Science.gov

Sample records for muscle strength fatiguability

  1. Muscle strength, endurance and recovery in the post-infection fatigue syndrome.

    PubMed Central

    Lloyd, A R; Hales, J P; Gandevia, S C

    1988-01-01

    A test of muscle strength and "fatiguability" was administered to 20 normal subjects and 20 patients suffering from post-infection fatigue syndrome. Maximal isometric torque for the elbow flexors was measured before, during and after an endurance sequence of 18 maximal static contractions (10 s duration, 10 s rest interval). The maximal isometric strength was not significantly different between the patient and control groups. The relative torque produced at the end of the series of 18 static contractions did not differ significantly between patients and normal subjects. In the patients with post-infection fatigue syndrome there was impairment of the recovery of peak torque at 10 minutes after the endurance sequence (p less than 0.02). The prominent subjective complaint of muscle fatigue in patients with post-infection fatigue syndrome contrasts with the relatively normal behaviour of their muscles during a controlled test of fatigue. The syndrome may include a disordered perception of achieved force and exertion. PMID:2852211

  2. Indoor mobility-related fatigue and muscle strength in nonagenarians: a prospective longitudinal study

    PubMed Central

    Ekmann, Anette; Thinggaard, Mikael; Christensen, Kaare; Avlund, Kirsten

    2014-01-01

    Background and aims Mobility-related fatigue is an important indicator of functional decline in old age, however, very little is known about fatigue in the oldest old population segment. The aim of this study was to examine the association between indoor mobility-related fatigue and muscle strength decline in nonagenarians. Methods The study is based on a prospective longitudinal study of all Danes born in 1905 and assessed in 1998, 2000 and 2003, and includes 92- to 93-year-old persons who were independent of help in basic indoor mobility at baseline (n = 1,353). Fatigue was assessed at baseline and defined as a subjective feeling of fatigue when transferring or walking indoors. The outcome measure, maximum grip strength, was measured at each measurement point. Results Grip strength declined throughout the study in participants with and without fatigue, but those reporting fatigue had significantly (P < .001) lower muscle strength during the entire study period. Longitudinal analyses indicated slightly slower decline in muscle strength among participants with fatigue compared to those without; however, observed selective dropout of participants with fatigue and poor performance at baseline needs to be considered when interpreting the results. Accordingly, participants without fatigue had significantly higher chances of being alive and having muscle strength above gender-specific median at first (RR 1.32, 95 % CI 1.07–1.58), second (RR 1.51, 1.06–1.96) and third (RR 1.39, 1.01–1.97) measurement points. Conclusions Indoor mobility-related fatigue in advanced later life should not merely be considered as an unpleasant symptom, but rather an indicator of physical impairment, and consequently declined physiological reserve. PMID:24297217

  3. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  4. Low ponderal index is associated with decreased muscle strength and fatigue resistance in college-aged women

    PubMed Central

    Brutsaert, Tom D.; Tamvada, Kelli H.; Kiyamu, Melisa; White, Daniel D.; Gage, Timothy B

    2011-01-01

    Poor fetal growth is associated with decrements in muscle strength likely due to changes during myogenesis. We investigated the association of poor fetal growth with muscle strength, fatigue resistance, and the response to training in the isolated quadriceps femoris. Females (20.6 yrs) born to term but below the 10th percentile of ponderal index (PI)-for-gestational-age (LOWPI, n=14) were compared to controls (HIGHPI, n=14), before and after an 8-week training. Muscle strength was assessed as grip-strength and as the maximal isometric voluntary contraction (MVC) of the quadriceps femoris. Muscle fatigue was assessed during knee extension eercise. Body composition and the maximal oxygen consumption (VO2max) were also measured. Controlling for fat free mass (FFM), LOWPI versus HIGHPI women had ~11% lower grip-strength (P=0.023), 9–24% lower MVC values (P=0.042 pre-trained; P=0.020 post-trained), a higher rate of fatigue (pre- and post-training), and a diminished training response (P=0.016). Statistical control for FFM increased rather than decreased strength differences between PI groups. The PI was not associated with VO2max or measures of body composition. Strength and fatigue decrements strongly suggest that poor fetal growth affects the pathway of muscle force generation. This could be due to neuromotor and/or muscle morphologic changes during development e.g., fiber number, fiber type, etc. Muscle from LOWPI women may also be less responsive to training. Indirectly, results also implicate muscle as a potential mediator between poor fetal growth and adult chronic disease, given muscle’s direct role in determining insulin resistance, type II diabetes, physical activity, and so forth. PMID:21641734

  5. Muscle Fiber Type Composition and Knee Extension Isometric Strength Fatigue Patterns in Power- and Endurance-Trained Males.

    ERIC Educational Resources Information Center

    Kroll, Walter; And Others

    1980-01-01

    There is a degree of uniqueness in fatigue patterns, particularly between different levels of absolute maximum strength. Caution should be used when analyzing fatigue curves among subjects with unspecified strength levels. (CJ)

  6. Deer Antler Extract Improves Fatigue Effect through Altering the Expression of Genes Related to Muscle Strength in Skeletal Muscle of Mice

    PubMed Central

    Hsiang, Chien-Yun; Lin, Yung-Chang; Ho, Tin-Yun

    2014-01-01

    Deer antler is a well-known traditional Chinese medicine used in Asian countries for the tonic and the improvement of aging symptoms. The present study was designed to investigate the antifatigue effect and mechanism of Formosan sambar deer tip antler extract (FSDTAE). The swimming times to exhaustion of mice administered FSDTAE (8.2 mg/day) for 28 days were apparently longer than those of the vehicle-treated mice in forced swim test. However, the indicators of fatigue, such as the reduction in glucose level and the increases in blood urea nitrogen and lactic acid levels, were not significantly inhibited by FSDTAE. Therefore, microarray analysis was further used to examine the anti-fatigue mechanism of FSDTAE. We selected genes with fold changes >2 or <−2 in skeletal muscle for pathway analysis. FSDTAE-affected genes were involved in 9 different signaling pathways, such as GnRH signaling pathway and insulin signaling pathway. All of the significantly expressed genes were classified into 8 different categories by their functions. The most enriched category was muscular system, and 6 upregulated genes, such as troponin I, troponin T1, cysteine and glycine-rich protein 2, myosin heavy polypeptide 7, tropomyosin 2, and myomesin family member 3, were responsible for the development and contraction of muscle. Real-time PCR analysis indicated that FSDTAE increased troponins mRNA expression in skeletal muscle. In conclusion, our findings suggested that FSDTAE might increase the muscle strength through the upregulation of genes responsible for muscle contraction and consequently exhibited the anti-fatigue effect in mice. PMID:24701242

  7. Ischemia causes muscle fatigue.

    PubMed

    Murthy, G; Hargens, A R; Lehman, S; Rempel, D M

    2001-05-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue. PMID:11398857

  8. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  9. Muscle fatigue (image)

    MedlinePlus

    ... above your shoulders until they drop is one exercise that may be performed during the Tensilon test. In this test, the drug Tensilon is administered, and the response in the muscles are evaluated to help diagnose myasthenia gravis or ...

  10. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  11. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  12. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  13. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  14. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  15. A comparison of muscle strength and endurance, exercise capacity, fatigue perception and quality of life in patients with chronic obstructive pulmonary disease and healthy subjects: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) has significant systemic effects that substantially impact quality of life and survival. The purpose of this study was to assess and compare peripheral muscle strength and endurance, exercise capacity, fatigue perception and quality of life between patients with COPD and healthy subjects. Methods Twenty COPD patients (mean FEV1 49.3 ± 19.2%) and 20 healthy subjects were included in the study. Pulmonary function testing and six-minute walk test (6MWT) were performed. Peripheral muscle strength was measured with a hand-held dynamometer, peripheral muscle endurance was evaluated with sit-ups, squats and modified push-ups tests. Fatigue perception was assessed using the Fatigue Impact Scale (FIS) and Fatigue Severity Scale (FSS). General quality of life was determined with the Nottingham Health Profile (NHP), and cough-specific quality of life was evaluated with the Leicester Cough Questionnaire (LCQ). Results Pulmonary functions, strength of shoulder abductor and flexor muscles, numbers of sit-ups and squats, 6MWT distance and 6MWT% were significantly lower in COPD patients than in healthy subjects (p < 0.05). FIS psychosocial sub-dimension and total scores, NHP scores for all sub-dimensions except pain sub-dimension of the COPD group were significantly higher than those of healthy subjects (p < 0.05). The LCQ physical, psychological and social sub-dimensions and total scores were significantly lower in COPD patients than in healthy subjects (p < 0.05). Conclusions Pulmonary functions, peripheral muscle strength and endurance, exercise capacity and quality of life were adversely affected in patients with COPD. There are greater effect of fatigue on psychosocial functioning and general daily life activities and effect of cough on the quality of life in patients with COPD. This study supports the idea that COPD patients must be evaluated in a comprehensive manner for planning pulmonary

  16. Human quadriceps strength and fatiguability in patients with post viral fatigue.

    PubMed Central

    Rutherford, O M; White, P D

    1991-01-01

    Quadriceps isometric strength, activation and fatiguability were measured in 11 patients with symptoms of fatigue three months after glandular fever or a glandular fever-like illness. Predicted normal and lower limits of normal muscle strength were calculated from height and age. These measures and the fatigue index were compared with a group of healthy students of similar age. Two of the patients were unable to activate fully their muscles. After allowing for this inhibition the group mean (SD) strength was 104 (22%) of predicted. Although there was no significant difference in the fatigue index between the patients and the control group, there was a trend for the patients to show less fatigue than controls. There was no difference in the muscle results for those patients who were found to have Epstein-Barr virus infections and those who did not. The feelings of weakness and fatigue experienced by the patients could not be explained by either physiological muscle fatigue or lack of effort. PMID:1800667

  17. Effect of formoterol, a long-acting β2-adrenergic agonist, on muscle strength and power output, metabolism, and fatigue during maximal sprinting in men.

    PubMed

    Kalsen, Anders; Hostrup, Morten; Backer, Vibeke; Bangsbo, Jens

    2016-06-01

    The aim was to investigate the effect of the long-acting β2-adrenergic agonist formoterol on muscle strength and power output, muscle metabolism, and phosphorylation of CaMKII Thr(287) and FXYD1 during maximal sprinting. In a double-blind crossover study, 13 males [V̇o2 max: 45.0 ± 0.2 (means ± SE) ml·min(-1)·kg(-1)] performed a 30-s cycle ergometer sprint after inhalation of either 54 μg of formoterol (FOR) or placebo (PLA). Before and after the sprint, muscle biopsies were collected from vastus lateralis and maximal voluntary contraction (MVC), and contractile properties of quadriceps were measured. Oxygen uptake was measured during the sprint. During the sprint, peak power, mean power, and end power were 4.6 ± 0.8, 3.9 ± 1.1, and 9.5 ± 3.2% higher (P < 0.05) in FOR than in PLA, respectively. Net rates of glycogenolysis and glycolysis were 45.7 ± 21.0 and 28.5 ± 13.4% higher (P < 0.05) in FOR than in PLA, respectively, and the decrease in ATP content was lower (P < 0.05) in FOR than in PLA (3.7 ± 1.5 vs. 8.0 ± 1.6 mmol/kg dry weight). There was no difference in breakdown of phosphocreatine and oxygen uptake between treatments. Before and after the sprint, MVC and peak twitch force were higher (P < 0.05) in FOR than in PLA. No differences were observed in phosphorylation of CaMKII Thr(287) and FXYD1 between treatments before the sprint, whereas phosphorylation of CaMKII Thr(287) and FXYD1 was greater (P < 0.05) in FOR than in PLA after the sprint. In conclusion, formoterol-induced enhancement in power output during maximal sprinting is associated with increased rates of glycogenolysis and glycolysis that may counteract development of fatigue. PMID:27147617

  18. Fatigue Strength of Airplane and Engine Materials

    NASA Technical Reports Server (NTRS)

    Matthaes, Kurt

    1934-01-01

    This report was undertaken to give a brief summary of the laws governing the fatigue stresses and of the most important strength coefficients necessary for the correct dimensioning of the structural members.

  19. Optical Fiber Strength/Fatigue Experiments

    NASA Astrophysics Data System (ADS)

    Quan, F.; Helfinstine, J. D.

    1982-01-01

    Optical communication via hair-thin silica waveguides has revolutionized the telecommunications industry. Because its uses are spreading beyond telephony, with its relatively benign environments, to more exotic undersea and space applications, a new emphasis is now placed on optical fiber strength and fatigue characteristics. This paper will trace the historical development of optical waveguides strength/fatigue experiments and a recent attempt to determine the material fatigue constant "n" of modern silica waveguides. Stressing practical application, detailed derivations have been purposely left out for the sake of brevity.

  20. Recovery Effect of the Muscle Fatigue by the Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Uchida, Kousuke; Nuruki, Atsuo; Tsujimura, Sei-Ichi; Tamari, Youzou; Yunokuchi, Kazutomo

    The purpose of this study is to investigate the effect of magnetic stimulation for muscle fatigue. The six healthy subjects participated in the experiment with the repetition grasp using a hand dynamometer. The measurement of EMG (electromyography) and MMG (mechanomyography) is performed on the left forearm. All subjects performed MVC (maximum voluntary contraction), and repeated exercise in 80%MVC after the MVC measurement. The repetition task was entered when display muscular strength deteriorated. We used an EMG and MMG for the measurement of the muscle fatigue. Provided EMG and MMG waves were calculated integral calculus value (iEMG, and iMMG). The result of iEMG and iMMG were divided by muscular strength, because we calculate integral calculus value per the unit display muscular strength. The result of our study, we found recovery effect by the magnetic stimulation in voluntarily muscular strength and iEMG. However, we can not found in a figure of iMMG.

  1. Strength gradient enhances fatigue resistance of steels.

    PubMed

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch's tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  2. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  3. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  4. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome

    PubMed Central

    Rutherford, Gina; Manning, Philip; Newton, Julia L.

    2016-01-01

    Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME. PMID:26998359

  5. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome.

    PubMed

    Rutherford, Gina; Manning, Philip; Newton, Julia L

    2016-01-01

    Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME. PMID:26998359

  6. Biomarkers of peripheral muscle fatigue during exercise

    PubMed Central

    2012-01-01

    Background Biomarkers of peripheral muscle fatigue (BPMFs) are used to offer insights into mechanisms of exhaustion during exercise in order to detect abnormal fatigue or to detect defective metabolic pathways. This review aims at describing recent advances and future perspectives concerning the most important biomarkers of muscle fatigue during exercise. Results BPMFs are classified according to the mechanism of fatigue related to adenosine-triphosphate-metabolism, acidosis, or oxidative-metabolism. Muscle fatigue is also related to an immunological response. impaired calcium handling, disturbances in bioenergetic pathways, and genetic responses. The immunological and genetic response may make the muscle susceptible to fatigue but may not directly cause muscle fatigue. Production of BPMFs is predominantly dependent on the type of exercise. BPMFs need to change as a function of the process being monitored, be stable without appreciable diurnal variations, correlate well with exercise intensity, and be present in detectable amounts in easily accessible biological fluids. The most well-known BPMFs are serum lactate and interleukin-6. The most widely applied clinical application is screening for defective oxidative metabolism in mitochondrial disorders by means of the lactate stress test. The clinical relevance of most other BPMFs, however, is under debate, since they often depend on age, gender, physical fitness, the energy supply during exercise, the type of exercise needed to produce the BPMF, and whether healthy or diseased subjects are investigated. Conclusions Though the role of BPMFs during fatigue is poorly understood, measuring BPMFs under specific, standardised conditions appears to be helpful for assessing biological states or processes during exercise and fatigue. PMID:23136874

  7. Analysis of muscle fatigue in helicopter pilots.

    PubMed

    Balasubramanian, Venkatesh; Dutt, Ashwani; Rai, Shobhit

    2011-11-01

    Helicopter pilots espouse ergonomically unfavourable postures and endure vibration which result in low back pain. The objective of this study was to investigate the effects of a helicopter flight on pilots back and shoulder muscles using surface Electromyography (sEMG) analysis. This study also correlates low back pain symptoms from Rehabilitation Bioengineering Group Pain Scale (RBGPS) questionnaire with muscle fatigue rates obtained. RBGPS was administered on 20 Coast Guard helicopter pilots. sEMG was acquired before and after flight from erector spinae and trapezius muscles in 8 of these 20 pilots. Statistical analysis of time and frequency domain parameters indicated significant fatigue in right trapezius muscle due to flying. Muscle fatigue correlated with average duration of flight (r² = 0.913), total service as pilot (r² = 0.825), pain (r² = 0.463) and total flying hours (r² = 0.507). However, muscle fatigue weakly correlated with Body Mass Index (BMI) (r² = 0.000144) and age (r² = 0.033). PMID:21411058

  8. Rate of Force Development in the Handgripping Muscles by Females as a Function of Fatigue Level.

    ERIC Educational Resources Information Center

    Ewing, John L., Jr.; Stull, G. Alan

    1984-01-01

    This study determined the effects on the rate at which the handgripping muscles in college-age females develop force when they are fatigued to 80, 60, and 40 percent of their original maximal strength level. (JMK)

  9. Improving fatigue strength of welded joints

    NASA Astrophysics Data System (ADS)

    Takamori, Hiroyuki

    One series of fatigue tests was carried out on coverplated bridge girders with small fatigue cracks that had been treated in 1976. The treatment and preconditions were reported in NCHRP Report 206. The Category E' coverplated. beams that were removed from the Yellow Mill Pond Bridge in 1997 had been retrofitted in 1976 by either air hammer peening or GTA remelting the weld toe. Most of the details had small fatigue cracks at the time the retrofit was carried out. No detectable fatigue cracking was observed at the treated coverplate ends after 20 years of service on I-95 and an estimated 56 million truck passages. All beams were tested at a stress range of 69 MPa (10 ksi). Cracks eventually developed from the root of the transverse end welds and propagated through the weld throat and from there into the beam flange via the longitudinal welds. The fatigue resistance of the treated weld toe details was improved to Category C. The one GTA remelted detail that recracked at the weld toe exceeded Category D. The second series of tests was carried out on large scale HPS-485W steel plate girders with as-welded and ultrasonic impact treated (UIT) details. The UIT treatment was applied to the weld toe of transverse stiffeners welded to the web and flanges (Category C details) and to coverplated ends (Category E' details). The as-welded details cracked as expected at their corresponding fatigue resistance. All UIT treated details were improved. The treated transverse stiffeners achieved Category B fatigue resistance. The treated coverplated details achieved Category C. The third series of tests was conducted on large scale HPS-485W steel plate girders with undermatched groove welded details at flange transition. The objectives of using undermatched weld materials compared to the base material is to reduce the potentiality of hydrogen cracking at flange groove welds and to improve the fatigue strength of the welded joints. Fatigue strength of undermatched welded joints was

  10. Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise.

    PubMed

    Segizbaeva, M O; Timofeev, N N; Donina, Zh A; Kur'yanovich, E N; Aleksandrova, N P

    2015-01-01

    The aim of this study was to assess the effect of inspiratory muscle training (IMT) on resistance to fatigue of the diaphragm (D), parasternal (PS), sternocleidomastoid (SCM) and scalene (SC) muscles in healthy humans during exhaustive exercise. Daily inspiratory muscle strength training was performed for 3 weeks in 10 male subjects (at a pressure threshold load of 60% of maximal inspiratory pressure (MIP) for the first week, 70% of MIP for the second week, and 80% of MIP for the third week). Before and after training, subjects performed an incremental cycle test to exhaustion. Maximal inspiratory pressure and EMG-analysis served as indices of inspiratory muscle fatigue assessment. The before-to-after exercise decreases in MIP and centroid frequency (fc) of the EMG (D, PS, SCM, and SC) power spectrum (P<0.05) were observed in all subjects before the IMT intervention. Such changes were absent after the IMT. The study found that in healthy subjects, IMT results in significant increase in MIP (+18%), a delay of inspiratory muscle fatigue during exhaustive exercise, and a significant improvement in maximal work performance. We conclude that the IMT elicits resistance to the development of inspiratory muscles fatigue during high-intensity exercise. PMID:25248344

  11. Factors Influencing the Fatigue Strength of Materials

    NASA Technical Reports Server (NTRS)

    Bollenrath, F

    1941-01-01

    A number of factors are considered which influence the static and fatigue strength of materials under practical operating conditions as contrasted with the relations obtaining under conditions of the usual testing procedure. Such factors are interruptions in operation, periodically fluctuating stress limits and mean stresses with periodic succession of several groups and stress states, statistical changes and succession of stress limits and mean stresses, frictional corrosion at junctures, and notch effects.

  12. Consequences of lower extremity and trunk muscle fatigue on balance and functional tasks in older people: A systematic literature review

    PubMed Central

    2010-01-01

    Background Muscle fatigue reduces muscle strength and balance control in young people. It is not clear whether fatigue resistance seen in older persons leads to different effects. In order to understand whether muscle fatigue may increase fall risk in older persons, a systematic literature review aimed to summarize knowledge on the effects of lower extremity and trunk muscle fatigue on balance and functional tasks in older people was performed. Methods Studies were identified with searches of the PUBMED and SCOPUS data bases. Papers describing effects of lower extremity or trunk muscle fatigue protocols on balance or functional tasks in older people were included. Studies were compared with regards to study population characteristics, fatigue protocol, and balance and functional task outcomes. Results Seven out of 266 studies met the inclusion criteria. Primary findings were: fatigue via resistance exercises to lower limb and trunk muscles induces postural instability during quiet standing; induced hip, knee and ankle muscle fatigue impairs functional reach, reduces the speed and power of sit-to-stand repetitions, and produces less stable and more variable walking patterns; effects of age on degree of fatigue and rate of recovery from fatigue are inconsistent across studies, with these disparities likely due to differences in the fatigue protocols, study populations and outcome measures. Conclusion Taken together, the findings suggest that balance and functional task performance are impaired with fatigue. Future studies should assess whether fatigue is related to increased risk of falling and whether exercise interventions may decrease fatigue effects. PMID:20716373

  13. A description of spinal fatigue strength.

    PubMed

    Huber, Gerd; Nagel, Katrin; Skrzypiec, Daniel M; Klein, Anke; Püschel, Klaus; Morlock, Michael M

    2016-04-11

    Understanding fatigue failure of the spine is important to establish dynamic loading limits for occupational health and safety. In this study experimental data were combined with published data to develop a description of the predictive parameters for spinal fatigue failure. 41 lumbar functional spinal units (FSUs) from cadaveric spines (age 49.0±11.9yr) where cyclically loaded. Three different levels of sinusoidal axial compression (0-3kN, 0-2kN or 1-3kN) were applied for 300,000 cycles. Further, published data consisted of 70 thoracic and lumbar FSUs loaded in axial compression for 5000 cycles. Cyclic forces ranged from lower peaks (Fmin) of 0.7-1kN to upper peaks (Fmax) of 1.2-7.1kN. Based on Wöhler analysis, a fatigue model was developed accounting for three parameters: I) specimen-specific scaling based on the endplate area, II) specimen-specific strength dependency on age or bone mineral density, III) load-specific correction factors based on Fmax and Fmin. The most predictive model was achieved for a combination of Fmax, endplate area and bone mineral density; this model explained 61% of variation (p<0.001). A model including Fmax, endplate area and age explained only 28% of variation (p<0.001). Inclusion of a load-specific correction factor did not significantly improve model prediction of fatigue failure. This analysis presents the basis for the prediction of specimen-specific fatigue failure of the lumbar spine, provided the endplate area and bone mineral density can be derived. PMID:26948575

  14. Corrosion fatigue of high strength fastener materials in seawater

    NASA Astrophysics Data System (ADS)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  15. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  16. [On fatigue bending strength of PMMA-specimen (author's transl)].

    PubMed

    Rojczyk, M; Rojczyk-Pflüger, J

    1980-01-01

    The fatigue response of PMMA-specimen was tested under cyclic bending of 1.5 Hz in a particularly designed testing device. Specimen were tested that a "Wöhler" curve and the corresponding fatigue strength could be evaluated. The fatigue strength was reached after a comparatively short time and ranged in the order of 33 per cent of static breaking strength. PMID:7447658

  17. Effects of Local and Widespread Muscle Fatigue on Movement Timing

    PubMed Central

    Cowley, Jeffrey C.; Dingwell, Jonathan B.; Gates, Deanna H.

    2014-01-01

    Repetitive movements can cause muscle fatigue, leading to motor reorganization, performance deficits, and/or possible injury. The effects of fatigue may depend on the type of fatigue task employed, however. The purpose of this study was to determine how local fatigue of a specific muscle group versus widespread fatigue of various muscle groups affected the control of movement timing. Twenty healthy subjects performed an upper-extremity low-load work task similar to sawing for 5 continuous minutes both before and after completing a protocol that either fatigued all the muscles used in the task (widespread fatigue) or a protocol that selectively fatigued the primary muscles used to execute the pushing stroke of the sawing task (localized fatigue). Subjects were instructed to time their movements with a metronome. Timing error, movement distance, and speed were calculated for each movement. Data were then analyzed using a goal-equivalent manifold (GEM) approach to quantify changes in goal-relevant and non-goal-relevant variability. We applied detrended fluctuation analysis to each time series to quantify changes in fluctuation dynamics that reflected changes in the control strategies used. After localized fatigue, subjects made shorter, slower movements and exerted greater control over non-goal-relevant variability. After widespread fatigue, subjects exerted less control over non-goal-relevant variability and did not change movement patterns. Thus, localized and widespread muscle fatigue affected movement differently. Local fatigue may reduce the available motor solutions and therefore cause greater movement reorganization than widespread muscle fatigue. Subjects altered their control strategies but continued to achieve the timing goal after both fatigue tasks. PMID:25183157

  18. Fatigue strength of adhesive bonded section beams under torsion

    SciTech Connect

    Tomioka, Noboru; Kakiage, Masashi; Niisawa, Junetsu; Kitagawa, Hideo

    1995-11-01

    Fatigue strength of adhesive bonded box beams was investigated. From results of the fatigue tests, it was seen that the fatigue strength of bonded beams was higher than that of spot welded beams. Fatigue strength of bonded beams was independent of plate thickness and partition. The flexural rigidity of the box beams in the plane of partition can increase without decrease of torsional rigidity and torsional fatigue strength, if the partition is jointed by adhesive bonding instead of spot welding. Since the fatigue strength and rigidity of adhesive bonded joints can be higher than the spot welded joints in the weight saving structures, it is expected that the structural adhesive joints will be employed more in the automobile body structure. For assuring the introduction of this joint more into the automobile body structures, it is necessary that the fatigue tests on the model members of the actual members used in the automobile body structure are conducted, in addition to those of the simple joints such as tension shear and T-type tension, and the property of the fatigue strength on the adhesive bonded members is known. But, the authors now have little data on fatigue tests of the adhesive bonded members. In the present research to be reported, the fatigue tests on adhesive bonded box beams under torsion, which are typical members in automobile body structure, were carried out and the effects of the presence of longitudinal partition and plate thickness on fatigue strength were investigated. Comparing the results of fatigue tests on adhesive bonded box beams with those on spot welded box beams, the property of fatigue strength on these adhesive bonded box beams was cleared.

  19. Concentric Internal and Eccentric External Fatigue Resistanc of the Shoulder Rotator Muscles in Female Tennis Players

    PubMed Central

    Niederbracht, Yvonne

    2008-01-01

    Background Shoulder muscle imbalance is a potential shoulder injury risk factor in athletes performing overhead sports. While normative functional peak strength of concentric external to concentric internal shoulder muscle fatigue data is available, comparisons of functional eccentric external to concentric internal shoulder rotator muscle fatigue resistance, which impacts muscle imbalance throughout the duration of play, have not been studied in this population. Objectives To assess fatigue resistance of the internal and external shoulder rotator muscles in female tennis players. Methods Fifteen female collegiate tennis players were tested bilaterally for shoulder concentric internal and eccentric external peak torque production throughout 20 maximal repetitions on a Kin-Com isokinetic dynamometer. Twelve t - tests were conducted to evaluate for differences in peak torque, relative fatigue ratios, and functional peak torque ratios between extremities and mode of activation during the first, as well as, last five repetitions that were conducted. Results Non-dominant concentric internal and eccentric external peak torque production significantly decreased throughout the twenty repetitions. Neither dominant concentric internal peak torque decrements and eccentric peak torque decrements were not significantly different across the twenty contractions. These changes in peak torque upon subsequent repetitions resulted in relative fatigue ratios of dominant eccentric external rotation that were significantly greater than non-dominant eccentric external rotation. Relative fatigue ratios of dominant concentric internal rotation did not differ from non-dominant concentric internal rotation. Conclusions The data suggest that eccentrically activated external shoulder rotator muscles could possibly adapt to overhead activities by becoming more fatigue resistant. PMID:21509131

  20. The effects of strength training and disuse on the mechanisms of fatigue.

    PubMed

    Behm, D G; St-Pierre, D M

    1998-03-01

    Increases in force, electromyography, reflex potentiation, muscle action potential amplitude and protein synthesis occur with strength training. Training-induced increases in the efficiency of the neuromuscular system and capacity of the muscle to generate force result in an improved ability to cope with a submaximal load. There is also some evidence of improved fatigue resistance with maximal contractions which could be attributed to a prolongation of membrane excitation or decreased antagonist activity with training. On the other hand, although a variety of factors including strength are diminished with disuse, a number of studies have demonstrated no significant difference in the rate of fatigue with maximal contractions (fatigue index) between trained, untrained and disused muscle. Equivalent control and disuse fatigue indexes in some studies might be attributed to decreased muscle activation resulting in a comparison of maximal (control) and submaximal (disuse) efforts. Furthermore, increases in the duration of muscle membrane electrical propagation with disuse may increase the quantity of Ca++ released, augmenting force production. In addition, the smaller volume of disused muscle may allow a more efficient diffusion of oxygen and energy substrates in comparison with a hypertrophied muscle. PMID:9554028

  1. Asymmetry of Muscle Strength in Elite Athletes

    ERIC Educational Resources Information Center

    Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran

    2009-01-01

    "Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…

  2. a Dynamical Model of Muscle Activation, Fatigue and Recovery

    NASA Astrophysics Data System (ADS)

    Liu, Jing Z.; Yue, Guang H.; Brown, Robert W.

    2001-04-01

    A dynamical model on muscle activation, fatigue, and recovery was developed to provide a theoretical framework for explaining the force produced by muscle(s) during the process of getting activated and fatigued. By simplifying the fatigue effect and the recovery effect as two phenomenological parameters (F, R), we developed a set of dynamical equations to describe the behavior of muscle(s) as a group of motor units under an external drive, e.g., voluntary brain effort. This model provides a macroscopic view for understanding the biophysical mechanisms of voluntary drive, fatigue effect, and recovery in stimulating, limiting and modulating the force output from muscle(s). Agreement between the experimental data and the predicted forces is excellent. This model may also generate new possibilities in clinical and engineering applications. The parameters introduced by this model can serve as good indicators of physical conditions, and may be useful for quantitative diagnosis of certain diseases related to muscles, especially symptoms of fatigue. Inference from the model can clarify a long-debating question regarding the maximal possibility of muscle force production. It can also be used as guideline for simulating real muscle in muscle engineering or design of human-mimic robot.

  3. The L-Z complexity of exercise-induced muscle fatigue based on acoustic myographye

    NASA Astrophysics Data System (ADS)

    Yijian, Min; Xinyuan, Liu; Tingting, Wang

    2014-01-01

    The mechanism of exercise fatigue was investigated during exercise using L-Z complexity of non-linear analysis. Muscle fatigue was induced in the sitting position by lifting the heel under a load. An acoustic myogram of the gastrocnemius was obtained until exhaustion. The different modes of the speed responses were calculated using the L-Z complexity method, which analyzes muscle fibers participation, while the exercise is in progress. The L-Z complexity decreased incrementally with decreases in muscle strength, reaching a minimum value when the muscle was exhausted. Our data indicate that the L-Z complexity method is easy to use and effective at revealing the dynamic characteristics and variations of exercise fatigue. This method could be used to monitor sports training.

  4. Relationship among fatigue strength, mean grain size and compressive strength of a rock

    NASA Astrophysics Data System (ADS)

    Singh, S. K.

    1988-10-01

    Fatigue tests carried on three sets of samples having different mean grain sizes revealed that fatigue strength is a function of mean grain size of the rock. Samples having smaller grain size show higher value of fatigue strength. Graywacke samples from Flagstaff formation having mean grain sizes of 1.79 mm, 1.35 mm and 0.93 mm showed fatigue strengths of 87%, 88.25% and 89.1% respectively. Since the mean uniaxial compressive strength also varied with varying grain size, i. e. higher mean strength value for samples having finer grain size; the fatigue strength of a rock also shows a converse relation with mean uniaxial compressive strength.

  5. The fatigue strength of riveted joints and lugs

    NASA Technical Reports Server (NTRS)

    Schijve, J

    1956-01-01

    This report deals with a number of tests on riveted joints and lugs for the primary purpose of comparing the several types of riveted joints and to study the effect of various factors on the fatigue strength of lugs. A check was made to ascertain whether or not an estimate of the fatigue life at a certain loading could be made from the dimensions of the joint and the fatigue data of the unnotched materials. Recommendations are made on the proportioning of joints to obtain better fatigue behavior.

  6. N-acetylcysteine inhibits muscle fatigue in humans.

    PubMed Central

    Reid, M B; Stokić, D S; Koch, S M; Khawli, F A; Leis, A A

    1994-01-01

    N-acetylcysteine (NAC) is a nonspecific antioxidant that selectively inhibits acute fatigue of rodent skeletal muscle stimulated at low (but not high) tetanic frequencies and that decreases contractile function of unfatigued muscle in a dose-dependent manner. The present experiments test the hypothesis that NAC pretreatment can inhibit acute muscular fatigue in humans. Healthy volunteers were studied on two occasions each. Subjects were pretreated with NAC 150 mg/kg or 5% dextrose in water by intravenous infusion. The subject then sat in a chair with surface electrodes positioned over the motor point of tibialis anterior, an ankle dorsiflexor of mixed-fiber composition. The muscle was stimulated to contract electrically (40-55 mA, 0.2-ms pulses) and force production was measured. Function of the unfatigued muscle was assessed by measuring the forces produced during maximal voluntary contractions (MVC) of ankle dorsiflexor muscle groups and during electrical stimulation of tibialis anterior at 1, 10, 20, 40, 80, and 120 Hz (protocol 1). Fatigue was produced using repetitive tetanic stimulations at 10 Hz (protocol 1) or 40 Hz (protocol 2); intermittent stimulations subsequently were used to monitor recovery from fatigue. The contralateral leg then was studied using the same protocol. Pretreatment with NAC did not alter the function of unfatigued muscle; MVC performance and the force-frequency relationship of tibialis anterior were unchanged. During fatiguing contractions stimulated at 10 Hz, NAC increased force output by approximately 15% (P < 0.0001), an effect that was evident after 3 min of repetitive contraction (P < 0.0125) and persisted throughout the 30-min protocol. NAC had no effect on fatigue induced using 40 Hz stimuli or on recovery from fatigue. N-acetylcysteine pretreatment can improve performance of human limb muscle during fatiguing exercise, suggesting that oxidative stress plays a causal role in the fatigue process and identifying antioxidant

  7. Effect of acetazolamide on respiratory muscle fatigue in humans.

    PubMed

    Gonzales, Joaquin U; Scheuermann, Barry W

    2013-01-15

    Previous studies have demonstrated that carbonic anhydrase inhibition with acetazolamide reduces exercise capacity. The mechanism responsible for this early fatigue is unclear, but may be partly mediated by impaired respiratory muscle function. Inspiratory muscle strength and endurance were assessed in seven healthy men (age 28 ± 5 yrs, ±SD) by measuring maximal inspiratory pressure (MIP) and time to task failure during a constant-load breathing test (CLBT), respectively, under control (CON) and acetazolamide (ACZ; 500 mg/8 h po for 3 days) conditions that were separated by two weeks and randomized between subjects. In addition, MIP was measured before and after moderate-intensity cycling exercise to fatigue while pulmonary gas exchange, plasma pH, and ventilation were measured during exercise. ACZ did not alter pulmonary function (FVC, FEV1, MVV) or MIP measured at rest (CON, -157 ± 47 vs. ACZ, -154 ± 45 cmH(2)O, p>0.05), but decreased time to task failure during the CLBT (CON, 1340 ± 820 vs. ACZ, 698 ± 434 s; p=0.01). Exercise duration during cycling exercise was reduced (p=0.003) with ACZ (1090 ± 254 s) compared to CON (1944 ± 532 s) in the presence of a significantly lower plasma pH and higher ventilation compared to control (p<0.05). Compared to resting values, MIP was reduced (p=0.03) in ACZ but not CON at exhaustion. In conclusion, carbonic anhydrase inhibition with ACZ is associated with impaired respiratory muscle function at rest and following constant load cycling which may contribute to reduced exercise tolerance with carbonic anhydrase inhibition. PMID:23017330

  8. The Relationship Between Muscle Fatigue and Balance in the Elderly

    PubMed Central

    Nam, Hee Seung; Park, Dong Sik; Kim, Dong Hyun; Kang, Hyun Jung; Lee, Dong Hun; Lee, Sang Hun; Her, Jin Gang; Woo, Ji Hea

    2013-01-01

    Objective To investigate the effect of gastrocnemius muscle fatigue on postural control ability in elderly people. Methods Twenty-four healthy elderly people participated in this study. The postural control ability of single leg standing was evaluated with Health Improvement & Management System (HIMS) posturography before and after fatiguing exercises. After evaluating initial postural control ability, the maximal voluntary contraction (MVC) of ankle plantarflexion was assessed using a surface electromyogram from the medial belly of the gastrocnemius muscle. After a 5-minute resting period, subjects began submaximal isometric ankle plantarflexion (40% MVC) until 40% of MVC was dropped below 95% for 5 seconds, or subject couldn't continue working out due to muscle fatigue. And postural control ability was assessed after fatiguing exercise. The mean deviation of center of pressure (COP), length of COP movement, occupied area of COP were measured, and analyzed by paired t-test. Results Mediolateral deviation, length of COP movement, and area of COP occupied were increased after fatiguing exercise of the gastrocnemius muscle. Anteroposterior deviation and length of COP movement were also increased, but had low statistical significance. Conclusion These findings suggest that the gastrocnemius muscle fatigue affects mediolateral stability and accuracy during single leg standing in elderly people. Therefore muscle endurance training is necessary to prevent falls in elderly people. PMID:23869337

  9. Extrapulmonary features of bronchiectasis: muscle function, exercise capacity, fatigue, and health status

    PubMed Central

    2012-01-01

    Background There are limited number of studies investigating extrapulmonary manifestations of bronchiectasis. The purpose of this study was to compare peripheral muscle function, exercise capacity, fatigue, and health status between patients with bronchiectasis and healthy subjects in order to provide documented differences in these characteristics for individuals with and without bronchiectasis. Methods Twenty patients with bronchiectasis (43.5 ± 14.1 years) and 20 healthy subjects (43.0 ± 10.9 years) participated in the study. Pulmonary function, respiratory muscle strength (maximal expiratory pressure – MIP - and maximal expiratory pressure - MEP), and dyspnea perception using the Modified Medical Research Council Dyspnea Scale (MMRC) were determined. A six-minute walk test (6MWT) was performed. Quadriceps muscle, shoulder abductor, and hand grip strength (QMS, SAS, and HGS, respectively) using a hand held dynamometer and peripheral muscle endurance by a squat test were measured. Fatigue perception and health status were determined using the Fatigue Severity Scale (FSS) and the Leicester Cough Questionnaire (LCQ), respectively. Results Number of squats, 6MWT distance, and LCQ scores as well as lung function testing values and respiratory muscle strength were significantly lower and MMRC and FSS scores were significantly higher in patients with bronchiectasis than those of healthy subjects (p < 0.05). In bronchiectasis patients, QMS was significantly associated with HGS, MIP and MEP (p < 0.05). The 6MWT distance was significantly correlated to LCQ psychological score (p < 0.05). The FSS score was significantly associated with LCQ physical and total and MMRC scores (p < 0.05). The LCQ psychological score was significantly associated with MEP and 6MWT distance (p < 0.05). Conclusions Peripheral muscle endurance, exercise capacity, fatigue and health status were adversely affected by the presence of bronchiectasis. Fatigue was associated

  10. Fatigue Properties of Automobile High-Strength Bolts

    NASA Astrophysics Data System (ADS)

    Zhou, Congling; Nishida, Shin-Ichi; Hattori, Nobusuke

    This study is focused on the fatigue properties of automobile high-strength bolts, including the effect of mean stress level, pre-processing schedule and the residual stresses. And the mean stress levels are 0.3, 0.5 and 0.7 times to the tensile strength (σB) of the material respectively. The main results obtained are as follows: 1) the fatigue strength increases under the mean stress loading, but the differences between the loading levels are not so evident; 2) most of the cases in this study are broken from the bottom of the screw thread, and the crack initiated from the impurities.

  11. Notch Fatigue Strength of a PM Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy P.; Telesman, Jack

    2007-01-01

    New powder metallurgy (PM) disk superalloys, such as ME3, LSHR, and Alloy 10, have been developed in recent years which enable rim temperatures in turbine disk applications to approach 1300 F. Before these alloys can be utilized at 1300 F their long term durability must be ensured. One of the key requirements for disk rims is notch fatigue strength. This issue is extremely important and is a direct result of the blade attachment geometry employed at the disk rim. Further, the imposition of a dwell at maximum load, associated with take off and landing, can also affect notch fatigue strength. For these reasons a study has been undertaken to assess the notch dwell fatigue strength of a modern PM disk alloy through spin pit evaluation of a prototypical disk. The first element of this program involves screening potential heat treatments with respect to notch fatigue strength at 1300 F utilizing a conventional notch fatigue specimen with a stress concentration factor (K(sub t)) of 2 and a 90 sec dwell at peak load. The results of this effort are reported in this paper including the downselect of an optimal heat treatment, from a notch fatigue standpoint.

  12. Fatigue strength of woven kenaf fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Aziz, M. A. Che Abdul

    2015-12-01

    Nowadays, green composites provide alternative to synthetic fibers for non-bearing and load-bearing applications. According to literature review, lack of information is available on the fatigue performances especially when the woven fiber is used instead of randomly oriented fibers. In order to overcome this problem, this paper investigates the fatigue strength of different fiber orientations and number of layers of woven kenaf fiber reinforced composites. Four types of fiber orientations are used namely 0°, 15°, 30° and 45°. Additionally, two numbers of layers are also considered. It is revealed that the fatigue life has no strong relationship with the fiber orientations. For identical fiber orientations, the fatigue life can be predicted considerably using the normalized stress. However as expected, the fatigue life enhancement occur when the number of layer is increased.

  13. Dynamic fatigue and strength characterization of three ceramic materials.

    PubMed

    Teixeira, Erica C; Piascik, Jeffrey R; Stoner, Brian R; Thompson, Jeffrey Y

    2007-06-01

    Fracture strength and fatigue parameters of three ceramic materials submitted to dynamic fatigue were evaluated. A machinable leucite-reinforced dental ceramic, aluminum oxide, and yttria-stabilized zirconia (YSZ) were tested. The inert strength of the materials was determined in air (25 degrees C) at stressing rates of 70, 250, 400 MPa/s for Porcelain, Alumina and YSZ respectively. The data was analyzed using a two-parameter Weibull distribution. The Weibull modulus (m) and the characteristic of fracture (sigma0) parameters were determined for each material. Specimens were also tested in 3-point bending at different stressing rates in distilled/deionized water at 37 degrees C (dynamic fatigue) in order to calculate the fatigue parameters n and ln B. The strength for each material was characterized using Strength-Probability-Time (SPT) diagrams for 1 day, 1 year and 10 years. YSZ showed a high-fracture strength sigma0 (1,459 MPa) at a failure probability of 63.2% and high resistance to subcritical crack growth. YSZ and alumina showed better resistance to slow crack growth than porcelain, indicating less susceptibility to strength degradation by stress corrosion. Lifetime predictions after 10 years indicate a reduction of 50%, 36% and 29% in strength for porcelain, alumina and YSZ respectively. YSZ seems to be a very promising material for long-term dental and biomedical applications. PMID:17277977

  14. Factors that affect the fatigue strength of power transmission shafting

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1984-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  15. Carbohydrate Mouth Rinse Counters Fatigue Related Strength Reduction.

    PubMed

    Jensen, Matt; Stellingwerff, Trent; Klimstra, Marc

    2015-06-01

    The purpose was to determine the effect of carbohydrate (CHO) mouth rinse on maximal voluntary contraction (MVC) and neuromuscular output in a fatigued state. It was hypothesized that CHO mouth rinse would potentiate torque output in a fatigued state. In a double-blind, cross-over design, 12 competitive male athletes (9 rowers, 1 cyclist, 1 runner and 1 volleyball player) initially performed 3 × 5 s MVC isometric knee extensions followed by a 50% MVC contraction until volitional exhaustion, with quadriceps muscle activity measured via electromyography (EMG). Immediately after, either an 8% CHO maltodextrin (WASH), or noncaloric artificial sweetener (PLA) was mouth rinsed for 10sec, before 3 × 5 s final MVCs. Fatigue caused a significant decline in post fatigue MVC trial 1 for 3 s average torque (p = .03) and peak torque (p = .02) for PLA. This fatigue related decline in torque was not noticed for WASH, with a 2.5% and 3.5% less attenuation in peak and average torque, respectively in post fatigue MVC1 compared with PLA. The effect size for MVC trial 1 between WASH/PLA was seen to be small positive (ES = 0.22; 55% likelihood of positive). Overall for EMG RMS, there were no significant differences between PLA and WASH among all muscles. EMG median frequency showed comparable results between conditions with significant reductions due to fatigue. Taken together, this evidence suggests that the attenuation of torque post fatigue was less for CHO mouth rinse than a placebo. Even though the gains were marginal, these discoveries may play an important role in sport performance, as small performance effects can have significant outcomes in real-world competitions. PMID:25203506

  16. Assessment of respiratory muscle function and strength.

    PubMed Central

    Syabbalo, N.

    1998-01-01

    Measurement of respiratory muscle strength is useful in order to detect respiratory muscle weakness and to quantify its severity. In patients with severe respiratory muscle weakness, vital capacity is reduced but is a non-specific and relatively insensitive measure. Conventionally, inspiratory and expiratory muscle strength has been assessed by maximal inspiratory and expiratory mouth pressures sustained for 1 s (PImax and PEmax) during maximal static manoeuvre against a closed shutter. However, PImax and PEmax are volitional tests, and are poorly reproducible with an average coefficient of variation of 25%. The sniff manoeuvre is natural and probably easier to perform. Sniff pressure, and sniff transdiaphragmatic pressure are more reproducible and useful measure of diaphragmatic strength. Nevertheless, the sniff manoeuvre is also volition-dependent, and submaximal efforts are most likely to occur in patients who are ill or breathless. Non-volitional tests include measurements of twitch oesophageal, gastric and transdiaphragmatic pressure during bilateral electrical and magnetic phrenic nerve stimulation. Electrical phrenic nerve stimulation is technically difficult and is also uncomfortable and painful. Magnetic phrenic nerve stimulation is less painful and transdiaphragmatic pressure is reproducible in normal subjects. It is a relatively easy test that has the potential to become a widely adopted method for the assessment of diaphragm strength. The development of a technique to measure diaphragmatic sound (phonomyogram) during magnetic phrenic nerve stimulation opens the way for noninvasive assessment of diaphragmatic function. PMID:9683973

  17. Sarcolipin overexpression improves muscle energetics and reduces fatigue.

    PubMed

    Sopariwala, Danesh H; Pant, Meghna; Shaikh, Sana A; Goonasekera, Sanjeewa A; Molkentin, Jeffery D; Weisleder, Noah; Ma, Jianjie; Pan, Zui; Periasamy, Muthu

    2015-04-15

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics. PMID:25701006

  18. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation

    PubMed Central

    Todd, Gabrielle; Taylor, Janet L; Gandevia, S C

    2003-01-01

    Recently, transcranial magnetic stimulation of the motor cortex (TMS) revealed impaired voluntary activation of muscles during maximal efforts. Hence, we evaluated its use as a measure of voluntary activation over a range of contraction strengths in both fresh and fatigued muscles, and compared it with standard twitch interpolation using nerve stimulation. Subjects contracted the elbow flexors isometrically while force and EMG from biceps and triceps were recorded. In one study, eight subjects made submaximal and maximal test contractions with rests to minimise fatigue. In the second study, eight subjects made sustained maximal contractions to reduce force to 60 % of the initial value, followed by brief test contractions. Force responses were recorded following TMS or electrical stimulation of the biceps motor nerve. In other contractions, EMG responses to TMS (motor evoked potentials, MEPs) or to stimulation at the brachial plexus (maximal M waves, Mmax) were recorded. During contractions of 50 % maximum, TMS elicited large MEPs in biceps (> 90 % Mmax) which decreased in size (to ≈70 % Mmax) with maximal efforts. This suggests that faster firing rates made some motor units effectively refractory. With fatigue, MEPs were also smaller but remained > 70 % Mmax for contractions of 50–100 % maximum. For fresh and fatigued muscle, the superimposed twitch evoked by motor nerve and motor cortex stimulation decreased with increasing contraction strength. For nerve stimulation the relation was curvilinear, and for TMS it was linear for contractions of 50–100 % maximum (r2 = 1.00). Voluntary activation was derived using the expression: (1 – superimposed twitch/resting twitch) × 100. The resting twitch was measured directly for nerve stimulation and for TMS, it was estimated by extrapolation of the linear regression between the twitch and voluntary force. For cortical stimulation, this resulted in a highly linear relation between voluntary activation and force

  19. Source Localization of Eeg Signals during Muscle Fatigue

    NASA Astrophysics Data System (ADS)

    Liu, Jing Z.; Yao, Bing; Lewandowski, Beth E.; Karakasis, Chris; Brown, Robert W.; Yue, Guang H.

    2003-10-01

    In this study we determined sources of EEG signals during a fatigue process involving intermittent maximal voluntary contractions (MVCs). In the fatigue motor task, subjects consecutively performed 200 trials of handgrip MVCs, each lasted 2 s, followed by a 5-s rest. In the control task, subjects performed the same task but the rest time was 28 s, and there was also a 5-min rest after each 40 trials so that fatigue effect was minimized. EEG signals were recorded along with handgrip force and EMG data. Current dipole model was applied to determine the signal sources in a three-sphere homogeneous head frame. Effects of fatigue on the signal source were determined. The results showed no significant changes in dipole strength and orientation but significant larger movement ranges in the dipole location during the fatigue process than during the control, indicating fatigue-related rotation of the center of cortical activation.

  20. Exogenously Applied Muscle Metabolites Synergistically Evoke Sensations of Muscle Fatigue and Pain in Human Subjects

    PubMed Central

    Pollak, Kelly A.; Swenson, Jeffrey D.; Vanhaitsma, Timothy A.; Hughen, Ronald W.; Jo, Daehyun; Light, Kathleen C.; Schweinhardt, Petra; Amann, Markus; Light, Alan R.

    2013-01-01

    The perception of fatigue is common in many disease states, however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate, and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine if this combination could activate sensations, and if so determined how these subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30-s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis (APB). Infusion of individual metabolites at maximum amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4+300nM ATP+1mM lactate) also evoked no sensation. The infusion of a metabolite-combination found in muscle during moderate endurance-exercise (pH 7.3+400nM ATP+5 mM lactate) produced significant fatigue sensations. Infusion of a metabolite-combination associated with vigorous exercise (pH 7.2+500nM ATP+10mM lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischemic exercise) caused more ache but no additional fatigue-sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate, and ATP leads to fatigue-sensation and eventually pain, probably through activation of ASIC, P2X, and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain. PMID:24142455

  1. A review of concepts regarding the origin of respiratory muscle fatigue

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Bożena; Piotrkiewicz, Maria

    2011-01-01

    In this review, the classification of respiratory muscle fatigue from the perspective of its origin is presented. The fatigue is classified as central or peripheral, and the latter further subdivided into high- and low-frequency fatigue. However, muscle fatigue is a complex process and all three types of fatigue probably occur simultaneously in the overloaded respiratory muscles. The relative importance of each type depends on the duration of respiratory loading and other physiological variables. However, central and high-frequency fatigue resolve rapidly once muscle overload is removed, whereas low-frequency fatigue persists over long time.

  2. Changes in interhemispheric motor connectivity after muscle fatigue

    NASA Astrophysics Data System (ADS)

    Peltier, Scott; LaConte, Stephen M.; Niyazov, Dmitriy; Liu, Jing; Sahgal, Vinod; Yue, Guang; Hu, Xiaoping

    2005-04-01

    Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (< 0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a potential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states. Thus, detection of these functional connectivity patterns may help to serve as a gauge of normal brain activity. The cognitive effects of muscle fatigue are not well characterized. Sustained fatigue has the potential to dynamically alter activity in brain networks. In this work, we examined the interhemispheric correlations in the left and right primary motor cortices and how they change with muscle fatigue. Resting-state functional MRI imaging was done before and after a repetitive unilateral fatigue task. We find that the number of significant correlations in the bilateral motor network decreases with fatigue. These results suggest that resting-state interhemispheric motor cortex functional connectivity is affected by muscle fatigue.

  3. Effect of Preloading on Fatigue Strength in Dynamic Fatigue Testing of Ceramic Materials at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1995-01-01

    Previously derived solutions of fatigue strength as a function of preloading were verified by applying preloads to elevated temperature dynamic fatigue tests of 96 wt% alumina at 1000 C and NC 132 silicon nitride at 1100 C. The technique was found very useful in identification and control of the governing failure mechanism when multiple failure mechanisms, such as slow crack growth, creep and oxidation occurred simultaneously at elevated temperatures.

  4. Relationship Between Intensity of Quadriceps Muscle Neuromuscular Electrical Stimulation and Strength Recovery After Total Knee Arthroplasty

    PubMed Central

    Balter, Jaclyn E.; Wolfe, Pamela; Eckhoff, Donald G.; Schwartz, Robert S.; Schenkman, Margaret; Kohrt, Wendy M.

    2012-01-01

    Background Neuromuscular electrical stimulation (NMES) can facilitate the recovery of quadriceps muscle strength after total knee arthroplasty (TKA), yet the optimal intensity (dosage) of NMES and its effect on strength after TKA have yet to be determined. Objective The primary objective of this study was to determine whether the intensity of NMES application was related to the recovery of quadriceps muscle strength early after TKA. A secondary objective was to quantify quadriceps muscle fatigue and activation immediately after NMES to guide decisions about the timing of NMES during rehabilitation sessions. Design This study was an observational experimental investigation. Methods Data were collected from 30 people who were 50 to 85 years of age and who received NMES after TKA. These people participated in a randomized controlled trial in which they received either standard rehabilitation or standard rehabilitation plus NMES to the quadriceps muscle to mitigate strength loss. For the NMES intervention group, NMES was applied 2 times per day at the maximal tolerable intensity for 15 contractions beginning 48 hours after surgery over the first 6 weeks after TKA. Neuromuscular electrical stimulation training intensity and quadriceps muscle strength and activation were assessed before surgery and 3.5 and 6.5 weeks after TKA. Results At 3.5 weeks, there was a significant association between NMES training intensity and a change in quadriceps muscle strength (R2=.68) and activation (R2=.22). At 6.5 weeks, NMES training intensity was related to a change in strength (R2=.25) but not to a change in activation (R2=.00). Furthermore, quadriceps muscle fatigue occurred during NMES sessions at 3.5 and 6.5 weeks, whereas quadriceps muscle activation did not change. Limitations Some participants reached the maximal stimulator output during at least 1 treatment session and might have tolerated more stimulation. Conclusions Higher NMES training intensities were associated with

  5. Evaluation of muscle fatigue during 100-m front crawl.

    PubMed

    Stirn, Igor; Jarm, Tomaz; Kapus, Venceslav; Strojnik, Vojko

    2011-01-01

    The aim of this study was to evaluate muscle fatigue in upper body muscles during 100-m all-out front crawl. Surface electromyogram (EMG) was collected from the pectoralis major, latissimus dorsi and triceps brachii muscles of 11 experienced swimmers. Blood lactate concentration level increased to 14.1 ± 2.9 mmol l(-1) 5 min after the swim. The velocity, stroke length and stroke rate calculated based on video analysis decreased by 15.0, 5.8 and 7.4%, respectively, during the swim. EMG amplitude of the triceps and the lower part of the latissimus muscles increased, whilst the mean power frequency (MNF) of all muscles significantly decreased by 20-25%. No significant differences in the relative MNF decrease were observed amongst the muscles; however, the differences in the rate of the MNF decrease between the lower part of the latissimus and the triceps brachii muscles were found (P < 0.05). The time of rest between the muscle activation of the two consecutive arm strokes at the end of swimming was extended (P < 0.05). It was concluded that 100-m all-out crawl induced significant fatigue with no evident differences amongst the analysed muscles. PMID:20824283

  6. Importance and challenges of measuring intrinsic foot muscle strength

    PubMed Central

    2012-01-01

    Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles

  7. Strength Training Induces Muscle Hypertrophy and Functional Gains in Black Prostate Cancer Patients Despite Androgen Deprivation Therapy

    PubMed Central

    Hurley, Ben F.

    2013-01-01

    Background. Androgen deprivation therapy (ADT) for prostate cancer (PCa) is associated with weakness, fatigue, sarcopenia, and reduced quality of life (QoL). Black men have a higher incidence and mortality from PCa than Caucasians. We hypothesized that despite ADT, strength training (ST) would increase muscle power and size, thereby improving body composition, physical function, fatigue levels, and QoL in older black men with PCa. Methods. Muscle mass, power, strength, endurance, physical function, fatigue perception, and QoL were measured in 17 black men with PCa on ADT before and after 12 weeks of ST. Within-group differences were determined using t tests and regression models. Results. ST significantly increased total body muscle mass (2.7%), thigh muscle volume (6.4%), power (17%), and strength (28%). There were significant increases in functional performance (20%), muscle endurance (110%), and QoL scores (7%) and decreases in fatigue perception (38%). Improved muscle function was associated with higher functional performance (R 2 = 0.54) and lower fatigue perception (R 2 = 0.37), and both were associated with improved QoL (R 2 = 0.45), whereas fatigue perception tended to be associated with muscle endurance (R 2 = 0.37). Conclusions. ST elicits muscle hypertrophy even in the absence of testosterone and is effective in counteracting the adverse functional consequences of ADT in older black men with PCa. These improvements are associated with reduced fatigue perception, enhanced physical performance, and improved QoL. Thus, ST may be a safe and well-tolerated therapy to prevent the loss of muscle mass, strength, and power commonly observed during ADT. PMID:23089339

  8. Probabilistic analysis for fatigue strength degradation of materials

    NASA Technical Reports Server (NTRS)

    Royce, Lola

    1989-01-01

    This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.

  9. Bending Fatigue Strength of Austempered Ductile Iron Spur Gears

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masashi; Tamura, Ryo; Inoue, Katsumi; Narita, Yukihito

    This paper deals with an experimental evaluation of bending fatigue strength for austempered ductile iron (ADI) spur gears. The module is 2.5 and the number of teeth is 26 in the test gears. The material of the test gears corresponds to Japan Industrial Standard (JIS) FCAD1100-15. Some gears are processed by one of two types of fine particle bombarding (FPB). The surface roughness is slightly increased by FPB. The obtained strengths are 623 MPa for the as-austempered gears, and 1011 and 1085 MPa for the gears after FPB. The strength is expressed by the fillet stress level, which is calculated by FEM. The strength of a gear with the same dimensions made of carburized SCr420H alloy steel is 1205 MPa, and the strength of the ADI gear is approximately half that of the carburized steel gear. The FPB process has a significant effect on the ADI gear, improving its strength by 62-74%.

  10. Stochastic models for the tensile strength, fatigue

    NASA Technical Reports Server (NTRS)

    Phoenix, S. L.

    1976-01-01

    The time-to-failure of a single fiber is modeled as a functional of the fiber load history and reasonable forms for this functional are proposed. Earlier models by Daniels and Coleman are shown to be special cases of the proposed model and apparent disparities in their behavior are discussed. Techniques are presented for determining analytically the asymptotic distributions of the tensile strength and time-to-failure for bundles of a large number of fibers. For smaller bundles, exact results are far too cumbersome to be of use so that efficient Monte Carlo simulation procedures are proposed.

  11. Changes in motor cortical excitability during human muscle fatigue.

    PubMed Central

    Taylor, J L; Butler, J E; Allen, G M; Gandevia, S C

    1996-01-01

    1. The excitability of the motor cortex was investigated during fatiguing con of the elbow flexors in human subjects. During sustained contractions at 30 and 1 voluntary force (MVC), the short-latency electromyographic responses (EMG) evoke brachii and brachioradialis by transcranial magnetic stimulation increased in si EMG in the elbow flexors following the evoked muscle potential (silent period), duration during a sustained MVC but not during 30% MVCs nor during a sustained M muscle (adductor pollicis). 2. When the blood supply to brachioradialis was blocked with sphygmomanometer cuff sustained MVC, the changes in EMG responses to transcranial stimulation rapidly control values, This suggests that changes in these responses during fatigue wer small-diameter muscle afferents. 3. Tendon vibration during sustained MVCs indicated that the changes in the resp cortial stimulation were not mediated by reduced muscle spindle inputs. 4. Muscle action potentials evoked in brachioradialis by electrical stimulation cervicomedullary junction did not increase in size during sustained MVCs. Thus, cortically evoked responses during sustained MVCs reflects a change in cortical Although the silent period following cervicomedullary stimulation lengthened, it substantially shorter than the cortically evoked silent period. 5. The altered EMG responses to transcranial stimulation during fatigue suggest exitation and increased inhibition in the motor cortex. As these changes were un manipulation of afferent input they presumably result from intrinsic cortical pr altered voluntary drive to the motor cortex. Images Figure 1 PMID:8821148

  12. Effects of Physical Activity and Inactivity on Muscle Fatigue

    PubMed Central

    Bogdanis, Gregory C.

    2012-01-01

    The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural, and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity, and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short-duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fiber composition, neuromuscular characteristics, high energy metabolite stores, buffering capacity, ionic regulation, capillarization, and mitochondrial density. Muscle fiber-type transformation during exercise training is usually toward the intermediate type IIA at the expense of both type I and IIx myosin heavy-chain isoforms. High-intensity training results in increases of both glycolytic and oxidative enzymes, muscle capillarization, improved phosphocreatine resynthesis and regulation of K+, H+, and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fiber cross-sectional area, decreased oxidative capacity, and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high-intensity exercise training in patients with different health conditions to demonstrate the powerful effect of exercise on health and well being. PMID

  13. Effect of Microstructure on Fatigue Strength of Bovine Compact Bones

    NASA Astrophysics Data System (ADS)

    Kim, Jong Heon; Niinomi, Mitsuo; Akahori, Toshikazu; Takeda, Junji; Toda, Hiroyuki

    Despite its clinical importance in developing artificial bone, limited information is available regarding the microstructure with respect to the fatigue characteristics of bones. In this study, the fatigue characteristics of the bovine humerus and femur were investigated with respect to microstructures. Fatigue tests were conducted on the bovine humerus and femur at a stress ratio of 0.1 and a frequency of 10Hz. The fatigue strength of the plexiform bone is slightly greater than that of the haversian bone. This is because the volume fraction of voids in the haversian bone, which is the site of stress concentration, is higher than that of voids in the plexiform bone. Several microcracks are observed on the fatigue fracture surface of the haversian bone. The microcracks are short and their propagation directions are random. However, the number of the microcracks in the plexiform bone is very small. The microcracks are relatively long and their propagation directions are parallel to the longitudinal direction of the lamellar bone. Therefore, the crack requires relatively more energy to propagate across the lamella in the plexiform bone.

  14. The multiple roles of phosphate in muscle fatigue

    PubMed Central

    Allen, David G.; Trajanovska, Sofie

    2012-01-01

    Muscle fatigue is the decline in performance of muscles observed during periods of intense activity. ATP consumption exceeds production during intense activity and there are multiple changes in intracellular metabolites which may contribute to the changes in crossbridge activity. It is also well-established that a reduction in activation, either through action potential changes or reduction in Ca2+ release from the sarcoplasmic reticulum (SR), makes an additional contribution to fatigue. In this review we focus on the role of intracellular inorganic phosphate (Pi) whose concentration can increase rapidly from around 5–30 mM during intense fatigue. Studies from skinned muscle fibers show that these changes substantially impair myofibrillar performance although the effects are strongly temperature dependent. Increased Pi can also cause reduced Ca2+ release from the SR and may therefore contribute to the reduced activation. In a recent study, we have measured both Pi and Ca2+ release in a blood-perfused mammalian preparation and the results from this preparation allows us to test the extent to which the combined effects of Pi and Ca2+ changes may contribute to fatigue. PMID:23248600

  15. Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue

    PubMed Central

    Nougarou, François

    2016-01-01

    Aim The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue. Methods Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep. Results Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08). Conclusion Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution. PMID:26866911

  16. Unsupported standing with minimized ankle muscle fatigue.

    PubMed

    Mihelj, Matjaz; Munih, Marko

    2004-08-01

    In the past, limited unsupported standing has been restored in patients with thoracic spinal cord injury through open-loop functional electrical stimulation of paralyzed knee extensor muscles and the support of intact arm musculature. Here an optimal control system for paralyzed ankle muscles was designed that enables the subject to stand without hand support in a sagittal plane. The paraplegic subject was conceptualized as an underactuated double inverted pendulum structure with an active degree of freedom in the upper trunk and a passive degree of freedom in the paralyzed ankle joints. Control system design is based on the minimization of a cost function that estimates the effort of ankle joint muscles via observation of the ground reaction force position, relative to ankle joint axis. Furthermore, such a control system integrates voluntary upper trunk activity and artificial control of ankle joint muscles, resulting in a robust standing posture. Figures are shown for the initial simulation study, followed by disturbance tests on an intact volunteer and several laboratory trials with a paraplegic person. Benefits of the presented methodology are prolonged standing sessions and in the fact that the subject is able to maintain voluntary control over upper body orientation in space, enabling simple functional standing. PMID:15311817

  17. Effect of inspiratory muscle work on peripheral fatigue of locomotor muscles in healthy humans

    PubMed Central

    Romer, Lee M; Lovering, Andrew T; Haverkamp, Hans C; Pegelow, David F; Dempsey, Jerome A

    2006-01-01

    The work of breathing required during maximal exercise compromises blood flow to limb locomotor muscles and reduces exercise performance. We asked if force output of the inspiratory muscles affected exercise-induced peripheral fatigue of locomotor muscles. Eight male cyclists exercised at ≥ 90% peak O2 uptake to exhaustion (CTRL). On a separate occasion, subjects exercised for the same duration and power output as CTRL (13.2 ± 0.9 min, 292 W), but force output of the inspiratory muscles was reduced (−56% versus CTRL) using a proportional assist ventilator (PAV). Subjects also exercised to exhaustion (7.9 ± 0.6 min, 292 W) while force output of the inspiratory muscles was increased (+80% versus CTRL) via inspiratory resistive loads (IRLs), and again for the same duration and power output with breathing unimpeded (IRL-CTRL). Quadriceps twitch force (Qtw), in response to supramaximal paired magnetic stimuli of the femoral nerve (1–100 Hz), was assessed pre- and at 2.5 through to 70 min postexercise. Immediately after CTRL exercise, Qtw was reduced −28 ± 5% below pre-exercise baseline and this reduction was attenuated following PAV exercise (−20 ± 5%; P < 0.05). Conversely, increasing the force output of the inspiratory muscles (IRL) exacerbated exercise-induced quadriceps muscle fatigue (Qtw=−12 ± 8% IRL-CTRL versus −20 ± 7% IRL; P < 0.05). Repeat studies between days showed that the effects of exercise per se, and of superimposed inspiratory muscle loading on quadriceps fatigue were highly reproducible. In conclusion, peripheral fatigue of locomotor muscles resulting from high-intensity sustained exercise is, in part, due to the accompanying high levels of respiratory muscle work. PMID:16373384

  18. Effects of plantar flexor muscle fatigue induced by electromyostimulation on postural coordination.

    PubMed

    Ponce, Antoine; Fouque, Florent; Cahouët, Violaine; Martin, Alain

    2007-02-27

    The aim of the present study was to investigate the influence of a modification of an intrinsic capacity (plantar flexor strength) on the implementation of in-phase and anti-phase mode of coordination. Analysis of hip and ankle relative phases during fore-aft tracking task was done before and after an electromyostimulation fatigue protocol on the soleus muscles. Results showed participants used exclusively in-phase and anti-phase modes of coordination, with a sudden switch from one to the other with target frequency increase. Regarding tracking tasks, fatigue induces a decrease of performance for lower frequencies, and a significant decrease of switch frequency (-0.08 Hz) for each subject. In conclusion, changes in mode of coordination implementation suggest that the in-phase mode implementation is highly linked to the strength production capacity at the ankle joint. PMID:17280784

  19. Muscle fatigue in frog semitendinosus: alterations in contractile function

    NASA Technical Reports Server (NTRS)

    Thompson, L. V.; Balog, E. M.; Riley, D. A.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to characterize the contractile properties of the frog semitendinosus (ST) muscle before and during recovery from fatigue, to relate the observed functional changes to alterations in specific steps in the crossbridge model of muscle contraction, and to determine how fatigue affects the force-frequency relationship. The frog ST (22 degrees C) was fatigued by direct electrical stimulation with 100-ms 150-Hz trains at 1/s for 5 min. The fatigue protocol reduced peak twitch (Pt) and tetanic (Po) force to 32 and 8.5% of initial force, respectively. The decline in Pt was less than Po, in part due to a prolongation in the isometric contraction time (CT), which increased to 300% of the initial value. The isometric twitch duration was greatly prolonged as reflected by the lengthened CT and the 800% increase in the one-half relaxation time (1/2RT). Both Pt and Po showed a biphasic recovery, a rapid initial phase (2 min) followed by a slower (40 min) return to the prefatigue force. CT and 1/2RT also recovered in two phases, returning to 160 and 265% of control in the first 5 min. CT returned to the prefatigue value between 35 and 40 min, whereas even at 60 min 1/2RT was 133% of control. The maximal velocity of shortening, determined by the slack test, was significantly reduced [from 6.7 +/- 0.5 to 2.5 +/- 0.4 optimal muscle length/s] at fatigue. The force-frequency relationship was shifted to the left, so that optimal frequency for generating Po was reduced.(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Muscle fatigue in frog semitendinosus: alterations in contractile function.

    PubMed

    Thompson, L V; Balog, E M; Riley, D A; Fitts, R H

    1992-06-01

    The purpose of this study was to characterize the contractile properties of the frog semitendinosus (ST) muscle before and during recovery from fatigue, to relate the observed functional changes to alterations in specific steps in the crossbridge model of muscle contraction, and to determine how fatigue affects the force-frequency relationship. The frog ST (22 degrees C) was fatigued by direct electrical stimulation with 100-ms 150-Hz trains at 1/s for 5 min. The fatigue protocol reduced peak twitch (Pt) and tetanic (Po) force to 32 and 8.5% of initial force, respectively. The decline in Pt was less than Po, in part due to a prolongation in the isometric contraction time (CT), which increased to 300% of the initial value. The isometric twitch duration was greatly prolonged as reflected by the lengthened CT and the 800% increase in the one-half relaxation time (1/2RT). Both Pt and Po showed a biphasic recovery, a rapid initial phase (2 min) followed by a slower (40 min) return to the prefatigue force. CT and 1/2RT also recovered in two phases, returning to 160 and 265% of control in the first 5 min. CT returned to the prefatigue value between 35 and 40 min, whereas even at 60 min 1/2RT was 133% of control. The maximal velocity of shortening, determined by the slack test, was significantly reduced [from 6.7 +/- 0.5 to 2.5 +/- 0.4 optimal muscle length/s] at fatigue. The force-frequency relationship was shifted to the left, so that optimal frequency for generating Po was reduced.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1535482

  1. The Development of Confidence Limits for Fatigue Strength Data

    SciTech Connect

    SUTHERLAND,HERBERT J.; VEERS,PAUL S.

    1999-11-09

    Over the past several years, extensive databases have been developed for the S-N behavior of various materials used in wind turbine blades, primarily fiberglass composites. These data are typically presented both in their raw form and curve fit to define their average properties. For design, confidence limits must be placed on these descriptions. In particular, most designs call for the 95/95 design values; namely, with a 95% level of confidence, the designer is assured that 95% of the material will meet or exceed the design value. For such material properties as the ultimate strength, the procedures for estimating its value at a particular confidence level is well defined if the measured values follow a normal or a log-normal distribution. Namely, based upon the number of sample points and their standard deviation, a commonly-found table may be used to determine the survival percentage at a particular confidence level with respect to its mean value. The same is true for fatigue data at a constant stress level (the number of cycles to failure N at stress level S{sub 1}). However, when the stress level is allowed to vary, as with a typical S-N fatigue curve, the procedures for determining confidence limits are not as well defined. This paper outlines techniques for determining confidence limits of fatigue data. Different approaches to estimating the 95/95 level are compared. Data from the MSU/DOE and the FACT fatigue databases are used to illustrate typical results.

  2. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  3. Fatigue strength of a single lap joint SPR-bonded

    SciTech Connect

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-05-04

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  4. Autism Severity and Muscle Strength: A Correlation Analysis

    ERIC Educational Resources Information Center

    Kern, Janet K.; Geier, David A.; Adams, James B.; Troutman, Melissa R.; Davis, Georgia; King, Paul G.; Young, John L.; Geier, Mark R.

    2011-01-01

    The current study examined the relationship between muscle strength, as measured by hand grip strength, and autism severity, as measured by the Childhood Autism Rating Scale (CARS). Thirty-seven (37) children with a diagnosis of autism spectrum disorder (ASD) were evaluated using the CARS and then tested for hand muscle strength using a hand grip…

  5. The effect of inspiratory muscle fatigue on breathing pattern and ventilatory response to CO2.

    PubMed Central

    Mador, M J; Tobin, M J

    1992-01-01

    1. The effects of inducing inspiratory muscle fatigue on the subsequent breathing pattern were examined during resting unstimulated breathing and during CO2 rebreathing. In addition, we examined whether induction of inspiratory muscle fatigue alters CO2 responsiveness. 2. Global inspiratory muscle fatigue and diaphragmatic fatigue were achieved by having subjects breathe against an inspiratory resistive load while generating a predetermined fraction of either their maximal mouth pressure or maximal transdiaphragmatic pressure until they were unable to generate the target pressure. 3. Induction of inspiratory muscle fatigue had no effect on the subsequent breathing pattern during either unstimulated breathing or during CO2 rebreathing. 4. Following induction of inspiratory muscle fatigue, the slope of the ventilatory response to CO2 was significantly decreased from 18.8 +/- 3.3 during control to 13.8 +/- 2.1 l min-1 (% end-tidal CO2 concentration)-1 with fatigue (P < 0.02). PMID:1484352

  6. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    PubMed Central

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  7. Effects of muscle extension strength exercise on trunk muscle strength and stability of patients with lumbar herniated nucleus pulposus.

    PubMed

    Jeon, Kyoungkyu; Kim, Taeyoung; Lee, Sang-Ho

    2016-05-01

    [Purpose] The purpose of this study was to provide the data for constructing an integrated exercise program to help restore muscle strength and stability through extension strength exercise in adult females with lumbar disc herniation. [Subjects and Methods] An 8-week exercise program for lumbar muscle extension strength and stabilization was performed by 26 females older than 20 with lumbar disc herniation findings. [Results] Significant differences were found in lumbar extension muscle strength at every angle of lumbar flexion after participation in the 8-week stabilization exercise program; but there was no significant difference in the weight distribution index. [Conclusion] An integrated exercise program aiming to strengthen lumbar spine muscles, reduce pain and stabilize the trunk can help to maintain muscle strength and balance. In addition, improvement in extension strength is expected to be helpful in daily life by securing the range of joint motion and improving the strength and stability. PMID:27313342

  8. Effects of muscle extension strength exercise on trunk muscle strength and stability of patients with lumbar herniated nucleus pulposus

    PubMed Central

    Jeon, Kyoungkyu; Kim, Taeyoung; Lee, Sang-Ho

    2016-01-01

    [Purpose] The purpose of this study was to provide the data for constructing an integrated exercise program to help restore muscle strength and stability through extension strength exercise in adult females with lumbar disc herniation. [Subjects and Methods] An 8-week exercise program for lumbar muscle extension strength and stabilization was performed by 26 females older than 20 with lumbar disc herniation findings. [Results] Significant differences were found in lumbar extension muscle strength at every angle of lumbar flexion after participation in the 8-week stabilization exercise program; but there was no significant difference in the weight distribution index. [Conclusion] An integrated exercise program aiming to strengthen lumbar spine muscles, reduce pain and stabilize the trunk can help to maintain muscle strength and balance. In addition, improvement in extension strength is expected to be helpful in daily life by securing the range of joint motion and improving the strength and stability. PMID:27313342

  9. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  10. Fractal Dimension in Eeg Signals during Muscle Fatigue

    NASA Astrophysics Data System (ADS)

    Huang, Haibin; Yao, Bin; Yue, Guang; Brown, Robert; Jing, Liu

    2003-10-01

    Fractal dimension (FD) has been successfully used to characterize signals in the format of time series. In this study, we calculated FD of EEG signals recorded during human muscle fatigue as a measure of changes in the EEG signal complexity along fatigue. Subjects performed 200 intermittent handgrip contractions at 100contraction level. Each contraction lasted 2 s, followed by a 5-s rest. EEG data were recorded from the scalp along with handgrip force and muscle EMG signals. The FD computation was based on measurements of the length (Lk) of the signal at 6 different temporal resolutions (k = 1, 2, ¡­, 6). FD was determined from the relationship between Lk and k using the least square fit. The results showed that: (1) EEG fractal dimension associated with the motor performance was significantly higher than that during the rest period; (2) changes in the fractal dimension along the process of fatigue showed a significant correlation with the decline in force and EMG signals.

  11. A Laboratory Experiment on Muscular Metabolism and Fatigue Using the Isolated Frog Muscle Preparation.

    ERIC Educational Resources Information Center

    Ianuzzo, C. David; And Others

    1987-01-01

    Describes an experiment which demonstrates the association of particular metabolic biochemical changes and muscular fatigue. Highlights applications related to cellular energy metabolism, metabolic regulation, and muscle energetics. (ML)

  12. The effect of yield strength and ductility to fatigue damage

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1973-01-01

    The cumulative damage of aluminium alloys with different yield strength and various ductility due to seismic loads was studied. The responses of an idealized beam with a centered mass at one end and fixed at the other end to El Centro's and Taft's earthquakes are computed by assuming that the alloys are perfectly elastoplastic materials and by using numerical technique. Consequently, the corresponding residual plastic strain can be obtained from the stress-strain relationship. The revised Palmgren-Miner cumulative damage theorem is utilized to calculate the fatigue damage. The numerical results show that in certain cases, the high ductility materials are more resistant to seismic loads than the high yield strength materials. The results also show that if a structure collapse during the earthquake, the collapse always occurs in the very early stage.

  13. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  14. ZERODUR®: new stress corrosion data improve strength fatigue prediction

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Kleer, Günter; Rist, Tobias

    2015-09-01

    The extremely low thermal expansion glass ceramic ZERODUR® finds more and more applications as sophisticated light weight structures with thin ribs or as thin shells. Quite often they will be subject to higher mechanical loads such as rocket launches or modulating wobbling vibrations. Designing such structures requires calculation methods and data taking into account their long term fatigue. With brittle materials fatigue is not only given by the material itself but to a high extent also by its surface condition and the environmental media especially humidity. This work extends the latest data and information gathered on the bending strength of ZERODUR® with new results concerning its long term behavior under tensile stress. The parameter needed for prediction calculations which combines the influences of time and environmental media is the stress corrosion constant n. Results of the past differ significantly from each other. In order to obtain consistent data the stress corrosion constant has been measured with the method comparing the breakage statistical distributions at different stress increase rates. For better significance the stress increase rate was varied over four orders of magnitude from 0.004 MPa/s to 40 MPa/s. Experiments were performed under normal humidity for long term earth bound applications and under nitrogen atmosphere as equivalent to dry environment occurring for example with telescopes in deserts and also equivalent to vacuum for space applications. As shown earlier the bending strength of diamond ground surfaces of ZERODUR® can be represented with a three parameter Weibull distribution. Predictions on the long term strength change of ZERODUR® structures under tensile stress are possible with reduced uncertainty if Weibull threshold strength values are considered and more reliable stress corrosion constant data are applied.

  15. Fatigue behavior of high-strength concrete under marine conditions

    SciTech Connect

    Mor, A.

    1987-01-01

    In this study, 24 high-strength reinforced concrete beams were tested in fatigue under simulated marine conditions. Low-cycle, high-magnitude loading was imposed on beams, some of which were exposed to air, and others which were submerged in water. The beams were cycled at 1 Hz, to 80% of their yield capacity in negative and positive flexure. Four concrete mixes were compared. Half of the specimens were made with lightweight aggregate (LWA), and half were made with river gravel (NWA). Half of each group contained silica-fume as partial replacement of cement (13%). By manipulating the water/cement ratio, the 28-day compressive strength of all concretes was 9500 {plus minus} 300 psi. The previously reported phenomenon of water pumping through the cracks was observed, but did not appear to be directly related to the subsequent failure. When silica fume is added to the concrete mix, the adhesion is greatly improved. LWA concrete utilizes this additional adhesion effectively. NWA concrete with silica-fume, on the other hand, is not able to utilize the increased adhesion due to microcracking. Main findings of both the fatigue and pull-out bond tests are listed.

  16. Prediction of Muscle Fatigue during Minimally Invasive Surgery Using Recurrence Quantification Analysis

    PubMed Central

    Keshavarz Panahi, Ali; Cho, Sohyung

    2016-01-01

    Due to its inherent complexity such as limited work volume and degree of freedom, minimally invasive surgery (MIS) is ergonomically challenging to surgeons compared to traditional open surgery. Specifically, MIS can expose performing surgeons to excessive ergonomic risks including muscle fatigue that may lead to critical errors in surgical procedures. Therefore, detecting the vulnerable muscles and time-to-fatigue during MIS is of great importance in order to prevent these errors. The main goal of this study is to propose and test a novel measure that can be efficiently used to detect muscle fatigue. In this study, surface electromyography was used to record muscle activations of five subjects while they performed fifteen various laparoscopic operations. The muscle activation data was then reconstructed using recurrence quantification analysis (RQA) to detect possible signs of muscle fatigue on eight muscle groups (bicep, triceps, deltoid, and trapezius). The results showed that RQA detects the fatigue sign on bilateral trapezius at 47.5 minutes (average) and bilateral deltoid at 57.5 minutes after the start of operations. No sign of fatigue was detected for bicep and triceps muscles of any subject. According to the results, the proposed novel measure can be efficiently used to detect muscle fatigue and eventually improve the quality of MIS procedures with reducing errors that may result from overlooked muscle fatigue. PMID:27313884

  17. Objective Evaluation of Muscle Strength in Infants with Hypotonia and Muscle Weakness

    ERIC Educational Resources Information Center

    Reus, Linda; van Vlimmeren, Leo A.; Staal, J. Bart; Janssen, Anjo J. W. M.; Otten, Barto J.; Pelzer, Ben J.; Nijhuis-van der Sanden, Maria W. G.

    2013-01-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17…

  18. Respiratory muscle strength in asthmatic children

    PubMed Central

    Marcelino, Alessandra Maria Farias Cavalcante; da Cunha, Daniele Andrade; da Cunha, Renata Andrade; da Silva, Hilton Justino

    2012-01-01

    Summary Introduction: Changes in the respiratory system of asthmatics are also due to the mechanical disadvantage caused by the increased airway resistance. Objective: The study aims to evaluate the respiratory muscle strength and nutritional status of asthmatic children. Method: This is a prospective descriptive and transversal study with 50 children aged 7 to 12 years, who were placed into 2 groups, asthmatic and non-asthmatic. Respiratory muscle strength was evaluated on the basis of maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). The nutritional status was evaluated by measuring the anthropometric data, including height, weight, and body mass index (BMI). The findings were subjected to analysis of variance, chi-square, and Student's t test, and p-values < 0.05 was considered statistically significant. Results: In our comparisons, we observed statistically significantly lower values for age, weight, and height in asthmatic patients: 8.52 ± 1.49 years, 30.62 ± 7.66 kg, and 129.85 ± 10.24 cm, respectively, vs. non-asthmatic children(9.79 ± 1.51 years, 39.92 ± 16.57 kg, and 139.04 ± 11.62 cm, respectively). There was no significant increase in MIP and MEP between the groups: MIP was -84.96 ± 27.52 cmH2O for the asthmatic group and -88.56 ± 26.50 cmH2O for the non-asthmatic group, and MEP was 64.48 ± 19.23 cmH2O for asthmatic children and +66.72 ± 16.56 cmH2O for non-asthmatics. Conclusion: There was no statistically significant difference between groups, but we observed that MIP and MEP were slightly higher in the non-asthmatic group than in the asthmatic group. PMID:25991978

  19. Fatigue alters in vivo function within and between limb muscles during locomotion.

    PubMed

    Higham, Timothy E; Biewener, Andrew A

    2009-03-22

    Muscle fatigue, a reduction in force as a consequence of exercise, is an important factor for any animal that moves, and can result from both peripheral and/or central mechanisms. Although much is known about whole-limb force generation and activation patterns in fatigued muscles under sustained isometric contractions, little is known about the in vivo dynamics of limb muscle function in relation to whole-body fatigue. Here we show that limb kinematics and contractile function in the lateral (LG) and medial (MG) gastrocnemius of helmeted guineafowl (Numida meleagris) are significantly altered following fatiguing exercise at 2ms-1 on an inclined treadmill. The two most significant findings were that the variation in muscle force generation, measured directly from the muscles' tendons, increased significantly with fatigue, and fascicle shortening in the proximal MG, but not the distal MG, decreased significantly with fatigue. We suggest that the former is a potential mechanism for decreased stability associated with fatigue. The region-specific alteration of fascicle behaviour within the MG as a result of fatigue suggests a complex response to fatigue that probably depends on muscle-aponeurosis and tendon architecture not previously explored. These findings highlight the importance of studying the integrative in vivo dynamics of muscle function in response to fatigue. PMID:19129096

  20. Isometric quadriceps strength determines sailing performance and neuromuscular fatigue during an upwind sailing emulation.

    PubMed

    Bourgois, Jan G; Callewaert, Margot; Celie, Bert; De Clercq, Dirk; Boone, Jan

    2016-01-01

    This study investigates the physiological responses to upwind sailing on a laser emulation ergometer and analyses the components of the physical profile that determine the physiological responses related to sailing level. Ten male high-level laser sailors performed an upwind sailing test, incremental cycling test and quadriceps strength test. During the upwind sailing test, heart rate (HR), oxygen uptake, ventilation, respiratory exchange ratio, rating of perceived exertion (RPE) and lactate concentration were measured, combined with near-infrared spectroscopy (NIRS) and electromyography (EMG) registration of the M. Vastus lateralis. Repeated measures ANOVA showed for the cardio-respiratory, metabolic and muscles responses (mean power frequency [MPF], root mean square [RMS], deoxy[Hb+Mb]) during the upwind sailing test an initial significant increase followed by a stabilisation, despite a constant increase in RPE. Stepwise regression analysis showed that better sailing level was for 46.5% predicted by lower MPF decrease. Lower MPF decrease was for 57.8% predicted by a higher maximal isometric quadriceps strength. In conclusion, this study indicates that higher sailing level was mainly determined by a lower rate of neuromuscular fatigue during the upwind sailing test (as indicated by MPF decrease). Additionally, the level of neuromuscular fatigue was mainly determined by higher maximal isometric quadriceps strength stressing the importance of resistance training in the planning of training. PMID:26323461

  1. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  2. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.

    PubMed

    Han, Hyonyoung; Jo, Sungho; Kim, Jung

    2015-07-01

    This paper proposes the feasibility of a stiffness measurement for muscle contraction force estimation under muscle fatigue conditions. Bioelectric signals have been widely studied for the estimation of the contraction force for physical human-robot interactions, but the correlation between the biosignal and actual motion is decreased under fatigue conditions. Muscle stiffness could be a useful contraction force estimator under fatigue conditions because it measures the same physical quantity as the muscle contraction that generates the force. Electromyography (EMG), mechanomyography (MMG), and a piezoelectric resonance-based active muscle stiffness sensor were used to analyze the biceps brachii under isometric muscle fatigue conditions with reference force sensors at the end of the joint. Compared to EMG and MMG, the change in the stiffness signal was smaller (p < 0.05) in the invariable contraction force generation test until failure. In addition, in the various contraction level force generation tests, the stiffness signal under the fatigue condition changed <10% (p < 0.05) compared with the signal under non-fatigue conditions. This result indicates that the muscle stiffness signal is less sensitive to muscle fatigue than other biosignals. This investigation provides insights into methods of monitoring and compensating for muscle fatigue. PMID:25752771

  3. The influence of inspiratory muscle work history and specific inspiratory muscle training upon human limb muscle fatigue

    PubMed Central

    McConnell, Alison K; Lomax, Michelle

    2006-01-01

    The purpose of this study was to assess the influence of the work history of the inspiratory muscles upon the fatigue characteristics of the plantar flexors (PF). We hypothesized that under conditions where the inspiratory muscle metaboreflex has been elicited, PF fatigue would be hastened due to peripheral vasoconstriction. Eight volunteers undertook seven test conditions, two of which followed 4 week of inspiratory muscle training (IMT). The inspiratory metaboreflex was induced by inspiring against a calibrated flow resistor. We measured torque and EMG during isometric PF exercise at 85% of maximal voluntary contraction (MVC) torque. Supramaximal twitches were superimposed upon MVC efforts at 1 min intervals (MVCTI); twitch interpolation assessed the level of central activation. PF was terminated (Tlim) when MVCTI was <50% of baseline MVC. PF Tlim was significantly shorter than control (9.93 ± 1.95 min) in the presence of a leg cuff inflated to 140 mmHg (4.89 ± 1.78 min; P = 0.006), as well as when PF was preceded immediately by fatiguing inspiratory muscle work (6.28 ± 2.24 min; P = 0.009). Resting the inspiratory muscles for 30 min restored the PF Tlim to control. After 4 weeks, IMT, inspiratory muscle work at the same absolute intensity did not influence PF Tlim, but Tlim was significantly shorter at the same relative intensity. The data are the first to provide evidence that the inspiratory muscle metaboreflex accelerates the rate of calf fatigue during PF, and that IMT attenuates this effect. PMID:16973699

  4. Fatigue alters in vivo function within and between limb muscles during locomotion

    PubMed Central

    Higham, Timothy E.; Biewener, Andrew A.

    2008-01-01

    Muscle fatigue, a reduction in force as a consequence of exercise, is an important factor for any animal that moves, and can result from both peripheral and/or central mechanisms. Although much is known about whole-limb force generation and activation patterns in fatigued muscles under sustained isometric contractions, little is known about the in vivo dynamics of limb muscle function in relation to whole-body fatigue. Here we show that limb kinematics and contractile function in the lateral (LG) and medial (MG) gastrocnemius of helmeted guineafowl (Numida meleagris) are significantly altered following fatiguing exercise at 2 m s−1 on an inclined treadmill. The two most significant findings were that the variation in muscle force generation, measured directly from the muscles' tendons, increased significantly with fatigue, and fascicle shortening in the proximal MG, but not the distal MG, decreased significantly with fatigue. We suggest that the former is a potential mechanism for decreased stability associated with fatigue. The region-specific alteration of fascicle behaviour within the MG as a result of fatigue suggests a complex response to fatigue that probably depends on muscle–aponeurosis and tendon architecture not previously explored. These findings highlight the importance of studying the integrative in vivo dynamics of muscle function in response to fatigue. PMID:19129096

  5. Skeletal muscle properties and fatigue resistance in relation to smoking history.

    PubMed

    Wüst, Rob C I; Morse, Christopher I; de Haan, Arnold; Rittweger, Jörn; Jones, David A; Degens, Hans

    2008-09-01

    Although smoking-related diseases, such as chronic obstructive pulmonary disease (COPD), are often accompanied by increased peripheral muscle fatigability, the extent to which this is a feature of the disease or a direct effect of smoking per se is not known. Skeletal muscle function was investigated in terms of maximal voluntary isometric torque, activation, contractile properties and fatigability, using electrically evoked contractions of the quadriceps muscle of 40 smokers [19 men and 21 women; mean (SD) cigarette pack years: 9.9 (10.7)] and age- and physical activity level matched non-smokers (22 men and 23 women). Maximal strength and isometric contractile speed did not differ significantly between smokers and non-smokers. Muscle fatigue (measured as torque decline during a series of repetitive contractions) was greater in smokers (P = 0.014), but did not correlate with cigarette pack years (r = 0.094, P = 0.615), cigarettes smoked per day (r = 10.092, P = 0.628), respiratory function (%FEV(1pred)) (r = -0.187, P = 0.416), or physical activity level (r = -0.029, P = 0.877). While muscle mass and contractile properties are similar in smokers and non-smokers, smokers do suffer from greater peripheral muscle fatigue. The observation that the cigarette smoking history did not correlate with fatigability suggests that the effect is either acute and/or reaches a ceiling, rather than being cumulative. An acute and reversible effect of smoking could be caused by carbon monoxide and/or other substances in smoke hampering oxygen delivery and mitochondrial function. PMID:18560879

  6. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles

    PubMed Central

    Neyroud, Daria; Cheng, Arthur J.; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on–1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on–3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased “voluntary activation.” In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  7. Fracture strength of all-ceramic restorations after fatigue loading

    NASA Astrophysics Data System (ADS)

    Baladhandayutham, Balasudha

    Fracture strength of monolithic and bilayered LAVA and e. max lower molar crowns after load cycling was measured and compared. The study included three groups (n = 8) from LAVA zirconia and three groups from e. max lithium disilicate to compare influences of different layers, thicknesses and manufacturing techniques. Prefabricated anatomically designed crowns were cemented to dies made from Z 100 composite resin using Rely X Luting Plus resin modified glass ionomer cement. Cemented crowns were stored at 37° C for 24 hours then cyclic loaded to test fatigue properties. The crowns were loaded to 200,000 cycles at 25N at a rate of 40 cycles / minute to simulate oral function. Subsequently, fracture properties for each group were measured using an Instron Universal Testing machine. Microscopic evaluation of the surface of fatigued samples did not reveal micro-cracks at the end of 50,000 cycles but minor wear facets were observed at the site of contact from the steatite ball antagonist. Crowns from LAVA bilayered groups showed step by step fractures while crowns from all other groups fractured as a single event as observed by the high speed camera. Zirconia bilayered crowns showed the highest loads to fracture while lithium disilicate monolithic crowns showed the lowest, within the limitations of the study. The study also showed that monolithic zirconia crowns of 0.6mm thickness resulted in relatively high magnitude for forces at fracture.

  8. Fatigue strength reduction factors for welds based on nondestructive examination

    SciTech Connect

    Hechmer, J.L.; Kuhn, E.J. III

    1999-02-01

    Based on the author`s hypothesis that nondestructive examination (NDE) has a major role in predicting the fatigue life of pressure vessels, a project was initiated to develop a defined relationship between NDE and fatigue strength reduction factors (FSRF). Even though a relationship should apply to both base metal and weld metal, the project was limited to weld metal because NDE for base metal is reasonably well established, whereas NDE for weld metal is more variable, depending on application. A matrix of FSRF was developed based on weld type (full penetration, partial penetration, and fillet weld) versus the NDE that is applied. The NDE methods that are included are radiographic testing (RT), ultrasonic testing (UT), magnetic particle testing (MT), dye penetrant testing (PT), and visual testing (VT). The first two methods (RT and UT) are volumetric examinations, and the remaining three are surface examinations. Seven combinations of volumetric and surface examinations were defined; thus, seven levels of FSRF are defined. Following the initial development of the project, a PVRC (Pressure Vessel Research Council) grant was obtained for the purpose of having a broad review. The report (Hechmer, 1998) has been accepted by PVRC. This paper presents the final matrix, the basis for the FSRF, and key definitions for accurate application of the FSRF matrix. A substantial amount of additional information is presented in the PVRC report (Hechmer, 1998).

  9. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  10. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    PubMed

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. PMID:25525208

  11. Fatigue and non-fatigue mathematical muscle models during functional electrical stimulation of paralyzed muscle

    PubMed Central

    Cai, Zhijun; Bai, Er-wei; Shields, Richard K.

    2013-01-01

    Electrical muscle stimulation demonstrates potential for preventing muscle atrophy and for restoring functional movement after spinal cord injury (SCI). Control systems used to optimize delivery of electrical stimulation protocols depend upon the algorithms generated using computational models of paralyzed muscle force output. The Hill-Huxley-type model, while being highly accurate, is also very complex, making it difficult for real-time implementation. In this paper, we propose a Wiener-Hammerstein system to model the paralyzed skeletal muscle under electrical stimulus conditions. The proposed model has substantial advantages in identification algorithm analysis and implementation including computational complexity and convergence, which enable it to be used in real-time model implementation. Experimental data sets from the soleus muscles of fourteen subjects with SCI were collected and tested. The simulation results show that the proposed model outperforms the Hill-Huxley-type model not only in peak force prediction, but also in fitting performance for force output of each individual stimulation train. PMID:23667385

  12. Knee muscle strength in multiple sclerosis: relationship with gait characteristics

    PubMed Central

    Güner, Senem; Hagharı, Sema; Inanıcı, Fatma; Alsancak, Serap; Aytekın, Gokhan

    2015-01-01

    [Purpose] To investigate the relationship between isokinetic knee muscle strength and kinematic, kinetic and spatiotemporal gait parameters of patients with multiple sclerosis (MS). [Subjects and Methods] Twenty-nine MS patients (mean age 31.5±6.5) were investigated in this study. The isokinetic knee muscle strength and gait parameters of MS patients with moderate and severe disability, as determined by the expanded disability status scale (EDSS): EDSS=1–4.5 (n=22, moderate disability) and EDSS>4.5 (n=7, severe disability) were measured. [Results] Isokinetic knee muscle strength, kinematic, kinetic and spatiotemporal gait parameters differed between moderate (EDSS=1–4.5, n=22) and severe disability (EDSS>4.5, n=7). The correlation between each of gait speed, stride length, total range of knee joint movement and the four strength parameters (minimum and maximum quadriceps and hamstring muscle strengths) were significant for the MS group as a whole. Within subgroups, the correlation between minimum hamstring strength and total range of knee movement was significant only in group EDSS>4.5; minimum hamstring correlated with peak knee extensor moment in group EDSS=1–4.5, but at a reduced level of significance. [Conclusion] The present study revealed significant correlations between gait characteristics and isokinetic strength parameters of the quadriceps and hamstring muscles. Our study suggests that rehabilitation protocols for MS patients should include a critical strength training programme particularly for the hamstring and quadriceps muscles. PMID:25931736

  13. Fatigue mechanisms in patients with cancer: effects of tumor necrosis factor and exercise on skeletal muscle

    NASA Technical Reports Server (NTRS)

    St Pierre, B. A.; Kasper, C. E.; Lindsey, A. M.

    1992-01-01

    Fatigue is a common adverse effect of cancer and its therapy. However, the specific mechanisms underlying cancer fatigue are unclear. One physiologic mechanism may involve changes in skeletal muscle protein stores or metabolite concentration. A reduction in skeletal muscle protein stores may result from endogenous tumor necrosis factor (TNF) or from TNF administered as antineoplastic therapy. This muscle wasting would require patients to exert an unusually high amount of effort to generate adequate contractile force during exercise performance or during extended periods of sitting or standing. This additional effort could result in the onset of fatigue. Additionally, cancer fatigue may develop or become exacerbated during exercise as a consequence of changes in the concentration of skeletal muscle metabolites. These biochemical alterations may interfere with force that is produced by the muscle contractile proteins. These physiologic changes may play a role in the decision to include exercise in the rehabilitation plans of patients with cancer. They also may affect ideas about fatigue.

  14. Effects of stimulation frequency versus pulse duration modulation on muscle fatigue

    PubMed Central

    Kesar, Trisha; Chou, Li-Wei; Binder-Macleod, Stuart A.

    2008-01-01

    During functional electrical stimulation (FES), both the frequency and intensity can be increased to increase muscle force output and counteract the effects of muscle fatigue. Most current FES systems, however, deliver a constant frequency and only vary the stimulation intensity to control muscle force. This study compared muscle performance and fatigue produced during repetitive electrical stimulation using three different strategies: (1) constant pulse-duration and stepwise increases in frequency (frequency-modulation); (2) constant frequency and stepwise increases in pulse-duration (pulse-duration-modulation); and (3) constant frequency and pulse-duration (no-modulation). Surface electrical stimulation was delivered to the quadriceps femoris muscles of 12 healthy individuals and isometric forces were recorded. Muscle performance was assessed by measuring the percent changes in the peak forces and force–time integrals between the first and the last fatiguing trains. Muscle fatigue was assessed by measuring percent declines in peak force between the 60 Hz pre- and post-fatigue testing trains. The results showed that frequency-modulation showed better performance for both peak forces and force–time integrals in response to the fatiguing trains than pulse-duration-modulation, while producing similar levels of muscle fatigue. Although frequency-modulation is not commonly used during FES, clinicians should consider this strategy to improve muscle performance. PMID:17317219

  15. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  16. Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals.

    PubMed

    Karthick, P A; Venugopal, G; Ramakrishnan, S

    2016-01-01

    Analysis of neuromuscular fatigue finds various applications ranging from clinical studies to biomechanics. Surface electromyography (sEMG) signals are widely used for these studies due to its non-invasiveness. During cyclic dynamic contractions, these signals are nonstationary and cyclostationary. In recent years, several nonstationary methods have been employed for the muscle fatigue analysis. However, cyclostationary based approach is not well established for the assessment of muscle fatigue. In this work, cyclostationarity associated with the biceps brachii muscle fatigue progression is analyzed using sEMG signals and Spectral Correlation Density (SCD) functions. Signals are recorded from fifty healthy adult volunteers during dynamic contractions under a prescribed protocol. These signals are preprocessed and are divided into three segments, namely, non-fatigue, first muscle discomfort and fatigue zones. Then SCD is estimated using fast Fourier transform accumulation method. Further, Cyclic Frequency Spectral Density (CFSD) is calculated from the SCD spectrum. Two features, namely, cyclic frequency spectral area (CFSA) and cyclic frequency spectral entropy (CFSE) are proposed to study the progression of muscle fatigue. Additionally, degree of cyclostationarity (DCS) is computed to quantify the amount of cyclostationarity present in the signals. Results show that there is a progressive increase in cyclostationary during the progression of muscle fatigue. CFSA shows an increasing trend in muscle fatiguing contraction. However, CFSE shows a decreasing trend. It is observed that when the muscle progresses from non-fatigue to fatigue condition, the mean DCS of fifty subjects increases from 0.016 to 0.99. All the extracted features found to be distinct and statistically significant in the three zones of muscle contraction (p < 0.05). It appears that these SCD features could be useful in the automated analysis of sEMG signals for different neuromuscular conditions

  17. Quadriceps and respiratory muscle fatigue following high-intensity cycling in COPD patients.

    PubMed

    Bachasson, Damien; Wuyam, Bernard; Pepin, Jean-Louis; Tamisier, Renaud; Levy, Patrick; Verges, Samuel

    2013-01-01

    Exercise intolerance in COPD seems to combine abnormal ventilatory mechanics, impaired O2 transport and skeletal muscle dysfunction. However their relative contribution and their influence on symptoms reported by patients remain to be clarified. In order to clarify the complex interaction between ventilatory and neuromuscular exercise limiting factors and symptoms, we evaluated respiratory muscles and quadriceps contractile fatigue, dynamic hyperinflation and symptoms induced by exhaustive high-intensity cycling in COPD patients. Fifteen gold II-III COPD patients (age = 67 ± 6 yr; BMI = 26.6 ± 4.2 kg.m(-2)) performed constant-load cycling test at 80% of their peak workload until exhaustion (9.3 ± 2.4 min). Before exercise and at exhaustion, potentiated twitch quadriceps strength (Q(tw)), transdiaphragmatic (P(di,tw)) and gastric (P(ga,tw)) pressures were evoked by femoral nerve, cervical and thoracic magnetic stimulation, respectively. Changes in operational lung volumes during exercise were assessed via repetitive inspiratory capacity (IC) measurements. Dyspnoea and leg discomfort were measured on visual analog scale. At exhaustion, Q(tw) (-33 ± 15%, >15% reduction observed in all patients but two) and Pdi,tw (-20 ± 15%, >15% reduction in 6 patients) were significantly reduced (P<0.05) but not Pga,tw (-6 ± 10%, >15% reduction in 3 patients). Percentage reduction in Q(tw) correlated with the percentage reduction in P(di,tw) (r = 0.66; P<0.05). Percentage reductions in P(di,tw) and P(ga,tw) negatively correlated with the reduction in IC at exhaustion (r = -0.56 and r = -0.62, respectively; P<0.05). Neither dyspnea nor leg discomfort correlated with the amount of muscle fatigue. In conclusion, high-intensity exercise induces quadriceps, diaphragm and less frequently abdominal contractile fatigue in this group of COPD patients. In addition, the rise in end-expiratory lung volume and diaphragm flattening associated with dynamic hyperinflation in COPD might limit

  18. Quadriceps and Respiratory Muscle Fatigue Following High-Intensity Cycling in COPD Patients

    PubMed Central

    Bachasson, Damien; Wuyam, Bernard; Pepin, Jean-Louis; Tamisier, Renaud; Levy, Patrick; Verges, Samuel

    2013-01-01

    Exercise intolerance in COPD seems to combine abnormal ventilatory mechanics, impaired O2 transport and skeletal muscle dysfunction. However their relatie contribution and their influence on symptoms reported by patients remain to be clarified. In order to clarify the complex interaction between ventilatory and neuromuscular exercise limiting factors and symptoms, we evaluated respiratory muscles and quadriceps contractile fatigue, dynamic hyperinflation and symptoms induced by exhaustive high-intensity cycling in COPD patients. Fifteen gold II-III COPD patients (age = 67±6 yr; BMI = 26.6±4.2 kg.m-2) performed constant-load cycling test at 80% of their peak workload until exhaustion (9.3±2.4 min). Before exercise and at exhaustion, potentiated twitch quadriceps strength (Qtw), transdiaphragmatic (Pdi,tw) and gastric (Pga,tw) pressures were evoked by femoral nerve, cervical and thoracic magnetic stimulation, respectively. Changes in operational lung volumes during exercise were assessed via repetitive inspiratory capacity (IC) measurements. Dyspnoea and leg discomfort were measured on visual analog scale. At exhaustion, Qtw (-33±15%, >15% reduction observed in all patients but two) and Pdi,tw (-20±15%, >15% reduction in 6 patients) were significantly reduced (P<0.05) but not Pga,tw (-6±10%, >15% reduction in 3 patients). Percentage reduction in Qtw correlated with the percentage reduction in Pdi,tw (r=0.66; P<0.05). Percentage reductions in Pdi,tw and Pga,tw negatively correlated with the reduction in IC at exhaustion (r=-0.56 and r=-0.62, respectively; P<0.05). Neither dyspnea nor leg discomfort correlated with the amount of muscle fatigue. In conclusion, high-intensity exercise induces quadriceps, diaphragm and less frequently abdominal contractile fatigue in this group of COPD patients. In addition, the rise in end-expiratory lung volume and diaphragm flattening associated with dynamic hyperinflation in COPD might limit the development of abdominal and

  19. Muscle fatigue induced by a soccer match-play simulation in amateur Black South African players.

    PubMed

    Jones, Robert I; Ryan, Bennett; Todd, Andrew I

    2015-01-01

    The purpose of the current study was to investigate the effects of a soccer-specific fatigue protocol on the temporal changes in torque producing abilities of the thigh within African soccer players. Twenty amateur Black South African soccer players performed the SAFT(90) soccer match-play simulation protocol, while isokinetic measurements were obtained pre-exercise (T0), after the 1st half (T45), after half time (T60) and after the 2nd half (T105). During SAFT(90) performance, significant overall concentric quadriceps peak torque changes were observed (1.05 rad · s(-1) = 16.6%, 3.14 rad · s(-1) = 9.5%). Eccentric hamstring peak torque also decreased significantly over time (1.05 rad · s(-1) = 17.4%, 3.14 rad · s(-1) = 18.5%), with significant reductions occurring during both halves. The functional strength ratio (eccH:conQ) at 3.14 rad · s(-1) was observed to significantly decrease by 10.1% overall. The indicated time-dependent changes in Black South African players have implications for competitive performance and increased predisposition to hamstring muscle injuries. Because of muscle fatigue, the hamstrings may have insufficient eccentric strength during the late swing phase when sprinting, resulting in eccentric overload and damage to the muscle. The changes in strength found in the current study help explain the increased predisposition to hamstring strains during the latter stages of both halves of match-play as reported by epidemiological studies. PMID:25764064

  20. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.

    2016-03-01

    A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength-in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

  1. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    NASA Astrophysics Data System (ADS)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  2. Arginylation of myosin heavy chain regulates skeletal muscle strength

    PubMed Central

    Cornachione, Anabelle S.; Leite, Felipe S.; Wang, Junling; Leu, Nicolae A.; Kalganov, Albert; Volgin, Denys; Han, Xuemei; Xu, Tao; Cheng, Yu-Shu; Yates, John R. R.; Rassier, Dilson E.; Kashina, Anna

    2014-01-01

    Protein arginylation is a post-translational modification with an emerging global role in the regulation of actin cytoskeleton. To test the role of arginylation in the skeletal muscle, we generated a mouse model with Ate1 knockout driven by skeletal muscle-specific creatine kinase (Ckmm) promoter. Such Ckmm-Ate1 mice were viable and outwardly normal, however their skeletal muscle strength was significantly reduced compared to the control. Mass spectrometry of the isolated skeletal myofibrils showed a limited set of proteins arginylated on specific sites, including myosin heavy chain. Atomic force microscopy measurements of the contractile strength in individual myofibrils and isolated myosin filaments from these mice showed a significant reduction of contractile forces, which, in the case of the myosin filaments could be fully rescued by re-arginylation with purified Ate1. Our results demonstrate that arginylation regulates force production in the muscle and exerts a direct effect on muscle strength through arginylation of myosin. PMID:25017061

  3. Use of muscle synergies and wavelet transforms to identify fatigue during squatting.

    PubMed

    Smale, Kenneth B; Shourijeh, Mohammad S; Benoit, Daniel L

    2016-06-01

    The objective of this study was to supplement continuous wavelet transforms with muscle synergies in a fatigue analysis to better describe the combination of decreased firing frequency and altered activation profiles during dynamic muscle contractions. Nine healthy young individuals completed the dynamic tasks before and after they squatted with a standard Olympic bar until complete exhaustion. Electromyography (EMG) profiles were analyzed with a novel concatenated non-negative matrix factorization method that decomposed EMG signals into muscle synergies. Muscle synergy analysis provides the activation pattern of the muscles while continuous wavelet transforms output the temporal frequency content of the EMG signals. Synergy analysis revealed subtle changes in two-legged squatting after fatigue while differences in one-legged squatting were more pronounced and included the shift from a general co-activation of muscles in the pre-fatigue state to a knee extensor dominant weighting post-fatigue. Continuous wavelet transforms showed major frequency content decreases in two-legged squatting after fatigue while very few frequency changes occurred in one-legged squatting. It was observed that the combination of methods is an effective way of describing muscle fatigue and that muscle activation patterns play a very important role in maintaining the overall joint kinetics after fatigue. PMID:27156237

  4. Relaxation rate in the assessment of masseter muscle fatigue.

    PubMed

    Lyons, M F; Aggarwal, A

    2001-02-01

    The aim of this study was to assess a simple method of measuring relaxation rate in the jaw-closing system for the purpose of quantifying jaw muscle fatigue. A summary of the various different methods of measuring relaxation rate is also provided. The rates of twitch contraction and relaxation were measured in 30 symptom-free subjects following bilateral direct electrical stimulation of the masseter muscles. The resulting twitch force was recorded via a force transducer placed between the anterior teeth. The transducer was held between the teeth with as little force as possible while four single stimuli were delivered at 5-s intervals. The stimulating electrodes were then removed and replaced and the experiment was repeated. The force records of the resulting twitches were averaged and the half-contraction time, twitch amplitude and half-relaxation time were measured. There was a significant difference in half-relaxation time between males and females, being faster in females (P=0.0045, independent t-test). No significant difference was found in twitch amplitude and half-contraction time between males and females. Half-relaxation time and half-contraction time were independent of twitch amplitude. This method of measuring the relaxation rate of the masseter muscles was found to be practical and the results were reproducible between sessions. PMID:11298267

  5. [Development of Muscle Strength Evaluating System Based on Mobile Platform].

    PubMed

    Xu, Xiulin; Yao, Xiaoming; Xu, Xijiao; Hu, Xiaohui

    2015-08-01

    The development of muscle strength evaluating system based on Android system was developed in this research. The system consists of a lower unit and an intelligent mobile terminal. The pressure sensor of the lower unit was used to collect muscle strength parameters. And the parameters were sent to the Android device through the wireless Bluetooth serial port. Then the Android device would send the parameters to the doctor monitored platform through the Internet. The system realized analyzing the muscle strength parameters and real-time displaying them. After it ran on the Android mobile phones, it showed an effective result which proved that the system combined with mobile platform could make more convenient for the patients to assess their own muscle strength. It also provided reliable data references for doctors to know the patients' rehabilitation condition and to make the next rehabilitation plan. PMID:26710452

  6. Assessment of Bending Fatigue Strength of Crankshaft Sections with Consideration of Quenching Residual Stress

    NASA Astrophysics Data System (ADS)

    Qin, W. J.; Dong, C.; Li, X.

    2016-03-01

    High-cycle bending fatigue is the primary failure mode of crankshafts in engines. Compressive residual stresses are often introduced by induction quenching to improve the fatigue strength of crankshafts. The residual stresses, which are commonly obtained by numerical methods, such as the finite element method (FEM), should be included in fatigue failure analysis to predict the fatigue strength of crankshafts accurately. In this study, the simulation method and theory of quenching process are presented and applied to investigate the residual stresses of a diesel engine crankshaft. The coupling calculation of temperature, microstructure, and stress fields of the crankshaft section is conducted by FEM. Then, the fatigue strength of the crankshaft section is analytically assessed by Susmel and Lazzarin's criterion based on the critical plane approach that superimposes the residual stresses onto the bending stresses. The resonant bending fatigue tests of the crankshaft sections are conducted, and the tests and analytical assessments yield consistent results.

  7. Hormone Therapy and Skeletal Muscle Strength: A Meta-Analysis

    PubMed Central

    Greising, Sarah M.; Baltgalvis, Kristen A.; Warren, Gordon L.

    2009-01-01

    Background Our objective was to perform a systematic review and meta-analysis of the research literature that compared muscle strength in postmenopausal women who were and were not on estrogen-based hormone therapy (HT). Methods Twenty-three relevant studies were found. Effect sizes (ESs) were calculated as the standardized mean difference, and meta-analyses were completed using a random effects model. Results HT was found to result in a small beneficial effect on muscle strength in postmenopausal women (overall ES = 0.23; p = .003) that equated to an ∼5% greater strength for women on HT. Among the 23 studies, various muscle groups were assessed for strength, and those that benefitted the most were the thumb adductors (ES = 1.14; p < .001). Ten studies that compared muscle strength in rodents that were and were not estradiol deficient were also analyzed. The ES for absolute strength was moderate but not statistically significant (ES = 0.44; p = .12), whereas estradiol had a large effect on strength normalized to muscle size (ES = 0.66; p = .03). Conclusion Overall, estrogen-based treatments were found to beneficially affect strength. PMID:19561145

  8. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    PubMed Central

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  9. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    PubMed

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  10. An Autonomous Wearable System for Predicting and Detecting Localised Muscle Fatigue

    PubMed Central

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the clinical aspects such as kinematics and surface electromyography (sEMG) of an athlete during isometric contractions. Various signal analysis methods are used illustrating their applicability in real-time settings. This demonstrated system can be used in sports scenarios to promote muscle growth/performance or prevent injury. To date, research on localised muscle fatigue focuses on the clinical side and lacks the implementation for detecting/predicting localised muscle fatigue using an autonomous system. Results show that automating the process of localised muscle fatigue detection/prediction is promising. The autonomous fatigue system was tested on five individuals showing 90.37% accuracy on average of correct classification and an error of 4.35% in predicting the time to when fatigue will onset. PMID:22319367

  11. Effects of Kinesio taping on scapular kinematics of overhead athletes following muscle fatigue.

    PubMed

    Zanca, Gisele Garcia; Grüninger, Bruno; Mattiello, Stela Márcia

    2016-08-01

    Scapular kinematics alterations have been found following muscle fatigue. Considering the importance of the lower trapezius in coordinated scapular movement, this study aimed to investigate the effects of elastic taping (Kinesio taping, KT) for muscle facilitation on scapular kinematics of healthy overhead athletes following muscle fatigue. Twenty-eight athletes were evaluated in a crossover, single-blind, randomized design, in three sessions: control (no taping), KT (KT with tension) and sham (KT without tension). Scapular tridimensional kinematics and EMG of clavicular and acromial portions of upper trapezius, lower trapezius and serratus anterior were evaluated during arm elevation and lowering, before and after a fatigue protocol involving repetitive throwing. Median power frequency decline of serratus anterior was significantly lower in KT session compared to sham, possibly indicating lower muscle fatigue. However, the effects of muscle fatigue on scapular kinematics were not altered by taping conditions. Although significant changes were found in scapular kinematics following muscle fatigue, they were small and not considered relevant. It was concluded that healthy overhead athletes seem to present an adaptive mechanism that avoids the disruption of scapular movement pattern following muscle fatigue. Therefore, these athletes do not benefit from the use of KT to assist scapular movement under the conditions tested. PMID:26149961

  12. Fatigue strength of Ce-TZP/Al2O3 nanocomposite with different surfaces.

    PubMed

    Takano, T; Tasaka, A; Yoshinari, M; Sakurai, K

    2012-08-01

    Ce-TZP/Al(2)O(3) nanocomposite (NANOZR) has not only higher strength, but also higher fracture toughness than conventional Y-TZP, indicating its potential for use in dental implants. Surface treatment to obtain osseointegration, however, may alter its surface topography, thus affecting the cyclic fatigue strength that plays such an important role in the durability of this material. The aim of this study was to evaluate the influence of surface treatment on cyclic fatigue strength in NANOZR as compared with grit-blasted and acid-etched Y-TZP (125BE Y-TZP). Bi-axial flexure strength was measured in both static and cyclic fatigue tests, as recommended by ISO 6872. The cyclic fatigue test was performed by the staircase method in distilled water at 37°C, with a load of 10(6) cycles and 10 Hz. Bi-axial flexure strength of NANOZR was 1111-1237 MPa and 667-881 MPa in the static and cyclic fatigue tests, respectively. The bi-axial flexure strength of NANOZR under all conditions was greater than that of 125BE Y-TZP in the static and cyclic fatigue tests. The cyclic fatigue strength of NANOZR was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the promise of this material for use in dental implants. PMID:22736446

  13. A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min; Jiang, Cindy; Sang, Yan

    2008-01-01

    Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stress levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.

  14. Examination of Strength Training and Detraining Effects in Expiratory Muscles

    ERIC Educational Resources Information Center

    Baker, Susan; Davenport, Paul; Sapienza, Christine

    2005-01-01

    Purpose: The purpose of this study was to determine strength gains following expiratory muscle strength training (EMST) and to determine detraining effects when the training stimulus is removed. Method: Thirty-two healthy participants were enrolled in an EMST program. Sixteen participants trained for 4 weeks (Group 1) and 16 participants trained…

  15. Evaluation of surgeon’s muscle fatigue during thoracoscopic pulmonary lobectomy using interoperative surface electromyography

    PubMed Central

    Yoon, Seung-Hyun; Jung, Myung-Chul

    2016-01-01

    Background The aim of this study was to document the physical stress experienced by a surgeon during thoracoscopic pulmonary lobectomy and mediastinal lymph node dissection for lung cancer by measuring the intraoperative electromyography (EMG). Methods Surface EMG was recorded during 12 cases of thoracoscopic lobectomy. During the operation, 16 channels of a wireless EMG were used to measure muscle activity and fatigue from the bilateral muscles of the splenius capitis (SC), upper trapezius (UT), middle deltoid (MD), flexor carpi radialis (FCR), extensor carpi radialis (ECR), lumbar erector spinae (LES), rectus femoralis (RF), and tibialis anterior (TA). The EMG signals were processed to collect the values of the root mean square for muscle activity and median frequency (MF) for muscle fatigue. Results All operations were completed without adverse events. The mean operating time was 99.16±35.15 minutes. During the operation, the mean muscle activity of all muscles was 21.91±12.85 mV. High muscle activity was observed in the bilateral FCR and ECR, whereas low muscle activity was observed in the bilateral SC and LES. The final MFs in the bilateral SC and LES were found to be decreased from the initial status, which implied increased muscle fatigue. The muscles of the right and left LES were significantly fatigued by up to 29% and 37% compared to their initial status (P=0.021 and P=0.007, respectively). The MFs of the bilateral LES decreased with time (an average decreases of 0.008/5 minutes, P=0.002 in right LES and 0.004/5 minutes, P=0.018 in left LES). Conclusions During thoracoscopic lobectomy, muscle fatigue was observed in muscles related to a static posture, such as the bilateral SC, UT, and ES. Further studies are required to investigate the ergonomic adjustments needed to reduce muscle fatigue in these static muscles. PMID:27293833

  16. Muscle Activation and Performance During Trunk Strength Testing in High-Level Female and Male Football Players.

    PubMed

    Roth, Ralf; Donath, Lars; Zahner, Lukas; Faude, Oliver

    2016-06-01

    For performance and injury prevention in sport, core strength and endurance are focused prerequisites. Therefore we evaluated characteristics of trunk muscle activation and performance during strength-endurance related trunk field tests. Strength-endurance ability, as total time to failure, and activation of trunk muscles was measured in 39 football players of the highest German female football league (Bundesliga) (N = 18, age: 20.7 y [SD 4.4]) and the highest national male under-19 league (N = 21, age: 17.9 y [0.7]) in prone plank, side plank, and dorsal position. Maximal isometric force was assessed during trunk extension and flexion, rotation, and lateral flexion to normalize EMG and to compare with the results of strength-endurance tests. For all positions of endurance strength tests, a continuous increase in normalized EMG activation was observed (P < .001). Muscle activation of the rectus abdominis and external oblique in prone plank position exceeded the maximal voluntary isometric contraction activation, with a significantly higher activation in females (P = .02). We conclude, that in the applied strength-endurance testing, the activation of trunk muscles was high, especially in females. As high trunk muscle activation can infer fatigue, limb strength can limit performance in prone and side plank position, particularly during high trunk muscle activation. PMID:26671894

  17. Muscle Strength And Golf Performance: A Critical Review

    PubMed Central

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J.

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More

  18. Muscle strength and golf performance: a critical review.

    PubMed

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More

  19. Fatigue crack retardation of high strength steel in saltwater

    SciTech Connect

    Tokaji, K.; Ando, Z.; Imai, T.; Kojima, T.

    1983-04-01

    A high strength steel was studied in 3 percent saltwater to investigate the effects of a corrosive environment and sheer thickness on fatigue crack propagation behavior following the application of a single tensile overload. Experiments were carried out under sinusoidally varying loads at a load ratio of 0 and frequency of 10 H /SUB z/ . A single tensile overload was found to cause delayed retardation, and the crack propagation rate at first increased, followed by fairly rapid decrease to a minimum value and then increased gradually to its steady-state value, just as it did in air. The overload affected zone size and the retardation cycles increased with decreasing sheet thickness, just as they did in air. However, the zone size and the cycles were larger in 3 percent saltwater than in air. Since the crack propagation rates through the overload affected zone were not affected by the test environment, the longer retardation cycles in 3 percent saltwater were attributed to an enlargement of the overload affected zone size. The crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was well explained by the crack closure concept.

  20. Abdominal muscle and quadriceps strength in chronic obstructive pulmonary disease

    PubMed Central

    Man, W; Hopkinson, N; Harraf, F; Nikoletou, D; Polkey, M; Moxham, J

    2005-01-01

    Background: Quadriceps muscle weakness is common in chronic obstructive pulmonary disease (COPD) but is not observed in a small hand muscle (adductor pollicis). Although this could be explained by reduced activity in the quadriceps, the observation could also be explained by anatomical location of the muscle or fibre type composition. However, the abdominal muscles are of a similar anatomical and fibre type distribution to the quadriceps, although they remain active in COPD. Cough gastric pressure is a recently described technique that assesses abdominal muscle (and hence expiratory muscle) strength more accurately than traditional techniques. A study was undertaken to test the hypothesis that more severe weakness exists in the quadriceps than in the abdominal muscles of patients with COPD compared with healthy elderly controls. Methods: Maximum cough gastric pressure and quadriceps isometric strength were measured in 43 patients with stable COPD and 25 healthy elderly volunteers matched for anthropometric variables. Results: Despite a significant reduction in mean quadriceps strength (29.9 kg v 41.2 kg; 95% CI –17.9 to –4.6; p = 0.001), cough gastric pressure was preserved in patients with COPD (227.3 cm H2O v 204.8 cm H2O; 95% CI –5.4 to 50.6; p = 0.11). Conclusions: Abdominal muscle strength is preserved in stable COPD outpatients in the presence of quadriceps weakness. This suggests that anatomical location and fibre type cannot explain quadriceps weakness in COPD. By inference, we conclude that disuse and consequent deconditioning are important factors in the development of quadriceps muscle weakness in COPD patients, or that activity protects the abdominal muscles from possible systemic myopathic processes. PMID:15923239

  1. Immediate effect of manual therapy on respiratory functions and inspiratory muscle strength in patients with COPD

    PubMed Central

    Yilmaz Yelvar, Gul Deniz; Çirak, Yasemin; Demir, Yasemin Parlak; Dalkilinç, Murat; Bozkurt, Bülent

    2016-01-01

    Objective The objective of this study was to investigate the immediate effect of manual therapy (MT) on respiratory functions and inspiratory muscle strength in patients with COPD. Participants and methods Thirty patients with severe COPD (eight females and 22 males; mean age 62.4±6.8 years) referred to pulmonary physiotherapy were included in this study. The patients participated in a single session of MT to measure the short-term effects. The lung function was measured using a portable spirometer. An electronic pressure transducer was used to measure respiratory muscle strength. Heart rate, breathing frequency, and oxygen saturation were measured with a pulse oximeter. For fatigue and dyspnea perception, the modified Borg rating of perceived exertion scale was used. All measurements were taken before and immediately after the first MT session. The ease-of-breathing visual analog scale was used for rating patients’ symptoms subjectively during the MT session. Results There was a significant improvement in the forced expiratory volume in the first second, forced vital capacity, and vital capacity values (P<0.05). The maximal inspiratory pressure and maximal expiratory pressure values increased significantly after MT, compared to the pre-MT session (P<0.05). There was a significant decrease in heart rate, respiratory rate (P<0.05), and dyspnea and fatigue perception (P<0.05). Conclusion A single MT session immediately improved pulmonary function, inspiratory muscle strength, and oxygen saturation and reduced dyspnea, fatigue, and heart and respiratory rates in patients with severe COPD. MT should be added to pulmonary rehabilitation treatment as a new alternative that is fast acting and motivating in patients with COPD. PMID:27382271

  2. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    PubMed Central

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-01-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials. PMID:27264347

  3. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size.

    PubMed

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-01-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 10(7) cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of "damage reduction" was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials. PMID:27264347

  4. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-06-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials.

  5. Muscle fatigue, nNOS and muscle fiber atrophy in limb girdle muscular dystrophy.

    PubMed

    Angelini, Corrado; Tasca, Elisabetta; Nascimbeni, Anna Chiara; Fanin, Marina

    2014-12-01

    Muscle fatigability and atrophy are frequent clinical signs in limb girdle muscular dystrophy (LGMD), but their pathogenetic mechanisms are still poorly understood. We review a series of different factors that may be connected in causing fatigue and atrophy, particularly considering the role of neuronal nitric oxide synthase (nNOS) and additional factors such as gender in different forms of LGMD (both recessive and dominant) underlying different pathogenetic mechanisms. In sarcoglycanopathies, the sarcolemmal nNOS reactivity varied from absent to reduced, depending on the residual level of sarcoglycan complex: in cases with complete sarcoglycan complex deficiency (mostly in beta-sarcoglycanopathy), the sarcolemmal nNOS reaction was absent and it was always associated with early severe clinical phenotype and cardiomyopathy. Calpainopathy, dysferlinopathy, and caveolinopathy present gradual onset of fatigability and had normal sarcolemmal nNOS reactivity. Notably, as compared with caveolinopathy and sarcoglycanopathies, calpainopathy and dysferlinopathy showed a higher degree of muscle fiber atrophy. Males with calpainopathy and dysferlinopathy showed significantly higher fiber atrophy than control males, whereas female patients have similar values than female controls, suggesting a gender difference in muscle fiber atrophy with a relative protection in females. In female patients, the smaller initial muscle fiber size associated to endocrine factors and less physical effort might attenuate gender-specific muscle loss and atrophy. PMID:25873780

  6. Compressive Strength of Notched Poly(Phenylene Sulfide) Aerospace Composite: Influence of Fatigue and Environment

    NASA Astrophysics Data System (ADS)

    Niitsu, G. T.; Lopes, C. M. A.

    2013-08-01

    The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.

  7. Fatigue resistance of rat extraocular muscles does not depend on creatine kinase activity

    PubMed Central

    McMullen, Colleen A; Hayeß, Katrin; Andrade, Francisco H

    2005-01-01

    Background Creatine kinase (CK) links phosphocreatine, an energy storage system, to cellular ATPases. CK activity serves as a temporal and spatial buffer for ATP content, particularly in fast-twitch skeletal muscles. The extraocular muscles are notoriously fast and active, suggesting the need for efficient ATP buffering. This study tested the hypotheses that (1) CK isoform expression and activity in rat extraocular muscles would be higher, and (2) the resistance of these muscles to fatigue would depend on CK activity. Results We found that mRNA and protein levels for cytosolic and mitochondrial CK isoforms were lower in the extraocular muscles than in extensor digitorum longus (EDL). Total CK activity was correspondingly decreased in the extraocular muscles. Moreover, cytoskeletal components of the sarcomeric M line, where a fraction of CK activity is found, were downregulated in the extraocular muscles as was shown by immunocytochemistry and western blotting. CK inhibition significantly accelerated the development of fatigue in EDL muscle bundles, but had no major effect on the extraocular muscles. Searching for alternative ATP buffers that could compensate for the relative lack of CK in extraocular muscles, we determined that mRNAs for two adenylate kinase (AK) isoforms were expressed at higher levels in these muscles. Total AK activity was similar in EDL and extraocular muscles. Conclusion These data indicate that the characteristic fatigue resistance of the extraocular muscles does not depend on CK activity. PMID:16107216

  8. Effect of diaphragmatic fatigue on control of the respiratory muscles during CO sub 2 rebreathing

    SciTech Connect

    Yan, S.; Lichros, I.; Macklem, P.T. Montreal Chest Hospital, Quebec )

    1991-03-11

    The authors measured respiratory muscle recruitment and ventilation ({dot V}{sub E}) during CO{sub 2} rebreathing before and after diaphragmatic fatigue in normal subjects. Muscle activity was assessed by measuring pleural, abdominal, and transdiaphragmatic pressures (Ppl, Pab, and Pdi, resp). The results showed that (1) there was a progressive increase in Pdi with increasing end-tidal PCO{sub 2} (P{sub ET}CO{sub 2}); the rate of increase was usually greater before than after fatigue, however, in some it was less because of longer operating length and/or passive stretching of the diaphragm due to strong rib cage muscle (RCM) activity induced by fatigue; (2) Pdi increased mainly due to greater fall in Ppl; {Delta}Pab increased little during CO{sub 2} rebreathing or even decreased with P{sub ET}CO{sub 2} over 50-55 mmHg; this pattern was exaggerated by fatigue; (3) at the end of each trial, the ratio {minus}{Delta}Ppl/{Delta}Pab increased by {approximately}140% before and {approximately}850% after fatigue; (4) CO{sub 2} induced expiratory abdominal muscle activity; and (5) as a group, {dot V}{sub E} and its pattern did not change appreciably with fatigue. The authors conclude that RCM are recruited proportionately more than the diaphragm by CO{sub 2} and that diaphragmatic fatigue shifts the central drive from the fatigued diaphragm to TCM to preserve ventilation.

  9. Muscle activity, time to fatigue, and maximum task duration at different levels of production standard time

    PubMed Central

    Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Sanusi, Junedah

    2015-01-01

    [Purpose] This study investigated the variations in muscle fatigue, time to fatigue, and maximum task duration at different levels of production standard time. [Methods] Twenty subjects performed repetitive tasks at three different levels of production standard time corresponding to “normal”, “hard” and “very hard”. Surface electromyography was used to measure the muscle activity. [Results] The results showed that muscle activity was significantly affected by the production standard time level. Muscle activity increased twice in percentage as the production standard time shifted from hard to very hard (6.9% vs. 12.9%). The muscle activity increased over time, indicating muscle fatigue. The muscle fatigue rate increased for the harder production standard time (Hard: 0.105; Very hard: 0.115), which indicated the associated higher risk of work-related musculoskeletal disorders. Muscle fatigue was also found to occur earlier for hard and very hard production standard times. [Conclusion] It is recommended that the maximum task duration should not exceed 5.6, 2.9, and 2.2 hours for normal, hard, and very hard production standard times, respectively, in order to maintain work performance and minimize the risk of work-related musculoskeletal disorders. PMID:26311974

  10. Muscle fatigue increases beta-band coherence between the firing times of simultaneously active motor units in the first dorsal interosseous muscle.

    PubMed

    McManus, Lara; Hu, Xiaogang; Rymer, William Z; Suresh, Nina L; Lowery, Madeleine M

    2016-06-01

    Synchronization between the firing times of simultaneously active motor units (MUs) is generally assumed to increase during fatiguing contractions. To date, however, estimates of MU synchronization have relied on indirect measures, derived from surface electromyographic (EMG) interference signals. This study used intramuscular coherence to investigate the correlation between MU discharges in the first dorsal interosseous muscle during and immediately following a submaximal fatiguing contraction, and after rest. Coherence between composite MU spike trains, derived from decomposed surface EMG, were examined in the delta (1-4 Hz), alpha (8-12 Hz), beta (15-30 Hz), and gamma (30-60 Hz) frequency band ranges. A significant increase in MU coherence was observed in the delta, alpha, and beta frequency bands postfatigue. In addition, wavelet coherence revealed a tendency for delta-, alpha-, and beta-band coherence to increase during the fatiguing contraction, with subjects exhibiting low initial coherence values displaying the greatest relative increase. This was accompanied by an increase in MU short-term synchronization and a decline in mean firing rate of the majority of MUs detected during the sustained contraction. A model of the motoneuron pool and surface EMG was used to investigate factors influencing the coherence estimate. Simulation results indicated that changes in motoneuron inhibition and firing rates alone could not directly account for increased beta-band coherence postfatigue. The observed increase is, therefore, more likely to arise from an increase in the strength of correlated inputs to MUs as the muscle fatigues. PMID:26984420

  11. Evaluation of Respiratory Muscle Strength in Mouth Breathers: Clinical Evidences

    PubMed Central

    Andrade da Cunha, Renata; Andrade da Cunha, Daniele; Assis, Roberta Borba; Bezerra, Luciana Ângelo; Justino da Silva, Hilton

    2013-01-01

    Introduction The child who chronically breathes through the mouth may develop a weakness of the respiratory muscles. Researchers and clinical are seeking for methods of instrumental evaluation to gather complementary data to clinical evaluations. With this in mind, it is important to evaluate breathing muscles in the child with Mouth Breathing. Objective To develop a review to investigate studies that used evaluation methods of respiratory muscle strength in mouth breathers. Data Synthesis  The authors were unanimous in relation to manovacuometry method as a way to evaluate respiratory pressures in Mouth Breathing children. Two of them performed with an analog manovacuometer and the other one, digital. The studies were not evaluated with regard to the method efficacy neither the used instruments. Conclusion There are few studies evaluating respiratory muscle strength in Mouth Breathing people through manovacuometry and the low methodological rigor of the analyzed studies hindered a reliable result to support or refuse the use of this technique. PMID:25992108

  12. Determine the effect of neck muscle fatigue on dynamic visual acuity in healthy young adults

    PubMed Central

    Al Saif, Amer A.; Al Senany, Samira

    2015-01-01

    [Purpose] The aim of this study was to determine whether neck muscle fatigue affects dynamic visual acuity in healthy young participants. [Subjects and Methods] This study was a double-blinded, prospective, randomized, controlled trial. Thirty healthy young subjects (ages 21 to 30 years) participated in the study. Participants were randomly divided into an experimental group (n=15) and a control group (n=15). The experimental group performed an exercise designed to induce neck muscle fatigue and the control group preformed non-fatiguing sham exercises. [Results] There were significant differences in mean dynamic visual acuity between the two groups (0.26±0.11 LogMar versus 0.003±0.02 LogMar). Subjects in the experimental group showed a significant decline in their dynamic visual acuity compared with the control group. Dynamic visual acuity strongly correlated with neck muscle fatigue (r = 0.79). No significant differences in joint position error were observed between the two groups and no significant correlations between joint position error and neck muscle fatigue were observed (r = 0.23). [Conclusion] The results of this study suggest that neck muscle fatigue negatively impacts dynamic visual acuity. Although not statistically significant, cervical spine proprioception as measured by the joint position error in the experimental group was diminished after fatigue. PMID:25642087

  13. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    PubMed Central

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results. PMID:22163810

  14. Classifying Lower Extremity Muscle Fatigue during Walking using Machine Learning and Inertial Sensors

    PubMed Central

    Zhang, Jian; Lockhart, Thurmon E.; Soangra, Rahul

    2013-01-01

    Fatigue in lower extremity musculature is associated with decline in postural stability, motor performance and alters normal walking patterns in human subjects. Automated recognition of lower extremity muscle fatigue condition may be advantageous in early detection of fall and injury risks. Supervised machine learning methods such as Support Vector Machines (SVM) have been previously used for classifying healthy and pathological gait patterns and also for separating old and young gait patterns. In this study we explore the classification potential of SVM in recognition of gait patterns utilizing an inertial measurement unit associated with lower extremity muscular fatigue. Both kinematic and kinetic gait patterns of 17 participants (29±11 years) were recorded and analyzed in normal and fatigued state of walking. Lower extremities were fatigued by performance of a squatting exercise until the participants reached 60% of their baseline maximal voluntary exertion level. Feature selection methods were used to classify fatigue and no-fatigue conditions based on temporal and frequency information of the signals. Additionally, influences of three different kernel schemes (i.e., linear, polynomial, and radial basis function) were investigated for SVM classification. The results indicated that lower extremity muscle fatigue condition influenced gait and loading responses. In terms of the SVM classification results, an accuracy of 96% was reached in distinguishing the two gait patterns (fatigue and no-fatigue) within the same subject using the kinematic, time and frequency domain features. It is also found that linear kernel and RBF kernel were equally good to identify intra-individual fatigue characteristics. These results suggest that intra-subject fatigue classification using gait patterns from an inertial sensor holds considerable potential in identifying “at-risk” gait due to muscle fatigue. PMID:24081829

  15. Apple Pomace Extract Improves Endurance in Exercise Performance by Increasing Strength and Weight of Skeletal Muscle.

    PubMed

    Jeong, Ji-Woong; Shim, Jae-Jung; Choi, Il-Dong; Kim, Sung-Hwan; Ra, Jehyeon; Ku, Hyung Keun; Lee, Dong Eun; Kim, Tae-Youl; Jeung, Woonhee; Lee, Jung-Hee; Lee, Ki Won; Huh, Chul-Sung; Sim, Jae-Hun; Ahn, Young-Tae

    2015-12-01

    Ursolic acid is a lipophilic pentacyclic triterpenoid found in many fruits and herbs and is used in several herbal folk medicines for diabetes. In this study, we evaluated the effects of apple pomace extract (APE; ursolic acid content, 183 mg/g) on skeletal muscle atrophy. To examine APE therapeutic potential in muscle atrophy, we investigated APE effects on the expression of biomarkers associated with muscle atrophy and hypertrophy. We found that APE inhibited atrophy, while inducing hypertrophy in C2C12 myotubes by decreasing the expression of atrophy-related genes and increasing the expression of hypertrophy-associated genes. The in vivo experiments using mice fed a diet with or without APE showed that APE intake increased skeletal muscle mass, as well as grip strength and exercise capacity. In addition, APE significantly improved endurance in the mice, as evidenced by increased exhaustive running time and muscle weight, and reduced the expression of the genes involved in the development of muscle atrophy. APE also decreased the concentration of serum lactate and lactate dehydrogenase, inorganic phosphate, and creatinine, the indicators of accumulated fatigue and exercise-induced stress. These results suggest that APE may be useful as an ergogenic functional food or dietary supplement. PMID:26331671

  16. Fatigue failure of hydrogen embrittled high strength steels

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Aleszka, J.

    1975-01-01

    Results of an experimental investigation are presented concerning the fracture behavior of cathodically charged, quenched and tempered martensitic steels under cyclic load conditions. Introduction of H2 by cathodic charging reduced fatigue life by as much as 60%. It is proposed that subsurface transverse fatigue cracks nucleate simultaneously at multiple sites, such as at microcracks, voids, or inclusions. Fatigue crack growth then occurs on planes perpendicular to the major applied stress axis in the presence of the critical combination of applied external stress and hydrogen.

  17. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  18. Cycle time influences the development of muscle fatigue at low to moderate levels of intermittent muscle contraction.

    PubMed

    Rashedi, Ehsan; Nussbaum, Maury A

    2016-06-01

    Localized muscle fatigue (LMF) during a repetitive task can be influenced by several aspects such as the level and duration of exertions. Among these aspects, though, the influence of cycle time remains unclear. Here, the effect of cycle time on LMF and performance was examined for a simple biomechanical system during repetitive static efforts. Participants performed 1-h trials of intermittent isometric index finger abduction with a duty cycle of 50% in all combinations of two cycle times (30 and 60s) and two exertion levels (15% and 25% of maximum voluntary capacity). Measures of discomfort, performance (force fluctuations), and muscle capacity (voluntary strength and low-frequency twitch responses) were obtained, all of which demonstrated a beneficial effect of the 30s cycle time. Specifically, the shorter cycle time led to lower rates of increase in perceived discomfort, lower rates of increase in force fluctuations, lower rates of decrease in voluntary capacity, and smaller changes in twitch responses. These benefits, reflecting less LMF development in the shorter cycle time, were quite consistent between genders and the two levels of effort. Results of this study can be used to modify current models predicting work-rest allowance and/or LMF, helping to enhance performance and reduce the risk of adverse musculoskeletal outcomes. PMID:26995711

  19. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    SciTech Connect

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  20. Thigh Muscle Strength in Senior Athletes and Healthy Controls

    PubMed Central

    McCrory, Jean L; Salacinski, Amanda J; Hunt, Sarah E; Greenspan, Susan L

    2016-01-01

    Exercise is commonly recommended to counteract aging-related muscle weakness. While numerous exercise intervention studies on the elderly have been performed, few have included elite senior athletes, such as those who participate in the National Senior Games. The extent to which participation in highly competitive exercise affects muscle strength is unknown, as well as the extent to which such participation mitigates any aging-related strength losses. The purpose of this study was to examine isometric thigh muscle strength in selected athletes of the National Senior Games and healthy noncompetitive controls of similar age, as well as to investigate strength changes with aging in both groups. In all, 95 athletes of the Games and 72 healthy controls participated. Of the senior athletes, 43 were runners, 12 cyclists, and 40 swimmers. Three trials of isometric knee flexion and extension strength were collected using a load cell affixed to a custom-designed chair. Strength data were normalized to dual-energy x-ray absorptiometry-obtained lean mass of the leg. A 3-factor multivariate analysis of variance (group × gender × age group) was performed, which included both the extension and flexion variables ([alpha] = 0.05). Athletes exhibited 38% more extension strength and 66% more flexion strength than the controls (p < 0.001). Strength did not decrease with advancing age in either the athletes or the controls (p = 0.345). In conclusion, senior athletes who participate in highly competitive exercise have greater strength than healthy aged-matched individuals who do not. Neither group displayed the expected strength losses with aging. Our subject cohorts, however, were not typical of those over age 65 years because individuals with existing health conditions were excluded from the study. PMID:19972628

  1. Muscle strength and endurance following lowerlimb suspension in man

    NASA Technical Reports Server (NTRS)

    Tesch, Per A.; Berg, Hans E.; Haggmark, Tom; Ohlsen, Hans; Dudley, Gary A.

    1991-01-01

    The effect of lower-limb suspension on the muscle strength and muscle endurance was investigated in six men subjected to four weeks of unilateral unloading of a lower limb (using of a harness attached to a modified shoe), followed by seven weeks of weight-bearing recovery. Results showed a decrease in the cross-sectional area (CSA) of the thigh muscle and in the average peak torque (APT) during three bouts of 30 concentric knee extensions. While the the thigh muscle CSA returned to normal after seven weeks of recovery, the APT recovery was still reduced by 11 percent, suggesting that muscle metabolic function was severely affected by unloading and was not restored by ambulation.

  2. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  3. Age at spinal cord injury determines muscle strength

    PubMed Central

    Thomas, Christine K.; Grumbles, Robert M.

    2014-01-01

    As individuals with spinal cord injury (SCI) age they report noticeable deficits in muscle strength, endurance and functional capacity when performing everyday tasks. These changes begin at ~45 years. Here we present a cross-sectional analysis of paralyzed thenar muscle and motor unit contractile properties in two datasets obtained from different subjects who sustained a cervical SCI at different ages (≤46 years) in relation to data from uninjured age-matched individuals. First, completely paralyzed thenar muscles were weaker when C6 SCI occurred at an older age. Muscles were also significantly weaker if the injury was closer to the thenar motor pools (C6 vs. C4). More muscles were strong (>50% uninjured) in those injured at a younger (≤25 years) vs. young age (>25 years), irrespective of SCI level. There was a reduction in motor unit numbers in all muscles tested. In each C6 SCI, only ~30 units survived vs. 144 units in uninjured subjects. Since intact axons only sprout 4–6 fold, the limits for muscle reinnervation have largely been met in these young individuals. Thus, any further reduction in motor unit numbers with time after these injuries will likely result in chronic denervation, and may explain the late-onset muscle weakness routinely described by people with SCI. In a second dataset, paralyzed thenar motor units were more fatigable than uninjured units. This gap widened with age and will reduce functional reserve. Force declines were not due to electromyographic decrements in either group so the site of failure was beyond excitation of the muscle membrane. Together, these results suggest that age at SCI is an important determinant of long-term muscle strength, and fatigability, both of which influence functional capacity. PMID:24478643

  4. The effect of exercise training with an additional inspiratory load on inspiratory muscle fatigue and time-trial performance.

    PubMed

    McEntire, Serina J; Smith, Joshua R; Ferguson, Christine S; Brown, Kelly R; Kurti, Stephanie P; Harms, Craig A

    2016-08-01

    The purpose was to determine the effect of moderate-intensity exercise training (ET) on inspiratory muscle fatigue (IMF) and if an additional inspiratory load during ET (ET+IL) would further improve inspiratory muscle strength, IMF, and time-trial performance. 15 subjects were randomly divided to ET (n=8) and ET+IL groups (n=7). All subjects completed six weeks of exercise training three days/week at ∼70%V̇O2peak for 30min. The ET+IL group breathed through an inspiratory muscle trainer (15% PImax) during exercise. 5-mile, and 30-min time-trials were performed pre-training, weeks three and six. Inspiratory muscle strength increased (p<0.05) for both groups to a similar (p>0.05) extent. ET and ET+IL groups improved (p<0.05) 5-mile time-trial performance (∼10% and ∼18%) and the ET+IL group was significantly faster than ET at week 6. ET and ET+IL groups experienced less (p<0.05) IMF compared to pre-training following the 5-mile time-trial. In conclusion, these data suggest ET leads to less IMF, ET+IL improves inspiratory muscle strength and IMF, but not different than ET alone. PMID:27195511

  5. Effect of polymer coatings on fatigue strength of aluminum alloy 2024 box beams

    NASA Technical Reports Server (NTRS)

    Nordmark, G. E.; Kelsey, R. A.

    1972-01-01

    Previous investigators have shown that polymer coatings raise the fatigue strength of metals tested in air to about the same level as that of uncoated specimens tested in vacuum. The results are given of tests to determine if a polymer coating would improve the fatigue strength of built-up aluminum alloy members simulating aircraft construction. Aluminum alloy 2024-T4 riveted box beams were subjected to constant amplitude fatigue tests in air as well as in salt water fog. The coating did not improve the fatigue strength of beams tested in either environment. This is believed to result from the fact that most failures originated at rivet holes, which were isolated from both the coating and the environment.

  6. Isometric Arm Strength and Subjective Rating of Upper Limb Fatigue in Two-Handed Carrying Tasks

    PubMed Central

    Li, Kai Way; Chiu, Wen-Sheng

    2015-01-01

    Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks. PMID:25794159

  7. Postural strategy changes with fatigue of the lumbar extensor muscles.

    PubMed

    Wilson, Erin L; Madigan, Michael L; Davidson, Bradley S; Nussbaum, Maury A

    2006-04-01

    The purpose of this study was to investigate the effect of lumbar extensor fatigue on postural strategy in response to a balance perturbation. Anteriorly-directed force perturbations were applied to the upper back with a padded pendulum and attempted to challenge the postural control system without eliciting a stepping response. In three separate sessions, subjects were perturbed both before and after a fatiguing protocol that induced lumbar extensor fatigue to one of three different fatigue levels. Postural strategy was quantified using center of pressure position along with joint angles and joint torques for the ankle, knee, hip, and "low back" joints. Results showed both proactive and reactive changes in postural strategy. Proactive changes involved a slight anterior lean prior to the perturbation, and reactive changes were consistent with a shift toward more of a hip strategy with fatigue. In addition, results suggested that subjects classified as moving mostly at the hip prior to fatigue were more affected by fatigue compared to subjects classified as moving roughly equal amounts at the ankle and hip prior to fatigue. Increasing fatigue level exaggerated some, but not all, of the changes in postural strategy with fatigue. These findings illustrate that neuromuscular fatigue can influence postural strategy in response to a balance perturbation. PMID:16023345

  8. Effectiveness of a tailored neck training program on neck strength, movement, and fatigue in under-19 male rugby players: a randomized controlled pilot study

    PubMed Central

    Barrett, Matthew D; McLoughlin, Terence F; Gallagher, Kieran R; Gatherer, Don; Parratt, Michael TR; Perera, Jonathan R; Briggs, Tim WR

    2015-01-01

    Purpose To investigate the effect of a tailored neck muscle conditioning program on neck muscle strength, neck muscle fatigue, and range of neck movement in 16–18-year-old male rugby players. Materials and methods Thirty-four male rugby players were divided into forward and back playing positions and randomized within these groups. Seventeen players were randomly assigned to each group. The test group was given a tailored 6-week exercise regime based on their baseline measurements to be performed three times a week in addition to their normal training and playing. The control group trained and played as normal. The outcome measures used were cervical spine range of movement, neck strength, and neck muscle fatigability. Results There were no clinically relevant statistically significant differences between the two groups. Trends identified between the two groups suggest that a tailored neck exercise program increases neck strength, particularly neck extension, and increases resistance to fatigue, as well as influencing right- and left-sided neck muscle balance. A reduction in range of movement was also demonstrated in the test group. There was a great deal of variability in range of movement and strength within this age group. No previously undiagnosed neck conditions were detected, and there were no adverse events reported. Conclusion This study has shown that neck strength, range of movement, and susceptibility of the neck muscles to fatigue can be influenced using a focused neck training regime. It forms an important basis for a larger, multicenter study to ensure the neck is given due attention in rugby training and receives the same focus of conditioning as other parts of the body. PMID:25999771

  9. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb. PMID:24356522

  10. Kinesiology Tape or Compression Sleeve Applied to the Thigh Does Not Improve Balance or Muscle Activation Before or Following Fatigue.

    PubMed

    Cavanaugh, M Tyler; Quigley, Patrick J; Hodgson, Daniel D; Reid, Jonathan C; Behm, David G

    2016-07-01

    Cavanaugh, MT, Quigley, PJ, Hodgson, DD, Reid, JC, and Behm, DG. Kinesiology tape or compression sleeve applied to the thigh does not improve balance or muscle activation before or following fatigue. J Strength Cond Res 30(7): 1992-2000, 2016-Compression sleeves (CS) and kinesiology tape (KT) are purported to enhance proprioception, however, there is substantial conflict in the literature. Because the beneficial effects of CS and KT are more evident in the literature with recovery, the objective of this study was to examine the effects of CS and KT on balance under acute nonfatigued and postfatigued conditions. Using a within-subject, repeated-measures design, 12 university participants (5 females and 7 males) performed in a random order CS, KT, and Control conditions. Two trials of each test were conducted before the application of CS or KT (pretest 1), immediately after the application (pretest 2), with posttests at 1 and 10 minutes after 4 sets of unilateral Bulgarian squats to failure (1 minute rest between sets). Tests included a Y balance test (measures: distance reached by nondominant foot in anterior, posterior lateral, and posterior medial directions) and drop jump landing balance test from a 50-cm platform (measures: ground reaction force, electromyography, and center of pressure). The fatigue protocol induced 25.3% decrease in unilateral squat repetitions from set 1 to set 4. There were no significant condition main effects or interactions for any balance measure or EMG before or after fatigue. In conclusion, independent of fatigue, there was no significant effect of CS or KT on balance outcomes immediately and up to 10 minutes following the fatiguing intervention. Thus, nonfatigued or muscles weakened by fatigue did not benefit from CS and KT application. PMID:26705066

  11. The Development of Muscle Fatigue Suppresses Auditory Sensory Gating (P50) during Sustained Contraction

    PubMed Central

    Aleksandrov, Aleksander A.; Dmitrieva, Elena S.; Stankevich, Ludmila N.; Knyazeva, Veronika M.; Shestakova, Anna N.

    2016-01-01

    Our aim was to study the influence of fatigue development on sensory gating during a muscle load. The fatiguing task was sustained contraction of a handgrip dynamometer with 7 and 30% maximum voluntary contraction (MVC). The suppression of P50, an auditory event-related potential, was used as the sensory gating index in the paired-click paradigm with a 500 ms interstimulus interval; the difference between the P50 amplitudes of the first and the second stimuli of the pair was used as the sensory gating index. We found that the 30% MVC fatigue development strongly decreased sensory gating, sometimes totally suppressing it. We concluded that central fatigue impaired motor performance and strongly suppressed inhibitory processes, as shown by the decreased P50 amplitude to the second stimulus. Therefore, muscle central fatigue influences sensory gating, similar to schizophrenia spectrum disorders. PMID:27458348

  12. Effects of weld defects at root on rotating bending fatigue strength of small diameter socket welded pipe joints

    SciTech Connect

    Higuchi, Makoto; Nakagawa, Akira; Chujo, Noriyuki; Iida, Kunihiro; Matsuda, Fukuhisa; Sato, Masanobu

    1996-12-01

    Rotating bending fatigue tests were conducted on socket welded joints of a nominal diameter 20 mm, and effects of root defect and other various factors, including post-weld heat treatment (PWHT), pipe wall thickness, and socket wall thickness, were investigated. The socket joints exhibited, in the rotating bending fatigue mode, fatigue strengths that were markedly lower than the same 20 mm diameter joints in four-point bending fatigue. Also, where the latter specimens failed always at the toe, root-failures occurred in rotating bending fatigue. When PWHT`d, however, the fatigue strength showed a remarkable improvement, while the failure site reverted to toe. Thicker pipe walls and socket walls gave rise to higher fatigue strength. A formula relating the size of root defects to the fatigue strength reduction has been proposed.

  13. Assessment of Muscle Fatigue Associated with Prolonged Standing in the Workplace

    PubMed Central

    Omar, Abdul Rahman; Saman, Alias Mohd; Othman, Ibrahim

    2012-01-01

    Objectives The objectives of this study were to determine the psychological fatigue and analyze muscle activity of production workers who are performing processes jobs while standing for prolonged time periods. Methods The psychological fatigue experienced by the workers was obtained through questionnaire surveys. Meanwhile, muscle activity has been analyzed using surface electromyography (sEMG) measurement. Lower extremities muscles include: erector spinae, tibialis anterior, and gastrocnemius were concurrently measured for more than five hours of standing. Twenty male production workers in a metal stamping company participated as subjects in this study. The subjects were required to undergo questionnaire surveys and sEMG measurement. Results Results of the questionnaire surveys found that all subjects experienced psychological fatigue due to prolonged standing jobs. Similarly, muscle fatigue has been identified through sEMG measurement. Based on the non-parametric statistical test using the Spearman's rank order correlation, the left erector spinae obtained a moderate positive correlation and statistically significant (rs = 0.552, p < 0.05) between the results of questionnaire surveys and sEMG measurement. Conclusion Based on this study, the authors concluded that prolonged standing was contributed to psychological fatigue and to muscle fatigue among the production workers. PMID:22953228

  14. Diagnostic methods to assess inspiratory and expiratory muscle strength*

    PubMed Central

    Caruso, Pedro; de Albuquerque, André Luis Pereira; Santana, Pauliane Vieira; Cardenas, Leticia Zumpano; Ferreira, Jeferson George; Prina, Elena; Trevizan, Patrícia Fernandes; Pereira, Mayra Caleffi; Iamonti, Vinicius; Pletsch, Renata; Macchione, Marcelo Ceneviva; Carvalho, Carlos Roberto Ribeiro

    2015-01-01

    Impairment of (inspiratory and expiratory) respiratory muscles is a common clinical finding, not only in patients with neuromuscular disease but also in patients with primary disease of the lung parenchyma or airways. Although such impairment is common, its recognition is usually delayed because its signs and symptoms are nonspecific and late. This delayed recognition, or even the lack thereof, occurs because the diagnostic tests used in the assessment of respiratory muscle strength are not widely known and available. There are various methods of assessing respiratory muscle strength during the inspiratory and expiratory phases. These methods are divided into two categories: volitional tests (which require patient understanding and cooperation); and non-volitional tests. Volitional tests, such as those that measure maximal inspiratory and expiratory pressures, are the most commonly used because they are readily available. Non-volitional tests depend on magnetic stimulation of the phrenic nerve accompanied by the measurement of inspiratory mouth pressure, inspiratory esophageal pressure, or inspiratory transdiaphragmatic pressure. Another method that has come to be widely used is ultrasound imaging of the diaphragm. We believe that pulmonologists involved in the care of patients with respiratory diseases should be familiar with the tests used in order to assess respiratory muscle function.Therefore, the aim of the present article is to describe the advantages, disadvantages, procedures, and clinical applicability of the main tests used in the assessment of respiratory muscle strength. PMID:25972965

  15. Overexpression of antioxidant enzymes in diaphragm muscle does not alter contraction-induced fatigue or recovery.

    PubMed

    McClung, Joseph M; Deruisseau, Keith C; Whidden, Melissa A; Van Remmen, Holly; Richardson, Arlan; Song, Wook; Vrabas, Ioannis S; Powers, Scott K

    2010-01-01

    Low levels of reactive oxygen species (ROS) production are necessary to optimize muscle force production in unfatigued muscle. In contrast, sustained high levels of ROS production have been linked to impaired muscle force production and contraction-induced skeletal muscle fatigue. Using genetically engineered mice, we tested the hypothesis that the independent transgenic overexpression of catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD; SOD1) or manganese superoxide dismutase (MnSOD; SOD2) antioxidant enzymes would negatively affect force production in unfatigued diaphragm muscle but would delay the development of muscle fatigue and enhance force recovery after fatiguing contractions. Diaphragm muscle from wild-type littermates (WT) and from CAT, SOD1 and SOD2 overexpressing mice were subjected to an in vitro contractile protocol to investigate the force-frequency characteristics, the fatigue properties and the time course of recovery from fatigue. The CAT, SOD1 and SOD2 overexpressors produced less specific force (in N cm(-2)) at stimulation frequencies of 20-300 Hz and produced lower maximal tetanic force than WT littermates. The relative development of muscle fatigue and recovery from fatigue were not influenced by transgenic overexpression of any antioxidant enzyme. Morphologically, the mean cross-sectional area (in microm(2)) of diaphragm myofibres expressing myosin heavy chain type IIA was decreased in both CAT and SOD2 transgenic animals, and the percentage of non-contractile tissue increased in diaphragms from all transgenic mice. In conclusion, our results do not support the hypothesis that overexpression of independent antioxidant enzymes protects diaphragm muscle from contraction-induced fatigue or improves recovery from fatigue. Moreover, our data are consistent with the concept that a basal level of ROS is important to optimize muscle force production, since transgenic overexpression of major cellular antioxidants is associated with

  16. Anxiety's Effect on Muscle Activation and Fatigue in Trumpet Players: A Pilot Study.

    PubMed

    Rumsey, Hannah E; Aggarwal, Sahil; Hobson, Erin M; Park, Jeeyn; Pidcoe, Peter

    2015-12-01

    Due to the high percentage of musicians who suffer from musculoskeletal disorders, there is a need for more research in the field of music and medicine. The purpose of this study was to analyze the possible relationship between anxiety, muscle activation, and muscle fatigue in undergraduate trumpet players. Assessment tools included surface electromyography (sEMG) data, State Trait Anxiety Inventory (STAI), and Visual Analogue Scales (VAS) of perceived anxiety. Data were collected from 27 undergraduate music students across five universities (22 males, 5 females) aged 18 to 24 years. The three muscles targeted by the sEMG were the upper trapezius, sternocleidomastoid, and masseter muscles. Participants were randomly divided into two single-blinded groups: (1) anxiety-induction and (2) control. The anxiety-induction group was instructed to play as accurately as possible and informed that mistakes were being counted and evaluated, while the control group was instructed to play without any concern for possible mistakes. The anxiety-induction group was shown to have more masseter muscle activation than the control; the anxiety-induction group also displayed a higher fatigue rate in all three muscles versus the controls. Subjects with high perceived-anxiety (as measured by VAS) displayed higher masseter activation and higher fatigue rates in the upper trapezius and sternocleidomastoid than non-anxious participants. Despite these notable trends, there was no statistical significance for any of the muscle groups for muscle activation or fatigue. PMID:26614974

  17. Differential activation of myofibrils during fatigue in phasic skeletal muscle cells.

    PubMed

    Garcia, M C; Gonzalez-Serratos, H; Morgan, J P; Perreault, C L; Rozycka, M

    1991-10-01

    In fatigued muscles the T-system is swollen; thus the action potential may fail to travel along the T-system or the T-tubule terminal cisternae signal may fail to bring about TC Ca2+ release. This would lead to a decrease in the number of myofibrils activated and in force development, but if fatigue is the result of a generalized process, all the myofibrils would be affected equally leading to a lower activation of all of them. We have investigated this possibility in isolated twitch muscle fibres by giving them repetitive tetanic stimulations until fatigue developed. The behaviour of myofibrils was followed with cinemicrophotography. Before fatigue, no lack of shortening of myofibrils could be found. During fatigue groups of myofibrils became wavy. When exposed to caffeine, the wavy myofibrils disappeared and tension similar to the control developed. The tension-caffeine concentration relationship was shifted to the left after development of fatigue. In low Na+ solution fatigue developed faster and after reintroducing normal Ringer, tension recovered substantially. K-contractures were smaller during fatigue. These results indicate that in this type of fatigue, a step in the EC coupling chain of events is involved in its development. PMID:1939605

  18. Myotonometry as a Surrogate Measure of Muscle Strength

    NASA Technical Reports Server (NTRS)

    Ang, B. S.; Feeback, D. L.; Leonard, C. T.; Sykes, J.; Kruger, E.; Clarke, M. S. F.

    2007-01-01

    Space flight-induced muscle atrophy/neuromuscular degradation and the consequent decrements in crew-member performance are of increasing concern as mission duration lengthens, and planetary exploration after extended space flight is planned. Pre- to post-flight strength measures have demonstrated that specific countermeasures, such as resistive exercise, are effective at countering microgravity-induced muscle atrophy and preventing decrements in muscle strength. However, in-flight assessment/monitoring of exercise countermeasure effectiveness will be essential during exploration class missions due to their duration. The ability to modify an exercise countermeasure prescription based on such real-time information will allow each individual crew member to perform the optimal amount and type of exercise countermeasure to maintain performance. In addition, such measures can be used to determine if a crew member is physically capable of performing a particular mission-related task during exploration class missions. The challenges faced in acquiring such data are those common to all space operations, namely the requirement for light-weight, low power, mechanically reliable technologies that make valid measurements in microgravity, in this case of muscle strength/neuromuscular function. Here we describe a simple, light-weight, low power, non-invasive device, known as the Myotonometer, that measures tissue stiffness as an indirect measure of muscle contractile state and muscle force production. Repeat myotonometer measurements made at the same location on the surface of the rectis femoris muscle (as determined using a 3D locator device, SEM plus or minus 0.34 mm) were shown to be reproducible over time at both maximal voluntary contraction (MVC) and at rest in a total of 17 sedentary subjects assessed three times over a period of seven days. In addition, graded voluntary isometric force production (i.e. 20%, 40%, 60%, 80% & 100% of MVC) during knee extension was shown to

  19. Detection of skeletal muscle fatigue in patients with heart failure using electromyography.

    PubMed

    Wilson, J R; Mancini, D M; Simson, M

    1992-08-15

    Patients with heart failure frequently report that leg fatigue limits maximal exercise capacity. However, objective documentation of muscle fatigue has not been obtained in such patients. In normal subjects, muscle fatigue during constant work load exercise is associated with an increase in electrical activity generated per contraction due to use of additional muscle fibers to compensate for fiber fatigue. The present study was performed to determine if this approach can be used to document muscle fatigue in patients with heart failure. Vastus lateralis surface electromyograms were monitored in 8 ambulatory patients with nonedematous heart failure and 6 normal subjects during maximal bicycle exercise (20 W increments every 2 minutes). The electromyogram was stored on tape and subsequently analyzed for integrated root-mean-square voltage/contraction (iRMSV). At each work load, the iRMSV of the first and last 30 seconds of the work load were compared. The maximal work load achieved by patients with heart failure was significantly lower (73 +/- 22 W) than that by normal subjects (150 +/- 15 W; p less than 0.01). Both groups had no significant difference between the initial and final iRMSV at submaximal work loads. However, during the 2 highest work loads, both groups reported leg fatigue and had significant increases in iRMSV, consistent with muscle fiber fatigue (maximal work load: 259 +/- 59 to 279 +/- 58 mv.ms [normals] vs 258 +/- 94 to 283 +/- 93 mv.ms [heart failure]; p less than 0.03). The data indicate that the surface electromyogram can be used to detect skeletal muscle fatigue in patients with heart failure.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1642187

  20. The Pilates Method increases respiratory muscle strength and performance as well as abdominal muscle thickness.

    PubMed

    Giacomini, Mateus Beltrame; da Silva, Antônio Marcos Vargas; Weber, Laura Menezes; Monteiro, Mariane Borba

    2016-04-01

    The aim of this study was to verify the effects of the Pilates Method (PM) training program on the thickness of the abdominal wall muscles, respiratory muscle strength and performance, and lung function. This uncontrolled clinical trial involved 16 sedentary women who were assessed before and after eight weeks of PM training. The thickness of the transversus abdominis (TrA), internal oblique (IO) and external oblique (EO) muscles was assessed. The respiratory muscle strength was assessed by measuring the maximum inspiratory (MIP) and expiratory (MEP) pressure. The lung function and respiratory muscle performance were assessed by spirometry. An increase was found in MIP (p = 0.001), MEP (p = 0.031), maximum voluntary ventilation (p = 0.020) and the TrA (p < 0.001), IO (p = 0.002) and EO (p < 0.001) thickness after the PM program. No alterations in lung function were found. These findings suggest that the PM program promotes abdominal wall muscle hypertrophy and an increase in respiratory muscle strength and performance, preventing weakness in abdominal muscles and dysfunction in ventilatory mechanics, which could favor the appearance of illnesses. PMID:27210841

  1. Fatigue detection in strength training using three-dimensional accelerometry and principal component analysis.

    PubMed

    Brown, Niklas; Bichler, Sebastian; Fiedler, Meike; Alt, Wilfried

    2016-06-01

    Detection of neuro-muscular fatigue in strength training is difficult, due to missing criterion measures and the complexity of fatigue. Thus, a variety of methods are used to determine fatigue. The aim of this study was to use a principal component analysis (PCA) on a multifactorial data-set based on kinematic measurements to determine fatigue. Twenty participants (strength training experienced, 60% male) executed 3 sets of 3 exercises with 50 (12 repetitions), 75 (12 repetitions) and 100%-12 RM (RM). Data were collected with a 3D accelerometer and analysed by a newly developed algorithm to evaluate parameters for each repetition. A PCA with six variables was carried out on the results. A fatigue factor was computed based on the loadings on the first component. One-way ANOVA with Bonferroni post hoc analysis was calculated to test for differences between the intensity levels. All six input variables had high loadings on the first component. The ANOVA showed a significant difference between intensities (p < 0.001). Post-hoc analysis revealed a difference between 100% and the lower intensities (p < 0.05) and no difference between 50 and 75%-12RM. Based on these results, it is possible to distinguish between fatigued and non-fatigued sets of strength training. PMID:27111008

  2. Residual strength of five boron/aluminum laminates with crack-like notches after fatigue loading

    NASA Technical Reports Server (NTRS)

    Simonds, R. A.

    1984-01-01

    Boron/aluminum specimens were made with crack-like slits in the center and with various proportions of 0 and + or - 45 deg plies. They were fatigue loaded and then fractured to determine their residual strengths. The fatigue loads were generally in the range of 60 to 80 percent of the static tensile strength of the specimen as determined from a previous study, and the stress ratio was .05. For virtually all of the specimens the fatigue loading was continued for 100,000 cycles. The specimens were radiographed after the fatigue loading to determine the nature of the fatigue damage. A few specimens were sectioned and examined in a scanning electron microscope after being radiographed in order to verify the interpretation of the radiographs and also to get a better insight into the nature of the fatigue damage. The results indicate that the fatiguing does not significantly affect the strength of the specimens tested. The results of the radiography and of the scanning electron microscopy indicate that the 45 deg plies suffer extensive damage in the form of split and broken fibers and matrix cracking in the vicinity of the ends of the split. By contrast, the only significant damage to the 0 deg plies was a single 0 deg matric crack growing from the ends of the slit and between the 0 deg fibers.

  3. Residual strength of five boron/aluminum laminates with crack-like notches after fatigue loading

    NASA Technical Reports Server (NTRS)

    Simonds, R. A.

    1986-01-01

    Boron/aluminum specimens were made with crack-like slits in the center and with various proportions of 0 and + or - 45 deg plies. They were fatigue loaded and then fractured to determine their residual strengths. The fatigue loads were generally in the range of 60 to 80 percent of the static tensile strength of the specimen as determined from a previous study, and the stress ratio was .05. For virtually all of the specimens the fatigue loading was continued for 100,000 cycles. The specimens were radiographed after the fatigue loading to determine the nature of the fatigue damage. A few specimens were sectioned and examined in a scanning electron microscope after being radiographed in order to verify the interpretation of the radiographs and also to get a better insight into the nature of the fatigue damage. The results indicate that the fatiguing does not significantly affect the strength of the specimens tested. The results of the radiography and of the scanning electron microscopy indicate that the 45 deg plies suffer extensive damage in the form of split and broken fibers and matrix cracking in the vicinity of the ends of the split. By contrast, the only significant damage to the 0 deg plies was a single 0 deg matric crack growing from the ends of the slit and between the 0 deg fibers.

  4. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats

    NASA Technical Reports Server (NTRS)

    Fell, R. D.; Gladden, L. B.; Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    The effects of hypokinesia/hypodynamia (H/H) on the fatigability and contractile properties of the rat soleus (S) and gastrocnemius (G) muscles have been investigated experimentally. Whole body suspension for one week was used to induce H/H, and fatigue was brought on by train stimulation for periods of 45 and 16 minutes. Following stimulation, rapid rates of fatigue were observed in the G-muscles of the suspended rats, while minimal fatigue was observed in the S-muscles. The twitch and tetanic contractile properties of the muscles were measured before and after train stimulation. It is found that H/H suspension increased twitch tension in the G-muscles, but did not change any contractile properties in the S-muscles. The peak twitch, train, tetanic tensions and time to peak were unchanged in the S-muscles of the suspended rats. On the basis of the experimental results, it is concluded that 1 wk of muscle atropy induced by H/H significantly increases fatigability in G-muscles, but does not affect the contractile properties of fast-twitch and slow-twitch muscles.

  5. Degradation in the Fatigue Strength of Dentin by Cutting, Etching and Adhesive Bonding

    PubMed Central

    Lee, H.-H.; Majd, H.; Orrego, S.; Majd, B.; Romberg, E.; Mutluay, M.M.; Arola, D.

    2014-01-01

    The processes involved in placing resin composite restorations may degrade the fatigue strength of dentin and increase the likelihood of fractures in restored teeth. Objective The objective of this study was to evaluate the relative changes in strength and fatigue behavior of dentin caused by bur preparation, etching and resin bonding procedures using a 3-step system. Methods Specimens of dentin were prepared from the crowns of unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. Four treated groups were prepared including dentin beams subjected to a burr treatment only with a conventional straight-sided bur, or etching treatment only. An additional treated group received both bur and etching treatments, and the last was treated by bur treatment and etching, followed by application of a commercial resin adhesive. The control group consisted of “as sectioned” dentin specimens. Results Under quasi-static loading to failure there was no significant difference between the strength of the control group and treated groups. Dentin beams receiving only etching or bur cutting treatments exhibited fatigue strengths that were significantly lower (p≤0.0001) than the control; there was no significant difference in the fatigue resistance of these two groups. Similarly, the dentin receiving bur and etching treatments exhibited significantly lower (p≤0.0001) fatigue strength than that of the control, regardless of whether an adhesive was applied. Significance The individual steps involved in the placement of bonded resin composite restorations significantly decrease the fatigue strength of dentin, and application of a bonding agent does not increase the fatigue strength of dentin. PMID:24985539

  6. Changes in Muscle Activity and Kinematics of Highly Trained Cyclists During Fatigue

    PubMed Central

    Dingwell, Jonathan B.; Joubert, Jason E.; Diefenthaeler, Fernando; Trinity, Joel D.

    2010-01-01

    Muscle fatigue may alter kinematics and contribute to repetitive strain injuries. This study quantified how both localized muscle fatigue and movement kinematics change over time during exhaustive cycling. Seven highly trained cyclists rode a stationary bicycle ergometer at 100% of their VO2max until voluntary exhaustion. Cycling kinematics and EMG activity from select lower extremity muscles were recorded. Cross-correlations were computed to quantify how EMG median frequencies (MDF) changed with changes in movement kinematics. All athletes maintained both cadence and power output for ~90% of the trial duration. Significant sustained muscle fatigue occurred in 18 of 28 muscles tested, most prominently in the biceps femoris (p = 0.020) and gastrocnemius (p = 0.018). Kinematics and MDF both fluctuated non-monotonically as subjects fatigued. Changes in MDF significantly preceded changes in mean trunk lean (p = 0.009) and hip angles (p = 0.025), and trunk lean range of motion (p = 0.029). Fluctuations in MDF were positively correlated with fluctuations in mean trunk lean (p = 0.009) and knee splay angles (p = 0.011), and with trunk lean (p = 0.002) and ankle (p = 0.001) range of motion. These results therefore establish a direct link between changes in muscle fatigue state and subsequent changes in movement kinematics during cycling.. PMID:18990638

  7. A Wireless sEMG Recording System and Its Application to Muscle Fatigue Detection

    PubMed Central

    Chang, Kang-Ming; Liu, Shin-Hong; Wu, Xuan-Han

    2012-01-01

    Surface electromyography (sEMG) is an important measurement for monitoring exercise and fitness. Because if its high sampling frequency requirement, wireless transmission of sEMG data is a challenge. In this article a wireless sEMG measurement system with a sampling frequency of 2 KHz is developed based upon a MSP 430 microcontroller and Bluetooth transmission. Standard isotonic and isometric muscle contraction are clearly represented in the receiving user interface. Muscle fatigue detection is an important application of sEMG. Traditional muscle fatigue is detected from the median frequency of the sEMG power spectrum. The regression slope of the linear regression of median frequency is an important muscle fatigue index. A more negative slope value represents a higher muscle fatigue condition. To test the system performance, muscle fatigue detection was examined by having subjects run on a pedaled-multifunctional elliptical trainer for approximately 30 minutes at three loading levels. Ten subjects underwent a total of 60 exercise sessions to provide the experimental data. Results showed that the regression slope gradually decreases as expected, and there is a significant gender difference. PMID:22368481

  8. Levator plate upward lift and levator muscle strength

    PubMed Central

    Rostaminia, Ghazaleh; Peck, Jennifer; Quiroz, Lieschen; Shobeiri, S. Abbas

    2016-01-01

    Objective The aim of study was to compare digital palpation with the levator plate lift measured by endovaginal and transperineal dynamic ultrasound. Methods Dynamic transperineal and endovaginal ultrasound were performed as part of multicompartmental pelvic floor functional assessment. Patients were instructed to perform Kegels while a probe captured the video clip of the levator plate movement at rest and during contraction in 2D mid-sagittal posterior view. We measured the distance between the levator plate and the probe on endovaginal ultrasound as well as the distance between the levator plate and the gothic arch of the pubis in transperineal ultrasound. The change in diameter (lift) and a levator plate lift ratio (lift / rest) x 100) were calculated. Pelvic floor muscle strength was assessed by digital palpation and divided into functional and non-functional groups using the Modified Oxford Scale (MOS). Mean differences in levator plate upward lifts were compared by MOS score using student t-tests and analysis of variance (ANOVA). Results 74 women were available for analysis. The mean age was 55 (SD±11.9). When measured by vaginal dynamic ultrasound, mean values of the lift and lift/rest ratio increased with increasing MOS score (ANOVA p=0.09 and p=0.04, respectively). When MOS scores were categorized to represent non-functional (MOS 0-1) and functional (MOS 2-5) muscle strength groups, the mean values of the lift (3.2 mm vs. 4.6 mm, p=0.03) and lift/rest ratio (13% vs 20%, p=0.01) were significantly higher in women with functional muscle strength. All patients with ≥ 30% lift detected by vaginal ultrasound had functional muscle strength. Conclusions Greater levator plate lift ratio detected by dynamic endovaginal ultrasound was associated with higher muscle strength as determined by MOS. This novel measurement can be incorporated into ultrasound evaluation of the levator ani function. PMID:26333568

  9. Degradation of residual strength in SCS-6/Ti-15-3 Due to fully reversed fatigue

    NASA Astrophysics Data System (ADS)

    Calcaterra, J. R.; Mall, S.; Coghlan, S. C.

    1999-02-01

    Little attention has been given to residual strength degradation in titanium matrix composites (TMCs) after exposure to fatigue loading. To address this problem, fatigue tests on SCS-6/Ti-15-3 were performed to investigate the fatigue life and residual strength behavior of TMCs with different fiber volume fractions. Results indicate that fiber volume fraction seems to have an effect on both of these quantities. Lower fiber percentages result in a material where the characteristics of the matrix, such as hardening or cracking, play a much larger role in the composite response. Fatigue lives were not affected by fiber volume fraction at higher strain ranges, but lower fiber volume fractions resulted in shorter fatigue lives at lower strain values. Also, a slight increase in residual strength occurred up to 75 pct of fatigue life, for the lower-fiber volume fraction material. Despite these distinctions between specimens with different fiber contents, all specimens tested retained the majority of their strength prior to failure.

  10. The value of multiple tests of respiratory muscle strength

    PubMed Central

    Steier, Joerg; Kaul, Sunny; Seymour, John; Jolley, Caroline; Rafferty, Gerrard; Man, William; Luo, Yuan M; Roughton, Michael; Polkey, Michael I; Moxham, John

    2007-01-01

    Background Respiratory muscle weakness is an important clinical problem. Tests of varying complexity and invasiveness are available to assess respiratory muscle strength. The relative precision of different tests in the detection of weakness is less clear, as is the value of multiple tests. Methods The respiratory muscle function tests of clinical referrals who had multiple tests assessed in our laboratories over a 6‐year period were analysed. Thresholds for weakness for each test were determined from published and in‐house laboratory data. The patients were divided into three groups: those who had all relevant measurements of global inspiratory muscle strength (group A, n = 182), those with full assessment of diaphragm strength (group B, n = 264) and those for whom expiratory muscle strength was fully evaluated (group C, n = 60). The diagnostic outcome of each inspiratory, diaphragm and expiratory muscle test, both singly and in combination, was studied and the impact of using more than one test to detect weakness was calculated. Results The clinical referrals were primarily for the evaluation of neuromuscular diseases and dyspnoea of unknown cause. A low maximal inspiratory mouth pressure (Pimax) was recorded in 40.1% of referrals in group A, while a low sniff nasal pressure (Sniff Pnasal) was recorded in 41.8% and a low sniff oesophageal pressure (Sniff Poes) in 37.9%. When assessing inspiratory strength with the combination of all three tests, 29.6% of patients had weakness. Using the two non‐invasive tests (Pimax and Sniff Pnasal) in combination, a similar result was obtained (low in 32.4%). Combining Sniff Pdi (low in 68.2%) and Twitch Pdi (low in 67.4%) reduced the diagnoses of patients with diaphragm weakness to 55.3% in group B. 38.3% of the patients in group C had expiratory muscle weakness as measured by maximum expiratory pressure (Pemax) compared with 36.7% when weakness was diagnosed by cough gastric pressure (Pgas), and 28.3% when

  11. The influence of tensile fatigue damage on residual compressive strength of woven composites

    SciTech Connect

    Mitrovic, M.; Carman, G.P.

    1995-12-31

    The long term mechanical fatigue of a Celion G30-500/PMR-15 woven composite system is investigated to study the interrelationship between thermo-mechanical properties, namely the thermal expansion coefficient (TEC) and the compressive strength. Residual compressive strength measurements (IITRI fixture) conducted on specimens subjected to tension-tension fatigue cycling indicate that this material property is sensitive to cracks and delaminations which form during mechanical cycling. Measured compressive strength degradation are as large as 49% for this material undergoing mechanical fatigue cycling with TEC degradation as large as 61%. Experimental results show that a correlation exists between TEC measurements and compressive strength. This correlation suggests that TEC measurements may be used as a damage evaluation technique.

  12. A study of stiffness, residual strength and fatigue life relationships for composite laminates

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.; Crossman, F. W.

    1983-01-01

    Qualitative and quantitative exploration of the relationship between stiffness, strength, fatigue life, residual strength, and damage of unnotched, graphite/epoxy laminates subjected to tension loading. Clarification of the mechanics of the tension loading is intended to explain previous contradictory observations and hypotheses; to develop a simple procedure to anticipate strength, fatigue life, and stiffness changes; and to provide reasons for the study of more complex cases of compression, notches, and spectrum fatigue loading. Mathematical models are developed based upon analysis of the damage states. Mathematical models were based on laminate analysis, free body type modeling or a strain energy release rate. Enough understanding of the tension loaded case is developed to allow development of a proposed, simple procedure for calculating strain to failure, stiffness, strength, data scatter, and shape of the stress-life curve for unnotched laminates subjected to tension load.

  13. Photobiomodulation delays the onset of skeletal muscle fatigue in a dose-dependent manner.

    PubMed

    Larkin-Kaiser, Kelly A; Borsa, Paul A; Baweja, Harsimran S; Moore, Molly A; Tillman, Mark D; George, Steven Z; Christou, Evangelos A

    2016-09-01

    Photobiomodulation (PBM) therapy has been implicated as an effective ergogenic aid to delay the onset of muscle fatigue. The purpose of this study was to examine the dose-response ergogenic properties of PBM therapy and its ability to prolong time to task failure by enhancing muscle activity and delaying the onset of muscle fatigue using a static positioning task. Nine participants (24.3 ± 4.9 years) received three doses of near-infrared (NIR) light therapy randomly on three separate sessions (sham, 240, and 480 J). For the positioning task, participants held a 30 % one-repetition maximum (1-RM) load using the index finger until volitional fatigue. Surface electromyography (sEMG) of the first dorsal interosseous muscle was recorded for the length of the positioning task. Outcomes included time to task failure (TTF), muscle fatigue, movement accuracy, motor output variability, and muscle activity (sEMG). The 240-J dose significantly extended TTF by 26 % (p = 0.032) compared with the sham dose. TTF for the 240-J dose was strongly associated with a decrease in muscle fatigue (R (2) = 0.54, p = 0.024). Our findings show that a 240-J dose of NIR light therapy is efficacious in delaying the onset and extent of muscle fatigue during submaximal isometric positioning tasks. Our findings suggest that NIR light therapy may be used as an ergogenic aid during functional tasks or post-injury rehabilitation. PMID:27305924

  14. Vibration-induced muscle fatigue, a possible contribution to musculoskeletal injury.

    PubMed

    Adamo, Diane E; Martin, Bernard J; Johnson, Peter W

    2002-11-01

    Localized muscle fatigue resulting from 30-min sustained and intermittent grip exertions of 5% maximal voluntary contraction (MVC) with and without hand-vibration exposure (10 Hz, 7 mm displacement amplitude) was investigated. Muscle fatigue was quantified by the magnitude of the twitch force elicited in the right flexor digitorum superficialis muscle of the long finger using the low-frequency fatigue (LFF) method. The influence of vibration in the sustained grip exertion condition exacerbates fatigue as seen with the reduction in twitch force 30-60 min post-work task. Intermittent low grip force exertion conditions with and without vibration exposure show negligible fatigue, suggesting the benefit of rest in the work cycle. Perception of muscle fatigue was dissociated from the objective measure of twitch force, suggesting that LFF was not perceived. The presence of LFF and the lack of perception of LFF may increase the risk for the development of musculoskeletal disorders. The findings of this study may apply to the design of the work cycles and tasks that require the use of vibratory tools. PMID:12436281

  15. Fatigue strength and evaluation of creep damage during fatigue cycling of Inconel Alloy 625

    SciTech Connect

    Purohit, A.; Thiele, U.; O'Donnell, J.E.

    1983-06-01

    Evaluation of high strain rate and corresponding low strain rate tests indicate no creep-fatigue interaction. For T greater than or equal to 900/sup 0/C, creep damage predominates during the cyclic straining. For tests in which creep damage is largely suppressed - for example in high-frequency reverse bend fatigue tests - the cycles to fatigue failure were found to increase directly with the degree of suppression of creep damage. However, a practical limit exists for suppression of creep damage at 1100/sup 0/C; at that temperature, even for the high frequency reverse bend tests (approx. 1000 rpm with ..sigma.. = 12.3% s/sup -1/), the creep damage predominated over the fatigue damage.

  16. Effect of expiratory muscle strength training on elderly cough function.

    PubMed

    Kim, Jaeock; Davenport, Paul; Sapienza, Christine

    2009-01-01

    Age-related loss of muscle strength, known as sarcopenia, in the expiratory muscles, along with reductions in lung elastic recoil and chest wall compliance decreases the intrathoacic airway pressure as well as expiratory flow rates and velocity, greatly impacting an elderly person's ability to generate the forces essential for cough. This study examined the effects of a 4-week expiratory muscle strength training (EMST) program on maximum expiratory pressure (MEP) and cough function in 18 healthy but sedentary elderly adults. MEP significantly increased after the EMST program from 77.14+/-20.20 to 110.83+/-26.11cmH(2)O. Parameters measured during reflexive coughs produced by capsaicin challenge, indicated that compression phase duration significantly decreased (from 0.35+/-0.19 to 0.16+/-0.17s), peak expiratory flow rate decreased (from 4.98+/-2.18 to 8.00+/-3.05l/s) and post-peak plateau integral amplitude significantly increased (from 3.49+/-2.46 to 6.83+/-4.16l/ss) with the EMST program. EMST seems to be an effective program to increase the expiratory muscle strength in the sedentary elderly, which contribute to an enhanced cough function. PMID:18457885

  17. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications.

    PubMed

    Li, Fuping; Li, Jinshan; Kou, Hongchao; Zhou, Lian

    2016-03-01

    In this paper, porous Ti6Al4V alloys for biomedical applications were fabricated by diffusion bonding of alloy meshes. The compression-compression fatigue behavior was studied. It results that porous Ti6Al4V alloys show enhanced normalized fatigue strength which is in the range of 0.5-0.55 at 10(6)cycles. The porosity has some effect on the absolute S-N curves but minor effect on the normalized S-N curves. The relationship between strain per cycle and number of cycles shows three distinct stages and the value of strain per cycle is constant in stage II. The reasons for the higher normalized fatigue strength of porous Ti6Al4V alloys are discussed based on the fatigue crack initiation and propagation. PMID:26706555

  18. Kinesthetic imagery training of forceful muscle contractions increases brain signal and muscle strength.

    PubMed

    Yao, Wan X; Ranganathan, Vinoth K; Allexandre, Didier; Siemionow, Vlodek; Yue, Guang H

    2013-01-01

    The purpose of this study was to compare the effect of training using internal imagery (IMI; also known as kinesthetic imagery or first person imagery) with that of external imagery (EMI; also known as third-person visual imagery) of strong muscle contractions on voluntary muscle strengthening. Eighteen young, healthy subjects were randomly assigned to one of three groups (6 in each group): internal motor imagery (IMI), external motor imagery (EMI), or a no-practice control (CTRL) group. Training lasted for 6 weeks (~15 min/day, 5 days/week). The participants' right arm elbow-flexion strength, muscle electrical activity, and movement-related cortical potential (MRCP) were evaluated before and after training. Only the IMI group showed significant strength gained (10.8%) while the EMI (4.8%) and CTRL (-3.3%) groups did not. Only the IMI group showed a significant elevation in MRCP on scalp locations over both the primary motor (M1) and supplementary motor cortices (EMI group over M1 only) and this increase was significantly greater than that of EMI and CTRL groups. These results suggest that training by IMI of forceful muscle contractions was effective in improving voluntary muscle strength without physical exercise. We suggest that the IMI training likely strengthened brain-to-muscle (BTM) command that may have improved motor unit recruitment and activation, and led to greater muscle output. Training by IMI of forceful muscle contractions may change the activity level of cortical motor control network, which may translate into greater descending command to the target muscle and increase its strength. PMID:24133427

  19. Weibull models of fracture strengths and fatigue behavior of dental resins in flexure and shear.

    PubMed

    Baran, G R; McCool, J I; Paul, D; Boberick, K; Wunder, S

    1998-01-01

    In estimating lifetimes of dental restorative materials, it is useful to have available data on the fatigue behavior of these materials. Current efforts at estimation include several untested assumptions related to the equivalence of flaw distributions sampled by shear, tensile, and compressive stresses. Environmental influences on material properties are not accounted for, and it is unclear if fatigue limits exist. In this study, the shear and flexural strengths of three resins used as matrices in dental restorative composite materials were characterized by Weibull parameters. It was found that shear strengths were lower than flexural strengths, liquid sorption had a profound effect on characteristic strengths, and the Weibull shape parameter obtained from shear data differed for some materials from that obtained in flexure. In shear and flexural fatigue, a power law relationship applied for up to 250,000 cycles; no fatigue limits were found, and the data thus imply only one flaw population is responsible for failure. Again, liquid sorption adversely affected strength levels in most materials (decreasing shear strengths and flexural strengths by factors of 2-3) and to a greater extent than did the degree of cure or material chemistry. PMID:9730059

  20. Correlation between muscle electrophysiology and strength after fibular nerve injury.

    PubMed

    Won, Yu Hui; Kim, Kang-Won; Choi, Jun Tak; Ko, Myoung-Hwan; Park, Sung-Hee; Seo, Jeong-Hwan

    2016-08-01

    Muscle strength measurement is important when evaluating the degree of impairment in patients with nerve injury. However, accurate and objective evaluation may be difficult in patients with severe pain or those who intentionally try to avoid full exertion. We investigated the usefulness of the affected-to-unaffected side electrophysiological parameter ratios as a measure of objective ankle dorsiflexion (ADF) strength in patients with unilateral fibular nerve injury (FNI). ADF strength was measured in patients with FNI via handheld dynamometer and manual muscle test (MMT). Fibular nerve compound muscle action potential (CMAP) amplitude and latency and ADF strength of the affected side were presented as ratios to the corresponding measurements of the unaffected side. We analysed the correlation of the CMAP ratio with the ADF strength ratio using a dynamometer and compared the CMAP ratios according to MMT grade. Fifty-two patients with FNI were enrolled. The mean CMAP latency ratio did not differ between MMT groups (p = 0.573). The CMAP amplitude ratio proportionally increased with the quantified ADF strength ratio via dynamometer increase (ρ = 0.790; p < 0.001), but the CMAP latency ratio and the quantified ADF strength ratio did not significantly correlate (ρ = 0.052; p = 0.713). The average CMAP amplitude ratio significantly differed between MMT groups (p < 0.001), and post hoc tests showed significant differences in all paired comparisons except of Fair and Good grades (p = 0.064). Electrophysiological parameter ratio, such as the affected-to-unaffected side CMAP amplitude ratio, might be sensitive parameters for ADF power estimation after FNI. PMID:27142447

  1. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  2. Factors that affect the fatigue strength of power transmission shafting and their impact on design

    NASA Technical Reports Server (NTRS)

    Leowenthal, S. H.

    1986-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  3. Effects of fatigue duration and muscle type on voluntary and evoked contractile properties.

    PubMed

    Behm, D G; St-Pierre, D M

    1997-05-01

    The effects of fatigue duration and muscle type on voluntary and evoked contractile properties were investigated with an isometric, intermittent, submaximal fatigue protocol. Four groups performed contractions of the plantar flexors and quadriceps at various intensities to produce long (LDF; 19 min 30 s)- and short-duration fatigue (SDF; 4 min 17 s). The LDF group had a significantly greater decrease in muscle activation than did the SDF group (12 vs. 5.8%) during recovery, although there was no difference in the impairment of maximum voluntary contraction force beyond 30 s of recovery. The significant decrease in the compound muscle action potential of the LDF group (M-wave amplitude; 14.7%) contrasted with the M-wave potentiation of the SDF group (15.7%), suggesting changes in membrane excitation may affect LDF. The quadriceps group performing contractions at 50% MVC experienced a smaller decrease in agonist electromyograph activity than did other groups, indicating both muscle and fatigue duration specificity. Impairments in excitation-contraction coupling were indicated by changes in quadriceps peak twitch and time to peak twitch while decreases in PF M-wave amplitudes suggested a disruption of membrane potentials. Results suggest that fatigue mechanisms may be duration (activation, half relaxation time) or muscle specific (electromyograph, twitch torque) or a combination of both (M wave, time to peak twitch torque). PMID:9134916

  4. Evaluation of localized muscle fatigue using power spectral density analysis of the electromyogram

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.

    1974-01-01

    Surface electromyograms (EMGs) taken from three upper torso muscles during a push-pull task were analyzed by a power spectral density technique to determine the operational feasibility of the technique for identifying changes in the EMGs resulting from muscular fatigue. The EMGs were taken from four subjects under two conditions (1) in shirtsleeves and (2) in a pressurized space suit. This study confirmed that frequency analysis of dynamic muscle activity is capable of providing reliable data for many industrial applications where fatigue may be of practical interest. The results showed significant effects of the pressurized space suit on the pattern of shirtsleeve fatigue responses of the muscles. The data also revealed (1) reliable differences between muscles in fatigue-induced responses to various locations in the reach envelope at which the subjects were required to perform the push-pull exercise and (2) the differential sensitivity of muscles to the various reach positions in terms of fatigue-related shifts in EMG power.

  5. Alternating activation is related to fatigue in lumbar muscles during sustained sitting.

    PubMed

    Ringheim, Inge; Indahl, Aage; Roeleveld, Karin

    2014-06-01

    The aim of this study was to investigate the relation between variability in muscle activity and fatigue during a sustained low level contraction in the lumbar muscles. Twenty-five healthy participants (13 men 12 women) performed a 30min sitting task with 5 degrees inclination of the trunk. Surface electromyographic (EMG) signals were recorded bilaterally from the lumbar muscles with 2 high density surface EMG grids of 9×14 electrodes. Median frequency (MDF) decrease, amplitude (RMS) increase and the rating of perceived exertion (RPE) were used as fatigue indices. Alternating activation and spatial and temporal variability were computed and relations with the fatigue indices were explored. During sitting, the mono- and bipolar RMS slightly increased while the MDF remained unchanged indicating no systematic muscle fatigue, although the average RPE increased from 6 to 13 on a scale ranging between 6 and 20. Higher frequency of alternating activation between the left and right side was associated with increased RPE (p=0.03) and decreased MDF (p=0.05). A tendency in the same direction was seen between increased spatial and temporal variation within the grids and increased RPE and decreased MDF. Present findings provide evidence for a relationship between variability in muscle activity and fatigue. PMID:24594079

  6. Bone mineral density, muscle strength, and recreational exercise in men

    NASA Technical Reports Server (NTRS)

    Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.

    1992-01-01

    Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).

  7. Fatigue strength of common tibial intramedullary nail distal locking screws

    PubMed Central

    Griffin, Lanny V; Harris, Robert M; Zubak, Joseph J

    2009-01-01

    Background Premature failure of either the nail and/or locking screws with unstable fracture patterns may lead to angulation, shortening, malunion, and IM nail migration. Up to thirty percent of all unreamed nail locking screws can break after initial weight bearing is allowed at 8–10 weeks if union has not occurred. The primary problem this presents is hardware removal during revision surgery. The purposes of our study was to evaluate the relative fatigue resistance of distal locking screws and bolts from representative manufacturers of tibial IM nail systems, and develop a relative risk assessment of screws and materials used. Evaluations included quantitative and qualitative measures of the relative performance of these screws. Methods Fatigue tests were conducted to simulate a comminuted fracture that was treated by IM nailing assuming that all load was carried by the screws. Each screw type was tested ten times in a single screw configuration. One screw type was tested an additional ten times in a two-screw parallel configuration. Fatigue tests were performed using a servohydraulic materials testing system and custom fixturing that simulated screws placed in the distal region of an appropriately sized tibial IM nail. Fatigue loads were estimated based on a seventy-five kilogram individual at full weight bearing. The test duration was one million cycles (roughly one year), or screw fracture, whichever occurred first. Failure analysis of a representative sample of titanium alloy and stainless steel screws included scanning electron microscopy (SEM) and quantitative metallography. Results The average fatigue life of a single screw with a diameter of 4.0 mm was 1200 cycles, which would correspond roughly to half a day of full weight bearing. Single screws with a diameter of 4.5 mm or larger have approximately a 50 percent probability of withstanding a week of weight bearing, whereas a single 5.0 mm diameter screw has greater than 90 percent probability of

  8. Computation and Evaluation of Features of Surface Electromyogram to Identify the Force of Muscle Contraction and Muscle Fatigue

    PubMed Central

    Arjunan, Sridhar P.; Kumar, Dinesh K.; Naik, Ganesh

    2014-01-01

    The relationship between force of muscle contraction and muscle fatigue with six different features of surface electromyogram (sEMG) was determined by conducting experiments on thirty-five volunteers. The participants performed isometric contractions at 50%, 75%, and 100% of their maximum voluntary contraction (MVC). Six features were considered in this study: normalised spectral index (NSM5), median frequency, root mean square, waveform length, normalised root mean square (NRMS), and increase in synchronization (IIS) index. Analysis of variance (ANOVA) and linear regression analysis were performed to determine the significance of the feature with respect to the three factors: muscle force, muscle fatigue, and subject. The results show that IIS index of sEMG had the highest correlation with muscle fatigue and the relationship was statistically significant (P < 0.01), while NSM5 associated best with level of muscle contraction (%MVC) (P < 0.01). Both of these features were not affected by the intersubject variations (P > 0.05). PMID:24995275

  9. Fatigue reliability based on residual strength model with hybrid uncertain parameters

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Qiu, Zhi-Ping

    2012-02-01

    The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model. By solving the non-probabilistic set-based reliability problem and analyzing the reliability with randomness, the fatigue reliability with hybrid parameters can be obtained. The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters. A comparison among the presented hybrid model, non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples. The results show that the presented hybrid model, which can ensure structural security, is effective and practical.

  10. The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels

    NASA Astrophysics Data System (ADS)

    Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.

    2015-09-01

    The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.

  11. Fatigue strength improvement of MIG-welded joint by shot peening

    NASA Astrophysics Data System (ADS)

    Azida Che Lah, Nur; Ali, Aidy

    2011-02-01

    In this study, the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel MIG-welded joint has been studied quantitatively. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity and inclusions found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 63% on MIG-welded samples.

  12. Residual strength of composite laminates subjected to tensile-compressive fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa; Nelson, H. G.

    1990-01-01

    Results are presented on the measurements of the residual strengths of T300/934 graphite epoxy laminates, in tension and in compression, after the samples were exposed to tension-compression fatigue loading (R = -1). Four laminate ocnfigurations were tested: unidirectional, cross-ply, angle-ply, and quasi-isotropic. It was found that the fatigue behavior of laminates was dependent on the quasi-static strengths and the specific structure of the laminate. No direct correlation was found between remaining residual strengths and the percentage of average fatigue life. However, a correlation scheme was developed for the individual specimen under test, based on a cumulative damage model and a stiffness change of the material.

  13. Effect of pre-exercise phototherapy applied with different cluster probe sizes on elbow flexor muscle fatigue.

    PubMed

    Rossato, Mateus; Dellagrana, Rodolfo A; Lanferdini, Fábio J; Sakugawa, Raphael L; Lazzari, Caetano D; Baroni, Bruno M; Diefenthaeler, Fernando

    2016-08-01

    Phototherapy has been used for reducing muscle fatigue. In view of the various types of phototherapy cluster probes available in the market, the purpose of this study was to compare the effects of a similar phototherapy dosage with two different cluster probes on elbow flexor muscle fatigue: small cluster probe (SC = 9 diodes; 7.5 cm(2)) vs. large cluster probe (LC = 33 diodes; 30.2 cm(2)). Ten physically active male aged 18-35 years participate in a randomized, crossover, double-blind, placebo-controlled trial, which each participant was submitted to the same testing protocol in four sessions (separated by at least 48 h) with different treatments: LC-phototherapy, SC-phototherapy, LC-placebo, and SC-placebo. The elbow flexion maximal isometric voluntary contraction (MIVC) was performed before and after a fatigue protocol (60 % of MIVC until exhaustion). Electromyography (EMG) of the biceps brachii muscle was collected during all testing procedure. Phototherapy with dose of 60 J per muscle [LC: 33 diodes = 5 lasers (850 nm), 12 LEDs (670 nm), 8 LEDs (880 nm), and 8 LEDs (950 nm); SC: 9 diodes = 5 lasers (850 nm) and 4 LEDs (670 nm)] or placebo applications occurred before fatigue protocol. Two-way ANOVA (treatment and time factors) and one-way ANOVA were used, followed by LSD post hoc. Time to exhaustion was significantly higher in active LC (15 %; p = 0.031) and SC (14 %; p = 0.038) in comparison with their respective placebo treatments, without differences between LC and SC (p > 0.05) or between placebo conditions (p > 0.05). This larger exercise tolerance in phototherapy conditions was not accompanied by a higher decrement in the volunteers' maximal strength capacity (11-15 %; p > 0.05 for all). EMG signals presented no difference between the four condition tested here. In both large and small cluster probes (according parameters tested in this study) led to reduced fatigue in elbow flexor muscles, without

  14. Hamstring Fatigue and Muscle Activation Changes During Six Sets of Nordic Hamstring Exercise in Amateur Soccer Players.

    PubMed

    Marshall, Paul W M; Lovell, Ric; Knox, Michael F; Brennan, Scott L; Siegler, Jason C

    2015-11-01

    The Nordic hamstring exercise (NHE) is a bodyweight movement commonly prescribed to increase eccentric hamstring strength and reduce the incidence of strain injury in sport. This study examined hamstring fatigue and muscle activation responses throughout 6 sets of 5 repetitions of the NHE. Ten amateur-level soccer players performed a single session of 6 sets of 5 repetitions of NHE. Maximal eccentric and concentric torque output (in newton meters) was measured after every set. Hamstrings electromyograms (EMG) were measured during all maximal contractions and exercise repetitions. Hamstring maximal eccentric torque was reduced throughout the range of motion after only a single set of NHE between 7.9 and 17.1% (p ≤ 0.05), with further reductions in subsequent sets. Similarly, maximal concentric torque reductions between 7.8 and 17.2% were observed throughout the range of motion after 1 set of NHE (p ≤ 0.05). During the descent phase of the NHE repetitions, hamstring muscle activity progressively increased as the number of sets performed increased. These increases were observed in the first half of the range of motion. During the ascent phase, biceps femoris muscle activity but not medial hamstrings was reduced from the start of exercise during latter sets of repetitions. These data provide unique insight into the extent of fatigue induced from a bodyweight only exercise after a single set of 5 repetitions. Strength and conditioning coaches need to be aware of the speed and extent of fatigue induced from NHE, particularly in practical settings in which this exercise is now prescribed before sport-specific training sessions (i.e., the FIFA-11 before soccer training). PMID:25886019

  15. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual. Appendix 2: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN programs RANDOM3 and RANDOM4 are documented in the form of a user's manual. Both programs are based on fatigue strength reduction, using a probabilistic constitutive model. The programs predict the random lifetime of an engine component to reach a given fatigue strength. The theoretical backgrounds, input data instructions, and sample problems illustrating the use of the programs are included.

  16. Prior Heat Stress Effects Fatigue Recovery of the Elbow Flexor Muscles

    PubMed Central

    Iguchi, Masaki; Shields, Richard K.

    2011-01-01

    Introduction Long-lasting alterations in hormones, neurotransmitters and stress proteins after hyperthermia may be responsible for the impairment in motor performance during muscle fatigue. Methods Subjects (n = 25) performed a maximal intermittent fatigue task of elbow flexion after sitting in either 73 or 26 deg C to examine the effects of prior heat stress on fatigue mechanisms. Results The heat stress increased the tympanic and rectal temperatures by 2.3 and 0.82 deg C, respectively, but there was full recovery prior to the fatigue task. While prior heat stress had no effects on fatigue-related changes in volitional torque, EMG activity, torque relaxation rate, MEP size and SP duration, prior heat stress acutely increased the pre-fatigue relaxation rate and chronically prevented long-duration fatigue (p < 0.05). Discussion These findings indicate that prior passive heat stress alone does not alter voluntary activation during fatigue, but prior heat stress and exercise produce longer-term protection against long-duration fatigue. PMID:21674526

  17. Potential molecular mechanisms underlying muscle fatigue mediated by reactive oxygen and nitrogen species

    PubMed Central

    Debold, Edward P.

    2015-01-01

    Intense contractile activity causes a dramatic decline in the force and velocity generating capacity of skeletal muscle within a few minutes, a phenomenon that characterizes fatigue. Much of the research effort has focused on how elevated levels of the metabolites of ATP hydrolysis might inhibit the function of the contractile proteins. However, there is now growing evidence that elevated levels of reactive oxygen and nitrogen species (ROS/RNS), which also accumulate in the myoplasm during fatigue, also play a causative role in this type of fatigue. The most compelling evidence comes from observations demonstrating that pre-treatment of intact muscle with a ROS scavenger can significantly attenuate the development of fatigue. A clear advantage of this line of inquiry is that the molecular targets and protein modifications of some of the ROS scavengers are well-characterized enabling researchers to begin to identify potential regions and even specific amino acid residues modified during fatigue. Combining this knowledge with assessments of contractile properties from the whole muscle level down to the dynamic motions within specific contractile proteins enable the linking of the structural modifications to the functional impacts, using advanced chemical and biophysical techniques. Based on this approach at least two areas are beginning emerge as potentially important sites, the regulatory protein troponin and the actin binding region of myosin. This review highlights some of these recent efforts which have the potential to offer uniquely precise information on the underlying molecular basis of fatigue. This work may also have implications beyond muscle fatigue as ROS/RNS mediated protein modifications are also thought to play a role in the loss of muscle function with aging and in some acute pathologies like cardiac arrest and ischemia. PMID:26388779

  18. Muscle Strength and Flexibility without and with Visual Impairments Judoka's

    ERIC Educational Resources Information Center

    Karakoc, Onder

    2016-01-01

    The aim of this study was to examine muscle strength and flexibility of judoka with and without visual impairments. A total of 32 male national judoka volunteered to participate in this study. There were 20 male judoka without visual impairments (mean ± SD; age: 19.20 ± 5.76 years, body weight: 66.45 ± 11.09 kg, height: 169.60 ± 7.98 cm, sport…

  19. Measurements of muscle strength and performance in children with normal and diseased muscle.

    PubMed Central

    Hosking, J P; Bhat, U S; Dubowitz, V; Edwards, R H

    1976-01-01

    A study has been made of two simple means of measuring muscle power in children with normal and diseased muscle. In one the length of time that the leg and the head could be held at 45 degrees above the horizontal was measured with the child supine. In the second, measurements were made of the isometric strength of six muscle groups with the newly developed Hammersmith Myometer. In the timed performance tests only 5 (8%) of a group of 61 children known to have muscle disease achieved the minimum expected values for their ages. Myometer readings of the isometric power of the children with muscle disease also have values which were below those of a comparable group of normal children. The reproducibility of muscle strength measurements in young children has been shown to be good, whereas the timed performance tests, though able to differentiate normal children from children with muscle disease, did not show sufficient reporducibility for this test to be recommended for sequential measurements. Images FIG. 1 PMID:1015849

  20. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery

    PubMed Central

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-01-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  1. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery.

    PubMed

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-06-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  2. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  3. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation.

    PubMed

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-12-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future. PMID:21975831

  4. Concurrent cognitive task may improve motor work performance and reduce muscle fatigue.

    PubMed

    Evstigneeva, Maria; Aleksandrov, Aleksandr; Mathiassen, Svend Erik; Lyskov, Eugene

    2012-01-01

    Performance of certain cognitive tasks either during physical load or in rest pauses between boosts might lead to slowing of muscle fatigue and fatigue related decline in performance. Seventeen right-handed healthy volunteers (age 24 ± 1.4, 8 males) participated in this study, aiming to investigate the effect of the level of the cognitive information processing - 1) passive perception of audio stimuli, 2) active stimuli discrimination, 3) active stimuli discrimination following motor response - on motor task performance (handgrip test 30% and 7% of MVC) and muscle fatigue development. Cognitive tasks show the following effects on motor work: i) Perceived fatigue during 30 % MVC (fatiguing) condition developed slower if participant pressed button in response to deviant acoustic stimuli, as compared to passive listening. Counting task, an active task without motor component, took the intermediate position and did not differ significantly from two other cognitive tasks. ii) MVC after 30% MVC (fatiguing) condition tended to decrease stronger when accompanied with passive listening in comparison with both active tasks. iii) Motor task performance during 30% MVC (fatiguing) condition was better for active cognitive task with motor component than for passive task. Active task without motor component took the intermediate position and did not differ significantly from both the other cognitive tasks. PMID:22317158

  5. Acoustic Correlates of Fatigue in Laryngeal Muscles: Findings for a Criterion-Based Prevention of Acquired Voice Pathologies

    ERIC Educational Resources Information Center

    Boucher, Victor J.

    2008-01-01

    Purpose: The objective was to identify acoustic correlates of laryngeal muscle fatigue in conditions of vocal effort. Method: In a previous study, a technique of electromyography (EMG) served to define physiological signs of "voice fatigue" in laryngeal muscles involved in voicing. These signs correspond to spectral changes in contraction…

  6. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    NASA Astrophysics Data System (ADS)

    Herrera, V.; Romero, J. F.; Amestegui, M.

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  7. Damage formation, fatigue behavior and strength properties of ZrO2-based ceramics

    NASA Astrophysics Data System (ADS)

    Kozulin, A. A.; Narikovich, A. S.; Kulkov, S. N.; Leitsin, V. N.; Kulkov, S. S.

    2016-08-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91-0.98, 0.8-0.83, and 0.73-0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 105 stress cycles is in the range 33-34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  8. Effects of soluble milk protein or casein supplementation on muscle fatigue following resistance training program: a randomized, double-blind, and placebo-controlled study

    PubMed Central

    2014-01-01

    Background The effects of protein supplementation on muscle thickness, strength and fatigue seem largely dependent on its composition. The current study compared the effects of soluble milk protein, micellar casein, and a placebo on strength and fatigue during and after a resistance training program. Methods Sixty-eight physically active men participated in this randomized controlled trial and underwent 10 weeks of lower-body resistance training. Participants were randomly assigned to the Placebo (PLA), Soluble Milk Protein (SMP, with fast digestion rate) or Micellar Casein (MC, with slow digestion rate) group. During the 10-week training period, participants were instructed to take 30 g of the placebo or protein twice a day, or three times on training days. Tests were performed on quadriceps muscles at inclusion (PRE), after 4 weeks (MID) and after 10 weeks (POST) of training. They included muscle endurance (maximum number of repetitions during leg extensions using 70% of the individual maximal load), fatigue (decrease in muscle power after the endurance test), strength, power and muscle thickness. Results Muscle fatigue was significantly lower (P < 0.05) in the SMP group at MID and POST (-326.8 ± 114.1 W and -296.6 ± 130.1 W, respectively) as compared with PLA (-439.2 ± 153.9 W and -479.2 ± 138.1 W, respectively) and MC (-415.1 ± 165.1 W and -413.7 ± 139.4 W, respectively). Increases in maximal muscle power, strength, endurance and thickness were not statistically different between groups. Conclusions The present study demonstrated that protein composition has a large influence on muscular performance after prolonged resistance training. More specifically, as compared with placebo or micellar casein, soluble milk protein (fast digestible) appeared to significantly reduce muscle fatigue induced by intense resistance exercise. PMID:25057266

  9. Depression of corticomotor excitability after muscle fatigue induced by electrical stimulation and voluntary contraction

    PubMed Central

    Kotan, Shinichi; Kojima, Sho; Miyaguchi, Shota; Sugawara, Kazuhiro; Onishi, Hideaki

    2015-01-01

    In this study, we examined the effect of muscle fatigue induced by tetanic electrical stimulation (ES) and submaximal isometric contraction on corticomotor excitability. Experiments were performed in a cross-over design. Motor-evoked potentials (MEPs) were elicited by transcranial magnetic stimulation (TMS). Corticomotor excitability was recorded before and after thumb opposition muscle fatigue tasks, in which 10% of the maximal tension intensity was induced by tetanic ES or voluntary contraction (VC). The participants were 10 healthy individuals who performed each task for 10 min. Surface electrodes placed over the abductor pollicis brevis (APB) muscle recorded MEPs. F- and M-waves were elicited from APB by supramaximal ES of the median nerve. After the tetanic ES- and VC tasks, MEP amplitudes were significantly lower than before the task. However, F- and M-wave amplitudes remained unchanged. These findings suggest that corticospinal excitability is reduced by muscle fatigue as a result of intracortical inhibitory mechanisms. Our results also suggest that corticomotor excitability is reduced by muscle fatigue caused by both VC and tetanic ES. PMID:26150781

  10. Immediate Effects of Kinesiology Taping of Quadriceps on Motor Performance after Muscle Fatigued Induction

    PubMed Central

    Ahn, Ick Keun; Kim, You Lim; Bae, Young-Hyeon; Lee, Suk Min

    2015-01-01

    Objectives. The purpose of this cross-sectional single-blind study was to investigate the immediate effects of Kinesiology taping of quadriceps on motor performance after muscle fatigued induction. Design. Randomized controlled cross-sectional design. Subjects. Forty-five subjects participated in this study. Participants were divided into three groups: Kinesiology taping group, placebo taping group, and nontaping group. Methods. Subjects performed short-term exercise for muscle fatigued induction, followed by the application of each intervention. Peak torque test, one-leg single hop test, active joint position sense test, and one-leg static balance test were carried out before and after the intervention. Results. Peak torque and single-leg hopping distance were significantly increased when Kinesiology taping was applied (p < 0.05). But there were no significant effects on active joint position sense and single-leg static balance. Conclusions. We proved that Kinesiology taping is effective in restoring muscle power reduced after muscle fatigued induction. Therefore, we suggest that Kinesiology taping is beneficial for fatigued muscles. PMID:26246835

  11. Evaluation of fatigue of respiratory and lower limb muscles during prolonged aerobic exercise.

    PubMed

    Nadiv, Yaara; Vachbroit, Ricki; Gefen, Amit; Elad, David; Zaretsky, Uri; Moran, Dani; Halpern, Pinchas; Ratnovsky, Anat

    2012-05-01

    The respiratory muscles may fatigue during prolonged exercises and thereby become a factor that limits extreme physical activity. The aim of the current study was to determine whether respiratory muscle fatigue imposes a limitation on extreme physical activity of well-trained young men. Electromyography (EMG) signals of respiratory (external intercostal and sternomastoid) and calf muscles (gastrocnemius) were measured (N = 8) during 1 hr of treadmill marching at a speed of 8 km/hr with and without a 15 kg backpack. The root mean square (RMS) and the mean power frequency of the EMG signals were evaluated for calculating fatigue indices. The EMG RMS revealed that the respiratory and calf muscles did not fatigue during the marching without a backpack load. The study did show, however, a significant rise in the EMG values when a backpack was carried with respect to the no-load condition (p < .05), which suggests that respiratory muscles should be trained in military recruits who are required to carry loaded backpacks while marching. PMID:22723112

  12. Effects of hyperbaric oxygen on muscle fatigue after maximal intermittent plantar flexion exercise.

    PubMed

    Shimoda, Manabu; Enomoto, Mitsuhiro; Horie, Masaki; Miyakawa, Shumpei; Yagishita, Kazuyoshi

    2015-06-01

    The purpose of this study was to investigate the effects of hyperbaric oxygen (HBO) treatment on muscle fatigue after maximal intermittent plantar flexion exercise. Twenty healthy male volunteers (aged from 21 to 24 years) were randomly assigned to either HBO or normoxic group and were blinded to their treatment and group assignment. The HBO group breathed 100% oxygen under 2.5 atmosphere absolute (ATA) for 60 minutes, whereas the normoxic group breathed room air under 1.2 ATA for 70 minutes. The subjects performed a fatigue test, which consisted of 50 maximal unilateral isometric plantar flexions, before and after intervention. Surface electromyography was recorded from triceps surae muscle. Subjects performed maximal voluntary contractions of isometric plantar flexions, and voluntary activation and twitch contractile properties were evaluated with cutaneous tibial nerve stimuli before and after intervention. Compared with initial values during repetitions 4-10, the plantar flexion torque during repetitions 41-50 decreased to 88.5 and 83.2% after HBO and normoxic treatment, respectively. A smaller decrease in muscle force was observed in the HBO group compared with the normoxic group. No differences in function between treatment groups were observed after nerve stimulation. These results suggest that HBO contributes to sustained force production due to suppressing the muscle fatigue progression. In practice, HBO can contribute to the prevention of excess fatigue of agonist muscles for specific exercises involving repeated jumping. PMID:25785701

  13. The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients

    PubMed Central

    Abboud, Jacques; Nougarou, François; Normand, Martin C.

    2015-01-01

    Introduction Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP). This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control. Methods Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE), variable error (VE) as well as absolute error (AE) in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG). Results Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm) than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm). Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm) and AE (13.71 ± 3.45 Nm) mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm) and AE (16.29 ± 2.82 Nm) mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores. Conclusions Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle

  14. Torque prediction using stimulus evoked EMG and its identification for different muscle fatigue states in SCI subjects.

    PubMed

    Zhang, Qin; Hayashibe, Mitsuhiro; Papaiordanidou, Maria; Fraisse, Philippe; Fattal, Charles; Guiraud, David

    2010-01-01

    Muscle fatigue is an unavoidable problem when electrical stimulation is applied to paralyzed muscles. The detection and compensation of muscle fatigue is essential to avoid movement failure and achieve desired trajectory. This work aims to predict ankle plantar-flexion torque using stimulus evoked EMG (eEMG) during different muscle fatigue states. Five spinal cord injured patients were recruited for this study. An intermittent fatigue protocol was delivered to triceps surae muscle to induce muscle fatigue. A hammerstein model was used to capture the muscle contraction dynamics to represent eEMG-torque relationship. The prediction of ankle torque was based on measured eEMG and past measured or past predicted torque. The latter approach makes it possible to use eEMG as a synthetic force sensor when force measurement is not available in daily use. Some previous researches suggested to use eEMG information directly to detect and predict muscle force during fatigue assuming a fixed relationship between eEMG and generated force. However, we found that the prediction became less precise with the increase of muscle fatigue when fixed parameter model was used. Therefore, we carried out the torque prediction with an adaptive parameters using the latest measurement. The prediction of adapted model was improved with 16.7%-50.8% comparing to the fixed model. PMID:21097036

  15. Effect of old age on human skeletal muscle force-velocity and fatigue properties.

    PubMed

    Callahan, Damien M; Kent-Braun, Jane A

    2011-11-01

    It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner. Three fatigue protocols, consisting of intermittent, maximum voluntary knee extension contractions performed for 4 min, were performed by 11 young (23.5 ± 0.9 yr, mean ± SE) and 10 older (68.9 ± 4.3) women. The older group fatigued less during isometric contractions than the young group (to 71.1 ± 3.7% initial torque and 59.8 ± 2.5%, respectively; P = 0.02), while the opposite was true during contractions performed at a relatively high angular velocity of 270°·s(-1) (old: 28.0 ± 3.9% initial power, young: 52.1 ± 6.9%; P < 0.01). Fatigue was not different (P = 0.74) between groups during contractions at an intermediate velocity, which was selected for each participant based on their force-velocity relationship. There was a significant association between force-velocity properties and fatigue induced by the intermediate-velocity fatigue protocol in the older (r = 0.72; P = 0.02) and young (r = 0.63; P = 0.04) groups. These results indicate that contractile velocity has a profound impact on age-related skeletal muscle fatigue resistance and suggest that changes in the force-velocity relationship partially mediate this effect. PMID:21868683

  16. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2010-10-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  17. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2011-03-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  18. Increasing blood flow before exercise in spinal cord-injured individuals does not alter muscle fatigue.

    PubMed

    Olive, Jennifer L; Slade, Jill M; Bickel, C Scott; Dudley, Gary A; McCully, Kevin K

    2004-02-01

    Previous studies have shown increased fatigue in paralyzed muscle of spinal cord-injured (SCI) patients (Castro M, Apple D Jr, Hillegass E, and Dudley GA. Eur J Appl Physiol 80: 373-378, 1999; Gerrits H, Hopman MTE, Sargeant A, and de Haan A. Clin Physiol 21: 105-113, 2001). Our purpose was to determine whether the increased muscle fatigue could be due to a delayed rise in blood flow at the onset of exercise in SCI individuals. Isometric electrical stimulation was used to induce fatigue in the quadriceps femoris muscle of seven male, chronic (>1 yr postinjury), complete (American Spinal Injury Association, category A) SCI subjects. Cuff occlusion was used to elevate blood flow before electrical stimulation, and the magnitude of fatigue was compared with a control condition of electrical stimulation without prior cuff occlusion. Blood flow was measured in the femoral artery by Doppler ultrasound. Prior cuff occlusion increased blood flow in the first 30 s of stimulation compared with the No-Cuff condition (1,350 vs. 680 ml/min, respectively; P < 0.001), although blood flow at the end of stimulation was the same between conditions (1,260 +/- 140 vs. 1,160 +/- 370 ml/min, Cuff and No-Cuff condition, respectively; P = 0.511). Muscle fatigue was not significantly different between prior cuff occlusion and the control condition (32 +/- 13 vs. 35 +/- 10%; P = 0.670). In conclusion, increased muscle fatigue in SCI individuals is not associated with the prolonged time for blood flow to increase at the onset of exercise. PMID:14506095

  19. Nonsteady thermal stress analysis and thermal fatigue strength of metal-CFRP bonded joints

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Shiratori, Masaki; Mori, Takao

    1993-01-01

    In this paper, a finite-element method (FEM) system of nonsteady thermal stress analysis has been developed to analyze the problem of metal-fiber-reinforced plastic (FRP) bonded joints. The authors have presented a new algorithm for the system, which can provide an effective thermal stress analysis for metal-carbon-FRP (CFRP) bonded joints. The effectiveness, in terms of the accuracy and central processing unit (CPU) time, has been discussed by analyzing some typical problems. The thermal fatigue strength of Al-CFRP bonded joints has been studied through a series of thermal cyclic fatigue tests. It has been shown that the thermal fatigue strength of the joints can be well described by the maximum equivalent stress at the adhesive layer, which can be calculated by the developed FEM system.

  20. Prevalence of reduced muscle strength in older U.S. adults: United States, 2011-2012.

    PubMed

    Looker, Anne C; Wang, Chia-Yih

    2015-01-01

    Five percent of adults aged 60 and over had weak muscle strength and 13% had intermediate muscle strength, as defined by the new FNIH criteria. Weak muscle strength is clinically relevant because it is associated with slow gait speed, an important mobility impairment. It is also linked to an increased risk of death. The prevalence of reduced muscle strength increased with age and was higher in non-Hispanic Asian and Hispanic persons than in non-Hispanic white or non-Hispanic black persons. Decreasing muscle strength was linked with increased difficulty in rising from an armless chair, which is another important type of mobility impairment. PMID:25633238

  1. Fatigue strength of Co-Cr-Mo alloy clasps prepared by selective laser melting.

    PubMed

    Kajima, Yuka; Takaichi, Atsushi; Nakamoto, Takayuki; Kimura, Takahiro; Yogo, Yoshiaki; Ashida, Maki; Doi, Hisashi; Nomura, Naoyuki; Takahashi, Hidekazu; Hanawa, Takao; Wakabayashi, Noriyuki

    2016-06-01

    We aimed to investigate the fatigue strength of Co-Cr-Mo clasps for removable partial dentures prepared by selective laser melting (SLM). The Co-Cr-Mo alloy specimens for tensile tests (dumbbell specimens) and fatigue tests (clasp specimens) were prepared by SLM with varying angles between the building and longitudinal directions (i.e., 0° (TL0, FL0), 45° (TL45, FL45), and 90° (TL90, FL90)). The clasp specimens were subjected to cyclic deformations of 0.25mm and 0.50mm for 10(6) cycles. The SLM specimens showed no obvious mechanical anisotropy in tensile tests and exhibited significantly higher yield strength and ultimate tensile strength than the cast specimens under all conditions. In contrast, a high degree of anisotropy in fatigue performance associated with the build orientation was found. For specimens under the 0.50mm deflection, FL90 exhibited significantly longer fatigue life (205,418 cycles) than the cast specimens (112,770 cycles). In contrast, the fatigue lives of FL0 (28,484 cycles) and FL45 (43,465 cycles) were significantly shorter. The surface roughnesses of FL0 and FL45 were considerably higher than those of the cast specimens, whereas there were no significant differences between FL90 and the cast specimens. Electron backscatter diffraction (EBSD) analysis indicated the grains of FL0 showed preferential close to <001> orientation of the γ phase along the normal direction to the fracture surface. In contrast, the FL45 and FL90 grains showed no significant preferential orientation. Fatigue strength may therefore be affected by a number of factors, including surface roughness and crystal orientation. The SLM process is a promising candidate for preparing tough removable partial denture frameworks, as long as the appropriate build direction is adopted. PMID:26974490

  2. Residual Static Strength of ALuminum-Alloy Beams Containing Fatigue Cracks in the Tension Covers

    NASA Technical Reports Server (NTRS)

    Leybold, Herbert A.

    1961-01-01

    Static tests were performed on 31 box beams containing fatigue cracks in order to determine their residual static strengths. The beams were constructed of 7075 and 2024 aluminum alloy according to several designs and employed stringers that were either bonded, riveted, or an integral part of the skin. skin (both aaterials) had the highest residual static strengths, whereas 7075 beams with integrally stiffened covers had the lowest residual static strengths. Except for the integrally stiffened beams, the skin material did not contribute to the residual static strength of the beams because the crack propagated across the skin before maximum load was reached. For the integrally stiffened beams, crack propagation and failure were synonymous. The test results are compared with predictions of the residual static strength. Fair agreement between predicted strength and actual strength was obtained for all beams tested.

  3. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle.

    PubMed

    Cho, Yoshitake; Hazen, Bethany C; Gandra, Paulo G; Ward, Samuel R; Schenk, Simon; Russell, Aaron P; Kralli, Anastasia

    2016-02-01

    Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40-80%). Moreover, AAV1-Perm1-transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise. PMID:26481306

  4. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation

    PubMed Central

    Andersen, Birgit; Westlund, Barbro; Krarup, Christian

    2003-01-01

    During a sustained maximal effort a progressive decline in the ability to drive motoneurones (MNs) develops. We used the recently developed triple stimulation technique (TST) to study corticospinal conduction after fatiguing exercise in healthy subjects. This method employs a collision technique to estimate the proportion of motor units activated by a transcranial magnetic stimulus. Following a sustained contraction of the abductor digiti minimi muscle at 50 % maximal force maintained to exhaustion there was an immediate reduction of the TST response from >95% to about 60%. This effect recovered to control levels within 1 min and implies that a decreased number of spinal MNs were excited. Additional TST experiments after maximal and submaximal efforts showed that the decrease in size of the TST response was related to duration and strength of exercise. Motor evoked potentials (MEPs) after conventional transcranial magnetic stimulation (TMS) and responses to peripheral nerve stimulation were recorded following the same fatigue protocol. The size of both the MEPs and the peripheral responses increased after the contraction and were in direct contrast to the decrease in size of the TST response. This points to increased probability of repetitive spinal MN activation during fatigue even if some MNs in the pool failed to discharge. Silent period duration following cortical stimulation lengthened by an average of 55 ms after the contraction and recovered within a time course similar to that of the TST response depression. Overall, the results suggest that the outflow from the motor cortex could become insufficient to drive all spinal MNs to discharge when the muscle is fatigued and that complex interactions between failure of activation and compensatory mechanisms to maintain motor unit activation occur during sustained voluntary activity. When inability to maintain force occurs during submaximal effort, failure of activation of motor units is predominant. PMID:12824449

  5. Associations of Sarcopenia and Sarcopenic Obesity With Metabolic Syndrome Considering Both Muscle Mass and Muscle Strength

    PubMed Central

    2016-01-01

    Objectives: We investigated the associations of sarcopenia-defined both in terms of muscle mass and muscle strength-and sarcopenic obesity with metabolic syndrome. Methods: Secondary data pertaining to 309 subjects (85 men and 224 women) were collected from participants in exercise programs at a health center in a suburban area. Muscle mass was measured using bioelectrical impedance analysis, and muscle strength was measured via handgrip strength. Sarcopenia based on muscle mass alone was defined as a weight-adjusted skeletal muscle mass index more than two standard deviations below the mean of a sex-specific young reference group (class II sarcopenia). Two cut-off values for low handgrip strength were used: the first criteria were <26 kg for men and <18 kg for women, and the second criteria were the lowest quintile of handgrip strength among the study subjects. Sarcopenic obesity was defined as the combination of class II sarcopenia and being in the two highest quintiles of total body fat percentage among the subjects. The associations of sarcopenia and sarcopenic obesity with metabolic syndrome were evaluated using logistic regression models. Results: The age-adjusted risk ratios (RRs) of metabolic syndrome being compared in people with or without sarcopenia defined in terms of muscle mass were 1.25 (95% confidence interval [CI], 1.06 to 1.47, p=0.008) in men and 1.12 (95% CI, 1.06 to 1.19, p<0.001) in women, which were found to be statistically significant relationships. The RRs of metabolic syndrome being compared in people with or without sarcopenic obesity were 1.31 in men (95% CI, 1.10 to 1.56, p=0.003) and 1.17 in women (95% CI, 1.10 to 1.25, p<0.001), which were likewise found to be statistically significant relationships. Conclusions: The associations of sarcopenia defined in terms of muscle mass and sarcopenic obesity with metabolic syndrome were statistically significant in both men and women. Therefore, sarcopenia and sarcopenic obesity must be

  6. The effect of muscle fatigue on position sense in an upper limb multi-joint task.

    PubMed

    Vafadar, Amirhossein K; Côté, Julie N; Archambault, Philippe S

    2012-04-01

    The purpose of this study was to estimate the extent to which muscle fatigue can impact on the position sense in the upper limb. Twelve healthy volunteers were asked to do a reaching task while grasping a wooden block and match the block's position with a corresponding target displayed on a flat screen, without vision. Following that, subjects performed resistive exercises with Thera-band strips until fatigue was induced and then the position sense task was repeated. A significant change in the endpoint position was observed after fatigue, in the up/down direction (p ≤ .001). The variability of endpoint positions in up/down direction was also significantly increased after fatigue (p ≤.03). There was no significant change in endpoint orientation but there was a significant fatigue × orientation effect on endpoint rotational variability. In a follow-up experiment, a group of subjects repeated the same protocol, but with a period of quiet rest between the two position sense tasks. In that group, there were no differences in endpoint position, orientation or variability. Muscle fatigue is an important factor that should be taken into consideration during the treatment of musculoskeletal injuries as well as athletic training. PMID:22357216

  7. The effect of muscle fatigue on instep kicking kinetics and kinematics in association football.

    PubMed

    Apriantono, Tommy; Nunome, Hiroyuki; Ikegami, Yasuo; Sano, Shinya

    2006-09-01

    The aim of this study was to examine the effect of leg muscle fatigue on the kinetics and kinematics of the instep football kick. Fatigue was induced by repeated, loaded knee extension (40% body weight) and flexion (50% body weight) motions on a weight-training machine until exhaustion. The kicking motions of seven male players were captured three-dimensionally at 500 Hz before and immediately after the fatigue protocol. The significantly slower ball velocity observed in the fatigue condition was due to both reduced lower leg swing speed and poorer ball contact. The reduced leg swing speed, represented by a slower toe linear velocity immediately before ball impact and slower peak lower leg angular velocity, was most likely due to a significantly reduced resultant joint moment and motion-dependent interactive moment during kicking. These results suggest that the specific muscle fatigue induced in the present study not only diminished the ability to generate force, but also disturbed the effective action of the interactive moment leading to poorer inter-segmental coordination during kicking. Moreover, fatigue obscured the eccentric action of the knee flexors immediately before ball impact. This might increase the susceptibility to injury. PMID:16882629

  8. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  9. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  10. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy.

    PubMed

    Farup, J; de Paoli, F; Bjerg, K; Riis, S; Ringgard, S; Vissing, K

    2015-12-01

    This study investigated the hypertrophic potential of load-matched blood-flow restricted resistance training (BFR) vs free-flow traditional resistance training (low-load TRT) performed to fatigue. Ten healthy young subjects performed unilateral BFR and contralateral low-load TRT elbow flexor dumbbell curl with 40% of one repetition maximum until volitional concentric failure 3 days per week for 6 weeks. Prior to and at 3 (post-3) and 10 (post-10) days post-training, magnetic resonance imaging (MRI) was used to estimate elbow flexor muscle volume and muscle water content accumulation through training. Acute changes in muscle thickness following an early vs a late exercise bout were measured with ultrasound to determine muscle swelling during the immediate 0-48 h post-exercise. Total work was threefold lower for BFR compared with low-load TRT (P < 0.001). Both BRF and low-load TRT increased muscle volume by approximately 12% at post-3 and post-10 (P < 0.01) with no changes in MRI-determined water content. Training increased muscle thickness during the immediate 48 h post-exercise (P < 0.001) and to greater extent with BRF (P < 0.05) in the early training phase. In conclusion, BFR and low-load TRT, when performed to fatigue, produce equal muscle hypertrophy, which may partly rely on transient exercise-induced increases in muscle water content. PMID:25603897