Igor; Volle, David; Lobaccaro, Jean-Marc A; Baron, Silvère

    2015-12-01

    Liver X receptors (LXRs) are key regulators of lipid homeostasis and are involved in multiple testicular functions. The Lxrα(-/-);Lxrβ(-/-) mice have illuminated the roles of both isoforms in maintenance of the epithelium in the seminiferous tubules, spermatogenesis, and T production. The requirement for LXRβ in Sertoli cells have been emphasized by early abnormal cholesteryl ester accumulation in the Lxrβ(-/-) and Lxrα(-/-);Lxrβ(-/-) mice. Other phenotypes, such as germ cell loss and hypogonadism, occur later in life in the Lxrα(-/-);Lxrβ(-/-) mice. Thus, LXRβ expression in Sertoli cells seems to be essential for normal testicular physiology. To decipher the roles of LXRβ within the Sertoli cells, we generated Lxrα(-/-);Lxrβ(-/-):AMH-Lxrβ transgenic mice, which reexpress Lxrβ in Sertoli cells in the context of Lxrα(-/-);Lxrβ(-/-) mice. In addition to lipid homeostasis, LXRβ is necessary for maintaining the blood-testis barrier and the integrity of the germ cell epithelium. LXRβ is also implicated in the paracrine action of Sertoli cells on Leydig cells to modulate T synthesis. The Lxrα(-/-);Lxrβ(-/-) and Lxrα(-/-);Lxrβ(-/-):AMH-Lxrβ mice exhibit lipid accumulation in germ cells after the Abcg8 down-regulation, suggesting an intricate LXRβ-dependent cooperation between the Sertoli cells and germ cells to ensure spermiogenesis. Further analysis revealed also peritubular smooth muscle defects (abnormal lipid accumulation and disorganized smooth muscle actin) and spermatozoa stagnation in the seminiferous tubules. Together the present work elucidates specific roles of LXRβ in Sertoli cell physiology in vivo beyond lipid homeostasis. PMID:26402841

  13. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  14. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    PubMed Central

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction. PMID:27436542

  15. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43.

    PubMed

    Li, Nan; Mruk, Dolores D; Chen, Haiqi; Wong, Chris K C; Lee, Will M; Cheng, C Yan

    2016-01-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction. PMID:27436542

  16. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  17. Hybrid GPCR/cadherin (Celsr) proteins in rat testis are expressed with cell type specificity and exhibit differential Sertoli cell-germ cell adhesion activity.

    PubMed

    Beall, Stephanie A; Boekelheide, Kim; Johnson, Kamin J

    2005-01-01

    Spermatogenesis requires Sertoli cell-germ cell adhesion for germ cell survival and maturation. Cadherins are a diverse superfamily of adhesion proteins; structurally unique members of this superfamily (celsr cadherins) are hybrid molecules containing extracellular cadherin repeats connected to a G protein-coupled receptor transmembrane motif. Here we demonstrate postnatal testicular mRNA expression of the 3 celsr paralogs (celsr1, celsr2, and celsr3), protein localization of celsr2 and celsr3, and functional analysis of celsr2 adhesion activity in primary Sertoli cell-germ cell co-cultures. Evaluation of celsr mRNA levels during a postnatal time course indicated that celsr1 and celsr2 were Sertoli cell and/or early-stage germ cell products, whereas celsr3 was expressed in later-stage germ cells. Cell type-specific expression was verified using the Sertoli cell line 93RS2, where celsr1 and celsr2 mRNA, but not celsr3, were detected. Immunostaining of testicular cryosections resulted in celsr2 protein localization to a spokelike pattern in the basal seminiferous epithelium and punctate figures in the apical epithelium, consistent with both Sertoli cell and germ cell expression. Celsr3 localized to punctate structures in the adluminal epithelium from postnatal day 40, consistent with elongate spermatid expression. The subcellular localization of celsr2 was examined further to define its localization in Sertoli cells and germ cells. Celsr2 localized to the Golgi complex in Sertoli cells and germ cells. In addition, germ cell celsr2 localized to a rab7-positive structure, which may be an endocytic compartment. Neither celsr2 nor celsr3 immunostaining was present at classic cadherin-based adhesion junctions. Nonetheless, the addition of a recombinant celsr2 protein fragment consisting of extracellular cadherin domains 4 through 8 to Sertoli cell-germ cell co-cultures resulted in germ cell detachment from Sertoli cells. Collectively, these data indicate that celsr

  18. The death of sertoli cells and the capacity to phagocytize elongated spermatids during testicular regression due to short photoperiod in Syrian hamster (Mesocricetus auratus).

    PubMed

    Seco-Rovira, Vicente; Beltrán-Frutos, Esther; Ferrer, Concepción; Sáez, Francisco José; Madrid, Juan Francisco; Pastor, Luis Miguel

    2014-05-01

    In the Syrian hamster (Mesocricetus auratus), an animal that displays testicular regression due to short photoperiod, germ cells are removed by apoptosis during this process and the apoptotic remains are phagocytized by Sertoli cells. The aim of this work was to investigate morphologically whether the testicular regression process due to short photoperiod leads to the apoptosis of Sertoli cells, and whether, during testicular regression, the elongated spermatids are eliminated through phagocytosis by Sertoli cells. To this end, we studied testis sections during testicular regression in Syrian hamster subjected to short photoperiod by means of several morphological techniques using conventional light microscopy (hematoxylin and eosin [H&E], semi-thin section vimentin, immunohistochemistry, SBA lectin, and TUNEL staining), fluorescence microscopy, and transmission electron microscopy (TEM). H&E and semi-thin sections identified Sertoli cells with a degenerated morphology. Greater portion of Sertoli cells that were positive for TUNEL staining were observed especially during the mild regression (MR) and strong regression (SR) phases. In addition, TEM identified the characteristic apoptotic changes in the nucleus and cytoplasm of Sertoli cells. Moreover, during testicular regression and using light microscopy, some elongated spermatids were seen in basal position next to the Sertoli cell nucleus. This Sertoli phagocytic activity was higher in MR and SR phases. TEM confirmed this to be the result of the phagocytic activity of Sertoli cells. In conclusion, during testicular regression in Syrian hamster due to short photoperiod, when germ cells are known to be lost through apoptosis, there is morphological evidences that Sertoli cells are also lost through apoptosis, while some elongated spermatids are phagocytized and eliminated by the Sertoli cells. PMID:24719257

  19. Electrophysiological effects of chilotoquine on tight junctions of immature rat Sertoli cells in vitro.

    PubMed

    Okanlawon, A; Dym, M

    1999-01-01

    We investigated the effect of CQ, an antimalarial drug with antiprotease activity, and NH4Cl, a related amines on the development of intercellular tight junctions in cultured immature rat Sertoli cells. Sertoli cells were seeded in serum-free defined medium at a density of 3 x 10(6) cells/0.64 cm2/well on Matrigel-covered Millicell-HA filters. CQ (1 microM and 2 microM) or NH4Cl (6.25 mM and 12 mM) was added to the outer (basal) compartment of the bicameral system either on day 1 or day 7 of the culture. Formation of tight junctions was monitored by measurement of the transepithelial resistance (TER) at 24 hr intervals using an impedance meter. TER in untreated controls was 50 omega/cm2 on day 1, increased progressively to 80 omega/cm2 by day 7 and plateaued until day 12. The cells treated from day 1 with CQ showed dose-dependent progressive increase in TER until day 12, reaching 191 omega/cm2 in cells treated with 1 microM concentration. In cells treated with CQ starting from day 7 of culture onwards, TER patterns were similar to those noted following exposure to chloroquine from day 1. Also in cultures containing NH4Cl, in comparison to the control, the increase in TER was significantly higher. These observations demonstrate that CQ and HN4Cl promote tight junction formation between immature rat Sertoli cells invitro suggesting that antiproteases may be involved in the formation of blood-testis barrier. PMID:11205819

  20. Rat testicular germ cells and sertoli cells release different types of bioactive transforming growth factor beta in vitro

    PubMed Central

    Haagmans, Bart L; Hoogerbrugge, Jos W; Themmen, Axel PN; Teerds, Katja J

    2003-01-01

    Several in vivo studies have reported the presence of immunoreactive transforming growth factor-β's (TGF-β's) in testicular cells at defined stages of their differentiation. The most pronounced changes in TGF-β1 and TGF-β2 immunoreactivity occurred during spermatogenesis. In the present study we have investigated whether germ cells and Sertoli cells are able to secrete bioactive TGF-β's in vitro, using the CCl64 mink lung epithelial cell line as bioassay for the measurement of TGF-β. In cellular lysates, TGF-β bioactivity was only observed following heat-treatment, indicating that within these cells TGF-β is present in a latent form. To our surprise, active TGF-β could be detected in the culture supernatant of germ cells and Sertoli cells without prior heat-treatment. This suggests that these cells not only produce and release TGF-β in a latent form, but that they also release a factor which can convert latent TGF-β into its active form. Following heat-activation of these culture supernatant's, total TGF-β bioactivity increased 6- to 9-fold. Spermatocytes are the cell type that releases most bioactive TGF-β during a 24 h culture period, although round and elongated spermatids and Sertoli cells also secrete significant amounts of TGF-β. The biological activity of TGF-β could be inhibited by neutralizing antibodies against TGF-β1 (spermatocytes and round spermatids) and TGF-β2 (round and elongating spermatids). TGF-β activity in the Sertoli cell culture supernatant was inhibited slightly by either the TGF-β1 and TGF-β2 neutralizing antibody. These in vitro data suggest that germ cells and Sertoli cells release latent TGF-β's. Following secretion, the TGF-β's are converted to a biological active form that can interact with specific TGF-β receptors. These results strengthen the hypothesis that TGF-β's may play a physiological role in germ cell proliferation/differentiation and Sertoli cell function. PMID:12646048

  1. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cytotoxicity accompanied by oxidative stress in rat Sertoli cells: Possible role of mitochondrial fractions of Sertoli cells

    SciTech Connect

    Aly, Hamdy A.A.; Khafagy, Rasha M.

    2011-05-01

    TCDD, as an endocrine disruptor, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underlying the testicular effects of TCDD, the potential toxicity of TCDD on Sertoli cells was investigated. Furthermore, the study aims to delineate whether mitochondrial fractions of Sertoli cells are involved in mediating the testicular effects of TCDD. Adult rat Sertoli cells were incubated with (5, 10 or 15 nM) of TCDD for 6, 12 or 24 h. Cell viability, lactate and LDH leakage into media along with lipid peroxidation, ROS generation, SOD, CAT, GPx, GR, {gamma}-GT and {beta}-glucuronidase activities, GSH content and {Delta}{psi}{sub m} were measured. Superoxide anion production, COX and cardiolipin content were measured in mitochondrial fractions. Cell viability was significantly decreased while lactate and LDH leakage into media were increased. ROS generation along with lipid peroxidation was also increased. SOD, CAT, GPx, GR activities and GSH content were significantly decreased. {gamma}-GT and {beta}-glucuronidase activities were also decreased. Superoxide anion production was increased while COX activity and cardiolipin content were decreased in mitochondrial fractions. Moreover, the {Delta}{psi}{sub m} was significantly decreased as measured in Sertoli cells. In conclusion, TCDD impairs Sertoli cell functions and this effect is, at least in part, attributed to oxidative stress. We have also found that TCDD increases mitochondrial superoxide anion production and decreases {Delta}{psi}{sub m}, COX activity and mitochondrial cardiolipin content. Our findings suggest that mitochondria may play an important role in ROS production, leading to the TCDD-induced oxidative stress response and resulting toxicological consequences in rat Sertoli cells.

  2. Ultrastructural Studies of Germ Cell Development and the Functions of Leydig Cells and Sertoli Cells associated with Spermatogenesis in Kareius bicoloratus (Teleostei, Pleuronectiformes, Pleuronectidae)

    PubMed Central

    Kang, Hee-Woong; Kim, Sung Hwan; Chung, Jae Seung

    2016-01-01

    The ultrastructures of germ cells and the functions of Leydig cells and Sertoli cells during spermatogenesis inmale Kareius bicoloratus (Pleuronectidae) were investigated by electron microscope observation. Each of the well-developed Leydig cells during active maturation division and before spermiation contained an ovoid vesicular nucleus, a number of smooth endoplasmic reticula, well-developed tubular or vesicular mitochondrial cristae, and several lipid droplets in the cytoplasm. It is assumed that Leydig cells are typical steroidogenic cells showing cytological characteristics associated with male steroidogenesis. No cyclic structural changes in the Leydig cells were observed through the year. However, although no clear evidence of steroidogenesis or of any transfer of nutrients from the Sertoli cells to spermatogenic cells was observed, cyclic structural changes in the Sertoli cells were observed over the year. During the period of undischarged germ cell degeneration after spermiation, the Sertoli cells evidenced a lysosomal system associated with phagocytic function in the seminiferous lobules. In this study, the Sertoli cells function in phagocytosis and the resorption of products originating from degenerating spermatids and spermatozoa after spermiation. The spermatozoon lacks an acrosome, as have been shown in all teleost fish spermatozoa. The flagellum or sperm tail of this species evidences the typical 9+2 array of microtubules. PMID:27294207

  3. Metabolomic profiles reveal key metabolic changes in heat stress-treated mouse Sertoli cells.

    PubMed

    Xu, Bo; Chen, Minjian; Ji, Xiaoli; Yao, Mengmeng; Mao, Zhilei; Zhou, Kun; Xia, Yankai; Han, Xiao; Tang, Wei

    2015-10-01

    Heat stress (HS) is a potential harmful factor for male reproduction. However, the effect of HS on Sertoli cells is largely unknown. In this study, the metabolic changes in Sertoli cell line were analyzed after HS treatment. Metabolomic analysis revealed that carnitine, 2-hydroxy palmitic acid, nicotinic acid, niacinamide, adenosine monophosphate, glutamine and creatine were the key changed metabolites. We found the expression levels of BTB factors (Connexin43, ZO-1, Vimentin, Claudin1, Claudin5) were disrupted in TM-4 cells after HS treatment, which were recovered by the addition of carnitine. RT-PCR indicated that the mRNA levels of inflammatory cytokines (IL-1α, IL-1β, IL-6) were increased after HS treatment, and their related miRNAs (miR-132, miR-431, miR-543) levels were decreased. Our metabolomic data provided a novel understanding of metabolic changes in male reproductive cells after HS treatment and revealed that HS-induced changes of BTB factors and inflammatory status might be caused by the decreased carnitine after HS treatment. PMID:26165742

  4. Sox8 is a critical regulator of adult Sertoli cell function and male fertility.

    PubMed

    O'Bryan, Moira K; Takada, Shuji; Kennedy, Claire L; Scott, Greg; Harada, Shun-ichi; Ray, Manas K; Dai, Qunsheng; Wilhelm, Dagmar; de Kretser, David M; Eddy, E Mitch; Koopman, Peter; Mishina, Yuji

    2008-04-15

    Sox8 encodes a high-mobility group transcription factor that is widely expressed during development. Sox8, -9 and -10 form group E of the Sox gene family which has been implicated in several human developmental disorders. In contrast to other SoxE genes, the role of Sox8 is unclear and Sox8 mouse mutants reportedly showed only idiopathic weight loss and reduced bone density. The careful analysis of our Sox8 null mice, however, revealed a progressive male infertility phenotype. Sox8 null males only sporadically produced litters of reduced size at young ages. We have shown that SOX8 protein is a product of adult Sertoli cells and its elimination results in an age-dependent deregulation of spermatogenesis, characterized by sloughing of spermatocytes and round spermatids, spermiation failure and a progressive disorganization of the spermatogenic cycle, which resulted in the inappropriate placement and juxtaposition of germ cell types within the epithelium. Those sperm that did enter the epididymides displayed abnormal motility. These data show that SOX8 is a critical regulator of adult Sertoli cell function and is required for both its cytoarchitectural and paracrine interactions with germ cells. PMID:18342849

  5. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis

    PubMed Central

    Raverdeau, Mathilde; Gely-Pernot, Aurore; Féret, Betty; Dennefeld, Christine; Benoit, Gérard; Davidson, Irwin; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B.

    2012-01-01

    Direct evidence for a role of endogenous retinoic acid (RA), the active metabolite of vitamin A in the initial differentiation and meiotic entry of spermatogonia, and thus in the initiation of spermatogenesis is still lacking. RA is synthesized by dedicated enzymes, the retinaldehyde dehydrogenases (RALDH), and binds to and activates nuclear RA receptors (RARA, RARB, and RARG) either within the RA-synthesizing cells or in the neighboring cells. In the present study, we have used a combination of somatic genetic ablations and pharmacological approaches in vivo to show that during the first, prepubertal, spermatogenic cycle (i) RALDH-dependent synthesis of RA by Sertoli cells (SC), the supporting cells of the germ cell (GC) lineage, is indispensable to initiate differentiation of A aligned into A1 spermatogonia; (ii) RARA in SC mediates the effects of RA, possibly through activating Mafb expression, a gene whose Drosophila homolog is mandatory to GC differentiation; (iii) RA synthesized by premeiotic spermatocytes cell autonomously induces meiotic initiation through controlling the RAR-dependent expression of Stra8. Furthermore, we show that RA of SC origin is no longer necessary for the subsequent spermatogenic cycles but essential to spermiation. Altogether, our data establish that the effects of RA in vivo on spermatogonia differentiation are indirect, via SC, but direct on meiotic initiation in spermatocytes, supporting thereby the notion that, contrary to the situation in the female, RA is necessary to induce meiosis in the male. PMID:23012458

  6. Differential proteomic profile of spermatogenic and Sertoli cells from peri-pubertal testes of three different bovine breeds

    PubMed Central

    Tripathi, Utkarsh K.; Aslam, Muhammad K. M.; Pandey, Shashank; Nayak, Samiksha; Chhillar, Shivani; Srinivasan, A.; Mohanty, T. K.; Kadam, Prashant H.; Chauhan, M. S.; Yadav, Savita; Kumaresan, Arumugam

    2014-01-01

    Sub-fertility is one of the most common problems observed in crossbred males, but the etiology remains unknown in most of the cases. Although proteomic differences in the spermatozoa and seminal plasma between breeds have been investigated, the possible differences at the sperm precursor cells and supporting/nourishing cells have not been studied. The present study reports the differential proteomic profile of spermatogenic and Sertoli cells in crossbred and purebred bulls. Testis was removed by unilateral castration of 12 peri-pubertal bulls (10 months age), four each from crossbred (Holstein Friesian × Tharparkar), exotic purebred [Holstein Friesian (HF)] and indigenous purebred [Tharparkar (TP)] bulls. Spermatogenic and Sertoli cells were isolated and subjected to proteomic analysis. Protein extracts from the Sertoli and spermatogenic cells of each breed were analyzed with 2-dimensional difference gel electrophoresis (2D-DIGE) and analyzed with Decyder™ software. Compared to HF, 26 protein spots were over expressed and 14 protein spots were under expressed in spermatogenic cells of crossbred bulls. Similarly, 7 protein spots were over expressed and 15 protein spots were under expressed in the spermatogenic cells of TP bulls compared to that of crossbred bulls. Out of 12 selected protein spots identified through mass spectrometry, Phosphatidyl ethanolamine binding protein was found to be over expressed in the spermatogenic cells of crossbred bulls compared to TP bulls. The protein, gamma actin was found to be over expressed in the Sertoli cells of HF bulls, whereas Speedy Protein-A was found to be over expressed in Sertoli cells of crossbred bulls. It may be concluded that certain proteomic level differences exist in sperm precursor cells and nourishing cells between breeds, which might be associated with differences in the fertility among these breeds. PMID:25364731

  7. FGF2 stimulates SDF-1 expression through the Erm transcription factor in Sertoli cells.

    PubMed

    Yoon, Kyung-Ae; Chae, Young-Mi; Cho, Je-Yoel

    2009-07-01

    Ets-related molecule (Erm) is a member of the Ets transcription factor family. Erm is known to be an important factor for the self-renewal of Spermatogonial stem cells (SSCs) and the maintenance of spermatogenesis. We investigated the molecular mechanism of Erm regulation on SDF-1 in TM4 Sertoli cells. Erm and Sdf-1 levels were up-regulated after FGF2 treatment in TM4 cells, whereas these levels were significantly decreased by FGF2 in ST2 bone marrow stromal cells. Knockdown of Erm by siRNA in the presence of FGF2 decreased the Sdf-1 levels in TM4 cells. The expression levels of Erm were similar and Erm overexpression increased the Sdf-1 in both TM4 and ST2 cells. FGFR subtype analysis revealed that FGFR4 was expressed in TM4 cells but not in ST2 cells. A blocking experiment also confirmed that FGFR4 is partly responsible for the up-regulation of Erm and SDF-1 induced by FGF2 stimulation in TM4 cells. FGF2 and ERM increased the activity of Sdf-1 gene promoter region in a dose-dependent manner. EMSA revealed that ERM strongly binds to the -846 to -851 nucleotide region of the potential Ets binding site (EBS) in the Sdf-1 promoter. In addition, CXCR4, the SDF-1 receptor, was expressed in spermatogonia and Sertoli cells in the seminiferous tubules of the mouse testis. Our results indicate that ERM directly regulates Sdf-1 gene expression by interacting with its cis-acting element in response to FGF2 stimulation in TM4 cells. PMID:19301256

  8. Mouse Sertoli cells sustain de novo generation of regulatory T cells by triggering the notch pathway through soluble JAGGED1.

    PubMed

    Campese, Antonio Francesco; Grazioli, Paola; de Cesaris, Paola; Riccioli, Anna; Bellavia, Diana; Pelullo, Maria; Padula, Fabrizio; Noce, Claudia; Verkhovskaia, Sofia; Filippini, Antonio; Latella, Giovanni; Screpanti, Isabella; Ziparo, Elio; Starace, Donatella

    2014-03-01

    FOXP3(+) regulatory T cells (Tregs) are central to the maintenance of immunological homeostasis and tolerance. It has long been known that Sertoli cells are endowed with immune suppressive properties; however, the underlying mechanisms as well as the effective nature and role of soluble factors secreted by Sertoli cells have not been fully elucidated as yet. We hypothesized that conditioned medium from primary mouse Sertoli cells (SCCM) may be able and sufficient to induce Tregs. By culturing CD4(+)CD25(-)EGFP(-) T splenocytes purified from FOXP3-EGFP knock-in mice in SCCM, here we show, by flow cytometry and suppression assay, the conversion of peripheral CD4(+)FOXP3(-) T cells into functional CD4(+)FOXP3(+) Tregs. We also demonstrate that the Notch/Jagged1 axis is involved in regulating the de novo generation of Tregs although this process is transforming growth factor-beta1 (TGF-B) dependent. In particular, we identified by Western blot analysis a soluble form of JAGGED1 (JAG1) in SCCM that significantly influences the induction of Tregs, as demonstrated by performing the conversion assay in presence of a JAG1-specific neutralizing antibody. In addition, we show that SCCM modulates the Notch pathway in converted Tregs by triggering the recruitment of the Notch-specific transcription factor CSL/RBP-Jk to the Foxp3 promoter and by inducing the Notch target gene Hey1, as shown by chromatin immunoprecipitation assay and by real time-RT-PCR experiments, respectively. Overall, these results contribute to a better understanding of the molecular mechanisms involved in Sertoli cell-mediated immune tolerance and provide a novel approach to generate ex vivo functional Tregs for therapeutic purpose. PMID:24478388

  9. Non-classical testosterone signaling mediated through ZIP9 stimulates claudin expression and tight junction formation in Sertoli cells.

    PubMed

    Bulldan, Ahmed; Dietze, Raimund; Shihan, Mazen; Scheiner-Bobis, Georgios

    2016-08-01

    In the classical signaling pathway, testosterone regulates gene expression by activating the cytosolic/nuclear androgen receptor. In the non-classical pathway, testosterone activates cytosolic signaling cascades that are normally triggered by growth factors. The nature of the receptor involved in this signaling pathway is a source of controversy. In the Sertoli cell line 93RS2, which lacks the classical AR, we determined that testosterone stimulates the non-classical signaling pathway, characterized by the phosphorylation of Erk1/2 and transcription factors CREB and ATF-1. We also demonstrated that testosterone increases the expression of the tight junction (TJ) proteins claudin-1 and claudin-5. Both of these proteins are known to be essential constituents of TJs between Sertoli cells, and as a consequence of their increased expression transepithelial resistance across Sertoli cell monolayers is increased. ZIP9 is a Zn(2+)transporter that was recently shown to be a membrane-bound testosterone receptor. Silencing its expression in 93RS2 Sertoli cells by siRNA completely prevents Erk1/2, CREB, and ATF-1 phosphorylation as well the stimulation of claudin-1 and -5 expression and TJ formation between neighboring cells. The study presented here demonstrates for the first time that in Sertoli cells testosterone acts through the receptor ZIP9 to trigger the non-classical signaling cascade, resulting in increased claudin expression and TJ formation. Since TJ formation is a prerequisite for the maintenance of the blood-testis barrier, the testosterone/ZIP9 effects might be significant for male physiology. Further assessment of these interactions will help to supplement our knowledge concerning the mechanism by which testosterone plays a role in male fertility. PMID:27164415

  10. Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells.

    PubMed

    Rato, Luís; Alves, Marco G; Duarte, Ana I; Santos, Maria S; Moreira, Paula I; Cavaco, José E; Oliveira, Pedro F

    2015-09-01

    The incidence of type 2 diabetes mellitus and its prodromal stage, pre-diabetes, is rapidly increasing among young men, leading to disturbances in testosterone synthesis. However, the impact of testosterone deficiency induced by these progressive stages of diabetes on the metabolic behavior of Sertoli cells remains unknown. We evaluated the effects of testosterone deficiency associated with pre-diabetes and type 2 diabetes on Sertoli cells metabolism, by measuring (1) the expression and/or activities of glycolysis and glycogen metabolism-related proteins and (2) the metabolite secretion/consumption in Sertoli cells obtained from rat models of different development stages of the disease, to unveil the mechanisms by which testosterone deregulation may affect spermatogenesis. Glucose and pyruvate uptake were decreased in cells exposed to the testosterone concentration found in pre-diabetic rats (600nM), whereas the decreased testosterone concentrations found in type 2 diabetic rats (7nM) reversed this profile. Lactate production was not altered, although the expression and/or activity of lactate dehydrogenase and monocarboxylate transporter 4 were affected by progressive testosterone-deficiency. Sertoli cells exposed to type 2 diabetic conditions exhibited intracellular glycogen accumulation. These results illustrate that gradually reduced levels of testosterone, induced by progressive stages of diabetes mellitus, favor a metabolic reprogramming toward glycogen synthesis. Our data highlights a pivotal role for testosterone in the regulation of spermatogenesis metabolic support by Sertoli cells, particularly in individuals suffering from metabolic diseases. Such alterations may be in the basis of male subfertility/infertility associated with the progression of diabetes mellitus. PMID:26148570

  11. Regulated anion secretion in cultured epithelia from Sertoli cells of immature rats

    PubMed Central

    Ko, W H; Chan, H C; Chew, S B; Wong, P Y D

    1998-01-01

    Cultured epithelia of Sertoli cells from prepubertal rats were grown on Matrigel-coated millipore filters for short-circuit current (Isc) measurements. Under basal conditions, these epithelia exhibited a ‘zero’ transepithelial potential difference, a ‘zero’ short-circuit current and a transepithelial resistance of 60 Ω cm2. Forskolin (100 μm) and 8-(4-chlorophenylthio)-cAMP (cpt-cAMP) (100 μm) added to the apical side stimulated the Isc (forskolin, peak ΔIsc = 1.32 ± 0.16 μA cm−1; cpt-cAMP, peak ΔIsc = 0.88 ± 0.16 μA cm−2). ATP (100 μm) added apically elicited a Isc response (peak ΔIsc = 6.45 ± 0.28 μA cm−2) which was similar in magnitude to that of 1 μm thapsigargin (peak ΔIsc = 6.09 ± 0.44 μA cm−2). The potency of the responses to other nucleotides: UTP ≥ ATP > ADP >> AMP = adenosine indicates the involvement of a mixture of P2Y receptors. Removal of extracellular Cl− and HCO3− reduced the Isc response to ATP by 70% and 40%, respectively. Removal of K+ had no effect, whereas removal of Na+ attenuated the Isc response. The response to ATP was insensitive to agents known to block anion secretion (except apical diphenylamine-2-carboxylate (DPC) and DIDS). The resistance to perturbation by pharmacological agents may be a unique property of the seminiferous epithelium. Whole-cell current recordings in cultured rat Sertoli cells demonstrated a DIDS-sensitive outwardly rectifying Cl− conductance with activating and inactivating characteristics at depolarizing and hyperpolarizing voltages, respectively. The stimulation of electrogenic ion transport by ATP may be part of a complex mechanism regulating fluid secretion by the testis. Cultured Sertoli cell epithelia are shown to provide a useful model to investigate transepithelial transport in the seminiferous epithelium. PMID:9763636

  12. Immunohistochemical expression of SOX9 protein in immature, mature, and neoplastic canine Sertoli cells.

    PubMed

    Banco, Barbara; Palmieri, Chiara; Sironi, Giuseppe; Fantinato, Eleonora; Veronesi, Maria C; Groppetti, Debora; Giudice, Chiara; Martignoni, Benedetta; Grieco, Valeria

    2016-05-01

    Sex-determining region Y box9 gene (SOX9) protein plays a pivotal role in male sexual development. It regulates the transcription of the anti-Müllerian hormone gene promoting development of testis cords, multiplication, and maturation of Sertoli cells (SCs) and maintenance of spermatogenesis in adult testis. The immunohistochemical expression of SOX9 in normal testes has been reported in humans, mice, and rats. The present study aimed to investigate the expression of SOX9 in canine SCs during testicular maturation and neoplastic transformation. Canine testicular samples derived from three fetuses, four newborns, four prepubertal puppies, five adult dogs, 31 Sertoli cell tumors (SCTs) (one metastasizing), and five Leydig cell tumors (LCTs) were selected from departmental archive and tested immunohistochemically with a polyclonal antibody against SOX9 (1:150). All SCs from fetal, neonatal, and adult testes had a strong and exclusively nuclear labeling for SOX9. In SCs from prepubertal testes, SOX9 staining was highly variable with one negative sample (one of four), two samples with exclusively nuclear staining (two of four), and one with both nuclear and cytoplasmic labeling (one of four). Leydig cells (LCs) and LCTs were always negative. All 31 SCTs were positive for SOX9. The expression of SOX9 was nuclear, nuclear and cytoplasmic, and exclusively cytoplasmic in 18 of 31, 11 of 31, and two of 31 SCTs, respectively. This first report on the immunohistochemical expression of SOX9 in canine testes reports that in normal SCs from fetal, neonatal, and adult testes SOX9 labeled the nucleus, as in humans and laboratory animals. The cytoplasmic labeling observed in one prepubertal pairs of testes and in 11 SCTs could reflect SC immaturity or dedifferentiation, paralleling results observed in rat testes. The expression of SOX9 in SCs and SCTs and its absence in LCs and LCTs suggests that SOX9 is a reliable diagnostic marker for both normal and neoplastic SCs. PMID:26777558

  13. Changes in the morphology and protein expression of germ cells and Sertoli cells in plateau pikas testes during non-breeding season.

    PubMed

    Liu, Ming; Cao, Guangming; Zhang, Yanming; Qu, Jiapeng; Li, Wei; Wan, Xinrong; Li, Yu-Xia; Zhang, Zhibin; Wang, Yan-Ling; Gao, Fei

    2016-01-01

    Plateau pikas are seasonally breeding small herbivores that inhabit the meadow ecosystem of the Qinghai-Tibetan Plateau. Testis regression in plateau pikas begins in early June, and the male pikas are completely infertile, with a dramatically reduced testis size, in late July. In this study, a decreased germ cell number in the testes was first noted in early June. By late June, only Sertoli cells and a small number of spermatogonia remained. Interestingly, large gonocyte-like germ cells were observed in early July. In late July, the number of gonocyte-like cells per tubule increased significantly, and most of the Sertoli cell nuclei moved to and clustered in the center of the seminiferous tubules. The gonocyte-like germ cells and Sertoli cells began to express AP-2γ and anti-Mullerian hormone (AMH) proteins, which were detected in the germ cells and Sertoli cells of juvenile pikas but not in adult testes. Simultaneously, LC3 puncta dramatically increased in the seminiferous tubules of the pikas' testes during the non-breeding season. Our study found that spermatogonia and Sertoli cells in non-breeding adult pikas morphologically resembled those in juvenile pikas and expressed specific markers, indicating that de-differentiation-like transitions may occur during this process. PMID:26939551

  14. Changes in the morphology and protein expression of germ cells and Sertoli cells in plateau pikas testes during non-breeding season

    PubMed Central

    Liu, Ming; Cao, Guangming; Zhang, Yanming; Qu, Jiapeng; Li, Wei; Wan, Xinrong; Li, Yu-xia; Zhang, Zhibin; Wang, Yan-ling; Gao, Fei

    2016-01-01

    Plateau pikas are seasonally breeding small herbivores that inhabit the meadow ecosystem of the Qinghai-Tibetan Plateau. Testis regression in plateau pikas begins in early June, and the male pikas are completely infertile, with a dramatically reduced testis size, in late July. In this study, a decreased germ cell number in the testes was first noted in early June. By late June, only Sertoli cells and a small number of spermatogonia remained. Interestingly, large gonocyte-like germ cells were observed in early July. In late July, the number of gonocyte-like cells per tubule increased significantly, and most of the Sertoli cell nuclei moved to and clustered in the center of the seminiferous tubules. The gonocyte-like germ cells and Sertoli cells began to express AP-2γ and anti-Mullerian hormone (AMH) proteins, which were detected in the germ cells and Sertoli cells of juvenile pikas but not in adult testes. Simultaneously, LC3 puncta dramatically increased in the seminiferous tubules of the pikas’ testes during the non-breeding season. Our study found that spermatogonia and Sertoli cells in non-breeding adult pikas morphologically resembled those in juvenile pikas and expressed specific markers, indicating that de-differentiation-like transitions may occur during this process. PMID:26939551

  15. Ligand-dependent contribution of RXRβ to cholesterol homeostasis in Sertoli cells

    PubMed Central

    Mascrez, Bénédicte; Ghyselinck, Norbert B; Watanabe, Mitsuhiro; Annicotte, Jean-Sébastien; Chambon, Pierre; Auwerx, Johan; Mark, Manuel

    2004-01-01

    We show that mice expressing retinoid X receptor β (RXRβ) impaired in its transcriptional activation function AF-2 (Rxrbaf20 mutation) do not display the spermatid release defects observed in RXRβ-null mutants, indicating that the role of RXRβ in spermatid release is ligand-independent. In contrast, like RXRβ-null mutants, Rxrbaf20 mice accumulate cholesteryl esters in Sertoli cells (SCs) due to reduced ABCA1 transporter-mediated cholesterol efflux. We provide genetic and molecular evidence that cholesterol homeostasis in SCs does not require PPARα and β, but depends upon the TIF2 coactivator and RXRβ/LXRβ heterodimers, in which RXRβ AF-2 is transcriptionally active. Our results also indicate that RXRβ may be activated by a ligand distinct from 9-cis retinoic acid. PMID:14993927

  16. Rapid differentiation of NT2 cells in Sertoli-NT2 cell tissue constructs grown in the rotating wall bioreactor.

    PubMed

    Saporta, Samuel; Willing, Alison E; Shamekh, Rania; Bickford, Paula; Paredes, Daniel; Cameron, Don F

    2004-12-15

    Cell replacement therapy is of great interest as a long-term treatment of neurodegenerative diseases such as Parkinson's disease (PD). We have previously shown that Sertoli cells (SC) provide neurotrophic support to transplants of dopaminergic fetal neurons and NT2N neurons, derived from the human clonal precursors cell line NTera2/D1 (NT2), which differentiate into dopaminergic NT2N neurons when exposed to retinoic acid. We have created SC-NT2 cell tissue constructs cultured in the high aspect ratio vessel (HARV) rotating wall bioreactor. Sertoli cells, NT2, and SC plus NT2 cells combined in starting ratios of 1:1, 1:2, 1:4 and 1:8 were cultured in the HARV in DMEM with 10% fetal bovine serum and 1% growth factor reduced Matrigel for 3 days, without retinoic acid. Conventional, non-HARV, cultures grown in the same culture medium were used as controls. The presence of tyrosine hydroxylase (TH) was assessed in all culture conditions. Sertoli-neuron-aggregated-cell (SNAC) tissue constructs grown at starting ratios of 1:1 to 1:4 contained a significant amount of TH after 3 days of culture in the HARV. No TH was detected in SC HARV cultures, or SC, NT2 or SC-NT2 conventional co-cultures. Quantitative stereology of immunolabled 1:4 SNAC revealed that approximately 9% of NT2 cells differentiate into TH-positive (TH+) NT2N neurons after 3 days of culture in the HARV, without retinoic acid. SNAC tissue constructs also released dopamine (DA) when stimulated with KCl, suggesting that TH-positive NT2N neurons in the SNAC adopted a functional dopaminergic phenotype. SNAC tissue constructs may be an important source of dopaminergic neurons for neuronal transplantation. PMID:15561470

  17. FSH and bFGF regulate the expression of genes involved in Sertoli cell energetic metabolism.

    PubMed

    Regueira, Mariana; Riera, María Fernanda; Galardo, María Noel; Camberos, María Del Carmen; Pellizzari, Eliana Herminia; Cigorraga, Selva Beatriz; Meroni, Silvina Beatriz

    2015-10-01

    The purpose of this study was to investigate if FSH and bFGF regulate fatty acid (FA) metabolism and mitochondrial biogenesis in Sertoli cells (SC). SC cultures obtained from 20-day-old rats were incubated with 100ng/ml FSH or 30ng/ml bFGF for 6, 12, 24 and 48h. The expression of genes involved in transport and metabolism of FA such as: fatty acid transporter CD36 (FAT/CD36), carnitine-palmitoyltransferase 1 (CPT1), long- and medium-chain 3-hydroxyacyl-CoA dehydrogenases (LCAD, MCAD), and of genes involved in mitochondrial biogenesis such as: nuclear respiratory factors 1 and 2 (NRF1, NRF2) and transcription factor A (Tfam), was analyzed. FSH stimulated FAT/CD36, CPT1, MCAD, NRF1, NRF2 and Tfam mRNA levels while bFGF only stimulated CPT1 expression. A possible participation of PPARβ/δ activation in the regulation of gene expression and lactate production was then evaluated. SC cultures were incubated with FSH or bFGF in the presence of the PPARβ/δ antagonist GSK3787 (GSK; 20μM). bFGF stimulation of CPT1 expression and lactate production were inhibited by GSK. On the other hand, FSH effects were not inhibited by GSK indicating that FSH regulates the expression of genes involved in FA transport and metabolism and in mitochondrial biogenesis, independently of PPARβ/δ activation. FA oxidation and mitochondrial biogenesis as well as lactate production are essential for the energetic metabolism of the seminiferous tubule. The fact that these processes are regulated by hormones in a different way reflects the multifarious regulation of molecular mechanisms involved in Sertoli cell function. PMID:26315388

  18. Sertoli cells improve survival of motor neurons in SOD1 transgenic mice, a model of amyotrophic lateral sclerosis.

    PubMed

    Hemendinger, Richelle; Wang, Jay; Malik, Saafan; Persinski, Rafal; Copeland, Jane; Emerich, Dwaine; Gores, Paul; Halberstadt, Craig; Rosenfeld, Jeffrey

    2005-12-01

    Cell replacement therapy has been widely suggested as a treatment for multiple diseases including motor neuron disease. A variety of donor cells have been tested for treatment including isolated preparations from bone marrow and embryonic spinal cord. Another cell source, Sertoli cells, have been successfully used in models of diabetes, Parkinson's disease and Huntington's disease. The ability of these cells to secrete cytoprotective proteins and their role as 'nurse cells' supporting the function of other cell types in the testes suggest their potential use as neuroprotective cells. The current study examines the ability of Sertoli cells injected into the parenchyma of the spinal cord to protect motor neurons in a mouse model for amyotrophic lateral sclerosis. Seventy transgenic mice expressing the mutant (G93A) human Cu-Zn superoxide dismutase (SOD1) received a unilateral spinal injection of Sertoli-enriched testicular cells into the L4-L5 ventral horn (1 x 10(5) cells total) prior to the onset of clinical symptoms. The animals were euthanized at the end stage of the disease. Histological and morphometric analyses of the transplant site were performed. A significant increase in the number of surviving ChAT positive motor neurons was found ipsilateral to the injection compared with contralateral and uninjected spinal cord. The ipsilateral increase in motor neuron density was dependent upon proximity to the injection site. Sections rostral or caudal to the injection site did not display a similar difference in motor neuron density. Implantation of a Sertoli-cell-enriched preparation has a significant neuroprotective benefit to vulnerable motor neurons in the SOD1 transgenic model. The therapeutic benefit may be the result of secreted neurotrophic factors present at a critical stage of motor neuron degeneration in this model. PMID:16242126

  19. Sertoli cells and various types of multinucleates in the rat seminiferous tubules following temporary ligation of the testicular artery.

    PubMed Central

    Kaya, M

    1986-01-01

    The effects of temporary ligation of the testicular artery have been analysed in rats with respect to Sertoli cells and multinucleated spermatogenic cells. The first cells to show ultrastructural changes are the Sertoli cells which progressively degenerate, leading to complete necrosis as the duration of ligation and post-ligation survival interval increases. The degree of degeneration of spermatogenic cells depends on the severity of Sertoli cell destruction. Temporary ligation of the testicular artery causes the formation of various types of multinucleated spermatogenic cells in the seminiferous epithelium. The mechanisms involved in the multinucleate formation are cell fusion, karyokinesis devoid of cytokinesis and phagocytosis. The variety of noxious agents causing formation of multinucleated spermatogenic cells in the seminiferous tubules of a number of species including man implies that the occurrence of multinucleated spermatogenic cells is not a specific response of the testis to a particular type of agent. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:3693041

  20. Ovarian Sertoli-Leydig Cell Tumor with Predominant Heterologous Mucinous Differentiation and Foci of Hepatocytic Differentiation: Case Report and Review of The Literature.

    PubMed

    Liang, Li; Menzin, Andrew; Lovecchio, John Louis; Navarro, Maria D

    2015-01-01

    Sertoli-Leydig cell tumor is a rare ovarian neoplasm and belongs to the group of sex cord stromal tumors. We present a case of a 15-year old girl diagnosed with Sertoli-Leydig cell tumor with heterologous elements consisting predominantly of mucinous epithelium and a sparse Sertoli-Leydig cell component, mimicking mucinous neoplasm. Furthermore, foci of hepatocytic differentiation were also identified. Immunohistochemical stains showed the component of Sertoli cell differentiation was positive for cytokeratin 18 and inhibin. The component of Leydig cell differentiation was strongly positive for inhibin. The component of hepatocytic differentiation was positive for low molecular weight keratin, HepPar1, alpha-fetoprotein and weakly positive for inhibin. Thus, this was a very rare case which created a challenge for pathologists, especially on frozen sections. PMID:26116602

  1. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice.

    PubMed

    Welborn, Joshua P; Davis, Matthew G; Ebers, Steven D; Stodden, Genna R; Hayashi, Kanako; Cheatwood, Joseph L; Rao, Manjeet K; MacLean, James A

    2015-07-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. PMID:25972016

  2. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice1

    PubMed Central

    Welborn, Joshua P.; Davis, Matthew G.; Ebers, Steven D.; Stodden, Genna R.; Hayashi, Kanako; Cheatwood, Joseph L.; Rao, Manjeet K.; MacLean, James A.

    2015-01-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. PMID:25972016

  3. Hemicastration causes and testosterone prevents enhanced uptake of (/sup 3/H)thymidine by Sertoli cells in testes of immature rats

    SciTech Connect

    Orth, J.M.; Higginbotham, C.A.; Salisbury, R.L.

    1984-02-01

    Rat pups were hemicastrated and uptake of (/sup 3/H)thymidine by Sertoli cells in the remaining testis was compared to that in testes of sham-operated pups at intervals of from 8 h to 21 days after surgery. Labeled thymidine was administered subcutaneously 2 h before sacrifice. Testes were processed for light microscope autoradiography and the percent of Sertoli cell nuclei that had incorporated (/sup 3/H)thymidine was determined by scoring nuclei in tissue sections as labeled or unlabeled. The percentage of cells labeled was increased in hemicastrates over intact controls by 8 h after surgery and testicular hypertrophy became apparent in hemicastrates by the following day. Labeling of Sertoli cells in hemicastrates remained elevated for 4 days and then returned to normal. When plasma levels of gonadotropins were measured in both groups 4 days after surgery, follicle-stimulating hormone (FSH) was found to be more than twice normal in hemicastrates while luteinizing hormone (LH) was unchanged. The effect of testosterone on the response of Sertoli cells to hemicastration was also examined. In hemicastrates, 2 days of androgen therapy depressed, and an additional 2 days abolished, the proliferative response of the Sertoli cells. Our findings suggest that increased proliferation of Sertoli cells within the remaining testis is involved in the enlargement of the testis that follows hemicastration. They also imply that prevention of compensatory hypertrophy by testosterone involves interference with this response of Sertoli cells in some way. Finally, our data implicate FSH in control of Sertoli cell proliferation in vivo in immature rats.

  4. Identification, characterization, and hormonal regulation of 3', 5'-cyclic adenosine monophosphate-dependent protein kinases in rat Sertoli cells.

    PubMed

    Landmark, B F; Fauske, B; Eskild, W; Skålhegg, B; Lohmann, S M; Hansson, V; Jahnsen, T; Beebe, S J

    1991-11-01

    Recent studies have disclosed multiple isoforms of regulatory (R) and catalytic (C) subunits of cAMP-dependent protein kinase (PKA) at the protein and messenger RNA (mRNA) levels. The purpose of the present study was to identify, characterize, and quantify individual R subunits in rat Sertoli cells both at the mRNA and protein levels. Unstimulated Sertoli cells contain high levels of R (approximately 9.2 +/- 0.8 pmol/mg protein) and C (approximately 7.3 +/- 0.7 pmol/mg protein). Stimulation with (Bt)2cAMP (0.1 mM) for 24 and 48 h revealed a time-dependent increase in [3H]cAMP-binding activity. During the same time period the catalytic activity remained relatively constant, resulting in an increase in the R/C ratio from approximately 1.3 to 3.0. Using diethylaminoethyl cellulose chromatography, 8-N3-[32P]cAMP photoaffinity labeling, autophosphorylation by gamma-[32P]ATP, and specific antibodies, we show that unstimulated Sertoli cells contain approximately 75% RI alpha, 25% RII alpha, and very low levels of RII beta. Stimulation of Sertoli cells with (Bt)2cAMP (0.1 mM, 48 h) was associated with a 2.1-fold increase in RI alpha (6.6-14 pmol/mg) and a 10- to 20-fold increase in RII beta (less than 0.1-1.1 pmol/mg), with little or no change in RII alpha (1.9-2.3 pmol/mg). Treatment with cAMP was associated with a slight increase in RI/RII ratio (3.3-4.1). mRNA levels for RII beta increased 30- to 50-fold after (Bt)2cAMP stimulation, whereas only minor changes in mRNA levels for RI alpha, RII alpha, and C alpha were observed (1.5- to 2.0-fold). mRNA levels for RI beta, C beta, and C gamma were not detected in either unstimulated or in cAMP-stimulated Sertoli cells. It is concluded that chronic treatment with cAMP changes the relative proportion of R subunits of PKA in a manner reflecting the changing levels in respective mRNAs. Furthermore, such treatment is associated with the appearance of a new PKA R subunit (RII beta), which is absent in untreated Sertoli cells. PMID

  5. Loss of Sertoli-germ cell adhesion determines the rapid germ cell elimination during the seasonal regression of the seminiferous epithelium of the large hairy armadillo Chaetophractus villosus.

    PubMed

    Luaces, Juan Pablo; Rossi, Luis Francisco; Sciurano, Roberta Beatriz; Rebuzzini, Paola; Merico, Valeria; Zuccotti, Maurizio; Merani, Maria Susana; Garagna, Silvia

    2014-03-01

    The armadillo Chaetophractus villosus is a seasonal breeder whose seminiferous epithelium undergoes rapid regression with massive germ cell loss, leaving the tubules with only Sertoli cells and spermatogonia. Here, we addressed the question of whether this regression entails 1) the disassembly of cell junctions (immunolocalization of nectin-3, Cadm1, N-cadherin, and beta-catenin, and transmission electron microscopy [TEM]); 2) apoptosis (immunolocalization of cytochrome c and caspase 3; TUNEL assay); and 3) the involvement of Sertoli cells in germ cell phagocytosis (TEM). We showed a dramatic reduction in the extension of vimentin filaments associated with desmosomelike junctions at the interface between Sertoli and germ cells, and an increased diffusion of the immunosignals of nectin-3, Cadm1, N-cadherin, and beta-catenin. Together, these results suggest loss of Sertoli-germ cell adhesion, which in turn might determine postmeiotic cell sloughing at the beginning of epithelium regression. Then, loss of Sertoli-germ cell adhesion triggers cell death. Cytochrome c is released from mitochondria, but although postmeiotic cells were negative for late apoptotic markers, at advanced regression spermatocytes were positive for all apoptotic markers. Transmission electron microscopy analysis showed cytoplasmic engulfment of cell debris and lipid droplets within Sertoli cells, a sign of their phagocytic activity, which contributes to the elimination of the residual meiocytes still present in the latest regression phases. These findings are novel and add new players to the mechanisms of seminiferous epithelium regression occurring in seasonal breeders, and they introduce the armadillo as an interesting model for studying seasonal spermatogenesis. PMID:24451984

  6. Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells

    PubMed Central

    Fix, Charity; Jordan, Cynthia; Cano, Patricia; Walker, William H.

    2004-01-01

    The androgen testosterone is essential for the Sertoli cell to support the maturation of male germ cells and the production of spermatozoa (spermatogenesis). In the classical view of androgen action, binding of androgen to the intracellular androgen receptor (AR) produces a conformational change in AR such that the receptor–steroid complex has high affinity for specific DNA regulatory elements and is able to stimulate gene transcription. Here, we demonstrate that testosterone can act by means of an alternative, rapid, and sustainable mechanism in Sertoli cells that is independent of AR–DNA interactions. Specifically, the addition of physiological levels of testosterone to Sertoli cells stimulates the mitogen-activated protein kinase signaling pathway and causes phosphorylation of the cAMP response element binding protein transcription factor on serine 133, a modification known to be required for Sertoli cells to support spermatogenesis. Androgen-mediated activation of mitogen-activated protein kinase and cAMP response element binding protein occurs within 1 min, extends for at least 12 h and requires AR. Furthermore, androgen induces endogenous cAMP response element binding protein-mediated transcription in Sertoli cells. These newly identified mechanisms of androgen action in Sertoli cells suggest new targets for developing male contraceptive agents. PMID:15263086

  7. Vitamin A deprivation selectively lowers uridine nucleotide pools in cultured sertoli cells.

    PubMed

    Carson, D D; Lennarz, W J

    1983-02-10

    The effects of retinoid addition of vitamin A-depleted (UV-irradiated) culture medium on uridine metabolism in cultured Sertoli cells have been studied. After vitamin A depletion, a consistent 2- to 4-fold enhancement of [3H]uridine incorporation into RNA was observed. Several lines of evidence indicate that this enhancement is the result of an increase in the specific activity of the uridine-labeled precursors of RNA. Although vitamin A depletion did not affect either uridine uptake or alter cellular RNA content, a 5-fold increase in the specific activity of UMP was found in vitamin A-depleted cells. This increase results because the cellular content of uracil nucleosides plus nucleotides is selectively lowered in vitamin A-depleted cells. The decreased content of uridine derivatives could be accounted for by a 45-57% decrease in the activity of glutamine-dependent carbamylphosphate synthetase in vitamin A-depleted cells. The effects of vitamin A deprivation on uridine incorporation, as well as carbamylphosphate synthetase activity, could be completely restored to or above control values by supplementing vitamin A-depleted cell culture medium with either retinol or retinoic acid. This effect of vitamin A depletion appears to be highly specific. Under the same conditions, no gross alteration in either the pattern or extent of synthesis of cellular or secreted proteins, glycoproteins, glycosaminoglycans, and lipids was observed. In addition, vitamin A depletion/repletion had no effect on the growth rate or morphology of the cells. PMID:6822526

  8. New insights on hormones and factors that modulate Sertoli cell metabolism.

    PubMed

    Rato, Luís; Meneses, Maria João; Silva, Branca M; Sousa, Mário; Alves, Marco G; Oliveira, Pedro F

    2016-05-01

    Sertoli cells (SCs) play a key role in spermatogenesis by providing the physical support for developing germ cells and ensuring them the appropriate nutrients, energy sources, hormones, and growth factors. The control of SCs metabolism has been in the spotlight for reproductive biologists, since it may be crucial to determine germ cells' fate. Indeed, the maintenance of spermatogenesis is highly dependent on the metabolic cooperation established between SCs and germ cells, though this event has been overlooked. It depends on the orchestration of various metabolic pathways and an intricate network of signals. Several factors and/or hormones modulate the metabolic activity of SCs, which are major targets for the hormonal signalling that regulates spermatogenesis. Any alteration in the regulation of these cells' metabolic behaviour may compromise the normal development of spermatogenesis and consequently, male fertility. In this context, SC metabolism arises as a key regulation point for spermatogenesis. Herein, we present an up-to-date overview on the impact of hormones and factors that modulate SC metabolism, with special focus on glycolytic metabolism, highlighting their relevance in determining male reproductive potential. PMID:26711246

  9. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene

    PubMed Central

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3′ untranslated region (3′UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3′UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  10. Weight reduction and pioglitazone ameliorate polycystic ovary syndrome after removal of a Sertoli-stromal cell tumor

    PubMed Central

    Baba, Tsuyoshi; Endo, Toshiaki; Ikeda, Keiko; Shimizu, Ayumi; Morishita, Miyuki; Kuno, Yoshika; Honnma, Hiroyuki; Kiya, Tamotsu; Ishioka, Shin-ichi; Saito, Tsuyoshi

    2012-01-01

    This report presents an unusual case of Sertoli-stromal cell tumor and polycystic ovary syndrome successfully treated with weight reduction and an insulin-sensitizing agent. A 22-year-old woman, gravida 0, para 0, visited our hospital for the first time with a 12-year history of secondary amenorrhea and hypertrichosis. Transvaginal ultrasonography revealed a solid tumor in the right ovary. Right salpingo-oophorectomy was performed and pathological examination confirmed a Sertoli-stromal cell tumor. The patient’s serum androgen levels declined postoperatively, but remained above normal. Pioglitazone treatment for 6 months also significantly reduced serum androgen levels, but they still remained above normal. However, after losing 12 kg of body weight, the patient’s serum androgen levels declined to normal, and spontaneous menstruation became regular. Weight reduction with pioglitazone is an effective means of treating hyperandrogenism. PMID:23226075

  11. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene.

    PubMed

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3' untranslated region (3'UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3'UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  12. A Sertoli Cell-Specific Knockout of Connexin43 Prevents Initiation of Spermatogenesis

    PubMed Central

    Brehm, Ralph; Zeiler, Martina; Rüttinger, Christina; Herde, Katja; Kibschull, Mark; Winterhager, Elke; Willecke, Klaus; Guillou, Florian; Lécureuil, Charlotte; Steger, Klaus; Konrad, Lutz; Biermann, Katharina; Failing, Klaus; Bergmann, Martin

    2007-01-01

    The predominant testicular gap junctional protein connexin43 (cx43) is located between neighboring Sertoli cells (SCs) and between SCs and germ cells. It is assumed to be involved in testicular development, cell differentiation, initiation, and maintenance of spermatogenesis with alterations of its expression being correlated with various testicular disorders. Because total disruption of the cx43 gene leads to perinatal death, we generated a conditional cx43 knockout (KO) mouse using the Cre/loxP recombination system, which lacks the cx43 gene solely in SCs (SCCx43KO), to evaluate the SC-specific functions of cx43 on spermatogenesis in vivo. Adult SCCx43KO−/− mice showed normal testis descent and development of the urogenital tract, but testis size and weight were drastically lower compared with heterozygous and wild-type littermates. Histological analysis and quantitation of mRNA expression of germ cell-specific marker genes revealed a significant reduction in the number of spermatogonia but increased SC numbers/tubule with only a few tubules left showing normal spermatogenesis. Thus, SC-specific deletion of cx43 mostly resulted in an arrest of spermatogenesis at the level of spermatogonia or SC-only syndrome and in intratubular SC clusters. Our data demonstrate for the first time that cx43 expression in SCs is an absolute requirement for normal testicular development and spermatogenesis. PMID:17591950

  13. Altered testicular development as a consequence of increase number of sertoli cell in male lambs exposed prenatally to excess testosterone.

    PubMed

    Rojas-García, Pedro P; Recabarren, Mónica P; Sir-Petermann, Teresa; Rey, Rodolfo; Palma, Sergio; Carrasco, Albert; Perez-Marin, Carlos C; Padmanabhan, Vasantha; Recabarren, Sergio E

    2013-06-01

    The reprograming effects of prenatal testosterone (T) treatment on postnatal reproductive parameters have been studied extensively in females of several species but similar studies in males are limited. We recently found that prenatal T treatment increases Sertoli cell number and reduced spermatogenesis in adult rams. If such disruptions are manifested early in life and involve changes in testicular paracrine environment remain to be explored. This study addresses the impact of prenatal T excess on testicular parameters in infant males, including Sertoli cell number and expression of critical genes [FSH receptor (FSHR), androgen receptor (AR), transforming growth factor beta 1 (TGFB1), 3 (TGFB3), transforming growth factor beta type 1 receptor, (TGFBR1), and anti-Müllerian hormone (AMH)] modulating testicular function. At 4 week of age, male lambs born to dams treated with 30 mg of T propionate twice weekly from day 30 to 90, followed by 40 mg of T propionate from day 90 to 120 of pregnancy (T-males), had a higher number of Sertoli cells/testis (P = 0.035) than control males (C-males) born to dams treated with the vehicle. While no differences were observed in the expression of FSHR and TGFB3, testicular TGFBR1 expression was found to be lower in T-males (P = 0.03) compared to C-males. Expression level of AMH, TGFB1, and AR also tended to be lower in T-males. These findings provide evidence that impact of fetal exposure to T excess is evident early in postnatal life, mainly characterized by an increase in Sertoli cell number. This could explain the testicular dysfunction observed in adult rams. PMID:23076741

  14. Retinoblastoma protein (RB) interacts with E2F3 to control terminal differentiation of Sertoli cells

    PubMed Central

    Rotgers, E; Rivero-Müller, A; Nurmio, M; Parvinen, M; Guillou, F; Huhtaniemi, I; Kotaja, N; Bourguiba-Hachemi, S; Toppari, J

    2014-01-01

    The retinoblastoma protein (RB) is essential for normal cell cycle control. RB function depends, at least in part, on interactions with the E2F family of DNA-binding transcription factors (E2Fs). To study the role of RB in the adult testis, a Sertoli cell (SC)-specific Rb knockout mouse line (SC-RbKO) was generated using the Cre/loxP recombination system. SC-RbKO mice exhibited an age-dependent testicular atrophy, impaired fertility, severe SC dysfunction, and spermatogenic defects. Removal of Rb in SC induced aberrant SC cycling, dedifferentiation, and apoptosis. Here we show that E2F3 is the only E2F expressed in mouse SCs and that RB interacts with E2F3 during mouse testicular development. In the absence of RB, the other retinoblastoma family members p107 and p130 began interacting with E2F3 in the adult testes. In vivo silencing of E2F3 partially restored the SC maturation and survival as well as spermatogenesis in the SC-RbKO mice. These results point to RB as a key regulator of SC function in adult mice and that the RB/E2F3 pathway directs SC maturation, cell cycle quiescence, and RB protects SC from apoptosis. PMID:24901045

  15. Only a small population of adult Sertoli cells actively proliferates in culture.

    PubMed

    Kulibin, Andrey Yu; Malolina, Ekaterina A

    2016-10-01

    Adult mammalian Sertoli cells (SCs) have been considered to be quiescent terminal differentiated cells for many years, but recently, proliferation of adult SCs was demonstrated in vitro and in vivo We further examined mouse SC behavior in culture and found that there are two populations of adult SCs. The first population is SCs from seminiferous tubules that hardly proliferate in vitro The second population is small and consists of SCs with atypical nuclear morphology from the terminal segments of seminiferous tubules, a transitional zone (TZ). TZ SCs multiply in culture and form colonies, display mixture of mature and immature SC characteristics, and generate cord-like structures in a collagen matrix. The specific features of TZ SCs are ACTA2 expression in vitro and DMRT1 low levels in vivo and in vitro Although the in vivo function of TZ SCs still remains unclear, this finding has significant implications for our understanding of SC differentiation and functioning in adult mammals. PMID:27512121

  16. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells.

    PubMed

    Villarroel-Espíndola, Franz; Tapia, Cynthia; González-Stegmaier, Roxana; Concha, Ilona I; Slebe, Juan Carlos

    2016-10-01

    Glycogen is the main storage form of glucose; however, the accumulation of glycogen-like glucose polymers can lead to degeneration and cellular death. Previously, we reported that the accumulation of glycogen in testis of transgenic animals overexpressing a constitutively active form of glycogen synthase enhances the apoptosis of pre-meiotic male germ cells and a complete disorganization of the seminiferous tubules. Here we sought to further identify the effects of glycogen storage in cells from the seminiferous tubules and the mechanism behind the pro-apoptotic activity induced by its accumulation. Using an in vitro culture of Sertoli cells (line 42GPA9) and spermatocyte-like cells (line GC-1) expressing a superactive form of glycogen synthase or the Protein Targeting to Glycogen (PTG), we found that glycogen synthesized in both cell lines is poorly branched. In addition, the immunodetection of key molecules of apoptotic events suggests that cellular death induced by polyglucosan molecules affects GC-1 cells, but not 42GPA9 cells by mitochondrial impairment and activation of an intrinsic apoptotic pathway. Furthermore, we analyzed the effects of glycogen deposition during the establishment of an in vitro blood-testis barrier. The results using a non-permeable fluorescent molecule showed that, in conditions of over-synthesis of glycogen, 42GPA9 cells do not lose their capacity to generate an impermeable barrier and the levels of connexin43, occludin, and ZO1 proteins were not affected. These results suggest that the accumulation of polyglucosan molecules has a selective effect-triggered by the intrinsic activation of the apoptotic pathway-in germ cells without directly affecting Sertoli cells. J. Cell. Physiol. 231: 2142-2152, 2016. © 2016 Wiley Periodicals, Inc. PMID:26790645

  17. GATA4 Regulates Blood-Testis Barrier Function and Lactate Metabolism in Mouse Sertoli Cells.

    PubMed

    Schrade, Anja; Kyrönlahti, Antti; Akinrinade, Oyediran; Pihlajoki, Marjut; Fischer, Simon; Rodriguez, Verena Martinez; Otte, Kerstin; Velagapudi, Vidya; Toppari, Jorma; Wilson, David B; Heikinheimo, Markku

    2016-06-01

    Conditional deletion of Gata4 in Sertoli cells (SCs) of adult mice has been shown to increase permeability of the blood-testis barrier (BTB) and disrupt spermatogenesis. To gain insight into the molecular underpinnings of these phenotypic abnormalities, we assessed the impact of Gata4 gene silencing in cell culture models. Microarray hybridization identified genes dysregulated by siRNA-mediated inhibition of Gata4 in TM4 cells, an immortalized mouse SC line. Differentially expressed genes were validated by quantitative RT-PCR analysis of primary cultures of Gata4(flox/flox) mouse SCs that had been subjected to cre-mediated recombination in vitro. Depletion of GATA4 in TM4 cells and primary SCs was associated with altered expression of genes involved in key facets of BTB maintenance, including tight/adherens junction formation (Tjp1, Cldn12, Vcl, Tnc, Csk) and extracellular matrix reorganization (Lamc1, Col4a1, Col4a5, Mmp10, Mmp23, Timp2). Western blotting and immunocytochemistry demonstrated reduced levels of tight junction protein-1, a prototypical tight junction protein, in GATA4-depleted cells. These changes were accompanied by a loss of morphologically recognizable junctional complexes and a decline in epithelial membrane resistance. Furthermore, Gata4 gene silencing was associated with altered expression of Hk1, Gpi1, Pfkp, Pgam1, Gls2, Pdk3, Pkd4, and Ldhb, genes regulating the production of lactate, a key nutrient that SCs provide to developing germ cells. Comprehensive metabolomic profiling demonstrated impaired lactate production in GATA4-deficient SCs. We conclude that GATA4 plays a pivotal role in the regulation of BTB function and lactate metabolism in mouse SCs. PMID:26974005

  18. Effects of intraperitoneal injection of microencapsulated Sertoli cells on chronic and presymptomatic dystrophic mice

    PubMed Central

    Chiappalupi, Sara; Luca, Giovanni; Mancuso, Francesca; Madaro, Luca; Fallarino, Francesca; Nicoletti, Carmine; Calvitti, Mario; Arato, Iva; Falabella, Giulia; Salvadori, Laura; Di Meo, Antonio; Bufalari, Antonello; Giovagnoli, Stefano; Calafiore, Riccardo; Donato, Rosario; Sorci, Guglielmo

    2015-01-01

    We report data about the effects of intraperitoneal (i.p.) injection of specific pathogen-free (SPF) porcine Sertoli cells (SeC) encapsulated into clinical grade alginate-based microcapsules (SeC-MC) on muscles of chronic and presymptomatic dystrophic, mdx mice. Mdx mouse is the best characterized animal model of Duchenne muscular dystrophy (DMD), an X-linked lethal myopathy due to mutation in the gene of dystrophin, which is crucial for myofiber integrity during muscle contraction. Our data show that three weeks after i.p. injection of SeC-MC significantly reduced adipose and fibrous tissue deposition, reduced macrophage infiltrate, and reduced numbers of damaged myofibers are found in muscles of 12-month-old mdx mice, which reproduce chronic DMD conditions. Compared with muscles of mock-treated mdx mice muscles of SeC-MC-treated mice show upregulation of the dystrophin paralogue, utrophin which is localized to the periphery of myofibers. Moreover, our data show that i.p. injection of SeC-MC into presymptomatic, 2-week-old mdx mice, although not fully preventing myofiber degeneration, results in protection against myofiber necrosis and muscle inflammation. Extensive discussion of these data can be found in Ref. [1]. PMID:26759818

  19. Intraperitoneal injection of microencapsulated Sertoli cells restores muscle morphology and performance in dystrophic mice.

    PubMed

    Chiappalupi, Sara; Luca, Giovanni; Mancuso, Francesca; Madaro, Luca; Fallarino, Francesca; Nicoletti, Carmine; Calvitti, Mario; Arato, Iva; Falabella, Giulia; Salvadori, Laura; Di Meo, Antonio; Bufalari, Antonello; Giovagnoli, Stefano; Calafiore, Riccardo; Donato, Rosario; Sorci, Guglielmo

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration leading to impaired locomotion, respiratory failure and premature death. In DMD patients, inflammatory events secondary to dystrophin mutation play a major role in the progression of the pathology. Sertoli cells (SeC) have been largely used to protect xenogeneic engraftments or induce trophic effects thanks to their ability to secrete trophic, antiinflammatory, and immunomodulatory factors. Here we have purified SeC from specific pathogen-free (SPF)-certified neonatal pigs, and embedded them into clinical grade alginate microcapsules. We show that a single intraperitoneal injection of microencapsulated SPF SeC (SeC-MC) in an experimental model of DMD can rescue muscle morphology and performance in the absence of pharmacologic immunosuppressive treatments. Once i.p. injected, SeC-MC act as a drug delivery system that modulates the inflammatory response in muscle tissue, and upregulates the expression of the dystrophin paralogue, utrophin in muscles through systemic release of heregulin-β1, thus promoting sarcolemma stability. Analyses performed five months after single injection show high biocompatibility and long-term efficacy of SeC-MC. Our results might open new avenues for the treatment of patients with DMD and related diseases. PMID:26523508

  20. Copy Number Variants in Patients with Severe Oligozoospermia and Sertoli-Cell-Only Syndrome

    PubMed Central

    Tüttelmann, Frank; Simoni, Manuela; Kliesch, Sabine; Ledig, Susanne; Dworniczak, Bernd; Wieacker, Peter; Röpke, Albrecht

    2011-01-01

    A genetic origin is estimated in 30% of infertile men with the common phenotypes of oligo- or azoospermia, but the pathogenesis of spermatogenic failure remains frequently obscure. To determine the involvement of Copy Number Variants (CNVs) in the origin of male infertility, patients with idiopathic severe oligozoospermia (N = 89), Sertoli-cell-only syndrome (SCOS, N = 37)) and controls with normozoospermia (N = 100) were analysed by array-CGH using the 244A/400K array sets (Agilent Technologies). The mean number of CNVs and the amount of DNA gain/loss were comparable between all groups. Ten recurring CNVs were only found in patients with severe oligozoospermia, three only in SCOS and one CNV in both groups with spermatogenic failure but not in normozoospermic men. Sex-chromosomal, mostly private CNVs were significantly overrepresented in patients with SCOS. CNVs found several times in all groups were analysed in a case-control design and four additional candidate genes and two regions without known genes were associated with SCOS (P<1×10−3). In conclusion, by applying array-CGH to study male infertility for the first time, we provide a number of candidate genes possibly causing or being risk factors for the men's spermatogenic failure. The recurring, patient-specific and private, sex-chromosomal CNVs as well as those associated with SCOS are candidates for further, larger case-control and re-sequencing studies. PMID:21559371

  1. Melatonin alters the glycolytic profile of Sertoli cells: implications for male fertility.

    PubMed

    Rocha, Cátia S; Martins, Ana D; Rato, Luís; Silva, Branca M; Oliveira, Pedro F; Alves, Marco G

    2014-11-01

    Melatonin co-operates with insulin in the regulation of glucose homeostasis. Within the testis, glucose metabolism in the somatic Sertoli cells (SCs) is pivotal for spermatogenesis. Since the effects of melatonin on male reproductive physiology remain largely unknown, we hypothesized that melatonin may affect spermatogenesis by modulating SC metabolism, interacting with insulin. To test our hypothesis, rat SCs were maintained in culture for 24 h in the presence of insulin, melatonin or both and metabolite production/consumption was determined by proton nuclear magnetic resonance ((1)H-NMR). Protein levels of glucose transporters (GLUT1 and GLUT3), phosphofructokinase 1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were determined by western blot. LDH activity was also assessed. SCs treated with melatonin showed an increase in glucose consumption via modulation of GLUT1 levels, but decreased LDH protein expression and activity, which resulted in lower lactate production. Moreover, SCs exposed to melatonin produced and accumulated less acetate than insulin-exposed cells. The combined treatment (insulin plus melatonin) increased acetate production by SCs, but intracellular acetate content remained lower than in insulin exposed cells. Finally, the intracellular redox state, as reflected by intracellular lactate/alanine ratio, was maintained at control levels in SCs by melatonin exposure (i.e. melatonin, alone or with insulin, increased the lactate/alanine ratio versus cells treated with insulin). Furthermore, SCs exposed to insulin plus melatonin produced more lactate and maintained the protein levels of some glycolysis-related enzymes and transporters at control levels. These findings illustrate that melatonin regulates SCs metabolism, and thus may affect spermatogenesis. Since lactate produced by SCs provides nutritional support and has an anti-apoptotic effect in developing germ cells, melatonin supplementation may be an effective therapy for

  2. Ovarian Sertoli-Leydig cell tumor with heterologous elements of gastrointestinal type associated with elevated serum alpha-fetoprotein level: an unusual case and literature review

    PubMed Central

    Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana

    2014-01-01

    Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker. PMID:25926909

  3. Morphometric evaluation of seminiferous tubule and proportionate numerical analysis of Sertoli and spermatogenic cells indicate differences between crossbred and purebred bulls

    PubMed Central

    Tripathi, Utkarsh K.; Chhillar, Shivani; Kumaresan, A.; Aslam, M. K. Muhammad; Rajak, S. K.; Nayak, Samiksha; Manimaran, A.; Mohanty, T. K.; Yadav, Savita

    2015-01-01

    Aim: The present study compared the testicular cytology and histology between crossbred (Holstein–Friesian [HF] × Tharparkar) and purebred (HF and Tharparkar) bulls to find out differences if any. Materials and Methods: Four peripubertal bulls from each breed were utilized for the study. Through percutaneous needle aspiration biopsy, Sertoli and spermatogenic cells were extracted, and morphometry was studied. For histological studies, testicular tissues obtained through unilateral castration were utilized. Sertoli cells specific GATA4 antibody was used to study the population of Sertoli cells in the seminiferous tubule through immunofluorescence. Results: The testicular weight, volume, and scrotal circumference differed significantly among the breeds. The diameter and area of the seminiferous tubule was high in HF, followed by Karan Fries (KF), and Tharparkar bulls. However, the degree of compactness, based on qualitative evaluation, was high in Tharparkar followed by KF and HF bulls. The intensity of Leydig cells was higher in Tharparkar bulls followed by KF and HF. The proportion of Sertoli cells was higher (p<0.05) in HF and Tharparkar bulls compared to KF bulls. Conclusion: It may be concluded that variations exist in testicular components of the breeds studied and the proportion of Sertoli cells in relation to spermatogenic cells was significantly lower in crossbred bulls compared to purebred bulls. PMID:27047150

  4. Combined Leydig cell and Sertoli cell dysfunction in 46,XX males lacking the sex determining region Y gene

    SciTech Connect

    Turner, B.; Vordermark, J.S.; Fechner, P.Y.

    1995-07-03

    We have evaluated 3 individuals with a rare form of 46,XX sex reversal. All of them had ambiguous external genitalia and mixed wolffian and muellerian structures, indicating both Leydig cell and Sertoli cell dysfunction, similar to that of patients with true hermaphroditism. However, gonadal tissue was not ovotesticular but testicular with varying degrees of dysgenesis. SRY sequences were absent in genomic DNA from peripheral leukocytes in all 3 subjects. Y centromere sequences were also absent, indicating that testis development did not occur because of a low level mosaicism of Y-bearing cells. The subjects in this report demonstrate that there is a continuum in the extent of the testis determination in SRY-negative 46,XX sex reversal, ranging from nearly normal to minimal testicular development. 20 refs.

  5. Altered Expression of ZO-1 and ZO-2 in Sertoli Cells and Loss of Blood-Testis Barrier Integrity in Testicular Carcinoma In Situ1

    PubMed Central

    Fink, Cornelia; Weigel, Roswitha; Hembes, Tanja; Lauke-Wettwer, Heidrun; Kliesch, Sabine; Bergmann, Martin; Brehm, Ralph H

    2006-01-01

    Abstract Carcinoma in situ (CIS) is the noninvasive precursor of most human testicular germ cell tumors. In normal seminiferous epithelium, specialized tight junctions between Sertoli cells constitute the major component of the blood-testis barrier. Sertoli cells associated with CIS exhibit impaired maturation status, but their functional significance remains unknown. The aim was to determine whether the blood-testis barrier is morphologically and/or functionally altered. We investigated the expression and distribution pattern of the tight junction proteins zonula occludens (ZO) 1 and 2 in normal seminiferous tubules compared to tubules showing CIS. In normal tubules, ZO-1 and ZO-2 immunostaining was observed at the blood-testis barrier region of adjacent Sertoli cells. Within CIS tubules, ZO-1 and ZO-2 immunoreactivity was reduced at the blood-testis barrier region, but spread to stain the Sertoli cell cytoplasm. Western blot analysis confirmed ZO-1 and ZO-2, and their respective mRNA were shown by RT-PCR. Additionally, we assessed the functional integrity of the blood-testis barrier by lanthanum tracer study. Lanthanum permeated tight junctions in CIS tubules, indicating disruption of the blood-testis barrier. In conclusion, Sertoli cells associated with CIS show an altered distribution of ZO-1 and ZO-2 and lose their blood-testis barrier function. PMID:17217619

  6. Starvation is more efficient than the washing technique for purification of rat Sertoli cells.

    PubMed

    Ghasemzadeh-Hasankolaei, Mohammad; Eslaminejad, Mohamadreza Baghaban; Sedighi-Gilani, Mohammadali; Mokarizadeh, Aram

    2014-09-01

    Sertoli cells (SCs), one of the most important components of seminiferous tubules, are vital for normal spermatogenesis and male fertility. In recent years, numerous in vitro studies have shown the potential and actual activities of SCs. However, pure SCs are necessary for various in vitro studies. In this study, we have evaluated the efficiency of the starvation method for SC purification as compared with the washing method. Seminiferous tubule-derived cells (STDCs) of rats' testes underwent two different techniques for SC purification. In the first group (washing group), the medium was changed every 3-4 d, and cells were washed twice with phosphate-buffered saline that lacked CaC12 and MgSO4 (PBS(-)) before the addition of fresh medium. In the second group (starvation), the medium was changed every 7-8 d. Primary culture (P0), passage 1 (P1), and passage 2 (P2) cells were analyzed for the expression of SC-specific genes, vimentin, Wilm's tumor 1 (WT1), germ cell gene (vasa), Leydig cell marker, 17beta-hydroxysteroid dehydrogenase type 3 (Hsd17b3), and a marker of peritubular myoid cells, alpha smooth muscle actin (αSma), by reverse transcriptase polymerase chain reaction (RT-PCR) and real-time RT-PCR. Gene expression analysis showed that P0 cells expressed all tested genes except Hsd17b3. The starvation method caused significant downregulation of vasa and αSma expression in P0, P1, and P2 cells, whereas vimentin and WT1 were upregulated. In contrast, the washing method was less effective than the starvation method for the removal of germ and pretubular myoid cells (p < 0.001). Totally, the results have revealed that although washing is the only common technique for elimination of contaminant cells in SC cultures, starvation has a stronger effect and is a suitable, affordable technique for SC purification. We propose that starvation is an efficient, inexpensive method that can be used for purification of SCs in animal species. PMID:24789729

  7. Acceleration of Functional Maturation and Differentiation of Neonatal Porcine Islet Cell Monolayers Shortly In Vitro Cocultured with Microencapsulated Sertoli Cells

    PubMed Central

    Mancuso, Francesca; Calvitti, Mario; Luca, Giovanni; Nastruzzi, Claudio; Baroni, Tiziano; Mazzitelli, Stefania; Becchetti, Ennio; Arato, Iva; Boselli, Carlo; Ngo Nselel, Monique D.; Calafiore, Riccardo

    2010-01-01

    The limited availability of cadaveric human donor pancreata as well as the incomplete success of the Edmonton protocol for human islet allografts fasten search for new sources of insulin the producing cells for substitution cell therapy of insulin-dependent diabetes mellitus (T1DM). Starting from isolated neonatal porcine pancreatic islets (NPIs), we have obtained cell monolayers that were exposed to microencapsulated monolayered Sertoli cells (ESCs) for different time periods (7, 14, 21 days). To assess the development of the cocultured cell monolayers, we have studied either endocrine cell phenotype differentiation markers or c-kit, a hematopoietic stem cell marker, has recently been involved with growth and differentiation of β-cell subpopulations in human as well as rodent animal models. ESC which were found to either accelerate maturation and differentiation of the NPIs β-cell phenotype or identify an islet cell subpopulation that was marked positively for c-kit. The insulin/c-kit positive cells might represent a new, still unknown functionally immature β-cell like element in the porcine pancreas. Acceleration of maturation and differentiation of our NPI cell monolayers might generate a potential new opportunity to develop insulin-producing cells that may suite experimental trials for cell therapy of T1DM. PMID:21048849

  8. The role of PGC-1α and MRP1 in lead-induced mitochondrial toxicity in testicular Sertoli cells.

    PubMed

    Li, Zhen; Liu, Xi; Wang, Lu; Wang, Yan; Du, Chuang; Xu, Siyuan; Zhang, Yucheng; Wang, Chunhong; Yang, Chengfeng

    2016-04-29

    The lead-induced toxic effect on mitochondria in Sertoli cells is not well studied and the underlying mechanism is poorly understood. Here we reported the potential role of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and multidrug resistance protein 1 (MRP1) in lead acetate-induced mitochondrial toxicity in mouse testicular Sertoli cells TM4 line. We found that lead acetate treatment significantly reduced the expression level of PGC-1α, but increased the level of MRP1 in mitochondria of TM4 cells. To determine the role of PGC-1α and MRP1 in lead acetate-induced mitochondrial toxicity, we then generated PGC-1α stable overexpression and MRP1 stable knockdown TM4 cells, respectively. The lead acetate treatment caused TM4 cell mitochondrial ultrastructure damages, a decrease in ATP synthesis, an increase in ROS levels, and apoptotic cell death. In contrast, stably overexpressing PGC-1α significantly ameliorated the lead acetate treatment-caused mitochondrial toxicity and apoptosis. Moreover, it was also found that stably knocking down the level of MRP1 increased the TM4 cell mitochondrial lead-accumulation by 4-6 folds. Together, the findings from this study suggest that PGC-1α and MRP1 plays important roles in protecting TM4 cells against lead-induced mitochondrial toxicity, providing a better understanding of lead-induced mitochondrial toxicity. PMID:27236077

  9. Regulation of the phosphoinositide pathway in cultured Sertoli cells from immature rats: effects of follicle-stimulating hormone and fluoride

    SciTech Connect

    Quirk, S.M.; Reichert, L.E. Jr.

    1988-07-01

    Many hormones elicit effects on target cells by stimulating the enzyme phospholipase-C, which catalyzes the hydrolysis of phosphoinositides to the intracellular second messengers diacylglycerol and inositol phosphates. The present study examined the roles of FSH and guanine nucleotide-binding proteins (G-proteins) in regulating the hydrolysis of phosphoinositides in Sertoli cells. Sertoli cell cultures prepared from 16- to 18-day-old rats were incubated for 24 h with myo-(2-3H) inositol to label endogenous phospholipids. Treatment of cells from 0.5-20 min with preparations of ovine FSH ranging in potency from 1-60 times that of NIH FSH S1 did not affect accumulation of inositol phosphates. Levels of total (3H)inositol phosphates ((3H)inositol mono-, di-, and triphosphates (IP, IP2, and IP3)) in FSH-treated cultures was 75-120% the levels in control cultures over the various time intervals studied. Addition of testosterone and the combination of testosterone plus retinoic acid, agents that have been shown to potentiate effects of FSH in other systems, did not affect accumulation of inositol phosphates in response to FSH. In contrast to the lack of effect on accumulation of inositol phosphates, FSH stimulated 4- to 11-fold increases in estradiol secretion over 24 h of culture, indicating that Sertoli cells were viable and responsive to FSH. AIF4- has been shown to activate G-proteins involved in regulation of adenylate cyclase activity. In the present study, AIF4- induced 4- to 5-fold increases in IP, IP2, and IP3 in experiments wherein FSH had no effect. Pretreatment of Sertoli cells with pertussis toxin (100 and 1000 ng/ml) for 24 h inhibited fluoride-induced generation of IP, IP2, and IP3 by 24-51%. Similar treatment with cholera toxin had no effect on basal or fluoride-induced generation of IP2 or IP3, but increased fluoride-induced generation of IP by 20-34%.

  10. Zinc and low-dose of cadmium protect sertoli cells against toxic-dose of cadmium: The role of metallothionein

    PubMed Central

    Kheradmand, Fatemeh; Nourmohammadi, Issa; Ahmadi-Faghih, Mohamad Amin; Firoozrai, Mohsen; Modarressi, Mohammad Hossein

    2013-01-01

    Background: The impact of cadmium (Cd) on male infertility may be related to the interaction with metal-binding proteins known as metallothioneins (Mts). Trace elements like zinc (Zn) have protective effects on testicular damage induced by Cd. Objective: We determined the effect of Zn and low-dose Cd pre-treatment on the expression of Mt1 and Mt2 genes on testicular Sertoli cells. Materials and Methods: The cultured TM4 mouse sertoli cells were treated with 50 μM ZnSO4 (Zn pre-treated group; ZnPG), 2 μM CdCl2 (Cd pre-treated group; CdPG), or distilled water (DW pre-treated group; DWPG). After 18 hour, all of these groups were exposed to 100 μM CdCl2 for different periods of time (1, 2, 3, and 6 hours). There was also a control group for all three groups, which was treated only with distilled water (without Cd or Zn pre-treatment). Cellular viability, Zn and Cd concentrations and gene expression were assessed by MTT, atomic absorption spectrometry and real time PCR methods, respectively. Results: The expression of Mt1 and Mt2 genes in ZnPG, CdPG, and DWPG was greater than the control group (p=0.02 and p=0.01, respectively). Cd concentrations in CdPG and DWPG were greater than the control group (p=0.00). Expression of both genes in ZnPG and CdPG increased after 3 hours of treatment and Cd concentration decreased simultaneously, which was more obvious in ZnPG. Conclusion: Zn and short term low-dose Cd pre-treatment might reduce the adverse effects of Cd by increasing expression of Mts genes in Sertoli cells. The protective effect of Zn was stronger than Cd. PMID:24639783

  11. Prolongation of skin allograft survival in rats by the transplantation of microencapsulated xenogeneic neonatal porcine Sertoli cells.

    PubMed

    Bistoni, Giovanni; Calvitti, Mario; Mancuso, Francesca; Arato, Iva; Falabella, Giulia; Cucchia, Rosa; Fallarino, Francesca; Becchetti, Alessio; Baroni, Tiziano; Mazzitelli, Stefania; Nastruzzi, Claudio; Bodo, Maria; Becchetti, Ennio; Cameron, Don F; Luca, Giovanni; Calafiore, Riccardo

    2012-07-01

    Skin rejection remains a major hurdle in skin reconstructive transplantation surgery. In fact, 85% of the grafted patients experience at least one episode of acute skin rejection in the first year. It has been observed that Sertoli cells (SC), when co-transplanted with allo- or xenogeneic cell/tissues, can induce graft acceptance in the absence of systemic immunosuppression. A method aimed at significantly prolonging skin allografts in rats transplanted with barium alginate-based microencapsulated xenogeneic porcine SC (SC-MCs) is described. Results demonstrated that intraperitoneal (IP) transplantation of SC-MCs with high cellular viability and function can significantly prolong allogeneic skin grafts when compared to transplantation controls receiving only empty alginate capsules (E-MCs). Lymphocytic infiltration at the skin graft site was not observed in 80% of the SC-MCs transplanted rats and these recipient animals showed a significant increased expression of T regulatory (Tregs) cells when compared to E-MCs transplantation controls. The findings of this report further substantiate the positive therapeutic effects of SC on transplantation technology mediated by Sertoli cell-induced alterations of the host's immune system and indicate new perspectives and new strategies for successful skin tissue allografts. PMID:22560198

  12. In vitro production of cyclic AMP and steroids from an ovarian Sertoli-Leydig cell tumor. Notes on clinical management.

    PubMed

    Abrahamsson, G; Dahlgren, E; Hahlin, M; Knutson, F; Norström, A; Janson, P O

    1995-04-01

    A 27 year old nulliparous woman with a history of chronic anovulation and signs of virilization with a markedly elevated serum level of testosterone, underwent a laparotomy with peroperative bilateral ovarian vein catheterization and bilateral bisection of both ovaries. A solid, 1.5 cm, well delimited tumor located centrally in the right ovary, was excised. Testosterone levels in ovarian venous blood from the tumor bearing side, were 88.4 nmol/l and from the contralateral ovary 3.9 nmol/l. Histopathological examination showed a Sertoli-Leydig cell tumor which was radically extirpated. Postoperatively, the serum levels of androgen normalized, the woman had regular cycles, became pregnant and delivered a normal female baby. Pieces of tumor tissue were incubated for 2 h, with and without addition of gonadotropins and adrenocorticotropic hormone (ACTH). Human chorionic gonadotropin (CG), follicle stimulating hormone (FSH) and adrenocorticotropic hormone (ACTH) caused significant increases in cyclic monophosphate (cAMP) production in tumor tissue in vitro, as compared to controls. Furthermore, ACTH also significantly stimulated 17 beta-estradiol production. In tumor cells cultured for 48 h, FSH slightly, but not significantly, increased the production of progesterone. In the cell culture, [3H]-thymidine incorporation into deoxyribonucleic acid (DNA) was stimulated by IGF1 alpha but not by hCG and FSH. It is concluded that Sertoli-Leydig cell tumors may be sensitive to gonadotropins and ACTH and that their small size, solid shape and intra-ovarian localization can cause diagnostic difficulties. PMID:7732806

  13. Modulation of m-dinitrobenzene and m-nitrosonitrobenzene toxicity in rat Sertoli--germ cell cocultures

    SciTech Connect

    Cave, D.A.; Foster, P.M. )

    1990-01-01

    Previous work has shown that m-dinitrobenzene is a testicular toxicant in rats in vivo, and in vitro produces comparable morphological changes in rat testicular Sertoli-germ cell cocultures. m-Dinitrobenzene is metabolized both in vivo and in the in vitro system to m-nitroaniline m-nitroaniline and m-nitroacetanilide. These metabolites do not provoke testicular toxicity in vivo or in vitro. We have therefore proposed a pathway for the metabolism of m-dinitrobenzene to m-nitroaniline and m-nitroacetanilide, which involved the intermediate m-nitrosonitrobenzene (1-nitroso-3-nitrobenzene, NNB). When tested, m-nitrosonitrobenzene, at equimolar doses to m-dinitrobenzene, produced similar morphological changes in the culture system to those exhibited by m-dinitrobenzene. However, m-nitrosonitrobenzene produced a greater toxicity than did m-dinitrobenzene (as measured by germ cell detachment). When the intracellular thiol levels were reduced in the cocultures pretreated with diethyl maleate, the toxicity of both m-dinitrobenzene and m-nitrosonitrobenzene was enhanced. In contrast, pretreatment of cocultures with agents known to increase cellular thiol (cysteamine) or scavenge reactive intermediates (cysteamine or ascorbate) reduced the toxicity of m-dinitrobenzene and m-nitrosonitrobenzene. We propose that m-dinitrobenzene requires metabolic activation before it can exert its toxicity to Sertoli cells, and it appears that the toxic species is m-nitrosonitrobenzene or a further metabolite of m-nitrosonitrobenzene.

  14. HnRNPL as a key factor in spermatogenesis: Lesson from functional proteomic studies of azoospermia patients with sertoli cell only syndrome.

    PubMed

    Li, Jingping; Guo, Wenbin; Li, Fei; He, Jincan; Yu, Qingfeng; Wu, Xiaoqiang; Li, Jianming; Mao, Xiangming

    2012-06-01

    Sertoli cell only syndrome (SCOS) is one of the main causes leading to the abnormal spermatogenesis. However, the mechanisms for abnormal spermatogenesis in SCOS are still unclear. Here, we analyzed the clinical testis samples of SCOS patients by two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to find the key factors contributing to SCOS. Thirteen differential proteins were identified in clinical testis samples between normal spermatogenesis group and SCOS group. Interestingly, in these differential proteins, Heterogeneous nuclear ribonucleoprotein L(HnRNPL) was suggested as a key regulator involved in apoptosis, death and growth of spermatogenic cells by String and Pubgene bioinformatic programs. Down-regulated HnRNPL in testis samples of SCOS patients was further confirmed by immunohistochemical staining and western blotting. Moreover, in vitro and in vivo experiments demonstrated that knockdown of HnRNPL led to inhibited proliferation, increased apoptosis of spermatogenic cell but decreased apoptosis of sertoli cells. Expression of carcinoembryonic antigen-related cell adhesion molecule 1 in GC-1 cells or expression of inducible nitric oxide synthases in TM4 sertoli cells, was found to be regulated by HnRNPL. Our study first shows HnRNPL as a key factor involved in the spermatogenesis by functional proteomic studies of azoospermia patients with sertoli cell only syndrome. This article is part of a Special Issue entitled: Proteomics: The clinical link. PMID:22245417

  15. The Sertoli cell as the orchestra conductor of spermatogenesis: spermatogenic cells dance to the tune of testosterone.

    PubMed

    Dimitriadis, Fotios; Tsiampali, Chara; Chaliasos, Nikolaos; Tsounapi, Panagiota; Takenaka, Atsushi; Sofikitis, Nikolaos

    2015-01-01

    Spermatogenesis is contingent upon hormones and growth factors acting through endocrine and paracrine pathways either in vivo or in vitro. Sertoli cells (SCs) furnish essential factors for the successful advancement of spermatogenesis and spermiogenesis. Moreover, receptors for follicle stimulating hormone (FSH) and testosterone, which are the main hormonal regulators of spermatogenesis, are identified on SCs. Testosterone, FSH and luteinizing hormone are known to determine the destiny of germ cells and in their absence germ cells undergo apoptosis. Bcl-2 family proteins determine one signaling pathway which seems to be crucial for the homeostasis of male gametes. In addition to paracrine signals, germ cell development also relies on signals generated by SCs via direct membrane contact. The regulatory peptide somatostatin has an important role in the regulation of the proliferation of the male germ cells. Activin A, follistatin and FSH control germ cell development. In vitro culture systems have provided initial evidence supporting the achievement of the completion of the first and second male meiotic division in vitro. This review article provides an overview of the literature regarding the hormonal pathways governing spermatogenesis and spermiogenesis. PMID:26732153

  16. Lipopolysaccharide-induced expression of FAS ligand in cultured immature boar sertoli cells through the regulation of pro-inflammatory cytokines and miR-187.

    PubMed

    Wang, Yi; Zhang, Jiao-Jiao; Yang, Wei-Rong; Luo, Hong-Yan; Zhang, Jia-Hua; Wang, Xian-Zhong

    2015-11-01

    Lipopolysaccharide (LPS) induces germ cell apoptosis, but its mechanism of action is not clear. One possibility is that LPS regulates the expression of FAS ligand (FASLG) in Sertoli cells, which will then influence germ cell apoptosis. In this study, LPS reduced the viability of cultured, immature boar Sertoli cells in a time- and dose-dependent manner; enhanced the production of pro-inflammatory cytokines including tumor necrosis factor α (TNFA), interleukin-1β (IL1B), nitric oxide (NO), and transforming growth factor-β (TGFB); and increased the expression of FASLG in a dose-dependent manner. While 10 μg/ml LPS enhanced the expression of FASLG, reduced cell cycle progression, and impaired the ultrastructure of Sertoli cells, this dose did not induce apoptosis. LPS also had no effect on the activity or expression of matrix metalloproteinases 2 or 9 (MMP2 or MMP9). In contrast, the expression of ssc-miR-187 increased following LPS challenge, and inhibition of ssc-miR-187 blocked LPS-induced expression of FASLG. Our results therefore suggest that LPS reduces the viability of and enhances FASLG expression in cultured, immature boar Sertoli cells through elevated secretion of TNFA, IL1B, NO, and TGFB as well as through the regulation of ssc-miR-187 potency. PMID:26256020

  17. Large Cell Calcifying Sertoli Cell Tumor of the Testis: A Case Study and Review of the Literature

    PubMed Central

    Song, Dae Hyun; Jeong, Seong Muk; Park, Jong Tak; Yun, Gak Won; Kim, Byoung Kwon

    2014-01-01

    A 24-year-old man was admitted due to an incidentally detected mass in his left testis, which showed radiopaque calcification on plain X-ray film. Left orchiectomy was performed, and the resected testis contained a well-demarcated, hard mass measuring 1.1 cm. Histological analysis revealed that the tumor was composed of neoplastic cells, fibrotic stroma, and laminated or irregularly shaped calcific bodies. The individual cells had abundant eosinophilic or clear cytoplasm with round nuclei, each of which contained one or two conspicuous nucleoli. They were arranged in cords, trabeculae, clusters, and diffuse sheets. There were several foci of intra-tubular growth patterns, with thickening of the basal lamina. Immunohistochemically, the neoplastic cells were positive for S-100 protein and vimentin, focally positive for inhibin alpha, and negative for cytokeratin, CD10, and Melan-A. In addition to reporting this rare case, we also review the relevant literature regarding large cell calcifying Sertoli cell tumors. PMID:24627695

  18. Cytological study on Sertoli cells and their interactions with germ cells during annual reproductive cycle in turtle.

    PubMed

    Ahmed, Nisar; Yufei, Huang; Yang, Ping; Muhammad Yasir, Waqas; Zhang, Qian; Liu, Tengfei; Hong, Chen; Lisi, Hu; Xiaoya, Chu; Chen, Qiusheng

    2016-06-01

    Sertoli cells (SCs) play a central role in the development of germ cells within functional testes and exhibit varying morphology during spermatogenesis. This present study investigated the seasonal morphological changes in SCs in the reproductive cycle of Pelodiscus sinensis by light microscopy, transmission electron microscopy (TEM), and immunohistochemistry. During hibernation period with the quiescent of spermatogenesis, several autophagosomes were observed inside the SCs, the processes of which retracted. In early spermatogenesis, when the germ cells started to proliferate, the SCs contained numerous lipid droplets instead of autophagosomes. In late spermatogenesis, the SCs processes became very thin and contacted several round/elongated spermatids in pockets. At this time, abundant endoplasmic reticulum and numerous mitochondria were present in the SCs. The organization of the tight junctions and the adherens junctions between the SCs and germ cells also changed during the reproductive cycle. Moreover, SCs were involved in the formation of cytoplasmic bridges, phagophores, and exosome secretions during spermatogenesis. Tubulobulbar complexes (TBC) were also developed by SCs around the nucleus of the spermatid at the time of spermiation. Strong, positive expression of vimentin was noted on the SCs during late spermatogenesis compared with the hibernation stage and the early stage of spermatogenesis. These data provide clear cytological evidence about the seasonal changes in SCs, corresponding with their different roles in germ cells within the Chinese soft-shelled turtle Pelodiscus sinensis. PMID:27516863

  19. Di(2-Ethylhexyl) Phthalate Exposure In Utero Damages Sertoli Cell Differentiation Via Disturbance of Sex Determination Pathway in Fetal and Postnatal Mice.

    PubMed

    Wang, Yongan; Yang, Qing; Liu, Wei; Yu, Mingxi; Zhang, Zhou; Cui, Xiaoyu

    2016-07-01

    Mice may share similar mechanism with human underlying reproductive toxicity induced by di(2-ethylhexyl) phthalate (DEHP), which is not supposed to be associated with decreased testicular testosterone. Pregnant mice were exposed to DEHP by gavage, with the dosage regime beginning at human relevant exposure level. After in utero DEHP exposure, loss of Sertoli cells and germ cells were observed in the male pups at postnatal days 21. And SRY-related HMG box 9 (SOX9), Fibroblast growth factor-9 (FGF9), and Double-sex and Mab-3 related transcripttion factor 1 (DMRT1) proteins were significantly downregulated by DEHP at 2 mg/kg/d and above, suggesting the depression of Sertoli cell differentiation. The repression of Sox9 genes expression was supported by whole-mount in situ hybridization and real-time real-time-quantitative PCR. The expressions of Cyp11α1 and Star were not significantly affected by in utero DEHP exposure, indicating the absence of effects on testosterone biosynthesis. Furthermore, the testosterone-independent pathway regulating Sertoli cells differentiation was disturbed in fetus by DEHP at 2 mg/kg/d and above during the critical time window of sex determination, involving Gadd45g → Gata4/Fog2 → Sry → Sox9 → Fgf9 The results suggest that in utero DEHP exposure damaged Sertoli cells in the postnatal life of mice offspring via disturbance of the differentiation regulating pathway, potentially inducing declines in spermatogenesis. PMID:27060630

  20. Sertoli cells in culture secrete paracrine factor(s) that inhibit peritubular myoid cell proliferation: identification of heparinoids as likely candidates

    SciTech Connect

    Tung, P.S.; Fritz, I.B. )

    1991-06-01

    Conditioned medium from Sertoli cells, prepared from testes of 20-day-old rats, contains component(s) that inhibit the incorporation of (3H)-thymidine into DNA of peritubular myoid cells (PMC) and inhibit the proliferation of PMC. These components are trypsin-resistant, heat-stable compounds having a molecular weight less than 30,000. The active inhibitory components in Sertoli cell conditioned medium are inactivated by treatment with heparinase, but not by treatment with hyaluronidase or chondroitin sulfate lyases. Addition of heparin or heparan sulfate results in inhibition of DNA synthesis by PMC in a dose-dependent manner, whereas other glycosaminoglycans (GAGs) examined (hyaluronic acid, keratan sulfate, and chondroitin sulfate) have no detectable effects. Heparin and heparan sulfate are unique among GAGs tested in inhibiting the characteristic multilayer growth pattern of PMC following the attainment of confluence in serum-rich medium. On the basis of these and other data presented, it is concluded that heparin and other heparin-like GAGs synthesized by Sertoli cells are implicated in the modulation of growth of PMC in vitro during co-culture. It is postulated that heparin may play a similar role in maintaining the quiescent peritubular myoid cell phenotype in vivo.

  1. Hormone responsiveness of cultured Sertoli cells obtained from adult rats after their rapid isolation under less harsh conditions.

    PubMed

    Gautam, M; Bhattacharya, I; Devi, Y S; Arya, S P; Majumdar, S S

    2016-05-01

    During adulthood, testicular Sertoli cells (Sc) coordinate all stages of germ cell (Gc) development involved in sperm production. However, our understanding about the functions of adult Sc is limited because of the difficulties involved in the process of isolating these cells from the adult testis, mainly because of the presence of large number of advanced Gc which interfere with Sc isolation at this age. Most of our knowledge about Sc function are derived from studies which used pre-pubertal rat Sc (18 ± 2-day old) as it is easy to isolate and culture Sc at this age. To this end, we established a less time consuming and less harsh procedure of isolating Sc from adult (60 days of age) rat testis for facilitating research on Sc-mediated regulation of spermatogenesis during adulthood. The cells were isolated using collagenase digestion at higher temperature, reducing the exposure time of cells to the enzyme. Step-wise digestion with intermittent removal of small clusters of tissue helped in increasing the yield of Sc. Isolated Sc were cultured and treated with FSH and testosterone (T) to evaluate their hormone responsiveness in terms of lactate, E2 , cAMP production. Adult Sc were found to be active and produced high amounts of lactate in a FSH-independent manner. FSH-mediated augmentation of cAMP and E2 production by adult Sc was less as compared with that by pre-pubertal Sc obtained from 18-day-old rats. Androgen-binding ability of adult Sc was significantly higher than pre-pubertal Sc. Although T treatment remarkably augmented expression of Claudin 11, it failed to augment lactate production by adult Sc. This efficient and rapid procedure for isolation and culture of functionally viable adult rat Sertoli cells may pave the way for determining their role in regulation and maintenance of spermatogenesis. PMID:26991307

  2. DICER1 mutations in Familial Multi-Nodular Goiter with and without Ovarian Sertoli-Leydig Cell Tumors

    PubMed Central

    Frio, Thomas Rio; Bahubeshi, Amin; Kanellopoulou, Chryssa; Hamel, Nancy; Niedziela, Marek; Sabbaghian, Nelly; Pouchet, Carly; Gilbert, Lucy; O’Brien, Paul K.; Serfas, Kim; Broderick, Peter; Houlston, Richard S.; Lesueur, Fabienne; Bonora, Elena; Muljo, Stefan; Schimke, R. Neil; Soglio, Dorothée Bouron-Dal; Arseneau, Jocelyne; Schultz, Kris Ann; Priest, John R.; Nguyen, Van-Hung; Harach, H. Ruben; Livingston, David M.; Foulkes, William D.; Tischkowitz, Marc

    2012-01-01

    Context Non-toxic multinodular goiter (MNG) is frequently observed in the general population, but little is known about the underlying genetic susceptibility to this disease. Familial cases of MNG have been reported and there are five such published families which also contain individuals with Sertoli-Leydig cell tumors of the ovary (SLCT). Germline mutations in DICER1, a gene that codes for an RNase III endoribonuclease, have recently been identified in families affected pleuropulmonary blastoma (PPB), some of whom include cases of MNG and gonadal tumors such as SLCT. Objective To determine whether familial MNG with or without SLCT in the absence of PPB was caused by mutations in DICER1. Design, Setting and Patients From September 2009 to September 2010, we studied two MNG families and three MNG/SLCT families. We screened affected probands for mutations in the DICER1 gene. We investigated blood lymphocytes, MNG and SLCT tissue from family members for loss of the wild-type allele (loss of heterozygosity), DICER1 expression and microRNA dysregulation. Main Outcome Measure(s) Detection of germline DICER1 gene mutations in familial MNG with and without SLCT. Results We identified and characterized germline DICER1 mutations in all five families. Molecular analysis of the three SLCTs showed no loss of heterozygosity at DICER1, and IHC analysis in two available samples showed strong expression of DICER1 in Sertoli cells, but weak staining of Leydig cells. MicroRNA profiling of RNA derived from lymphoblastoid cell lines from both affected and unaffected members of the familial MNG cases revealed miRNA perturbations in DICER1 mutation carriers. Conclusions DICER1 mutations predispose to both familial MNG and MNG with SLCT, independent of PPB and germline DICER1 mutations lead to dysregulation of miRNA. This could be investigated further as a possible novel mechanism of tumorigenesis. PMID:21205968

  3. Identification of NR0B1 as a novel androgen receptor co-repressor in mouse Sertoli cells.

    PubMed

    Li, Yu-Chi; Luo, Man-Ling; Guo, Huan; Wang, Tian-Tian; Lin, Shou-Ren; Chen, Jian-Bo; Ma, Qian; Gu, Yan-Li; Jiang, Zhi-Mao; Gui, Yao-Ting

    2016-09-01

    Nuclear receptor subfamily 0 group B member 1 (Nr0b1) is an atypical member of the nuclear receptor family that is predominantly expressed in mouse Sertoli cells (SCs). Mutations of NR0B1 in humans cause adrenal failure and hypogonadotropic hypogonadism. The targeted mutagenesis of Nr0b1 in mice has revealed a primary gonadal defect characterized by the overexpression of aromatase and cellular obstruction of the seminiferous tubules and efferent ductules, leading to germ cell death and infertility. The transgenic expression of Nr0b1 under the control of the Müllerian-inhibiting substance promoter (MIS-Nr0b1), which is selectively expressed in SCs, improves fertility. Testicular androgen receptor (AR) was also expressed in SCs. Many genes are directly regulated by androgen and its AR, which are involved in spermatogenesis and male infertility. As the association between NR0B1 and AR remains unclear in mouse SCs, we decided to further explore the relationship between them. In the present study, we have identified NR0B1 as a novel AR co-repressor in mouse SCs. Using RT‑qPCR and immunofluorescence, we determined that NR0B1 was mainly expressed in mouse SCs in an age-dependent manner from 2-8 weeks of age postnatally. The inhibition of the effects of AR on AR target genes by NR0B1, in an androgen‑dependent manner, was further demonstrated by western blot analysis and RT-qPCR in TM4 cells, a mouse Sertoli cell line. Finally, in vitro luciferase and co-immunoprecipitation assays validated that NR0B1, as an AR co-repressor, significantly inhibited the transcriptional activation of its target genes. These results suggest that novel inhibitory mechanisms underlie the effects of NR0B1 in modulating androgen-dependent gene transcription in mouse SCs. PMID:27431683

  4. Ultrastructural modifications in the mitochondrion of mouse Sertoli cells after inhalation of lead, cadmium or lead-cadmium mixture.

    PubMed

    Bizarro, Patricia; Acevedo, Sandra; Niño-Cabrera, Geraldine; Mussali-Galante, Patricia; Pasos, Francisco; Avila-Costa, Maria Rosa; Fortoul, Teresa I

    2003-01-01

    CD-1 mice inhaled 0.01 M lead acetate, 0.006 M cadmium chloride or Pb-Cd mixture during 1h twice a week during 4 weeks. Testes were processed for transmission electron microscopic analysis. The percentage of damaged mitochondria was related to exposure time and the type of metal inhaled, noticing more damage when the mixture was administered. A dose-time relationship was found. Cadmium chloride caused the most severe mitochondrial alteration compared to lead acetate, whereas the mixture was more aggressive compared with each metal alone. Our results suggest that the changes in Sertoli cell could lead to a transformation process that may interfere with spermatogenesis. PMID:14555194

  5. Identification of genetic networks involved in the cell injury accompanying endoplasmic reticulum stress induced by bisphenol A in testicular Sertoli cells

    SciTech Connect

    Tabuchi, Yoshiaki . E-mail: ytabu@cts.u-toyama.ac.jp; Takasaki, Ichiro; Kondo, Takashi

    2006-07-07

    To identify detailed mechanisms by which bisphenol A (BPA), an endocrine-disrupting chemical, induces cell injury in mouse testicular Sertoli TTE3 cells, we performed genome-wide microarray and computational gene network analyses. BPA (200 {mu}M) significantly decreased cell viability and simultaneously induced an increase in mRNA levels of HSPA5 and DDIT3, endoplasmic reticulum (ER) stress marker genes. Of the 22,690 probe sets analyzed, BPA down-regulated 661 probe sets and up-regulated 604 probe sets by >2.0-fold. Hierarchical cluster analysis demonstrated nine gene clusters. In decreased gene clusters, two significant genetic networks were associated with cell growth and proliferation and the cell cycle. In increased gene clusters, two significant genetic networks including many basic-region leucine zipper transcription factors were associated with cell death and DNA replication, recombination, and repair. The present results will provide additional novel insights into the detailed molecular mechanisms of cell injury accompanying ER stress induced by BPA in Sertoli cells.

  6. Cytogenetic Characterization of the TM4 Mouse Sertoli Cell Line. II. Chromosome Microdissection, FISH, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy.

    PubMed

    Schmid, Michael; Guttenbach, Martina; Steinlein, Claus; Wanner, Gerhard; Houben, Andreas

    2015-01-01

    The chromosomes and interphase cell nuclei of the permanent mouse Sertoli cell line TM4 were examined by chromosome microdissection, FISH, scanning electron microscopy, and confocal laser scanning microscopy. The already known marker chromosomes m1-m5 were confirmed, and 2 new large marker chromosomes m6 and m7 were characterized. The minute heterochromatic marker chromosomes m4 and m5 were microdissected and their DNA amplified by DOP-PCR. FISH of this DNA probe on TM4 metaphase chromosomes demonstrated that the m4 and m5 marker chromosomes have derived from the centromeric regions of normal telocentric mouse chromosomes. Ectopic pairing of the m4 and m5 marker chromosomes with the centromeric region of any of the other chromosomes (centromeric associations) was apparent in ∼60% of the metaphases. Scanning electron microscopy revealed DNA-protein bridges connecting the centromeric regions of normal chromosomes and the associated m4 and m5 marker chromosomes. Interphase cell nuclei of TM4 Sertoli cells did not exhibit the characteristic morphology of Sertoli cells in the testes of adult mice as shown by fluorescence microscopy and confocal laser scanning microscopy. PMID:26900862

  7. Dehydroepiandrosterone Sulfate Stimulates Expression of Blood-Testis-Barrier Proteins Claudin-3 and -5 and Tight Junction Formation via a Gnα11-Coupled Receptor in Sertoli Cells.

    PubMed

    Papadopoulos, Dimitrios; Dietze, Raimund; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-01-01

    Dehydroepiandrosterone sulfate (DHEAS) is a circulating sulfated steroid considered to be a pro-androgen in mammalian physiology. Here we show that at a physiological concentration (1 μM), DHEAS induces the phosphorylation of the kinase Erk1/2 and of the transcription factors CREB and ATF-1 in the murine Sertoli cell line TM4. This signaling cascade stimulates the expression of the tight junction (TJ) proteins claudin-3 and claudin-5. As a consequence of the increased expression, tight junction connections between neighboring Sertoli cells are augmented, as demonstrated by measurements of transepithelial resistance. Phosphorylation of Erk1/2, CREB, or ATF-1 is not affected by the presence of the steroid sulfatase inhibitor STX64. Erk1/2 phosphorylation was not observed when dehydroepiandrosterone (DHEA) was used instead of DHEAS. Abrogation of androgen receptor (AR) expression by siRNA did not affect DHEAS-stimulated Erk1/2 phosphorylation, nor did it change DHEAS-induced stimulation of claudin-3 and claudin-5 expression. All of the above indicate that desulfation and conversion of DHEAS into a different steroid hormone is not required to trigger the DHEAS-induced signaling cascade. All activating effects of DHEAS, however, are abolished when the expression of the G-protein Gnα11 is suppressed by siRNA, including claudin-3 and -5 expression and TJ formation between neighboring Sertoli cells as indicated by reduced transepithelial resistance. Taken together, these results are consistent with the effects of DHEAS being mediated through a membrane-bound G-protein-coupled receptor interacting with Gnα11 in a signaling pathway that resembles the non-classical signaling pathways of steroid hormones. Considering the fact that DHEAS is produced in reproductive organs, these findings also suggest that DHEAS, by acting as an autonomous steroid hormone and influencing the formation and dynamics of the TJ at the blood-testis barrier, might play a crucial role for the

  8. Dehydroepiandrosterone Sulfate Stimulates Expression of Blood-Testis-Barrier Proteins Claudin-3 and -5 and Tight Junction Formation via a Gnα11-Coupled Receptor in Sertoli Cells

    PubMed Central

    Papadopoulos, Dimitrios; Dietze, Raimund; Shihan, Mazen; Kirch, Ulrike; Scheiner-Bobis, Georgios

    2016-01-01

    Dehydroepiandrosterone sulfate (DHEAS) is a circulating sulfated steroid considered to be a pro-androgen in mammalian physiology. Here we show that at a physiological concentration (1 μM), DHEAS induces the phosphorylation of the kinase Erk1/2 and of the transcription factors CREB and ATF-1 in the murine Sertoli cell line TM4. This signaling cascade stimulates the expression of the tight junction (TJ) proteins claudin-3 and claudin-5. As a consequence of the increased expression, tight junction connections between neighboring Sertoli cells are augmented, as demonstrated by measurements of transepithelial resistance. Phosphorylation of Erk1/2, CREB, or ATF-1 is not affected by the presence of the steroid sulfatase inhibitor STX64. Erk1/2 phosphorylation was not observed when dehydroepiandrosterone (DHEA) was used instead of DHEAS. Abrogation of androgen receptor (AR) expression by siRNA did not affect DHEAS-stimulated Erk1/2 phosphorylation, nor did it change DHEAS-induced stimulation of claudin-3 and claudin-5 expression. All of the above indicate that desulfation and conversion of DHEAS into a different steroid hormone is not required to trigger the DHEAS-induced signaling cascade. All activating effects of DHEAS, however, are abolished when the expression of the G-protein Gnα11 is suppressed by siRNA, including claudin-3 and -5 expression and TJ formation between neighboring Sertoli cells as indicated by reduced transepithelial resistance. Taken together, these results are consistent with the effects of DHEAS being mediated through a membrane-bound G-protein-coupled receptor interacting with Gnα11 in a signaling pathway that resembles the non-classical signaling pathways of steroid hormones. Considering the fact that DHEAS is produced in reproductive organs, these findings also suggest that DHEAS, by acting as an autonomous steroid hormone and influencing the formation and dynamics of the TJ at the blood-testis barrier, might play a crucial role for the

  9. Kinetic study of internalization and degradation of sup 131 I-labeled follicle-stimulating hormone in mouse Sertoli cells and its relevance to other systems

    SciTech Connect

    Shimizu, A.; Kawashima, S. )

    1989-08-15

    The behavior of 131I-labeled follicle-stimulating hormone (FSH) after binding to cell-surface receptors in cultured Sertoli cells of C57BL/6NCrj mice was investigated. Sertoli cells cultured in F12/DME were pulse-labeled with 131I-FSH for 10 min at 4 degrees C, followed by cold chase for various periods of time. After the cold chase Sertoli cells were treated with 0.2 M acetate (pH 2.5) to dissociate membrane-bound 131I-FSH (surface radioactivity). The medium containing radioactivity after cold chase was mixed with 20% trichloroacetic acid, centrifuged, and the radioactivity of the supernatant was measured (degraded hormone). The radiolabeled materials associated with each process (surface binding, internalization, and degradation) were concentrated with ultrafiltration and characterized with gel filtration and/or thin layer chromatography. The effects of lysosomotropic agents, NH4Cl and chloroquine, were studied. The cold chase study at 32 degrees C showed that the surface radioactivity was the largest among the three kinds of radioactivities associated with each process immediately after pulse labeling, but the surface radioactivity rapidly decreased, while the internalized radioactivity increased. The cold chase study at 4 degrees C did not show such time-related changes in radioactivities, and a high level of surface radioactivity constantly persisted. The surface and internalized radioactivities were due to 131I-FSH, and the degraded radioactivity was mainly due to (131I)monoiodotyrosine. When Sertoli cells were cultured with lysosomotropic agents, the internalized radioactivity increased, while the degraded radioactivity decreased. Based on these observations, a kinetic model was proposed and the relationships among the surface, internalized, and degraded radioactivities and cold chase time were calculated algebraically.

  10. Tributyltin chloride induced testicular toxicity by JNK and p38 activation, redox imbalance and cell death in sertoli-germ cell co-culture.

    PubMed

    Mitra, Sumonto; Srivastava, Ankit; Khandelwal, Shashi

    2013-12-01

    The widespread use of tributyltin (TBT) as biocides in antifouling paints and agricultural chemicals has led to environmental and marine pollution. Human exposure occurs mainly through TBT contaminated seafood and drinking water. It is a well known endocrine disruptor in mammals, but its molecular mechanism in testicular damage is largely unexplored. This study was therefore, designed to ascertain effects of tributyltin chloride (TBTC) on sertoli-germ cell co-culture in ex-vivo and in the testicular tissue in-vivo conditions. An initial Ca(2+) rise followed by ROS generation and glutathione depletion resulted in oxidative damage and cell death. We observed p38 and JNK phosphorylation, stress proteins (Nrf2, MT and GST) induction and mitochondrial depolarization leading to caspase-3 activation. Prevention of TBTC reduced cell survival and cell death by Ca(2+) inhibitors and free radical scavengers specify definitive role of Ca(2+) and ROS. Sertoli cells were found to be more severely affected which in turn can hamper germ cells functionality. TBTC exposure in-vivo resulted in increased tin content in the testis with enhanced Evans blue leakage into the testicular tissue indicating blood-testis barrier disruption. Tesmin levels were significantly diminished and histopathological studies revealed marked tissue damage. Our data collectively indicates the toxic manifestations of TBTC on the male reproductive system and the mechanisms involved. PMID:24055800

  11. Effects of four nucleoside analogues used as antiviral agents on rat Sertoli cells (SerW3) in vitro.

    PubMed

    Qiu, Runan; Horvath, Aniko; Stahlmann, Ralf

    2016-08-01

    Some nucleoside analogues are used to treat herpes simplex and other viral infections. They are known to impair spermatogenesis, but published data are scarce. We studied the effects of four nucleosides on SerW3 cells, a rat Sertoli cell line. Cells were cultured for 3 days in DMEM supplemented with four different concentrations of each drug. Aciclovir and ganciclovir were added at concentrations of 0.3, 1, 3 and 10 mg/l medium; penciclovir and its prodrug famciclovir were used at higher concentrations (3, 10, 30, 100 mg/l medium). After a culture period of 3 days, we analysed the expression of connexin43, N-cadherin and the cytoskeleton protein vimentin by Western blot. Aciclovir caused a clear-cut effect at the highest concentration tested (10 mg/l), which is less than the peak plasma concentration achieved in patients during intravenous therapy with the drug. Connexin43, vimentin and N-cadherin content decreased to 49.8 ± 17, 44.0 ± 4 and 75.4 ± 1.5 % of the control values, respectively (n = 3; mean ± SD). Similar effects were observed with the prodrug ganciclovir (43.2 ± 10.8; 54.1 ± 11.9; 84.4 ± 10.8 % of controls). Penciclovir caused less pronounced effects at 10 mg/l medium (82.1 ± 20.6; 90.0 ± 12.0; 76.5 ± 17.7 % of controls). Only a slight effect was observed with famciclovir. Even at a 10-fold concentration (100 mg/l), just moderate changes were induced. In summary, we observed clear-cut effects with aciclovir and ganciclovir on Sertoli cells in vitro at therapeutically relevant concentrations and identified connexin43 as the most sensitive marker. PMID:27224990

  12. The co-occurrence of an ovarian Sertoli-Leydig cell tumor with a thyroid carcinoma is highly suggestive of a DICER1 syndrome.

    PubMed

    Durieux, Emeline; Descotes, Françoise; Mauduit, Claire; Decaussin, Myriam; Guyetant, Serge; Devouassoux-Shisheboran, Mojgan

    2016-05-01

    The DICER1 gene encodes an endoribonuclease involved in the production of mature microRNAs which regulates gene expression through several mechanisms. Carriers of germline DICER1 mutations are predisposed to a rare cancer syndrome, the DICER1 syndrome. Pleuropulmonary blastoma is the most frequent lesion seen in this syndrome. Thyroid abnormalities are also a common finding, essentially concerning multinodular goiter. However, differentiated thyroid carcinoma is infrequently seen in such pedigrees. In addition to germline DICER1 mutations, specific somatic mutations have been identified in the DICER1 RNase IIIb catalytic domain in several tumor types, including ovarian Sertoli-Leydig cell tumors. We report two cases of differentiated thyroid carcinoma associated with ovarian Sertoli-Leydig cell tumor and with a heterozygous DICER1 gene mutation, occurring in two unrelated young girls without pleuropulmonary blastoma. Both thyroid carcinomas showed an E1813 mutation in exon 25 while the ovarian tumors harboured a somatic mutation in E1705 in exon 24 and a D1709 mutation in exon 25. Our observations confirm that the occurrence of an ovarian Sertoli-Leydig cell tumor with a thyroid carcinoma is highly suggestive of a DICER1 syndrome. We contend that the possibility of a relationship between sporadic thyroid carcinoma in young patients and somatic DICER1 gene mutation needs further investigation. PMID:26983701

  13. Sustained expression of insulin by a genetically engineered sertoli cell line after allotransplantation in diabetic BALB/c mice.

    PubMed

    Kaur, Gurvinder; Thompson, Lea Ann; Pasham, Mithun; Tessanne, Kim; Long, Charles R; Dufour, Jannette M

    2014-05-01

    Immune-privileged Sertoli cells (SCs) exhibit long-term survival after allotransplantation or xenotransplantation, suggesting they can be used as a vehicle for cell-based gene therapy. Previously, we demonstrated that SCs engineered to secrete insulin by using an adenoviral vector normalized blood glucose levels in diabetic mice. However, the expression of insulin was transient, and the use of immunocompromised mice did not address the question of whether SCs can stably express insulin in immunocompetent animals. Thus, the objective of the current study was to use a lentiviral vector to achieve stable expression of insulin in SCs and test the ability of these cells to survive after allotransplantation. A mouse SC line transduced with a recombinant lentiviral vector containing furin-modified human proinsulin cDNA (MSC-EhI-Zs) maintained stable insulin expression in vitro. Allotransplantation of MSC-EhI-Zs cells into diabetic BALB/c mice demonstrated 88% and 75% graft survival rates at 20 and 50 days post-transplantation, respectively. Transplanted MSC-EhI-Zs cells continued to produce insulin mRNA throughout the study (i.e., 50 days); however, insulin protein was detected only in patches of cells within the grafts. Consistent with low insulin protein detection, there was no significant change in blood glucose levels in the transplant recipients. Nevertheless, MSC-EhI-Zs cells isolated from the grafts continued to express insulin protein in culture. Collectively, this demonstrates that MSC-EhI-Zs cells stably expressed insulin and survived allotransplantation without immunosuppression. This further strengthens the use of SCs as targets for cell-based gene therapy for the treatment of numerous chronic diseases, especially those that require basal protein expression. PMID:24695630

  14. The Luteinizing Hormone-Testosterone Pathway Regulates Mouse Spermatogonial Stem Cell Self-Renewal by Suppressing WNT5A Expression in Sertoli Cells.

    PubMed

    Tanaka, Takashi; Kanatsu-Shinohara, Mito; Lei, Zhenmin; Rao, C V; Shinohara, Takashi

    2016-08-01

    Spermatogenesis originates from self-renewal of spermatogonial stem cells (SSCs). Previous studies have reported conflicting roles of gonadotropic pituitary hormones in SSC self-renewal. Here, we explored the role of hormonal regulation of SSCs using Fshb and Lhcgr knockout (KO) mice. Although follicle-stimulating hormone (FSH) is thought to promote self-renewal by glial cell line-derived neurotrophic factor (GDNF), no abnormalities were found in SSCs and their microenvironment. In contrast, SSCs were enriched in Lhcgr-deficient mice. Moreover, wild-type SSCs transplanted into Lhcgr-deficient mice showed enhanced self-renewal. Microarray analysis revealed that Lhcgr-deficient testes have enhanced WNT5A expression in Sertoli cells, which showed an immature phenotype. Since WNT5A was upregulated by anti-androgen treatment, testosterone produced by luteinizing hormone (LH) is required for Sertoli cell maturation. WNT5A promoted SSC activity both in vitro and in vivo. Therefore, FSH is not responsible for GDNF regulation, while LH negatively regulates SSC self-renewal by suppressing WNT5A via testosterone. PMID:27509137

  15. Smad2/3 Upregulates the Expression of Vimentin and Affects Its Distribution in DBP-Exposed Sertoli Cells

    PubMed Central

    Zhang, Xi; Wang, Xiaogang; Liu, Taixiu; Mo, Min; Ao, Lin; Liu, Jinyi; Cao, Jia; Cui, Zhihong

    2015-01-01

    Sertoli cells (SCs) in the testes provide physical and nutritional support to germ cells. The vimentin cytoskeleton in SCs is disrupted by dibutyl phthalate (DBP), which leads to SCs dysfunction. In a previous study, we found that peroxisome proliferator-activated receptor alpha (PPARα) influenced the distribution of vimentin by affecting its phosphorylation in DBP-exposed SCs. In the present study, we investigated the role of Smad2/3 in regulating the expression of vimentin in DBP-exposed SCs. We hypothesized that Smad2/3 affects the distribution of vimentin by regulating its expression and that there is cross talk between Smad2/3 and PPARα. The real-time PCR and ChIP-qPCR results showed that SB431542 (an inhibitor of Smad2/3) could significantly attenuate the expression of vimentin induced by DBP in SCs. Phosphorylated and soluble vimentin were both downregulated by SB431542 pretreatment. WY14643 (an agonist of PPARα) pretreatment stimulated, while GW6471 (an antagonist of PPARα) inhibited, the activity of Smad2/3; SB431542 pretreatment also inhibited the activity of PPARα, but it did not rescue the DBP-induced collapse in vimentin. Our results suggest that, in addition to promoting the phosphorylation of vimentin, DBP also stimulates the expression of vimentin by activating Smad2/3 in SCs and thereby induces irregular vimentin distribution. PMID:26819576

  16. Identification and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations.

    PubMed

    Bartles, J R; Wierda, A; Zheng, L

    1996-06-01

    Ectoplasmic specializations are membrane-cytoskeletal assemblages found in Sertoli cells at sites of attachment to elongate spermatids or neighboring Sertoli cells. They are characterized in part by the presence of a unique junctional plaque which contains a narrow layer of parallel actin bundles sandwiched between the Sertoli cell plasma membrane and an affiliated cistern of endoplasmic reticulum. Using a monoclonal antibody, we have identified 'espin,' a novel actin-binding protein localized to ectoplasmic specializations. By immunogold electron microscopy, espin was localized to the parallel actin bundles of ectoplasmic specializations at sites where Sertoli cells contacted the heads of elongate spermatids. The protein was also detected at the sites of ectoplasmic specializations between neighboring Sertoli cells. Espin exhibits an apparent molecular mass of approximately 110 kDa in SDS gels. It is encoded by an approximately 2.9 kb mRNA, which was found to be specific to testis among the 11 rat organs and tissues examined. On the basis of cDNA sequence, espin is predicted to be an 836 amino acid protein which contains 8 ankyrin-like repeats in its N-terminal third, a potential P-loop, two proline-rich peptides and two peptides which contain clusters of multiple glutamates bracketed by arginines, lysines and glutamines in a pattern reminiscent of the repetitive motif found in the protein trichohyalin. The ankyrin-like repeats and a 66 amino acid peptide in the C terminus show significant sequence similarity to proteins encoded by the forked gene of Drosophila. A fusion protein containing the C-terminal 378 amino acids of espin was found to bind with high affinity (Kd = approximately 10 nM) to F-actin in vitro with a stoichiometry of approximately 1 espin per 6 actin monomers. When expressed by transfected NRK fibroblasts, the same C-terminal fragment of espin was observed to decorate actin fibers or cables. On the basis of its structure, localization and

  17. Toxicogenomic Screening of Replacements for Di(2-Ethylhexyl) Phthalate (DEHP) Using the Immortalized TM4 Sertoli Cell Line.

    PubMed

    Nardelli, Thomas C; Erythropel, Hanno C; Robaire, Bernard

    2015-01-01

    Phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) are being phased out of many consumer products because of their endocrine disrupting properties and their ubiquitous presence in the environment. The concerns raised from the use of phthalates have prompted consumers, government, and industry to find alternative plasticizers that are safe, biodegradable, and have the versatility for multiple commercial applications. We examined the toxicogenomic profile of mono(2-ethylhexyl) phthalate (MEHP, the active metabolite of DEHP), the commercial plasticizer diisononyl cyclohexane-1,2-dicarboxylate (DINCH), and three recently proposed plasticizers: 1,4-butanediol dibenzoate (BDB), dioctyl succinate (DOS), and dioctyl maleate (DOM), using the immortalized TM4 Sertoli cell line. Results of gene expression studies revealed that DOS and BDB clustered with control samples while MEHP, DINCH and DOM were distributed far away from the control-DOS-BDB cluster, as determined by principle component analysis. While no significant changes in gene expression were found after treatment with BDB and DOS, treatment with MEHP, DINCH and DOM resulted in many differentially expressed genes. MEHP upregulated genes downstream of PPAR and targeted pathways of cholesterol biosynthesis without modulating the expression of PPAR's themselves. DOM upregulated genes involved in glutathione stress response, DNA repair, and cholesterol biosynthesis. Treatment with DINCH resulted in altered expression of a large number of genes involved in major signal transduction pathways including ERK/MAPK and Rho signalling. These data suggest DOS and BDB may be safer alternatives to DEHP/MEHP than DOM or the commercial alternative DINCH. PMID:26445464

  18. [INVESTIGATIONS OF SUBMICROSCOPIC ARCHITECTONICS SERTOLI AND LEYDIG CELLS AFTER HYDROCHLORIDE SEROTONIN DESTRUCTIVE IMPACT AND THE POSSIBILITY OF CORRECTION BY STIMULANTS OF METABOLIC PROCESSES].

    PubMed

    Brechka, N; Nevzorov, V; Bondarenko, V; Malova, N; Selyukova, N

    2015-01-01

    The results of study of ultrastructural changes in the Sertoli cells and Leydig's cells organelles after destructive influence of the serotonin hydrochloride and under influence bioglobin-U have been presented. It was shown that serotonin hydrochloride causes mitochondrial dysfunction and activates intracellular catabolic processes on the intracellular level. Bioglobin-U increases the activity and reparative synthetic reactions, reduced the degree of mitochondrial dysfunction and catabolic processes and activate the Leydig cell metabolism, and significantly reduces the number of foci destruction membranes of the endoplasmic reticulum, mitochondrial, and membranes of nucleus on the background of serotonin hydrochloride. PMID:26552310

  19. NC1 domain of collagen α3(IV) derived from the basement membrane regulates Sertoli cell blood-testis barrier dynamics.

    PubMed

    Wong, Elissa W P; Cheng, C Yan

    2013-04-01

    The blood-testis barrier (BTB) is an important ultrastructure for spermatogenesis. Delay in BTB formation in neonatal rats or its irreversible damage in adult rats leads to meiotic arrest and failure of spermatogonial differentiation beyond type A. While hormones, such as testosterone and FSH, are crucial to BTB function, little is known if there is a local regulatory mechanism in the seminiferous epithelium that modulates BTB function. Herein, we report that collagen α3(IV) chain, a component of the basement membrane in the rat testis, could generate a noncollagenous (NC1) domain peptide [Colα3(IV) NC1] via limited proteolysis by matrix metalloproteinase-9 (MMP-9), and that the expression of MMP-9 was upregulated by TNFα. While recombinant Colα3(IV) NC1 protein produced in E. coli failed to perturb Sertoli cell tight junction (TJ)-permeability barrier function, possibly due to the lack of glycosylation, Colα3(IV) NC1 recombinant protein produced in mammalian cells and purified to apparent homogeneity by affinity chromatography was found to reversibly perturb the Sertoli cell TJ-barrier function. Interestingly, Colα3(IV) NC1 recombinant protein did not perturb the steady-state levels of several TJ- (e.g., occludin, CAR, JAM-A, ZO-1) and basal ectoplasmic specialization- (e.g., N-cadherin, α-catenin, β-catenin) proteins at the BTB but induced changes in protein localization and/or distribution at the Sertoli cell-cell interface in which these proteins moved from the cell surface into the cell cytosol, thereby destabilizing the TJ function. These findings illustrate the presence of a local regulatory axis known as the BTB-basement membrane axis that regulates BTB restructuring during spermatogenesis. PMID:23885308

  20. Glucocorticoid receptors in murine erythroleukaemic cells

    SciTech Connect

    Hammond, K.D.; Torrance, J.M.; DiDomenico, M.

    1987-01-01

    Glucocorticoid receptors in murine erythroleukaemic cells were studied in relation to hexamethylene bisacetamide (HMBA) induced differentiation. Specific binding of dexamethasone was measured. A single class of saturable, high affinity binding sites was demonstrated in intact cells; with cell homogenates or fractions binding was low and could not be reliably quantified. Receptor binding in whole cell suspensions was lower in cells which had been treated with HMBA (36.5 +/- 8.2 pmol/g protein) than in untreated controls (87.9 +/- 23.6 pmol/g protein); dissociation constants were similar in treated (2.7 nM) and untreated cells (2.5 nM). Dexamethasone, hydrocortisone, corticosterone and progesterone competed with tritium-labelled dexamethasone for receptor binding sites; cortisone, deoxycorticosterone and oestradiol had little effect.

  1. rpS6 regulates blood-testis barrier dynamics through Arp3-mediated actin microfilament organization in rat sertoli cells. An in vitro study.

    PubMed

    Mok, Ka-Wai; Chen, Haiqi; Lee, Will M; Cheng, C Yan

    2015-05-01

    In the seminiferous epithelium of rat testes, preleptotene spermatocytes residing in the basal compartment are transported across the blood-testis barrier (BTB) to enter the adluminal compartment at stage VIII of the epithelial cycle. This process involves redistribution of tight junction (TJ) proteins via reorganization of actin cytoskeleton in Sertoli cells that serves as attachment site for adhesion protein complexes. Ribosomal protein S6 (rpS6), a downstream molecule of mTORC1 (mammalian target of rapamycin complex 1), participates in this process via a yet-to-be defined mechanism. Here, we constructed an rpS6 quadruple phosphomimetic mutant by converting Ser residues at 235, 236, 240, and 244 to Glu via site-directed mutagenesis, making this mutant constitutively active. When this rpS6 mutant was overexpressed in Sertoli cells cultured in vitro with an established TJ barrier mimicking the BTB in vivo, it perturbed the TJ permeability by down-regulating and redistributing TJ proteins at the cell-cell interface. These changes are mediated by a reorganization of actin microfilaments, which was triggered by a redistribution of activated actin-related protein 3 (Arp3) as well as changes in Arp3-neuronal Wiskott-Aldrich Syndrome protein (N-WASP) interaction. This in turn induced reorganization of actin microfilaments, converting them from a "bundled" to an "unbundled/branched" configuration, concomitant with a reduced actin bundling activity, thereby destabilizing the TJ-barrier function. These changes were mediated by Akt (transforming oncogene of v-akt), because an Akt knockdown by RNA interference was able to mimic the phenotypes of rpS6 mutant overexpression at the Sertoli cell BTB. In summary, this study illustrates a mechanism by which mTORC1 signal complex regulates BTB function through rpS6 downstream by modulating actin organization via the Arp2/3 complex, which may be applicable to other tissue barriers. PMID:25714812

  2. Cardiotonic steroid ouabain stimulates expression of blood-testis barrier proteins claudin-1 and -11 and formation of tight junctions in Sertoli cells.

    PubMed

    Dietze, Raimund; Shihan, Mazen; Stammler, Angelika; Konrad, Lutz; Scheiner-Bobis, Georgios

    2015-04-15

    The interaction of ouabain with the sodium pump induces signalling cascades resembling those triggered by hormone/receptor interactions. In the rat Sertoli cell line 93RS2, ouabain at low concentrations stimulates the c-Src/c-Raf/Erk1/2 signalling cascade via its interaction with the α4 isoform of the sodium pump expressed in these cells, leading to the activation of the transcription factor CREB. As a result of this signalling sequence, ouabain stimulates expression of claudin-1 and claudin-11, which are also controlled by a CRE promoter. Both of these proteins are known to be essential constituents of tight junctions (TJ) between Sertoli cells, and as a result of the ouabain-induced signalling TJ formation between neighbouring Sertoli cells is significantly enhanced by the steroid. Thus, ouabain-treated cell monolayers display higher transepithelial resistance and reduced free diffusion of FITC-coupled dextran in tracer diffusion assays. Taking into consideration that the formation of TJ is indispensable for the maintenance of the blood-testis barrier (BTB) and therefore for male fertility, the actions of ouabain described here and the fact that this and other related cardiotonic steroids (CTS) are produced endogenously suggest a direct influence of ouabain/sodium pump interactions on the maintenance of the BTB and thereby an effect on male fertility. Since claudin-1 and claudin-11 are also present in other blood-tissue barriers, one can speculate that ouabain and perhaps other CTS influence the dynamics of these barriers as well. PMID:25666991

  3. rpS6 Regulates Blood-Testis Barrier Dynamics Through Arp3-Mediated Actin Microfilament Organization in Rat Sertoli Cells. An In Vitro Study

    PubMed Central

    Mok, Ka-Wai; Chen, Haiqi; Lee, Will M.

    2015-01-01

    In the seminiferous epithelium of rat testes, preleptotene spermatocytes residing in the basal compartment are transported across the blood-testis barrier (BTB) to enter the adluminal compartment at stage VIII of the epithelial cycle. This process involves redistribution of tight junction (TJ) proteins via reorganization of actin cytoskeleton in Sertoli cells that serves as attachment site for adhesion protein complexes. Ribosomal protein S6 (rpS6), a downstream molecule of mTORC1 (mammalian target of rapamycin complex 1), participates in this process via a yet-to-be defined mechanism. Here, we constructed an rpS6 quadruple phosphomimetic mutant by converting Ser residues at 235, 236, 240, and 244 to Glu via site-directed mutagenesis, making this mutant constitutively active. When this rpS6 mutant was overexpressed in Sertoli cells cultured in vitro with an established TJ barrier mimicking the BTB in vivo, it perturbed the TJ permeability by down-regulating and redistributing TJ proteins at the cell-cell interface. These changes are mediated by a reorganization of actin microfilaments, which was triggered by a redistribution of activated actin-related protein 3 (Arp3) as well as changes in Arp3-neuronal Wiskott-Aldrich Syndrome protein (N-WASP) interaction. This in turn induced reorganization of actin microfilaments, converting them from a “bundled” to an “unbundled/branched” configuration, concomitant with a reduced actin bundling activity, thereby destabilizing the TJ-barrier function. These changes were mediated by Akt (transforming oncogene of v-akt), because an Akt knockdown by RNA interference was able to mimic the phenotypes of rpS6 mutant overexpression at the Sertoli cell BTB. In summary, this study illustrates a mechanism by which mTORC1 signal complex regulates BTB function through rpS6 downstream by modulating actin organization via the Arp2/3 complex, which may be applicable to other tissue barriers. PMID:25714812

  4. Androgen receptor in Sertoli cells regulates DNA double-strand break repair and chromosomal synapsis of spermatocytes partially through intercellular EGF-EGFR signaling

    PubMed Central

    Chen, Su-Ren; Hao, Xiao-Xia; Zhang, Yan; Deng, Shou-Long; Wang, Zhi-Peng; Wang, Yu-Qian; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-01-01

    Spermatogenesis does not progress beyond the pachytene stages of meiosis in Sertoli cell-specific AR knockout (SCARKO) mice. However, further evidence of meiotic arrest and underlying paracrine signals in SCARKO testes is still lacking. We utilized co-immunostaining of meiotic surface spreads to examine the key events during meiotic prophase I. SCARKO spermatocytes exhibited a failure in chromosomal synapsis observed by SCP1/SCP3 double-staining and CREST foci quantification. In addition, DNA double-strand breaks (DSBs) were formed but were not repaired in the mutant spermatocytes, as revealed by γ-H2AX staining and DNA-dependent protein kinase (DNA-PK) activity examination. The later stages of DSB repair, such as the accumulation of the RAD51 strand exchange protein and the localization of mismatch repair protein MLH1, were correspondingly altered in SCARKO spermatocytes. Notably, the expression of factors that guide RAD51 loading onto sites of DSBs, including TEX15, BRCA1/2 and PALB2, was severely impaired when either AR was down-regulated or EGF was up-regulated. We observed that some ligands in the epidermal growth factor (EGF) family were over-expressed in SCARKO Sertoli cells and that some receptors in the EGF receptor (EGFR) family were ectopically activated in the mutant spermatocytes. When EGF-EGFR signaling was repressed to approximately normal by the specific inhibitor AG1478 in the cultured SCARKO testis tissues, the arrested meiosis was partially rescued, and functional haploid cells were generated. Based on these data, we propose that AR in Sertoli cells regulates DSB repair and chromosomal synapsis of spermatocytes partially through proper intercellular EGF-EGFR signaling. PMID:26959739

  5. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics.

    PubMed

    Martins, A D; Sá, R; Monteiro, M P; Barros, A; Sousa, M; Carvalho, R A; Silva, B M; Oliveira, P F; Alves, M G

    2016-10-15

    Ghrelin is a growth hormone-releasing peptide that has been suggested to interfere with spermatogenesis, though the underling mechanisms remain unknown. We studied the effect of ghrelin in human Sertoli cells (hSCs) metabolic phenotype. For that, hSCs were exposed to increasing concentrations of ghrelin (20, 100 and 500 pM) mimicking the levels reported in obese, normal weight, and severely undernourished individuals. The metabolite production/consumption was determined. The protein levels of key glycolysis-related transporters and enzymes were assessed. The lactate dehydrogenase (LDH) activity was measured. Mitochondrial complexes protein levels and mitochondria membrane potential were also measured. We showed that hSCs express the growth hormone secretagogue receptor. At the concentration present in the plasma of normal weight men, ghrelin caused a decrease of glucose consumption and mitochondrial membrane potential in hSCs, though LDH activity and lactate production remained unchanged, illustrating an alteration of glycolytic flux efficiency. Exposure of hSCs to levels of ghrelin found in the plasma of severely undernourished individuals decreased pyruvate consumption and mitochondrial complex III protein expression. All concentrations of ghrelin decreased alanine and acetate production by hSCs. Notably, the effects of ghrelin levels found in severely undernourished individuals were more pronounced in hSCs metabolic phenotype highlighting the importance of a proper eating behavior to maintain male reproductive potential. In conclusion, ghrelin acts as an energy status sensor for hSCs in a dose-dependent manner, showing an inverse association with the production of lactate, thus controlling the nutritional support of spermatogenesis. PMID:27392494

  6. Toxicogenomic Screening of Replacements for Di(2-Ethylhexyl) Phthalate (DEHP) Using the Immortalized TM4 Sertoli Cell Line

    PubMed Central

    Nardelli, Thomas C.; Erythropel, Hanno C.; Robaire, Bernard

    2015-01-01

    Phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) are being phased out of many consumer products because of their endocrine disrupting properties and their ubiquitous presence in the environment. The concerns raised from the use of phthalates have prompted consumers, government, and industry to find alternative plasticizers that are safe, biodegradable, and have the versatility for multiple commercial applications. We examined the toxicogenomic profile of mono(2-ethylhexyl) phthalate (MEHP, the active metabolite of DEHP), the commercial plasticizer diisononyl cyclohexane-1,2-dicarboxylate (DINCH), and three recently proposed plasticizers: 1,4-butanediol dibenzoate (BDB), dioctyl succinate (DOS), and dioctyl maleate (DOM), using the immortalized TM4 Sertoli cell line. Results of gene expression studies revealed that DOS and BDB clustered with control samples while MEHP, DINCH and DOM were distributed far away from the control-DOS-BDB cluster, as determined by principle component analysis. While no significant changes in gene expression were found after treatment with BDB and DOS, treatment with MEHP, DINCH and DOM resulted in many differentially expressed genes. MEHP upregulated genes downstream of PPAR and targeted pathways of cholesterol biosynthesis without modulating the expression of PPAR’s themselves. DOM upregulated genes involved in glutathione stress response, DNA repair, and cholesterol biosynthesis. Treatment with DINCH resulted in altered expression of a large number of genes involved in major signal transduction pathways including ERK/MAPK and Rho signalling. These data suggest DOS and BDB may be safer alternatives to DEHP/MEHP than DOM or the commercial alternative DINCH. PMID:26445464

  7. Dehydroepiandrosterone and 7-oxo-dehydroepiandrosterone in male reproductive health: Implications of differential regulation of human Sertoli cells metabolic profile.

    PubMed

    Dias, Tânia R; Alves, Marco G; Almeida, Susana P; Silva, Joaquina; Barros, Alberto; Sousa, Mário; Silva, Branca M; Silvestre, Samuel M; Oliveira, Pedro F

    2015-11-01

    Dehydroepiandrosterone (DHEA) is a precursor of androgen synthesis whose action is partially exerted through its metabolites. 7-Oxo-dehydroepiandrosterone (7-oxo-DHEA) is a common DHEA metabolite, non-convertible to androgens, which constitutes a promising therapeutic strategy for multiple conditions. Sertoli cells (SCs) are responsible for the support of spermatogenesis, having unique metabolic characteristics strongly modulated by androgens. Consequently, disruptions in androgen synthesis compromise SCs function and hence male fertility. We aimed to evaluate the effects of DHEA and 7-oxo-DHEA in human SCs (hSCs) metabolism and oxidative profile. To do so, hSCs were exposed to increasing concentrations of DHEA and 7-oxo-DHEA (0.025, 1 and 50 μM) that revealed to be non-cytotoxic in these experimental conditions. We measured hSCs metabolites consumption/production by (1)H NMR, the protein expression levels of key players of the glycolytic pathway by Western blot as well as the levels of carbonyl groups, nitration and lipid peroxidation by Slot blot. The obtained data demonstrated that 7-oxo-DHEA is a more potent metabolic modulator than DHEA since it increased hSCs glycolytic flux. DHEA seem to redirect hSCs metabolism to the Krebs cycle, while 7-oxo-DHEA has some inhibitory effect in this path. The highest 7-oxo-DHEA concentrations (1 and 50 μM) also increased lactate production, which is of extreme relevance for the successful progression of spermatogenesis in vivo. None of these steroids altered the intracellular oxidative profile of hSCs, illustrating that, at the concentrations used they do not have pro- nor antioxidant actions in hSCs. Our study represents a further step in the establishment of safe doses of DHEA and 7-oxo-DHEA to hSCs, supporting its possible use in hormonal and non-hormonal therapies against male reproductive problems. PMID:26134425

  8. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells

    PubMed Central

    Gao, Ying; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES. PMID:27358069

  9. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells.

    PubMed

    Gao, Ying; Lui, Wing-Yee; Lee, Will M; Cheng, C Yan

    2016-01-01

    Crumbs homolog 3 (or Crumbs3, CRB3) is a polarity protein expressed by Sertoli and germ cells at the basal compartment in the seminiferous epithelium. CRB3 also expressed at the blood-testis barrier (BTB), co-localized with F-actin, TJ proteins occludin/ZO-1 and basal ES (ectoplasmic specialization) proteins N-cadherin/β-catenin at stages IV-VII only. The binding partners of CRB3 in the testis were the branched actin polymerization protein Arp3, and the barbed end-capping and bundling protein Eps8, illustrating its possible role in actin organization. CRB3 knockdown (KD) by RNAi in Sertoli cells with an established tight junction (TJ)-permeability barrier perturbed the TJ-barrier via changes in the distribution of TJ- and basal ES-proteins at the cell-cell interface. These changes were the result of CRB3 KD-induced re-organization of actin microfilaments, in which actin microfilaments were truncated, and extensively branched, thereby destabilizing F-actin-based adhesion protein complexes at the BTB. Using Polyplus in vivo-jetPEI as a transfection medium with high efficiency for CRB3 KD in the testis, the CRB3 KD testes displayed defects in spermatid and phagosome transport, and also spermatid polarity due to a disruption of F-actin organization. In summary, CRB3 is an actin microfilament regulator, playing a pivotal role in organizing actin filament bundles at the ES. PMID:27358069

  10. Regulatory and junctional proteins of the blood-testis barrier in human Sertoli cells are modified by monobutyl phthalate (MBP) and bisphenol A (BPA) exposure.

    PubMed

    de Freitas, André Teves Aquino Gonçalves; Ribeiro, Mariana Antunes; Pinho, Cristiane Figueiredo; Peixoto, André Rebelo; Domeniconi, Raquel Fantin; Scarano, Wellerson R

    2016-08-01

    The blood-testis barrier (BTB) is responsible for providing a protected environment and coordinating the spermatogenesis. Endocrine disruptors (EDs) might lead to infertility, interfering in the BTB structure and modulation. This study aimed to correlate the actions of two EDs, monobutyl phthalate (MBP) and bisphenol A (BPA) in different periods of exposure, in a low toxicity dose to the human Sertoli cells (HSeC) and its effects on the proteins of the BTB and regulatory proteins involved in its modulation. HSeC cells were exposed to MBP (10μM) and BPA (20μM) for 6 and 48h. Western Blot assay indicated that MBP was able to reduce the expression of occludin, ZO-1, N-cadherin and Androgen Receptor (AR), while BPA leads to a reduction of occludin, ZO-1, β-catenin and AR. TGF-β2 and F-actin were not modified. Phalloidin and Hematoxylin and Eosin assay revealed phenotically disruption in Sertoli cells adhesion, without changes in F-actin expression or localization. Our data suggested both EDs present potential for disrupting the structure and maintenance of the human BTB by AR dependent pathway. PMID:26922907

  11. [The ultrastructural manifestations of the regenerative processes in the Sertoli cells under the action of low-intensity electromagnetic radiation in the rats subjected to stress].

    PubMed

    Korolev, Yu N; Geniatulina, M S; Nikulina, L A; Mikhailik, L V

    2015-01-01

    The experiments on the outbred female rats using the electron microscopic technique have demonstrated that the application of ultrahigh frequency low-intensity electromagnetic radiation (LIEMR) with a flux density below 1 mCW/Cm2 and a frequency of approximately 1,000 MHz in the regime of primary prophylaxis and therapeutic-preventive action suppressed the development of the post-stress pathological ultrastructural changes and increased the activity of the regenerative processes in the Sertoli cells. It was shown that the developing adaptive and compensatory changes in the Sertoli cells most frequently involve the energy-producing structures (mitochondria) that undergo the enlargement of their average and total dimensions. Simultaneously, the amount of granular endoplasmic reticulum and the number of ribosomes increased while the intracellular links between the organelles strengthened and the reserve potential of the cells improved. It is concluded that the observed effects may be due to the action of both local and systemic regulation mechanisms. PMID:26285333

  12. Establishment of stable MRP1 knockdown by lentivirus-delivered shRNA in the mouse testis Sertoli TM4 cell line.

    PubMed

    Li, Zhen; Wang, Hong; Huang, Shaoxin; Zhou, Langhuan; Wang, Lu; Du, Chuang; Wang, Chunhong

    2015-02-01

    Sertoli cells around germ cells are considered a barrier that protects spermatogenesis from harmful influences. The transporter multidrug-resistance-associated protein 1 (MRP1) is a xenobiotic efflux pump that can export glutathione S-conjugated metabolites and xenobiotics from cells. In this study, the Mrp1 gene was stably knocked down in a mouse Sertoli cell line (TM4) using lentivirus vector-mediated RNA interference (RNAi) technology. Four shRNA interference sequences were chosen and designed to screen for the most effective shRNA in candidate cells. The results indicate that lentivirus vectors with high titres were generated and successfully transfected into TM4 cells with high efficiency. Puromycin was added to the culture medium to maintain constant selection during the establishment of the stable cell lines. The expression levels of Mrp1 mRNA and MRP1 protein in stably transfected TM4 cells were significantly lower than those in the control group. Importantly, the transport activity of MRP1 to Calcein and 5-carboxyseminaptharhodafluor (SNARF-1) were significantly reduced because of MRP1 silencing. Moreover, the silencing of the Mrp1 gene in the transfected TM4 cell lines remained highly stable for more than 6 months. These results suggest that the lentivirus-based RNAi stably knocks down the expression of the Mrp1 gene in the established TM4 cell line. This transfected TM4 cell line will provide a new and powerful tool to study the underlying mechanism of MRP1-mediated drug resistance and detoxication in the reproductive system. PMID:25403683

  13. A Rare Case of Intra-Endometrial Leiomyoma of Uterus Simulating Degenerated Submucosal Leiomyoma Accompanied by a Large Sertoli-Leydig Cell Tumor.

    PubMed

    Jeong, Kyungah; Lee, Sa Ra; Park, Sanghui

    2016-03-01

    A 50-year-old peri-menopausal woman presented with hard palpable mass on her lower abdomen and anemia from heavy menstrual bleeding. Ultrasonography showed a 13×12 cm sized hypoechoic solid mass in pelvis and a 2.5×2 cm hypoechoic cystic mass in uterine endometrium. Abdomino-pelvic computed tomography revealed a hypodense pelvic mass without enhancement, suggesting a leiomyoma of intraligamentary type or sex cord tumor of right ovary with submucosal myoma of uterus. Laparoscopy revealed a large Sertoli-Leydig cell tumor of right ovary with a very rare entity of intra-endometrial uterine leiomyoma accompanied by adenomyosis. The final diagnosis of ovarian sex-cord tumor (Sertoli-Leydig cell), stage Ia with intra-endometrial leiomyoma with adenomyosis, was made. Considering the large size of the tumor and poorly differentiated nature, 6 cycles of chemotherapy with Taxol and Carboplatin regimen were administered. There is neither evidence of major complications nor recurrence during 20 months' follow-up. PMID:26847310

  14. A Rare Case of Intra-Endometrial Leiomyoma of Uterus Simulating Degenerated Submucosal Leiomyoma Accompanied by a Large Sertoli-Leydig Cell Tumor

    PubMed Central

    Jeong, Kyungah; Park, Sanghui

    2016-01-01

    A 50-year-old peri-menopausal woman presented with hard palpable mass on her lower abdomen and anemia from heavy menstrual bleeding. Ultrasonography showed a 13×12 cm sized hypoechoic solid mass in pelvis and a 2.5×2 cm hypoechoic cystic mass in uterine endometrium. Abdomino-pelvic computed tomography revealed a hypodense pelvic mass without enhancement, suggesting a leiomyoma of intraligamentary type or sex cord tumor of right ovary with submucosal myoma of uterus. Laparoscopy revealed a large Sertoli-Leydig cell tumor of right ovary with a very rare entity of intra-endometrial uterine leiomyoma accompanied by adenomyosis. The final diagnosis of ovarian sex-cord tumor (Sertoli-Leydig cell), stage Ia with intra-endometrial leiomyoma with adenomyosis, was made. Considering the large size of the tumor and poorly differentiated nature, 6 cycles of chemotherapy with Taxol and Carboplatin regimen were administered. There is neither evidence of major complications nor recurrence during 20 months' follow-up. PMID:26847310

  15. Isolation of Murine Embryonic Hemogenic Endothelial Cells.

    PubMed

    Fang, Jennifer S; Gritz, Emily C; Marcelo, Kathrina L; Hirschi, Karen K

    2016-01-01

    The specification of hemogenic endothelial cells from embryonic vascular endothelium occurs during brief developmental periods within distinct tissues, and is necessary for the emergence of definitive HSPC from the murine extra embryonic yolk sac, placenta, umbilical vessels, and the embryonic aorta-gonad-mesonephros (AGM) region. The transient nature and small size of this cell population renders its reproducible isolation for careful quantification and experimental applications technically difficult. We have established a fluorescence-activated cell sorting (FACS)-based protocol for simultaneous isolation of hemogenic endothelial cells and HSPC during their peak generation times in the yolk sac and AGM. We demonstrate methods for dissection of yolk sac and AGM tissues from mouse embryos, and we present optimized tissue digestion and antibody conjugation conditions for maximal cell survival prior to identification and retrieval via FACS. Representative FACS analysis plots are shown that identify the hemogenic endothelial cell and HSPC phenotypes, and describe a methylcellulose-based assay for evaluating their blood forming potential on a clonal level. PMID:27341393

  16. Isolation of Murine Embryonic Hemogenic Endothelial Cells

    PubMed Central

    Marcelo, Kathrina L.; Hirschi, Karen K.

    2016-01-01

    The specification of hemogenic endothelial cells from embryonic vascular endothelium occurs during brief developmental periods within distinct tissues, and is necessary for the emergence of definitive HSPC from the murine extra embryonic yolk sac, placenta, umbilical vessels, and the embryonic aorta-gonad-mesonephros (AGM) region. The transient nature and small size of this cell population renders its reproducible isolation for careful quantification and experimental applications technically difficult. We have established a fluorescence-activated cell sorting (FACS)-based protocol for simultaneous isolation of hemogenic endothelial cells and HSPC during their peak generation times in the yolk sac and AGM. We demonstrate methods for dissection of yolk sac and AGM tissues from mouse embryos, and we present optimized tissue digestion and antibody conjugation conditions for maximal cell survival prior to identification and retrieval via FACS. Representative FACS analysis plots are shown that identify the hemogenic endothelial cell and HSPC phenotypes, and describe a methylcellulose-based assay for evaluating their blood forming potential on a clonal level. PMID:27341393

  17. Assessment of testicular function after acute and chronic irradiation: Further evidence for an influence of late spermatids on Sertoli cell function in the adult rat

    SciTech Connect

    Pineau, C.; Velez de la Calle, J.F.; Pinon-Lataillade, G.; Jegou, B.

    1989-06-01

    To study cell to cell communications within the testis of adult Sprague-Dawley rats, we used acute whole body neutron plus gamma-irradiation over 7-121 days postirradiation and chronic whole body gamma-irradiation over 14-84 days of irradiation and 7-86 days postirradiation. Neither irradiation protocol had an effect on the body weight of the animals. Neutron plus gamma-rays induced dramatic damages to spermatogonia, preleptotene spermatocytes, spermatozoa, and, to a lesser extent, pachytene spermatocytes. In contrast, gamma-rays induced a selective destruction of spermatogonia. Subsequently, in both experiments a maturation-depletion process led to a marked decrease in all germ cell types. A complete or near complete recovery of the different germ cell types and spermatozoa took place during the two postirradiation periods. Under both irradiation protocols Sertoli cells number was unchanged. Androgen-binding protein and FSH levels were normal in spite of the disappearance of most germ cells from spermatogonia to early spermatids. However, the decline of androgen-binding protein as well as the rise of FSH and their subsequent recovery were highly correlated to the number of late spermatids and spermatozoa. Moreover, it appeared that spermatocytes may also interfere with the production of inhibin (Exp B). With neither irradiation was Leydig cell function altered, except in Exp B in which elevated LH levels were temporarily observed. Correlation analysis suggested a relationship between preleptotene spermatocytes and Leydig cell function. In conclusion, this study establishes that chronic gamma-irradiation is particularly useful in the study of intratesticular paracrine regulation in vivo and provides further support to the concept that late spermatids play a major role in controlling some aspects of Sertoli cell function in the adult rat.

  18. Discrimination and characterization of Sertoli cell-only syndrome in non-obstructive azoospermia using cell-free seminal DDX4.

    PubMed

    Yu, Qiong; Gu, Xiuli; Shang, Xuejun; Li, Honggang; Xiong, Chengliang

    2016-08-01

    Cell-free seminal mRNA (cfs-mRNA) contains testis-specific transcripts from bilateral testes. This study determined the presence of DEAD box polypeptide 4 (DDX4) in cfs-mRNA to identify and characterize the incidence of Sertoli cell-only (SCO) syndrome in men with non-obstructive azoospermia (NOA). DDX4 cfs-mRNA was determined in 315 men with NOA, and compared with testicular samples obtained by microdissection from 19 NOA patients. Karyotype and azoospermia factor microdeletion analysis were performed, and clinical features were evaluated. Negative DDX4 cfs-mRNA suggestive of SCO was found in 13.7% of NOA patients, with a similar incidence in NOA men with known genetic causes and those without known genetic causes. DDX4 cfs-mRNA was absent in 44% of SCO cases diagnosed by testicular histopathology, but present in all patients presenting with maturation arrest or hypospermatogenesis. Furthermore, 84.2% of NOA men with DDX4 cfs-positive mRNA had a DDX4-positive testicular sample. In NOA men without genetic causes, SCO patients discriminated by negative DDX4 cfs-mRNA showed different clinical features when compared with non-SCO cases. These results suggest that the evaluation of DDX4 cfs-mRNA is more accurate than testicular histopathology in discriminating SCO, and also permits the identification of a specific group of NOA men with distinct clinical features. PMID:27211570

  19. Follicular dendritic cell function and murine AIDS.

    PubMed Central

    Masuda, A; Burton, G F; Fuchs, B A; Bhogal, B S; Rupper, R; Szakal, A K; Tew, J G

    1994-01-01

    Infection of mice with LP-BM5 elicits an immunodeficiency state referred to as murine acquired immune deficiency syndrome (MAIDS). Shortly after infection, retrovirus particles become associated with follicular dendritic cells (FDC) and this study was undertaken to determine whether retroviruses alter FDC functions. The FDC functions examined included the ability to: (1) retain antigen (Ag) trapped prior to infection; (2) trap new Ag after infection; (3) maintain specific IgG responses; and (4) provide co-stimulatory signals to B cells. Mice were infected with LP-BM5 and the ability of their FDC to trap and retain 125I-Ag (HSA) was assessed. Serum anti-HSA levels were monitored and FDC co-stimulatory activity was indicated by increased B-cell proliferation. HSA trapped on FDC prior to infection began to disappear by 3 weeks and was practically gone by 6 weeks. Serum anti-HSA titres were maintained normally for about 3 weeks after infection and then declined precipitously. The ability of FDC to trap new Ag began to disappear around the second and third week of infection and was markedly depressed by the fourth week. However, FDC recovered from infected mice retained their ability to co-stimulate anti-mu- and interleukin-4 (IL-4)-activated B cells throughout a 5-week period. In short, the ability of FDC to trap and retain specific Ag and maintain specific antibody levels was markedly depressed after retrovirus infection. However, FDC from infected mice continued to provide co-stimulatory signals and these signals may contribute to the lymphadenopathy and splenomegaly characteristic of MAIDS. Images Figure 4 PMID:8132218

  20. Defining suitable reference genes for RT-qPCR analysis on human sertoli cells after 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure.

    PubMed

    Ribeiro, Mariana Antunes; dos Reis, Mariana Bisarro; de Moraes, Leonardo Nazário; Briton-Jones, Christine; Rainho, Cláudia Aparecida; Scarano, Wellerson Rodrigo

    2014-11-01

    Quantitative real-time RT-PCR (qPCR) has proven to be a valuable molecular technique to quantify gene expression. There are few studies in the literature that describe suitable reference genes to normalize gene expression data. Studies of transcriptionally disruptive toxins, like tetrachlorodibenzo-p-dioxin (TCDD), require careful consideration of reference genes. The present study was designed to validate potential reference genes in human Sertoli cells after exposure to TCDD. 32 candidate reference genes were analyzed to determine their applicability. geNorm and NormFinder softwares were used to obtain an estimation of the expression stability of the 32 genes and to identify the most suitable genes for qPCR data normalization. PMID:25078986

  1. Redefining Myeloid Cell Subsets in Murine Spleen

    PubMed Central

    Hey, Ying-Ying; Tan, Jonathan K. H.; O’Neill, Helen C.

    2016-01-01

    Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed “L-DC” in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11bhiCD11cloMHCII−Ly6C−Ly6G− subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11bhiCD11cloMHCII−Ly6CloLy6G− cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6Clo and Ly6Chi monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11bhiCD11cloMHCII−Ly6C−Ly6G− cells, which are CD43+, Siglec-F− and CD115−. Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types. PMID:26793192

  2. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    SciTech Connect

    Florian, Christian; Langmann, Thomas; Weber, Bernhard H.F.; Morsczeck, Christian

    2008-09-19

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture.

  3. Telomere sister chromatid exchange in telomerase deficient murine cells

    SciTech Connect

    Wang, Yisong; Giannone, Richard J; Liu, Yie

    2005-01-01

    We have recently demonstrated that several types of genomic rearrangements (i.e., telomere sister chromatid exchange (T-SCE), genomic-SCE, or end-to-end fusions) were more often detected in long-term cultured murine telomerase deficient embryonic stem (ES) cells than in freshly prepared murine splenocytes, even through they possessed similar frequencies of critically short telomeres. The high rate of genomic rearrangements in telomerase deficient ES cells, when compared to murine splenocytes, may reflect the cultured cells' gained ability to protect chromosome ends with eroded telomeres allowing them to escape 'end crisis'. However, the possibility that ES cells were more permissive to genomic rearrangements than other cell types or that differences in the microenvironment or genetic background of the animals might consequentially determine the rate of T-SCEs or other genomic rearrangements at critically short telomeres could not be ruled out.

  4. Unusual Sertoli Cell Tumor Associated With Sex Cord Tumor With Annular Tubules in Peutz-Jeghers Syndrome: Report of a Case and Review of the Literature on Ovarian Tumors in Peutz-Jeghers Syndrome.

    PubMed

    Ravishankar, Sanjita; Mangray, Shamlal; Kurkchubasche, Arlet; Yakirevich, Evgeny; Young, Robert H

    2016-05-01

    We report the case of an 11-year-old girl with Peutz-Jeghers syndrome and a unilateral ovarian tumor most consistent with Sertoli cell tumor associated with sex cord tumor with annular tubules. The ovary was replaced by a lobular, solid, yellow tumor. Microscopic examination showed 2 components that focally merged. The first was composed of uniform, cytologically bland cells arranged mostly in diffuse sheets and focally in tubules. The second showed typical sex cord tumor with annular tubules with extensive calcification. The predominant component of the tumor clearly fell in the sex cord category and most closely resembled Sertoli cell tumor. This case adds to the limited information on ovarian sex cord tumors, other than typical sex cord tumor with annular tubules, arising in association with Peutz-Jeghers syndrome, a topic reviewed herein. PMID:26621753

  5. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    SciTech Connect

    Carette, Diane; Perrard, Marie-Hélène; Prisant, Nadia; Gilleron, Jérome; Pointis, Georges; Segretain, Dominique; Durand, Philippe

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  6. Elderly Men Have Low Levels of Anti-Müllerian Hormone and Inhibin B, but with High Interpersonal Variation: A Cross-Sectional Study of the Sertoli Cell Hormones in 615 Community-Dwelling Men

    PubMed Central

    Chong, Yih Harng; Dennis, Nicola A.; Connolly, Martin J.; Teh, Ruth; Jones, Gregory T.; van Rij, Andre M.; Farrand, Stephanie; Campbell, A. John; MLennan, Ian S.

    2013-01-01

    The Sertoli cells of the testes secrete anti-Müllerian hormone (Müllerian inhibiting Substance, AMH) and inhibin B (InhB). AMH triggers the degeneration of the uterine precursor in male embryos, whereas InhB is part of the gonadal-pituitary axis for the regulation of sperm production in adults. However, both hormones are also putative regulators of homeostasis, and age-related changes in these hormones may therefore be important to the health status of elderly men. The levels of AMH in elderly men are unknown, with limited information being available about age-related changes in InhB. We have therefore used ELISAs to measure Sertoli cell hormone levels in 3 cohorts of community-dwelling men in New Zealand. In total, 615 men were examined, 493 of which were aged 65 or older. Serum AMH and InhB levels inversely correlated with age in men older than 50 years (p<0.001) but not in the younger men. A minority of elderly men had undetectable levels of AMH and InhB. The variation in hormone levels between similarly aged men increased with the age of men. AMH and InhB partially correlated with each other as expected (r = 0.48, p<0.001). However, the ratio of the two Sertoli hormones varied significantly between men, with this variation increasing with age. Elderly men selected for the absence of cardiovascular disease had AMH levels similar to those of young men whereas their InhB levels did not differ from aged-matched controls. These data suggests that Sertoli cell number and function changes with age, but with the extent and nature of the changes varying between men. PMID:23940675

  7. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    SciTech Connect

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted in a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.

  8. Improving in vitro Sertoli cell/gonocyte co-culture model for assessing male reproductive toxicity: Lessons learned from comparisons of cytotoxicity versus genomic responses to phthalates

    SciTech Connect

    Yu Xiaozhong; Hong, Sung Woo; Moreira, Estefania G.; Faustman, Elaine M.

    2009-09-15

    Gonocytes exist in the neonatal testis and represent a transient population of male germ-line stem cells. It has been shown that stem cell self-renewal and progeny production is probably controlled by the neighboring differentiated cells and extracellular matrix (ECM) in vivo known as niches. Recently, we developed an in vitro three-dimensional (3D) Sertoli cell/gonocyte co-culture (SGC) model with ECM overlay, which creates an in vivo-like niche and supports germ-line stem cell functioning within a 3D environment. In this study, we applied morphological and cytotoxicity evaluations, as well as microarray-based gene expression to examine the effects of different phthalate esters (PE) on this model. Known in vivo male developmentally toxic PEs (DTPE) and developmentally non-toxic PEs (DNTPE) were evaluated. We observed that DTPE induced significantly greater dose-dependent morphological changes, a decrease in cell viability and an increase in cytotoxicity compared to those treated with DNTPE. Moreover, the gene expression was more greatly altered by DTPE than by DNTPE and non-supervised cluster analysis allowed the discrimination of DTPE from the DNTPE. Our systems-based GO-Quant analysis showed significant alterations in the gene pathways involved in cell cycle, phosphate transport and apoptosis regulation with DTPE but not with DNTPE treatment. Disruptions of steroidogenesis related-gene expression such as Star, Cyp19a1, Hsd17b8, and Nr4a3 were observed in the DTPE group, but not in the DNTPE group. In summary, our observation on cell viability, cytotoxicity, and microarray-based gene expression analysis induced by PEs demonstrate that our in vitro 3D-SGC system mimicked in vivo responses for PEs and suggests that the 3D-SGC system might be useful in identifying developmental reproductive toxicants.

  9. Morphology and growth of murine cell lines on model biomaterials.

    PubMed

    Godek, Marisha L; Duchsherer, Nichole L; McElwee, Quinn; Grainger, David W

    2004-01-01

    All biomaterial implants are assaulted by the host "foreign body" immune response. Understanding the complex, dynamic relationship between cells, biomaterials and milieu is an important first step towards controlling this reaction. Material surface chemistry dictates protein adsorption, and thus subsequent cell interactions. The cell-implant is a microenvironment involving 1) proteins that coat the surface and 2) cells that interact with these proteins. Macrophages and fibroblasts are two cell types that interact with proteins on biomaterials surfaces and play different related, but equally important, roles in biomaterials rejection and implant failure. Growth characteristics of four murine cell lines on model biomaterials surfaces were examined. Murine monocyte-macrophages (RAW 264.7 and J774A.1), murine macrophage (IC-21) and murine fibroblast (NIH 3T3) cell lines were tested to determine whether differences exist in adhesion, proliferation, differentiation, spreading, and fusion (macrophage lineages only) on these surfaces. Differences were observed in the ability of cells to adhere to and subsequently proliferate on polymer surfaces. (Monocyte-) macrophages grew well on all surfaces tested and growth rates were measured on three representative polymer biomaterials surfaces: tissue culture polystyrene (TCPS), polystyrene, and Teflon-AF. J774A.1 cultures grown on TCPS and treated with exogenous cytokines IL-4 and GM-CSF were observed to contain multinucleate cells with unusual morphologies. Thus, (monocyte-) macrophage cell lines were found to effectively attach to and interrogate each surface presented, with evidence of extensive spreading on Teflon-AF surfaces, particularly in the IC-21 cultures. The J774A.1 line was able to proliferate and/or differentiate to more specialized cell types (multinucleate/dendritic-like cells) in the presence of soluble chemokine cues. PMID:15133927

  10. Diphtheria toxin-based recombinant murine IL-2 fusion toxin for depleting murine regulatory T cells in vivo.

    PubMed

    Wei, Min; Marino, Jose; Trowell, Aaron; Zhang, Huiping; Stromp Peraino, Jaclyn; Rajasekera, Priyani V; Madsen, Joren C; Sachs, David H; Huang, Christene A; Benichou, Gilles; Wang, Zhirui

    2014-09-01

    Regulatory T cells (Tregs) are a subpopulation of CD4(+) T cells which suppress immune responses of effector cells and are known to play a very important role in protection against autoimmune disease development, induction of transplantation tolerance and suppression of effective immune response against tumor cells. An effective in vivo Treg depletion agent would facilitate Treg-associated studies across many research areas. In this study, we have developed diphtheria toxin-based monovalent and bivalent murine IL-2 fusion toxins for depleting murine IL-2 receptor positive cells including CD25(+) Treg in vivo. Their potencies were assessed by in vitro protein synthesis inhibition and cell proliferation inhibition assays using a murine CD25(+) CTLL-2 cell line. Surprisingly, in contrast to our previously developed recombinant fusion toxins, the monovalent isoform (DT390-mIL-2) was approximately 4-fold more potent than its bivalent counterpart (DT390-bi-mIL-2). Binding analysis by flow cytometry demonstrated that the monovalent isoform bound stronger than the bivalent version. In vivo Treg depletion with the monovalent murine IL-2 fusion toxin was performed using C57BL/6J (B6) mice. Spleen Treg were significantly depleted with a maximum reduction of ∼70% and detectable as early as 12 h after the last injection. The spleen Treg numbers were reduced until Day 3 and returned to control levels by Day 7. We believe that this monovalent murine IL-2 fusion toxin will be an effective in vivo murine Treg depleter. PMID:25147093

  11. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes.

    PubMed

    Kang, Hoin; Park, Jong Im; Roh, Sangho

    2016-01-01

    In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes. PMID:26369430

  12. Intra-testicular injection of adenoviral constructs results in Sertoli cell-specific gene expression and disruption of the seminiferous epithelium

    PubMed Central

    Hooley, R P; Paterson, M; Brown, P; Kerr, K; Saunders, P T K

    2009-01-01

    Spermatogenesis is a complex process that cannot be modelled in vitro. The somatic Sertoli cells (SCs) within the seminiferous tubules perform a key role in supporting maturation of germ cells (GCs). Progress has been made in determining what aspects of SC function are critical to maintenance of fertility by developing rodent models based on the Cre/LoxP system; however, this is time-consuming and is only applicable to mice. The aim of the present study was to establish methods for direct injection of adenoviral vectors containing shRNA constructs into the testis as a way of inducing target-selective knock-down in vivo. This paper describes a series of experiments using adenovirus expressing a green fluorescent protein (GFP) transgene. Injection via the efferent ductules resulted in SC-specific expression of GFP; expression levels paralleled the amount of infective viral particles injected. At the highest doses of virus seminiferous tubule architecture were grossly disturbed and immune cell invasion noted. At lower concentrations, the expression of GFP was variable/negligible, the seminiferous tubule lumen was maintained but stage-dependent GC loss and development of numerous basal vacuoles was observed. These resembled intercellular dilations of SC junctional complexes previously described in rats and may be a consequence of disturbances in SC function due to interaction of the viral particles with the coxsackie/adenovirus receptor that is a component of the junctional complexes within the blood testis barrier. In conclusion, intra-testicular injection of adenoviral vectors disturbs SC function in vivo and future work will therefore focus on the use of lentiviral delivery systems. PMID:18955374

  13. Prepubertal Di-n-Butyl Phthalate Exposure Alters Sertoli and Leydig Cell Function and Lowers Bone Density in Adult Male Mice.

    PubMed

    Bielanowicz, Amanda; Johnson, Rachelle W; Goh, Hoey; Moody, Sarah C; Poulton, Ingrid J; Croce, Nic; Loveland, Kate L; Hedger, Mark P; Sims, Natalie A; Itman, Catherine

    2016-07-01

    Phthalate exposure impairs testis development and function; however, whether phthalates affect nonreproductive functions is not well understood. To investigate this, C57BL/6J mice were fed 1-500 mg di-n-butyl phthalate (DBP) in corn oil, or vehicle only, daily from 4 to 14 days, after which tissues were collected (prepubertal study). Another group was fed 1-500 mg/kg·d DBP from 4 to 21 days and then maintained untreated until 8 weeks for determination of adult consequences of prepubertal exposure. Bones were assessed by microcomputed tomography and dual-energy X-ray absorptiometry and T by RIA. DBP exposure decreased prepubertal femur length, marrow volume, and mean moment of inertia. Adult animals exposed prepubertally to low DBP doses had lower bone mineral content and bone mineral density and less lean tissue mass than vehicle-treated animals. Altered dynamics of the emerging Leydig population were found in 14-day-old animals fed 100-500 mg/kg·d DBP. Adult mice had variable testicular T and serum T and LH concentrations after prepubertal exposure and a dose-dependent reduction in cytochrome p450, family 11, subfamily A, polypeptide 1. Insulin-like 3 was detected in Sertoli cells of adult mice administered the highest dose of 500 mg/kg·d DBP prepubertally, a finding supported by the induction of insulin-like 3 expression in TM4 cells exposed to 50 μM, but not 5 μM, DBP. We propose that low-dose DBP exposure is detrimental to bone but that normal bone mineral density/bone mineral content after high-dose DBP exposure reflects changes in testicular somatic cells that confer protection to bones. These findings will fuel concerns that low-dose DBP exposure impacts health beyond the reproductive axis. PMID:27058814

  14. Measles virus persistence in an immortalized murine macrophage cell line.

    PubMed

    Goldman, M B; Buckthal, D J; Picciotto, S; O'Bryan, T A; Goldman, J N

    1995-02-20

    Persistent infection with the Edmonston strain of measles virus (MV) has been established in IC-21 cells, an immortalized murine macrophage cell line. Persistence was established immediately without syncytia formation or cytopathic effects. MV was expressed in the majority of the cells as evidenced by immunofluorescence microscopy, flow cytometry, infectious centers assays, and limiting dilution analysis. Hemagglutinin (H) and phosphoprotein expressed in persistently infected IC-21 cells had retarded migration in SDS-PAGE gels when compared to these proteins expressed in Vero cells. H protein differences were also found between freshly infected IC-21 cells and persistently infected IC-21 cells passaged for over 2 years. Six sublines of IC-21 cells, infected at different times, have maintained these characteristics for 2 years of passage. During this time period the intensity of immunofluorescence and the number of infectious virus particles recoverable fluctuated in five of the six cell lines. In one cell line virus expression remained at a consistent high level. The ability to establish a persistent MV infection in murine macrophages allows studies using a cell important in disseminating the infection. It facilitates experiments on immunological aspects of viral immunity by enabling cell mixing experiments with histocompatible cell populations and by making available the wide array of cellular and humoral reagents in the mouse. PMID:7871720

  15. Isolation of Murine Lymph Node Stromal Cells

    PubMed Central

    Lagarde, Nadège; Rossi, Simona W.

    2014-01-01

    Secondary lymphoid organs including lymph nodes are composed of stromal cells that provide a structural environment for homeostasis, activation and differentiation of lymphocytes. Various stromal cell subsets have been identified by the expression of the adhesion molecule CD31 and glycoprotein podoplanin (gp38), T zone reticular cells or fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells and FRC-like pericytes within the double negative cell population. For all populations different functions are described including, separation and lining of different compartments, attraction of and interaction with different cell types, filtration of the draining fluidics and contraction of the lymphatic vessels. In the last years, different groups have described an additional role of stromal cells in orchestrating and regulating cytotoxic T cell responses potentially dangerous for the host. Lymph nodes are complex structures with many different cell types and therefore require a appropriate procedure for isolation of the desired cell populations. Currently, protocols for the isolation of lymph node stromal cells rely on enzymatic digestion with varying incubation times; however, stromal cells and their surface molecules are sensitive to these enzymes, which results in loss of surface marker expression and cell death. Here a short enzymatic digestion protocol combined with automated mechanical disruption to obtain viable single cells suspension of lymph node stromal cells maintaining their surface molecule expression is proposed. PMID:25178108

  16. Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures.

    PubMed

    Yu, Xiaozhong; Hong, Sungwoo; Faustman, Elaine M

    2008-08-01

    Cadmium (Cd) is a ubiquitous environmental pollutant that has been associated with male reproductive toxicity in both humans and animal models. The underlying mechanism of this response, however, is still uncharacterized. To address this issue, we employed a recently developed and optimized three-dimensional primary Sertoli cell-gonocyte coculture system and examined the time- and dose-dependent effects of Cd on morphological alterations, cell viability, activation of stress signaling pathway proteins, and the disruption of the ubiquitin proteasome system (UPS). Our results demonstrated that Cd exposure lead to time- and dose-dependent morphological changes that are associated with the induction of apoptosis. In response to Cd, we also saw a disruption of the UPS as evaluated through the accumulation of high-molecular weight polyubiquitinated proteins (HMW-polyUb) as well as alterations in proteasome activity. Robust activation of cellular stress response, measured through the increased phosphorylation of stress-activated protein kinase/c-jun N-terminal kinase and p38, paralleled the accumulation of HMW-polyUb. In addition, p53, a key regulatory protein, was upregulated and underwent increased ubiquitination in response to Cd. To further characterize the role of the UPS in Cd cellular response, we compared the above changes with two classic proteasomal inhibitors, lactacystin, and MG132. The stress response and the accumulation of HWM-polyUb induced by Cd were consistent with the response seen with MG132 but not with lactacystin. In addition, Cd treatment resulted in a dose- and time-dependent effect on proteasome activity, but the overall Cd-induced proteasomal inhibition was unique as compared to MG132 and lactacystin. Taken together, our studies further characterize Cd-induced in vitro testicular toxicity and highlight the potential role of the UPS in this response. PMID:18463101

  17. 7,12-dimethylbenz[a]anthracene induces sertoli-leydig-cell tumors in the follicle-depleted ovaries of mice treated with 4-vinylcyclohexene diepoxide.

    PubMed

    Craig, Zelieann R; Davis, John R; Marion, Samuel L; Barton, Jennifer K; Hoyer, Patricia B

    2010-02-01

    Ovarian cancer is associated with high mortality due to its late onset of symptoms and lack of reliable screening methods for early detection. Furthermore, the incidence of ovarian cancer is higher in postmenopausal women. Mice rendered follicle-depleted through treatment with 4-vinylcyclohexene diepoxide (VCD) are a model of ovary-intact menopause. The present study was designed to induce ovarian neoplasia in this model by treating mice with 7,12-dimethylbenz[a]anthracene (DMBA). Female B6C3F1 mice (age, 28 d) received intraperitoneal sesame oil (vehicle; VCD- groups) as a control or VCD (160 mg/kg; VCD+ groups) daily for 20 d to cause ovarian failure. Four months after the onset of dosing, mice from each group received a single injection of DMBA (VCD-DMBA+ and VCD+DMBA+ groups, n = 15 per group) or vehicle control (VCD-DMBA-, n = 15; VCD+ DMBA-, n = 14) under the bursa of the right ovary. Ovaries were collected 3 or 5 mo after injection and processed for histologic evaluation. Immunohistochemistry was used to confirm classification of neoplasms. None of the animals in the VCD-DMBA- and VCD-DMBA+ groups (that is, mice still undergoing estrus) had tumors at either time point. At the 3-mo time point, 12.5% of the VCD+DMBA+ mice had ovarian tumors; at 5 mo, 57.1% of the VCD+DMBA+ and 14.3% of VCD+DMBA- ovaries had neoplasms. Neoplasms stained positively for inhibin alpha (granulosa cells) and negatively for keratin 7 (surface epithelium), thus confirming classification of the lesions as Sertoli-Leydig cell tumors. These findings provide evidence for an increased incidence of DMBA-induced ovarian neoplasms in the ovaries of follicle-depleted mice compared with that in age-matched cycling controls. PMID:20158943

  18. Flow Cytometric Analysis of Immune Cells Within Murine Aorta.

    PubMed

    Gjurich, Breanne N; Taghavie-Moghadam, Parésa L; Galkina, Elena V

    2015-01-01

    The immune system plays a critical role in the modulation of atherogenesis at all stages of the disease. However, there are many technical difficulties when studying the immune system within murine aortas. Common techniques such as PCR and immunohistochemistry have answered many questions about the presence of immune cells and mediators of inflammation within the aorta yet many questions remain unanswered due to the limitations of these techniques. On the other hand, cumulatively the flow cytometry approach has propelled the immunology field forward but it has been challenging to apply this technique to aortic tissues. Here, we describe the methodology to isolate and characterize the immune cells within the murine aorta and provide examples of functional assays for aortic leukocytes using flow cytometry. The method involves the harvesting and enzymatic digestion of the aorta, extracellular and intracellular protein staining, and a subsequent flow cytometric analysis. PMID:26445788

  19. Nanoelectroablation therapy for murine basal cell carcinoma.

    PubMed

    Nuccitelli, Richard; Tran, Kevin; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela; Chang, Kris S; Epstein, Ervin H; Tang, Jean Y

    2012-08-01

    When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1(+/-)K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology [2,20] and in response to drug therapy [19]. We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5-7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 ± 5 (SEM) mm(3) shrunk by 76 ± 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 min-long treatment of 2700 pulses. PMID:22771794

  20. Nanoelectroablation Therapy for Murine Basal Cell Carcinoma

    PubMed Central

    Nuccitelli, Richard; Tran, Kevin; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela; Chang, Kris S.; Epstein, Ervin H.; Tang, Jean Y.

    2012-01-01

    When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally as effective in the treatment of autochthonous BCC tumors in Ptch1+/−K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology [2;20] and in response to drug therapy [19]. We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5–7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 ± 5 (SEM) mm3 shrunk by 76 ± 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4 mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 minute-long treatment of 2700 pulses. PMID:22771794

  1. Murine trabecular meshwork cells in tissue culture.

    PubMed

    Begley, C G; Yue, B Y; Hendricks, R L

    1991-11-01

    Trabecular meshwork cells from an inbred strain of mice (A/J) were established in tissue culture. Within 1 hour of enucleation, tissue containing the cornea and the chamber angle was excised and placed in tissue culture. Two to five days later, three cell types grew from the explants. Two of these cell types, corneal endothelium and fibroblasts, grew together, with the fibroblasts preferentially spreading on top of the endothelial cells. The trabecular meshwork cells extended from the explant as a distinct morphological type. The corneal endothelium and its associated fibroblasts were then removed from the culture flask with a sterile cotton swab, leaving a monolayer of pure trabecular meshwork cells. These cells required 3-4 weeks to reach confluency and could be passaged five times. They were actively phagocytic in culture and exhibited immunoreactivity to antibodies against two extracellular matrix components, laminin and collagen type IV. Mouse trabecular meshwork cells also expressed receptors for acetylated low-density lipoprotein, a property shared by trabecular meshwork cells derived from other species. The availability of trabecular meshwork cells from an inbred strain of mice will facilitate future in vivo functional studies of these cells in a syngeneic system, as well as investigations of potential immunoregulatory properties of the trabecular meshwork. PMID:1782800

  2. Nanoelectroablation therapy for murine basal cell carcinoma

    SciTech Connect

    Nuccitelli, Richard; Tran, Kevin; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela; Chang, Kris S.; Epstein, Ervin H.; Tang, Jean Y.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nanoelectroablation is a new, non-thermal therapy that triggers apoptosis in tumors. Black-Right-Pointing-Pointer Low energy, ultrashort, high voltage pulses ablate the tumor with little or no scar. Black-Right-Pointing-Pointer Nanoelectroablation eliminates 99.8% of the BCC but may leave a few remnants behind. Black-Right-Pointing-Pointer Pilot clinical trials on human BCCs are ongoing and leave no remnants in most cases. -- Abstract: When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1{sup +/-}K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology and in response to drug therapy . We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5-7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 {+-} 5 (SEM) mm{sup 3} shrunk by 76 {+-} 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4 mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 min-long treatment of 2700 pulses.

  3. Extrathymic development of murine T cells after bone marrow transplantation

    PubMed Central

    Holland, Amanda M.; Zakrzewski, Johannes L.; Tsai, Jennifer J.; Hanash, Alan M.; Dudakov, Jarrod A.; Smith, Odette M.; West, Mallory L.; Singer, Natalie V.; Brill, Jessie; Sun, Joseph C.; van den Brink, Marcel R.M.

    2012-01-01

    Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function. PMID:23160195

  4. Follicle-stimulating hormone receptor-mediated uptake of sup 45 Ca sup 2+ by cultured rat Sertoli cells does not require activation of cholera toxin- or pertussis toxin-sensitive guanine nucleotide binding proteins or adenylate cyclase

    SciTech Connect

    Grasso, P.; Reichert, L.E. Jr. )

    1990-08-01

    We have previously reported that FSH stimulates flux of 45Ca2+ into cultured Sertoli cells from immature rats via voltage-sensitive and voltage-independent calcium channels. In the present study, we show that this effect of FSH does not require cholera toxin (CT)- or pertussis toxin (PT)-sensitive guanine nucleotide binding (G) protein or activation of adenylate cyclase (AC). Significant stimulation of 45Ca2+ influx was observed within 1 min, and maximal response (3.2-fold over basal levels) was achieved within 2 min after exposure to FSH. FSH-stimulated elevations in cellular cAMP paralleled increases in 45Ca2+ uptake, suggesting a possible coupling of AC activation to 45Ca2+ influx. (Bu)2cAMP, however, was not able to enhance 45Ca2+ uptake over basal levels at a final concentration of 1000 microM, although a concentration-related increase in androstenedione conversion to estradiol was evident. Exposure of Sertoli cells to CT (10 ng/ml) consistently stimulated basal levels of androstenedione conversion to estradiol but had no effect on basal levels of 45Ca2+ uptake. Similarly, CT had no effect on FSH-induced 45Ca2+ uptake, but potentiated FSH-stimulated estradiol synthesis. PT (10 ng/ml) augmented basal and FSH-stimulated estradiol secretion without affecting 45Ca2+ influx. The adenosine analog N6-phenylisopropyladenosine, which binds to Gi-coupled adenosine receptors on Sertoli cells, inhibited FSH-stimulated androgen conversion to estradiol in a dose-related (1-1000 nM) manner, but FSH-stimulated 45Ca2+ influx remained unchanged. Our results show that in contrast to FSH-stimulated estradiol synthesis, the flux of 45Ca2+ into Sertoli cells in response to FSH is not mediated either directly or indirectly by CT- or PT-sensitive G protein, nor does it require activation of AC. Our data further suggest that the FSH receptor itself may function as a calcium channel.

  5. Directed Ig class switch recombination in activated murine B cells.

    PubMed Central

    Winter, E; Krawinkel, U; Radbruch, A

    1987-01-01

    Immunoglobulin class switch recombination occurs at frequencies of up to 10%/cell/generation in activated murine B-lymphocytes. We analysed cH gene rearrangements and switch recombinations from active and inactive IgH loci of B-cells activated in various ways and immortalized by cell fusion. Although about half of the IgM+ cells show rearrangement of c mu genes, the deletion of c mu is a rare event. Half of the IgG3+ and IgG1+ cells show rearrangement of c mu genes on the inactive IgH locus and the other half of the IgG+ cells have deleted c mu from both IgH loci by switch recombination. This recombination is directed to the same switch regions on both IgH loci in 60-80% of all cases. Interleukin 4 may play a critical role in programming murine B-lymphocytes for specific switch recombination. Images Fig. 1. Fig. 2. Fig. 6. PMID:3038529

  6. Mesenchymal Stem Cells Reduce Murine Atherosclerosis Development

    PubMed Central

    Frodermann, Vanessa; van Duijn, Janine; van Pel, Melissa; van Santbrink, Peter J.; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C. A.

    2015-01-01

    Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into low-density lipoprotein-receptor knockout mice and put these on a Western-type diet to induce atherosclerosis. Initially after treatment, we found higher levels of circulating regulatory T cells. In the long-term, overall numbers of effector T cells were reduced by MSC treatment. Moreover, MSC-treated mice displayed a significant 33% reduction in circulating monocytes and a 77% reduction of serum CCL2 levels. Most strikingly, we found a previously unappreciated effect on lipid metabolism. Serum cholesterol was reduced by 33%, due to reduced very low-density lipoprotein levels, likely a result of reduced de novo hepatic lipogenesis as determined by a reduced expression of Stearoyl-CoA desaturase-1 and lipoprotein lipase. MSCs significantly affected lesion development, which was reduced by 33% in the aortic root. These lesions contained 56% less macrophages and showed a 61% reduction in T cell numbers. We show here for the first time that MSC treatment affects not only inflammatory responses but also significantly reduces dyslipidaemia in mice. This makes MSCs a potent candidate for atherosclerosis therapies. PMID:26490642

  7. Dye-mediated photosensitization of murine neuroblastoma cells

    SciTech Connect

    Sieber, F.; Sieber-Blum, M.

    1986-04-01

    The purpose of this study was to determine if photosensitization mediated by the fluorescent dye, merocyanine 540, could be used to preferentially kill murine neuroblastoma cells in simulated autologous remission marrow grafts. Simultaneous exposure of Neuro 2a or NB41A3 neuroblastoma cells to merocyanine 540 and white light reduced the concentration of in vitro-clonogenic tumor cells 50,000-fold. By contrast, the same treatment had little effect on the graft's ability to rescue lethally irradiated syngeneic hosts. Lethally irradiated C57BL/6J X A/J F1 mice transplanted with photosensitized mixtures of neuroblastoma cells and normal marrow cells (1:100 or 1:10) survived without developing neuroblastomas. It is conceivable that merocyanine 540-mediated photosensitization will prove useful for the extracorporeal purging of residual neuroblastoma cells from human autologous remission marrow grafts.

  8. Antagonistic Effects of a Mixture of Low-Dose Nonylphenol and Di-N-Butyl Phthalate (Monobutyl Phthalate) on the Sertoli Cells and Serum Reproductive Hormones in Prepubertal Male Rats In Vitro and In Vivo

    PubMed Central

    Xiang, Zou; Qian, Weiping; Han, Xiaodong; Li, Dongmei

    2014-01-01

    The estrogenic chemical nonylphenol (NP) and the antiandrogenic agent di-n-butyl phthalate (DBP) are regarded as widespread environmental endocrine disruptors (EDCs) which at high doses in some species of laboratory animals, such as mice and rats, have adverse effects on male reproduction and development. Given the ubiquitous coexistence of various classes of EDCs in the environment, their combined effects warrant clarification. In this study, we attempted to determine the mixture effects of NP and DBP on the testicular Sertoli cells and reproductive endocrine hormones in serum in male rats based on quantitative data analysis by a mathematical model. In the in vitro experiment, monobutyl phthalate (MBP), the active metabolite of DBP, was used instead of DBP. Sertoli cells were isolated from 9-day-old Sprague-Dawley rats followed by treatment with NP and MBP, singly or combined. Cell viability, apoptosis, necrosis, membrane integrity and inhibin-B concentration were tested. In the in vivo experiment, rats were gavaged on postnatal days 23–35 with a single or combined NP and DBP treatment. Serum reproductive hormone levels were recorded. Next, Bliss Independence model was employed to analyze the quantitative data obtained from the in vitro and in vivo investigation. Antagonism was identified as the mixture effects of NP and DBP (MBP). In this study, we demonstrate the potential of Bliss Independence model for the prediction of interactions between estrogenic and antiandrogenic agents. PMID:24676355

  9. A murine-ES like state facilitates transgenesis and homologous recombination in human pluripotent stem cells

    PubMed Central

    Buecker, Christa; Chen, Hsu-Hsin; Polo, Jose; Daheron, Laurence; Bu, Lei; Barakat, Tahsin Stefan; Okwieka, Patricia; Porter, Andrew; Gribnau, Joost; Hochedlinger, Konrad; Geijsen, Niels

    2010-01-01

    Murine embryonic stem cells have been shown to exist in two functionally distinct pluripotent states, embryonic stem cells (ES cell)- and epiblast stem cells (EpiSCs), which are defined by the culture growth factor conditions. Human ES cells appear to exist in an epiblast-like state, which in comparison to their murine counterparts, is relatively difficult to propagate and manipulate. As a result, gene targeting is difficult and to-date only a handful of human knock-in or knock-out cell lines exist. We explored whether an alternative stem cell state exists for human stem cells as well, and demonstrate that manipulation of the growth factor milieu allows the derivation of a novel human stem cell type that displays morphological, molecular and functional properties of murine ES cells and facilitates gene targeting. As such, the murine ES-like state provides a powerful tool for the generation of recombinant human pluripotent stem cell lines. PMID:20569691

  10. Murine Norovirus Transcytosis across an In Vitro Polarized Murine Intestinal Epithelial Monolayer Is Mediated by M-Like Cells

    PubMed Central

    Gonzalez-Hernandez, Mariam B.; Liu, Thomas; Blanco, Luz P.; Auble, Heather; Payne, Hilary C.

    2013-01-01

    Noroviruses (NoVs) are the causative agent of the vast majority of nonbacterial gastroenteritis worldwide. Due to the inability to culture human NoVs and the inability to orally infect a small animal model, little is known about the initial steps of viral entry. One particular step that is not understood is how NoVs breach the intestinal epithelial barrier. Murine NoV (MNV) is the only NoV that can be propagated in vitro by infecting murine macrophages and dendritic cells, making this virus an attractive model for studies of different aspects of NoV biology. Polarized murine intestinal epithelial mICcl2 cells were used to investigate how MNV interacts with and crosses the intestinal epithelium. In this in vitro model of the follicle-associated epithelium (FAE), MNV is transported across the polarized cell monolayer in the absence of viral replication or disruption of tight junctions by a distinct epithelial cell with microfold (M) cell properties. In addition to transporting MNV, these M-like cells also transcytose microbeads and express an IgA receptor. Interestingly, B myeloma cells cultured in the basolateral compartment underlying the epithelial monolayer did not alter the number of M-like cells but increased their transcytotic activity. Our data demonstrate that MNV can cross an intact intestinal epithelial monolayer in vitro by hijacking the M-like cells' intrinsic transcytotic pathway and suggest a potential mechanism for MNV entry into the host. PMID:24049163

  11. Murine norovirus transcytosis across an in vitro polarized murine intestinal epithelial monolayer is mediated by M-like cells.

    PubMed

    Gonzalez-Hernandez, Mariam B; Liu, Thomas; Blanco, Luz P; Auble, Heather; Payne, Hilary C; Wobus, Christiane E

    2013-12-01

    Noroviruses (NoVs) are the causative agent of the vast majority of nonbacterial gastroenteritis worldwide. Due to the inability to culture human NoVs and the inability to orally infect a small animal model, little is known about the initial steps of viral entry. One particular step that is not understood is how NoVs breach the intestinal epithelial barrier. Murine NoV (MNV) is the only NoV that can be propagated in vitro by infecting murine macrophages and dendritic cells, making this virus an attractive model for studies of different aspects of NoV biology. Polarized murine intestinal epithelial mICcl2 cells were used to investigate how MNV interacts with and crosses the intestinal epithelium. In this in vitro model of the follicle-associated epithelium (FAE), MNV is transported across the polarized cell monolayer in the absence of viral replication or disruption of tight junctions by a distinct epithelial cell with microfold (M) cell properties. In addition to transporting MNV, these M-like cells also transcytose microbeads and express an IgA receptor. Interestingly, B myeloma cells cultured in the basolateral compartment underlying the epithelial monolayer did not alter the number of M-like cells but increased their transcytotic activity. Our data demonstrate that MNV can cross an intact intestinal epithelial monolayer in vitro by hijacking the M-like cells' intrinsic transcytotic pathway and suggest a potential mechanism for MNV entry into the host. PMID:24049163

  12. The dynamics of murine mammary stem/progenitor cells

    PubMed Central

    DONG, Qiaoxiang; SUN, Lu-Zhe

    2014-01-01

    The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups. PMID:25580105

  13. Murine mammary stem/progenitor cell isolation: Different method matters?

    PubMed

    Gao, Hui; Dong, Qiaoxiang; Chen, Yuanhong; Zhang, Fuchuang; Wu, Anqi; Shi, Yuanshuo; Bandyopadhyay, Abhik; Daniel, Benjamin J; Huang, Changjiang; Sun, Lu-Zhe

    2016-01-01

    Murine mammary stem/progenitor cell isolation has been routinely used in many laboratories, yet direct comparison among different methods is lacking. In this study, we compared two frequently used digestion methods and three sets of frequently used surface markers for their efficiency in enriching mammary stem and progenitor cells in two commonly used mouse strains, C57BL/6J and FVB. Our findings revealed that the slow overnight digestion method using gentle collagenase/hyaluronidase could be easily adopted and yielded reliable and consistent results in different batches of animals. In contrast, the different fast digestion protocols, as described in published studies, yielded high percent of non-epithelial cells with very few basal epithelial cells liberated in our hands. The three sets of markers tested in our hands reveal rather equally efficiency in separating luminal and basal cells if same fluorochrome conjugations were used. However, the tendency of non-epithelial cell inclusion in the basal cell gate was highest in samples profiled by CD24/CD29 and lowest in samples profiled by CD49f/EpCAM, this is especially true in mammary cells isolated from C57BL/6J mice. This finding will have significant implication when sorted basal cells are used for subsequent gene expression analysis. PMID:26933638

  14. Permissive and restricted virus infection of murine embryonic stem cells.

    PubMed

    Wash, Rachael; Calabressi, Sabrina; Franz, Stephanie; Griffiths, Samantha J; Goulding, David; Tan, E-Pien; Wise, Helen; Digard, Paul; Haas, Jürgen; Efstathiou, Stacey; Kellam, Paul

    2012-10-01

    Recent RNA interference (RNAi) studies have identified many host proteins that modulate virus infection, but small interfering RNA 'off-target' effects and the use of transformed cell lines limit their conclusiveness. As murine embryonic stem (mES) cells can be genetically modified and resources exist where many and eventually all known mouse genes are insertionally inactivated, it was reasoned that mES cells would provide a useful alternative to RNAi screens. Beyond allowing investigation of host-pathogen interactions in vitro, mES cells have the potential to differentiate into other primary cell types, as well as being used to generate knockout mice for in vivo studies. However, mES cells are poorly characterized for virus infection. To investigate whether ES cells can be used to explore host-virus interactions, this study characterized the responses of mES cells following infection by herpes simplex virus type 1 (HSV-1) and influenza A virus. HSV-1 replicated lytically in mES cells, although mES cells were less permissive than most other cell types tested. Influenza virus was able to enter mES cells and express some viral proteins, but the replication cycle was incomplete and no infectious virus was produced. Knockdown of the host protein AHCYL1 in mES cells reduced HSV-1 replication, showing the potential for using mES cells to study host-virus interactions. Transcriptional profiling, however, indicated the lack of an efficient innate immune response in these cells. mES cells may thus be useful to identify host proteins that play a role in virus replication, but they are not suitable to determine factors that are involved in innate host defence. PMID:22815272

  15. Permissive and restricted virus infection of murine embryonic stem cells

    PubMed Central

    Wash, Rachael; Calabressi, Sabrina; Franz, Stephanie; Griffiths, Samantha J.; Goulding, David; Tan, E-Pien; Wise, Helen; Digard, Paul; Haas, Jürgen; Efstathiou, Stacey

    2012-01-01

    Recent RNA interference (RNAi) studies have identified many host proteins that modulate virus infection, but small interfering RNA ‘off-target’ effects and the use of transformed cell lines limit their conclusiveness. As murine embryonic stem (mES) cells can be genetically modified and resources exist where many and eventually all known mouse genes are insertionally inactivated, it was reasoned that mES cells would provide a useful alternative to RNAi screens. Beyond allowing investigation of host–pathogen interactions in vitro, mES cells have the potential to differentiate into other primary cell types, as well as being used to generate knockout mice for in vivo studies. However, mES cells are poorly characterized for virus infection. To investigate whether ES cells can be used to explore host–virus interactions, this study characterized the responses of mES cells following infection by herpes simplex virus type 1 (HSV-1) and influenza A virus. HSV-1 replicated lytically in mES cells, although mES cells were less permissive than most other cell types tested. Influenza virus was able to enter mES cells and express some viral proteins, but the replication cycle was incomplete and no infectious virus was produced. Knockdown of the host protein AHCYL1 in mES cells reduced HSV-1 replication, showing the potential for using mES cells to study host–virus interactions. Transcriptional profiling, however, indicated the lack of an efficient innate immune response in these cells. mES cells may thus be useful to identify host proteins that play a role in virus replication, but they are not suitable to determine factors that are involved in innate host defence. PMID:22815272

  16. Resistance to cyclopentenylcytosine in murine leukemia L1210 cells.

    PubMed

    Zhang, H; Cooney, D A; Zhang, M H; Ahluwalia, G; Ford, H; Johns, D G

    1993-12-01

    Cyclopentenyl cytosine (CPEC) exhibits oncological activity in murine and human tumor cells and has now entered Phase I clinical trials. Its mode of action as an antitumor agent appears to be inhibition by its triphosphate (CPEC-TP) of CTP synthase, the enzyme which converts UTP to CTP. In an attempt to elucidate the mechanism of resistance to CPEC, a murine leukemia cell line resistant to CPEC (L1210/CPEC) was developed by N-methyl-N-nitro-N-nitrosoguanidine-induced mutagenesis and subsequent selection by cultivation of the L1210 cells in the presence of 2 microM CPEC. Resistant clones were maintained in CPEC-free medium for 6 generations before biochemical studies were performed. The resistant clone selected for further studies was approximately 13,000-fold less sensitive to growth inhibition by CPEC than the parental cells, and the concentration of CPEC required to deplete CTP in the resistant cells was 50-fold higher than in the sensitive cells. A comparison of the kinetic properties of CTP synthase from sensitive and resistant cells indicated alteration in the properties of the enzyme from the latter; the median inhibitory concentration for CPEC-TP increased from 2 to 14 microM, Km for UTP decreased from 126 to 50 microM, and Vmax increased 12-fold from 0.2 to 2.3 nmol/mg/min. Northern blot analyses of polyadenylated RNA from the resistant and sensitive cells indicated a 3-fold increase in transcripts of the CTP synthase gene in the resistant line. Consistent with these alterations in the properties of the enzyme, the resistant cells exhibited significantly expanded CTP and dCTP pools (4- 5-fold) when compared with the sensitive cells. No change was observed, however, in the properties of uridine-cytidine kinase, the enzyme responsible for the initial phosphorylation of CPEC; despite this, however, cellular uptake of CPEC was greatly decreased, and phosphorylation of CPEC and its incorporation into RNA were 10-fold less than in the parental cells. These latter

  17. Effects of trichostatins on differentiation of murine erythroleukemia cells

    SciTech Connect

    Yoshida, M.; Nomura, S.; Beppu, T.

    1987-07-15

    The fungistatic antibiotics trichostatins (TS) A and C were isolated from culture broth of Streptomyces platensis No. 145 and were found to be potent inducers of differentiation in murine erythroleukemia (Friend and RV133) cells at concentrations of 1.5 X 10(-8) M for TSA and 5 X 10(-7) M for TSC. Differentiation induced by TS was cooperatively enhanced by UV irradiation but not by treatment with dimethyl sulfoxide. This enhanced activity was completely inhibited by adding cycloheximide to the culture medium 2 h after exposure to TS, suggesting that TS are dimethyl sulfoxide-type inducers of erythroid differentiation. No inhibitory effect of TS was observed on macromolecular synthesis in cultured cells.

  18. Isolation of Primary Murine Brain Microvascular Endothelial Cells

    PubMed Central

    Ruck, Tobias; Bittner, Stefan; Epping, Lisa; Herrmann, Alexander M.; Meuth, Sven G.

    2014-01-01

    The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed. PMID:25489873

  19. FLOW CYTOMETRIC COMPARISON OF THE EFFECTS OF TRIALKYTING ON THE MURINE ERYTHROLEUKEMIC CELL

    EPA Science Inventory

    Cellular effects of exposure to tributyltin (TBT), triethyltin (TET), or trimethyltin (TMT) were investigated by flow cytometry employing the murine erythroleukemic cell (MELC) as a model cellular system. Cell viability was investigated by the carboxyfluorescein diacetate (CFDA) ...

  20. Toxicity of Calcium Hydroxide Nanoparticles on Murine Fibroblast Cell Line

    PubMed Central

    Dianat, Omid; Azadnia, Sina; Mozayeni, Mohammad Ali

    2015-01-01

    Introduction: One of the major contributing factors, which may cause failure of endodontic treatment, is the presence of residual microorganisms in the root canal system. For years, most dentists have been using calcium hydroxide (CH) as the intracanal medicament between treatment sessions to eliminate remnant microorganisms. Reducing the size of CH particles into nanoparticles enhances the penetration of this medicament into dentinal tubules and increases their antimicrobial efficacy. This in vitro study aimed to compare the cytotoxicity of CH nanoparticles and conventional CH on fibroblast cell line using the Mosmann’s Tetrazolium Toxicity (MTT) assay. Methods and Materials: This study was conducted on L929 murine fibroblast cell line by cell culture and evaluation of the direct effect of materials on the cultured cells. Materials were evaluated in two groups of 10 samples each at 24, 48 and 72 h. At each time point, 10 samples along with 5 positive and 5 negative controls were evaluated. The samples were transferred into tubes and exposed to fibroblast cells. The viability of cells was then evaluated. The Two-way ANOVA was used for statistical analysis and the level of significance was set at 0.05. Results: Cytotoxicity of both materials decreased over time and for conventional CH was lower than that of nanoparticles. However, this difference was not statistically significant (P>0.05). Conclusion: The cytotoxicity of CH nanoparticles was similar to that of conventional CH. PMID:25598810

  1. Detection of human myeloid progenitor cells in a murine background.

    PubMed

    Carow, C E; Harrington, M A; Broxmeyer, H E

    1993-01-01

    Cell-mixing experiments were performed to determine whether human (hu) peripheral blood plasma would select for the growth of hu myeloid progenitor cells in vitro. Mixtures of hu male umbilical cord blood and murine (mu) female bone marrow (100% hu, 100% mu, 1.0% hu or 10% hu and 50% hu) were plated in methylcellulose cultures that contained either hu plasma or fetal bovine serum (FBS). Cultures were supplemented with recombinant (r) hu erythropoietin (Epo) alone or in combination with rhu granulocyte-macrophage colony stimulating factor (GM-CSF), rmuGM-CSF or rhu steel factor (SLF). DNA was extracted from day 14 colonies and clusters, and the polymerase chain reaction (PCR) was used to detect the hu Y-chromosome satellite DNA sequence. Results of these studies revealed that hu plasma used in combination with hu growth factors selected for the growth of hu progenitor cells. Mu cells grew in hu plasma only at high cell-plating concentrations. This selective effect was due to a heat labile factor or factors, since mu cells grew equally well in heat-inactivated hu plasma and FBS. Cells in individual progenitor cell colonies and clusters cultured in hu plasma contained hu Y-chromosome-specific DNA sequences that were detectable after PCR-mediated amplification, thus eliminating the need for time-consuming Southern transfer. This study describes a method whereby hu/immune-deficient mice can be screened rapidly for hu myeloid engraftment. These results also indicate that the hu identity of colonies and clusters cultured in hu plasma must be genetically confirmed, especially when hu cells may represent a low percentage of the total cells plated. PMID:7678088

  2. A Novel Cell Line from Spontaneously Immortalized Murine Microglia

    PubMed Central

    Kulas, Joshua; Combs, Colin K.

    2014-01-01

    Background Purified microglia cultures are useful tools to study microglial behavior in vitro. Microglial cell lines serve as an attractive alternative to primary microglia culture, circumventing the costly and lengthy preparation of the latter. However, immortalization by genetic or pharmacologic manipulations may show altered physiology from primary microglia. New Method A novel microglial cell line was isolated from a primary glial culture of postnatal murine cerebral cortices. The culture contained a population of spontaneously transformed microglia that continued to divide without genetic or pharmacological manipulations. After several clones were isolated, one particular clone, SIM-A9, was analyzed for its microglial characteristics. Results SIM-A9 cells expressed macrophage/microglia-specific proteins, CD68 and Iba1. SIM-A9 cells were responsive to exogenous inflammatory stimulation with lipopolysaccharide and β-amyloid, triggering tyrosine kinase-based and NFκB signaling cascades as well as TNFα secretion. SIM-A9 cells also exhibited phagocytic uptake of fluorescent labeled β-amyloid and bacterial bioparticles. Furthermore, lipopolysaccharide increased the levels of inducible nitric oxide synthase and cyclooxygenase-2, whereas IL-4 stimulation increased arginase-1 levels demonstrating that SIM-A9 cells are capable of switching their profiles to pro- or anti-inflammatory phenotypes, respectively. Comparison with Existing Methods The use of SIM-A9 cells avoids expensive and lengthy procedures required for the preparation of primary microglia. Spontaneously immortalized SIM-A9 cells are expected to behave more comparably to primary microglia than virally transformed or pharmacologically induced microglial cell lines. Conclusions SIM-A9 cells exhibit key characteristics of cultured primary microglia and may serve as a valuable model system for the investigation of microglial behavior in vitro. PMID:24975292

  3. Microenvironment influences vascular differentiation of murine cardiovascular progenitor cells.

    PubMed

    Gluck, Jessica M; Delman, Connor; Chyu, Jennifer; MacLellan, W Robb; Shemin, Richard J; Heydarkhan-Hagvall, Sepideh

    2014-11-01

    We examined the effects of the microenvironment on vascular differentiation of murine cardiovascular progenitor cells (CPCs). We isolated CPCs and seeded them in culture exposed to the various extracellular matrix (ECM) proteins in both two-dimensional (2D) and 3D culture systems. To better understand the contribution of the microenvironment to vascular differentiation, we analyzed endothelial and smooth muscle cell differentiation at both day 7 and day 14. We found that laminin and vitronectin enhanced vascular endothelial cell differentiation while fibronectin enhanced vascular smooth muscle cell differentiation. We also observed that the effects of the 3D electrospun scaffolds were delayed and not noticeable until the later time point (day 14), which may be due to the amount of time necessary for the cells to migrate to the interior of the scaffold. The study characterized the contributions of both ECM proteins and the addition of a 3D culture system to continued vascular differentiation. Additionally, we demonstrated the capability bioengineer a CPC-derived vascular graft. PMID:24687591

  4. Replication of the Moloney murine sarcoma-leukemia virus in XC cells.

    PubMed

    Trowbridge, S T; Benyesh-Melnick, M; Biswal, N

    1973-01-01

    The XC rat cell line was found to support the replication of a strain of the Moloney murine sarcoma-leukemia virus. In growth curve experiments cytopathology was paralleled by the production of murine sarcoma virus and leukemia virus progeny having the biologic, antigenic, and biophysical properties of the infecting virus. PMID:4346280

  5. Chinese medicinal herbs inhibit growth of murine renal cell carcinoma.

    PubMed

    Lau, B H; Ruckle, H C; Botolazzo, T; Lui, P D

    1994-01-01

    Tumors are known to produce factors suppressing immune functions. We previously showed that a murine renal cell carcinoma (Renca) suppressed macrophage function in vitro and that this suppression was abolished by co-incubation with extracts of two Chinese medicinal herbs. We now report that these phytochemicals are capable of inhibiting growth of Renca in vivo. BALB/c mice were transplanted intraperitoneally (IP) with 1-2 x 10(5) Renca cells. One day after tumor transplant, mice were randomized into two groups. One group was treated IP, daily for 10 days, with 100 microliters of phytochemicals containing 500 micrograms each of Astragalus membranaceus and Ligustrum lucidum, while the other group received saline as controls. A cure rate of 57% was obtained with these phytochemicals when the initial tumor load was 2 x 10(5), and 100% when the initial tumor load was 1 x 10(5). Additional experiments were performed to investigate the mechanisms involved in this protection. Splenic macrophages from tumor-bearing mice were shown to have depressed chemiluminescent oxidative burst activity, and this depression was restored with phytochemical treatment. Splenocytes from mice transplanted with Renca responded less favorably to interleukin-2 (IL-2) in generating lymphokine-activated killer (LAK) cells; again this depression was restored with phytochemical treatment. Our data suggest that these phytochemicals may have exerted their antitumor effects via augmentation of phagocyte and LAK cell activities. PMID:7812364

  6. High-dimensional analysis of the murine myeloid cell system.

    PubMed

    Becher, Burkhard; Schlitzer, Andreas; Chen, Jinmiao; Mair, Florian; Sumatoh, Hermi R; Teng, Karen Wei Weng; Low, Donovan; Ruedl, Christiane; Riccardi-Castagnoli, Paola; Poidinger, Michael; Greter, Melanie; Ginhoux, Florent; Newell, Evan W

    2014-12-01

    Advances in cell-fate mapping have revealed the complexity in phenotype, ontogeny and tissue distribution of the mammalian myeloid system. To capture this phenotypic diversity, we developed a 38-antibody panel for mass cytometry and used dimensionality reduction with machine learning-aided cluster analysis to build a composite of murine (mouse) myeloid cells in the steady state across lymphoid and nonlymphoid tissues. In addition to identifying all previously described myeloid populations, higher-order analysis allowed objective delineation of otherwise ambiguous subsets, including monocyte-macrophage intermediates and an array of granulocyte variants. Using mice that cannot sense granulocyte macrophage-colony stimulating factor GM-CSF (Csf2rb(-/-)), which have discrete alterations in myeloid development, we confirmed differences in barrier tissue dendritic cells, lung macrophages and eosinophils. The methodology further identified variations in the monocyte and innate lymphoid cell compartment that were unexpected, which confirmed that this approach is a powerful tool for unambiguous and unbiased characterization of the myeloid system. PMID:25306126

  7. Simvastatin induces osteogenic differentiation of murine embryonic stem cells.

    PubMed

    Pagkalos, Joseph; Cha, Jae Min; Kang, Yunyi; Heliotis, Manolis; Tsiridis, Eleftherios; Mantalaris, Athanasios

    2010-11-01

    Statins are potent inhibitors of cholesterol synthesis. Several statins are available with different molecular and pharmacokinetic properties. Simvastatin is more lipophilic than pravastatin and has a higher affinity to phospholipid membranes than atorvastatin, allowing its passive diffusion through the cell membrane. In vitro studies on bone marrow stromal cells, osteoblast-like cells, and embryonic stem cells have shown statins to have cholesterol-independent anabolic effects on bone metabolism; alas, statins were supplemented in osteogenic medium, which does not facilitate elucidation of their potential osteoinductive properties. Embryonic stem cells (ESCs), derived from the inner cell mass of the blastocyst, are unique in that they enjoy perpetual self-proliferation, are pluripotent, and are able to differentiate toward all the cellular lineages composing the body, including the osteogenic lineage. Consequently, ESCs represent a potentially potent cell source for future clinical cellular therapies of various bone diseases, even though there are several hurdles that still need to be overcome. Herein we demonstrate, for the first time to our knowledge, that simvastatin induces murine ESC (mESC) differentiation toward the osteogenic lineage in the absence of osteoinductive supplements. Specifically, we found that a simvastatin concentration in the micromolar range and higher was toxic to the cells and that an effective concentration for osteoinduction is 0.1 nM, as shown by increased alizarin red staining as well as increased osteocalcin and osetrix gene expression. These results suggest that in the future, lipophilic simvastatin may provide a novel pharmacologic agent for bone tissue engineering applications. PMID:20564244

  8. DNA repair in murine embryonic stem cells and differentiated cells

    SciTech Connect

    Tichy, Elisia D. Stambrook, Peter J.

    2008-06-10

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells.

  9. Characterization of iron uptake from transferrin by murine endothelial cells.

    PubMed

    Hallmann, R; Savigni, D L; Morgan, E H; Baker, E

    2000-01-01

    Iron is required by the brain for normal function, however, the mechanisms by which it crosses the blood-brain barrier (BBB) are poorly understood. The uptake and efflux of transferrin (Tf) and Fe by murine brain-derived (bEND3) and lymph node-derived (m1END1) endothelial cell lines was compared. The effects of iron chelators, metabolic inhibitors and the cellular activators, lipopolysaccharide (LPS) and tumour necrosis factor-alpha (TNF-alpha), on Tf and Fe uptake were investigated. Cells were incubated with 59Fe-125I-Tf; Fe uptake was shown to increase linearly over time for both cell lines, while Tf uptake reached a plateau within 2 h. Both Tf and Fe uptake were saturable. bEND3 cells were shown to have half as many Tf receptors as m1END1 cells, but the mean cycling times of a Tf molecule were the same. Tf and Fe efflux from the cells were measured over time, revealing that after 2 h only 25% of the Tf but 80% of the Fe remained associated with the cells. Of 7 iron chelators, only deferriprone (L1) markedly decreased Tf uptake. However, Fe uptake was reduced by more than 50% by L1, pyridoxal isonicotinoyl hydrazone (PIH) and desferrithiocin (DFT). The cellular activators TNF-alpha or LPS had little effect on Tf turnover, but they accelerated Fe uptake in both endothelial cell types. Phenylarsenoxide (PhAsO) and N-ethyl maleimide (NEM), inhibitors of Tf endocytosis, reduced both Tf and Fe uptake in both cell lines, while bafilomycin A1, an inhibitor of endosomal acidification, reduced Fe uptake but did not affect Tf uptake. The results suggest that Tf and Fe uptake by both bEND3 and m1END1 is via receptor-mediated endocytosis with release of Fe from Tf within the cell and recycling of apo-Tf. On the basis of Tf- and Fe-metabolism both cell lines are similar and therefore well suited for use in in vitro models for Fe transport across the BBB. PMID:10865941

  10. Generation of Murine Sympathoadrenergic Progenitor-Like Cells from Embryonic Stem Cells and Postnatal Adrenal Glands

    PubMed Central

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S.; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS. PMID:23675538