Science.gov

Sample records for muscarinic cholinergic receptor

  1. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    SciTech Connect

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. )

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  2. Muscarinic cholinergic receptors in pancreatic acinar carcinoma of rat.

    PubMed

    Taton, G; Delhaye, M; Swillens, S; Morisset, J; Larose, L; Longnecker, D S; Poirier, G G

    1985-04-15

    The active enantiomer of tritiated quinuclidinyl benzilate (3H(-)QNB) was used as a ligand to evaluate the muscarinic receptors. The 3H(-)QNB binding characteristics of muscarinic cholinergic receptors obtained from normal and neoplastic tissues were studied to determine changes in receptor properties during neoplastic transformation. Saturable and stereospecific binding sites for 3H(-)QNB are present in homogenates of rat pancreatic adenocarcinoma. The proportions of high- and low-affinity agonist binding sites are similar for neoplastic and normal tissues. The density of muscarinic receptors is higher in neoplastic (200 femtomoles/mg protein) than in normal pancreatic homogenates (80 femtomoles/mg protein). The muscarinic binding sites of the neoplastic and fetal pancreas show similar KD values which are higher than those observed for normal pancreas. PMID:2580801

  3. Cholinergic muscarinic receptors in rat cochlea.

    PubMed

    van Megen, Y J; Klaassen, A B; Rodrigues de Miranda, J F; Kuijpers, W

    1988-11-22

    Specific 3H-1-quinuclidinylbenzilate (3H-1-QNB) binding to rat cochlea homogenates occurs to a homogeneous class of binding sites with Kd = 0.13 +/- 0.01 nM and Bmax = 0.57 +/- 0.07 fmol per cochlea. Binding is stereoselectively inhibited by benzetimide enantiomers. Dexetimide was more effective than levetimide in displacing 3H-1-QNB from its binding sites (Ki = 4 x 10(-10) M and 6.5 x 10(-6) M, respectively). Pirenzepine inhibits 3H-1-QNB binding with low affinity (Ki = 2 x 10(-6) M), classifying the binding sites as muscarinic M2 receptors. PMID:3214711

  4. Down regulation of the muscarinic cholinergic receptor of the rat prostate following castration

    SciTech Connect

    Shapiro, E.; Miller, A.R.; Lepor, H.

    1985-07-01

    Prostatic secretion is dependent upon the integrity of the endocrine and autonomic nervous systems and is dramatically influenced by muscarinic cholinergic analogs. In this study, the authors have used radioligand receptor binding methods on whole tissue homogenates and slide mounted tissue sections of rat prostate to determine whether androgens regulate the density of muscarinic cholinergic receptors in the prostate. The muscarinic cholinergic receptor binding affinities (Kd) of (/sup 3/H) N-methylscopolamine in prostatic homogenates obtained from intact, castrate, and castrate rats receiving testosterone replacement (castrate + T) were similar (0.07 to 0.10 nM). The muscarinic cholinergic receptor binding capacity decreased 73 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in castrate rats to intact levels. In order to ensure that the loss of receptor density was not due to a decrease in the epithelial: stromal cell ratio, the number of muscarinic cholinergic receptors per unit area of epithelium was determined in the 3 treatment groups using autoradiography on slide mounted tissue sections. The density of muscarinic cholinergic receptors in a unit area of epithelium was decreased 91 per cent following castration. Testosterone administration restored the density of muscarinic cholinergic receptors in the castrate rats to intact levels. The modulation of neurotransmitter receptors by steroid hormones may be a mechanism by which sex steroids regulate biological responsiveness of target tissues.

  5. Modified expression of peripheral blood lymphocyte muscarinic cholinergic receptors in asthmatic children.

    PubMed

    Cherubini, Emanuela; Tabbì, Luca; Scozzi, Davide; Mariotta, Salvatore; Galli, Elena; Carello, Rossella; Avitabile, Simona; Tayebati, Seyed Koshrow; Amenta, Francesco; De Vitis, Claudia; Mancini, Rita; Ricci, Alberto

    2015-07-15

    Lymphocytes possess an independent cholinergic system. We assessed the expression of muscarinic cholinergic receptors in lymphocytes from 49 asthmatic children and 10 age matched controls using Western blot. We demonstrated that CD4+ and CD8+ T cells expressed M2 and M4 muscarinic receptors which density were significantly increased in asthmatic children in comparison with controls. M2 and M4 receptor increase was strictly related with IgE and fraction of exhaled nitric oxide (FeNO) measurements and with impairment in objective measurements of airway obstruction. Increased lymphocyte muscarinic cholinergic receptor expression may concur with lung cholinergic dysfunction and with inflammatory molecular framework in asthma. PMID:26025056

  6. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  7. Novel alkoxy-oxazolyl-tetrahydropyridine muscarinic cholinergic receptor antagonists.

    PubMed

    Shannon, H E; Bymaster, F P; Hendrix, J C; Quimby, S J; Mitch, C H

    1995-01-01

    The purpose of the present studies was to compare a novel series of alkoxy-oxazolyl-tetrahydropyridines (A-OXTPs) as muscarinic receptor antagonists. The affinity of these compounds for muscarinic receptors was determined by inhibition of [3H]pirenzepine to M1 receptors in hippocampus, [3H]QNB to M2 receptors in brainstem, and [3H]oxotremorine-M to high affinity muscarinic agonist binding sites in cortex. All of the compounds had higher affinity for [3H]pirenzepine than for [3H]QNB or [3H]oxotremorine-M labeled receptors, consistent with an interpretation that they are relatively selective M1 receptor antagonists, although none were as selective as pirenzepine. In addition, dose-response curves were determined for antagonism of oxotremorine-induced salivation (mediated by M3 receptors) and tremor (mediated by non-M1 receptors) in mice. In general, the A-OXTPs were equipotent and equieffective in antagonizing both salivation and tremor, although there were modest differences for some compounds. Dose-response curves also were determined on behavior maintained under a spatial-alternation schedule of food presentation in rats as a measure of effects on working memory. The A-OXTPs produced dose-related decreases in percent correct responding at doses three- to ten-fold lower than those which decreased rates of responding. However, only one compound, MB-OXTP, produced effects on percent correct responding consistent with a selective effect on memory as opposed to non-memory variables. The present results provide evidence that these alkoxy-oxazolyl-tetrahydropyridines are a novel series of modestly M1-selective muscarinic receptor antagonists, and that one member of the series, MB-OXTP, appears to be more selective in its effects on memory than previously studies muscarinic antagonists. PMID:7753969

  8. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  9. Spontaneous Synaptic Activation of Muscarinic Receptors by Striatal Cholinergic Neuron Firing.

    PubMed

    Mamaligas, Aphroditi A; Ford, Christopher P

    2016-08-01

    Cholinergic interneurons (CHIs) play a major role in motor and learning functions of the striatum. As acetylcholine does not directly evoke postsynaptic events at most striatal synapses, it remains unclear how postsynaptic cholinergic receptors encode the firing patterns of CHIs in the striatum. To examine the dynamics of acetylcholine release, we used optogenetics and paired recordings from CHIs and medium spiny neurons (MSNs) virally overexpressing G-protein-activated inwardly rectifying potassium (GIRK) channels. Due to the efficient coupling between endogenous muscarinic receptors and GIRK channels, we found that firing of individual CHIs resulted in monosynaptic spontaneous inhibitory post-synaptic currents (IPSCs) in MSNs. Paired CHI-MSN recordings revealed that the high probability of acetylcholine release at these synapses allowed muscarinic receptors to faithfully encode physiological activity patterns from individual CHIs without failure. These results indicate that muscarinic receptors in striatal output neurons reliably decode CHI firing. PMID:27373830

  10. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  11. Synthesis and biological evaluation of [125I]- and [123I]-4-iododexetimide, a potent muscarinic cholinergic receptor antagonist.

    PubMed

    Wilson, A A; Dannals, R F; Ravert, H T; Frost, J J; Wagner, H N

    1989-05-01

    A series of halogenated racemic analogues of dexetimide (1) was synthesized and their affinity for the muscarinic cholinergic receptor measured. One analogue, 4-iododexetimide (21), was efficiently labeled with 125I and 123I at high specific activity. In vitro binding studies and in vivo biodistribution studies suggest that 123I-labeled 21 may be useful for imaging muscarinic cholinergic receptors in the living human brain with single photon emission computed tomography. PMID:2785211

  12. Evidence for Classical Cholinergic Toxicity Associated with Selective Activation of M1 Muscarinic Receptors.

    PubMed

    Alt, Andrew; Pendri, Annapurna; Bertekap, Robert L; Li, Guo; Benitex, Yulia; Nophsker, Michelle; Rockwell, Kristin L; Burford, Neil T; Sum, Chi Shing; Chen, Jing; Herbst, John J; Ferrante, Meredith; Hendricson, Adam; Cvijic, Mary Ellen; Westphal, Ryan S; O'Connell, Jonathan; Banks, Martyn; Zhang, Litao; Gentles, Robert G; Jenkins, Susan; Loy, James; Macor, John E

    2016-02-01

    The muscarinic acetylcholine receptor subtype 1 (M1) receptors play an important role in cognition and memory, and are considered to be attractive targets for the development of novel medications to treat cognitive impairments seen in schizophrenia and Alzheimer's disease. Indeed, the M1 agonist xanomeline has been shown to produce beneficial cognitive effects in both Alzheimer's disease and schizophrenia patients. Unfortunately, the therapeutic utility of xanomeline was limited by cholinergic side effects (sweating, salivation, gastrointestinal distress), which are believed to result from nonselective activation of other muscarinic receptor subtypes such as M2 and M3. Therefore, drug discovery efforts targeting the M1 receptor have focused on the discovery of compounds with improved selectivity profiles. Recently, allosteric M1 receptor ligands have been described, which exhibit excellent selectivity for M1 over other muscarinic receptor subtypes. In the current study, the following three compounds with mixed agonist/positive allosteric modulator activities that are highly functionally selective for the M1 receptor were tested in rats, dogs, and cynomologous monkeys: (3-((1S,2S)-2-hydrocyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one; 1-((4-cyano-4-(pyridin-2-yl)piperidin-1-yl)methyl)-4-oxo-4H-quinolizine-3-carboxylic acid; and (R)-ethyl 3-(2-methylbenzamido)-[1,4'-bipiperidine]-1'-carboxylate). Despite their selectivity for the M1 receptor, all three compounds elicited cholinergic side effects such as salivation, diarrhea, and emesis. These effects could not be explained by activity at other muscarinic receptor subtypes, or by activity at other receptors tested. Together, these results suggest that activation of M1 receptors alone is sufficient to produce unwanted cholinergic side effects such as those seen with xanomeline. This has important implications for the development of M1 receptor-targeted therapeutics since it

  13. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells.

    PubMed Central

    Shirvan, M H; Pollard, H B; Heldman, E

    1991-01-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, we found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca2+ dependent, and both agonists induced 45Ca2+ uptake. Equilibrium binding studies showed that [3H]Oxo-M bound to chromaffin cell membranes with a Kd value of 3.08 x 10(-8) M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. We propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features. Images PMID:2052567

  14. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    SciTech Connect

    Shirvan, M.H.; Pollard, H.B.; Heldman, E. )

    1991-06-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.

  15. Alterations in alpha-adrenergic and muscarinic cholinergic receptor binding in rat brain following nonionizing radiation

    SciTech Connect

    Gandhi, V.C.; Ross, D.H.

    1987-01-01

    Microwave radiation produces hyperthermia. The mammalian thermoregulatory system defends against changes in temperature by mobilizing diverse control mechanisms. Neurotransmitters play a major role in eliciting thermoregulatory responses. The involvement of adrenergic and muscarinic cholinergic receptors was investigated in radiation-induced hyperthermia. Rats were subjected to radiation at 700 MHz frequency and 15 mW/cm/sup 2/ power density and the body temperature was raised by 2.5 degrees C. Of six brain regions investigated only the hypothalamus showed significant changes in receptor states, confirming its pivotal role in thermoregulation. Adrenergic receptors, studied by (/sup 3/H)clonidine binding, showed a 36% decrease in binding following radiation after a 2.5 degrees C increase in body temperature, suggesting a mechanism to facilitate norepinephrine release. Norepinephrine may be speculated to maintain thermal homeostasis by activating heat dissipation. Muscarinic cholinergic receptors, studied by (3H)quinuclidinyl benzilate binding, showed a 65% increase in binding at the onset of radiation. This may be attributed to the release of acetylcholine in the hypothalamus in response to heat cumulation. The continued elevated binding during the period of cooling after radiation was shut off may suggest the existence of an extra-hypothalamic heat-loss pathway.

  16. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    SciTech Connect

    Gil, D.W.; Wolfe, B.B.

    1986-05-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands (/sup 3/H)quinuclidinyl benzilate or (/sup 3/H)PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of (/sup 3/H)quinuclidinyl benzilate in a biphasic manner.

  17. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  18. Synthesis of radiotracers for studying muscarinic cholinergic receptors in the living human brain using positron emission tomography: [11C]dexetimide and [11C]levetimide.

    PubMed

    Dannals, R F; Långström, B; Ravert, H T; Wilson, A A; Wagner, H N

    1988-01-01

    Dexetimide (Fig. 1a), a potent muscarinic cholinergic receptor antagonist, and levetimide (Fig. 1b), its pharmacologically inactive enantiomer, were labeled with 11C for non-invasive in vivo studies of muscarinic cholinergic receptors in the human brain using positron emission tomography. The syntheses were completed in approximately 32 min using [alpha-11C]benzyl iodide as the precursor. The synthesis, purification, characterization and determination of specific activity are presented and discussed. PMID:2838435

  19. MUSCARINIC CHOLINERGIC RECEPTOR REGULATION AND ACETYLCHOLINESTERASE INHIBITION IN RESPONSE TO INSECTICIDE EXPOSURE DURING DEVELOPMENT

    EPA Science Inventory

    Daily injections of low doses of the organophosphorus pesticide, parathion, into neonatal rats during the rapid phase of cholinergic system development (postnatal days 8-20), resulted in an average 67% inhibition of acetylcholinesterase and a 23% down regulation of muscarinic cho...

  20. Muscarinic cholinergic and alpha 2-adrenergic receptors in the epithelium and muscularis of the human ileum

    SciTech Connect

    Lepor, H.; Rigaud, G.; Shapiro, E.; Baumann, M.; Kodner, I.J.; Fleshman, J.W. )

    1990-04-01

    The aim of this study was to characterize the binding and functional properties of muscarinic cholinergic (MCh) and alpha 2-adrenergic receptors in the human ileum to provide insight into pharmacologic strategies for managing urinary and fecal incontinence after bladder and rectal replacement with intestinal segments. MCh and alpha 2-adrenergic binding sites were characterized in the epithelium and muscularis of eight human ileal segments with 3H-N-methylscopolamine and 3H-rauwolscine, respectively. The dissociation constant for 3H-N-methylscopolamine in the epithelium and muscularis was 0.32 +/- 0.07 nmol/L and 0.45 +/- 0.10 nmol/L, respectively (p = 0.32). The MCh receptor content was approximately eightfold greater in the muscularis compared with the epithelium (p = 0.008). The dissociation constant for 3H-rauwolscine in the muscularis and epithelium was 2.55 +/- 0.42 nmol/L and 2.03 +/- 0.19 nmol/L, respectively (p = 0.29). The alpha 2-adrenoceptor density was twofold greater in the epithelium compared with the muscularis (p = 0.05). Noncumulative concentration-response experiments were performed with carbachol, an MCh agonist, and UK-14304, a selective alpha 2-adrenergic agonist. The epithelium did not contract in the presence of high concentrations of carbachol and UK-14304. The muscularis preparations were responsive only to carbachol. The muscularis contains primarily MCh receptors mediating smooth muscle contraction. The alpha 2-adrenoceptors are localized primarily to the epithelium and may regulate water secretion in the intestine. The distribution and functional properties of ileal MCh and alpha 2-adrenergic receptors provide a theoretic basis for the treatment of incontinence after bladder and rectal replacement with intestinal segments.

  1. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors.

    PubMed

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Francisco; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2016-01-15

    The dorsal raphe nucleus (DRN) is a key structure of the endogenous pain inhibitory system. Although the DRN is rich in serotoninergic neurons, cholinergic neurons are also found in that nucleus. Both ictal and inter-ictal states are followed by post-ictal analgesia. The present study investigated the role of cholinergic mechanisms in postictal antinociceptive processes using microinjections of atropine and mecamylamine, muscarinic and nicotinic cholinergic receptor antagonists, respectively, in the DRN of rats. Intraperitoneal injection of pentylenetetrazole (PTZ) (at 64mg/kg) caused tonic and tonic-clonic seizures. The convulsive motor reactions were followed by an increase in pain thresholds, a phenomenon known as post-ictal analgesia. Pre-treatment of the DRN with atropine or mecamylamine at 1µg, 3µg and 5µg/0.2µL decreased the post-ictal antinociceptive phenomenon. The present results showed that the post-ictal analgesia was mediated by muscarinic and nicotinic cholinergic receptors in the DRN, a structure crucially involved in the neural network that organises post-ictal hypoalgesia. PMID:26620541

  2. Modulation of muscarinic and micotinic cholinergic receptor mediated catecholamine secretion in guinea pig chromaffin cells by phorbol esters

    SciTech Connect

    Figueiredo, J.C.; Fisher, S.K.; Horowitz, M.I.

    1986-05-01

    Isolated guinea pig chromaffin cells possess both nicotinic (nAChR) and muscarinic (mAChR) cholinergic receptors that are positively coupled to catecholamine (CA) release. Sixty to 70% of CA release is mediated by nAChRs and 30-40% by mAChRs. In the absence of added calcium, nAChR mediated CA release was reduced by 65% whereas the muscarinic response was unaffected. The addition of 100nM 12-0-tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C (PKC), also resulted in an increased CA release. Temporally and quantitatively, this response resembled that of mAChR activation. Addition of optimal concentrations of nicotine (50..mu..M) and TPA (100nM) induced a synergistic increase in CA release. Addition of muscarine (1mM) and TPA resulted in an additive response despite a 40-60% inhibition of mAChR mediated inositol phosphate release by TPA. Thus, in guinea pig chromaffin cells, it appears that PKC activation alone is a sufficient stimulus for CA release and that activation of both nicotinic and muscarinic receptors may further increase this enzyme's activity.

  3. Positron emission tomographic investigations of central muscarinic cholinergic receptors with three isomers of [76Br]BrQNP.

    PubMed

    Strijckmans, V; Bottlaender, M; Luo, H; Ottaviani, M; McPherson, D W; Loc'h, C; Fuseau, C; Knapp, F F; Mazière, B

    1997-05-01

    We studied the potential of three radiobrominated isomers of BrQNP, (Z(-,-)-[76Br]BrQNP, E(-,-)-[76Br]BrQNP and E(-,+)-[76Br]BrQNP), as suitable radioligands for imaging of central muscarinic cholinergic receptors in the human brain. These radioligands were stereospecifically prepared by electrophilic radiobromodestannylation of the respective tributylstannyl precursors using no-carrier-added [76Br]BrNH4 and peracetic acid. Preliminary pharmacological characterizations were determined by biodistribution, autoradiography, competition, displacement and metabolite studies in rats. The (-,-)-configuration presented important specific uptakes in brain muscarinic cholinergic receptor (mAChR)-rich structures and in heart, low metabolization rates and an apparent M2 selectivity. The (-,+)-configuration revealed more rapid clearance, lower uptake, a higher metabolization rate and an apparent M1 selectivity. Reversibility of the binding was confirmed for the three radiotracers. Positron emission tomography in the living baboon brain revealed high and rapid uptake in the brain and accumulation in the mAChR-rich structures studied. At 30 min p.i., the E(-,-)-radiotracer reached a plateau in cortex, pons and thalamus with concentrations of 29%, 24% and 19% ID/l, respectively. Z(-,-)-[76Br]BrQNP also accumulated in these structures, reaching a maximal uptake (27% ID/l) in the cortex 2 h p.i. At 5 min p.i. a plateau (17% ID/l) was only observed in the cortex for the E(-, +)-[76Br]BrQNP; by contrast, the other structures showed slow washout. After 3 weeks, the (-,-)-radiotracers were studied in the same baboon pretreated with dexetimide (1 mg/kg), a well-known muscarinic antagonist. In all the mAChR structures, the highly reduced uptake observed after this preloading step indicates that these radiotracers specifically bind to muscarinic receptors. Z(-, -)-[76Br]BrQNP, which is displaced in higher amounts from M2 mAChR-enriched structures, reveals an M2 affinity. The two isomers

  4. Muscarinic cholinergic receptors (MR3) in saliva of patients with oral lichen planus.

    PubMed

    Agha-Hosseini, Farzaneh; Mirzaii-Dizgah, Iraj; Mohammadpour, Neda

    2016-09-01

    Oral lichen planus (OLP) is a relatively common, chronic, and inflammatory mucocutaneous disease. Xerostomia is also a common complaint of most OLP patients. Considering the significant role of M3 muscarinic receptors (M3R) in secretion of saliva, this study sought to compare the level of this receptor in saliva between OLP patients and healthy controls. Forty OLP patients and 40 healthy controls filled out two questionnaires regarding xerostomia to assess its degree of severity. Unstimulated and stimulated salivary samples were obtained of both groups and the stimulated and unstimulated salivary flow rates were calculated. Salivary level of M3 muscarinic receptors was measured using the ELISA kit. Data were analyzed and compared using unpaired student's t test. P < 0.05 was considered significant. Stimulated and unstimulated salivary flow rates and M3 muscarinic receptors levels were significantly lower but degree of xerostomia was significantly higher in OLP patients compared to healthy controls. Salivary M3 muscarinic receptor seems to be low in the patients with OLP and these patients suffer from xerostomia and reduced salivary flow rate. PMID:27371099

  5. Parallel maturation of the pancreatic secretory response to cholinergic stimulation and the muscarinic receptor population.

    PubMed Central

    Dumont, Y.; Larose, L.; Morisset, J.; Poirier, G. G.

    1981-01-01

    1 The appearance of pancreatic muscarinic receptors during development has been measured by use of the specific ligand [3H]-quinuclidinyl benzilate ([3H]-QNB). 2 QNB binding sites are present in foetal pancreas; their maximal concentration is attained at the age of 30 days and a significant decrease is observed in one year old animals. 3 Affinity of [3H]-QNB for the muscarinic receptor does not change with age. 4 An evaluation of the pancreatic secretory response to a cholinoceptor agonist as a function of age indicates that the development of this response parallels that of the receptor population. 5 It is suggested that, at all ages from 3 days after birth onwards, the maximal secretory response of the exocrine pancreas to a cholinoceptor agonist mobilizes the same proportion of the total population of QNB binding sites. PMID:6165420

  6. Muscarinic cholinergic receptor in the human heart evidenced under physiological conditions by positron emission tomography.

    PubMed Central

    Syrota, A; Comar, D; Paillotin, G; Davy, J M; Aumont, M C; Stulzaft, O; Maziere, B

    1985-01-01

    The muscarinic receptor was studied in vivo in the human heart by a noninvasive method, positron emission tomography (PET). The study showed that the binding sites of 11C-labeled methiodide quinuclidinyl benzilate [( 11C]-MQNB), a muscarinic antagonist, were mainly distributed in the ventricular septum (98 pmol/cm3 of heart) and in the left ventricular wall (89 pmol/cm3), while the atria were not visualized. A few minutes after a bolus intravenous injection, the concentration of [11C]MQNB in blood fell to a negligible level (less than 100th of the concentration measured in the ventricular septum). When injected at high specific radioactivity, the concentration of [11C]MQNB in the septum rapidly increased and then remained constant with time. This result was explained by rebinding of the ligand to receptors. It was the major difference observed between the kinetics of binding of [11C]MQNB to receptor sites after intravenous injection in vivo and that of [3H]MQNB to heart homogenates in vitro. The MQNB concentrations in the ventricular septum of different individuals were found to be highest when the heart rate at the time of injection was slow. This result suggests that the antagonist binding site is related to a low-affinity conformational state of the receptor under predominant vagal stimulation. Thus, positron emission tomography might be the ideal method to study the physiologically active form of the muscarinic acetylcholine receptor in man. Images PMID:3871527

  7. Neuroanatomical and neuropharmacological approaches to postictal antinociception-related prosencephalic neurons: the role of muscarinic and nicotinic cholinergic receptors.

    PubMed

    de Freitas, Renato Leonardo; Bolognesi, Luana Iacovelo; Twardowschy, André; Corrêa, Fernando Morgan Aguiar; Sibson, Nicola R; Coimbra, Norberto Cysne

    2013-05-01

    Several studies have suggested the involvement of the hippocampus in the elaboration of epilepsy. There is evidence that suggests the hippocampus plays an important role in the affective and motivational components of nociceptive perception. However, the exact nature of this involvement remains unclear. Therefore, the aim of this study was to determine the role of muscarinic and nicotinic cholinergic receptors in the dorsal hippocampus (dH) in the organization of postictal analgesia. In a neuroanatomical study, afferent connections were found from the somatosensory cortex, the medial septal area, the lateral septal area, the diagonal band of Broca, and the dentate gyrus to the dH; all these areas have been suggested to modulate convulsive activity. Outputs to the dH were also identified from the linear raphe nucleus, the median raphe nucleus (MdRN), the dorsal raphe nucleus, and the locus coeruleus. All these structures comprise the endogenous pain modulatory system and may be involved either in postictal pronociception or antinociception that is commonly reported by epileptic patients. dH-pretreatment with cobalt chloride (1.0 mmol/L CoCl2/0.2 μL) to transiently inhibit local synapses decreased postictal analgesia 10 min after the end of seizures. Pretreatment of the dH with either atropine or mecamylamine (1.0 μg/0.2 μL) attenuated the postictal antinociception 30 min after seizures, while the higher dose (5.0 μg/0.2 μL) decreased postictal analgesia immediately after the end of seizures. These findings suggest that the dH exerts a critical role in the organization of postictal analgesia and that muscarinic and nicotinic cholinergic receptor-mediated mechanisms in the dH are involved in the elaboration of antinociceptive processes induced by generalized tonic-clonic seizures. PMID:23785660

  8. Neuroanatomical and neuropharmacological approaches to postictal antinociception-related prosencephalic neurons: the role of muscarinic and nicotinic cholinergic receptors

    PubMed Central

    de Freitas, Renato Leonardo; Bolognesi, Luana Iacovelo; Twardowschy, André; Corrêa, Fernando Morgan Aguiar; Sibson, Nicola R; Coimbra, Norberto Cysne

    2013-01-01

    Several studies have suggested the involvement of the hippocampus in the elaboration of epilepsy. There is evidence that suggests the hippocampus plays an important role in the affective and motivational components of nociceptive perception. However, the exact nature of this involvement remains unclear. Therefore, the aim of this study was to determine the role of muscarinic and nicotinic cholinergic receptors in the dorsal hippocampus (dH) in the organization of postictal analgesia. In a neuroanatomical study, afferent connections were found from the somatosensory cortex, the medial septal area, the lateral septal area, the diagonal band of Broca, and the dentate gyrus to the dH; all these areas have been suggested to modulate convulsive activity. Outputs to the dH were also identified from the linear raphe nucleus, the median raphe nucleus (MdRN), the dorsal raphe nucleus, and the locus coeruleus. All these structures comprise the endogenous pain modulatory system and may be involved either in postictal pronociception or antinociception that is commonly reported by epileptic patients. dH-pretreatment with cobalt chloride (1.0 mmol/L CoCl2/0.2 μL) to transiently inhibit local synapses decreased postictal analgesia 10 min after the end of seizures. Pretreatment of the dH with either atropine or mecamylamine (1.0 μg/0.2 μL) attenuated the postictal antinociception 30 min after seizures, while the higher dose (5.0 μg/0.2 μL) decreased postictal analgesia immediately after the end of seizures. These findings suggest that the dH exerts a critical role in the organization of postictal analgesia and that muscarinic and nicotinic cholinergic receptor-mediated mechanisms in the dH are involved in the elaboration of antinociceptive processes induced by generalized tonic-clonic seizures. PMID:23785660

  9. [3H]AF-DX 116 labels subsets of muscarinic cholinergic receptors in rat brain and heart.

    PubMed

    Wang, J X; Roeske, W R; Gulya, K; Wang, W; Yamamura, H I

    1987-10-01

    The in vitro binding properties of the novel muscarinic antagonist [3H]AF-DX 116 were studied using a rapid filtration technique. Association and dissociation rates of [3H]AF-DX 116 binding were rapid at 25 degrees C (2.74 and 2.70 X 10(7) min-1 M-1 for K+1; 0.87 and 0.93 min-1 for k-1) but 20-40 times slower at 0-4 degrees C (0.13 and 0.096 X 10(7) min-1 M-1 for k+1; 0.031 and 0.022 min-1 for k-1 in cerebral cortical and cardiac membranes, respectively). Kinetic dissociation constants (Kds) were estimated to be 31.8 nM and 30.9 nM at 25 degrees C; 23.1 nM and 0-4 degrees C for the cerebral cortex and heart, respectively. In saturation studies, [3H]AF-DX 116 labeled 29 percent of the total [3H](-)QNB binding sites in the cerebral cortical membranes and 87 percent in the cardiac membranes, with Kd values of 28.9 nM and 17.9 nM, respectively. Muscarinic antagonists inhibited [3H]AF-DX 116 binding in a rank order of potency of atropine greater than dexetimide greater than AF-DX 116 greater than PZ greater than levetimide in both tissues. Except for PZ/[3H]AF-DX 116 and AF-DX 116/[3H]AF-DX 116 in the cerebral cortex, all the antagonist competition curves had Hill coefficients close to one. Carbachol and oxotremorine produced shallow inhibition curves against [3H]AF-DX 116 binding in both tissues. Regional distribution studies with [3H](-)QNB, [3H]PZ and [3H]AF-DX 116 showed that most of the muscarinic receptors in the cerebral cortex, hippocampus, nucleus accumbens and corpus striatum are of the M1 subtype while those in the brainstem, cerebellum and other lower brain regions are of the M2 subtype. These results indicate that [3H]AF-DX 116 is a useful probe for the study of heterogeneity of muscarinic cholinergic receptors. PMID:3657382

  10. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis.

    PubMed

    Muller, Jay F; Mascagni, Franco; Zaric, Violeta; Mott, David D; McDonald, Alexander J

    2016-08-15

    Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc. PMID:26779591

  11. Imaging muscarinic cholinergic receptors in human brain in vivo with Spect, [123I]4-iododexetimide, and [123I]4-iodolevetimide.

    PubMed

    Müller-Gärtner, H W; Wilson, A A; Dannals, R F; Wagner, H N; Frost, J J

    1992-07-01

    A method to image muscarinic acetylcholine receptors (muscarinic receptors) noninvasively in human brain in vivo was developed using [123I]4-iododexetimide ([123I]IDex), [123I]4-iodolevetimide ([123I]ILev), and single photon emission computed tomography (SPECT). [123I]IDex is a high-affinity muscarinic receptor antagonist. [123I]ILev is its pharmacologically inactive enantiomer and measures nonspecific binding of [123I]IDex in vitro. Regional brain activity after tracer injection was measured in four young normal volunteers for 24 h. Regional [123I]IDex and [123I]ILev activities were correlated early after injection, but not after 1.5 h. [123I]IDex activity increased over 7-12 h in neocortex, neostriatum, and thalamus, but decreased immediately after the injection peak in cerebellum. [123I]IDex activity was highest in neostriatum, followed in rank order by neocortex, thalamus, and cerebellum. [123I]IDex activity correlated with muscarinic receptor concentrations in matching brain regions. In contrast, [123I]ILev activity decreased immediately after the injection peak in all brain regions and did not correspond to muscarinic receptor concentrations. [123I]IDex activity in neocortex and neostriatum during equilibrium was six to seven times higher than [123I]ILev activity. The data demonstrate that [123I]IDex binds specifically to muscarinic receptors in vivo, whereas [123I]ILev represents the nonspecific part of [123I]IDex binding. Subtraction of [123I]ILev from [123I]IDex images on a pixel-by-pixel basis therefore reflects specific [123I]IDex binding to muscarinic receptors. Owing to its high specific binding, [123I]IDex has the potential to measure small changes in muscarinic receptor characteristics in vivo with SPECT. The use of stereoisomerism directly to measure nonspecific binding of [123I]IDex in vivo may reduce complexity in modeling approaches to muscarinic acetylcholine receptors in human brain. PMID:1618935

  12. Muscarinic cholinergic receptors modulate inhibitory synaptic rhythms in hippocampus and neocortex

    PubMed Central

    Alger, Bradley E.; Nagode, Daniel A.; Tang, Ai-Hui

    2014-01-01

    Activation of muscarinic acetylcholine (ACh) receptors (mAChRs) powerfully affects many neuronal properties as well as numerous cognitive behaviors. Small neuronal circuits constitute an intermediate level of organization between neurons and behaviors, and mAChRs affect interactions among cells that compose these circuits. Circuit activity is often assessed by extracellular recordings of the local field potentials (LFPs), which are analogous to in vivo EEGs, generated by coordinated neuronal interactions. Coherent forms of physiologically relevant circuit activity manifest themselves as rhythmic oscillations in the LFPs. Frequencies of rhythmic oscillations that are most closely associated with animal behavior are in the range of 4–80 Hz, which is subdivided into theta (4–14 Hz), beta (15–29 Hz) and gamma (30–80 Hz) bands. Activation of mAChRs triggers rhythmic oscillations in these bands in the hippocampus and neocortex. Inhibitory responses mediated by GABAergic interneurons constitute a prominent feature of these oscillations, and indeed, appear to be their major underlying factor in many cases. An important issue is which interneurons are involved in rhythm generation. Besides affecting cellular and network properties directly, mAChRs can cause the mobilization of endogenous cannabinoids (endocannabinoids, eCBs) that, by acting on the principal cannabinoid receptor of the brain, CB1R, regulate the release of certain neurotransmitters, including GABA. CB1Rs are heavily expressed on only a subset of interneurons and, at lower density, on glutamatergic neurons. Exogenous cannabinoids typically disrupt oscillations in the theta (θ) and gamma (γ) ranges, which probably contributes to the behavioral effects of these drugs. It is important to understand how neuronal circuit activity is affected by mAChR-driven eCBs, as this information will provide deeper insight into the actions of ACh itself, as well as into the effects of eCBs and exogenous cannabinoids

  13. Axonal transport of muscarinic cholinergic receptors in rat vagus nerve: high and low affinity agonist receptors move in opposite directions and differ in nucleotide sensitivity

    SciTech Connect

    Zarbin, M.A.; Wamsley, J.K.; Kuhar, M.J.

    1982-07-01

    The presence and transport of muscarinic cholinergic binding sites have been detected in the rat vagus nerve. These binding sites accumulate both proximal and distal to ligatures in a time-dependent manner. The results of double ligature and colchicine experiments are compatible with the notion that the anterogradely transported binding sites move by fast transport. Most of the sites accumulating proximal to ligatures bind the agonist carbachol with high affinity, while most of the sites accumulating distally bind carbachol with a low affinity. Also, the receptors transported in the anterograde direction are affected by a guanine nucleotide analogue (GppNHp), while those transported in the retrograde direction are less, or not, affected. The bulk of the sites along the unligated nerve trunk bind carbachol with a low affinity and are less sensitive to GppNHp modulation than the anterogradely transported sites. These results suggest that some receptors in the vagus may undergo axonal transport in association with regulatory proteins and that receptor molecules undergo changes in their binding and regulatory properties during their life cycle. These data also support the notion that the high and low affinity agonist form of the muscarinic receptor represent different modulated forms of a single receptor molecule.

  14. Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy.

    PubMed

    Weckesser, M; Hufnagel, A; Ziemons, K; Griessmeier, M; Sonnenberg, F; Hackländer, T; Langen, K J; Holschbach, M; Elger, C E; Müller-Gärtner, H

    1997-09-01

    Animal experiments and preliminary results in humans have indicated alterations of hippocampal muscarinic acetylcholine receptors (mAChR) in temporal lobe epilepsy. Patients with temporal lobe epilepsy often present with a reduction in hippocampal volume. The aim of this study was to investigate the influence of hippocampal atrophy on the quantification of mAChR with single photon emission tomography (SPET) in patients with temporal lobe epilepsy. Cerebral uptake of the muscarinic cholinergic antagonist [123I]4-iododexetimide (IDex) was investigated by SPET in patients suffering from temporal lobe epilepsy of unilateral (n=6) or predominantly unilateral (n=1) onset. Regions of interest were drawn on co-registered magnetic resonance images. Hippocampal volume was determined in these regions and was used to correct the SPET results for partial volume effects. A ratio of hippocampal IDex binding on the affected side to that on the unaffected side was used to detect changes in muscarinic cholinergic receptor density. Before partial volume correction a decrease in hippocampal IDex binding on the focus side was found in each patient. After partial volume no convincing differences remained. Our results indicate that the reduction in hippocampal IDex binding in patients with epilepsy is due to a decrease in hippocampal volume rather than to a decrease in receptor concentration. PMID:9283110

  15. Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception

    PubMed Central

    Ferrier, Jérémy; Bayet-Robert, Mathilde; Dalmann, Romain; El Guerrab, Abderrahim; Aissouni, Youssef; Graveron-Demilly, Danielle; Chalus, Maryse; Pinguet, Jérémy; Eschalier, Alain; Richard, Damien; Daulhac, Laurence; Balayssac, David

    2015-01-01

    Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS 1H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT Our study describes a decrease in cholinergic neurotransmission in the posterior insular

  16. In vitro and in vivo evidence for the existence of presynaptic muscarinic cholinergic receptors in the rat hippocampus.

    PubMed

    Consolo, S; Wang, J X; Fusi, R; Vinci, R; Forloni, G; Ladinsky, H

    1984-08-20

    The intrahippocampal injection of kainic acid cleared 50% of muscarinic receptors and favored the detection of a further 20% loss in hippocampal presynaptic muscarinic receptors produced by electrolytic lesion of the medial septal nucleus as determined by Scatchard analysis of the saturation isotherms of [3H]dexetimide binding. In accordance, a decrease of about 20% in the in vivo accumulation of [3H]dexetimide in the hippocampus was found in animals lesioned in the medial septal nucleus. This effect occurred at both the dose of 5 micrograms/kg and at the saturating dose of 100 micrograms/kg of [3H]dexetimide. The results suggest that the loss was due to decreased receptor number rather than decreased receptor affinity. PMID:6488003

  17. In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands: 2-[18F]- and 4-[18F]-fluorodexetimide.

    PubMed

    Wilson, A A; Scheffel, U A; Dannals, R F; Stathis, M; Ravert, H T; Wagner, H N

    1991-01-01

    Two [18F]-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-[18F]- or 4-[18F]-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies. PMID:2008155

  18. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed Central

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-01-01

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  19. Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons.

    PubMed

    Kelly, J F; Furukawa, K; Barger, S W; Rengen, M R; Mark, R J; Blanc, E M; Roth, G S; Mattson, M P

    1996-06-25

    Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We now report that amyloid beta-peptide (Abeta), which forms plaques in the brain in AD, impairs muscarinic receptor activation of G proteins in cultured rat cortical neurons. Exposure of rodent fetal cortical neurons to Abeta25-35 and Abeta1-40 resulted in a concentration and time-dependent attenuation of carbachol-induced GTPase activity without affecting muscarinic receptor ligand binding parameters. Downstream events in the signal transduction cascade were similarly attenuated by Abeta. Carbachol-induced accumulation of inositol phosphates (IP, IP2, IP3, and IP4) was decreased and calcium imaging studies revealed that carbachol-induced release of calcium was severely impaired in neurons pretreated with Abeta. Muscarinic cholinergic signal transduction was disrupted with subtoxic levels of exposure to AP. The effects of Abeta on carbachol-induced GTPase activity and calcium release were attenuated by antioxidants, implicating free radicals in the mechanism whereby Abeta induced uncoupling of muscarinic receptors. These data demonstrate that Abeta disrupts muscarinic receptor coupling to G proteins that mediate induction of phosphoinositide accumulation and calcium release, findings that implicate Abeta in the impairment of cholinergic transmission that occurs in AD. PMID:8692890

  20. Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder.

    PubMed

    Cannon, D M; Klaver, J K; Gandhi, S K; Solorio, G; Peck, S A; Erickson, K; Akula, N; Savitz, J; Eckelman, W C; Furey, M L; Sahakian, B J; McMahon, F J; Drevets, W C

    2011-04-01

    Genetic variation in the cholinergic muscarinic-2 (M(2)) receptor gene (CHRM2) has been associated with the risk for developing depression. We previously reported that M(2)-receptor distribution volume (V(T)) was reduced in depressed subjects with bipolar disorder (BD) relative to depressed subjects with major depressive disorder (MDD) and healthy controls (HCs). In this study, we investigated the effects of six single-nucleotide polymorphisms (SNPs) for CHRM2 on M(2)-receptor binding to test the hypotheses that genetic variation in CHRM2 influences M(2)-receptor binding and that a CHRM2 polymorphism underlies the deficits in M(2)-receptor V(T) observed in BD. The M(2)-receptor V(T) was measured using positron emission tomography and [(18)F]FP-TZTP in unmedicated, depressed subjects with BD (n=16) or MDD (n=24) and HCs (n=25), and the effect of genotype on V(T) was assessed. In the controls, one SNP (with identifier rs324650, in which the ancestral allele adenine (A) is replaced with one or two copies of thymine (T), showed a significant allelic effect on V(T) in the pregenual and subgenual anterior cingulate cortices in the direction AAreceptor V(T) in BD is associated with genetic variation within CHRM2. The differential impact of the M(2)-receptor polymorphism at rs324650 in the BD and HC samples suggests interactive effects with an unidentified vulnerability factor for BD. PMID:20351719

  1. Muscarinic and nicotinic cholinergic receptor antagonists differentially mediate acquisition of fructose-conditioned flavor preference and quinine-conditioned flavor avoidance in rats.

    PubMed

    Rotella, Francis M; Olsson, Kerstin; Vig, Vishal; Yenko, Ira; Pagirsky, Jeremy; Kohen, Ilanna; Aminov, Alon; Dindyal, Trisha; Bodnar, Richard J

    2015-09-01

    Rats display both conditioned flavor preference (CFP) for fructose, and conditioned flavor avoidance (CFA) following sweet adulteration with quinine. Previous pharmacological analyses revealed that fructose-CFP expression was significantly reduced by dopamine (DA) D1 or D2 antagonists, but not NMDA or opioid antagonists. Fructose-CFP acquisition was significantly reduced by DA D1, DA D2 or NMDA antagonists, but not opioid antagonists. Quinine-CFA acquisition was significantly enhanced and prolonged by DA D1, NMDA or opioid, but not DA D2 antagonists. Cholinergic interneurons and projections interact with DA systems in the nucleus accumbens and ventral tegmental area. Further, both muscarinic and nicotinic cholinergic receptor signaling have been implicated in sweet intake and development of food-related preferences. Therefore, the present study examined whether systemic administration of muscarinic (scopolamine: SCOP) or nicotinic (mecamylamine: MEC) cholinergic receptor antagonists mediated fructose-CFP expression, fructose-CFP acquisition and quinine-CFA acquisition. For fructose-CFP expression, rats were trained over 10 sessions with a CS+ flavor in 8% fructose and 0.2% saccharin and a CS- flavor in 0.2% saccharin. Two-bottle choice tests with CS+ and CS- flavors mixed in 0.2% saccharin occurred following vehicle, SCOP (0.1-10mg/kg) and MEC (1-8mg/kg). For fructose-CFP acquisition, six groups of rats received vehicle, SCOP (1 or 2.5mg/kg), MEC (4 or 6mg/kg) or a limited intake vehicle control 0.5h prior to 10 CS+ and CS- training sessions followed by six 2-bottle CS+ and CS- choice tests in 0.2% saccharin. For quinine-CFA acquisition, five groups of rats received vehicle, SCOP (1 or 2.5mg/kg) or MEC (4 or 6mg/kg) 0.5h prior to 8 one-bottle CS- (8% fructose+0.2% saccharin: FS) and CS+ (fructose+saccharin+quinine (0.030%: FSQ) training sessions followed by six 2-bottle CS- and CS+ choice tests in fructose-saccharin solutions. Fructose-CFP expression was

  2. Low-level exposure to methylmercury modifies muscarinic cholinergic receptor binding characteristics in rat brain and lymphocytes: physiologic implications and new opportunities in biologic monitoring.

    PubMed Central

    Coccini, T; Randine, G; Candura, S M; Nappi, R E; Prockop, L D; Manzo, L

    2000-01-01

    Methylmercury (MeHg) affects several parameters of cholinergic function. These alterations are thought to play a role in MeHg neurotoxicity. In vitro experiments have indicated that MeHg acts as a strong competitive inhibitor of radioligand binding to muscarinic cholinergic receptors (mAChRs) in rat brain. Furthermore, rat brain mAChRs share several pharmacologic characteristics of similar receptors present on lymphocytes. Using the muscarinic antagonist [(3)H]quinuclidinyl benzilate (QNB) to label receptors, we investigated the in vivo interactions of MeHg with rat brain mAChRs. We also investigated whether MeHg-induced central mAChR changes are reflected by similar alterations in splenic lymphocytes. Exposure to low doses of MeHg--0.5 or 2 mg/kg/day in drinking water--for 16 days significantly increased (20-44% of control) mAChRs density (B(max)) in the hippocampus and cerebellum without affecting receptor affinity (K(d)). The effect of MeHg did not occur immediately; it was not apparent until 2 weeks after the termination of treatment. No significant changes in [(3)H]QNB binding were observed in the cerebral cortex. In splenic lymphocytes, mAChR density was remarkably increased (95-198% of control) by day 14 of MeHg exposure and remained enhanced 14 days after the cessation of treatment. These results suggest up-regulation of mAChRs in selected brain regions (hippocampus and cerebellum) after prolonged low-level ingestion of MeHg in rats. These cerebral effects are delayed in onset and are preceded by a marked increase in density of mAChRs on lymphocytes. In chronic MeHg exposure, peripheral lymphocytes may represent a sensitive target for the interaction of MeHg with mAChRs and, therefore, may be predictive indicators of later adaptive response involving cerebral mAChRs. Additionally, the effect of MeHg on lymphocyte mAChRs in vivo indicates that this receptor system should be investigated further as a possible target for MeHg immunotoxicity. Images Figure 1

  3. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors. PMID:26084221

  4. Electron microscopic localization of M2-muscarinic receptors in cholinergic and noncholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei of the rat mesopontine tegmentum.

    PubMed

    Garzón, Miguel; Pickel, Virginia M

    2016-10-15

    Muscarinic m2 receptors (M2Rs) are implicated in autoregulatory control of cholinergic output neurons located within the pedunculopontine (PPT) and laterodorsal tegmental (LTD) nuclei of the mesopontine tegmentum (MPT). However, these nuclei contain many noncholinergic neurons in which activation of M2R heteroceptors may contribute significantly to the decisive role of the LTD and PPT in sleep-wakefulness. We examined the electron microscopic dual immunolabeling of M2Rs and the vesicular acetylcholine transporter (VAchT) in the MPT of rat brain to identify the potential sites for M2R activation. M2R immunogold labeling was predominately seen in somatodendritic profiles throughout the PPT/LTD complex. In somata, M2R immunogold particles were often associated with Golgi lamellae and cytoplasmic endomembrannes, but were rarely in contact with the plasma membrane, as was commonly seen in dendrites. Approximately 36% of the M2R-labeled somata and 16% of the more numerous M2R-labeled dendrites coexpressed VAchT. M2R and M2R/VAchT-labeled dendritic profiles received synapses from inhibitory- and excitatory-type axon terminals, over 88% of which were unlabeled and others contained exclusively M2R or VAchT immunoreactivity. In axonal profiles M2R immunogold was localized to plasmalemmal and cytoplasmic regions and showed a similar distribution in many VAchT-negative glial profiles. These results provide ultrastructural evidence suggestive of somatic endomembrane trafficking of M2Rs, whose activation serves to regulate the postsynaptic excitatory and inhibitory responses in dendrites of cholinergic and noncholinergic neurons in the MPT. They also suggest the possibility that M2Rs in this brain region mediate the effects of acetylcholine on the release of other neurotransmitters and on glial signaling. J. Comp. Neurol. 524:3084-3103, 2016. © 2016 Wiley Periodicals, Inc. PMID:27038330

  5. Activation of Muscarinic Acetylcholine Receptor Subtype 4 Is Essential for Cholinergic Stimulation of Gastric Acid Secretion: Relation to D Cell/Somatostatin

    PubMed Central

    Takeuchi, Koji; Endoh, Takuya; Hayashi, Shusaku; Aihara, Takeshi

    2016-01-01

    Background/Aim: Muscarinic acetylcholine receptors exist in five subtypes (M1∼M5), and they are widely expressed in various tissues to mediate diverse autonomic functions, including gastric secretion. In the present study, we demonstrated, using M1∼M5 KO mice, the importance of M4 receptors in carbachol (CCh) stimulation of acid secretion and investigated how the secretion is modulated by the activation of M4 receptors. Methods: C57BL/6J mice of wild-type (WT) and M1–M5 KO were used. Under urethane anesthesia, acid secretion was measured in the stomach equipped with an acute fistula. CCh (30 μg/kg) was given subcutaneously (s.c.) to stimulate acid secretion. Atropine or octreotide (a somatostatin analog) was given s.c. 20 min before the administration of CCh. CYN154806 (a somatostatin SST2 receptor antagonist) was given i.p. 20 min before the administration of octreotide or CCh. Results: CCh caused an increase of acid secretion in WT mice, and the effect was totally inhibited by prior administration of atropine. The effect of CCh was similarly observed in the animals lacking M1, M2 or M5 receptors but significantly decreased in M3 or M4 KO mice. CYN154806, the SST2 receptor antagonist, dose-dependently and significantly reversed the decreased acid response to CCh in M4 but not M3 KO mice. Octreotide, the somatostatin analog, inhibited the secretion of acid under CCh-stimulated conditions in WT mice. The immunohistochemical study showed the localization of M4 receptors on D cells in the stomach. Serum somatostatin levels in M4 KO mice were higher than WT mice under basal conditions, while those in WT mice were significantly decreased in response to CCh. Conclusions: These results suggest that under cholinergic stimulation the acid secretion is directly mediated by M3 receptors and indirectly modified by M4 receptors. It is assumed that the activation of M4 receptors inhibits the release of somatostatin from D cells and minimizes the acid inhibitory effect of

  6. In vitro and in vivo characterization of 4-[125I]iododexetimide binding to muscarinic cholinergic receptors in the rat heart.

    PubMed

    Matsumura, K; Uno, Y; Scheffel, U; Wilson, A A; Dannals, R F; Wagner, H N

    1991-01-01

    4-[125I]iododexetimide binding to muscarinic cholinergic receptors (mAChR) was evaluated in the rat heart. 4-[125I]iododexetimide displayed high in vitro affinity (Kd = 14.0 nM) for rat myocardial mAChR. In vivo, there was high accumulation of 4-[125I]iododexetimide in the rat atrium and ventricle which could be blocked by approximately 60% by preinjection of atropine. In contrast, accumulation of the radiolabeled stereoisomer, 4-[125I]iodolevetimide, was 63% lower than 4-[125I]iodolevetimide and was not blocked by atropine. The blood clearance of 4-[125I]iododexetimide was rapid, providing heart-to-blood ratios of up to 14:1; however, heart-to-lung and heart-to-liver ratios were below unity. The data indicate that 4-[125I]iododexetimide binds potently to rat mAChR. However, since nonspecific binding is relatively high, it is not clear whether iododexetimide labeled with 123I will be useful in SPECT imaging studies of myocardial mAChR. Further studies in humans are indicated. PMID:1988640

  7. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels.

    PubMed

    Del Pino, Javier; Zeballos, Gabriela; Anadón, María José; Moyano, Paula; Díaz, María Jesús; García, José Manuel; Frejo, María Teresa

    2016-05-01

    Cadmium is a neurotoxic compound which induces cognitive alterations similar to those produced by Alzheimer's disease (AD). However, the mechanism through which cadmium induces this effect remains unknown. In this regard, we described in a previous work that cadmium blocks cholinergic transmission and induces a more pronounced cell death on cholinergic neurons from basal forebrain which is partially mediated by AChE overexpression. Degeneration of basal forebrain cholinergic neurons, as happens in AD, results in memory deficits attributable to the loss of cholinergic modulation of hippocampal synaptic circuits. Moreover, cadmium has been described to activate GSK-3β, induce Aβ protein production and tau filament formation, which have been related to a selective loss of basal forebrain cholinergic neurons and development of AD. The present study is aimed at researching the mechanisms of cell death induced by cadmium on basal forebrain cholinergic neurons. For this purpose, we evaluated, in SN56 cholinergic mourine septal cell line from basal forebrain region, the cadmium toxic effects on neuronal viability through muscarinic M1 receptor, AChE splice variants, GSK-3β enzyme, Aβ and tau proteins. This study proves that cadmium induces cell death on cholinergic neurons through blockade of M1 receptor, overexpression of AChE-S and GSK-3β, down-regulation of AChE-R and increase in Aβ and total and phosphorylated tau protein levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on cholinergic neurons and suggest that cadmium could mediate these mechanisms by M1R blockade through AChE splices altered expression. PMID:26026611

  8. Effects of adjunct galantamine to risperidone, or haloperidol, in animal models of antipsychotic activity and extrapyramidal side-effect liability: involvement of the cholinergic muscarinic receptor.

    PubMed

    Wadenberg, Marie-Louise G; Fjällström, Ann-Kristin; Federley, Malin; Persson, Pernilla; Stenqvist, Pia

    2011-06-01

    The acetylcholine esterase inhibitor/cholinergic nicotinic receptor (nAChR) allosteric modulator galantamine (Gal) is used against cognitive impairment in Alzheimer's disease. Negative/cognitive and psychotic symptom improvement in schizophrenia by adjunct Gal to antipsychotic drugs (APDs) has been reported. Cognitive symptoms in schizophrenia may involve brain prefrontal hypo-dopaminergia. Experimental data by others indicate nAChR involvement in animal pro-cognitive effects of Gal. The role of nAChRs in antipsychotic effects by Gal has, however, not been elucidated. Using the conditioned avoidance response (CAR) and the catalepsy tests for antipsychotic activity and extrapyramidal side-effect (EPS) liability, respectively, we here investigated the effects of adjunct Gal (1.25 mg/kg) to the typical APD haloperidol (Hal) (0.05 mg/kg), or the atypical APD risperidone (Ris) (0.2 mg/kg), in rats. Adjunct Gal significantly enhanced APD-like effects by low doses of Hal or Ris, but showed a safe EPS liability profile only in combination with Ris. Pretreatment with the muscarinic receptor (mAChR) antagonist scopolamine, but not the nAChR antagonist mecamylamine, completely reversed the enhancing effects of adjunct Gal to Hal treatment, in the CAR test. While the nAChR-modulating properties of Gal probably contribute to pro-cognitive activity, as shown by others, the present data suggest that any contribution to antipsychotic activity by Gal is mediated primarily via mAChRs. This property combination of Gal may offer a unique, favourable therapeutic profile for schizophrenia treatment. PMID:20701827

  9. Pharmacological characterization of GSK573719 (umeclidinium): a novel, long-acting, inhaled antagonist of the muscarinic cholinergic receptors for treatment of pulmonary diseases.

    PubMed

    Salmon, Michael; Luttmann, Mark A; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Burman, Miriam; Webb, Edward F; DeHaas, Christopher J; Kotzer, Charles J; Barrett, Victoria J; Slack, Robert J; Sarau, Henry M; Palovich, Michael R; Lainé, Dramane I; Hay, Douglas W P; Rumsey, William L

    2013-05-01

    Activation of muscarinic subtype 3 (M3) muscarinic cholinergic receptors (mAChRs) increases airway tone, whereas its blockade improves lung function and quality of life in patients with pulmonary diseases. The present study evaluated the pharmacological properties of a novel mAChR antagonist, GSK573719 (4-[hydroxy(diphenyl)methyl]-1-{2-[(phenylmethyl)oxy]ethyl}-1-azoniabicyclo[2.2.2]octane; umeclidinium). The affinity (Ki) of GSK573719 for the cloned human M1-M5 mAChRs ranged from 0.05 to 0.16 nM. Dissociation of [(3)H]GSK573719 from the M3 mAChR was slower than that for the M2 mAChR [half-life (t1/2) values: 82 and 9 minutes, respectively]. In Chinese hamster ovary cells transfected with recombinant human M3 mAChRs, GSK573719 demonstrated picomolar potency (-log pA2 = 23.9 pM) in an acetylcholine (Ach)-mediated Ca(2+) mobilization assay. Concentration-response curves indicate competitive antagonism with partial reversibility after drug washout. Using isolated human bronchial strips, GSK573719 was also potent and showed competitive antagonism (-log pA2 = 316 pM) versus carbachol, and was slowly reversible in a concentration-dependent manner (1-100 nM). The time to 50% restoration of contraction at 10 nM was about 381 minutes (versus 413 minutes for tiotropium bromide). In mice, the ED50 value was 0.02 μg/mouse intranasally. In conscious guinea pigs, intratracheal administration of GSK573719 dose dependently blocked Ach-induced bronchoconstriction with long duration of action, and was comparable to tiotropium; 2.5 μg elicited 50% bronchoprotection for >24 hours. Thus, GSK573719 is a potent anticholinergic agent that demonstrates slow functional reversibility at the human M3 mAChR and long duration of action in animal models. This pharmacological profile translated into a 24-hour duration of bronchodilation in vivo, which suggested umeclidinium will be a once-daily inhaled treatment of pulmonary diseases. PMID:23435542

  10. Decreased hippocampal muscarinic cholinergic receptor binding measured by 123I-iododexetimide and single-photon emission computed tomography in epilepsy.

    PubMed

    Müller-Gärtner, H W; Mayberg, H S; Fisher, R S; Lesser, R P; Wilson, A A; Ravert, H T; Dannals, R F; Wagner, H N; Uematsu, S; Frost, J J

    1993-08-01

    Regional binding of 123I-iododexetimide, a muscarinic acetylcholine receptor antagonist, was measured in vivo in the temporal lobes of 4 patients with complex partial seizures using single-photon emission computed tomography. In the anterior hippocampus ipsilateral to the electrical focus, 123I-iododexetimide binding was decreased by 40 +/- 9% (mean +/- SD, p < 0.01) compared with the contralateral hippocampus; 123I-iododexetimide binding in other temporal lobe regions was symmetrical. The data indicate a regionally specific change of muscarinic acetylcholine receptor in anterior hippocampus in complex partial seizures of temporal lobe origin. PMID:8338348

  11. Characterization of muscarinic cholinergic receptors on rat pancreatic acini by N-[3H]methylscopolamine binding. Their relationship with calcium 45 efflux and amylase secretion.

    PubMed

    Dehaye, J P; Winand, J; Poloczek, P; Christophe, J

    1984-01-10

    N-[3H]Methylscopolamine (NMS) binding, amylase secretion, and 45Ca efflux from dispersed rat pancreatic acini were investigated in parallel, in the presence or absence of 4 muscarinic agonists and 3 muscarinic antagonists. Scatchard analysis of [3H]NMS saturation isotherms gave a KD of 0.9 nM and an average binding capacity of 24,000 sites per cell. Binding competition curves with the antagonists atropine, dexetimide, and NMS gave KD values of 3.5, 3.5, and 0.5 nM, respectively. With the 3 full agonists oxotremorine, muscarine, and carbamylcholine, the receptor population could be divided into two classes of binding sites: a minor one (15%) with high affinity (KD = 20-35 nM) and a major one (85%) with low affinity (KD = 3-65 microM). There was a receptor reserve of about 50% with respect to carbamylcholine-stimulated amylase secretion. Further analysis of dose-effect curves suggests that low affinity binding sites were involved in the secretory response to muscarinic stimulation. Pilocarpine, like muscarinic antagonists, recognized all binding sites with the same affinity but acted as a partial agonist on amylase secretion and 45Ca efflux. PMID:6200472

  12. Cholinergic muscarinic receptors in human fetal brain: ontogeny of [3H]quinuclidinyl benzilate binding sites in corpus striatum, brainstem, and cerebellum.

    PubMed

    Ravikumar, B V; Sastry, P S

    1985-12-01

    The ontogeny of muscarinic receptors was studied in human fetal striatum, brainstem, and cerebellum to investigate general principles of synaptogenesis as well as the physiological balance between various chemical synapses during development in a given region of the brain. [3H]Quinuclidinyl benzilate ([3H]QNB) binding was assayed in total particulate fraction (TPF) from various parts of brain. In the corpus striatum, QNB binding sites are present at 16 weeks of gestation (average concentration 180 fmol/mg protein of TPF), slowly increase up to 24 weeks (average concentration 217 fmol/mg protein), and rapidly increase during the third trimester to 480 fmol/mg protein of TPF. In contrast, dopaminergic receptors exist as two subpopulations, one with low affinity and the other with high affinity up to the 24th week of gestation; all of them acquire the high-affinity characteristic during the third trimester. In brainstem, the muscarinic receptors show maximum concentration by 16 weeks of age (360 fmol/mg protein of TPF). Subsequently the muscarinic receptor concentration shows a gradual decline in the brainstem. In cerebellum, except for a slight increase at 24 weeks (average concentration 90 fmol/mg protein of TPF), the receptor concentration remained nearly constant at about 60-70 fmol/mg protein of TPF throughout fetal life. This study demonstrates that the ontogeny of muscarinic receptors varies among the different regions, and the patterns observed suggest that receptor formation occurs principally in the third trimester. Also noteworthy is the finding that the QNB binding sites decreased in all regions of the human brain during adult life. PMID:4056800

  13. Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina

    PubMed Central

    Stanke, Jennifer J; Lehman, Bret; Fischer, Andy J

    2008-01-01

    Background Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT). Results We found that as ChAT-immunoreactive cells differentiate they expressed the homeodomain transcription factors Pax6 and Islet1, and the cell-cycle inhibitor p27kip1. As differentiation proceeds, type-II cholinergic cells, displaced to the ganglion cell layer, transiently expressed high levels of cellular retinoic acid binding protein (CRABP) and neurofilament, while type-I cells in the inner nuclear layer did not. Although there is a 1:1 ratio of type-I to type-II cells in vivo, in dissociated cell cultures the type-I cells (ChAT-positive and CRABP-negative) out-numbered the type-II cells (ChAT and CRABP-positive cells) by 2:1. The relative abundance of type-I to type-II cells was not influenced by Sonic Hedgehog (Shh), but was affected by compounds that act at muscarinic acetylcholine receptors. In addition, the abundance and mosaic patterning of type-II cholinergic amacrine cells is disrupted by interfering with muscarinic signaling. Conclusion We conclude that: (1) during development type-I and type-II cholinergic amacrine cells are not homotypic, (2) the phenotypic differences between these subtypes of cells is controlled by the local microenvironment, and (3) appropriate levels of muscarinic signaling between the cholinergic amacrine cells are required for proper mosaic patterning. PMID:18254959

  14. Basic and modern concepts on cholinergic receptor: A review

    PubMed Central

    Tiwari, Prashant; Dwivedi, Shubhangi; Singh, Mukesh Pratap; Mishra, Rahul; Chandy, Anish

    2013-01-01

    Cholinergic system is an important system and a branch of the autonomic nervous system which plays an important role in memory, digestion, control of heart beat, blood pressure, movement and many other functions. This article serves as both structural and functional sources of information regarding cholinergic receptors and provides a detailed understanding of the determinants governing specificity of muscarinic and nicotinic receptor to researchers. The study helps to give overall information about the fundamentals of the cholinergic system, its receptors and ongoing research in this field.

  15. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex.

    PubMed

    Lucas-Meunier, Estelle; Monier, Cyril; Amar, Muriel; Baux, Gérard; Frégnac, Yves; Fossier, Philippe

    2009-10-01

    This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly in layer 5 pyramidal neurons of rat visual cortex. The pharmacological specificity of the ACh neuromodulation was determined from the continuous whole-cell voltage clamp measurement of stimulation-locked changes of the input conductance during the application of cholinergic agonists and antagonists. Blockade of glutamatergic and gamma-aminobutyric acid (GABAergic) receptors suppressed the evoked response, indicating that stimulation-induced release of ACh does not directly activate a cholinergic synaptic conductance in recorded neurons. Comparison of cytisine and mecamylamine effects on nicotinic receptors showed that excitation is enhanced by endogenous evoked release of ACh through the presynaptic activation of alpha(*)beta4 receptors located on glutamatergic fibers. DHbetaE, the selective alpha4beta2 nicotinic receptor antagonist, induced a depression of inhibition. Endogenous ACh could also enhance inhibition by acting directly on GABAergic interneurons, presynaptic to the recorded cell. We conclude that endogenous-released ACh amplifies the dominance of the inhibitory drive and thus decreases the excitability and sensory responsiveness of layer 5 pyramidal neurons. PMID:19176636

  16. Alterations of muscarinic receptor subtypes in pathways relating to memory: Effects of lesions and transplants

    SciTech Connect

    Dawson, V.L.

    1989-01-01

    Muscarinic cholinergic receptors have been classified pharmacologically into two distinct populations designated muscarinic type-one (M-1) and mscarinic type-two (M-2). The semiquantitative technique of receptor autoradiography was used to examine the anatomical and cellular distribution, and densities of M-1 and M-2 receptors in the rate brain. Muscarinic receptors were labeled with the classical antagonist ({sup 3}H)quinuclidinyl benzilate (QNB). Differentiation of the muscarinic subtypes was accomplished by competition studies of ({sup 3}H)QNB against the relatively selective M-1 antagonist pirenzepine (PZ), and the relatively selective M-2 antagonist, AFDX-116. In addition, M-1 and M-2 receptors were directly labeled with ({sup 3}H)PZ and ({sup 3}H)AFDX-116, respectively. Cholinergic pathways from the large cholinergic neurons in the nucleus basalis magnocellularis (NBM) to the cortex and from the medial septum (MS) to the hippocampus were examined by lesioning with the selective cholinergic neurotoxin, AF64A. Bilateral cerebral cortical infarction was performed in order to analyze potential changes in muscarinic receptor populations in subcortical structures that are sensitive to cortical infarction. Finally, the response of muscarinic receptors to fetal septodiagonal band transplants in the deafferentated hippocampus was examined.

  17. A muscarinic cholinergic mechanism underlies activation of the central pattern generator for locust flight.

    PubMed

    Buhl, Edgar; Schildberger, Klaus; Stevenson, Paul A

    2008-07-01

    A central question in behavioural control is how central pattern generators (CPGs) for locomotion are activated. This paper disputes the key role generally accredited to octopamine in activating the CPG for insect flight. In deafferented locusts, fictive flight was initiated by bath application of the muscarinic agonist pilocarpine, the acetylcholine analogue carbachol, and the acetylcholinesterase blocker eserine, but not by nicotine. Furthermore, in addition to octopamine, various other amines including dopamine, tyramine and histamine all induced fictive flight, but not serotonin or the amine-precursor amino acid tyrosine. However, flight initiation was not reversibly blocked by aminergic antagonists, and was still readily elicited by both natural stimulation (wind) and pilocarpine in reserpinized, amine-depleted locusts. By contrast, the muscarinic antagonists atropine and scopolamine reversibly blocked flight initiated by wind, cholinergic agonists, octopamine, and by selective stimulation of a flight-initiating interneurone (TCG). The short delay from TCG stimulation to flight onset suggests that TCG acts directly on the flight CPG, and accordingly that TCG, or its follower cell within the flight generating circuit, is cholinergic. We conclude that acetylcholine acting via muscarinic receptors is the key neurotransmitter in the mechanism underlying the natural activation of the locust flight CPG. Amines are not essential for this, but must be considered as potential neuromodulators for facilitating flight release and tuning the motor pattern. We speculate that muscarinic activation coupled to aminergic facilitation may be a general feature of behavioural control in insects for ensuring conditional recruitment of individual motor programs in accordance with momentary adaptive requirements. PMID:18587129

  18. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    SciTech Connect

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P. )

    1991-07-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 (11-2-((2-(diethylaminomethyl)- 1-piperidinyl)acetyl)-5,11-dihydro-6H- pyrido(2,3-b)(1,4)benzodiazepine-6-one), hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of (3H)quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of (3H)-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated.

  19. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1). PMID:7070378

  20. Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons.

    PubMed

    Zhao, Zhe; Zhang, Kang; Liu, Xiaoyan; Yan, Haitao; Ma, Xiaoyun; Zhang, Shuzhuo; Zheng, Jianquan; Wang, Liyun; Wei, Xiaoli

    2016-01-01

    The striatum is the most prominent nucleus in the basal ganglia and plays an important role in motor movement regulation. The cholinergic interneurons (ChIs) in striatum are involved in the motion regulation by releasing acetylcholine (ACh) and modulating the output of striatal projection neurons. Here, we report that muscarinic ACh receptor (M receptor) agonists, ACh and Oxotremorine (OXO-M), decreased the firing frequency of ChIs by blocking the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Scopolamine (SCO), a nonselective antagonist of M receptors, abolished the inhibition. OXO-M exerted its function by activating the Gi/o cAMP signaling cascade. The single-cell reverse transcription polymerase chain reaction (scRT-PCR) revealed that all the five subtypes of M receptors and four subtypes of HCN channels were expressed on ChIs. Among them, M2 receptors and HCN2 channels were the most dominant ones and expressed in every single studied cholinergic interneuron (ChI).Our results suggest that ACh regulates not only the output of striatal projection neurons, but also the firing activity of ChIs themselves by activating presynaptic M receptors in the dorsal striatum. The activation of M2 receptors and blockage of HCN2 channels may play an important role in ACh inhibition on the excitability of ChIs. This finding adds a new G-protein coupled receptor mediated regulation on ChIs and provides a cellular mechanism for control of cholinergic activity and ACh release in the dorsal striatum. PMID:27047336

  1. Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons

    PubMed Central

    Zhao, Zhe; Zhang, Kang; Liu, Xiaoyan; Yan, Haitao; Ma, Xiaoyun; Zhang, Shuzhuo; Zheng, Jianquan; Wang, Liyun; Wei, Xiaoli

    2016-01-01

    The striatum is the most prominent nucleus in the basal ganglia and plays an important role in motor movement regulation. The cholinergic interneurons (ChIs) in striatum are involved in the motion regulation by releasing acetylcholine (ACh) and modulating the output of striatal projection neurons. Here, we report that muscarinic ACh receptor (M receptor) agonists, ACh and Oxotremorine (OXO-M), decreased the firing frequency of ChIs by blocking the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Scopolamine (SCO), a nonselective antagonist of M receptors, abolished the inhibition. OXO-M exerted its function by activating the Gi/o cAMP signaling cascade. The single-cell reverse transcription polymerase chain reaction (scRT-PCR) revealed that all the five subtypes of M receptors and four subtypes of HCN channels were expressed on ChIs. Among them, M2 receptors and HCN2 channels were the most dominant ones and expressed in every single studied cholinergic interneuron (ChI).Our results suggest that ACh regulates not only the output of striatal projection neurons, but also the firing activity of ChIs themselves by activating presynaptic M receptors in the dorsal striatum. The activation of M2 receptors and blockage of HCN2 channels may play an important role in ACh inhibition on the excitability of ChIs. This finding adds a new G-protein coupled receptor mediated regulation on ChIs and provides a cellular mechanism for control of cholinergic activity and ACh release in the dorsal striatum. PMID:27047336

  2. Down-regulation of phospholipase C-beta1 following chronic muscarinic receptor activation.

    PubMed

    Sorensen, S D; Linseman, D A; Fisher, S K

    1998-04-01

    To determine whether prolonged activation of a phospholipase C-coupled receptor can lead to a down-regulation of its effector enzyme, SH-SY5Y neuroblastoma cells were incubated for 24 h with the muscarinic receptor agonist, oxotremorine-M. Under these conditions, significant reductions (46-53%) in muscarinic cholinergic receptor density, G(alphaq/11) and phospholipase C-beta1 (but not the beta3-or gamma1 isoforms) were observed. These results suggest that a selective down-regulation of phospholipase C-beta1 may play a role in adaptation to chronic muscarinic receptor activation. PMID:9617763

  3. Allosterism at muscarinic receptors: ligands and mechanisms.

    PubMed

    Birdsall, N J M; Lazareno, S

    2005-06-01

    The evaluation of allosteric ligands at muscarinic receptors is discussed in terms of the ability of the experimental data to be interpreted by the allosteric ternary complex model. The compilation of useful SAR information of allosteric ligands is not simple, especially for muscarinic receptors, where there are multiple allosteric sites and complex interactions. PMID:15974931

  4. Cholinergic innervation and receptors in the cerebellum.

    PubMed

    Jaarsma, D; Ruigrok, T J; Caffé, R; Cozzari, C; Levey, A I; Mugnaini, E; Voogd, J

    1997-01-01

    We have studied the source and ultrastructural characteristics of ChAT-immunoreactive fibers in the cerebellum of the rat, and the distribution of muscarinic and nicotinic receptors in the cerebellum of the rat, rabbit, cat and monkey, in order to define which of the cerebellar afferents may use ACh as a neurotransmitter, what target structures are they, and which cholinergic receptor mediate the actions of these pathways. Our data confirm and extend previous observations that cholinergic markers occur at relatively low density in the cerebellum and show not only interspecies variability, but also heterogeneity between cerebellar lobules in the same species. As previously demonstrated by Barmack et al. (1992a,b), the predominant fiber system in the cerebellum that might use ACh as a transmitter or a co-transmitter is formed by mossy fibers originating in the vestibular nuclei and innervating the nodulus and ventral uvula. Our results show that these fibers innervate both granule cells and unipolar brush cells, and that the presumed cholinergic action of these fibers most likely is mediated by nicotinic receptors. In addition to cholinergic mossy fibers, the rat cerebellum is innervated by beaded ChAT-immunoreactive fibers. We have demonstrated that these fibers originate in the pedunculopontine tegmental nucleus (PPTg), the lateral paragigantocellular nucleus (LPGi), and to a lesser extent in various raphe nuclei. In both the cerebellar cortex and the cerebellar nuclei these fibers make asymmetric synaptic junctions with small and medium-sized dendritic profiles. Both muscarinic and nicotinic receptor could mediate the action of these diffuse beaded fibers. In the cerebellar nuclei the beaded cholinergic fibers form a moderately dense network, and could in principle have a significant effect on neuronal activity. For instance, the cholinergic fibers arising in the PPTg may modulate the excitability of the cerebellonuclear neurons in relation to sleep and arousal (e

  5. Distribution and effects of the muscarinic receptor subtypes in the primary visual cortex

    PubMed Central

    Groleau, Marianne; Kang, Jun Il; Huppé-Gourgues, Frédéric; Vaucher, Elvire

    2015-01-01

    Muscarinic cholinergic receptors modulate the activity and plasticity of the visual cortex. Muscarinic receptors are divided into five subtypes that are not homogeneously distributed throughout the cortical layers and cells types. This distribution results in complex action of the muscarinic receptors in the integration of visual stimuli. Selective activation of the different subtypes can either strengthen or weaken cortical connectivity (e.g., thalamocortical vs. corticocortical), i.e., it can influence the processing of certain stimuli over others. Moreover, muscarinic receptors differentially modulate some functional properties of neurons during experience-dependent activity and cognitive processes and they contribute to the fine-tuning of visual processing. These functions are involved in the mechanisms of attention, maturation and learning in the visual cortex. This minireview describes the anatomo-functional aspects of muscarinic modulation of the primary visual cortex’s (V1) microcircuitry. PMID:26150786

  6. Molecular properties of muscarinic acetylcholine receptors

    PubMed Central

    HAGA, Tatsuya

    2013-01-01

    Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942

  7. Immunochemical studies of the muscarinic acetylcholine receptor.

    PubMed

    André, C; Marullo, S; Guillet, J G; Convents, A; Lauwereys, M; Kaveri, S; Hoebeke, J; Strosberg, A D

    1987-01-01

    Muscarinic receptors have been purified from calf forebrain plasma cell membranes by affinity chromatography on a dexetimide-agarose gel. SDS-PAGE analysis showed a single 70 kDa band. Monoclonal antibodies have been prepared against these affinity purified 70 kDa protein(s). One antibody, M-35, immunoprecipitated up to 80% of digitonin-solubilized muscarinic receptors. M-35 had agonist-like effects on guinea-pig myometrium: it increased the intracellular cyclic GMP content, decreased prostaglandin-induced cyclic AMP accumulation and caused muscle contractions. The two first effects were inhibited by atropine. M-35 was used to visualize muscarinic receptors at the surface of human fibroblastic cells. In the particular cell line used, the receptors have a low affinity for pirenzepine, were negatively coupled to adenylate cyclase and mediated increase in the phosphatidyl-inositol breakdown. PMID:3040987

  8. Influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic brain receptors.

    PubMed

    Weckesser, M; Fixmann, A; Holschbach, M; Müller-Gärtner, H W

    1998-11-01

    The distribution of nicotinic and muscarinic cholinergic receptors in the human brain in vivo has been successfully characterized using radiolabeled tracers and emission tomography. The effect of acetylcholine release into the synaptic cleft on receptor binding of these tracers has not yet been investigated. The present study examined the influence of acetylcholine on binding of 4-[125I]iododexetimide to muscarinic cholinergic receptors of porcine brain synaptosomes in vitro. 4-Iododexetimide is a subtype-unspecific muscarinic receptor antagonist with high affinity. Acetylcholine competed with 4-[125I]iododexetimide in a dose-dependent manner. A concentration of 500 microM acetylcholine inhibited 50% of total specific 4-[125I]iododexetimide binding to synaptosomes when both substances were given simultaneously. An 800 microM acetylcholine solution reduced total specific 4-[125I]iododexetimide binding by about 35%, when acetylcholine was given 60 min after incubation of synaptosomes with 4-[125I]iododexetimide. Variations in the synaptic acetylcholine concentration might influence muscarinic cholinergic receptor imaging in vivo using 4-[123I]iododexetimide. Conversely, 4-[123I]iododexetimide might be an appropriate molecule to investigate alterations of acetylcholine release into the synaptic cleft in vivo using single photon emission computed tomography. PMID:9863566

  9. Chronic ethanol (EtOH) feeding increases muscarinic receptor (mAChR) density in esophagus without parallel change in dose response (D-R) to cholinergic agonists

    SciTech Connect

    Keshavarzian, A.; Gordon, J.H.; Urban, G.; Fields, J.Z. VA Hospital, Hines, IL )

    1991-03-11

    The mAChR/effector pathway for signal transduction is important in the physiology of esophagus and mAChR alterations are involved in EtOH induced changes in several organs. To see if EtOH-induced increases in lower esophageal sphincter pressure (LESP) are due to upregulation of mAChR, the authors evaluated mAChR binding and D-R curves for bethanechol (IV) induced increases in LESP, and compared these values to changes in LESP after acute and chronic EtOH. EtOH was given to cats acutely or chronically. The number of mAChR sites (Bmax) in esophagus was lowered by acute EtOH, withdrawal from chronic EtOH raised Bmax. Acute injection of EtOH to cats in withdrawal reversed this increase in mAChR density. These changes correlated with the earlier data on EtOH-induced changes in LESP. In contrast, the D-R curve for bethanechol shifted to the right. Thus, the withdrawal-associated increase in Bmax is more likely to be a compensatory response to deficits distal to the receptor recognition site than to proximal deficits and doesn't cause LESP hyperactivity. Also, receptor binding changes do not necessarily translate into physiological changes.

  10. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  11. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    PubMed Central

    Jakubík, Jan; El-Fakahany, Esam E.

    2010-01-01

    An allosteric modulator is a ligand that binds to an allosteric site on the receptor and changes receptor conformation to produce increase (positive cooperativity) or decrease (negative cooperativity) in the binding or action of an orthosteric agonist (e.g., acetylcholine). Since the identification of gallamine as the first allosteric modulator of muscarinic receptors in 1976, this unique mode of receptor modulation has been intensively studied by many groups. This review summarizes over 30 years of research on the molecular mechanisms of allosteric interactions of drugs with the receptor and for new allosteric modulators of muscarinic receptors with potential therapeutic use. Identification of positive modulators of acetylcholine binding and function that enhance neurotransmission and the discovery of highly selective allosteric modulators are mile-stones on the way to novel therapeutic agents for the treatment of schizophrenia, Alzheimer’s disease and other disorders involving impaired cognitive function.

  12. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  13. External imaging of cerebral muscarinic acetylcholine receptors

    SciTech Connect

    Eckelman, W.C.; Reba, R.C.; Rzeszotarski, W.J.; Gibson, R.E.; Hill, T.; Holman, B.L.; Budinger, T.; Conklin, J.J.; Eng, R.; Grissom, M.P.

    1984-01-20

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  14. External Imaging of Cerebral Muscarinic Acetylcholine Receptors

    NASA Astrophysics Data System (ADS)

    Eckelman, William C.; Reba, Richard C.; Rzeszotarski, Waclaw J.; Gibson, Raymond E.; Hill, Thomas; Holman, B. Leonard; Budinger, Thomas; Conklin, James J.; Eng, Robert; Grissom, Michael P.

    1984-01-01

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  15. Progress toward a high-affinity allosteric enhancer at muscarinic M1 receptors.

    PubMed

    Lazareno, Sebastian; Popham, Angela; Birdsall, Nigel J M

    2003-01-01

    Loss of forebrain acetylcholine is an early neurochemical lesion in Alzheimer's disease (AD). As muscarinic acetylcholine receptors are involved in memory and cognition, a muscarinic agonist could therefore provide a "replacement therapy" in this disease. However, muscarinic receptors occur throughout the CNS and the periphery. A selective locus of action of a muscarinic agonist is therefore crucial in order to avoid intolerable side effects. The five subtypes of muscarinic receptors, M1-M5, have distinct regional distributions with M2 and M3 receptors mediating most of the peripheral effects. M1 receptors are the major receptor subtype in the cortex and hippocampus-the two brain regions most associated with memory and cognition. This localization has led to a, so far unsuccessful, search for a truly M1-selective muscarinic agonist. However, acetylcholinesterase inhibitors, such as donepezil (Aricept), which potentiate cholinergic neurotransmission, do have a therapeutic role in the management of AD and so the M1 receptor remains a viable therapeutic target. Our approach is to develop muscarinic allosteric enhancers-compounds that bind to the receptor at an "allosteric" site, which is distinct from the "primary" site to which ACh binds, and which enhance ACh affinity (or efficacy). Having discovered that a commercially available compound, WIN 62577, is an allosteric enhancer with micromolar potency at M3 receptors, we report here some results of a chemical synthesis project to develop this hit. Modification of WIN 62577 has led to compounds with over 1000-fold increased affinity but, so far, none of these extremely potent compounds are allosteric enhancers. PMID:14501021

  16. The Role of Muscarinic Receptors in the Pathophysiology of Mood Disorders: A Potential Novel Treatment?

    PubMed Central

    Jeon, Won Je; Dean, Brian; Scarr, Elizabeth; Gibbons, Andrew

    2015-01-01

    The central cholinergic system has been implicated in the pathophysiology of mood disorders. An imbalance in central cholinergic neurotransmitter activity has been proposed to contribute to the manic and depressive episodes typical of these disorders. Neuropharmacological studies into the effects of cholinergic agonists and antagonists on mood state have provided considerable support for this hypothesis. Furthermore, recent clinical studies have shown that the pan-CHRM antagonist, scopolamine, produces rapid-acting antidepressant effects in individuals with either major depressive disorder (MDD) or bipolar disorder (BPD), such as bipolar depression, contrasting the delayed therapeutic response of conventional mood stabilisers and antidepressants. This review presents recent data from neuroimaging, post-mortem and genetic studies supporting the involvement of muscarinic cholinergic receptors (CHRMs), particularly CHRM2, in the pathophysiology of MDD and BPD. Thus, novel drugs that selectively target CHRMs with negligible effects in the peripheral nervous system might produce more rapid and robust clinical improvement in patients with BPD and MDD. PMID:26630954

  17. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  18. Laminar organization and age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey.

    PubMed

    Wagster, M V; Whitehouse, P J; Walker, L C; Kellar, K J; Price, D L

    1990-09-01

    Using in vitro receptor autoradiography, the distributions of cholinergic muscarinic [3H-N-methyl scopolamine (NMS), 3H-pirenzepine (PZ), and 3H-oxotremorine-M (OXO-M)] and nicotinic [3H-acetylcholine (ACh)] receptors were mapped in the temporal cortices of rhesus monkeys (Macaca mulatta) ranging from 2-22 years of age. Although high-affinity 3H-PZ, low-affinity 3H-NMS binding (M1 sites) and high-affinity 3H-OXO-M, high-affinity 3H-NMS binding (M2 sites) occurred across all layers of the temporal neocortex, the laminar distribution of M1 and M2 receptor binding sites was different. M1 muscarinic receptor binding was concentrated in layers II and III, whereas M2 muscarinic receptor binding was greatest in layers IV and V. The concentration of both muscarinic (M1 and M2) and nicotinic receptor binding sites declined with increasing age, and decrements were uniform across all cortical layers. This investigation provides evidence for a decrease in cholinergic receptor binding with age in temporal cortices of rhesus monkeys. Moreover, these changes appear to precede previously reported age-associated memory deficits and neuropathological changes that occur in this species. PMID:2398366

  19. Effects of galanin subchronic treatment on memory and muscarinic receptors.

    PubMed

    Barreda-Gómez, G; Lombardero, L; Giralt, M T; Manuel, I; Rodríguez-Puertas, R

    2015-05-01

    The cholinergic pathways, which originate in the basal forebrain and are responsible for the control of different cognitive processes including learning and memory, are also regulated by some neuropeptides. One of these neuropeptides, galanin (GAL), is involved in both neurotrophic and neuroprotective actions. The present study has evaluated in rats the effects on cognition induced by a subchronic treatment with GAL by analyzing the passive avoidance response, and the modulation of muscarinic cholinergic receptor densities and activities. [(3)H]-N-methyl-scopolamine, [(3)H]-oxotremorine, and [(3)H]-pirenzepine were used to quantify the density of muscarinic receptors (MRs) and the stimulation of the binding of guanosine 5'-(γ-[(35)S]thio)triphosphate by the muscarinic agonist, carbachol, to determine their functionality. Some cognitive deficits that were induced by the administration of artificial cerebrospinal fluid (aCSF) (i.c.v. aCSF 2 μl/min, once a day for 6 days) were not observed in the animals also treated with GAL (i.c.v. 1.5 mmol in aCSF, 2 μl/min, once a day for 6 days). GAL modulates the changes in M1 and M2 MR densities observed in the rats treated with aCSF, and also increased their activity mediated by G(i/o) proteins in specific areas of the dorsal and ventral hippocampus. The subchronic administration of the vehicle was also accompanied by an increased number of positive fibers and cells for GAL around the cortical tract of the cannula used, but that was not the case in GAL-treated rats. In addition, the increase of GAL receptor density in the ventral hippocampus and entorhinal cortex in the aCSF group was avoided when GAL was administered. The number of acetylcholinesterase (AChE)-positive neurons was decreased in the nucleus basalis of Meynert of both GAL- and aCSF-treated animals. In summary, GAL improves memory-related abilities probably through the modulation of MR density and/or efficacy in hippocampal areas. PMID:25732139

  20. Cholinergic receptors in the upper respiratory system of the rat.

    PubMed

    Klaassen, A B; Kuijpers, W; Scheres, H M; Rodrigues de Miranda, J F; Beld, A J

    1986-04-01

    Radioligand receptor binding might give more detailed information on the innervation pattern of the nasal mucosa and the character of the various neuroreceptors involved. With respect to the cholinergic receptors, this technique reveals that specific binding of tritiated I-quinuclidinyl benzilate to rat nasal mucosa homogenates occurs to a homogeneous class of binding sites, with a dissociation constant of 0.06 +/- 0.02 nM and a receptor density of 8 +/- 2 pmole/g of tissue. Binding is stereoselectively inhibited by benzetimide hydrochloride enantiomers. Pirenzepine displacement (inhibition constant = 0.5 X 10(-6) M) classifies tritiated I-quinuclidinyl benzilate binding sites as M2-muscarinic receptors. Methylfurthrethonium inhibits tritiated I-quinuclidinyl benzilate binding at high concentrations, pointing to the presence of low-affinity agonist binding sites, probably admixed with a small proportion of high-affinity agonist binding sites. These data obtained in the rat open new perspectives for studying muscarinic receptors in the human nose to elucidate the supposed disturbance of autonomic nerve regulation in nasal hyperreactivity. PMID:3511926

  1. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    SciTech Connect

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.; Fujiwara, M.

    1985-11-18

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM; ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.

  2. Muscarinic receptors of the vascular bed: radioligand binding studies on bovine splenic veins.

    PubMed

    Brunner, F; Kukovetz, W R

    1986-01-01

    Despite an obvious lack of parasympathetic innervation to the spleen, pharmacological evidence suggests the presence of cholinergic receptors in isolated bovine splenic veins. We therefore studied muscarinic cholinergic binding sites in a bovine splenic vein preparation by direct radioligand binding techniques using [3H]quinuclidinyl benzilate ([3H]QNB) as radioactive probe. Saturation experiments indicated one homogeneous class of high-affinity binding sites, with a KD of 0.11 nM and a binding site density Bmax of 55 fmol/mg protein. The rate constants at 37 degrees C for formation and dissociation of the [3H]QNB receptor complex were 2.7 X 10(9) M-1 h-1 and 0.38 h-1, respectively, yielding a KD of 0.14 nM. The binding sites showed a high stereospecificity, which was evident from competition experiments with dexetimide (KI = 1.3 nM) and levetimide (KI = 4.6 microM). In competition experiments with muscarinic and nicotinic antagonists and some antidepressants, only one binding site was found, whereas with muscarinic agonists, two binding sites were detected. In the presence of 0.1 mM guanyl-imido-diphosphate, only one binding site could be identified with the muscarinic agonist carbamylcholine. The affinity of [3H]QNB, on the other hand, was slightly decreased, and Bmax values were unchanged. It is concluded that specific, saturable, high-affinity muscarinic binding sites in the bovine splenic vein have been identified and characterized that exhibit properties similar to cholinergic receptors of brain and peripheral tissues and probably mediate acetylcholine-induced relaxation of splenic veins. PMID:2427809

  3. Type 3 Muscarinic Receptors Contribute to Clearance of Citrobacter rodentium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the alpha 7 nicotinic receptor exerts anti-inflammatory effects on immune cells, the role of muscarinic receptors in mucosal homeostasis, response to enteric pathogens, and modulation of immune cell function is undefined. The contribution of type 3 muscarinic receptor (M3R) to mucosal homeo...

  4. Characterization of muscarinic receptors in rat kidney.

    PubMed

    Blankesteijn, W M; Siero, H L; Rodrigues de Miranda, J F; van Megen, Y J; Russel, F G

    1993-01-01

    Muscarinic receptors in mammalian kidney seem to be involved in diuresis. In this study we give a detailed characterization of receptors in rat kidney. Specific binding of [3H](-)-quinuclidinylbenzilate ([3H]QNB) to membranes of rat kidney cortex was saturable and of high affinity. A dissociation constant of 0.063 +/- 0.003 nM and a receptor density of 1.46 +/- 0.07 pmol/g wet weight were obtained. The dissociation kinetics could be best described by assuming a mono-exponential function (k-1 = (0.52 +/- 0.1) x 10(-4) s-1). The binding of [3H]QNB reached a maximum in 60 min at 0.6 nM at 37 degrees C. Competition experiments with the enantiomers of benzetimide confirmed the muscarinic nature of the [3H]QNB binding sites. The inhibition constants of pirenzepine (0.23 +/- 0.02 microM), (+-)-hexahydrosiladifenidol (0.040 +/- 0.002 microM), AF-DX 116 (1.45 +/- 0.07 microM), methoctramine (1.67 +/- 0.02 microM) and gallamine (78 +/- 3 microM) classified this receptor as an M3 receptor. Inhibition of [3H]QNB binding by the agonists methylfurtrethonium, arecoline, isoarecoline methiodide, arecaidine propargyl ester and McN-A-343 displayed monophasic inhibition curves. With (+/-)-cis-2-methyl-4-dimethylaminomethyl-1,3- dioxolane methiodide in two out of four experiments a small (11%) population of high affinity agonist sites could be detected. The potassium sparing diuretic amiloride inhibited [3H]QNB binding (36 +/- 3 microM). Although in a way related to the amiloride binding site, the muscarinic receptors in rat kidney are unlikely to be the primary target of diuretic action of this drug. PMID:8420789

  5. Multiple allosteric sites on muscarinic receptors.

    PubMed

    Birdsall, N J; Lazareno, S; Popham, A; Saldanha, J

    2001-04-27

    Proteins and small molecules are capable of regulating the agonist binding and function of G-protein coupled receptors by multiple allosteric mechanisms. In the case of muscarinic receptors, there is the well-characterised allosteric site that binds, for example, gallamine and brucine. The protein kinase inhibitor, KT5720, has now been shown to bind to a second allosteric site and to regulate agonist and antagonist binding. The binding of brucine and gallamine does not affect KT5720 binding nor its effects on the dissociation of [3H]-N-methylscopolamine from M1 receptors. Therefore it is possible to have a muscarinic receptor with three small ligands bound simultaneously. A model of the M1 receptor, based on the recently determined structure of rhodopsin, has the residues that have been shown to be important for gallamine binding clustered within and to one side of a cleft in the extracellular face of the receptor. This cleft may represent the access route of acetylcholine to its binding site. PMID:11392621

  6. Muscarinic cholinergic enhancement of inositide turnover in cerebral nerve endings is not mediated by calcium uptake.

    PubMed

    Van Rooijen, L A; Traber, J

    1986-08-15

    Muscarinic cholinergic stimulation of rat cerebral nerve endings incubated with 32Pi causes an enhancement of the labeling of phosphatidic acid (PA) and phosphatidylinositol (PI). The involvement of Ca2+ in the stimulation of PA and PI labeling by carbamylcholine (CCh) was investigated. Enhancement of Ca2+-influx with veratridine and the Ca2+-ionophore A23187 caused a vast decrease of the labeling of the polyphosphoinositides, which was not accompanied by an enhancement of the labeling of PA and PI. The dihydropyridine Ca2+-agonist BAY K8644 did not affect phospholipid labeling. A23187, veratridine and BAY K 8644 did not enhance stimulation of the labeling of PA and PI by CCh. When Ca2+ was omitted from the incubation, A23187 caused an enhancement of basal and CCh-stimulated labeling of PA and PI, possibly indicating a particular feature of A23187 unrelated to its iontophoretic properties. The Ca2+-channel antagonists nimodipine, verapamil and flunarizine were virtually without effect on basal and CCh-stimulated labeling of PI and PA. These data support the notion that the muscarinic cholinergic inositide response is not mediated or controlled by Ca2+-flux. PMID:2427087

  7. Central Muscarinic Cholinergic Activation Alters Interaction between Splenic Dendritic Cell and CD4+CD25- T Cells in Experimental Colitis

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.; Khafipour, Ehsan; Ghia, Jean-Eric

    2014-01-01

    Background The cholinergic anti-inflammatory pathway (CAP) is based on vagus nerve (VN) activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR) signaling. Inflammatory bowel disease (IBD) patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs) and sequential CD4+/CD25−T cell activation in the context of experimental colitis. Methods The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP)-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25−T cell co-culture were determined. Results McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25−T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy. Conclusions Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD. PMID:25295619

  8. Towards a high-affinity allosteric enhancer at muscarinic M1 receptors.

    PubMed

    Lazareno, Sebastian; Popham, Angela; Birdsall, Nigel J M

    2002-01-01

    Loss of forebrain acetylcholine (ACh) is an early neurochemical lesion in Alzheimer's Disease (AD), and muscarinic receptors for ACh are involved in memory and cognition, so a muscarinic agonist could provide 'replacement therapy' in this disease. Muscarinic receptors, which couple to G-proteins, occur throughout the CNS, and in the periphery they mediate the responses of the parasympathetic nervous system, so selectivity is crucial. The five subtypes of muscarinic receptor, M1-M5, have a distinct regional distribution, with M2 and M3 mediating most of the peripheral effects, M2 predominating in hindbrain areas, and M1 predominating in the cortex and hippocampus--the brain regions most associated with memory and cognition, which has lead to a search for a truly M1-selective muscarinic agonist. That search has so far been unsuccessful, but acetylcholinesterase inhibitors such as donepezil (Aricept), which potentiate cholinergic neurotransmission, have a therapeutic role in the management of AD; so the M1 receptor remains a therapeutic target. Our approach is to develop allosteric enhancers--compounds which bind to the receptor at an 'allosteric' site which is distinct from the 'primary' site to which the endogenous ligand binds, and which enhance the affinity (or efficacy) of the endogenous ligand. We have developed radioligand binding assays and analyses for the detection and quantitatitation of allosteric interactions of a test agent with labelled and unlabelled 'primary' ligands, and we report here some results of the initial phase of a chemical synthesis project to develop potent and selective allosteric enhancers at muscarinic M1 receptors. PMID:12212769

  9. Antipsychotic-like effect of the muscarinic acetylcholine receptor agonist BuTAC in non-human primates.

    PubMed

    Andersen, Maibritt B; Croy, Carrie Hughes; Dencker, Ditte; Werge, Thomas; Bymaster, Frank P; Felder, Christian C; Fink-Jensen, Anders

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia. PMID:25880220

  10. Antipsychotic-Like Effect of the Muscarinic Acetylcholine Receptor Agonist BuTAC in Non-Human Primates

    PubMed Central

    Dencker, Ditte; Werge, Thomas; Bymaster, Frank P.; Felder, Christian C.; Fink-Jensen, Anders

    2015-01-01

    Cholinergic, muscarinic receptor agonists exhibit functional dopamine antagonism and muscarinic receptors have been suggested as possible future targets for the treatment of schizophrenia and drug abuse. The muscarinic ligand (5R,6R)-6-(3-butylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1]octane (BuTAC) exhibits high affinity for muscarinic receptors with no or substantially less affinity for a large number of other receptors and binding sites, including the dopamine receptors and the dopamine transporter. In the present study, we wanted to examine the possible antipsychotic-like effects of BuTAC in primates. To this end, we investigated the effects of BuTAC on d-amphetamine-induced behaviour in antipsychotic-naive Cebus paella monkeys. Possible adverse events of BuTAC, were evaluated in the same monkeys as well as in monkeys sensitized to antipsychotic-induced extrapyramidal side effects. The present data suggests that, the muscarinic receptor ligand BuTAC exhibits antipsychotic-like behaviour in primates. The behavioural data of BuTAC as well as the new biochemical data further substantiate the rationale for the use of muscarinic M1/M2/M4-preferring receptor agonists as novel pharmacological tools in the treatment of schizophrenia. PMID:25880220

  11. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    SciTech Connect

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memory task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.

  12. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    SciTech Connect

    Pauly, J.R.; Marks, M.J.; Gross, S.D.; Collins, A.C. )

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the number of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.

  13. A new family of insect muscarinic acetylcholine receptors.

    PubMed

    Xia, R-Y; Li, M-Q; Wu, Y-S; Qi, Y-X; Ye, G-Y; Huang, J

    2016-08-01

    Most currently used insecticides are neurotoxic chemicals that target a limited number of sites and insect cholinergic neurotransmission is the major target. A potential target for insecticide development is the muscarinic acetylcholine receptor (mAChR), which is a metabotropic G-protein-coupled receptor. Insects have A- and B-type mAChRs and the five mammalian mAChRs are close to the A-type. We isolated a cDNA (CG12796) from the fruit fly, Drosophila melanogaster. After heterologous expression in Chinese hamster ovary K1 cells, CG12796 could be activated by acetylcholine [EC50 (half maximal effective concentration), 73 nM] and the mAChR agonist oxotremorine M (EC50 , 48.2 nM) to increase intracellular Ca(2+) levels. Thus, the new mAChR is coupled to Gq/11 but not Gs and Gi/o . The classical mAChR antagonists atropine and scopolamine N-butylbromide at 100 μM completely blocked the acetylcholine-induced responses. The orthologues of CG12796 can also be found in the genomes of other insects, but not in the genomes of the honeybee or parasitoid wasps. Knockdown of CG12796 in the central nervous system had no effect on male courtship behaviours. We suggest that CG12796 represents the first recognized member of a novel mAChR class. PMID:27003873

  14. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases.

    PubMed

    Silveira, C L; Eldefrawi, A T; Eldefrawi, M E

    1990-05-01

    The M2 subtype of muscarinic receptor is predominant in heart, and such receptors were reported to be located in muscles as well as in presynaptic cholinergic and adrenergic nerve terminals. Muscarinic receptors of rat heart were identified by the high affinity binding of the agonist (+)-[3H]cis-methyldioxolane ([3H]CD), which has been used to label a high affinity population of M2 receptors. A single population of sites (KD 2.74 nM; Bmax of 82 fmol/mg protein) was detected and [3H]CD binding was sensitive to the M2 antagonist himbacine but much less so to pirenzepine, the M1 antagonist. These cardiac receptors had different sensitivities to NiCl2 and N-ethylmaleimide from brain muscarinic receptors, that were also labeled with [3H]CD and considered to be of the M2 subtype. Up to 70% of the [3H]CD-labeled cardiac receptors had high affinities for several organophosphate (OP) anticholinesterases. [3H]CD binding was inhibited by the nerve agents soman, VX, sarin, and tabun, with K0.5 values of 0.8, 2, 20, and 50 nM, respectively. It was also inhibited by echothiophate and paraoxon with K0.5 values of 100 and 300 nM, respectively. The apparent competitive nature of inhibition of [3H]CD binding by both sarin and paraoxon suggests that the OPs bind to the acetylcholine binding site of the muscarinic receptor. Other OP insecticides had lower potencies, inhibiting less than 50% of 5 nM [3H]CD binding by 1 microM of EPN, coumaphos, dioxathion, dichlorvos, or chlorpyriphos. There was poor correlation between the potencies of the OPs in reversibly inhibiting [3H]CD binding, and their anticholinesterase activities and toxicities. Acetylcholinesterases are the primary targets for these OP compounds because of the irreversible nature of their inhibition, which results in building of acetylcholine concentrations that activate muscarinic and nicotinic receptors and desensitize them, thereby inhibiting respiration. Nevertheless, the high affinities that cardiac muscarinic

  15. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  16. M1 muscarinic receptor signaling in mouse hippocampus and cortex.

    PubMed

    Porter, Amy C; Bymaster, Frank P; DeLapp, Neil W; Yamada, Masahisa; Wess, Jürgen; Hamilton, Susan E; Nathanson, Neil M; Felder, Christian C

    2002-07-19

    The five subtypes (M1-M5) of muscarinic acetylcholine receptors signal through G(alpha)(q) or G(alpha)(i)/G(alpha)(o). M1, M3 and M5 receptors couple through G(alpha)(q) and function predominantly as postsynaptic receptors in the central nervous system. M1 and M3 receptors are localized to brain regions involved in cognition, such as hippocampus and cortex, but their relative contribution to function has been difficult to ascertain due to the lack of subtype specific ligands. A functional and genetic approach was used to identify the predominant muscarinic receptor subtype(s) mediating responses in mouse hippocampus and cortex, as well as the relative degree of spare muscarinic receptors in hippocampus. The nonselective muscarinic agonist oxotremorine-M stimulated G(alpha)(q)/11-specific GTP-gamma-35S binding in a concentration dependent manner with a Hill slope near unity in wild type mouse hippocampus and cortex. Muscarinic receptor stimulated G(alpha)(q)/11-specific GTP-gamma-35S binding was virtually abolished in both the hippocampus and cortex of M1 receptor knockout (KO) mice. In contrast, there was no loss of signaling in M3 receptor KO mice in either brain region. Muscarinic receptor reserve in wildtype mouse hippocampus was measured by Furchgott analysis after partial receptor alkylation with propylbenzylcholine mustard. Occupation of just 15% of the M1 receptors in mouse hippocampus was required for maximal efficacy of oxotremorine-M-stimulated GTP-gamma-35S binding indicating a substantial level of spare receptors. These findings support a role for the M1 receptor subtype as the primary G(alpha)(q)/11-coupled muscarinic receptor in mouse hippocampus and cortex. PMID:12106668

  17. A long-acting β2-adrenergic agonist increases the expression of muscarine cholinergic subtype-3 receptors by activating the β2-adrenoceptor cyclic adenosine monophosphate signaling pathway in airway smooth muscle cells

    PubMed Central

    LIU, YUAN-HUA; WU, SONG-ZE; WANG, GANG; HUANG, NI-WEN; LIU, CHUN-TAO

    2015-01-01

    The persistent administration of β2-adrenergic (β2AR) agonists has been demonstrated to increase the risk of severe asthma, partly due to the induction of tolerance to bronchoprotection via undefined mechanisms. The present study investigated the potential effect of the long-acting β2-adrenergic agonist, formoterol, on the expression of muscarinic M3 receptor (M3R) in rat airway smooth muscle cells (ASMCs). Primary rat ASMCs were isolated and characterized following immunostaining with anti-α-smooth muscle actin antibodies. The protein expression levels of M3R and phospholipase C-β1 (PLCβ1) were characterized by western blot analysis and the production of inositol 1,4,5-trisphosphate (IP3) was determined using an enzyme-linked immunosorbent assay. Formoterol increased the protein expression of M3R in rat ASMCs in a time- and dose-dependent manner, which was significantly inhibited by the β2AR antagonist, ICI118,551 and the cyclic adenosine monophosphate (cAMP) inhibitor, SQ22,536. The increased protein expression of M3R was positively correlated with increased production of PLCβ1 and IP3. Furthermore, treatment with the glucocorticoid, budesonide, and the PLC inhibitor, U73,122, significantly suppressed the formoterol-induced upregulated protein expression levels of M3R and PLCβ1 and production of IP3. The present study demonstrated that formoterol mediated the upregulation of M3R in the rat ASMCs by activating the β2AR-cAMP signaling pathway, resulting in increased expression levels of PLCβ1 and IP3, which are key to inducing bronchoprotection tolerance. Administration of glucocorticoids or a PLC antagonist prevented formoterol-induced bronchoprotection tolerance by suppressing the protein expression of M3R. PMID:25672589

  18. Effects of cyproheptadine and pizotifen on central muscarinic receptors.

    PubMed

    Richards, M H

    1991-04-01

    The affinities of cyproheptadine, pizotifen and (+/-)-quinuclidinyl xanthane-9-carboxylate hemioxylate (QNX) were determined at muscarinic autoreceptors and postsynaptic (IP1 formation) receptors in rat hippocampal slices. The affinity values for QNX were 8.2 and 8.5 respectively. Cyproheptadine and pizotifen were less potent than QNX. Pizotifen was slightly (2-fold) less active at antagonizing IP1 formation than blocking the autoreceptors whereas cyproheptadine was equally active at antagonizing the two hippocampal muscarinic receptors. PMID:1868883

  19. Muscarinic Acetylcholine Receptors in Macaque V1 Are Most Frequently Expressed by Parvalbumin-Immunoreactive Neurons

    PubMed Central

    Disney, Anita A.; Aoki, Chiye

    2010-01-01

    Acetylcholine (ACh) is believed to underlie mechanisms of arousal and attention in mammals. ACh also has a demonstrated functional effect in visual cortex that is both diverse and profound. We have reported previously that cholinergic modulation in V1 of the macaque monkey is strongly targeted toward GABAergic interneurons. Here we examine the localization of m1 and m2 muscarinic receptor subtypes across subpopulations of GABAergic interneurons—identified by their expression of the calcium-binding proteins parvalbumin, calbindin, and calretinin—using dual-immunofluorescence confocal microscopy in V1 of the macaque monkey. In doing so, we find that the vast majority (87%) of parvalbumin-immunoreactive neurons express m1-type muscarinic ACh receptors. m1 receptors are also expressed by 60% of calbindin-immunoreactive neurons and 40% of calretinin-immunoreactive neurons. m2 AChRs, on the other hand, are expressed by only 31% of parvalbumin neurons, 23% of calbindin neurons, and 25% of calretinin neurons. Parvalbumin-immunoreactive cells comprise ≈75% of the inhibitory neuronal population in V1 and included in this large subpopulation are neurons known to veto and regulate the synchrony of principal cell spiking. Through the expression of m1 ACh receptors on nearly all of these PV cells, the cholinergic system avails itself of powerful control of information flow through and processing within the network of principal cells in the cortical circuit. PMID:18265004

  20. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice

    PubMed Central

    Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R

    2015-01-01

    Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298

  1. Stereoselective L-[3H]quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors.

    PubMed

    Murray, T F; Mpitsos, G J; Siebenaller, J F; Barker, D L

    1985-12-01

    The muscarinic antagonist L-[3H]quinuclidinyl benzilate (L-[3H]QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-[3H]QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-[3H]QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-[3H]QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-[3H]QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-[3H]QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-[3H]QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-[3H]QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution. PMID:4078624

  2. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    SciTech Connect

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.; Barker, D.L.

    1985-12-01

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.

  3. Muscarinic M1 receptors modulate endotoxemia-induced loss of synaptic plasticity.

    PubMed

    Zivkovic, Aleksandar R; Sedlaczek, Oliver; von Haken, Rebecca; Schmidt, Karsten; Brenner, Thorsten; Weigand, Markus A; Bading, Hilmar; Bengtson, C Peter; Hofer, Stefan

    2015-01-01

    Septic encephalopathy is associated with rapid deterioration of cortical functions. Using magnetic resonance imaging (MRI) we detected functional abnormalities in the hippocampal formation of patients with septic delirium. Hippocampal dysfunction was further investigated in an animal model for sepsis using lipopolysaccharide (LPS) injections to induce endotoxemia in rats, followed by electrophysiological recordings in brain slices. Endotoxemia induced a deficit in long term potentiation which was completely reversed by apamin, a blocker of small conductance calcium-activated potassium (SK) channels, and partly restored by treatment with physostigmine (eserine), an acetylcholinesterase inhibitor, or TBPB, a selective M1 muscarinic acetylcholine receptor agonist. These results suggest a novel role for SK channels in the etiology of endotoxemia and explain why boosting cholinergic function restores deficits in synaptic plasticity. Drugs which enhance cholinergic or M1 activity in the brain may prove beneficial in treatment of septic delirium in the intensive care unit. PMID:26531194

  4. Modulation of high- and low-frequency components of the cortical local field potential via nicotinic and muscarinic acetylcholine receptors in anesthetized mice

    PubMed Central

    Waters, Jack

    2013-01-01

    Release of acetylcholine (ACh) in neocortex is important for learning, memory and attention tasks. The primary source of ACh in neocortex is axons ascending from the basal forebrain. Release of ACh from these axons evokes changes in the cortical local field potential (LFP), including a decline in low-frequency spectral power that is often referred to as desynchronization of the LFP and is thought to result from the activation of muscarinic ACh receptors. Using channelrhodopsin-2, we selectively stimulated the axons of only cholinergic basal forebrain neurons in primary somatosensory cortex of the urethane-anesthetized mouse while monitoring the LFP. Cholinergic stimulation caused desynchronization and two brief increases in higher-frequency power at stimulus onset and offset. Desynchronization (1–6 Hz) was localized, extending ≤ 1 mm from the edge of stimulation, and consisted of both nicotinic and muscarinic receptor-mediated components that were inhibited by mecamylamine and atropine, respectively. Hence we have identified a nicotinic receptor-mediated component to desynchronization. The increase in higher-frequency power (>10 Hz) at stimulus onset was also mediated by activation of nicotinic and muscarinic receptors. However, the increase in higher-frequency power (10–20 Hz) at stimulus offset was evoked by activation of muscarinic receptors and inhibited by activation of nicotinic receptors. We conclude that the activation of nicotinic and muscarinic ACh receptors in neocortex exerts several effects that are reflected in distinct frequency bands of the cortical LFP in urethane-anesthetized mice. PMID:24155009

  5. Effects of selected muscarinic cholinergic antagonists on [3H]acetylcholine release from rat hippocampal slices.

    PubMed

    Pohorecki, R; Head, R; Domino, E F

    1988-01-01

    A number of cholinergic muscarinic (M) agonists and antagonists were studied for their ability to enhance tritiated acetylcholine ([3H]ACh) release from electrically field-stimulated rat hippocampal slices. A Ca++-free medium and carbachol, but not nicotine, inhibited [3H]ACh release. Atropine, methylatropine and dexetimide produced concentration-dependent increases in [3H]ACh release to a maximum of about 50% above control. Aprophen and benactyzine produced a maximal response 25 to 35% above control. The selective M1 antagonist pirenzepine had the least effect on [3H]ACh release. Of the nonspecific M1-M2 antagonists studied, benactyzine produced the least amount of [3H]ACh release. The order of potency of the M antagonists in promoting a 15% increase in [3H]ACh release was aprophen greater than benactyzine greater than methylatropine greater than dexetimide greater than pirenzepine greater than atropine. However, the order of promoting maximal release of [3H]ACh was atropine greater than dexetimide greater than methylatropine greater than aprophen greater than benactyzine greater than pirenzepine. PMID:3335998

  6. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    PubMed Central

    Gregory, Karen J; Sexton, Patrick M; Christopoulos, Arthur

    2007-01-01

    Muscarinic acetylcholine receptors (mAChRs) are prototypical Family A G protein coupled-receptors. The five mAChR subtypes are widespread throughout the periphery and the central nervous system and, accordingly, are widely involved in a variety of both physiological and pathophysiological processes. There currently remains an unmet need for better therapeutic agents that can selectively target a given mAChR subtype to the relative exclusion of others. The main reason for the lack of such selective mAChR ligands is the high sequence homology within the acetylcholine-binding site (orthosteric site) across all mAChRs. However, the mAChRs possess at least one, and likely two, extracellular allosteric binding sites that can recognize small molecule allosteric modulators to regulate the binding and function of orthosteric ligands. Extensive studies of prototypical mAChR modulators, such as gallamine and alcuronium, have provided strong pharmacological evidence, and associated structure-activity relationships (SAR), for a “common” allosteric site on all five mAChRs. These studies are also supported by mutagenesis experiments implicating the second extracellular loop and the interface between the third extracellular loop and the top of transmembrane domain 7 as contributing to the common allosteric site. Other studies are also delineating the pharmacology of a second allosteric site, recognized by compounds such as staurosporine. In addition, allosteric agonists, such as McN-A-343, AC-42 and N-desmethylclozapine, have also been identified. Current challenges to the field include the ability to effectively detect and validate allosteric mechanisms, and to quantify allosteric effects on binding affinity and signaling efficacy to inform allosteric modulator SAR. PMID:19305798

  7. Characteristics of muscarinic receptors that selectively couple to inhibition of adenylate cyclase or stimulation of phospholipase C on NG108-15 and 1321N1 cells

    SciTech Connect

    Liang, M.

    1988-01-01

    The purpose of this dissertation was to establish whether different muscarinic receptor proteins selectively couple to different second messenger response system. Although both second messenger response systems are fully functional in both cell lines, activation of muscarinic cholinergic receptors only results in inhibition of adenylate cyclase in NG108-15 neuroblastoma {times} glioma cells and stimulation of phosphoinositide hydrolysis in 1321N1 human astrocytoma cells. Muscarinic receptors on both cell types were covalently labeled with ({sup 3}H)Propylbenzilylcholine mustard (({sup 3}H)PBCM) and the mobilities of the ({sup 3}H)PBCM-labelled species of both cells were compared by SDS-PAGE. 1321N1 and NG108-15 cells each primarily expressed a single ({sup 3}H)PBCM-labelled species with an apparent size of approximately 92,000 and 66,000 Da, respectively. ({sup 3}H)PBCM labelling was completely inhibited by 1 {mu}M atropine or by down-regulation of muscarinic receptors by an overnight incubation with carbachol. The apparent size of the ({sup 3}H)PBCM-labelled species of both cell lines was not altered by treatment with a series of protease inhibitors or by treatment with dithiothreitol and iodoacetamide. Another approach for determining differences in the muscarinic receptors of 2 cells lines was to study agonist-induced alteration of muscarinic receptor number. Exposure of both cell types to agonists resulted in rapid loss of muscarinic receptors from cell surface without change of total cellular muscarinic receptors followed by subsequently loss of receptors from cells. Muscarinic receptors on both cell lines were regulated by agonist with similar properties.

  8. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors.

    PubMed

    Jakubík, J; Bacáková, L; El-Fakahany, E E; Tucek, S

    1997-07-01

    affinity, respectively) and between brucine and pentylthio-TZTP on the M2 and brucine and carbachol on the M1 receptors (8-fold increases in affinity). The discovery that it is possible to increase the affinity of muscarinic receptors for their agonists by allosteric modulators offers a new way to subtype-specific pharmacological enhancement of transmission at cholinergic (muscarinic) synapses. PMID:9224827

  9. Cellular and molecular basis of cholinergic function

    SciTech Connect

    Dowdall, M.J.; Hawthorne, J.N.

    1987-01-01

    This book contains 105 selections. Some of the titles are: Functional correlates of brain nicotine receptors; Muscarinic receptor subclasses; Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system; Developmentally regulated neurontrophic activities of Torpedo electric organ tissue; and Association of a regulatory peptide with cholinergic neurons.

  10. Molecular Conversion of Muscarinic Acetylcholine Receptor M5 to Muscarinic Toxin 7 (MT7)-Binding Protein

    PubMed Central

    Rondinelli, Sergio; Näreoja, Katja; Näsman, Johnny

    2011-01-01

    Muscarinic toxin 7 (MT7) is a mamba venom peptide that binds selectively to the M1 muscarinic acetylcholine receptor. We have previously shown that the second (ECL2) and third (ECL3) extracellular loops of the M1 receptor are critically involved in binding the peptide. In this study we used a mutagenesis approach on the M5 subtype of the receptor family to find out if this possesses a similar structural architecture in terms of toxin binding as the M1 receptor. An M5 receptor construct (M5-E175Y184E474), mutated at the formerly deciphered critical residues on ECL2 and 3, gained the ability to bind MT7, but with rather low affinity as determined in a functional assay (apparent Ki = 24 nM; apparent Ki for M1 = 0.5 nM). After screening for different domains and residues, we found a specific residue (P179 to L in M5) in the middle portion of ECL2 that was necessary for high affinity binding of MT7 (M5-EL179YE, apparent Ki = 0.5 nM). Mutation of P179 to A confirmed a role for the leucine side chain in the binding of MT7. Together the results reveal new binding interactions between receptors and the MT7 peptide and strengthen the hypothesis that ECL2 sequence is of utmost importance for MT binding to muscarinic receptors. PMID:22174976

  11. Decrease in the Sensitivity of Myocardium to M3 Muscarinic Receptor Stimulation during Postnatal Ontogenisis.

    PubMed

    Tapilina, S V; Abramochkin, D V

    2016-01-01

    Type 3 muscarinic receptors (M3 receptors) participate in the mediation of cholinergic effects in mammalian myocardium, along with M2 receptors. However, myocardium of adult mammals demonstrates only modest electrophysiological effects in response to selective stimulation of M3 receptors which are hardly comparable to the effects produced by M2 stimulation. In the present study, the effects of selective M3 stimulation induced by application of the muscarinic agonist pilocarpine (10 μM) in the presence of the selective M2 blocker methoctramine (100 nM) on the action potential (AP) waveform were investigated in isolated atrial and ventricular preparations from newborn and 3-week-old rats and compared to those in preparations from adult rats. In the atrial myocardium, stimulation of M3 receptors produced a comparable reduction of AP duration in newborn and adult rats, while in 3-week-old rats the effect was negligible. In ventricular myocardial preparations from newborn rats, the effect of M3 stimulation was more than 3 times stronger compared to that from adult rats, while preparations from 3-week old rats demonstrated no definite effect, similarly to atrial preparations. In all studied types of cardiac preparations, the effects of M3 stimulation were eliminated by the selective M3 antagonist 4-DAMP (10 nM). The results of RT-PCR show that the amount of product of the M3 receptor gene decreases with the maturation of animals both in atrial and ventricular myocardium. We concluded that the contribution of M3 receptors to the mediation of cardiac cholinergic responses decreases during postnatal ontogenesis. These age-related changes may be associated with downregulation of M3 receptor gene expression. PMID:27437147

  12. Decrease in the Sensitivity of Myocardium to M3 Muscarinic Receptor Stimulation during Postnatal Ontogenisis

    PubMed Central

    Tapilina, S.V.; Abramochkin, D.V.

    2016-01-01

    Type 3 muscarinic receptors (M3 receptors) participate in the mediation of cholinergic effects in mammalian myocardium, along with M2 receptors. However, myocardium of adult mammals demonstrates only modest electrophysiological effects in response to selective stimulation of M3 receptors which are hardly comparable to the effects produced by M2 stimulation. In the present study, the effects of selective M3 stimulation induced by application of the muscarinic agonist pilocarpine (10 μM) in the presence of the selective M2 blocker methoctramine (100 nM) on the action potential (AP) waveform were investigated in isolated atrial and ventricular preparations from newborn and 3-week-old rats and compared to those in preparations from adult rats. In the atrial myocardium, stimulation of M3 receptors produced a comparable reduction of AP duration in newborn and adult rats, while in 3-week-old rats the effect was negligible. In ventricular myocardial preparations from newborn rats, the effect of M3 stimulation was more than 3 times stronger compared to that from adult rats, while preparations from 3-week old rats demonstrated no definite effect, similarly to atrial preparations. In all studied types of cardiac preparations, the effects of M3 stimulation were eliminated by the selective M3 antagonist 4-DAMP (10 nM). The results of RT-PCR show that the amount of product of the M3 receptor gene decreases with the maturation of animals both in atrial and ventricular myocardium. We concluded that the contribution of M3 receptors to the mediation of cardiac cholinergic responses decreases during postnatal ontogenesis. These age-related changes may be associated with downregulation of M3 receptor gene expression. PMID:27437147

  13. Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability

    PubMed Central

    Parent, Marc A.; Amarante, Linda M.; Swanson, Kyra; Laubach, Mark

    2015-01-01

    The medial prefrontal cortex (mPFC) is a key brain region for the control of consummatory behavior. Neuronal activity in this area is modulated when rats initiate consummatory licking and reversible inactivations eliminate reward contrast effects and reduce a measure of palatability, the duration of licking bouts. Together, these data suggest the hypothesis that rhythmic neuronal activity in the mPFC is crucial for the control of consummatory behavior. The muscarinic cholinergic system is known to regulate membrane excitability and control low-frequency rhythmic activity in the mPFC. Muscarinic receptors (mAChRs) act through KCNQ (Kv7) potassium channels, which have recently been linked to the orexigenic peptide ghrelin. To understand if drugs that act on KCNQ channels within the mPFC have effects on consummatory behavior, we made infusions of several muscarinic drugs (scopolamine, oxotremorine, physostigmine), the KCNQ channel blocker XE-991, and ghrelin into the mPFC and evaluated their effects on consummatory behavior. A consistent finding across all drugs was an effect on the duration of licking bouts when animals consume solutions with a relatively high concentration of sucrose. The muscarinic antagonist scopolamine reduced bout durations, both systemically and intra-cortically. By contrast, the muscarinic agonist oxotremorine, the cholinesterase inhibitor physostigmine, the KCNQ channel blocker XE-991, and ghrelin all increased the durations of licking bouts when infused into the mPFC. Our findings suggest that cholinergic and ghrelinergic signaling in the mPFC, acting through KCNQ channels, regulates the expression of palatability. PMID:26578914

  14. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation.

    PubMed

    Ma, Lei; Seager, Matthew A; Seager, Matthew; Wittmann, Marion; Jacobson, Marlene; Bickel, Denise; Burno, Maryann; Jones, Keith; Graufelds, Valerie Kuzmick; Xu, Guangping; Pearson, Michelle; McCampbell, Alexander; Gaspar, Renee; Shughrue, Paul; Danziger, Andrew; Regan, Christopher; Flick, Rose; Pascarella, Danette; Garson, Susan; Doran, Scott; Kreatsoulas, Constantine; Veng, Lone; Lindsley, Craig W; Shipe, William; Kuduk, Scott; Sur, Cyrille; Kinney, Gene; Seabrook, Guy R; Ray, William J

    2009-09-15

    The forebrain cholinergic system promotes higher brain function in part by signaling through the M(1) muscarinic acetylcholine receptor (mAChR). During Alzheimer's disease (AD), these cholinergic neurons degenerate, therefore selectively activating M(1) receptors could improve cognitive function in these patients while avoiding unwanted peripheral responses associated with non-selective muscarinic agonists. We describe here benzyl quinolone carboxylic acid (BQCA), a highly selective allosteric potentiator of the M(1) mAChR. BQCA reduces the concentration of ACh required to activate M(1) up to 129-fold with an inflection point value of 845 nM. No potentiation, agonism, or antagonism activity on other mAChRs is observed up to 100 microM. Furthermore studies in M(1)(-/-) mice demonstrates that BQCA requires M(1) to promote inositol phosphate turnover in primary neurons and to increase c-fos and arc RNA expression and ERK phosphorylation in the brain. Radioligand-binding assays, molecular modeling, and site-directed mutagenesis experiments indicate that BQCA acts at an allosteric site involving residues Y179 and W400. BQCA reverses scopolamine-induced memory deficits in contextual fear conditioning, increases blood flow to the cerebral cortex, and increases wakefulness while reducing delta sleep. In contrast to M(1) allosteric agonists, which do not improve memory in scopolamine-challenged mice in contextual fear conditioning, BQCA induces beta-arrestin recruitment to M(1), suggesting a role for this signal transduction mechanism in the cholinergic modulation of memory. In summary, BQCA exploits an allosteric potentiation mechanism to provide selectivity for the M(1) receptor and represents a promising therapeutic strategy for cognitive disorders. PMID:19717450

  15. Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation

    PubMed Central

    Ma, Lei; Seager, Matthew A.; Wittmann, Marion; Jacobson, Marlene; Bickel, Denise; Burno, Maryann; Jones, Keith; Graufelds, Valerie Kuzmick; Xu, Guangping; Pearson, Michelle; McCampbell, Alexander; Gaspar, Renee; Shughrue, Paul; Danziger, Andrew; Regan, Christopher; Flick, Rose; Pascarella, Danette; Garson, Susan; Doran, Scott; Kreatsoulas, Constantine; Veng, Lone; Lindsley, Craig W.; Shipe, William; Kuduk, Scott; Sur, Cyrille; Kinney, Gene; Seabrook, Guy R.; Ray, William J.

    2009-01-01

    The forebrain cholinergic system promotes higher brain function in part by signaling through the M1 muscarinic acetylcholine receptor (mAChR). During Alzheimer's disease (AD), these cholinergic neurons degenerate, therefore selectively activating M1 receptors could improve cognitive function in these patients while avoiding unwanted peripheral responses associated with non-selective muscarinic agonists. We describe here benzyl quinolone carboxylic acid (BQCA), a highly selective allosteric potentiator of the M1 mAChR. BQCA reduces the concentration of ACh required to activate M1 up to 129-fold with an inflection point value of 845 nM. No potentiation, agonism, or antagonism activity on other mAChRs is observed up to 100 μM. Furthermore studies in M1−/− mice demonstrates that BQCA requires M1 to promote inositol phosphate turnover in primary neurons and to increase c-fos and arc RNA expression and ERK phosphorylation in the brain. Radioligand-binding assays, molecular modeling, and site-directed mutagenesis experiments indicate that BQCA acts at an allosteric site involving residues Y179 and W400. BQCA reverses scopolamine-induced memory deficits in contextual fear conditioning, increases blood flow to the cerebral cortex, and increases wakefulness while reducing delta sleep. In contrast to M1 allosteric agonists, which do not improve memory in scopolamine-challenged mice in contextual fear conditioning, BQCA induces β-arrestin recruitment to M1, suggesting a role for this signal transduction mechanism in the cholinergic modulation of memory. In summary, BQCA exploits an allosteric potentiation mechanism to provide selectivity for the M1 receptor and represents a promising therapeutic strategy for cognitive disorders. PMID:19717450

  16. Evidence for the pharmacological similarity between the central presynaptic muscarinic autoreceptor and postsynaptic muscarinic receptors.

    PubMed Central

    Bowen, D. M.; Marek, K. L.

    1982-01-01

    Twenty antagonist substances with varying potencies for central and peripheral postsynaptic muscarinic receptors have been examined for effects on the central presynaptic muscarinic autoreceptor. This has been monitored by measuring the stimulating effects of the substances on acetylcholine synthesis by rat neocortical tissue prisms. Dose-response curves for selected agents showed that maximal stimulation of synthesis was to 136-140% of the value without an antagonist. At a concentration of 1 microM, 17 of the substances caused a significant increase in synthesis, whilst at 0.01 microM significant stimulation occurred with only atropine, dexetimide, N-methyl-piperdin-4-yl (R)-2-cyclohexyl-2-hydroxyl-2-phenylacetate, quinuclidinyl benzilate (QNB) and scopolamine. Linear regression analysis between synthesis values obtained with the substances and published data for the effects on either cholinoceptor-agonist induced contraction of guinea-pig ileum or the binding of [3H]-QNB to rat forebrain membranes gave correlation coefficients of r = 0.84 (P less than 0.01), and r = 0.75 (P less than 0.02) respectively. The results provide no indication of a pharmacological difference between the central presynaptic muscarinic autoreceptor and central and peripheral postsynaptic muscarinic receptors. PMID:7186824

  17. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice.

    PubMed

    de la Cour, Cecilie; Sørensen, Gunnar; Wortwein, Gitta; Weikop, Pia; Dencker, Ditte; Fink-Jensen, Anders; Molander, Anna

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system and involved in regulation of cholinergic and dopaminergic transmission. Here we investigate, for the first time, the role of the M4 receptor in alcohol consumption using M4 knockout (M4(-/-)) and wild-type (M4(+/+)) mice. Experimentally naïve M4(-/-) and M4(+/+) mice were trained to orally self-administer 5%, 8% and 10% alcohol in 60min sessions, 6 days/week, after having undergone a standard sucrose fading training procedure on a fixed ratio schedule. The mice were further subjected to an extinction period followed by a 1 day reinstatement trial. M4(-/-) mice consumed more alcohol at 5% and 8% compared to their M4(+/+) littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4(-/-) mice consuming more alcohol than their M4(+/+) controls were re-established. Moreover, the M4(-/-) mice displayed a reduced capacity to extinguish their alcohol-seeking behavior. Taken together, alcohol consumption is elevated in M4(-/-) mice, indicating that the M4 receptor is involved in mediating the reinforcing effects of alcohol. The M4 receptor should be further explored as a potential target for pharmacological (positive allosteric modulators or future agonists) treatment of alcohol use disorders. PMID:25445043

  18. Effects of methylmercury on muscarinic receptors in the mouse brain: A quantitative autoradiographic study

    SciTech Connect

    Lee, Haesung; Yee, S.; Geddes, J.; Choi, Byung, H. Univ. of California, Irvine )

    1991-03-11

    Methylmercury (MeHg) is reported to inhibit several stages of cholinergic neurotransmission in brain tissue in-vitro and in-vivo. To examine whether or not behavioral disturbances and/or selective vulnerability of specific neuronal groups in MeHg poisoning may be related to MeHg effects on cholinergic receptors in specific regions of the brain, the density and distribution of muscarinic receptors in the brains of C57BL/6J mice were determined following repeated injections of 5 mg/kg of methylmercuric chloride (MMC). The receptor densities in six cortical laminae of seven cerebral cortical regions, hippocampus and striatum were quantitated by computer-assisted imaging system following in-vitro labeling with ({sup 3}H)-pirenzepine (M1) and ({sup 3}H)N-methyl scopolamine (M2). The results showed heterogeneous distribution of M1 and M2 sites in different regions of the brain, and significant reduction in the density of both receptor subtypes following MeHg poisoning in many cortical and subcortical regions. However, the changes in the density were variable in different laminae even in the same cortical regions. Prominent reductions in M1 densities were noted in the temporal and entorhinal cortices, CA3 and hilar regions of the hippocampus as compared to control, whereas the reduction in M2 receptor density was most prominently noted in the frontal, perirhinal and entorhinal cortices, and CA1 and hilar regions of the hippocampus. Thus, it is apparent that MeHg significantly affects muscarinic receptors in the mouse brain, and that these data when used in conjunction with immunocytochemical and other morphological studies would provide further insights into the mechanisms of neurotoxic effects of MeHg.

  19. The importance of muscarinic receptors in domestic animal diseases and therapy: Current and future perspectives.

    PubMed

    Abraham, Getu

    2016-02-01

    This review provides an overview of the early and current literature including contributions that highlight the parasympathetic cholinergic receptor systems in domestic animal tissues. Muscarinic acetylcholine receptors (mAChRs) belong to the subfamily of G protein-coupled receptors and regulate many fundamental functions of the central and peripheral nervous systems and have been subject to research over at least 40 years. Nonetheless, there are few studies specifying mAChRs in domestic animal tissues. This review focuses on the pharmacology of muscarinic acetylcholine receptor (mAChR) system and its pathological as well as the therapeutic importance in organ systems of domestic animals. Illustration and discussion of recent advances in distribution, function, biochemistry and pharmacology of mAChRs are followed by summaries of the involvement of this family of receptors in cardiovascular, respiratory, neurological, gastrointestinal (GI) and urological diseases as well as in anaesthesia and toxicology. Specific functions of mAChRs are described in detail including subtype characterization, smooth muscle functions, signal transduction and regulation. Due to their wide tissue distribution, mAChRs have shown promise as targets for the treatment of some animal diseases such as equine recurrent airway obstruction, glaucoma, abnormalities of gastric acid secretion and GI disturbances including colic. PMID:26654844

  20. Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice

    PubMed Central

    Siegel, Jessica A.; Craytor, Michael J.; Raber, Jacob

    2010-01-01

    Exposure to methamphetamine during brain development impairs cognition in humans and rodents. In mice, these impairments are greater in females than males. Genetic factors, such as apolipoprotein E genotype, may modulate the cognitive effects of methamphetamine. Methamphetamine-induced alterations in the brain acetylcholine system may contribute to the cognitive effects of methamphetamine and may also be modulated by apolipoprotein E isoform. We assessed the long-term effects of methamphetamine exposure during brain development on cognitive function and muscarinic acetylcholine receptors in mice, and whether apolipoprotein E isoform modulates these effects. Mice expressing human apolipoprotein E3 or E4 were exposed to methamphetamine (5 mg/kg) or saline once a day from postnatal day 11-20 and behaviorally tested in adulthood. Muscarinic acetylcholine receptor binding was measured in the hippocampus and cortex. Methamphetamine exposure impaired novel location recognition in female, but not male, mice. Methamphetamine-exposed male and female mice showed impaired novel object recognition and increased number of muscarinic acetylcholine receptors in the hippocampus. The cognitive and cholinergic effects of methamphetamine were similar in apolipoprotein E3 and E4 mice. Thus, the cholinergic system, but not apolipoprotein E isoform, might play an important role in the long-term methamphetamine-induced cognitive deficits in adulthood. PMID:20729719

  1. Functional characterization of muscarinic receptors in murine airways.

    PubMed Central

    Garssen, J.; Van Loveren, H.; Gierveld, C. M.; Van der Vliet, H.; Nijkamp, F. P.

    1993-01-01

    1. The effects of muscarinic receptor antagonists considered to be selective for M1 receptors (pirenzepine; PZ), M2 receptors (AFDX-116), and for M3 receptors (4-diphenyl acetoxy N-methyl-piperidine (4-DAMP)) were used to investigate the existence of muscarinic receptors subtypes in murine airways. Atropine was used as a nonselective antagonist. The effects of these antagonists were studied upon tracheal contractions induced either by EFS (electric field stimulation) or by application of an exogenous cholinoceptor agonist (arecoline). 2. The muscarinic receptor antagonists tested inhibited arecoline-induced tracheal contractions with the following rank order of potency: 4-DAMP = atropine > pirenzepine = AFDX-116. The rank order of potency of the muscarinic antagonists used in inhibiting EFS-induced tracheal contractions was: 4-DAMP = atropine > PZ > AFDX-116. The pA2 values for these antagonists were similar when compared to the pA2 values determined in guinea-pig and bovine airway smooth muscle. 3. In addition to in vitro studies, the effects of inhalation of the different muscarinic antagonists on lung function parameters in vivo were investigated. Inhalation of 4-DAMP induced a decrease in airway resistance and an increase in lung compliance. In contrast, inhalation of AFDX-116 induced an increase in airway resistance and almost no change in lung compliance. Apart from some minor effects of atropine on airway resistance, atropine, PZ, and pilocarpine failed to induce changes in lung mechanics as determined by in vivo lung function measurements. 4. The results provide evidence for the existence of M3 receptors on murine tracheae that are involved in the contraction of tracheal smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 6 Figure 7 PMID:8495246

  2. Muscarinic receptors in perirhinal cortex control trace conditioning.

    PubMed

    Bang, Sun Jung; Brown, Thomas H

    2009-04-01

    Trace conditioning requires that a transient representation of the conditional stimulus (CS) persists during the time interval between the CS offset and the onset of the unconditional stimulus. According to one hypothesis, this transient CS representation is supported by endogenous activity in "persistent-firing" neurons of perirhinal cortex (PR). By definition, persistent-firing neurons discharge for tens of seconds or minutes after the termination of the original spike-initiating stimulus. This continued spiking does not depend on recurrent circuit activity and can be reliably and completely blocked by muscarinic receptor antagonists. The present study evaluated the role of PR muscarinic receptors in trace fear conditioning. Before conditioning, rats received bilateral intra-PR infusions with either saline or scopolamine, a nonselective muscarinic receptor antagonist. Scopolamine infusions profoundly impaired trace conditioning but had no effect on delay conditioning or context conditioning. The results encourage a more general understanding of muscarinic receptors in PR and they motivate additional tests of the emerging theory that persistent-firing neurons support aspects of transient memory. PMID:19357262

  3. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity. PMID:26438517

  4. Solubilisation and molecular characterisation of muscarinic acetylcholine receptors.

    PubMed

    Hulme, E C; Berrie, C P; Haga, T; Birdsall, N J; Burgen, A S; Stockton, J

    1983-01-01

    Stable, soluble preparations of rat brain muscarinic receptors can be prepared by extracting membranes with digitonin, or with combinations of sodium cholate and sodium chloride. The stability of the cholate/NaCl extract is enhanced by the addition of egg phosphatidylcholine, which, at the same time, suppresses the considerable dispersity apparent in the hydrodynamic behaviour of the solubilised receptor. The Stokes radius of the brain muscarinic receptor in cholate/NaCl/lecithin extracts is 6.7 nm, with very similar values in other detergents, including digitonin and sodium dodecyl sulphate. Its sedimentation coefficient is 3.78s, and its molecular weight approximately 110,000 after correction for detergent binding. The isoelectric point of the digitonin - solubilised receptor is approximately 4.5. PMID:6854547

  5. Nicotinic cholinergic receptors in rat brain. Annual report No. 3, 1 May 85-30 Apr 86

    SciTech Connect

    Kellar, K.J.

    1986-05-01

    We have compared the characteristics of the recognition sites for 3(H)acetylcholine and 3H(-)nicotine in rat brain and found that the pharmacology, distribution, disulfide bond requirement, and regulation by chronic administration of nicotine and soman are identical. From these studies we conclude that 3Hacetylcholine and 3H(-)nicotine recognize the same recognition site which has the characteristics expected of a nicotinic cholinergic receptor. We have also determined that 3Hacetylcholine of high specific radioactivity (80 Ci/mmol) is an excellent ligand with which to study muscarinic receptors that have high affinity for agonists. These receptors may represent a subtype of muscarinic receptors found in brain, heart, glands, an some smooth muscle. (JS)

  6. Muscarinic receptor control of pyramidal neuron membrane potential in the medial prefrontal cortex (mPFC) in rats.

    PubMed

    Kurowski, P; Gawlak, M; Szulczyk, P

    2015-09-10

    Damage to the cholinergic input to the prefrontal cortex has been implicated in neuropsychiatric disorders. Cholinergic endings release acetylcholine, which activates nicotinic and/or G-protein-coupled muscarinic receptors. Muscarinic receptors activate transduction systems, which control cellular effectors that regulate the membrane potential in medial prefrontal cortex (mPFC) neurons. The mechanisms responsible for the cholinergic-dependent depolarization of mPFC layer V pyramidal neurons in slices obtained from young rats were elucidated in this study. Glutamatergic and GABAergic transmission as well as tetrodotoxin (TTX)-sensitive Na(+) and voltage-dependent Ca(++) currents were eliminated. Cholinergic receptor stimulation by carbamoylcholine chloride (CCh; 100 μM) evoked depolarization (10.0 ± 1.3 mV), which was blocked by M1/M4 (pirenzepine dihydrochloride, 2 μM) and M1 (VU 0255035, 5 μM) muscarinic receptor antagonists and was not affected by a nicotinic receptor antagonist (mecamylamine hydrochloride, 10 μM). CCh-dependent depolarization was attenuated by extra- (20 μM) or intracellular (50 μM) application of an inhibitor of the βγ-subunit-dependent transduction system (gallein). It was also inhibited by intracellular application of a βγ-subunit-binding peptide (GRK2i, 10μM). mPFC pyramidal neurons express Nav1.9 channels. CCh-dependent depolarization was abolished in the presence of antibodies against Nav1.9 channels in the intracellular solution and augmented by the presence of ProTx-I toxin (100 nM) in the extracellular solution. CCh-induced depolarization was not affected by the following reagents: intracellular transduction system blockers, including U-73122 (10 μM), chelerythrine chloride (5 μM), SQ 22536 (100 μM) and H-89 (2 μM); channel blockers, including Ba(++) ions (200 μM), apamin (100 nM), flufenamic acid (200 μM), 2-APB (200 μM), SKF 96365 (50 μM), and ZD 7288 (50 μM); and a Na(+)/Ca(++) exchanger blocker, benzamil (20

  7. Critical metabolic roles of β-cell M3 muscarinic acetylcholine receptors

    PubMed Central

    de Azua, Inigo Ruiz; Gautam, Dinesh; Jain, Shalini; Guettier, Jean-Marc; Wess, Jürgen

    2013-01-01

    Muscarinic acetylcholine (ACh) receptors (mAChRs; M1–M5) regulate the activity of an extraordinarily large number of important physiological processes. We and others previously demonstrated that pancreatic β-cells are endowed with M3 mAChRs which are linked to G proteins of the Gq family. The activation of these receptors by ACh or other muscarinic agonists leads to the augmentation of glucose-induced insulin release via multiple mechanisms. Interestingly, in humans, ACh acting on human β-cell mAChRs is released from adjacent α-cells which express both choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (vAChT), indicative of the presence of a non-neuronal cholinergic system in human pancreatic islets. In order to shed light on the physiological roles of β-cell M3 receptors, we recently generated and analyzed various mutant mouse models. Specifically, we carried out studies with mice which overexpressed M3 receptors or mutant M3 receptors in pancreatic β-cells or which selectively lacked M3 receptors or M3-receptor-associated proteins in pancreatic β-cells. Our findings indicate that β-cell M3 receptors play a key role in maintaining proper insulin release and whole body glucose homeostasis and that strategies aimed at enhancing signaling through β-cell M3 receptors may prove useful to improve β-cell function for the treatment of type 2 diabetes (T2D). PMID:22525375

  8. The Proto-oncogene SET Interacts with Muscarinic Receptors and Attenuates Receptor Signaling*

    PubMed Central

    Simon, Violaine; Guidry, Jessie; Gettys, Thomas W.; Tobin, Andrew B.; Lanier, Stephen M.

    2008-01-01

    G protein-coupled receptors mediate cell responses to extra-cellular stimuli and likely function in the context of a larger signal transduction complex. Utilizing the third intracellular loop of a G protein-coupled receptor in glutathione S-transfer-ase pulldown assays from rat brain lysates coupled with high sensitivity detection methods and subsequent functional studies, we report the identification of SET as a regulator of muscarinic receptor signaling. SET is a putative oncogene reported to inhibit protein phosphatase 2A and regulate gene transcription. SET binds the carboxyl region of the M3-muscarinic receptor i3 loop, and endogenous SET co-immunoprecipitates with intact M3 muscarinic receptor expressed in cells. Small interfering RNA knockdown of endogenous SET in Chinese hamster ovary cells stably expressing the M3 muscarinic receptor augmented receptor-mediated mobilization of intracellular calcium by ∼35% with no change in agonist EC50, indicating that interaction of SET with the M3 muscarinic receptor reduces its signaling capacity. SET knockdown had no effect on the mobilization of intracellular calcium by the P2-purinergic receptor, ionomycin, or a direct activator of phospholipase C, indicating a specific regulation of M3 muscarinic receptor signaling. These data provide expanded functionality for SET and a previously unrecognized mechanism for regulation of GPCR signaling capacity. PMID:17065150

  9. Epidermal Growth Factor Receptor Transactivation Is Required for Mitogen-Activated Protein Kinase Activation by Muscarinic Acetylcholine Receptors in HaCaT Keratinocytes

    PubMed Central

    Ockenga, Wymke; Kühne, Sina; Bocksberger, Simone; Banning, Antje; Tikkanen, Ritva

    2014-01-01

    Non-neuronal acetylcholine plays a substantial role in the human skin by influencing adhesion, migration, proliferation and differentiation of keratinocytes. These processes are regulated by the Mitogen-Activated Protein (MAP) kinase cascade. Here we show that in HaCaT keratinocytes all five muscarinic receptor subtypes are expressed, but M1 and M3 are the subtypes involved in mitogenic signaling. Stimulation with the cholinergic agonist carbachol leads to activation of the MAP kinase extracellular signal regulated kinase, together with the protein kinase Akt. The activation is fully dependent on the transactivation of the epidermal growth factor receptor (EGFR), which even appears to be the sole pathway for the muscarinic receptors to facilitate MAP kinase activation in HaCaT cells. The transactivation pathway involves a triple-membrane-passing process, based on activation of matrix metalloproteases, and extracellular ligand release; whereas phosphatidylinositol 3-kinase, Src family kinases or protein kinase C do not appear to be involved in MAP kinase activation. Furthermore, phosphorylation, ubiquitination and endocytosis of the EGF receptor after cholinergic transactivation are different from that induced by a direct stimulation with EGF, suggesting that ligands other than EGF itself mediate the cholinergic transactivation. PMID:25421240

  10. Naltrexone pretreatment blocks microwave-induced changes in central cholinergic receptors

    SciTech Connect

    Lai, H.; Carino, M.A.; Wen, Y.F.; Horita, A.; Guy, A.W. )

    1991-01-01

    Repeated exposure of rats to pulsed, circularly polarized microwaves (2,450-MHz, 2-microseconds pulses at 500 pps, power density 1 mW/cm2, at an averaged, whole-body SAR of 0.6 W/kg) induced biphasic changes in the concentration of muscarinic cholinergic receptors in the central nervous system. An increase in receptor concentration occurred in the hippocampus of rats subjected to ten 45-min sessions of microwave exposure, whereas a decrease in concentration was observed in the frontal cortex and hippocampus of rats exposed to ten 20-min sessions. These findings, which confirm earlier work in the authors' laboratory, were extended to include pretreatment of rats with the narcotic antagonist naltrexone (1 mg/kg, IP) before each session of exposure. The drug treatment blocked the microwave-induced changes in cholinergic receptors in the brain. These data further support the authors' hypothesis that endogenous opioids play a role in the effects of microwaves on central cholinergic systems.

  11. Alkylating derivative of oxotremorine interacts irreversibly with the muscarinic receptor

    SciTech Connect

    Ehlert, F.J.; Jenden, D.J.; Ringdahl, B.

    1984-03-05

    A 2-chloroethylamine derivative of oxotremorine was studied in pharmacological experiments and muscarinic receptor binding assays. The compound, N-(4-(2-chloroethylmethylamino)-2-butynyl)-2-pyrrolidone (BM 123), forms an aziridinium ion in aqueous solution at neutral pH that stimulates contractions of guinea pig ileum with a potency similar to that of oxotremorine. Following the initial stimulation, there is a long lasting period of lack of sensitivity of the guinea pig ileum to muscarinic agonists. BM 123 also produces muscarinic effects in vivo. When homogenates of the rat cerebral cortex were incubated with BM 123 and assayed subsequently in muscarinic receptor binding assays, a loss of binding capacity for the muscarinic antagonist, (/sup 3/H)N-methylscopolamine ((/sup 3/H)NMS), was noted without a change in affinity. Similar observations were made in (/sup 3/H)1-3-quinuclidinyl benzilate ((/sup 3/H)-QNB) binding assays on the forebrains of mice that had been injected with BM 123 24 hr earlier. The loss in receptor capacity for both (/sup 3/H)NMS and (/sup 3/H)-QNB was prevented by atropine treatment. Kinetic studies of the interaction of BM 123 with homogenates of the rat cerebral cortex in vitro showed that the half-time for the loss of (/sup 3/H)-QNB binding sites increased from 10 to 45 min as the concentration of BM 123 decreased from 10 to 1 ..mu..M. In contrast to the aziridinium ion, the parent 2-chloroethylamine compound and the alcoholic hydrolysis product were largely devoid of pharmacological and binding activity.

  12. N-substituted derivatives of 4-piperidinyl benzilate: Affinities for brain muscarinic acetylcholine receptors

    SciTech Connect

    Tejani-Butt, S.M.; Luthin, G.R.; Wolfe, B.B.; Brunswick, D.J. )

    1990-01-01

    N-Substituted derivatives of 4-piperidinyl benzilate were synthesized and their affinities for central muscarinic cholinergic receptors determined using an in vitro radioligand binding assay. 4-Piperidinyl benzilate exhibited a K{sub i} value of 2.0nM. N-Substitution with a methyl or an ethyl group increased the affinity to 0.2nM, whereas substitution with a n-propyl or isopropyl group decreased the binding affinity over 100 fold. Compounds with aralkyl substitutions at the nitrogen atom of piperidinyl benzilate were also synthesized and evaluated. The K{sub i} values (nM) obtained for these compounds were: benzyl, 0.2; p-nitrobenzyl, 13.0; p-fluorobenzyl, 3.0; phenethyl, 8.0; p-nitrophenethyl, 15.0. These data suggest that a binding region near the piperidinyl nitrogen may tolerate bulky aromatic substitutions as well or better than straight chain or branched alkyl substitutions.

  13. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    SciTech Connect

    Fatranska, M.; Budai, D.; Gulya, K; Kvetnansky, R.

    1989-01-01

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5/degree/C) or kept (controls) at room temperature (24/degree/C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of (/sup 3/H)(-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system.

  14. Comparative effects of oral chlorpyrifos exposure on cholinesterase activity and muscarinic receptor binding in neonatal and adult rat heart.

    PubMed

    Howard, Marcia D; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N

    2007-09-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M(2) muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M(2) receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor-mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M(2) receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age-related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac cholinesterase (ChE) activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1x LD(10): neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1x LD(10), relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (approximately 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC(50) values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that

  15. Participation of muscarinic receptors in memory consolidation in passive avoidance learning.

    PubMed

    Dobryakova, Yulia V; Gurskaya, Olga; Markevich, Vladimir A

    2014-01-01

    It is well-known that the cholinergic system and the muscarinic cholinergic receptors are associated with cognitive functions. Here we examined whether a non-selective muscarinic receptor antagonist scopolamine affects learning performance and/or synaptic plasticity during the memory consolidation period. Adult male Wistar rats (250-300 g) were injected with scopolamine (2 mg/kg) or saline immediately after training in a "passive avoidance" task. Memory retention test was conducted 24 h after training. The changes in the latency of the first entry into a dark compartment of a test chamber was chosen as a criterion of learning. The efficacy of synaptic transmission was estimated by the changes in the basal level of focal potentials (fEPSP amplitude and slope ratio) before training (baseline), 90 min after the training (consolidation period), and 24 hour after the training (retention period). We found that foot-shock presentation by itself had no effect on fEPSP within the first 90 min after training, but in 24 hour fEPSPs were decreased. In untrained rats administration of scopolamine had no effect on the fEPSP amplitude within the first 90 min after the injection, but in 24 h we observed an increase in the fEPSP amplitude. In trained animals, scopolamine decreased the fEPSP amplitude in the hippocampal CA1 area during first 1.5 h after the injection. However, the drug had no effect on the memory retention in the passive avoidance task. Taken together our data suggest that scopolamine modifies the synaptic placticity of the hippocampal network but does not induce significant changes in the retention of the passive avoidance skill. PMID:24993630

  16. Comparative Effects of Oral Chlorpyrifos Exposure on Cholinesterase Activity and Muscarinic Receptor Binding in Neonatal and Adult Rat Heart

    PubMed Central

    Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.

    2010-01-01

    Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not

  17. A novel cholinergic receptor mediates inhibition of chick cochlear hair cells.

    PubMed

    Fuchs, P A; Murrow, B W

    1992-04-22

    The central nervous system provides feedback regulation at several points within the peripheral auditory apparatus. One component of that feedback is inhibition of cochlear hair cells by release of acetylcholine (ACh) from efferent brainstem neurons. The mechanism of hair cell inhibition, and the character of the presumed cholinergic receptor, however, have eluded understanding. Both nicotinic and muscarinic, as well as some non-cholinergic ligands can affect the efferent action. We have made whole-cell, tight-seal recordings from short (outer) hair cells isolated from the chick's cochlea. These are the principal targets of cochlear efferents in birds. ACh hyperpolarizes short hair cells by opening a cation channel through which Ca2+ enters the cell and subsequently activates Ca(2+)-dependent K+ current (Fuchs & Murrow 1991, 1992). Both curare and atropine are effective-antagonists of cholinergic inhibition at 3 microM, whereas trimethaphan camsylate and strychnine block at 1 microM. The normally irreversible nicotinic antagonist, alpha-bungarotoxin, reversibly blocked the hair cell response, as did kappa-bungarotoxin. The half-blocking concentration for alpha-bungarotoxin was 26 nM. It is proposed that the hair cell AChR is a ligand-gated cation channel related to the nicotinic receptor of nerve and muscle. PMID:1355909

  18. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    SciTech Connect

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.

  19. Type 3 muscarinic receptors contribute to intestinal mucosal homeostasis and clearance of Nippostrongylus brasiliensis through induction of TH2 cytokines.

    PubMed

    McLean, Leon P; Smith, Allen; Cheung, Lumei; Urban, Joseph F; Sun, Rex; Grinchuk, Viktoriya; Desai, Neemesh; Zhao, Aiping; Raufman, Jean-Pierre; Shea-Donohue, Terez

    2016-07-01

    Despite increased appreciation for the role of nicotinic receptors in the modulation of and response to inflammation, the contribution of muscarinic receptors to mucosal homeostasis, clearance of enteric pathogens, and modulation of immune cell function remains relatively undefined. Uninfected and Nippostrongylus brasiliensis-infected wild-type and type 3 muscarinic receptor (M3R)-deficient (Chrm3(-/-)) mice were studied to determine the contribution of M3R to mucosal homeostasis as well as host defense against the TH2-eliciting enteric nematode N. brasiliensis Intestinal permeability and expression of TH1/TH17 cytokines were increased in uninfected Chrm3(-/-) small intestine. Notably, in Chrm3(-/-) mice infected with N. brasiliensis, small intestinal upregulation of TH2 cytokines was attenuated and nematode clearance was delayed. In Chrm3(-/-) mice, TH2-dependent changes in small intestinal function including smooth muscle hypercontractility, increased epithelial permeability, decreased epithelial secretion and absorption, and goblet cell expansion were absent despite N. brasiliensis infection. These findings identify an important role for M3R in host defense and clearance of N. brasiliensis, and support the expanding role of cholinergic muscarinic receptors in maintaining mucosal homeostasis. PMID:27173511

  20. Muscarinic receptor size on smooth muscle cells and membranes

    SciTech Connect

    Collins, S.M.; Jung, C.Y.; Grover, A.K.

    1986-08-01

    The loss of (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) binding following high-energy radiation was used to compare the muscarinic receptor size on single smooth muscle cells isolated by collagenase digestion from the canine stomach and on plasma membranes derived from intact gastric smooth muscle without exposure to exogenous proteolysis. Radiation inactivation of galactose oxidase (68 kdaltons), yeast alcohol dehydrogenase (160 kdaltons), and pyruvate kinase (224 kdaltons) activities were used as molecular-weight standards. Radiation inactivation of (/sup 3/H)QNB binding to rat brain membranes, which gave a target size of 86 kdaltons, served as an additional control. In isolated smooth muscle cells, the calculated size of the muscarinic receptor was 80 +/- 8 kdaltons. In contrast, in a smooth muscle enriched plasma membrane preparation, muscarinic receptor size was significantly smaller at 45 +/- 3 kdaltons. Larger molecular sizes were obtained either in the presence of protease inhibitors (62 +/- 4 kdaltons) or by using a crude membrane preparation of gastric smooth muscle 86 +/- 7 kdaltons).

  1. Positive allosteric action of eburnamonine on cardiac muscarinic acetylcholine receptors.

    PubMed

    Proska, J; Tucek, S

    1996-06-01

    It was discovered recently that alcuronium and strychnine (which is a precursor of alcuronium) allosterically increase the affinity of cardiac muscarinic receptors for the antagonist, N-methylscopolamine. We have now investigated the effects of l-eburnamonine and vincamine, which are both closely related to strychnine. In experiments on rat heart atria, l-eburnamonine was found to increase the binding of [3H]N-methylscopolamine with Ehlert's cooperativity coefficient alpha = 0.35, which indicates that the strength of its allosteric action is close to that of alcuronium and strychnine (alpha = 0.31 and 0.44, respectively). However, the affinity of l-eburnamonine for the cardiac muscarinic receptors is lower than the affinities of alcuronium and strychnine (KAR = 22.6 microM, 0.15 microM, and 3.4 microM, respectively). In spite of its extremely close similarity to l-eburnamonine, vincamine has a negative allosteric effect on the binding of [3H]N-methylscopolamine (alpha = 4.1; KAR = 22.8 microM). It is likely that a systematic investigation of the allosteric effects of the analogues of strychnine will not only yield new allosteric effectors on muscarinic receptors, but also clarify the structural features responsible for the direction (positive or negative) of their allosteric effect. PMID:8813554

  2. Selectivity of oxomemazine for the M1 muscarinic receptors.

    PubMed

    Lee, S W; Woo, C W; Kim, J G

    1994-12-01

    The binding characteristics of pirenzepine and oxomemazine to muscarinic receptor were studied to evaluate the selectivity of oxomemazine for the muscarinic receptor subtypes in rat cerebral microsomes. Equilibrium dissociation constant (KD) of (-)-[3H]quinuclidinyl benzilate([3H]QNB) determined from saturation isotherms was 64 pM. Analysis of the pirenzepine inhibition curve of [3H]QNB binding to cerebral microsome indicated the presence of two receptor subtypes with high (Ki = 16 nM, M1 receptor) and low (Ki = 400 nM, M3 receptor) affinity for pirenzepine. Oxomemazine also identified two receptor subtypes with about 20-fold difference in the affinity for high (Ki = 84 nM, OH receptor) and low (Ki = 1.65 microM, OL receptor) affinity sites. The percentage populations of M1 and M3 receptors to the total receptors were 61:39, and those of OH and OL receptors 39:61, respectively. Both pirenzepine and oxomemazine increased the KD value for [3H]QNB without affecting the binding site concentrations and Hill coefficient for the [3H]QNB binding. Oxomemazine had a 10-fold higher affinity at M1 receptors than at M3 receptors, and pirenzepine a 8-fold higher affinity at OH receptors than at OL receptors. Analysis of the shallow competition binding curves of oxomemazine for M1 receptors and pirenzepine for OL receptors yielded that 69% of M1 receptors were of OH receptors and the remaining 31% of OL receptors, and that 29% of OL receptors were of M1 receptors and 71% of M3 receptors. However, M3 for oxomemazine and OH for pirenzepine were composed of a uniform population. These results suggest that oxomemazine could be classified as a selective drug for M1 receptors and also demonstrate that rat cerebral microsomes contain three different subtypes of M1, M3 and the other site which is different from M1, M2 and M3 receptors. PMID:10319156

  3. Purification of muscarinic acetylcholine receptors by affinity chromatography.

    PubMed Central

    André, C; De Backer, J P; Guillet, J C; Vanderheyden, P; Vauquelin, G; Strosberg, A D

    1983-01-01

    Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein. Images Fig. 3. PMID:6605245

  4. Muscarinic cholinergic inhibition of beta-adrenergic stimulation of phospholamban phosphorylation and CaS transport in guinea pig ventricles

    SciTech Connect

    Lindemann, J.P.; Watanabe, A.M.

    1985-10-25

    The effects of muscarinic cholinergic stimulation on beta-adrenergic induced increases in phospholamban phosphorylation and CaS transport were studied in intact myocardium. Isolated guinea pig ventricles were perfused via the coronary arteries with TSPi, after which membrane vesicles were isolated from individual hearts. Isoproterenol produced reversible increases in TSP incorporation into phospholamban. Associated with the increases in TSP incorporation were increases in the initial rate of phosphate-facilitated CaS uptake measured in aliquots of the same membrane vesicles isolated from the perfused hearts. The increases in TSP incorporation and calcium transport were significantly attenuated by the simultaneous administration of acetylcholine. Acetylcholine also attenuated increases in phospholamban phosphorylation and CaS uptake produced by the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin. The contractile effects of all agents which increased cAMP levels (increased contractility and a reduction in the t1/2 of relaxation) were also attenuated by acetylcholine. The inhibitory effects of acetylcholine were associated with attenuation of the increases in cAMP levels produced by isoproterenol and isobutylmethylxanthine but not by forskolin. Acetylcholine also increased the rate of reversal of the functional and biochemical effects of isoproterenol by propranolol without affecting cAMP levels. These results suggest that cholinergic agonists inhibit the functional effects of beta-adrenergic stimulation in part by inhibition of phospholamban phosphorylation. This inhibition may be mediated by two potential mechanisms: inhibition of beta-adrenergic activation of adenylate cyclase and stimulation of dephosphorylation.

  5. Activation Biosensor for G Protein-Coupled Receptors: A FRET-Based m1 Muscarinic Activation Sensor That Regulates Gq

    PubMed Central

    Chang, Seungwoo; Ross, Elliott M.

    2012-01-01

    We describe the design, construction and validation of a fluorescence sensor to measure activation by agonist of the m1 muscarinic cholinergic receptor, a prototypical class I Gq-coupled receptor. The sensor uses an established general design in which Förster resonance energy transfer (FRET) from a circularly permuted CFP mutant to FlAsH, a selectively reactive fluorescein, is decreased 15–20% upon binding of a full agonist. Notably, the sensor displays essentially wild-type capacity to catalyze activation of Gαq, and the purified and reconstituted sensor displays appropriate regulation of affinity for agonists by Gq. We describe the strategies used to increase the agonist-driven change in FRET while simultaneously maintaining regulatory interactions with Gαq, in the context of the known structures of Class I G protein-coupled receptors. The approach should be generally applicable to other Class I receptors which include numerous important drug targets. PMID:23029161

  6. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation

    PubMed Central

    Hoeller, Alexandre A.; Costa, Ana Paula R.; Bicca, Maíra A.; Matheus, Filipe C.; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L.; Walz, Roger; Collingridge, Graham L.; Bortolotto, Zuner A.; de Lima, Thereza C. M.

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine—a muscarinic receptor (mAChR) agonist—displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine–an NMDARs antagonist (4 mg/kg, i.p.)–prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies. PMID:26795565

  7. Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor.

    PubMed

    Volpicelli, Laura A; Lah, James J; Fang, Guofu; Goldenring, James R; Levey, Allan I

    2002-11-15

    Agonist-induced internalization followed by subsequent return to the cell surface regulates G-protein-coupled receptor (GPCR) activity. Because the cellular responsiveness to ligand depends on the balance between receptor degradation and recycling, it is crucial to identify the molecules involved in GPCR recovery to the cell surface. In this study, we identify mechanisms involved in the recycling of the M4 subtype of muscarinic acetylcholine receptor. M4 is highly expressed in the CNS, plays a role in locomotor activity, and is a novel therapeutic target for neurologic and psychiatric disorders. Previous studies show that, after cholinergic stimulation, M4 internalizes from the cell surface to endosomes in cell culture and the rat brain. Here, we show that, after activation, M4 traffics to transferrin receptor- and Rab11a-positive perinuclear endosomes. Expression of the constitutively GDP-bound, inactive mutant Rab11aS25N inhibits M4 trafficking to recycling endosomes. Expression of the C-terminal tail of myosin Vb, a Rab11a effector, enhances M4 accumulation in perinuclear endosomes. Both Rab11aS25N and the myosin Vb tail impair M4 recycling. The results demonstrate that GPCR recycling is mediated through a discrete pathway using both Rab11a and myosin Vb. PMID:12427833

  8. The muscarinic receptor of chick embryo cells: correlation between ligand binding and calcium mobilization

    PubMed Central

    1985-01-01

    In this report we characterize muscarinic cholinergic receptor on embryonic cells. We established dose-response curves by fluorometric measurement of Ca2+ mobilization in cell suspensions of whole chick embryos stage 23/24. Ca2+ mobilization was quantitated by standardization of chlorotetracycline (CTC) fluorescence changes after stimulation with muscarinic agonists. We determined ED50 values for the agonists acetylcholine and carbachol as 3.4 X 10(-6) and 2.7 X 10(-5) M, respectively. Pilocarpine and oxotremorine were found to act as reversible competitive antagonists with inhibition constants (Kl) of 5.0 X 10(-6) and 1.4 X 10(-6) M, respectively. Bethanechol, which induced only 23% of the maximal effect obtained by acetylcholine, was a partial agonist with an ED50 of 4.8 X 10(-4) M. Its antagonistic component is expressed by an inhibition constant of 1.9 X 10(-4) M. In parallel, binding studies were performed in a competition assay with [3H]-quinuclidinylbenzilate. For the agonists acetylcholine and carbachol, binding parameters were best fitted by a "two binding-sites model." Comparison with dose-response curves indicated that Ca2+ mobilization was triggered via the high-affinity binding site. The inhibition constants of antagonists derived from the shift of dose- response curves corresponded to the fitted KD values of the binding studies when a "one binding-site model" was applied. Combination of dose-response and binding data showed close proportionality between receptor occupancy and calcium mobilization. No spare receptors were present. PMID:2858487

  9. Characterization and agonist regulation of muscarinic ([3H]N-methyl scopolamine) receptors in isolated ventricular myocytes from rat.

    PubMed

    Horackova, M; Robinson, B; Wilkinson, M

    1990-11-01

    Cell surface muscarinic cholinergic receptors have been characterized and quantified for the first time, in intact, isolated adult rat cardiomyocytes. The cells were previously established as functionally fully compatible with cellular responses in intact cardiac tissue. The specific binding of the hydrophilic radioligand, [3H]-NMS, (N-methyl-[3H]-scopolamine methylchloride) was found to be stereo-specific, saturable, reversible and of high affinity. Binding of [3H]-NMS demonstrated appropriate drug specificity and was positively correlated with increasing cell concentrations. Bmax for [3H]-NMS binding to ventricular myocytes, enzymatically dissociated from adult male rats, was 15.8 +/- 1.03 fmol/25 x 10(3) cells (at 4 degrees C) and KD was 0.27 +/- 0.05 nM (n = 14). Binding assays performed at a higher incubation temperature (30 degrees C) yielded a higher Bmax value (22.1 +/- 1.6 fmol/25 x 10(3) cells; n = 11; P less than 0.005 vs. Bmax at 4 degrees C) but an unchanged KD (0.23 +/- 0.06 nM). Pretreatment of myocytes with the muscarinic agonist carbachol (1 mM) at 37 degrees C resulted in a reduction (down-regulation) in specific binding of the hydrophilic ligand [3H]-NMS. The magnitude of this reduction and its rate of recovery were dependent on the time of the exposure to carbachol. Exposures of 30-60 min elicited down-regulated by 35% (Bmax = 14.29 +/- 1.66 changed to 9.5 +/- 1.79 fmol/25 x 10(3) cells, without change in KD P less than 0.01, n = 4). The down-regulation of the muscarinic receptors by carbachol was insensitive to application of bacitracin - an inhibitor of endocytosis. On the other hand preincubation with 10(-9)M atropine, a muscarinic antagonist, hindered the agonist-induced receptor "loss" from the cell surface confirming the muscarinic nature of these receptors. We conclude that our preparation of intact, isolated ventricular cardiomyocytes is ideally suited for the study of cell surface muscarinic receptor regulation under physiological and

  10. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    PubMed Central

    Ockenga, Wymke; Tikkanen, Ritva

    2015-01-01

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles. PMID:25985102

  11. Allosteric interactions of three muscarine antagonists at bovine tracheal smooth muscle and cardiac M2 receptors.

    PubMed

    Roffel, A F; Elzinga, C R; Meurs, H; Zaagsma, J

    1989-03-01

    The kinetics of [3H]dexetimide dissociation from muscarine receptors in bovine cardiac left ventricular and tracheal smooth muscle membranes were studied in the absence and presence of three muscarine antagonists. It was found that [3H]dexetimide dissociation from cardiac muscarine receptors was monophasic and very fast (half life less than 1 min) and was slowed by the cardioselective muscarine antagonists, gallamine, methoctramine and AF-DX 116, concentration dependently. [3H]Dexetimide dissociation from tracheal muscarine receptors was biphasic, with a fast phase (half-life less than 1 min) followed after 4-5 min by a slow phase (half-life = 38.5 min). The fast component, but not the slow component, was slowed by the muscarine antagonists with concentration dependencies very similar to those found in the heart. We conclude from these data that the major population of tracheal smooth muscle muscarine receptors resembles the cardiac M2 type not only with respect to equilibrium binding affinities but also with respect to the secondary, allosteric binding site on the muscarine receptor. The results also imply that the cardiac receptor subtype is much more sensitive to allosteric modulation than the glandular/smooth muscle receptor subtype. PMID:2714370

  12. Blocking M2 muscarinic receptor signaling inhibits tumor growth and reverses epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC)

    PubMed Central

    Zhao, Qingnan; Gu, Xiajing; Zhang, Chun; Lu, Qin; Chen, Hongzhuan; Xu, Lu

    2015-01-01

    Lung cancers express non-neuronal, cholinergic autoparacrine loop, which facilitates tumor growth. Interruption of M3 muscarinic cholinergic signaling has been reported to inhibit small cell lung cancer (SCLC) growth. The purpose of this study is to investigate if blocking autoparacrine muscarinic cholinergic signaling could inhibit non-small cell lung cancer (NSCLC) growth and possible underlying mechanisms. Our results showed that PC9 and A549 cells expressed all 5 subtypes of muscarinic receptor (mAChR) and blocking M2 mAChR (M2R) signaling using selective antagonist methoctramine or short hairpin RNA (shRNA) inhibited tumor cell proliferation in vitro and in vivo. Consistent with AChR agonists stimulating p44/42 MAPK (Erk1/2) and Akt phosphorylation, blocking M2R signaling decreased MAPK and Akt phosphorylation, indicating that non-neuronal ACh functions as an autoparacrine growth factor signaling in part through activation of M2R and downstream MAPK and Akt pathways. Importantly, further studies revealed that blocking M2R signaling also reversed epithelial-mesenchymal transition (EMT) in vitro and in vivo, indicating that non-neuronal ACh promotes EMT partially through activation of M2R. These findings demonstrate that M2R plays a role in the growth and progression of NSCLC and suggest M2R antagonists may be an efficacious adjuvant therapy for NSCLC. PMID:25778781

  13. In vivo visualization of central muscarinic receptors using [11C]quinuclidinyl benzilate and positron emission tomography in baboons.

    PubMed

    Varastet, M; Brouillet, E; Chavoix, C; Prenant, C; Crouzel, C; Stulzaft, O; Bottlaender, M; Cayla, J; Mazière, B; Mazière, M

    1992-03-24

    The muscarinic antagonist, quinuclidinyl benzilate (QNB), labeled with carbon 11 was used as a radioligand to visualize in vivo by positron emission tomography (PET) the central muscarinic acetylcholine receptors (mAChR) in baboons (Papio papio). The binding characteristics of [11C]QNB showed its specific binding to central mAChR. [11C]QNB brain uptake was high in cerebral cortex and striatum, areas that are rich in mAChR, whereas it decreased rapidly in cerebellum, evidencing non-specific binding in this structure that is almost devoid of mAChR. These results are consistent with the known cerebral distribution of mAChR in primates. [11C]QNB specific cerebral binding was enhanced by pretreatment with methyl-QNB, a peripherally acting muscarinic antagonist. Specifically labeled binding sites alone were blocked by prior administration of dexetimide, a muscarinic antagonist. Specific radioactivity was driven out from mAChR-rich regions by atropine and dexetimide, drugs with high affinity for mAChR. This competition was stereospecific since only dexetimide, the pharmacologically active isomer of benzetimide, was able to compete with the radioligand on its binding sites. A relationship between the occupancy of [11C]QNB-labeled receptors by atropine or dexetimide and the concomitant induction of a pharmacological effect was also detected by simultaneous PET scanning and electroencephalographic recording. Since mAChR form an important part of choline receptors in the central nervous system, [11C]QNB appears to be a suitable radiotracer to monitor cerebral physiological or pathological phenomena linked to the cholinergic system in living subjects. PMID:1521561

  14. Type 3 Muscarinic Receptors Contribute to Clearance of Citrobacter rodentium

    PubMed Central

    McLean, Leon P.; Smith, Allen; Cheung, Lumei; Sun, Rex; Grinchuk, Viktoriya; Vanuytsel, Tim; Desai, Neemesh; Urban, Joseph F.; Zhao, Aiping; Raufman, Jean-Pierre; Shea-Donohue, Terez

    2016-01-01

    Background The role of muscarinic receptors in mucosal homeostasis, response to enteric pathogens, and modulation of immune cell function is undefined. Methods The contribution of type 3 muscarinic receptors (M3R) to mucosal homeostasis within the colon and host defense against Citrobacter rodentium was determined in uninfected and C. rodentium-infected WT and M3R-deficient (Chrm3−/−) mice. In addition, WT and Chrm3−/− bone marrow-derived macrophages (BMDM) were studied to determine the ability of M3R to modulate macrophage phenotype and function. Results In Chrm3−/− mice clearance of C. rodentium was delayed despite an amplified TH1/TH17 response. Delayed clearance of C. rodentium from Chrm3−/− mice was associated with prolonged adherence of bacteria to colonic mucosa, decreased goblet cell number, and decreased mucin 2 gene expression. Treatment of BMDM with bethanechol, a muscarinic-selective agonist, induced a classically activated macrophage phenotype, which was dependent on M3R expression. Chrm3−/− BMDM retained their ability to attain a classically activated macrophage phenotype when treated with the TH1 cytokine IFN-γ. Conclusions In Chrm3−/− mice mucin production is attenuated and is associated with prolonged adherence of C. rodentium to colonic mucosa. The immune response, as characterized by production of TH1/TH17 cytokines, in C. rodentium-infected Chrm3−/− mice is intact. In addition, M3R activity promotes the development of classically activated macrophages. Our data establish a role for M3R in host defense against C. rodentium through effects on goblet cell mucus production and in the modulation of macrophage phenotype and function. PMID:25985244

  15. Pharmacological characterization of muscarinic receptors in neonatal rat cardiomyocytes.

    PubMed

    Yang, C M; Chen, F F; Sung, T C; Hsu, H F; Wu, D

    1993-09-01

    [N-methyl-3H]scopolamine methylchloride ([3H]NMS) was used to characterize the muscarinic receptors (mAChRs) in the intact cardiomyocytes. The specific binding of [3H]NMS was proportional to cell concentration, saturable with respect to [3H]NMS concentration, and time dependent. Scatchard analysis of binding isotherms showed that [3H]NMS bound to the freshly isolated and cultured cardiomyocytes with dissociation constants of 275 +/- 64 and 207 +/- 20 pM as well as maximum receptor densities of 0.13 +/- 0.09 and 5.36 +/- 0.20 fmol/10(5) cells, respectively. Heterogeneity of mAChRs was demonstrated by competitive binding experiments against [3H]NMS with M2 and M3 antagonists. These receptors (80%) exhibited high affinities for 11-([2-[(diethylamino)methyl]-1-piperidinyl]-acetyl)-5,11-dihydro- 6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX-116) and methoctramine similar to those of M2 subtype. The low-affinity M2 antagonist binding constants were close to those reported for M3 receptors and possessed high affinity for 4-diphenylacetoxyl-N-methylpiperidine (4-DAMP) and hexahydrosiladifenidol. On the basis of biochemical studies, AF-DX-116 blocked adenosine 3',5'-cyclic monophosphate (cAMP) inhibition with high affinity (pKB 7.4), while it antagonized inositol phosphate formation with low affinity (pKB 6.5). 4-DAMP possessed high affinity in blocking inositol phosphate formation (pKB 9.0) and low affinity for antagonism of cAMP inhibition (pKB 7.7). Although no other muscarinic receptor mRNA has been detected in these cells, these data suggest the presence of a second population of mAChRs, which may not be identical to the classical cardiac "M2" receptors. PMID:8214023

  16. Stress, chemical defense agents, and cholinergic receptors. Midterm report, 1 November 1987-31 July 1989

    SciTech Connect

    Lane, J.D.

    1989-11-30

    This project is assessing the affects of exposure to a chemical defense agent on anxiety and stress, by using rat models of anxiety (conditioned emotional response (CER); conditioned suppression) and unconditioned non-specific stres (exposure to footshock). The specific experiments determined the plasticity of muscarinic cholinergic binding sites in the central nervous system. The neuroanatomical locus and neuropharmacological profile of changes in binding sites were assessed in brain areas enriched in cholinergic markers. Acetylcholine turnover was measured to determine if the receptor response is compensatory or independent. The effects of acute exposure to doses of a chemical defense agent (soman--XGD) on lethality and behaviors were examined. The experiments involved training and conditioning adult rats to CER using standard operant/respondent techniques. The binding of radiolabelled ligand was studied in vitro using brain membranes and tissue sections (autoradiography). The major findings are that CER produces increases in acetylcholine turnover in brain areas involved in anxiety, and that primarily post-synaptic M1 receptors compensatorly decrease in response. These neurochemical phenomena are directly correlated with several behaviors, including onset and extinction of CER and non-specific stress. Followup experiments have been designed to test the interaction of CER, XGD and neurochemistry.

  17. Evidence for a specific role for muscarinic receptors in crossmodal object recognition in rats.

    PubMed

    Jacklin, Derek L; Kelly, Patrick; Bianchi, Cristina; MacDonald, Tyler; Traquair, Hugh; Winters, Boyer D

    2015-02-01

    Acetylcholine (ACh) has been implicated in numerous cognitive functions, including multisensory feature binding. In the present study, we systematically assessed the involvement of cholinergic muscarinic receptors in several variations of an object recognition task for rats. In the standard spontaneous object recognition (SOR) task, tactile and visual properties of objects were freely available throughout the sample and choice phases. In the tactile- and visual-only unimodal SOR tasks, exploration in both phases was restricted to tactile and visual information, respectively. For the basic crossmodal object recognition (CMOR) task, sample object exploration was limited to tactile features, whereas choice objects were available only in the visual domain. In Experiment 1, pre-sample systemic administration of scopolamine (0.2mg/kg) disrupted performance on standard SOR, both unimodal SOR tasks, and basic CMOR, consistent with a role for muscarinic receptors in memory encoding. Conversely, in Experiment 2, pre-choice systemic scopolamine selectively impaired object recognition on the CMOR task. For Experiment 3, the inclusion of multimodal, but not unimodal pre-exposure to the to-be-remembered objects prevented scopolamine from disrupting performance on the CMOR task when given prior to the choice phase. These results suggest that ACh is necessary during the choice phase of the CMOR task to facilitate the binding of object features across sensory modalities, a function that is not required for the other tasks assessed. Multimodal object pre-exposure might preclude the requisite contribution of ACh in the choice phase by allowing rats to bind important visual and tactile object information prior to testing. PMID:25490059

  18. Endogenous inhibition of the trigeminally evoked neurotransmission to cardiac vagal neurons by muscarinic acetylcholine receptors.

    PubMed

    Gorini, C; Philbin, K; Bateman, R; Mendelowitz, D

    2010-10-01

    Stimulation of the nasal mucosa by airborne irritants or water evokes a pronounced bradycardia accompanied by peripheral vasoconstriction and apnea. The dive response, which includes the trigeminocardiac reflex, is among the most powerful autonomic responses. These responses slow the heart rate and reduce myocardial oxygen consumption. Although normally cardioprotective, exaggeration of this reflex can be detrimental and has been implicated in cardiorespiratory diseases, including sudden infant death syndrome (SIDS). An essential component of the diving response and trigeminocardiac reflex is activation of the parasympathetic cardiac vagal neurons (CVNs) in the nucleus ambiguus that control heart rate. This study examined the involvement of cholinergic receptors in trigeminally evoked excitatory postsynaptic currents in CVNs in an in vitro preparation from rats. CVNs were identified using a retrograde tracer injected into the fat pads at the base of the heart. Application of the acetylcholinesterase inhibitor neostigmine significantly decreased the amplitude of glutamatergic neurotransmission to CVNs on stimulation of trigeminal fibers. Whereas nicotine did not have any effect on the glutamatergic responses, the muscarinic acetylcholine receptor (mAChR) agonist bethanechol significantly decreased the excitatory neurotransmission. Atropine, an mAChR antagonist, facilitated these responses indicating this trigeminally evoked brain stem pathway in vitro is endogenously inhibited by mAChRs. Tropicamide, an m4 mAChR antagonist, prevented the inhibitory action of the muscarinic agonist bethanechol. These results indicate that the glutamatergic synaptic neurotransmission in the trigeminally evoked pathway to CVNs is endogenously inhibited in vitro by m4 mAChRs. PMID:20719927

  19. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    SciTech Connect

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-05-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with (/sup 3/H)-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with (/sup 3/H)-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension.

  20. Disparate cholinergic currents in rat principal trigeminal sensory nucleus neurons mediated by M1 and M2 receptors: a possible mechanism for selective gating of afferent sensory neurotransmission.

    PubMed

    Kohlmeier, Kristi A; Soja, Peter J; Kristensen, Morten P

    2006-06-01

    Neurons situated in the principal sensory trigeminal nucleus (PSTN) convey orofacial sensory inputs to thalamic relay regions and higher brain centres, and the excitability of these ascending tract cells is modulated across sleep/wakefulness states and during pain conditions. Moreover, acetylcholine release changes profoundly across sleep/wakefulness states and ascending sensory neurotransmission is altered by cholinergic agonists. An intriguing possibility is, therefore, that cholinergic mechanisms mediate such state-dependent modulation of PSTN tract neurons. We tested the hypotheses that cholinergic agonists can modulate PSTN cell excitability and that such effects are mediated by muscarinic receptor subtypes, using patch-clamp methods in rat and mouse. In all examined cells, carbachol elicited an electrophysiological response that was independent of action potential generation as it persisted in the presence of tetrodotoxin. Responses were of three types: depolarization, hyperpolarization or a biphasic response consisting of hyperpolarization followed by depolarization. In voltage-clamp mode, carbachol evoked corresponding inward, outward or biphasic currents. Moreover, immunostaining for the vesicle-associated choline transporter showed cholinergic innervation of the PSTN. Using muscarinic receptor antagonists, we found that carbachol-elicited PSTN neuron hyperpolarization was mediated by M2 receptors and depolarization, in large part, by M1 receptors. These data suggest that acetylcholine acting on M1 and M2 receptors may contribute to selective excitability enhancement or depression in individual, rostrally projecting sensory neurons. Such selective gating effects via cholinergic input may play a functional role in modulation of ascending sensory transmission, including across behavioral states typified by distinct cholinergic tone, e.g. sleep/wakefulness arousal levels or neuropathic pain conditions. PMID:16820015

  1. Light microscopic distribution of some cholinergic markers in the rat and rabbit locus coeruleus and the nucleus angularis grisea periventricularis of the domestic pig (Sus scrofa): a correlative electron microscopic investigation of cholinergic receptor proteins in the rabbit.

    PubMed

    Caffé, A R

    1994-10-15

    Cholinergic modulation of locus coeruleus (LC) neurons evokes a variety of neuronal and behavioural effects. In an attempt to understand the LC cholinergic circuit, several markers has been investigated and compared. (Immuno)-histochemical and autoradiographic methods have been used on rat, rabbit, and pig tissue. To identify the boundaries of the LC in each of these species, sections through the entire brainstem have been stained for tyrosine hydroxylase. The results indicate that the pig does not possess a LC proper that conforms to the accepted features of this cell group. However, in this location fusiform cells reminiscent of LC interneurons are still present. This group of fusiform neurons has been named the nucleus angularis grisea periventricularis (NAGP). LC cells of the rat and rabbit show strong acetylcholinesterase (AChE) activity. In the pig the NAGP is markedly free from AChE staining. Muscarinic binding sites are densely distributed over the rabbit LC and adjacent region. The rat and rabbit LC neurons synthesise both muscarinic (mAChR) and nicotinic receptor protein (nAChR). In the pig NAGP region mAChR and nAChR positive cell bodies are almost absent, while some nAChR immunoreactive dendrites are present. The light microscopic data in the rabbit have been confirmed by electron microscopic analysis. It is concluded that the general concept of a noradrenergic LC that is present throughout mammals is questionable. At present, choline acetyltransferase immunoreactive terminals that closely correspond to the other cholinergic components in the rat or rabbit LC have not been observed. However, in these species the cholinergic sensitivity of LC cells is mediated via both muscarinic and nicotinic receptors on somata and dendrites. PMID:7849322

  2. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Miyata, Hironori; Matsui, Minoru; Inoue, Masumi

    2015-01-01

    Background and Purpose Activation of muscarinic receptors results in catecholamine secretion in adrenal chromaffin cells in many mammals, and muscarinic receptors partly mediate synaptic transmission from the splanchnic nerve, at least in guinea pigs. To elucidate the physiological functions of muscarinic receptors in chromaffin cells, it is necessary to identify the muscarinic receptor subtypes involved in excitation. Experimental Approach To identify muscarinic receptors, pharmacological tools and strains of mice where one or several muscarinic receptor subtypes were genetically deleted were used. Cellular responses to muscarinic stimulation in isolated chromaffin cells were studied with the patch clamp technique and amperometry. Key Results Muscarinic M1, M4 and M5 receptors were immunologically detected in mouse chromaffin cells, and these receptors disappeared after the appropriate gene deletion. Mouse cells secreted catecholamines in response to muscarinic agonists, angiotensin II and a decrease in external pH. Genetic deletion of M1, but not M3, M4 or M5, receptors in mice abolished secretion in response to muscarine, but not to other stimuli. The muscarine-induced secretion was suppressed by MT7, a snake peptide toxin specific for M1 receptors. Similarly, muscarine failed to induce an inward current in the presence of MT7 in mouse and rat chromaffin cells. The binding affinity of VU0255035 for the inhibition of muscarine-induced currents agreed with that for the M1 receptor. Conclusions and Implications Based upon the effects of genetic deletion of muscarinic receptors and MT7, it is concluded that the M1 receptor alone is responsible for muscarine-induced catecholamine secretion. PMID:25393049

  3. Effects of ovarian hormones on beta-adrenergic and muscarinic receptors in rat heart

    SciTech Connect

    Klangkalya, B.; Chan, A.

    1988-01-01

    The in vitro and in vivo effects of estrogen and progesterone on muscarinic and ..beta..-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for ..beta..-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, (/sup 3/H)-dihydroalprenolol, to ..beta..-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, (/sup 3/H)-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor. Progesterone was found to decrease the apparent affinity of muscarinic receptors for (/sup 3/H)(-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate or progesterone for 4 days had no effect on the muscarinic or ..beta..-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of ..beta..-adrenergic receptors.

  4. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed

    Brunner, F; Kukovetz, W R

    1991-02-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell. Binding to enzymatically harvested and cultured endothelial cells, or membranes derived therefrom, showed no atropine-displaceable binding. 5. The results suggest that (1) bovine aortic endothelial cells contain muscarinic binding sites with all necessary

  5. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus

    PubMed Central

    Dennis, Siobhan H.; Pasqui, Francesca; Colvin, Ellen M.; Sanger, Helen; Mogg, Adrian J.; Felder, Christian C.; Broad, Lisa M.; Fitzjohn, Steve M.; Isaac, John T.R.; Mellor, Jack R.

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  6. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus.

    PubMed

    Dennis, Siobhan H; Pasqui, Francesca; Colvin, Ellen M; Sanger, Helen; Mogg, Adrian J; Felder, Christian C; Broad, Lisa M; Fitzjohn, Steve M; Isaac, John T R; Mellor, Jack R

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  7. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity

    PubMed Central

    Bloem, Bernard; Poorthuis, Rogier B.; Mansvelder, Huibert D.

    2014-01-01

    Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior. PMID:24653678

  8. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    PubMed

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists. PMID:25183542

  9. In vitro pharmacological properties of 4-bromodexetimide for muscarinic receptors.

    PubMed

    Strijckmans, V; Coulon, C; Kassiou, M; Loc'h, C; Mazière, B

    1996-01-01

    The decrease of m-AChR density observed in neurodegenerative disorders has generated considerable interest in non-invasive mapping of muscarinic acetylcholine receptors (m-AChR) in the central nervous system. The aim of our study was to evaluate the selectivity of 4-bromodexetimide for the M1, M2, M3 and M4 m-AChR subtypes using in vitro binding analysis to determine the potential use of the bromine-76 labelled 4-bromodexetimide in the investigation of m-AChR subtypes in human brain with Positron Emission Tomography. Subtype selectivity of 4-bromodexetimide was determined in competition studies against tritiated subtype selective ligands using various rat or rabbit structure homogenates reflecting a single binding site and in optimal saturation and low non specific binding conditions. These conditions were reached for every subtype studied by analyzing the data from the saturation experiments of the tritiated ligands. 4-bromodexetimide displayed nanomolar affinities for the four m-AChR subtypes and a preferential selectivity for the M1 and M4 subtypes. The saturation analysis of [76Br]4-bromodexetimide, performed with rat cortex membranes showed high affinity for m-AChR receptors (Kd = 1.8 nM). As in vivo studies of [76Br]4-bromodexetimide showed preferential localization in the cortex and the striatum which are M1 and M4 rich structures and since it binds preferentially to the M1 and M4 subtypes, this radiotracer can still allow a combined subtype specific measurement of these muscarinic receptors. PMID:8649190

  10. Experiment K-6-18. Study of muscarinic and gaba (benzodiazepine) receptors in the sensory-motor cortex, hippcampus and spinal code

    NASA Technical Reports Server (NTRS)

    Daunton, N.; Damelio, F.; Krasnov, I.

    1990-01-01

    Frontal lobe samples of rat brains flown aboard Cosmos 1887 were processed for the study of muscarinic (cholinergic) and GABA (benzodiazepine) receptors and for immunocytochemical localization of the neurotransmitter gamma-aminobutyric acid (GABA) and glial fibrillary acidic protein (GFAP). Although radioactive labeling of both muscarinic cholinergic and GABA (benzodiazepine) receptors proved to be successful with the techniques employed, distinct receptor localization of individual laminae of the frontal neocortex was not possible since the sampling of the area was different in the various groups of animals. In spite of efforts made for proper orientation and regional identification of laminae, it was found that a densitometric (quantitation of autoradiograms) analysis of the tissue did not contribute to the final interpretation of the effects of weightlessness on these receptors. As to the immunocytochemical studies the use of both markers, GFAP and GABA antiserum, confirmed the suitability of the techniques for use in frozen material. However, similar problems to those encountered in the receptor studies prevented an adequate interpretation of the effects of micro-G exposure on the localization and distribution of GABA and GFAP. This study did, however, confirm the feasibility of investigating neurotransmitters and their receptors in future space flight experiments.

  11. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    PubMed

    de Kloet, Sybren F; Mansvelder, Huibert D; De Vries, Taco J

    2015-10-15

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit. PMID:26208783

  12. Muscarinic M2 receptors in bovine tracheal smooth muscle: discrepancies between binding and function.

    PubMed

    Roffel, A F; Elzinga, C R; Van Amsterdam, R G; De Zeeuw, R A; Zaagsma, J

    1988-08-01

    Previous work showing that AF-DX 116, a cardioselective muscarinic antagonist in functional experiments, does not discriminate between muscarinic receptors in bovine cardiac and tracheal membranes has been extended. In addition to AF-DX 116 we used the muscarinic antagonists, atropine, pirenzepine, 4-DAMP methobromide, gallamine, hexahydrosiladifenidol and methoctramine, in radioligand binding experiments on bovine cardiac left ventricular and tracheal smooth muscle membranes. The functional antagonism of the methacholine-induced contraction of bovine tracheal smooth muscle strips was also evaluated. An excellent correlation was found for all compounds between the binding affinities for muscarinic receptors in cardiac and tracheal smooth muscle membranes; moreover, the affinities found in cardiac membranes correspond with the pA2 values reported for atrial preparations of rat and guinea pig. However, significant and occasionally marked discrepancies were found between binding and functional affinities of these muscarinic antagonists on bovine tracheal smooth muscle. PMID:3215279

  13. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras.

    PubMed

    Ehrhardt, Annette; Wang, Bin; Yung, Andrew C; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W

    2015-01-01

    Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly 'layered' with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice. PMID:26516777

  14. Urinary Retention, Incontinence, and Dysregulation of Muscarinic Receptors in Male Mice Lacking Mras

    PubMed Central

    Ehrhardt, Annette; Wang, Bin; Yung, Andrew C.; Wang, Yanni; Kozlowski, Piotr; van Breemen, Cornelis; Schrader, John W.

    2015-01-01

    Here we show that male, but not female mice lacking expression of the GTPase M-Ras developed urinary retention with distention of the bladder that exacerbated with age but occurred in the absence of obvious anatomical outlet obstruction. There were changes in detrusor morphology in Mras-/- males: Smooth muscle tissue, which exhibited a compact organization in WT mice, appeared disorganized and became increasingly ‘layered’ with age in Mras-/- males, but was not fibrotic. Bladder tissue near the apex of bladders of Mras-/- males exhibited hypercontractility in response to the cholinergic agonist carbachol in in vitro, while responses in Mras-/- females were normal. In addition, spontaneous phasic contractions of detrusors from Mras-/- males were increased, and Mras-/- males exhibited urinary incontinence. We found that expression of the muscarinic M2 and M3 receptors that mediate the cholinergic contractile stimuli of the detrusor muscle was dysregulated in both Mras-/- males and females, although only males exhibited a urinary phenotype. Elevated expression of M2R in young males lacking M-Ras and failure to upregulate M3R with age resulted in significantly lower ratios of M3R/M2R expression that correlated with the bladder abnormalities. Our data suggests that M-Ras and M3R are functionally linked and that M-Ras is an important regulator of male bladder control in mice. Our observations also support the notion that bladder control is sexually dimorphic and is regulated through mechanisms that are largely independent of acetylcholine signaling in female mice. PMID:26516777

  15. Muscarinic M1 receptor and cannabinoid CB1 receptor do not modulate paraoxon-induced seizures

    PubMed Central

    Kow, Rebecca L; Cheng, Eugene M; Jiang, Kelly; Le, Joshua H; Stella, Nephi; Nathanson, Neil M

    2015-01-01

    One of the major signs of severe organophosphate poisoning is seizures. Previous studies have shown that both muscarinic agonist- and organophosphate-induced seizures require activation of muscarinic acetylcholine receptors in the central nervous system. Seizures induced by the muscarinic agonist pilocarpine require the M1 receptor and are modulated by cannabinoid CB1 receptors. In this study, we determined whether M1 and CB1 receptors also regulated seizures induced by the organophosphate paraoxon. We found no differences in seizures induced by paraoxon in wild-type (WT) and M1 knockout (KO) mice, indicating that in contrast to pilocarpine seizures, M1 receptors are not required for paraoxon seizures. Furthermore, we found that pilocarpine administration resulted in seizure-independent activation of ERK in the hippocampus in a M1 receptor-dependent manner, while paraoxon did not induce seizure-independent activation of ERK in the mouse hippocampus. This shows that pilocarpine and paraoxon activated M1 receptors in the hippocampus to different extents. There were no differences in seizures induced by paraoxon in WT and CB1 KO mice, and neither CB1 agonist nor antagonist administration had significant effects on paraoxon seizures, indicating that, in contrast to pilocarpine seizures, paraoxon seizures are not modulated by CB1 receptors. These results demonstrate that there are fundamental molecular differences in the regulation of seizures induced by pilocarpine and paraoxon. PMID:25692018

  16. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    SciTech Connect

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  17. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells.

    PubMed

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination. PMID:22027145

  18. Effects of extracellular acetylcholine on muscarinic receptor binding assessed by [125I]dexetimide and a simple probe.

    PubMed

    Sánchez-Roa, P M; Wagner, H N; Villemagne, V L; London, E D; Lever, J R

    1998-10-01

    New pharmacologic approaches to enhance brain cholinergic function focus on increasing intrasynaptic acetylcholine. We examined the usefulness of a simple probe and [125I]dexetimide to evaluate in vivo the effects of extracellular acetylcholine on muscarinic receptor binding in the mouse brain. After radiotracer injection continuous time/activity curves were generated over 330 min. [125I]Dexetimide reached a plateau at 90 min post-injection. To increase extracellular acetylcholine, the anticholinesterase physostigmine was administered at 120 min, producing a reversible decrease in [125I]dexetimide specific binding (23%) for 30 min. These findings demonstrate that dynamic changes in extracellular acetylcholine can be evaluated by displacement of [125I]dexetimide binding in vivo using a simple probe system. PMID:9822886

  19. Autoradiographic analysis of muscarinic receptors in rat nasal glands.

    PubMed

    Van Megen, Y J; Teunissen, M J; Klaassen, A B; Rodrigues de Miranda, J F

    1988-01-01

    An in vitro method was developed for the biochemical and autoradiographic demonstration of low muscarinic receptor densities in peripheral tissue. Histological criteria point clearly to the necessity for fixation to preserve tissue quality. [3H]l-Quinuclidinylbenzilate bound specifically to a homogeneous class of binding sites in 0.5% glutardialdehyde-fixed cryostat sections (10 microns) of rat nasal glands with high affinity (Kd = 0.47 +/- 0.06 nM) and with a receptor density (Bmax) of 41 +/- 1 fmol/mg protein. This binding was linearly dependent on the thickness of the sections. Kinetic experiments resulted in a Kd value of 0.19 nM. Binding was stereoselectively inhibited by benzetimide enantiomers. Autoradiograms, generated after incubation with 0.6 nM [3H]l-quinuclidinylbenzilate and dipping in nuclear K2 emulsion, showed specific labelling of the glandular acini and excretory ducts. These in vitro observations provide conclusive evidence for the presence of acetylcholine receptors in the nasal glands of the rat. PMID:2450760

  20. Purification of the muscarinic acetylcholine receptor from porcine atria.

    PubMed Central

    Peterson, G L; Herron, G S; Yamaki, M; Fullerton, D S; Schimerlik, M I

    1984-01-01

    The muscarinic acetylcholine receptor from porcine atria has been purified 100,000-fold to homogeneity by solubilization in digitonin/cholate and sequential chromatography on wheat germ agglutinin-agarose, diethylaminoethylagarose, hydroxylapatite, and 3-(2'-aminobenzhydryloxy)tropane-agarose. The yield of purified receptor was 4.3% of that found in the membrane fraction, and the purified receptor bound 11.1-12.8 nmol of L-[3H]quinuclidinyl benzilate per mg of protein, corresponding to a binding component Mr of 78,400-90,000. The purified receptor preparation consisted of two polypeptides in approximately equimolar amounts when examined on silver-stained sodium dodecyl sulfate/polyacrylamide gels. The larger polypeptide (Mr 78,000 on 8% polyacrylamide gels) was specifically alkylated with [3H]propylbenzilylcholine mustard, whereas the smaller polypeptide (Mr 14,800) was not labeled. The possibility that the small polypeptide is a contaminant fortuitously appearing in equimolar amounts with the large polypeptide cannot be ruled out at this time. The purified preparation was highly stable, with no measurable change in the number of ligand binding sites or the gel pattern after 1 month's storage on ice. Scatchard analysis showed a single class of binding sites for the antagonist L-[3H]quinuclidinyl benzilate with a dissociation constant of 61 +/- 4 pM. Equilibrium titration experiments demonstrated that the antagonist L-hyoscyamine displaced L-[3H]quinuclidinyl benzilate from a single class of sites (Kd = 475 +/- 30 pM), whereas the agonist carbamoylcholine interacted at two populations of sites (53% +/- 3% high affinity, Kd = 1.1 +/- 0.3 microM; 47% +/- 3% low affinity, Kd = 67 +/- 14 microM). The ligand binding data were very similar to that for the membrane-bound receptor, suggesting that the receptor has not been altered radically during purification. Images PMID:6589642

  1. Muscarinic receptor plasticity in the brain of senescent rats: down-regulation after repeated administration of diisopropyl fluorophosphate

    SciTech Connect

    Pintor, A.; Fortuna, S.; Volpe, M.T.; Michalek, H.

    1988-01-01

    Potential age-related differences in the response of Fischer 344 rats to subchronic treatment with diisopropylfluorophosphate (DFP) were evaluated in terms of brain cholinesterase (ChE) inhibition and muscarinic receptor sites. Male 3- and 24-month old rats were sc injected with sublethal doses of DFP for 2 weeks and killed 48 hrs after the last treatment. In the cerebral cortex, hippocampus and striatum of control rats a significant age-related reduction of ChE and of maximum number of /sup 3/H-QNB binding sites (Bmax) was observed. The administration of DFP to senescent rats resulted in more pronounced and longer lasting syndrome of cholinergic stimulation, with marked body weight loss and 60% mortality. The percentage inhibition of brain ChE induced by DFP did not differ between young and senescent rats. As expected, in young rats DFP caused a significant decrease of Bmax, which in the cerebral cortex reached about 40%. In the surviving senescent rats, the percentage decrease of Bmax due to DFP with respect to age-matched controls was very similar to that of young animals, especially in the cerebral cortex. Thus there is great variability in the response of aged rats to DFP treatment, from total failure of adaptive mechanisms resulting in death to considerable muscarinic receptor plasticity.

  2. Cholinergic receptors as target for cancer therapy in a systems medicine perspective.

    PubMed

    Russo, P; Del Bufalo, A; Milic, M; Salinaro, G; Fini, M; Cesario, A

    2014-01-01

    Epithelial cells not innervated by cholinergic neurons express nicotinic and muscarinic acetylcholine (ACh) receptors (nAChR, mAChR). nAChR and mAChR are components of the auto-/paracrine-regulatory loop of non-neuronal ACh release. The cholinergic control of non-neuronal cells may be mediated by different effects (synergistic, additive, or reciprocal) triggered by these receptors. The ionic events (Ca(+2) influx) are generated by the ACh-opening of nAChR channels, while the metabolic events by ACh-binding to G-proteincoupled mAChR. Effective inter- and intracellular signaling is crucial for valuable cancer cells proliferation and survival. Depending on cancer cell type, different AChR have been identified. The proliferation of airways epithelial cancer cells and pancreatic cancer cells may be under the control of α7-nAChR and M3-mAChR, while breast cancer cells and colon cancer cells are regulated by α9-nAChR, and M3-mAChR, respectively. In turn, these receptors may activate different pathways (Ras-Raf-1-Erk-AKT) as well as other receptors (β- adrenergicR). nAChR or mAChR antagonists may inhibit cancer growth. Inhibition of M3 by antisense or antagonists (Darifenacin, Tiotropium) reduces lung or colon cancer proliferation, as well as inhibition of α9- nAChR [polyphenol (-)-epigallocatechin-3-gallate] diminishes breast cancer cells growth. α7-nAChR silencing inhibits lung cancer proliferation. Moreover, inhibition of the nAChR-β-adrenergicR pathway (β-blockers) could be also useful. This review will describe the future translational perspectives of cholinergic receptors druginhibition in a complex disease such as cancer that poses compelling treatment challenges. Cancer happens as consequence of disease-perturbed molecular networks in relevant organ cells that change during progression. The framework for approaching these challenges is a systems approach. PMID:25324001

  3. A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors.

    PubMed

    André, C; Marullo, S; Convents, A; Lü, B Z; Guillet, J G; Hoebeke, J; Strosberg, D A

    1988-01-15

    Binding studies with the radiolabeled muscarinic antagonists dexetimide, quinuclidinyl benzilate and N-methylscopolamine showed that the human embryonic lung fibroblast CCL137 possesses approximately 2 X 10(5) muscarinic receptors/cell, i.e. 2.1 pmol/mg membrane protein. These receptors showed a marked stereoselectivity towards dexetimide and levetimide and only low affinity for another antagonist, pirenzepine. The muscarinic agonist carbamylcholine inhibited forskolin-stimulated adenylate cyclase and induced phosphatidylinositide turnover in the intact cells. Both effects were inhibited by the muscarinic antagonist atropine. Affinity labeling with tritiated propylbenzylcholine mustard revealed a protein of 72 kDa. Finally, down-regulation of the membrane receptors following prolonged treatment with the agonist carbamylcholine was assessed by means of the hydrophilic antagonist N-methylscopolamine. PMID:2828056

  4. Designing Human m1 Muscarinic Receptor-Targeted Hydrophobic Eigenmode Matched Peptides as Functional Modulators

    PubMed Central

    Selz, Karen A.; Mandell, Arnold J.; Shlesinger, Michael F.; Arcuragi, Vani; Owens, Michael J.

    2004-01-01

    A new proprietary de novo peptide design technique generated ten 15-residue peptides targeting and containing the leading nontransmembrane hydrophobic autocorrelation wavelengths, “modes”, of the human m1 muscarinic cholinergic receptor, m1AChR. These modes were also shared by the m4AChR subtype (but not the m2, m3, or m5 subtypes) and the three-finger snake toxins that pseudoirreversibly bind m1AChR. The linear decomposition of the hydrophobically transformed m1AChR amino acid sequence yielded ordered eigenvectors of orthogonal hydrophobic variational patterns. The weighted sum of two eigenvectors formed the peptide design template. Amino acids were iteratively assigned to template positions randomly, within hydrophobic groups. One peptide demonstrated significant functional indirect agonist activity, and five produced significant positive allosteric modulation of atropine-reversible, direct-agonist-induced cellular activation in stably m1AChR-transfected Chinese hamster ovary cells, reflected in integrated extracellular acidification responses. The peptide positive allosteric ligands produced left-shifts and peptide concentration-response augmentation in integrated extracellular acidification response asymptotic sigmoidal functions and concentration-response behavior in Hill number indices of positive cooperativity. Peptide mode specificity was suggested by negative crossover experiments with human m2ACh and D2 dopamine receptors. Morlet wavelet transformation of the leading eigenvector-derived, m1AChR eigenfunctions locates seven hydrophobic transmembrane segments and suggests possible extracellular loop locations for the peptide-receptor mode-matched, modulatory hydrophobic aggregation sites. PMID:14990463

  5. Analgesic and Antineuropathic Drugs Acting Through Central Cholinergic Mechanisms

    PubMed Central

    Bartolini, Alessandro; Cesare Mannelli, Lorenzo Di; Ghelardini, Carla

    2011-01-01

    The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M1 subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N1) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed. PMID:21585331

  6. M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia.

    PubMed

    Shen, Weixing; Plotkin, Joshua L; Francardo, Veronica; Ko, Wai Kin D; Xie, Zhong; Li, Qin; Fieblinger, Tim; Wess, Jürgen; Neubig, Richard R; Lindsley, Craig W; Conn, P Jeffrey; Greengard, Paul; Bezard, Erwan; Cenci, M Angela; Surmeier, D James

    2015-11-18

    A balanced interaction between dopaminergic and cholinergic signaling in the striatum is critical to goal-directed behavior. But how this interaction modulates corticostriatal synaptic plasticity underlying learned actions remains unclear--particularly in direct-pathway spiny projection neurons (dSPNs). Our studies show that in dSPNs, endogenous cholinergic signaling through M4 muscarinic receptors (M4Rs) promoted long-term depression of corticostriatal glutamatergic synapses, by suppressing regulator of G protein signaling type 4 (RGS4) activity, and blocked D1 dopamine receptor dependent long-term potentiation (LTP). Furthermore, in a mouse model of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson's disease (PD), boosting M4R signaling with positive allosteric modulator (PAM) blocked aberrant LTP in dSPNs, enabled LTP reversal, and attenuated dyskinetic behaviors. An M4R PAM also was effective in a primate LID model. Taken together, these studies identify an important signaling pathway controlling striatal synaptic plasticity and point to a novel pharmacological strategy for alleviating LID in PD patients. PMID:26590347

  7. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  8. Endocannabinoids Mediate Muscarinic Acetylcholine Receptor-Dependent Long-Term Depression in the Adult Medial Prefrontal Cortex

    PubMed Central

    Martin, Henry G. S.; Bernabeu, Axel; Lassalle, Olivier; Bouille, Clément; Beurrier, Corinne; Pelissier-Alicot, Anne-Laure; Manzoni, Olivier J.

    2015-01-01

    Cholinergic inputs into the prefrontal cortex (PFC) are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR) in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD) at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB) signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG) mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light—electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling. PMID:26648844

  9. Cholinergic Partition Cells and Lamina X Neurons Induce a Muscarinic-Dependent Short-Term Potentiation of Commissural Glutamatergic Inputs in Lumbar Motoneurons

    PubMed Central

    Bertrand, Sandrine S.; Cazalets, Jean-René

    2011-01-01

    Acetylcholine and the activation of muscarinic receptors influence the activity of neural networks generating locomotor behavior in the mammalian spinal cord. Using electrical stimulations of the ventral commissure, we show that commissural muscarinic (CM) depolarizations could be induced in lumbar motoneurons. We provide a detailed electrophysiological characterization of the muscarinic receptors and the membrane conductance involved in these responses. Activation of the CM terminals, originating from lamina X neurons and partition cells, induced a pathway-specific short-term potentiation (STP) of commissural glutamatergic inputs in motoneurons. This STP is occluded in the presence of the muscarinic antagonist atropine. During fictive locomotion, the activation of the commissural pathways transiently enhanced the motor output in a muscarinic-dependent manner. This study describes for the first time a novel regulatory mechanism of synaptic strength in spinal locomotor networks. Such cellular mechanisms would endow the locomotor central pattern generators with adaptive processes needed to generate appropriate synaptic inputs to motoneurons during different motor tasks. PMID:22069380

  10. [F-18]-(-,-)-FQNPe - an attractive ligand for evaluation of muscarinic-cholinergic neuron activity by PET

    SciTech Connect

    Luo, H.; McPherson, D.W.; Beets, A.L.; Knapp, F.F. Jr.

    1997-05-01

    The stereoisomers of 1-azabicyclo[2.2.2]oct-3-yl {alpha}-{alpha}-(1-fluoropentan-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate ({open_quotes}FQNPe{close_quotes}) have been resolved. (-,-)- receptors (K{sub i}, nM; ml, 0.3; m2, 0.1). [F-18]-(-,-)-FQNPe demonstrated high cerebral and myocardial uptake in rats in vivo. We now report significant blocking of [F-18]-(-.-)-FQNPe uptake in receptor-rich tissues in rats in vivo after (R)-QNB pretreatment and the absence of any TLC detectable FQNPe metabolites in tissue extracts. Rats were injected with (R)-QNB (3 mg/kg) 1 h prior to [F-18]-FQNPe injection (370-629 KBq). After 1 h, rats were sacrificed and tissues removed and counted. (R)-QNB significantly decreased FQNPe uptake in heart and all receptor-rich regions but not blood (Table; Mean % ID/g, n=5); C, control; Q, (R)-QNB; Hrt, heart; Cer, cerebellum; Pon, pons; Med, medulla; Cor, cortex; Stri, striatum; Hip, hippocampus; Th, thallamus; SuC, superior colliculi; InC, inferior colliculi. Tissues from untreated rats were Folch-extracted and 71-77% of activity was in organic extracts from brain and heart. TLC of organic extracts indicated a single radioactive component with R{sub f} of FQNPe. These combined results demonstrate that [F-18]-(-,-)-FQNPe does not appear to be metabolized in heart and brain, shows good receptor localization and is thus an attractive ligand for evaluation as a potential imaging agent by PET.

  11. Characterization of PCS1055, a novel muscarinic M4 receptor antagonist.

    PubMed

    Croy, Carrie H; Chan, Wai Y; Castetter, Andrea M; Watt, Marla L; Quets, Anne T; Felder, Christian C

    2016-07-01

    Identification of synthetic ligands selective for muscarinic receptor subtypes has been challenging due to the high sequence identity and structural homology among the five muscarinic acetylcholine receptors. Here, we report the pharmacological characterization of PCS1055, a novel muscarinic M4 receptor antagonist. PCS1055 inhibited radioligand [(3)H]-NMS binding to the M4 receptor with a Ki=6.5nM. Though the potency of PCS1055 is lower than that of pan-muscarinic antagonist atropine, it has better subtype selectivity over previously reported M4-selective reagents such as the muscarinic-peptide toxins (Karlsson et al., 1994; Santiago and Potter, 2001a) at the M1 subtype, and benzoxazine ligand PD102807 at the M3-subtype (Bohme et al., 2002). A detailed head-to-head comparison study using [(3)H]-NMS competitive binding assays characterizes the selectivity profiles of PCS1055 to that of other potent muscarinic-antagonist compounds PD102807, tropicamide, AF-DX-384, pirenzapine, and atropine. In addition to binding studies, the subtype specificity of PCS1055 is also demonstrated by functional receptor activation as readout by GTP-γ-[(35)S] binding. These GTP-γ-[(35)S] binding studies showed that PCS1055 exhibited 255-, 69.1-, 342- and >1000-fold greater inhibition of Oxo-M activity at the M4 versus the M1-, M2(-), M3-or M5 receptor subtypes, respectively. Schild analyses indicates that PCS1055 acts as a competitive antagonist to muscarinic M4 receptor, and confirms the affinity of the ligand to be low nanomolar, Kb=5.72nM. Therefore, PCS1055 represents a new M4-preferring antagonist that may be useful in elucidating the roles of M4 receptor signaling. PMID:27085897

  12. Use of intact rat brain cells as a model to study regulation of muscarinic acetylcholine receptors

    SciTech Connect

    Lee, J.H.; El-Fakahany, E.E.

    1985-08-12

    Intact rat brain cells were dissociated and used to study the regulation of muscarinic acetylcholine receptors upon exposure to muscarinic receptor agonists. Incubation of cells with carbamylcholine resulted in a time-dependent decrease in subsequent (/sup 3/H)N-methylscopolamine specific binding, an effect which reached a steady state after 3 hr at 37/sup 0/C. This effect of carbamylcholine was dependent on the concentration of the agonist in the incubation medium and was due to a reduction in the maximal binding capacity of the receptor with no decrease in the affinity of the remaining receptors. This preparation might be useful in future studies to elucidate the mechanisms underlying the regulation of muscarinic acetylcholine receptors in the central nervous system. 20 references, 3 tables.

  13. Cardiac effects of muscarinic receptor antagonists used for voiding dysfunction

    PubMed Central

    Andersson, Karl-Erik; Campeau, Lysanne; Olshansky, Brian

    2011-01-01

    Antimuscarinic agents are the main drugs used to treat patients with the overactive bladder (OAB) syndrome, defined as urgency, with or without urgency incontinence, usually with increased daytime frequency and nocturia. Since the treatment is not curative and since OAB is a chronic disease, treatment may be life-long. Antimuscarinics are generally considered to be ‘safe’ drugs, but among the more serious concerns related to their use is the risk of cardiac adverse effects, particularly increases in heart rate (HR) and QT prolongation and induction of polymorphic ventricular tachycardia (torsade de pointes). An elevated resting HR has been linked to overall increased morbidity and mortality, particularly in patients with cardiovascular diseases. QT prolongation and its consequences are not related to blockade of muscarinic receptors, but rather linked to inhibition of the hERG potassium channel in the heart. However, experience with terodiline, an antimuscarinic drug causing torsade de pointes in patients, has placed the whole drug class under scrutiny. The potential of the different antimuscarinic agents to increase HR and/or prolong the QT time has not been extensively explored for all agents in clinical use. Differences between drugs cannot be excluded, but risk assessments based on available evidence are not possible. PMID:21595741

  14. Role of muscarinic-3 receptor antibody in systemic sclerosis: correlation with disease duration and effects of IVIG.

    PubMed

    Kumar, Sumit; Singh, Jagmohan; Kedika, Ramalinga; Mendoza, Fabian; Jimenez, Sergio A; Blomain, Erik S; DiMarino, Anthony J; Cohen, Sidney; Rattan, Satish

    2016-06-01

    Gastrointestinal dysmotility in systemic sclerosis (SSc) is associated with autoantibodies against muscarinic-3 receptor (M3-R). We investigated the temporal course of the site of action of these autoantibodies at the myenteric neurons (MN) vs. the smooth muscle (SM) M3-R in relation to disease duration, and determined the role of intravenous immunoglobulin (IVIG) in reversing these changes. Immunoglobulins purified from SSc patients (SScIgG) were used to assess their differential binding to MN and SM (from rat colon) employing immunohistochemistry (IHC). Effect of SScIgG on neural and direct muscle contraction was determined by cholinergic nerve stimulation and bethanechol-induced SM contraction. Effects of IVIG and its antigen-binding fragment F(ab')2 on SScIgG binding were studied by enzyme-linked immunosorbent assay (ELISA) of rat colonic longitudinal SM myenteric plexus (LSMMP) lysate and to second extracellular loop peptide of M3-R (M3-RL2). SScIgG from all patients demonstrated significantly higher binding to MN than to SM. With progression of SSc duration, binding at MN and SM increased in a linear fashion with a correlation coefficient of 0.696 and 0.726, respectively (P < 0.05). SScIgG-mediated attenuation of neural and direct SM contraction also increased with disease duration. ELISA analysis revealed that IVIG and F(ab')2 significantly reduced SScIgG binding to LSMMP lysate and M3-RL2. Dysmotility in SSc occurs sequentially, beginning with SScIgG-induced blockage of cholinergic neurotransmission (neuropathy), which progresses to inhibition of acetylcholine action at the SM cell (myopathy). IVIG reverses this cholinergic dysfunction at the neural and myogenic receptors by anti-idiotypic neutralization of SScIgG. PMID:27173508

  15. Activation of muscarinic receptors by ACh release in hippocampal CA1 depolarizes VIP but has varying effects on parvalbumin-expressing basket cells

    PubMed Central

    Bell, L Andrew; Bell, Karen A; McQuiston, A Rory

    2015-01-01

    We investigated the effect of acetylcholine release on mouse hippocampal CA1 perisomatically projecting interneurons. Acetylcholine was optogenetically released in hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated virally mediated transfection. The effect of optogenetically released acetylcholine was assessed on interneurons expressing Cre recombinase in vasoactive intestinal peptide (VIP) or parvalbumin (PV) interneurons using whole cell patch clamp methods. Acetylcholine released onto VIP interneurons that innervate pyramidal neuron perisomatic regions (basket cells, BCs) were depolarized by muscarinic receptors. Although PV BCs were also excited by muscarinic receptor activation, they more frequently responded with hyperpolarizing or biphasic responses. Muscarinic receptor activation resulting from ACh release increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in downstream hippocampal CA1 pyramidal neurons with peak instantaneous frequencies occurring in both the gamma and theta bandwidths. Both PV and VIP BCs contributed to the increased sIPSC frequency in pyramidal neurons and optogenetic suppression of PV or VIP BCs inhibited sIPSCs occurring in the gamma range. Therefore, we propose acetylcholine release in CA1 has a complex effect on CA1 pyramidal neuron output through varying effects on perisomatically projecting interneurons. PMID:25556796

  16. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    found that activation of pre-synaptic M2 muscarinic receptors inhibit glutamatergic input from vestibular primary afferents, whereas stimulation of post-synaptic M3 muscarinic receptors increases the firing activity of cerebellum-projecting MVN neurons. This new information advances our understanding of the cholinergic mechanism regulating the vestibular system. PMID:26823384

  17. Nematode cholinergic pharmacology

    SciTech Connect

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  18. Differential effects of systemic cholinergic receptor blockade on Pavlovian incentive motivation and goal-directed action selection.

    PubMed

    Ostlund, Sean B; Kosheleff, Alisa R; Maidment, Nigel T

    2014-05-01

    Reward-seeking actions can be guided by external cues that signal reward availability. For instance, when confronted with a stimulus that signals sugar, rats will prefer an action that produces sugar over a second action that produces grain pellets. Action selection is also sensitive to changes in the incentive value of potential rewards. Thus, rats that have been prefed a large meal of sucrose will prefer a grain-seeking action to a sucrose-seeking action. The current study investigated the dependence of these different aspects of action selection on cholinergic transmission. Hungry rats were given differential training with two unique stimulus-outcome (S1-O1 and S2-O2) and action-outcome (A1-O1 and A2-O2) contingencies during separate training phases. Rats were then given a series of Pavlovian-to-instrumental transfer tests, an assay of cue-triggered responding. Before each test, rats were injected with scopolamine (0, 0.03, or 0.1 mg/kg, intraperitoneally), a muscarinic receptor antagonist, or mecamylamine (0, 0.75, or 2.25 mg/kg, intraperitoneally), a nicotinic receptor antagonist. Although the reward-paired cues were capable of biasing action selection when rats were tested off-drug, both anticholinergic treatments were effective in disrupting this effect. During a subsequent round of outcome devaluation testing-used to assess the sensitivity of action selection to a change in reward value--we found no effect of either scopolamine or mecamylamine. These results reveal that cholinergic signaling at both muscarinic and nicotinic receptors mediates action selection based on Pavlovian reward expectations, but is not critical for flexibly selecting actions using current reward values. PMID:24370780

  19. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    SciTech Connect

    Raufman, Jean-Pierre; Cheng, Kunrong; Saxena, Neeraj; Chahdi, Ahmed; Belo, Angelica; Khurana, Sandeep; Xie, Guofeng

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasion of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre

  20. Axonal transport of muscarinic receptors in vesicles containing noradrenaline and dopamine-beta-hydroxylase.

    PubMed

    Laduron, P M

    1984-01-01

    Presynaptic muscarinic receptors labeled with [3H]dexetimide and noradrenaline in dog splenic nerves accumulated proximally to a ligature at the same rate of axonal transport. After fractionation by differential centrifugation, specific [3H]quinuclidinyl benzilate or [3H]dexetimide binding revealed a distribution profile similar to that of dopamine-beta-hydroxylase and noradrenaline. Subfractionation by density gradient centrifugation showed two peaks of muscarinic receptors; the peak of density 1.17 contained noradrenaline and dopamine-beta-hydroxylase whereas that of density 1.14 was devoid of noradrenaline. Therefore the foregoing experiments provide evidence that presynaptic muscarinic receptors are transported in sympathetic nerves in synaptic vesicles which are similar to those containing noradrenaline and dopamine-beta-hydroxylase. This suggests a possible coexistence of receptor and neurotransmitter in the same vesicle. PMID:6198205

  1. Regulation of muscarinic acetylcholine receptors in the 1321N1 human astrocytoma cell line

    SciTech Connect

    Hoover, R.K.

    1989-01-01

    The binding of muscarinic agonists, partial agonists and antagonists to muscarinic receptors of 1321N1 human astrocytoma cells was studied. Binding was studied in both intact cells and cell lysates. Partial agonists and antagonists exhibited similar apparent affinities in intact cell competition binding assays with either the lipophilic radioligand ({sup 3}H)QNB or the hydrophilic radioligand ({sup 3}H)NMS. In contrast, full agonists exhibited markedly lower apparent affinities in intact cells with ({sup 3}H)QNB than with ({sup 3}H)NMS. Treatment of cells with antimycin A to deplete intracellular ATP prevented agonist-induced internalization of muscarinic receptors as assessed by sucrose density gradient assays of receptor subcellular distribution. In ATP-depleted cells, the apparent affinities of full agonists vs ({sup 3}H)QNB were markedly higher. The apparent affinities of partial agonists and of antagonists were unaffected by ATP depletion. In other studies, the effects of the protein kinase C activator phorbol 12-myristate, 13-acetate (PMA) on muscarinic receptor downregulation and internalization in 1321N1 cells were determined. PMA alone did not induce muscarinic receptor downregulation but instead decreased both the rate and final extent of downregulation induced by the agonist carbachol. The specificity of other protein kinase C activators for inhibiting carbachol-induced downregulation indicated involvement of protein kinase C. Furthermore, the protein kinase C inhibitor staurosporine prevented the inhibitory effect of PMA on downregulation. However, staurosporine did not inhibit agonist-induced downregulation.

  2. Effects of atropine treatment on in vitro and in vivo binding of 4-[125I]-dexetimide to central and myocardial muscarinic receptors.

    PubMed

    Uno, Y; Matsumura, K; Scheffel, U; Wilson, A A; Dannals, R F; Wagner, H N

    1991-01-01

    Upregulation of muscarinic cholinergic receptors (mAChR) after chronic atropine treatment has been described previously. The present study was designed to evaluate 4-iodine-125 dexetimide as an agent to determine changes in the number of mAChR. Rats were injected subcutaneously with atropine (500 mg/kg) either once or chronically, once daily for 10 days, and sacrificed 24 h later. In vitro binding assays with 4-[125I]-dexetimide showed significant increases in the number of mAChR in cerebra (21%) and ventricles (45%) after chronic atropine treatment but not after acute treatment. The affinity of binding to cerebral and ventricular mAChR declined after acute and chronic atropine treatment. In vivo studies were carried out involving intravenous injection of 4-[125I]-dexetimide 24 h after atropine treatment. Binding was markedly reduced in the brain and heart. Upregulation of mAChR, as seen in in vitro studies, could not be observed because of the remaining atropine. Occupancy of mAChR by atropine persisted as long as 7 days after one dose. The results of these studies indicate that 4-[125I]-dexetimide binding reflects the effects of atropine on central and peripheral muscarinic cholinergic receptors in vitro and in vivo. PMID:1915471

  3. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    SciTech Connect

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  4. Central cholinergic control of vasopressin release in conscious rats

    SciTech Connect

    Iitake, K.; Share, L.; Ouchi, Y.; Crofton, J.T.; Brooks, D.P.

    1986-08-01

    Intracerebroventricular (icv) administration of carbachol into conscious rats evoked a substantial increase in vasopressin secretion and blood pressure in a dose-dependent manner. These effects were blocked by pretreatment with the muscarinic blocker, atropine (10 g icv), but not by the nicotinic blocker, hexamethonium (10 g icv). Hexamethonium did, however, block the increase in blood pressure, the decrease in heart rate, and they very small elevation in the plasma vasopressin concentration induced by nicotine (10 g icv). These results indicate that stimulation of either central nicotinic or muscarinic receptors can affect the cardiovascular system and suggest that the cholinergic stimulation of vasopressin secretion may involve primarily muscarinic receptors in the conscious rat.

  5. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  6. Identification of drugs competing with d-tubocurarine for an allosteric site on cardiac muscarinic receptors.

    PubMed

    Waelbroeck, M

    1994-10-01

    d-Tubocurarine behaved as a weak allosteric inhibitor of N-[3H] methylscopolamine binding to cardiac M2 muscarinic receptors. In a low ionic strength buffer devoid of bivalent ions, d-tubocurarine recognized cardiac M2 receptors in the micromolar concentration range and decreased their affinity for N-[3H]methylscopolamine by at most 4-fold. To identify the compounds that preferentially recognize this accessory site (as opposed to the classical muscarinic binding site), we measured the inhibition by different drugs of N-[3H]methylscopolamine binding, in the absence or presence of d-tubocurarine. The effect of gallamine was competitively inhibited by d-tubocurarine; both drugs compete for the same accessory site on muscarinic receptors. The effects of dexetimide, levetimide, 4-diphenylacetoxy-N-ethylpiperidine ethobromide, AF-DX 116, and telenzepine on N-[3H]methylscopolamine binding were not affected or were barely affected by d-tubocurarine; these compounds preferentially recognize another binding site (probably the muscarinic binding site). The dose-effect curves for pentamethylene-bis(4-diphenylacetoxymethylpiperidine) bromide and methoctramine were shifted, but at most 10-fold, by d-tubocurarine. It is likely that (in this low ionic strength incubation buffer) methoctramine and pentamethylene-bis(4-diphenylacetoxymethylpiperidine)bromide had comparable affinities for the muscarinic site and the accessory site. d-Tubocurarine competitively inhibited their binding to the accessory site and allosterically inhibited their binding to the muscarinic site. This resulted in a large decrease (40-60-fold) of their overall affinity for muscarinic receptors. PMID:7969047

  7. Involvement of spinal muscarinic and serotonergic receptors in the anti-allodynic effect of electroacupuncture in rats with oxaliplatin-induced neuropathic pain

    PubMed Central

    Lee, Ji Hwan; Go, Donghyun; Kim, Woojin; Lee, Giseog; Bae, Hyojeong; Quan, Fu Shi

    2016-01-01

    This study was performed to investigate whether the spinal cholinergic and serotonergic analgesic systems mediate the relieving effect of electroacupuncture (EA) on oxaliplatin-induced neuropathic cold allodynia in rats. The cold allodynia induced by an oxaliplatin injection (6 mg/kg, i.p.) was evaluated by immersing the rat's tail into cold water (4℃) and measuring the withdrawal latency. EA stimulation (2 Hz, 0.3-ms pulse duration, 0.2~0.3 mA) at the acupoint ST36, GV3, or LI11 all showed a significant anti-allodynic effect, which was stronger at ST36. The analgesic effect of EA at ST36 was blocked by intraperitoneal injection of muscarinic acetylcholine receptor antagonist (atropine, 1 mg/kg), but not by nicotinic (mecamylamine, 2 mg/kg) receptor antagonist. Furthermore, intrathecal administration of M2 (methoctramine, 10 µg) and M3 (4-DAMP, 10 µg) receptor antagonist, but not M1 (pirenzepine, 10 µg) receptor antagonist, blocked the effect. Also, spinal administration of 5-HT3 (MDL-72222, 12 µg) receptor antagonist, but not 5-HT1A (NAN-190, 15 µg) or 5-HT2A (ketanserin, 30 µg) receptor antagonist, prevented the anti-allodynic effect of EA. These results suggest that EA may have a signifi cant analgesic action against oxaliplatin-induced neuropathic pain, which is mediated by spinal cholinergic (M2, M3) and serotonergic (5-HT3) receptors. PMID:27382357

  8. Different behavior toward muscarinic receptor binding between quaternary anticholinergics and their tertiary analogues.

    PubMed

    Ensing, K; de Zeeuw, R A

    1986-12-01

    A number of corresponding tertiary and quaternary anticholinergic analogues were examined for their ability to inhibit specific (3)H-dexetimide binding to calf brain muscarinic receptors. In all cases the tertiary antagonists (except pirenzepine) showed steep and monophasic inhibition curves, whereas those of the quaternary derivatives were shallow (thiazinamium, methylbenactyzine) or even biphasic (oxyphenonium, methylatropine, methylscopolamine). These observations show that the addition of a methyl group to the nitrogen atom changes the mode of interaction of the anticholinergics to muscarinic receptor binding sites. Whether there are separate binding sites present or differences in interaction mode for only the quaternary moiety is discussed. PMID:24271831

  9. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    SciTech Connect

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-04-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. (/sup 3/H)Quinuclidinyl-benzylate ((/sup 3/H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of (/sup 3/H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells.

  10. Monoclonal antibodies against the native or denatured forms of muscarinic acetylcholine receptors.

    PubMed Central

    André, C; Guillet, J G; De Backer, J P; Vanderheyden, P; Hoebeke, J; Strosberg, A D

    1984-01-01

    BALB/c mice were immunized with affinity-purified muscarinic acetylcholine receptors from calf brain and their splenocytes fused with NS1 myeloma cells. Hybrid cultures were grown and selected for production of antibodies on the basis of enzyme immunoassays on calf and rat forebrain membrane preparations. Thirty-four clones were retained and six of them further subcloned. Two of these subclones produced antibodies that selectively recognized muscarinic acetylcholine receptor-bearing membranes. The M-35b antibodies interacted only with native digitonin-solubilized receptors, and not with denatured receptors. The M-23c antibodies did not react with active digitonin-solubilized receptors but recognized the denatured form. The M-23c antibodies should thus be useful in the purification of the receptor and its precursor translation products, while the M-35b antibodies could be used for the immunocytochemical localization of the receptor in cells and tissues of different species. Images Fig. 2. Fig. 3. PMID:6200320

  11. Amplification of the rat m2 muscarinic receptor gene by the polymerase chain reaction: Functional expression of the M sub 2 muscarinic receptor

    SciTech Connect

    Lai, J.; Bloom, J.W.; Yamamura, H.I.; Roeske, W.R. )

    1990-01-01

    A selective amplification of the coding sequence of the rat M{sub 2} muscarinic receptor gene was achieved by the polymerase chain reaction. The error rate of this amplification system under conditions specified was 1 nucleotide substitution in 841 base pairs. In vitro expression of this gene in murine fibroblasts (B82) via the eukaryotic expression vector, pH{beta}APr-1-neo, resulted in high level expression of specific ({sup 3}H)(-)MQNB binding in transfected B82 cell lines. One of these clones, M2LKB2-2, showed a stable expression of ({sup 3}H)(-)MQNB binding with a K{sub d} value of 265 pM and a B{sub max} value of 411{plus minus}50 fmol/10{sup 6} cells. Cardiac selective muscarinic antagonists such as himbacine and AF-DX 116 show high affinities for this binding site in the M2LKB2-2 cells. The rank order of potency of several antagonists in inhibiting ({sup 3}H)(-)MQNB binding in these cells conformed to the characteristics of an M{sub 2} type muscarinic receptor. Carbachol showed a single affinity state for the receptors in the M2LKB2-2 cells with a K{sub i} value of 2.0 {mu}M. This receptor appeared to be inversely coupled to adenylate cyclase via a pertussis toxin sensitive G-protein. Carbachol also had a slight stimulatory effect on the hydrolysis of inositol lipids. The polymerase chain reaction proves highly effective in cloning genes from genomic material, as demonstrated by the first in vitro functional expression of the rat M{sub 2} type muscarinic receptor.

  12. Activation of muscarinic receptors reduces store-operated Ca2+ entry in HEK293 cells.

    PubMed

    Sternfeld, Lutz; Dudenhöffer, Monika; Ludes, Anja; Heinze, Diana; Anderie, Ines; Krause, Elmar

    2007-07-01

    In many cell types membrane receptors for hormones or neurotransmitters activate a signal transduction pathway which releases Ca2+ from intracellular Ca2+ stores by the second messenger inositol 1,4,5-trisphosphate. As a consequence store-operated Ca2+ entry (SOCE) becomes activated. In the present study we addressed the question if receptor/agonist binding can modulate Ca2+ entry by mechanisms different from the store-operated one. Therefore SOCE was examined in HEK293 cells microscopically with the fura-2 technique and with patch clamp. We found that maximally preactivated SOCE could, concentration dependently, be reduced up to 80% by the muscarinic agonist acetylcholine when the cytoplasmic Ca2+ concentration was used as a measure. Muscarinic receptors seem to mediate this decrease since atropine blocked the effect completely and cell types without muscarinic receptors (BHK21, CHO) did not show acetylcholine-induced decrease of Ca2+ entry. Moreover expression of muscarinic receptor subtypes M1 and M3 in BHK21 cells established the muscarinic decrease of SOCE. Electrical measurements revealed that the membrane potential of HEK293 cells did not show any response to ACh, excluding that changes of driving forces are responsible for the block of Ca2+ entry. In contrast the electrical current which is responsible for SOCE in HEK293 cells (Ca2+ release-activated Ca2+ current (I(CRAC)) was inhibited (maximally 55%) by 10 microM ACh. From these data we conclude that in HEK293 cells a muscarinic signal transduction pathway exists which decreases the cytoplasmic Ca2+ concentration by an inhibition of I(CRAC). This mechanism may serve as a modulator of Ca2+ entry preventing a Ca2+ overload of the cytoplasm after Ca2+ store depletion. PMID:17321109

  13. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory.

    PubMed

    Mahboob, Aamra; Farhat, Syeda Mehpara; Iqbal, Ghazala; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf; Nabavi, Seyed Mohammad; Ahmed, Touqeer

    2016-04-01

    Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (p<0.05) relative to AlCl3-treated group. ALA enhanced fear memory (p<0.01) and social novelty preference (p<0.001) comparative to the AlCl3-treated group. Fear extinction memory was remarkably restored (p<0.001) in ALA-treated group demonstrated by reduced freezing response as compared to the AlCl3-treated group which showed higher freezing. In-silico analysis showed that racemic mixture of ALA has higher binding affinity for M1 and M2 compared to acetylcholine. These novel findings highlight the potential role of ALA in cognitive functions and cholinergic system enhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders. PMID:26912408

  14. A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb

    PubMed Central

    Li, Guoshi; Cleland, Thomas A.

    2013-01-01

    Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions including odor discrimination, perceptual learning, and short term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but has little effect on mitral cell firing rates and hence will not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials, and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations. PMID:23407960

  15. Radioligand binding to muscarinic receptors of bovine aortic endothelial cells.

    PubMed Central

    Brunner, F.; Kukovetz, W. R.

    1991-01-01

    1. Muscarinic receptors on endothelial cells of bovine thoracic aorta were characterized by binding assays in which (-)-[3H]-N-methyl quinuclidinyl benzilate ([3H]-NMeQNB) was used as radioligand. 2. Binding of [3H]-NMeQNB to crude membranes of freshly isolated endothelial cells was atropine-displaceable and of high affinity (KD = 0.48 nM) to a single class of sites (maximum binding capacity: 14 +/- 3 fmol mg-1 protein). Stereospecificity of the binding sites was demonstrated in experiments in which [3H]-NMeQNB binding was inhibited by dexetimide in the nanomolar range (KI = 0.63 nM) and by levetimide, its stereoisomer in the micromolar range (KI = 3.2 microM) (selectivity factor: approximately 5000). 3. Drug competition curves indicated a single class of binding sites for antagonists and the following apparent affinities (KI, nM): methyl atropine: 1.1: 4-diphenylacetoxy N-methyl piperidine methyl bromide (4-DAMP): 3.4; pirenzepine: 16; 11-[2-diethylamino-methyl)-1-piperidinyl- acetyl]-5,11-dihydro-6H-pyrido(2,3-b)1,4-benzodiazepine-6-one (AF-DX 116); 2.500. Competition of acetylcholine with [3H]-NMeQNB was best described by two affinity sites (or states) (KH = 0.82 microM, KL = 1.6 microM). In the presence of guanylimido diphosphate [Gpp(NH)p] (100 microM), acetylcholine affinity (IC50) was slightly, but significantly reduced (factor approximately 4). 4. Binding of [3H]-NMeQNB to freshly harvested intact cells was also atropine-displaceable, stereospecific (selectivity factor: approximately 3500) and of high affinity (KD = 0.35 nM). The maximum binding capacity (9 +/- 2 fmol mg-1 total cell protein) was comparable to that of membranes and corresponded to approximately 900 binding sites per endothelial cell.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2015420

  16. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia

    SciTech Connect

    Weiner, D.M. Howard Hughes Medical Inst., Bethesda, MD ); Levey, A.I. Johns Hopkins Univ., Baltimore, MD ); Brann, M.R. )

    1990-09-01

    Within the basal ganglia, acetylcholine and dopamine play a central role in the extrapyramidal control of motor function. The physiologic effects of these neurotransmitters are mediated by a diversity of receptor subtypes, several of which have now been cloned. Muscarinic acetylcholine receptors are encoded by five genes (m1-m5), and of the two known dopamine receptor subtypes (D1 and D2) the D2 receptor gene has been characterized. To gain insight into the physiological roles of each of these receptor subtypes, the authors prepared oligodeoxynucleotide probes to localize receptor subtype mRNAs within the rat striatum and substantia nigra by in situ hybridization histochemistry. Within the striatum, three muscarinic (m1, m2, m4) receptor mRNAs and the D2 receptor mRNA were detected. The m1 mRNA was expressed in most neurons; the m2 mRNA, in neurons which were both very large and rare; and the m4 and D2 mRNAs, in 40-50% of the neurons, one-third of which express both mRNAs. Within the substantia nigra, pars compacta, only the m5 and D2 mRNAs were detected, and most neurons expressed both mRNAs. These data provide anatomical evidence for the identity of the receptor subtypes which mediate the diverse effects of muscarinic and dopaminergic drugs on basal ganglia function.

  17. Effects of muscarinic M1 receptor blockade on cocaine-induced elevations of brain dopamine levels and locomotor behavior in rats.

    PubMed

    Tanda, Gianluigi; Ebbs, Aaron L; Kopajtic, Theresa A; Elias, Lyn M; Campbell, Bettye L; Newman, Amy H; Katz, Jonathan L

    2007-04-01

    Cholinergic muscarinic systems have been shown to influence dopaminergic function in the central nervous system. In addition, previous studies of benztropine analogs that inhibit dopamine uptake and show antagonism at muscarinic receptors show these drugs to be less effective than cocaine in producing its various prototypic effects such as locomotor stimulation. Because previous pharmacological studies on these topics have used nonselective M1 antagonists, we examined the interactions of preferential M1 muscarinic antagonists and cocaine. Dose-dependent increases in extracellular levels of dopamine in selected brain areas, the nucleus accumbens (NAc) shell and core, and the prefrontal cortex, were produced by cocaine but not by the preferential M1 antagonists telenzepine and trihexyphenidyl. When administered with cocaine, however, both M1 antagonists dose-dependently increased the effects of cocaine on dopamine in the NAc shell, and these effects were selective in that they were not obtained in the NAc core or in the prefrontal cortex. Telenzepine also increased locomotor activity, although the effect was small compared with that of cocaine. The locomotor stimulant effects of trihexyphenidyl, in contrast, approached those of cocaine. Telenzepine attenuated, whereas trihexyphenidyl enhanced the locomotor stimulant effects of cocaine, with neither drug facilitating cocaine-induced stereotypy. The present results indicate that preferential antagonist effects at muscarinic M1 receptors do not uniformly alter all of the effects of cocaine, nor do they explain the differences in effects of cocaine and benztropine analogs, and that the alterations in dopamine levels in the NAc shell do not predict the behavioral effects of the interactions with cocaine. PMID:17255465

  18. Role of M2 Muscarinic Receptor in the Airway Response to Methacholine of Mice Selected for Minimal or Maximal Acute Inflammatory Response

    PubMed Central

    Castro, Juciane Maria de Andrade; Resende, Rodrigo R.; Florsheim, Esther; Albuquerque, Layra Lucy; Lino-dos-Santos-Franco, Adriana; Gomes, Eliane; Tavares de Lima, Wothan; de Franco, Marcelo; Ribeiro, Orlando Garcia

    2013-01-01

    Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation. PMID:23691511

  19. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11).

    PubMed

    Blanc, E M; Kelly, J F; Mark, R J; Waeg, G; Mattson, M P

    1997-08-01

    Considerable data indicate that oxidative stress and membrane lipid peroxidation contribute to neuronal degeneration in an array of age-related neurodegenerative disorders. In contrast, the impact of subtoxic levels of membrane lipid peroxidation on neuronal function is largely unknown. We now report that 4-hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, disrupts coupling of muscarinic cholinergic receptors and metabotropic glutamate receptors to phospholipase C-linked GTP-binding proteins in cultured rat cerebrocortical neurons. At subtoxic concentrations, HNE markedly inhibited GTPase activity, inositol phosphate release, and elevation of intracellular calcium levels induced by carbachol (muscarinic agonist) and (RS)-3,5-dihydroxyphenyl glycine (metabotropic glutamate receptor agonist). Maximal impairment of agonist-induced responses occurred within 30 min of exposure to HNE. Other aldehydes, including malondialdehyde, had little effect on agonist-induced responses. Antioxidants that suppress lipid peroxidation did not prevent impairment of agonist-induced responses by HNE, whereas glutathione, which is known to bind and detoxify HNE, did prevent impairment of agonist-induced responses. HNE itself did not induce oxidative stress. Immunoprecipitation-western blot analysis using an antibody to HNE-protein conjugates showed that HNE can bind to G alpha(q/11). HNE also significantly suppressed inositol phosphate release induced by aluminum fluoride. Collectively, our data suggest that HNE plays a role in altering receptor-G protein coupling in neurons under conditions of oxidative stress that may occur both normally, and before cell degeneration and death in pathological settings. PMID:9231714

  20. Monoclonal antibodies to purified muscarinic receptor display agonist-like activity.

    PubMed Central

    Leiber, D; Harbon, S; Guillet, J G; André, C; Strosberg, A D

    1984-01-01

    Monoclonal antibody M-35, which immunoprecipitates native calf brain acetylcholine muscarinic receptor, mimics agonist stimulation of the intact guinea pig myometrium: the antibody, just like carbamoylcholine hydrochloride, causes a rise in intracellular cyclic GMP content, an inhibition of cyclic AMP accumulation due to prostacyclin, and induces uterine contractions. Another antibody, M-23, which reacts with the denatured muscarinic receptor, is devoid of agonist-like activity at the cyclic nucleotide level but is still able to induce contractions of both rat and guinea pig myometrium. The cyclic nucleotide changes caused by both carbamoylcholine and antibody M-35 are inhibited by atropine; this antagonist, which blocks carbamoylcholine-mediated contractions, fails however, to prevent contractions induced by antibodies M-35 and M-23. These results suggest that the information necessary to transmit muscarinic signals is entirely contained in the receptor and that ligands only act to trigger the biological response. The data also imply that the muscarinic receptors of the myometrium are coupled to multiple effector systems. PMID:6087318

  1. Muscarinic receptors and amylase secretion of rat pancreatic acini during cerulein-induced acute pancreatitis.

    PubMed

    Morisset, J; Wood, J; Solomon, T E; Larose, L

    1987-08-01

    This study examines the effects of cerulein-induced acute pancreatitis on the secretory response of rat pancreatic acini to carbamylcholine and concentration of acinar muscarinic receptors. Rats were injected subcutaneously every 8 hr with cerulein, 12 micrograms/kg, for two days. They were sacrificed 2 and 4 hr after the first injection, 4 hr after the second and third, and 8 hr after the sixth. By 2 hr after the first injection, carbamylcholine showed decreased potency for stimulating amylase release; decreased potency becomes maximal after the second injection. Four hours after the first injection, carbamylcholine also showed decreased efficacy for causing maximal amylase release. In the course of development of pancreatitis, progressive reductions in muscarinic receptor concentrations were evident from 4 hr after the second injection. Following the complete treatment (8 hr after the sixth injection), no alteration could be observed in the affinity or proportions of each agonist class of muscarinic receptors. These studies indicate that the pancreatic acinar cells still remain functional after acute cerulein-induced pancreatitis, although significant reductions in potency and efficacy of carbamylcholine to cause amylase release and reduced muscarinic receptor concentration occur. PMID:2440647

  2. Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta

    SciTech Connect

    Schlegel, J.R.; Kriegstein, A.R.

    1987-11-22

    The distribution of muscarinic and benzodiazepine receptors was investigated in the turtle forebrain by the technique of in vitro receptor autoradiography. Muscarinic binding sites were labeled with 1 nM /sup 3/H-quinuclidinyl benzilate (/sup 3/H-QNB), and benzodiazepine sites were demonstrated with the aid of 1 nM /sup 3/H-flunitrazepam (/sup 3/H-FLU). Autoradiograms generated on /sup 3/H-Ultrofilm apposed to tissue slices revealed regionally specific distributions of muscarinic and benzodiazepine binding sites that are comparable with those for mammalian brain. Dense benzodiazepine binding was found in the anterior olfactory nucleus, the lateral and dorsal cortices, and the dorsal ventricular ridge (DVR), a structure with no clear mammalian homologue. Muscarinic binding sites were most dense in the striatum, accumbens, DVR, lateral geniculate, and the anterior olfactory nucleus. Cortical binding sites were studied in greater detail by quantitative analysis of autoradiograms generated by using emulsion-coated coverslips. Laminar gradients of binding were observed that were specific for each radioligand; /sup 3/H-QNB sites were most dense in the inner molecular layer in all cortical regions, whereas /sup 3/H-FLU binding was generally most concentrated in the outer molecular layer and was least dense through all layers in the dorsomedial cortex. Because pyramidal cells are arranged in register in turtle cortex, the laminar patterns of receptor binding may reflect different receptor density gradients along pyramidal cell dendrites.

  3. Binding and functional properties of hexocyclium and sila-hexocyclium derivatives to muscarinic receptor subtypes.

    PubMed Central

    Waelbroeck, M.; Camus, J.; Tastenoy, M.; Feifel, R.; Mutschler, E.; Tacke, R.; Strohmann, C.; Rafeiner, K.; Rodrigues de Miranda, J. F.; Lambrecht, G.

    1994-01-01

    1. We have compared the binding properties of several hexocyclium and sila-hexocyclium derivatives to muscarinic M1 receptors (in rat brain, human neuroblastoma (NB-OK 1) cells and calf superior cervical ganglia), rat heart M2 receptors, rat pancreas M3 receptors and M4 receptors in rat striatum, with their functional antimuscarinic properties in rabbit vas deferens (M1/M4-like), guinea-pig atria (M2), and guinea-pig ileum (M3) muscarinic receptors. 2. Sila-substitution (C/Si exchange) of hexocyclium (-->sila-hexocyclium) and demethyl-hexocyclium (-->demethyl-sila-hexocyclium) did not significantly affect their affinities for muscarinic receptors. By contrast, sila-substitution of o-methoxy-hexocyclium increased its affinity 2 to 3 fold for all the muscarinic receptor subtypes studied. 3. The p-fluoro- and p-chloro-derivatives of sila-hexocyclium had lower affinities than the parent compound at the four receptor subtypes, in binding and pharmacological studies. 4. In binding studies, o-methoxy-sila-hexocyclium (M1 = M4 > or = M3 > or = M2) had a much lower affinity than sila-hexocyclium for the four receptor subtypes, and discriminated the receptor subtypes more poorly than sila-hexocyclium (M1 = M3 > M4 > M2). This is in marked contrast with the very clear selectivity of o-methoxy-sila-hexocyclium for the prejunctional M1/M4-like heteroreceptors in rabbit vas deferens. 5. The tertiary amines demethyl-hexocyclium, demethyl-sila-hexocyclium and demethyl-o-methoxy-sila-hexocyclium had 10 to 30 fold lower affinities than the corresponding quaternary ammonium derivatives. PMID:8075869

  4. Muscarinic acetylcholine receptors are expressed by most parvalbumin-immunoreactive neurons in area MT of the macaque

    PubMed Central

    Disney, Anita A; Alasady, Hussein A; Reynolds, John H

    2014-01-01

    Background In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulation by acetylcholine (ACh) is a candidate mechanism for aspects of attention and in the primary visual cortex (V1) of the macaque, receptors for ACh (AChRs) are strongly expressed by inhibitory neurons. In particular, most PV neurons in macaque V1 express m1 muscarinic AChRs and exogenously applied ACh can cause the release of γ-aminobutyric acid. In contrast, few PV neurons in rat V1 express m1 AChRs. While this could be a species difference, it has also been argued that macaque V1 is anatomically unique when compared with other cortical areas in macaques. Aims The aim of this study was to better understand the extent to which V1 offers a suitable model circuit for cholinergic anatomy in the macaque occipital lobe, and to explore cholinergic modulation as a biological basis for the changes in circuit behavior seen with attention. Materials and methods We compared expression of m1 AChRs by PV neurons between area V1 and the middle temporal visual area (MT) in macaque monkeys using dual-immunofluorescence confocal microscopy. Results and conclusion We find that, as in V1, most PV neurons in MT express m1 AChRs but, unlike in V1, it appears that so do most excitatory neurons. This provides support for V1 as a model of cholinergic modulation of inhibition in macaque visual cortex, but not of cholinergic modulation of visual cortical circuits in general. We also propose that ACh acting via m1 AChRs is a candidate underlying mechanism for the strong effects of attention on narrow-spiking neurons observed in behaving animals. PMID:24944872

  5. Heterogeneous receptor binding of classical quaternary muscarinic antagonists. I. Bovine tissue distribution.

    PubMed

    Roffel, A F; Ensing, K; in 't Hout, W G; de Zeeuw, R A; Zaagsma, J

    1991-01-01

    In competition experiments with the tertiary radioligand [3H]dexetimide, classical quaternary muscarinic antagonists like ipratropium bromide and N-methylscopolamine bromide distinguished two muscarinic binding sites in bovine brain (total brain minus cerebellum) membranes, in contrast to their tertiary analogues, atropine and scopolamine, which recognized only one binding site. This binding behavior was found to be almost identical in bovine striatal membranes, both in terms of binding affinities and proportions of high (Q1) and low (Q2) affinity binding sites. Both in total brain and in striatal membranes, the Q1/Q2 binding heterogeneity was independent of pirenzepine binding heterogeneity (M1/M2). In peripheral tissues, the binding properties of quaternary muscarinic antagonists varied. Whereas tertiary as well as quaternary compounds showed only high affinity binding towards muscarinic receptors in bovine atrial and left ventricular membranes, heterogeneous binding behavior was observed with quaternary but not with tertiary antagonists in bovine tracheal smooth muscle membranes. The tissue distribution found in the present study suggests that bovine tracheal smooth muscle contraction studies might shed light on the functional significance of the anomalous binding behavior of quaternary muscarinic antagonists. PMID:1824191

  6. Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes.

    PubMed

    Lambrecht, G; Feifel, R; Wagner-Röder, M; Strohmann, C; Zilch, H; Tacke, R; Waelbroeck, M; Christophe, J; Boddeke, H; Mutschler, E

    1989-09-01

    In an attempt to assess the structural requirements of hexahydro-sila-difenidol for potency and selectivity, a series of analogues modified in the amino group and the phenyl ring were investigated for their affinity to muscarinic M1-(rabbit vas deferens), M2- (guinea-pig atria) and M3- (guinea-pig ileum) receptors. All compounds were competitive antagonists in the three tissues. Their affinities to the three muscarinic receptor subtypes differed by more than two orders of magnitude and the observed receptor selectivities were not associated with high affinity. The pyrrolidino and hexamethyleneimino analogues, compounds substituted in the phenyl ring with a methoxy group or a chlorine atom as well as p-fluoro-hexahydro-difenidol displayed the same affinity profile as the parent compound, hexahydro-sila-difenidol: M1 approximately M3 greater than M2. A different selectivity pattern was observed for p-fluoro-hexahydro-sila-difenidol: M3 greater than M1 greater than M2. This compound exhibited its highest affinity for M3-receptors in guinea-pig ileum (pA2 = 7.84), intermediate affinity for M1-receptors in rabbit vas deferens (pA2 = 6.68) and lowest affinity for the M2-receptors in guinea-pig atria (pA2 = 6.01). This receptor selectivity profile of p-fluoro-hexahydro-sila-difenidol was confirmed in ganglia (M1), atria (M2) and ileum (M3) of the rat. Furthermore, dose ratios obtained with either pirenzepine (M1) or hexahydrosila-difenidol (M2 and M3) and the p-fluoro analogue used in combination suggested that the antagonism was additive, implying mutual competition with a single population of muscarinic receptor subtypes. These results indicate that p-fluoro-hexahydro-sila-difenidol represents a valuable tool for characterization of muscarinic receptor subtypes. PMID:2583233

  7. Activity of muscarinic, galanin and cannabinoid receptors in the prodromal and advanced stages in the triple transgenic mice model of Alzheimer's disease.

    PubMed

    Manuel, Iván; Lombardero, Laura; LaFerla, Frank M; Giménez-Llort, Lydia; Rodríguez-Puertas, Rafael

    2016-08-01

    Neurochemical alterations in Alzheimer's disease (AD) include cholinergic neuronal loss in the nucleus basalis of Meynert (nbM) and a decrease in densities of the M2 muscarinic receptor subtype in areas related to learning and memory. Neuromodulators present in the cholinergic pathways, such as neuropeptides and neurolipids, control these cognitive processes and have become targets of research in order to understand and treat the pathophysiological and clinical stages of the disease. This is the case of the endocannabinoid and galaninergic systems, which have been found to be up-regulated in AD, and could therefore have a neuroprotective role. In the present study, the functional coupling of Gi/o protein-coupled receptors to GalR1, and the CB1 receptor subtype for endocannabinoids were analyzed in the 3xTg-AD mice model of AD. In addition, the activity mediated by Gi/o protein-coupled M2/4 muscarinic receptor subtypes was also analyzed in brain areas involved in anxiety and cognition. Thus, male mice were studied at 4 and 15months of age (prodromal and advanced stages, respectively) and compared to age-matched non-transgenic (NTg) mice (adult and old, respectively). In 4-month-old 3xTg-AD mice, the [(35)S]GTPγS binding stimulated by galanin was significantly increased in the hypothalamus, but a decrease of functional M2/4 receptors was observed in the posterior amygdala. The CB1 cannabinoid receptor activity was up-regulated in the anterior thalamus at that age. In 15-month-old 3xTg-AD mice, muscarinic receptor activity was found to be increased in motor cortex, while CB1 activity was decreased in nbM. No changes were found in GalR1-mediated activity at this age. Our results provide further evidence of the relevance of limbic areas in the prodromal stage of AD, the profile of which is characterized by anxiety. The up-regulation of galaninergic and endocannabinoid systems support the hypothesis of their neuroprotective roles, and these are established prior to the

  8. Muscarinic Receptors and Their Antagonists in COPD: Anti-Inflammatory and Antiremodeling Effects

    PubMed Central

    Karakiulakis, George; Roth, Michael

    2012-01-01

    Muscarinic receptors are expressed by most cell types and mediate cellular signaling of their natural ligand acetylcholine. Thereby, they control numerous central and peripheral physiological organ responses to neuronal activity. In the human lung, muscarinic receptors are predominantly expressed by smooth muscle cells, epithelial cells, and fibroblasts. Antimuscarinic agents are used for the treatment of chronic obstructive pulmonary disease and to a lesser extent for asthma. They are primarily used as bronchodilators, but it is now accepted that they are also associated with anti-inflammatory, antiproliferative, and antiremodeling effects. Remodeling of the small airways is a major pathology in COPD and impairs lung function through changes of the extracellular matrix. Glycosaminoglycans, particularly hyaluronic acid, and matrix metalloproteases are among extracellular matrix molecules that have been associated with tissue inflammation and remodeling in lung diseases, including chronic obstructive pulmonary disease and asthma. Since muscarinic receptors have been shown to influence the homeostasis of glycosaminoglycans and matrix metalloproteases, these molecules may be proved valuable endpoint targets in clinical studies for the pharmacological exploitation of the anti-inflammatory and antiremodeling effects of muscarinic inhibitors in the treatment of chronic obstructive pulmonary disease and asthma. PMID:23226927

  9. Diminished trkA receptor signaling reveals cholinergic-attentional vulnerability of aging

    PubMed Central

    Parikh, Vinay; Howe, William M.; Welchko, Ryan M.; Naughton, Sean X.; D'Amore, Drew E.; Han, Daniel H.; Deo, Monika; Turner, David L.; Sarter, Martin

    2012-01-01

    The cellular mechanisms underlying the exceptional vulnerability of the basal forebrain (BF) cholinergic neurons during pathological aging have remained elusive. Here we employed an adeno-associated viral vector-based RNA interference (AAV-RNAi) strategy to suppress the expression of trkA receptors by cholinergic neurons in the nucleus basalis of Meynert/ substantia innominata (nMB/SI) of adult and aged rats. Suppression of trkA receptor expression impaired attentional performance selectively in aged rats. Performance correlated with trkA levels in the nMB/SI. TrkA knockdown neither affected nMB/SI cholinergic cell counts nor the decrease in cholinergic cell size observed in aged rats. However, trkA suppression augmented an age-related decrease in the density of cortical cholinergic processes and attenuated the capacity of cholinergic neurons to release ACh. The capacity of cortical synapses to release acetylcholine (ACh) in vivo was also lower in aged/trkA-AAV-infused rats than in aged or young controls, and it correlated with their attentional performance. Furthermore, age-related increases in cortical proNGF and p75 receptor levels interacted with the vector-induced loss of trkA receptors to shift NGF signaling toward p75-mediated suppression of the cholinergic phenotype, thereby attenuating cholinergic function and impairing attentional performance. These effects model the abnormal trophic regulation of cholinergic neurons and cognitive impairments in patients with early Alzheimer's disease. This rat model is useful for identifying the mechanisms rendering aging cholinergic neurons vulnerable as well as for studying the neuropathological mechanisms that are triggered by disrupted trophic signaling. PMID:23228124

  10. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum

    SciTech Connect

    Voith, G.; Dingermann, T.

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I{gamma} promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I{gamma} promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. 36 refs., 4 figs.

  11. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum.

    PubMed

    Voith, G; Dingermann, T

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I gamma promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I gamma promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. PMID:9636297

  12. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  13. Plasticity-related binding of GABA and muscarinic receptor sites in piriform cortex of rat: An autoradiographic study

    SciTech Connect

    Thomas, A.P.; Westrum, L.E. )

    1989-09-01

    This study has used the recently developed in vitro quantitative autoradiographic technique to examine the effects of olfactory bulb (OB) removal on receptor-binding sites in the deafferented piriform cortex (PC) of the rat. The gamma-aminobutyric acid-benzodiazepine receptor (GABA-BZR)- and muscarinic cholinergic receptor (MChR)-binding sites in layer I of PC were localized using (3H)flunitrazepam and (3H)quinuclidinyl benzilate as ligands, respectively. From the resultant autoradiograms the optical densities were measured using a Drexel-DUMAS image analysis system. The densities of BZR and MChR-binding sites were markedly increased in the PC ipsilateral to the lesion as compared to the contralateral side in those subjects that were operated in adulthood (Postnatal Day 100, PN 100). Comparisons between the unoperated and PN 100 operated animals also showed significant increases in the deafferented PC. In the animals operated on the day of birth (PN 0) no significant differences were seen between the operated and the contralateral PC. The difference between the PN 0 deafferented PC and the unoperated controls shows a slight decrease in BZR density in the former group; however, in case of the MChR there is a slight increase on the side of the lesion. These results demonstrate that deafferentation of PC by OB removal appears to modulate both the BZR-binding sites that are coupled with the GABA-A receptor complex and the MChR-binding sites. The results also suggest that possibility of a role for these neurotransmitter receptor-binding sites in plasticity following deafferentation.

  14. The Role of Muscarinic and Nicotinic Cholinergic Neurotransmission in Aversive Conditioning: Comparing Pavlovian Fear Conditioning and Inhibitory Avoidance

    ERIC Educational Resources Information Center

    Tinsley, Matthew R.; Quinn, Jennifer J.; Fanselow, Michael S.

    2004-01-01

    Aversive conditioning is an ideal model for studying cholinergic effects on the processes of learning and memory for several reasons. First, deficits produced by selective lesions of the anatomical structures shown to be critical for Pavlovian fear conditioning and inhibitory avoidance (such as the amygdala and hippocampus) resemble those deficits…

  15. Cholinergic regulation of the vasopressin neuroendocrine system

    SciTech Connect

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  16. Muscarinic Receptor Occupancy and Cognitive Impairment: A PET Study with [11C](+)3-MPB and Scopolamine in Conscious Monkeys

    PubMed Central

    Yamamoto, Shigeyuki; Nishiyama, Shingo; Kawamata, Masahiro; Ohba, Hiroyuki; Wakuda, Tomoyasu; Takei, Nori; Tsukada, Hideo; Domino, Edward F

    2011-01-01

    The muscarinic cholinergic receptor (mAChR) antagonist scopolamine was used to induce transient cognitive impairment in monkeys trained in a delayed matching to sample task. The temporal relationship between the occupancy level of central mAChRs and cognitive impairment was determined. Three conscious monkeys (Macaca mulatta) were subjected to positron emission tomography (PET) scans with the mAChR radioligand N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB). The scan sequence was pre-, 2, 6, 24, and 48 h post-intramuscular administration of scopolamine in doses of 0.01 and 0.03 mg/kg. Occupancy levels of mAChR were maximal 2 h post-scopolamine in cortical regions innervated primarily by the basal forebrain, thalamus, and brainstem, showing that mAChR occupancy levels were 43–59 and 65–89% in doses of 0.01 and 0.03 mg/kg, respectively. In addition, dose-dependent impairment of working memory performance was measured 2 h after scopolamine. A positive correlation between the mAChR occupancy and cognitive impairment 2 and 6 h post-scopolamine was the greatest in the brainstem (P<0.00001). Although cognitive impairment was not observed 24 h post-scopolamine, sustained mAChR occupancy (11–24%) was found with both doses in the basal forebrain and thalamus, but not in the brainstem. These results indicate that a significant degree of mAChRs occupancy is needed to produce cognitive impairment by scopolamine. Furthermore, the importance of the brainstem cholinergic system in working memory in monkey is described. PMID:21430646

  17. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents. PMID:20238109

  18. Expression of muscarinic receptor subtypes in tree shrew ocular tissues and their regulation during the development of myopia

    PubMed Central

    Jobling, A.I.; Truong, H.T.; Cottriall, C.L.; Gentle, A.

    2009-01-01

    Purpose Muscarinic receptors are known to regulate several important physiologic processes in the eye. Antagonists to these receptors such as atropine and pirenzepine are effective at stopping the excessive ocular growth that results in myopia. However, their site of action is unknown. This study details ocular muscarinic subtype expression within a well documented model of eye growth and investigates their expression during early stages of myopia induction. Methods Total RNA was isolated from tree shrew corneal, iris/ciliary body, retinal, choroidal, and scleral tissue samples and was reverse transcribed. Using tree shrew-specific primers to the five muscarinic acetylcholine receptor subtypes (CHRM1-CHRM5), products were amplified using polymerase chain reaction (PCR) and their identity confirmed using automated sequencing. The expression of the receptor proteins (M1-M5) were also explored in the retina, choroid, and sclera using immunohistochemistry. Myopia was induced in the tree shrew for one or five days using monocular deprivation of pattern vision, and the expression of the receptor subtypes was assessed in the retina, choroid, and sclera using real-time PCR. Results All five muscarinic receptor subtypes were expressed in the iris/ciliary body, retina, choroid, and sclera while gene products corresponding to CHRM1, CHRM3, CHRM4, and CHRM5 were present in the corneal samples. The gene expression data were confirmed by immunohistochemistry with the M1-M5 proteins detected in the retina, choroid, and sclera. After one or five days of myopia development, muscarinic receptor gene expression remained unaltered in the retinal, choroidal, and scleral tissue samples. Conclusions This study provides a comprehensive profile of muscarinic receptor gene and protein expression in tree shrew ocular tissues with all receptor subtypes found in tissues implicated in the control of eye growth. Despite the efficacy of muscarinic antagonists at inhibiting myopia development, the

  19. Muscarinic receptors are involved in LMM3 tumor cells proliferation and angiogenesis

    SciTech Connect

    Rimmaudo, Laura Elizabeth; Torre, Eulalia de la; Sacerdote de Lustig, Eugenia; Sales, Maria Elena . E-mail: mesales@2vias.com.ar

    2005-09-09

    Angiogenesis is a process of new blood vessel development from pre-existing vasculature and it plays an essential role in tumor growth and metastases. Here, we investigate the expression of muscarinic acetylcholine receptors (mAchR) and their participation in tumor cell proliferation and angiogenesis ability. Saturation binding assays with the tritiated muscarinic antagonist quinuclidinyl benzilate indicate that LMM3 cells derived from a murine mammary adenocarcinoma express a single class of functional mAchR. Competition binding assays with selective muscarinic antagonists indicate a predominance of M{sub 3} receptor subtype. The muscarinic agonist carbachol (CARB) stimulates LMM3 cell proliferation in a concentration dependent manner. The maximal effect induced by 10{sup -9} M CARB was totally blunted by atropine and by the selective M{sub 3} and M{sub 1} antagonists, para-fluoro hexahydro sila-difenidol (pf-HHSiD) and pirenzepine, respectively. In addition, pf-HHSiD completely blocked in vivo CARB-induced neovascular formation and vascular endothelial growth factor-A in LMM3 tumor cells. We can conclude that mAchR expressed in LMM3 mammary tumor cells positively regulate proliferation and angiogenesis required for tumor progression.

  20. Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion.

    PubMed

    Wasserman, David I; Tan, Joel M J; Kim, Jun Chul; Yeomans, John S

    2016-07-01

    Opioids induce rewarding and locomotor effects by inhibiting rostromedial tegmental GABA neurons that express μ-opioid and nociceptin receptors. These GABA neurons then strongly inhibit dopamine neurons. Opioid-induced reward, locomotion and dopamine release also depend on pedunculopontine and laterodorsal tegmental cholinergic and glutamate neurons, many of which project to and activate ventral tegmental area dopamine neurons. Here we show that laterodorsal tegmental and pedunculopontine cholinergic neurons project to both rostromedial tegmental nucleus and ventral tegmental area, and that M4 muscarinic receptors are co-localized with μ-opioid receptors associated with rostromedial tegmental GABA neurons. To inhibit or excite rostromedial tegmental GABA neurons, we utilized adeno-associated viral vectors and DREADDs to express designed muscarinic receptors (M4D or M3D respectively) in GAD2::Cre mice. In M4D-expressing mice, clozapine-N-oxide increased morphine-induced, but not vehicle-induced, locomotion. In M3D-expressing mice, clozapine-N-oxide blocked morphine-induced, but not vehicle-induced, locomotion. We propose that cholinergic inhibition of rostromedial tegmental GABA neurons via M4 muscarinic receptors facilitates opioid inhibition of the same neurons. This model explains how mesopontine cholinergic systems and muscarinic receptors in the rostromedial tegmental nucleus and ventral tegmental area are important for dopamine-dependent and dopamine-independent opioid-induced rewards and locomotion. PMID:26990801

  1. Expression of m1-type muscarinic acetylcholine receptors by parvalbumin-immunoreactive neurons in the primary visual cortex: a comparative study of rat, guinea pig, ferret, macaque, and human.

    PubMed

    Disney, Anita A; Reynolds, John H

    2014-04-01

    Cholinergic neuromodulation is a candidate mechanism for aspects of arousal and attention in mammals. We have reported previously that cholinergic modulation in the primary visual cortex (V1) of the macaque monkey is strongly targeted toward GABAergic interneurons, and in particular that the vast majority of parvalbumin-immunoreactive (PV) neurons in macaque V1 express the m1-type (pirenzepine-sensitive, Gq-coupled) muscarinic ACh receptor (m1AChR). In contrast, previous physiological data indicates that PV neurons in rats rarely express pirenzepine-sensitive muscarinic AChRs. To examine further this apparent species difference in the cholinergic effectors for the primary visual cortex, we have conducted a comparative study of the expression of m1AChRs by PV neurons in V1 of rats, guinea pigs, ferrets, macaques, and humans. We visualize PV- and mAChR-immunoreactive somata by dual-immunofluorescence confocal microscopy and find that the species differences are profound; the vast majority (>75%) of PV-ir neurons in macaques, humans, and guinea pigs express m1AChRs. In contrast, in rats only ∼25% of the PV population is immunoreactive for m1AChRs. Our data reveal that while they do so much less frequently than in primates, PV neurons in rats do express Gq-coupled muscarinic AChRs, which appear to have gone undetected in the previous in vitro studies. Data such as these are critical in determining the species that represent adequate models for the capacity of the cholinergic system to modulate inhibition in the primate cortex. PMID:23983014

  2. Subclassification of muscarinic receptors in the heart, urinary bladder and sympathetic ganglia in the pithed rat. Selectivity of some classical agonists.

    PubMed

    van Charldorp, K J; de Jonge, A; Thoolen, M J; van Zwieten, P A

    1985-12-01

    In pithed normotensive rats muscarinic receptors were characterized in heart, urinary bladder and sympathetic ganglia; the selectivity of some classical muscarinic agents for these subtypes was investigated. The potencies in decreasing heart rate, increasing bladder pressure and increasing diastolic blood pressure were measured for the following, intraarterially administered cholinergic agonists: McN-A-343 ([4-m-chlorophenylcarbamoyloxy]-2-butynyltrimethylammonium), pilocarpine, carbachol, oxotremorine, arecoline, acetyl-beta-methylcholine and acetylcholine. The selective M1-antagonist pirenzepine, the mixed M1/M2-antagonist dexetimide and the cardioselective M2-antagonist gallamine were used as tools for identification of the receptors. All data were obtained after intravenous pretreatment with a high dose of atenolol to eliminate tachycardia induced by stimulating sympathetic ganglionic muscarinic receptors. Dexetimide strongly antagonized the bradycardia as well as the increase in bladder pressure induced by pilocarpine, carbachol, oxotremorine, arecoline, acetyl-beta-methylcholine and acetylcholine, whereas pirenzepine was much less effective. Gallamine antagonized the bradycardia, whereas no influence was found on the bladder contraction. Pilocarpine acted as a partial agonist in reducing heart rate as well as in increasing bladder pressure, whereas McN-A-343 was almost ineffective in doses up to 1 mg/kg. The hypertensive response to pilocarpine and carbachol was less pronounced than that produced by McN-A-343. Pirenzepine and dexetimide significantly antagonized the hypertensive response to McN-A-343 and pilocarpine, whereas gallamine was much less effective. The hypertensive response induced by carbachol was totally blocked by hexamethonium. The other agonists used in this study did not produce a significant increase in diastolic blood pressure in doses that produced a maximal effect on heart rate and urinary bladder pressure.(ABSTRACT TRUNCATED AT 250 WORDS

  3. Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology.

    PubMed

    Kimber, Michael J; Sayegh, Laura; El-Shehabi, Fouad; Song, Chuanzhe; Zamanian, Mostafa; Woods, Debra J; Day, Tim A; Ribeiro, Paula

    2009-09-01

    Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, is alternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventral body wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to those present in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic. PMID:19327362

  4. Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology★

    PubMed Central

    Kimber, Michael J.; Sayegh, Laura; El-Shehabi, Fouad; Song, Chuanzhe; Zamanian, Mostafa; Woods, Debra J.; Day, Tim A.; Ribeiro, Paula

    2009-01-01

    Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, isalternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventralbody wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to thosepresent in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic. PMID:19327362

  5. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  6. Muscarinic Receptors as Model Targets and Antitargets for Structure-Based Ligand Discovery

    PubMed Central

    Kruse, Andrew C.; Weiss, Dahlia R.; Rossi, Mario; Hu, Jianxin; Hu, Kelly; Eitel, Katrin; Gmeiner, Peter; Wess, Jürgen

    2013-01-01

    G protein–coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype–selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology. PMID:23887926

  7. Effects of muscarinic blockade in perirhinal cortex during visual recognition

    PubMed Central

    Tang, Yi; Mishkin, Mortimer; Aigner, Thomas G.

    1997-01-01

    Stimulus recognition in monkeys is severely impaired by destruction or dysfunction of the perirhinal cortex and also by systemic administration of the cholinergic-muscarinic receptor blocker, scopolamine. These two effects are shown here to be linked: Stimulus recognition was found to be significantly impaired after bilateral microinjection of scopolamine directly into the perirhinal cortex, but not after equivalent injections into the laterally adjacent visual area TE or into the dentate gyrus of the overlying hippocampal formation. The results suggest that the formation of stimulus memories depends critically on cholinergic-muscarinic activation of the perirhinal area, providing a new clue to how stimulus representations are stored. PMID:9356507

  8. Effects of antiparkinsonian drugs on muscarinic receptor binding in rat brain, heart and lung.

    PubMed

    Syvälahti, E K; Kunelius, R; Laurén, L

    1988-02-01

    The anticholinergic antiparkinsonian drugs biperiden, benztropine, trihexyphenidyl, methixene, and procyclidine were compared with atropine and pirenzepine, as well as with orphenadrine, amantadine and some standard antidepressives and neuroleptics in their ability to inhibit the binding of tritiated quinuclidinyl benzilate (QNB) to the muscarinic receptors in rat brain cortical tissue. Most of the antiparkinsonian drugs studied were potent inhibitors of (-)3H-QNB binding, when compared to atropine (IC50-value = 0.22 microM), the IC50-values ranging from 0.0084 microM (biperiden) to 0.07 microM (procyclidine). Orphenadrine had a low and amantadine no evident affinity for muscarinic receptors. With the exception of pirenzepine and biperiden the inhibition curves were steep and parallel, giving linear Hill plots with coefficients close to unity. The binding profile of atropine, pirenzepine, and biperiden was further studied in heart and lung tissues, atropine showing only small divergences in its binding to the different tissues, but biperiden and pirenzepine having five to ten times lower affinity in the peripheral tissues than in the brain. The results confirm the high affinity of most of the antiparkinsonian drugs for brain muscarinic receptors. The dissociation constants agree with the average clinical doses of the drugs. It must be remembered, however, that the binding data may represent multiple events at receptor sites because most of the drugs used are mixtures of stereoisomers. Thus further studies using individual enantiomers are needed to compare more directly binding data between the compounds. PMID:3353357

  9. Agonist mediated conformational changes of solubilized calf forebrain muscarinic acetylcholine receptors.

    PubMed

    Vanderheyden, P; Andre, C; de Backer, J P; Vauquelin, G

    1984-10-01

    Muscarinic receptors in calf forebrain membranes can be identified by the specific binding of the radiolabelled antagonist [3H]dexetimide. These receptors (2.8 pM/mg protein) comprise two non-interconvertible subpopulations with respectively high and low agonist affinity but with the same antagonist affinity. For all the agonists tested the low affinity sites represent 85 +/- 5% of the total receptor population. 0.5% Digitonin solubilized extracts contain 0.8 pM muscarinic receptor/mg protein. In contrast with the membranes, these extracts contain only sites with low agonist affinity. The alkylating reagent N-ethylmaleimide causes an increase of the acetylcholine affinity for the low affinity sites in membranes as well as for the solubilized sites. This effect is time dependent until a maximal 3-fold increase in affinity is attained. The rate of N-ethylmaleimide action is enhanced by the concomitant presence of agonists. In contrast, N-ethylmaleimide does not affect antagonist binding. This suggests that agonists mediate a conformational change of both the membrane bound low affinity muscarinic sites and of the solubilized sites, resulting in their increased susceptibility towards NEM alkylation. PMID:6487351

  10. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition

    PubMed Central

    Yi, Feng; Ball, Jackson; Stoll, Kurt E; Satpute, Vaishali C; Mitchell, Samantha M; Pauli, Jordan L; Holloway, Benjamin B; Johnston, April D; Nathanson, Neil M; Deisseroth, Karl; Gerber, David J; Tonegawa, Susumu; Lawrence, J Josh

    2014-01-01

    Parvalbumin-containing (PV) neurons, a major class of GABAergic interneurons, are essential circuit elements of learning networks. As levels of acetylcholine rise during active learning tasks, PV neurons become increasingly engaged in network dynamics. Conversely, impairment of either cholinergic or PV interneuron function induces learning deficits. Here, we examined PV interneurons in hippocampus (HC) and prefrontal cortex (PFC) and their modulation by muscarinic acetylcholine receptors (mAChRs). HC PV cells, visualized by crossing PV-CRE mice with Rosa26YFP mice, were anatomically identified as basket cells and PV bistratified cells in the stratum pyramidale; in stratum oriens, HC PV cells were electrophysiologically distinct from somatostatin-containing cells. With glutamatergic transmission pharmacologically blocked, mAChR activation enhanced PV cell excitability in both CA1 HC and PFC; however, CA1 HC PV cells exhibited a stronger postsynaptic depolarization than PFC PV cells. To delete M1 mAChRs genetically from PV interneurons, we created PV-M1 knockout mice by crossing PV-CRE and floxed M1 mice. The elimination of M1 mAChRs from PV cells diminished M1 mAChR immunoreactivity and muscarinic excitation of HC PV cells. Selective cholinergic activation of HC PV interneurons using Designer Receptors Exclusively Activated by Designer Drugs technology enhanced the frequency and amplitude of inhibitory synaptic currents in CA1 pyramidal cells. Finally, relative to wild-type controls, PV-M1 knockout mice exhibited impaired novel object recognition and, to a lesser extent, impaired spatial working memory, but reference memory remained intact. Therefore, the direct activation of M1 mAChRs on PV cells contributes to some forms of learning and memory. PMID:24879872