Science.gov

Sample records for muscle tendon allografts

  1. Histological Study of Fresh Versus Frozen Semitendinous Muscle Tendon Allografts

    PubMed Central

    Bitar, Alexandre Carneiro; Santos, Luiz Augusto Ubirajara; Croci, Alberto Tesconi; Pereira, João Alberto Ramos Maradei; França Bisneto, Edgard N.; Giovani, Arlete Mazzini Miranda; Oliveira, Claudia Regina G. C. M.

    2010-01-01

    OBJECTIVE: The purpose of this study was to histologically analyze allografts from cadaveric semitendinous muscle after cryopreservation at −80°C in comparison to a control group kept at only −4°C to test the hypothesis that the histological characteristics of the tissue are maintained when the tendons are kept at lower temperatures. METHODS: In a tissue bank, 10 semitendinous tendons from 10 cadavers were frozen at −80ºC as a storage method for tissue preservation. They were kept frozen for 40 days, and then a histological study was carried out. Another 10 tendon samples were analyzed while still “fresh”. RESULTS: There was no histological difference between the fresh and frozen samples in relation to seven variables. CONCLUSIONS: Semitendinous muscle tendon allografts can be submitted to cryopreservation at −80ºC without suffering histological modifications. PMID:20360921

  2. Quadriceps tendon allografts as an alternative to Achilles tendon allografts: a biomechanical comparison.

    PubMed

    Mabe, Isaac; Hunter, Shawn

    2014-12-01

    Quadriceps tendon with a patellar bone block may be a viable alternative to Achilles tendon for anterior cruciate ligament reconstruction (ACL-R) if it is, at a minimum, a biomechanically equivalent graft. The objective of this study was to directly compare the biomechanical properties of quadriceps tendon and Achilles tendon allografts. Quadriceps and Achilles tendon pairs from nine research-consented donors were tested. All specimens were processed to reduce bioburden and terminally sterilized by gamma irradiation. Specimens were subjected to a three phase uniaxial tension test performed in a custom environmental chamber to maintain the specimens at a physiologic temperature (37 ± 2 °C) and misted with a 0.9 % NaCl solution. There were no statistical differences in seven of eight structural and mechanical between the two tendon types. Quadriceps tendons exhibited a significantly higher displacement at maximum load and significantly lower stiffness than Achilles tendons. The results of this study indicated a biomechanical equivalence of aseptically processed, terminally sterilized quadriceps tendon grafts with bone block to Achilles tendon grafts with bone block. The significantly higher displacement at maximum load, and lower stiffness observed for quadriceps tendons may be related to the failure mode. Achilles tendons had a higher bone avulsion rate than quadriceps tendons (86 % compared to 12 %, respectively). This was likely due to observed differences in bone block density between the two tendon types. This research supports the use of quadriceps tendon allografts in lieu of Achilles tendon allografts for ACL-R. PMID:24414293

  3. Allograft reconstruction of peroneus longus and brevis tendons tears arising from a single muscular belly. Case report and surgical technique.

    PubMed

    Pellegrini, Manuel J; Adams, Samuel B; Parekh, Selene G

    2015-03-01

    Anatomic variants of the peroneal tendons may cause tendon disorders. Moreover, there is a lack of evidence on how to address chronic tendon pathology when a variant of the peroneal tendons is causing the patient's symptoms. We present a patient with an uncommon peroneal muscle presentation: a single muscular belly dividing into both the peroneus longus and brevis tendons. After extensive debridement of tendinopathic tissue, primary repair or tenodesis was not possible; therefore a unique solution for this problem was performed, reconstructing both peroneal tendons using a semitendinosus allograft. PMID:25682415

  4. Clinical Allograft of a Calcaneal Tendon in a Rhesus Macaque (Macaca mulatta)

    PubMed Central

    Lemoy, Marie-Josee; Summers, Laura; Colagross-Schouten, Angela

    2014-01-01

    A 5.5-y-old male rhesus monkey (Macaca mulatta) housed in an outdoor field cage presented for severe trauma involving the left calcaneal tendon. Part of the management of this wound included an allograft of the calcaneal tendon from an animal that was euthanized for medical reasons. This case report describes the successful medical and surgical management of a macaque with a significant void of the calcaneal tendon. To our knowledge, this report is the first description of a successful tendon allograft in a rhesus macaque for clinical purposes. PMID:25255076

  5. Freeze-Dried Tendon Allografts as Tissue Engineering Scaffolds for Gdf5 Gene Delivery

    PubMed Central

    Basile, Patrick; Dadali, Tulin; Jacobson, Justin; Hasslund, Sys; Ulrich-Vinther, Michael; Søballe, Kjeld; Nishio, Yasuhiko; Drissi, M Hicham; Langstein, Howard N; Mitten, David J; O’Keefe, Regis J; Schwarz, Edward M; Awad, Hani A

    2009-01-01

    Tendon reconstruction using grafts often results in adhesions that limit joint flexion. These adhesions are precipitated by inflammation, fibrosis, and paucity of tendon differentiation signals during healing. To study this problem, we developed a mouse model in which the FDL tendon is reconstructed using a live autograft or a freeze-dried allograft and identified Gdf5 as a therapeutic target. Here we investigate the potential of rAAV-Gdf5 coated freeze-dried tendon allografts as “therapeutically-endowed” tissue engineering scaffolds to reduce adhesions. In reporter gene studies we demonstrate that rAAV-coated tendon allografts mediate efficient transduction of adjacent soft tissues, with expression peaking at 7-days. We also demonstrate that rAAV-Gdf5 vector significantly accelerates wound healing in an in vitro fibroblast scratch model, and when loaded onto freeze-dried FDL tendon allografts significantly improves the metatarsophalangeal joint flexion compared to rAAV-lacZ controls. Collectively, our data demonstrate the feasibility and efficacy of therapeutic tendon allograft processing as a novel paradigm in tissue engineering to address difficult clinical problems such as tendon adhesions. PMID:18180771

  6. Peroneal Tendon Reconstruction and Coverage for Treatment of Septic Peroneal Tenosynovitis: A Devastating Complication of Lateral Ankle Ligament Reconstruction With a Tendon Allograft.

    PubMed

    Schade, Valerie L; Harsha, Wayne; Rodman, Caitlin; Roukis, Thomas S

    2016-01-01

    Septic peroneal tenosynovitis is a rare and significant challenge. A search of peer-reviewed published studies revealed only 5 case reports to guide treatment, none of which resulted in significant loss of both peroneal tendons necessitating reconstruction. No clear guidance is available regarding how to provide reliable reconstruction of both peroneal tendons after a significant loss secondary to septic tenosynovitis. In the present report, we describe the case of a young, active-duty soldier who underwent lateral ankle ligament reconstruction with a tendon allograft whose postoperative course was complicated by septic peroneal tenosynovitis resulting in significant loss of both peroneal tendons. Reconstruction was achieved in a staged fashion with the use of silicone rods and external fixation to maintain physiologic tension and preserve peroneal tendon function, followed by reconstruction of both peroneal tendons and the superior peroneal retinaculum with a tensor fascia lata autograft. Soft tissue coverage was obtained with an anterolateral thigh free tissue transfer and a split-thickness skin graft. The patient returned to full activity as an active-duty soldier with minimal pain and no instability of the right lower extremity. The muscle strength of both peroneal tendons remained at 5 of 5, and no objective findings of ankle instability were seen at 3.5 years postoperatively. PMID:26002675

  7. Radioprotection provides functional mechanics but delays healing of irradiated tendon allografts after ACL reconstruction in sheep.

    PubMed

    Seto, Aaron U; Culp, Brian M; Gatt, Charles J; Dunn, Michael

    2013-12-01

    Successful protection of tissue properties against ionizing radiation effects could allow its use for terminal sterilization of musculoskeletal allografts. In this study we functionally evaluate Achilles tendon allografts processed with a previously developed radioprotective treatment based on (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) crosslinking and free radical scavenging using ascorbate and riboflavin, for ovine anterior cruciate ligament reconstruction. Arthroscopic anterior cruciate ligament (ACL) reconstruction was performed using double looped allografts, while comparing radioprotected irradiated and fresh frozen allografts after 12 and 24 weeks post-implantation, and to control irradiated grafts after 12 weeks. Radioprotection was successful at preserving early subfailure mechanical properties comparable to fresh frozen allografts. Twelve week graft stiffness and anterior-tibial (A-T) translation for radioprotected and fresh frozen allografts were comparable at 30 % of native stiffness, and 4.6 and 5 times native A-T translation, respectively. Fresh frozen allograft possessed the greatest 24 week peak load at 840 N and stiffness at 177 N/mm. Histological evidence suggested a delay in tendon to bone healing for radioprotected allografts, which was reflected in mechanical properties. There was no evidence that radioprotective treatment inhibited intra-articular graft healing. This specific radioprotective method cannot be recommended for ACL reconstruction allografts, and data suggest that future efforts to improve allograft sterilization procedures should focus on modifying or eliminating the pre-crosslinking procedure. PMID:23842952

  8. Biomechanical Evaluation of Posterior Cruciate Ligament Reconstruction With Quadriceps Versus Achilles Tendon Bone Block Allograft

    PubMed Central

    Forsythe, Brian; Haro, Marc S.; Bogunovic, Ljiljana; Collins, Michael J.; Arns, Thomas A.; Trella, Katie J.; Shewman, Elizabeth F.; Verma, Nikhil N.; Bach, Bernard R.

    2016-01-01

    Background: Long-term studies of posterior cruciate ligament (PCL) reconstruction suggest that normal stability is not restored in the majority of patients. The Achilles tendon allograft is frequently utilized, although recently, the quadriceps tendon has been introduced as an alternative option due to its size and high patellar bone density. Purpose/Hypothesis: The purpose of this study was to compare the biomechanical strength of PCL reconstructions using a quadriceps versus an Achilles allograft. The hypothesis was that quadriceps bone block allograft has comparable mechanical properties to those of Achilles bone block allograft. Study Design: Controlled laboratory study. Methods: Twenty-nine fresh-frozen cadaveric knees were assigned to 1 of 3 groups: (1) intact PCL, (2) PCL reconstruction with Achilles tendon allograft, or (3) PCL reconstruction with quadriceps tendon allograft. After reconstruction, all supporting capsular and ligamentous tissues were removed. Posterior tibial translation was measured at neutral and 20° external rotation. Each specimen underwent a preload, 2 cyclic loading protocols of 500 cycles, then load to failure. Results: Construct creep deformation was significantly lower in the intact group compared with both Achilles and quadriceps allograft (P = .008). The intact specimens reached the greatest ultimate load compared with both reconstructions (1974 ± 752 N, P = .0001). The difference in ultimate load for quadriceps versus Achilles allograft was significant (P = .048), with the quadriceps group having greater maximum force during failure testing. No significant differences were noted between quadriceps versus Achilles allograft for differences in crosshead excursion during cyclic testing (peak-valley [P-V] extension stretch), creep deformation, or stiffness. Construct stiffness measured during the failure test was greatest in the intact group (117 ± 9 N/mm, P = .0001) compared with the Achilles (43 ± 11 N/mm) and quadriceps (43

  9. Ligament reconstruction with tendon interposition using an acellular dermal allograft for thumb carpometacarpal arthritis.

    PubMed

    Kokkalis, Zinon T; Zanaros, George; Sotereanos, Dean G

    2009-03-01

    Ligament reconstruction tendon interposition arthroplasty is currently the preferred technique for carpometacarpal joint arthritis of the thumb by most surgeons. Despite its efficacy, morbidity has been associated with the harvest of the flexor carpi radialis tendon. Using an allograft as material for arthroplasty, donor site morbidity is avoided. In this report, we present our surgical technique to perform ligament reconstruction tendon interposition arthroplasty using an acellular dermal matrix allograft (GraftJacket) in patients with Eaton stages II, III, and IV symptomatic first carpometacarpal arthritis.One hundred thumbs with trapeziometacarpal osteoarthritis underwent surgical treatment using GraftJacket allograft instead of the flexor carpi radialis tendon autograft. Each patient was followed for a minimum of 12 months. The surgical procedure included trapezial excision and identification of the flexor carpi radialis. The allograft was cut to create a 15-cm strip. The ligament reconstruction was performed by passing the strip around the flexor carpi radialis tendon and suturing it to the base of the thumb metacarpal base through an intramedullary drill hole. The remaining portion of the allograft was fashioned as an interposition mass (anchovy) and interposed between the scaphoid and the base of the first metacarpal.All but 1 patient experienced significant improvement in his or her pain scale rating and grip and pinch strengths. Outcomes from this study compare very favorably with those of other series. No patients experienced a foreign body reaction or infection in this series. We believe that the use of an acellular dermal allograft for both ligament reconstruction and tendon interposition provides a safe and an effective alternative technique for the treatment of advanced first carpometacarpal arthritis. PMID:19276927

  10. Effects of Trypsinization and Mineralization on Intrasynovial Tendon Allograft Healing to Bone

    PubMed Central

    Qu, Jin; van Alphen, Nick A.; Thoreson, Andrew R.; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C.; Schmid, Thomas M.; Zhao, Chunfeng

    2014-01-01

    The purpose of the current study was to develop a novel technology to enhance tendon-to-bone interface healing by trypsinizing and mineralizing (TM) an intrasynovial tendon allograft in a rabbit bone tunnel model. Eight rabbit flexor digitorum profundus (FDP) tendons were used to optimize the trypsinization process. An additional 24 FDP tendons were stratified into control and TM groups; in each group, 4 tendons were used for in vitro evaluation of TM and 8 were transplanted into proximal tibial bone tunnels in rabbits. The samples were evaluated histologically and with mechanical testing at postoperative week 8. Maximum failure strength and linear stiffness were not significantly different between the control and TM tendons. A thin fibrous band of scar tissue formed at the graft-to-bone interface in the control group. However, only the TM group showed obvious new bone formation inside the tendon graft and a visible fibrocartilage layer at the bone tunnel entrance. This study is the first to explore effects of TM on the intrasynovial allograft healing to a bone tunnel. TM showed beneficial effects on chondrogenesis, osteogenesis, and integration of the intrasynovial tendon graft, but mechanical strength was the same as the control tendons in this short-term in vivo study. PMID:25611186

  11. Operative technique for human composite flexor tendon allograft procurement and engraftment.

    PubMed

    DeGeorge, Brent R; Rodeheaver, George T; Drake, David B

    2014-01-01

    Devastating volar hand injuries with significant damage to the pulley structures and fibro-osseous sheath, flexor tendons, and volar plates pose a major problem to the reconstructive hand surgeon. Despite advances in tendon handling, operative technique, and postoperative hand rehabilitation, patients who have undergone flexor tendon reconstruction are often plagued by chronic pain, stiffness, and decreased range of motion with resultant decreased ability to work and poor quality of life. Postoperative adhesion formation and lack of suitable donor material for tendon autograft are 2 fundamental problems that continue to challenge the hand surgeon. In 1967, Erle E. Peacock, Jr, described a technique of flexor tendon reconstruction using cadaveric composite flexor tendon allograft, which consisted of both the flexor digitorum profundus and superficialis tendons in their respective fibro-osseous sheaths consisting of the digital pulley structures and the underlying periosteum and volar plates. This technique never gained widespread acceptance due to concerns regarding tissue antigenicity, infectious disease transmission, and the rising popularity of the method of Hunter for silastic rod-based flexor tendon reconstruction initially described during the same period. With modern-day advances in tissue processing with acellularization and extensive donor screening for transmissible diseases, this technique should be revisited to address the reconstructive needs of patients with extensive volar soft tissue and tendon injury. Herein, we describe the operative technique of composite flexor tendon procurement and reconstruction with key modifications from the initial technique described by Peacock for improved composite construct elevation, soft tissue inset, and bony attachment. PMID:24691346

  12. On muscle, tendon and high heels.

    PubMed

    Csapo, R; Maganaris, C N; Seynnes, O R; Narici, M V

    2010-08-01

    Wearing high heels (HH) places the calf muscle-tendon unit (MTU) in a shortened position. As muscles and tendons are highly malleable tissues, chronic use of HH might induce structural and functional changes in the calf MTU. To test this hypothesis, 11 women regularly wearing HH and a control group of 9 women were recruited. Gastrocnemius medialis (GM) fascicle length, pennation angle and physiological cross-sectional area (PCSA), the Achilles' tendon (AT) length, cross-sectional area (CSA) and mechanical properties, and the plantarflexion torque-angle and torque-velocity relationships were assessed in both groups. Shorter GM fascicle lengths were observed in the HH group (49.6+/-5.7 mm vs 56.0+/-7.7 mm), resulting in greater tendon-to-fascicle length ratios. Also, because of greater AT CSA, AT stiffness was higher in the HH group (136.2+/-26.5 N mm(-1) vs 111.3+/-20.2 N mm(-1)). However, no differences in the GM PCSA to AT CSA ratio, torque-angle and torque-velocity relationships were found. We conclude that long-term use of high-heeled shoes induces shortening of the GM muscle fascicles and increases AT stiffness, reducing the ankle's active range of motion. Functionally, these two phenomena seem to counteract each other since no significant differences in static or dynamic torques were observed. PMID:20639419

  13. An Artificial Tendon with Durable Muscle Interface

    PubMed Central

    Melvin, Alan; Litsky, Alan; Mayerson, Joel; Witte, David; Melvin, David; Juncosa-Melvin, Natalia

    2010-01-01

    A coupling mechanism that can permanently fix a forcefully contracting muscle to a bone anchor or any totally inert prosthesis would meet a serious need in orthopaedics. Our group developed the OrthoCoupler™ device to satisfy these demands. The objective of this study was to test OrthoCoupler’s performance in vitro and in vivo in the goat semitendinosus tendon model. For in vitro evaluation, 40 samples were fatigue-tested, cycling at 10 load levels, n=4 each. For in vivo evaluation, the semitendinosus tendon was removed bilaterally in 8 goats. Left sides were reattached with an OrthoCoupler, and right sides were reattached using the Krackow stitch with #5 braided polyester sutures. Specimens were harvested 60 days post-surgery and assigned for biomechanics and histology. Fatigue strength of the devices in vitro was several times the contractile force of the semitendinosus muscle. The in vivo devices were built equivalent to two of the in vitro devices, providing an additional safety factor. In strength testing at necropsy, suture controls pulled out at 120.5 ± 68.3 N, whereas each OrthoCoupler was still holding after the muscle tore, remotely, at 298±111.3N (mean ± SD)(p<0.0003). Muscle tear strength was reached with the fiber-muscle composite produced in healing still soundly intact. This technology may be of value for orthopaedic challenges in oncology, revision arthroplasty, tendon transfer, and sports-injury reconstruction. PMID:19639642

  14. The integrated function of muscles and tendons during locomotion.

    PubMed

    Roberts, Thomas J

    2002-12-01

    The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body. PMID:12485693

  15. [Treatment of an old Achilles tendon rupture with allografts. Report of case series].

    PubMed

    Matus-Jiménez, J; Martínez-Arredondo, H

    2011-01-01

    Rupture of Achilles tendon occurs at 2-6 cm from its attachment in the calcaneus; its frequency is estimated at 7-18 cases per 100,000 population in the United States and it occurs more frequently in males. The diagnosis is made clinically and with ultrasound or magnetic resonance imaging and treatment may be divided into acute or late. We present herein the use of allograft to treat patients with ruptures more than six weeks old; several techniques were used depending on the rupture site and the available allograft. Ten plasties were performed in ten patients with ruptures that occurred a mean of 8 months back; early rehabilitation was instituted and weight bearing was allowed at 4 weeks with a brace, which was removed at 12 weeks; patients could run at 12 weeks. Four wound dehiscence complications were reported, which resolved with second intention healing without the need for any other surgery, with good results and patient satisfaction. PMID:22512126

  16. An insight on multiscale tendon modeling in muscle-tendon integrated behavior.

    PubMed

    Maceri, Franco; Marino, Michele; Vairo, Giuseppe

    2012-03-01

    This paper aims to highlight the need for a refined tendon model to reproduce the main mechanical features of the integrated muscle-tendon unit (MTU). Elastic nonlinearities of the tendon, both at the nano and microscale, are modeled by a multiscale approach, accounting for the hierarchical arrangement (from molecules up to the fibers) of the collagen structures within the tissue. This model accounts also for the variation of tendon stiffness due to physical activity. Since the proposed tendon model is based on tissue-structured histology, the training-driven adaptation laws are directly formulated starting from histological evidences. Such a tendon description is integrated into a viscoelastic Hill-type model of the whole MTU. A fixed-end contraction test is numerically simulated, and results based on both linear and nonlinear tendon elastic model are compared. Sound and effective time-histories of muscle contractile force and fiber length are obtained only accounting for tendon elastic nonlinearities, which allow to quantitatively recover some experimental data. Finally, proposed numerical results give clear indications toward a rational explanation of the influence of tendon remodeling induced by physical activity on muscular contractile force. PMID:21739087

  17. Chest wall reconstruction using iliac bone allografts and muscle flaps.

    PubMed

    Garcia-Tutor, Emilio; Yeste, Luis; Murillo, Julio; Aubá, Cristina; Sanjulian, Mikel; Torre, Wenceslao

    2004-01-01

    Technically we can divide full-thickness thoracic reconstruction into 2 parts: providing a rigid support and ensuring well-vascularized coverage. Since 1986, the authors' center has had ample experience with bone banks and the use of cryopreserved bone grafts, which led them to consider the possibility of using these grafts for full-thickness chest wall reconstruction. They describe 3 patients in whom resection of the tumor and reconstruction of the thorax were carried out using iliac bone allografts covered with muscle flaps (1 pectoralis major and 2 rectus abdominis). None of the patients experienced breathing difficulties, pain, or instability after 14 months, 18 months, and 11 years of follow-up. The result of the reconstruction was excellent in all 3 patients in terms of function and aesthetics. The advantage of allografts compared with synthetic materials is their potential integration; they can become part of the host patient's living tissue. PMID:14676700

  18. Ultrasound elastography for imaging tendons and muscles

    PubMed Central

    2012-01-01

    Ultrasound elastography is a recently developed ultrasound-based method which allows the qualitative or quantitative evaluation of the mechanical properties of tissue. Strain (compression) ultrasound elastography is the commonest technique performed by applying mild compression with the hand-held transducer to create real-time strain distribution maps, which are color-coded and superimposed on the B-mode images. There is increasing evidence that ultrasound elastography can be used in the investigation of muscle, tendon and soft tissue disease in the clinical practice, as a supplementary tool to conventional ultrasound examination. Based on preliminary data, potential clinical applications include early diagnosis, staging, and guiding interventions musculotendinous and neuromuscular disease as well as monitoring disease during rehabilitation. Ultrasound elastography could also be used for research into the biomechanics and pathophysiology of musculotendinous disease. Despite the great interest in the technique, there is still limited evidence in the literature and there are several technical issues which limit the reproducibility of the method, including differences in quantification methods, artefacts, limitations and variation in the application of the technique by different users. This review presents the published evidence on musculoskeletal applications of strain elastography, discusses the technical issues and future perspectives of this method and emphasizes the need for standardization and further research. PMID:26673318

  19. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction.

    PubMed

    Tiwari, Prabhat; Kumar, Arun; Das, Rudra Nayan; Malhotra, Vivek; VijayRaghavan, K

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  20. A Tendon Cell Specific RNAi Screen Reveals Novel Candidates Essential for Muscle Tendon Interaction

    PubMed Central

    Tiwari, Prabhat; Malhotra, Vivek; VijayRaghavan, K.

    2015-01-01

    Tendons are fibrous connective tissue which connect muscles to the skeletal elements thus acting as passive transmitters of force during locomotion and provide appropriate body posture. Tendon-derived cues, albeit poorly understood, are necessary for proper muscle guidance and attachment during development. In the present study, we used dorsal longitudinal muscles of Drosophila and their tendon attachment sites to unravel the molecular nature of interactions between muscles and tendons. We performed a genetic screen using RNAi-mediated knockdown in tendon cells to find out molecular players involved in the formation and maintenance of myotendinous junction and found 21 candidates out of 2507 RNAi lines screened. Of these, 19 were novel molecules in context of myotendinous system. Integrin-βPS and Talin, picked as candidates in this screen, are known to play important role in the cell-cell interaction and myotendinous junction formation validating our screen. We have found candidates with enzymatic function, transcription activity, cell adhesion, protein folding and intracellular transport function. Tango1, an ER exit protein involved in collagen secretion was identified as a candidate molecule involved in the formation of myotendinous junction. Tango1 knockdown was found to affect development of muscle attachment sites and formation of myotendinous junction. Tango1 was also found to be involved in secretion of Viking (Collagen type IV) and BM-40 from hemocytes and fat cells. PMID:26488612

  1. Anterior Cruciate Ligament Reconstruction with Bone-Patellar Tendon-Bone Autograft Versus Allograft in Young Patients

    PubMed Central

    Atanda, Alfred; O’Brien, Daniel Francis; Kraeutler, Matthew John; Flato, Russell R.; Salminen, Matthew Robert; Henrichsen, Kevin; Kane, Patrick; Dodson, Christopher C.; Cohen, Steven B.; Ciccotti, Michael G.

    2015-01-01

    Objectives: Traditionally, bone-patella tendon-bone (BTB) autograft has been the gold standard graft choice for younger, athletic patients requiring ACL reconstruction. However, donor site morbidity, post-operative patella fracture, and increased operative time have led many surgeons to choose BTB allograft for their reconstructions. Opponents of allografts feel that slower healing time, higher rate of graft failure, and potential for disease transmission makes them undesirable graft choices in athletic patients. The purpose of this study is to evaluate the clinical outcomes, both subjective and objective, of young patients that who have undergone either BTB autograft or allograft reconstructions with a minimum of 2-year follow-up. Methods: One hundred and twenty patients (60 autograft, 60 allograft), age 25 and below at time of surgery, were contacted after being retrospectively identified as patients having an ACL reconstruction with either a BTB allograft or autograft by one senior surgeon. Patients were administered the Lysholm Knee Scoring Scale and IKDC Subjective Knee Evaluation questionnaires. Fifty (25 BTB autograft and 25 BTB allograft) of the 120 returned for physical examination as well as completion of a single leg hop test and laxity evaluation using a KT-1000 arthrometer evaluation. Of the 120 patients contacted, there were a total of 7 failures (5.8%) requiring revision, 6 in the allograft group (86%) and 1 in the autograft group (14%). Results: The average Lysholm scores were 89.0 and 89.56 and the average IKDC scores were 90.8 and 92.1 in the autograft and allograft groups respectively. The differences in the Lysholm scores and the IKDC scores were not significant. The single leg hop and KT-1000 scores were also not significantly different. One autograft patient had a minor motion deficit. Three allograft patients had a grade 1 Lachman and pivot glide. One autograft patient and two allograft patients had mild patellafemoral crepitus. There was no

  2. In vivo behaviour of human muscle tendon during walking.

    PubMed Central

    Fukunaga, T.; Kubo, K.; Kawakami, Y.; Fukashiro, S.; Kanehisa, H.; Maganaris, C. N.

    2001-01-01

    In the present study we investigated in vivo length changes in the fascicles and tendon of the human gastrocnemius medialis (GM) muscle during walking. The experimental protocol involved real-time ultrasound scanning of the GM muscle, recording of the electrical activity of the muscle, measurement of knee- and ankle-joint rotations, and measurement of ground reaction forces in six men during walking at 3 km h(-1) on a treadmill. Fascicular lengths were measured from the sonographs recorded. Musculotendon complex length changes were estimated from anatomical and joint kinematic data. Tendon length changes were obtained combining the musculotendon complex and fascicular length-change data. The fascicles followed a different length-change pattern from those of the musculotendon complex and tendon throughout the step cycle. Two important features emerged: (i) the muscle contracted near-isometrically in the stance phase, with the fascicles operating at ca. 50 mm; and (ii) the tendon stretched by ca. 7 mm during single support, and recoiled in push-off. The behaviour of the muscle in our experiment indicates consumption of minimal metabolic energy for eliciting the contractile forces required to support and displace the body. On the other hand, the spring-like behaviour of the tendon indicates storage and release of elastic-strain energy. Either of the two mechanisms would favour locomotor economy PMID:11217891

  3. [Isolated injury of the subscapular muscle tendon].

    PubMed

    Thielemann, F W; Kley, U; Holz, U

    1992-03-01

    Avulsion of the subscapularis tendon is caused by a combined abduction and external rotation trauma of the upper limb. Weakness of internal rotation and a positive apprehension test are clinical signs of the injury. A fracture of the lesser tuberosity in the x-ray film or a disruption of the subscapularis tendon documented in dynamic sonography of the shoulder clarify the diagnosis. Operative treatment is indicated of prevent weakness of internal rotation as well as anterior instability. This recommendation is supported by four cases with full range of motion and good anterior stability after surgery. PMID:1585252

  4. Editorial commentary: biologic enhancement of muscle and tendon healing.

    PubMed

    Lubowitz, James H

    2015-05-01

    Review of biologic enhancement of muscle and tendon healing reveals substantial clinical study of platelet rich plasma, but an inadequate basis for evidence-based treatment recommendations. In this context, the literature shows that augmentation of rotator cuff repair is not shown to be of benefit, while treatment of knee and ankle tendinopathy and plantar fasciitis shows positive results. PMID:25953230

  5. Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise

    PubMed Central

    Rooney, Sarah Ilkhanipour; Tobias, John W.; Bhatt, Pankti R.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2015-01-01

    Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise. PMID:26447778

  6. Effects of gamma irradiation on the initial mechanical and material properties of goat bone-patellar tendon-bone allografts

    SciTech Connect

    Gibbons, M.J.; Butler, D.L.; Grood, E.S.; Bylski-Austrow, D.I.; Levy, M.S.; Noyes, F.R. )

    1991-03-01

    The effects of {sup 60}Co gamma irradiation on the initial mechanical properties of the composite bone-patellar tendon-bone unit (CU) and the tendon midsubstance (TM) were studied. Frozen specimens were exposed to either 2 or 3 Mrad of gamma irradiation. Paired frozen specimens served as intraanimal controls. Treatment effects on the CU were assessed using four mechanical parameters. Effects on the TM were assessed using four material parameters measured using an optical surface-strain analysis system. The maximum force and strain energy to maximum force of the composite unit were significantly reduced 27% and 40%, respectively, after 3 Mrad of irradiation (p less than .05). Mechanical properties of the CU were not significantly altered, however, following 2 Mrad of irradiation. Based on individual paired contrasts between treatment and control, significant differences were also found in the material properties of the tendon midsubstance. The maximum stress, maximum strain, and strain energy density to maximum stress were significantly reduced following 3 Mrad, but not 2 Mrad, of irradiation. The results provide important time zero material property data, which will be useful for later anterior cruciate ligament reconstruction studies using irradiated allograft patellar tendons in the goat model and other animal models as well.

  7. Histopathological and biomechanical evaluation of tenocyte seeded allografts on rat Achilles tendon regeneration.

    PubMed

    Güngörmüş, Cansın; Kolankaya, Dürdane; Aydin, Erkin

    2015-05-01

    Tendon injuries in humans as well as in animals' veterinary medicine are problematic because tendon has poor regenerative capacity and complete regeneration of the ruptured tendon is never achieved. In the last decade there has been an increasing need of treatment methods with different approaches. The aim of the current study was to improve the regeneration process of rat Achilles tendon with tenocyte seeded decellularized tendon matrices. For this purpose, Achilles tendons were harvested, decellularized and seeded as a mixture of three consecutive passages of tenocytes at a density of 1 × 10(6) cells/ml. Specifically, cells with different passage numbers were compared with respect to growth characteristics, cellular senescence and collagen/tenocyte marker production before seeding process. The viability of reseeded tendon constructs was followed postoperatively up to 6 months in rat Achilles tendon by histopathological and biomechanical analysis. Our results suggests that tenocyte seeded decellularized tendon matrix can significantly improve the histological and biomechanical properties of tendon repair tissue without causing adverse immune reactions. To the best of our knowledge, this is the first long-term study in the literature which was accomplished to prove the use of decellularized matrix in a clinically relevant model of rat Achilles tendon and the method suggested herein might have important implications for translation into the clinic. PMID:25771002

  8. Reversal of Peroneal Tenodesis With Allograft Reconstruction of the Peroneus Brevis and Longus: Case Report and Surgical Technique.

    PubMed

    Pellegrini, Manuel J; Adams, Samuel B; Parekh, Selene G

    2014-06-24

    Chronic peroneal tendinopathy and tears represent a challenging clinical situation. Traditionally, tenodesis of the torn tendon to the remaining healthy tendon has been advocated if more than half of the tendon is compromised. Allograft reconstructions have been reserved for patients with functional muscles and both peroneal tendons extensively compromised. We report a unique case of a peroneal tenodesis takedown and reconstruction of both peroneal tendons using semitendinosus allograft. A description of the surgical technique and tips are provided. Peroneal tendon function is crucial to maintain a balanced hindfoot. To the best of our knowledge, reconstruction of both peroneal tendons after a tenodesis has not been previously reported. Allograft reconstruction of the peroneal tendons arises as a feasible alternative in patients with residual pain and weakness after a failed tenodesis surgery LEVELS OF EVIDENCE: Therapeutic Level IV, case study. PMID:24962697

  9. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise.

    PubMed

    Miller, Benjamin F; Olesen, Jens L; Hansen, Mette; Døssing, Simon; Crameri, Regina M; Welling, Rasmus J; Langberg, Henning; Flyvbjerg, Allan; Kjaer, Michael; Babraj, John A; Smith, Kenneth; Rennie, Michael J

    2005-09-15

    We hypothesized that an acute bout of strenuous, non-damaging exercise would increase rates of protein synthesis of collagen in tendon and skeletal muscle but these would be less than those of muscle myofibrillar and sarcoplasmic proteins. Two groups (n = 8 and 6) of healthy young men were studied over 72 h after 1 h of one-legged kicking exercise at 67% of maximum workload (W(max)). To label tissue proteins in muscle and tendon primed, constant infusions of [1-(13)C]leucine or [1-(13)C]valine and flooding doses of [(15)N] or [(13)C]proline were given intravenously, with estimation of labelling in target proteins by gas chromatography-mass spectrometry. Patellar tendon and quadriceps biopsies were taken in exercised and rested legs at 6, 24, 42 or 48 and 72 h after exercise. The fractional synthetic rates of all proteins were elevated at 6 h and rose rapidly to peak at 24 h post exercise (tendon collagen (0.077% h(-1)), muscle collagen (0.054% h(-1)), myofibrillar protein (0.121% h(-1)), and sarcoplasmic protein (0.134% h(-1))). The rates decreased toward basal values by 72 h although rates of tendon collagen and myofibrillar protein synthesis remained elevated. There was no tissue damage of muscle visible on histological evaluation. Neither tissue microdialysate nor serum concentrations of IGF-I and IGF binding proteins (IGFBP-3 and IGFBP-4) or procollagen type I N-terminal propeptide changed from resting values. Thus, there is a rapid increase in collagen synthesis after strenuous exercise in human tendon and muscle. The similar time course of changes of protein synthetic rates in different cell types supports the idea of coordinated musculotendinous adaptation. PMID:16002437

  10. Concurrent deficits of soleus and gastrocnemius muscle fascicles and Achilles tendon post stroke

    PubMed Central

    Zhao, Heng; Ren, Yupeng; Roth, Elliot J.; Harvey, Richard L.

    2015-01-01

    Calf muscles and Achilles tendon play important roles in functional activities. However, it is not clear how biomechanical properties of the uniarticular soleus (SOL) and biarticular gastrocnemius muscle and Achilles tendon, including the fascicle length, pennation angle, and stiffness, change concurrently post stroke. Biomechanical properties of the medial gastrocnemius (GM) and soleus muscles were evaluated bilaterally in 10 hemiparetic stroke survivors using combined ultrasonography-biomechanical measurements. Biomechanical properties of the Achilles tendon including the length, cross-sectional area (CSA), stiffness, and Young's modulus were evaluated, together with calf muscle biomechanical properties. Gastrocnemius and SOL contributions were separated using flexed and extended knee positions. The impaired side showed decreased fascicle length (GM: 6%, P = 0.002 and SOL: 9%, P = 0.03, at full knee extension and 0° ankle dorsiflexion) and increased fascicular stiffness (GM: 64%, P = 0.005 and SOL: 19%, P = 0.012, at a common 50 N force level). In contrast, Achilles tendon on the impaired side showed changes in the opposite direction as the muscle fascicles with increased tendon length (5%, P < 0.001), decreased tendon CSA (5%, P = 0.04), decreased tendon stiffness (42%, P < 0.001) and Young's modulus (30%, P < 0.001) compared with the unimpaired side. The fascicle and tendon stiffness changes were correlated negatively to the corresponding fascicle and tendon length changes, and decrease in Achilles tendon stiffness was correlated to the increases of SOL and GM fascicular stiffness (P < 0.05). Characterizations of calf muscle fascicles and Achilles tendon biomechanical properties help us better understand concurrent changes of fascicles and tendon as part of the calf muscle-tendon unit and facilitate development of more effective treatments. PMID:25663670

  11. Tendon material properties vary and are interdependent among turkey hindlimb muscles.

    PubMed

    Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P; Roberts, Thomas J

    2012-10-15

    The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress-strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r(2)=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity. PMID:22771746

  12. The energetic benefits of tendon springs in running: is the reduction of muscle work important?

    PubMed Central

    Holt, Natalie C.; Roberts, Thomas J.; Askew, Graham N.

    2014-01-01

    The distal muscle-tendon units of cursorial species are commonly composed of short muscle fibres and long, compliant tendons. It is assumed that the ability of these tendons to store and return mechanical energy over the course of a stride, thus avoiding the cyclic absorption and regeneration of mechanical energy by active muscle, offers some metabolic energy savings during running. However, this assumption has not been tested directly. We used muscle ergometry and myothermic measurements to determine the cost of force production in muscles acting isometrically, as they could if mechanical energy was stored and returned by tendon, and undergoing active stretch–shorten cycles, as they would if mechanical energy was absorbed and regenerated by muscle. We found no detectable difference in the cost of force production in isometric cycles compared with stretch–shorten cycles. This result suggests that replacing muscle stretch–shorten work with tendon elastic energy storage and recovery does not reduce the cost of force production. This calls into question the assumption that reduction of muscle work drove the evolution of long distal tendons. We propose that the energetic benefits of tendons are derived primarily from their effect on muscle and limb architecture rather than their ability to reduce the cyclic work of muscle. PMID:25394624

  13. The energetic benefits of tendon springs in running: is the reduction of muscle work important?

    PubMed

    Holt, Natalie C; Roberts, Thomas J; Askew, Graham N

    2014-12-15

    The distal muscle-tendon units of cursorial species are commonly composed of short muscle fibres and long, compliant tendons. It is assumed that the ability of these tendons to store and return mechanical energy over the course of a stride, thus avoiding the cyclic absorption and regeneration of mechanical energy by active muscle, offers some metabolic energy savings during running. However, this assumption has not been tested directly. We used muscle ergometry and myothermic measurements to determine the cost of force production in muscles acting isometrically, as they could if mechanical energy was stored and returned by tendon, and undergoing active stretch-shorten cycles, as they would if mechanical energy was absorbed and regenerated by muscle. We found no detectable difference in the cost of force production in isometric cycles compared with stretch-shorten cycles. This result suggests that replacing muscle stretch-shorten work with tendon elastic energy storage and recovery does not reduce the cost of force production. This calls into question the assumption that reduction of muscle work drove the evolution of long distal tendons. We propose that the energetic benefits of tendons are derived primarily from their effect on muscle and limb architecture rather than their ability to reduce the cyclic work of muscle. PMID:25394624

  14. Insertional Characteristics of the Peroneus Tertius Tendon: Revisiting the Anatomy of an Underestimated Muscle.

    PubMed

    Ercikti, Nurcan; Apaydin, Nihal; Kocabiyik, Necdet; Yazar, Fatih

    2016-01-01

    The present study was performed to describe the morphologic characteristics of the peroneus tertius (PT) tendon, evaluate the variations in its insertion point, investigate the interconnections with the tendons of the extensor digitorum longus, and discuss whether these insertion differences of the muscle tension might have an effect on fracture formation. The length and width of the PT tendon and the width at its midpoint were measured in 44 lower extremities. The data obtained were compared statistically. The PT was found to occur in 2 types according to the number of tendons: type 1, a single tendon without a slip; and type 2, 2 tendons with a slip. It has been suggested that the PT tendon could contribute to avulsion fractures of the tuberosity of the fifth metatarsal bone. Therefore, to understand the mechanism of Jones fracture, knowledge of the PT tendon would be beneficial to determine the insertion points. PMID:26860045

  15. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg.

    PubMed

    Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof

    2016-01-01

    The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes. PMID:26869938

  16. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg

    PubMed Central

    Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof

    2016-01-01

    The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes. PMID:26869938

  17. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance.

    PubMed Central

    Griffiths, R I

    1991-01-01

    1. The length of muscle fibres in the medial gastrocnemius (MG) muscle of the anaesthetized cat was measured using ultrasound techniques. During the course of 'isometric' contractions, the muscle fibres shortened by stretching the compliant tendons, until the muscle fibres could no longer produce enough force to stretch the tendons further. At optimal muscle length (Lo) the maximal shortening of muscle fibres was 28%. 2. At muscle lengths much longer than Lo, 'isometric' contractions produced a slow shortening of the muscle fibres as the tendons were stretched and this resulted in a slow rise in tension. This phenomenon, usually referred to as 'creep', is due to low power at long muscle fibre length. This study shows that the series compliance present in the tendons is the major contributor to 'creep' in the cat MG muscle. As the tendons stretched during the course of the contraction, the average sarcomere length became shorter providing greater filament overlap and increasing power. 3. Slow to medium speed stretches applied shortly after the onset of contraction, as occurs in cat MG during walking and trotting, were entirely taken up in the tendons and the muscle fibres actually shortened throughout the imposed muscle stretch. 4. When early stretches were applied at muscle lengths longer than Lo, stretch of the muscle resulted in a peak force that was less than if the stretch had not been applied. This was the reverse of the situation for stretches at lengths less than Lo. When stretch was applied after attaining peak force, the force was greatly enhanced and the muscle fibres were also stretched. 5. Using the same techniques in a freely walking cat, the muscle fibres shortened by 1.0 +/- 0.3 mm during the stance phase of the step-cycle when the muscle was being stretched, in 198 consecutive step-cycles. 6. The tendons act as a mechanical buffer to protect muscle fibres from damage during eccentric contractions. 7. Since stretches of the MG muscle are not

  18. Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight?

    PubMed

    Konow, Nicolai; Cheney, Jorn A; Roberts, Thomas J; Waldman, J Rhea S; Swartz, Sharon M

    2015-10-01

    Tendon springs influence locomotor movements in many terrestrial animals, but their roles in locomotion through fluids as well as in small-bodied mammals are less clear. We measured muscle, tendon and joint mechanics in an elbow extensor of a small fruit bat during ascending flight. At the end of downstroke, the tendon was stretched by elbow flexion as the wing was folded. At the end of upstroke, elastic energy was recovered via tendon recoil and extended the elbow, contributing to unfurling the wing for downstroke. Compared with a hypothetical 'string-like' system lacking series elastic compliance, the tendon spring conferred a 22.5% decrease in muscle fascicle strain magnitude. Our findings demonstrate tendon elastic action in a small flying mammal and expand our understanding of the occurrence and action of series elastic actuator mechanisms in fluid-based locomotion. PMID:26423848

  19. Tendonitis (image)

    MedlinePlus

    ... tendon. It can occur as a result of injury, overuse, or with aging as the tendon loses elasticity. Any action that places prolonged repetitive strain on the forearm muscles can cause tendonitis. The ...

  20. Cytomegalovirus infection enhances smooth muscle cell proliferation and intimal thickening of rat aortic allografts.

    PubMed Central

    Lemström, K B; Bruning, J H; Bruggeman, C A; Lautenschlager, I T; Häyry, P J

    1993-01-01

    Inbred DA (AG-B4, RT1a) and WF (AG-B2, RT1v) rats were used as donors and recipients of aortic allografts. The recipient rats were inoculated i.p. either on day 1 (early infection) or on day 60 (late infection) with 10(5) plaque-forming units of rat cytomegalovirus (RCMV). The control rats were left noninfected. The presence of viral infection was demonstrated by plaque assays from biopsies of the salivary glands, liver, and spleen at sacrifice. The rats received 300 microCi[3H]thymidine by i.v. injection 3 h before sacrifice, and the grafts were removed at various time points for histology, immunohistochemistry, and autoradiography. RCMV infection significantly enhanced the generation of allograft arteriosclerosis. Infection at the time of transplantation had two important effects. First, the infection was associated with an early, prominent inflammatory episode and proliferation of inflammatory cells in the allograft adventitia. Second, the viral infection doubled the proliferation rate of smooth muscle cells and the arteriosclerotic alterations in the intima. In late infection the impact of RCMV infection on the allograft histology was nearly nonexistent. RCMV infection showed no effect in syngeneic grafts. These results suggest that early infection is more important to the generation of accelerated allograft arteriosclerosis than late infection, and that an acute alloimmune response must be associated with virus infection, to induce accelerated allograft arteriosclerosis. RCMV-infected aortic allografts, as described here, provide the first experimental model to investigate the interaction between the virus and the vascular wall of the transplant. Images PMID:8394384

  1. IMPROVEMENT OF TENDON REPAIR USING MUSCLE GRAFTS TRANSDUCED WITH TGF-β1 cDNA

    PubMed Central

    Majewski, Martin; Porter, Ryan M.; Betz, Oliver B.; Betz, Volker M.; Clahsen, Harald; Flückiger, Rudolf; Evans, Christopher H.

    2015-01-01

    Tendon rupture is a common injury. Inadequate endogenous repair often leaves patients symptomatic, with tendons susceptible to re-rupture. Administration of certain growth factors improves tendon healing in animal models, but their delivery remains a challenge. Here we evaluated the delivery of TGF-β1 to tendon defects by the implantation of genetically modified muscle grafts. Rat muscle biopsies were transduced with recombinant adenovirus encoding TGF-β1 and grafted onto surgically transected Achilles tendons in recipient animals. Tissue regenerates were compared to those of controls by biomechanical testing as well as histochemical and immunohistochemical analyses. Healing was greatly accelerated when genetically modified grafts were implanted into tendon defects, with the resulting repair tissue gaining nearly normal histological appearance as early as 2 weeks postoperatively. This was associated with decreased deposition of type III collagen in favour of large fibre bundles indicative of type I collagen. These differences in tendon composition coincided with accelerated restoration of mechanical strength. Tendon thickness increased in gene-treated animals at weeks 1 and 2, but by week 8 became significantly lower than that of controls suggesting accelerated remodelling. Thus localised TGF-β1 delivery via adenovirus-modified muscle grafts improved tendon healing in this rat model and holds promise for clinical application. PMID:22354460

  2. Is muscle spindle proprioceptive function spared in muscular dystrophies? A muscle tendon vibration study.

    PubMed

    Ribot-Ciscar, Edith; Tréfouret, Sylvie; Aimonetti, Jean-Marc; Attarian, Shahram; Pouget, Jean; Roll, Jean-Pierre

    2004-06-01

    Muscular dystrophies (MDs) are characterized by the degeneration of skeletal muscle fibers. The aim of the present study was to determine whether the intrafusal fibers of muscle spindles are also affected in MD. The functional integrity of muscle spindles was tested by analyzing their involvement in the perception of body segment movements and in the control of posture. Twenty MD patients (4 with dystrophinopathy, 5 with myotonic dystrophies, 5 with fascioscapulohumeral MD, and 6 with limb-girdle dystrophies) and 10 healthy subjects participated in the study. The MD patients perceived passive movements and experienced illusory movements similar to those perceived by healthy subjects in terms of their direction and velocity. Vibratory stimulation applied to the neck and ankle muscle tendons induced postural responses in MD patients with spatial and temporal characteristics similar to those produced by healthy subjects. These results suggest that the proprioceptive function of muscle spindles is spared in muscular dystrophies. PMID:15170619

  3. A cross-sectional study of the plantar flexor muscle and tendon during growth.

    PubMed

    Kubo, K; Teshima, T; Hirose, N; Tsunoda, N

    2014-09-01

    The purpose of this study was to investigate growth changes in human plantar flexor muscle and tendons. In addition, we ascertained whether growth changes in muscle and tendon were more closely related to skeletal age than chronological age. 22 elementary school children (ESC), 19 junior high school students (JHS), and 23 young adults (ADT) men participated in this study. Maximal strain and hysteresis of tendon structures and cross-sectional area of Achilles tendon were measured using ultrasonography. In addition, skeletal age was assessed using Tanner-Whitehouse III method. Maximal strain of ESC was significantly greater than that of other groups, while no significant difference was observed between JHS and ADT. There was no difference in hysteresis among 3 groups. Relative cross-sectional area (to body mass(2/3)) of ADT was significantly smaller than that of other groups. For ESC and JHS, measured variables of muscle and tendon were significantly correlated to both chronological and skeletal ages. These results suggested that immature musculoskeletal system was protected by more extensible and larger tendon structures in ESC and only by larger tendon structures in JHS, respectively. Furthermore, there were no differences in correlation coefficient values between measured variables of muscle and tendon and chronological or skeletal ages. PMID:24577863

  4. Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study.

    PubMed

    Mörl, Falk; Siebert, Tobias; Häufle, Daniel

    2016-02-01

    Experimental studies show different muscle-tendon complex (MTC) functions (e.g. motor or spring) depending on the muscle fibre-tendon length ratio. Comparing different MTC of different animals examined experimentally, the extracted MTC functions are biased by, for example, MTC-specific pennation angle and fibre-type distribution or divergent experimental protocols (e.g. influence of temperature or stimulation on MTC force). Thus, a thorough understanding of variation of these inner muscle fibre-tendon length ratios on MTC function is difficult. In this study, we used a hill-type muscle model to simulate MTC. The model consists of a contractile element (CE) simulating muscle fibres, a serial element (SE) as a model for tendon, and a parallel elastic element (PEE) modelling tissue in parallel to the muscle fibres. The simulation examines the impact of length variations of these components on contraction dynamics and MTC function. Ensuring a constant overall length of the MTC by L(MTC) = L(SE) + L(CE), the SE rest length was varied over a broad physiological range from 0.1 to 0.9 MTC length. Five different MTC functions were investigated by simulating typical physiological experiments: the stabilising function with isometric contractions, the motor function with contractions against a weight, the capability of acceleration with contractions against a small inertial mass, the braking function by decelerating a mass, and the spring function with stretch-shortening cycles. The ratio of SE and CE mainly determines the MTC function. MTC with comparably short tendon generates high force and maximal shortening velocity and is able to produce maximal work and power. MTC with long tendon is suitable to store and release a maximum amount of energy. Variation of muscle fibre-tendon ratio yielded two peaks for MTC's force response for short and long SE lengths. Further, maximum work storage capacity of the SE is at long relL(SE,0). Impact of fibre-tendon length ratio on MTC

  5. The series elastic shock absorber: tendon elasticity modulates energy dissipation by muscle during burst deceleration

    PubMed Central

    Konow, Nicolai; Roberts, Thomas J.

    2015-01-01

    During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a ‘shock-absorber’ mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle–tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5–1.5 m centre-of-mass elevation). Negative work by the LG muscle–tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length–tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity. PMID:25716796

  6. Effects of isometric training at different knee angles on the muscle-tendon complex in vivo.

    PubMed

    Kubo, K; Ohgo, K; Takeishi, R; Yoshinaga, K; Tsunoda, N; Kanehisa, H; Fukunaga, T

    2006-06-01

    The purpose of this study was to investigate the influences of isometric training at different joint angles on the muscle size and function of the human muscle-tendon complex in vivo. Furthermore, we tried to gain a better understanding of the mechanisms involved in angle specificity after isometric training from the aspect of neuromuscular adaptation and the changes in the properties of the muscle-tendon complex. Nine males completed 12-week unilateral training program (70% of maximal voluntary contraction (MVC) x 15 s x six sets) on the knee extensors at 50 degrees (shorter muscle length: ST) and 100 degrees (longer muscle length: LT). The internal muscle force (mechanical stress) is higher at 100 degrees than at 50 degrees because of the difference in the moment arm length, although there were no difference in the relative torque level, contraction and relaxation times, and repetition between ST and LT. Before and after training, isometric strength at eight angles and muscle volume were determined. Tendon elongation of knee extensors was measured by ultrasonography. There was no significant difference in the rate of increment of muscle volume between the protocols. Tendon stiffness increased significantly for LT, but not for ST. Although significant gain was limited to angles at or near the training angle for ST, increases in MVC at all angles were found for LT. These results suggest that only mechanical stress (internal muscle force imposed on muscle and tendon) contributes to adaptation in the tendon stiffness, although metabolic (relative torque level, etc.) and mechanical stress relate to muscle hypertrophy. Furthermore, increment of tendon stiffness for LT might contribute to increase torque output at smaller angles other than the training angle. PMID:16643193

  7. Physiotherapeutic treatment of athletic injuries to the muscle--tendon complex of the leg.

    PubMed Central

    Wise, D. D.

    1977-01-01

    An overview is presented of the most common soft-tissue injuries of the leg in athletes. A simple classification is made on the basis of cause, location of the injury and severity. These injuries can be classified into direct and indirect types. Direct injuries, which are usually the result of one episode of trauma, can be classified further into three grades of severity. Treatment is based on the severity of the injury and its location in the muscle--tendon complex. Indirect muscle--tendon injuries are the result of repetitive subacute microtrauma to the muscle--tendon complex or injury to the structures associated with muscle function (bursa, tendon sheath or fascia). Appropriate treatment regimens are suggested. PMID:902209

  8. Passive Muscle-Tendon Unit Gearing Is Joint Dependent in Human Medial Gastrocnemius

    PubMed Central

    Hodson-Tole, Emma F.; Wakeling, James M.; Dick, Taylor J. M.

    2016-01-01

    Skeletal muscles change length and develop force both passively and actively. Gearing allows muscle fiber length changes to be uncoupled from those of the whole muscle-tendon unit. During active contractions this process allows muscles to operate at mechanically favorable conditions for power or economical force production. Here we ask whether gearing is constant in passive muscle; determining the relationship between fascicle and muscle-tendon unit length change in the bi-articular medial gastrocnemius and investigating the influence of whether motion occurs at the knee or ankle joint. Specifically, the same muscle-tendon unit length changes were elicited by rotating either the ankle or knee joint whilst simultaneously measuring fascicle lengths in proximal and distal muscle regions using B-mode ultrasound. In both the proximal and distal muscle region, passive gearing values differed depending on whether ankle or knee motion occurred. Fascicle length changes were greater with ankle motion, likely reflecting anatomical differences in proximal and distal passive tendinous tissues, as well as shape changes of the adjacent mono-articular soleus. This suggests that there is joint-dependent dissociation between the mechanical behavior of muscle fibers and the muscle-tendon unit during passive joint motions that may be important to consider when developing accurate models of bi-articular muscles. PMID:27014093

  9. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise

    PubMed Central

    Gumucio, Jonathan P; Sugg, Kristoffer B; Mendias, Christopher L

    2015-01-01

    Numerous studies in muscle and tendon have identified a central role of the TGF-β superfamily of cytokines in the regulation of extracellular matrix growth and remodeling, protein degradation, and cell proliferation and differentiation. Here we provide a novel framework for TGF-β and myostatin signaling in controlling the coordinated adaptation of both skeletal muscle and tendon tissue to resistance training. PMID:25607281

  10. Human ankle plantar flexor muscle-tendon mechanics and energetics during maximum acceleration sprinting.

    PubMed

    Lai, Adrian; Schache, Anthony G; Brown, Nicholas A T; Pandy, Marcus G

    2016-08-01

    Tendon elastic strain energy is the dominant contributor to muscle-tendon work during steady-state running. Does this behaviour also occur for sprint accelerations? We used experimental data and computational modelling to quantify muscle fascicle work and tendon elastic strain energy for the human ankle plantar flexors (specifically soleus and medial gastrocnemius) for multiple foot contacts of a maximal sprint as well as for running at a steady-state speed. Positive work done by the soleus and medial gastrocnemius muscle fascicles decreased incrementally throughout the maximal sprint and both muscles performed more work for the first foot contact of the maximal sprint (FC1) compared with steady-state running at 5 m s(-1) (SS5). However, the differences in tendon strain energy for both muscles were negligible throughout the maximal sprint and when comparing FC1 to SS5. Consequently, the contribution of muscle fascicle work to stored tendon elastic strain energy was greater for FC1 compared with subsequent foot contacts of the maximal sprint and compared with SS5. We conclude that tendon elastic strain energy in the ankle plantar flexors is just as vital at the start of a maximal sprint as it is at the end, and as it is for running at a constant speed. PMID:27581481

  11. Anterior Cruciate Ligament Reconstruction Using a Combination of Autograft and Allograft Tendon

    PubMed Central

    Darnley, James E.; Léger-St-Jean, Benjamin; Pedroza, Angela D.; Flanigan, David C.; Kaeding, Christopher C.; Magnussen, Robert A.

    2016-01-01

    Background: Anterior cruciate ligament (ACL) reconstruction with hamstring autografts less than 8.5 mm in diameter is associated with worse patient-reported outcome scores and increased risk of revision surgery compared with reconstructions performed with larger grafts. One proposed solution to small autograft harvest is to create a hybrid graft by augmenting autografts with allograft tissue to increase graft diameter. Purpose: To compare hybrid autograft/allograft ACL reconstruction to autograft ACL reconstruction, specifically analyzing the patient-reported outcome scores and the risk of revision surgery at 2 years postoperative. Study Design: Cohort study; Level of evidence, 3. Methods: From the years 2002 to 2009, a total of 34 patients were identified from a prospectively collected database as having undergone hybrid ACL reconstruction. Twenty-seven of 34 (79.4%) patients had a 2-year follow-up. These 27 patients were matched by age (within 1 year) and sex to 27 patients who underwent hamstring autograft ACL reconstruction during the same period. At the 2-year mark, revision surgery risk and patient-reported outcome scores were compared between the 2 groups. Results: The mean age for the hybrid and matched groups (±SD) was 20.9 ± 7.0 years. Both the hybrid and control groups had 17 males and 10 females. There was no significant difference in preoperative patient-reported outcome scores, meniscus tears, or cartilage lesions between the 2 groups. Graft size was larger in the hybrid group (9.5 ± 0.6 mm) than in the autograft group (8.4 ± 0.9 mm) (P < .001). At 2 years postoperative, patient-reported outcome scores were similar between the hybrid and autograft groups. Revision surgery was required in 5 (18.5%) patients who underwent hybrid reconstruction compared with 2 (7.4%) of those who underwent autograft reconstruction (P = .26). Conclusion: Patients who undergo ACL reconstruction with hybrid hamstring grafts and hamstring autografts report similar

  12. A model of muscle-tendon function in human walking at self-selected speed.

    PubMed

    Endo, Ken; Herr, Hugh

    2014-03-01

    Although joint biomechanics and whole-body energetics are well documented for human walking, the underlying mechanisms that govern individual muscle-tendon behaviors are not fully understood. Here, we present a computational model of human walking that unifies muscle and joint biomechanics with whole-body metabolism for level-ground walking at self-selected speed. In the model, muscle-tendon units that dorsiflex the ankle, and flex and extend the knee, are assumed to act as linear springs upon neural activation; each muscle-tendon is modeled as a tendon spring in series with an isometric force source. To provide the mechanical power lost in step-to-step gait transitions, a Hill-type soleus muscle is modeled to actively plantar flex the ankle using muscle state and force as reflex feedback signals. Finally, to stabilize the trunk during stance, and to protract and retract each leg throughout the swing phase, two mono-articular Hill-type muscles actuate the model's hip joint. Following a forward dynamics optimization procedure, the walking model is shown to predict muscle and joint biomechanics, as well as whole-body metabolism, supporting the idea that the preponderance of leg muscles operate isometrically, affording the relatively high metabolic walking economy of humans. PMID:24608689

  13. Gastrocnemius muscle belly and tendon length in stroke patients and able-bodied persons.

    PubMed

    Halar, E M; Stolov, W C; Venkatesh, B; Brozovich, F V; Harley, J D

    1978-10-01

    Length changes of gastrocnemius muscle belly and tendon at different passive tensions and ranges of motion (ROM) were measured in 31 healthy persons and 15 hemiplegic patients with clinically demonstrated ankle joint plantar flexion (PF) contractures. Preliminary studies were done to obtain accurate determination of gastrocnemius muscle insertion and origin points on x-ray films, to calculate the magnification factor due to x-ray beam divergence and to measure the length changes in muscle belly by the use of a wire hook placed at the muscle-tendon junction. Our results revealed: (1) change in length at different passive tensions is in the muscle belly, not in the tendon, (2) in hemiplegic patients no statistical difference in elongational characteristics of affected gastrocnemius muscle bellies with clinically demonstrated ankle PF contractures and of the contralateral nonaffected muscle bellies, (3) spastic and flaccid gastrocnemius muscle bellies are not statistically different in respect to passive elongations, (4) gastrocnemius muscle bellies of both affected and nonaffected legs of hemiplegic patients were statistically different from the muscle bellies of healthy persons in regard to maximal ROM and maxinum muscle belly length changes, (5) there was approximately .5 mm change in the belly length for each degree of ankle ROM, (6) age is not a factor influencing passive elongation of muscle belly, (7) average muscle belly lengths were consistently shorter in hemiplegic muscles while their tendon lengths did not change. The enumerated findings suggest that the limitation of ankle ROM in spastic hemiplegic legs obtained by the standard clinical measurements technique represents a change in muscle belly rest length without a structural contracture of the muscle fibers. PMID:718411

  14. Effects of denervation and immobilization on collagen synthesis in rat skeletal muscle and tendon.

    PubMed

    Savolainen, J; Myllylä, V; Myllylä, R; Vihko, V; Väänänen, K; Takala, T E

    1988-06-01

    The activities of prolyl 4-hydroxylase (PH) and galactosylhydroxylysyl glucosyltransferase (GGT), both enzymes of collagen biosynthesis, and the concentration of hydroxyproline (HYP) were measured in the gastrocnemius, soleus, and tibialis anterior muscles of rats after sciatic nerve neurectomy combined with cast immobilization of the denervated limb for 1 and 3 wk. PH and GGT were also observed in Achilles and tibialis anterior tendons after cast immobilization without neurectomy. After neurectomy the specific PH activity in the denervated gastrocnemius muscle increased by 215% (P less than 0.001). The specific GGT activity increased by 92-110% (P less than 0.01) in the denervated gastrocnemius, soleus, and tibialis anterior muscles. Elevation of the muscular HYP concentration by 118-170% (P less than 0.001) in the denervated muscles was observed. The PH, GGT, and HYP responses of the denervated muscles immobilized at a lengthened or shortened position during denervation atrophy did not generally differ significantly from those of the unfixed denervated ones. The specific PH and GGT activities of the disused tendons decreased by 62 (P less than 0.01) and 25% (P less than 0.001), respectively, in tendons immobilized in a chronically shortened position. The results suggest that denervation atrophy of skeletal muscle is associated with both an increased level of muscular collagen biosynthesis and with an increased muscular collagen concentration. The PH and GGT responses of the cast-immobilized tendons suggest adaptive changes in collagen biosynthesis of the disused tendon. PMID:2837917

  15. Effects of postmortem freezing on tensile failure properties of rabbit extensor digitorum longus muscle tendon complex.

    PubMed

    Leitschuh, P H; Doherty, T J; Taylor, D C; Brooks, D E; Ryan, J B

    1996-09-01

    The tensile failures of extensor digitorum longus muscle tendon units from 16 male New Zealand White rabbits were studied in the fresh state (less than 30 minutes after death) and in the frozen/thawed state (frozen at -80 degrees C for 28 days and then warmed to 38 degrees C). Frozen/thawed extensor digitorum longus muscle tendon units had significantly lower values for load to failure (p < 0.01), energy absorbed to failure (p < 0.01), and strain at failure (p < 0.01), and they tended to fail at a different anatomic location (p < 0.01) (broadly at the fascia-muscle interface as compared with horizontally at the musculotendinous junction) than fresh units. The results of this study suggest that freezing muscle tendon units significantly alters their tensile failure characteristics. PMID:8893779

  16. Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking

    PubMed Central

    Krishnaswamy, Pavitra; Brown, Emery N.; Herr, Hugh M.

    2011-01-01

    A common feature in biological neuromuscular systems is the redundancy in joint actuation. Understanding how these redundancies are resolved in typical joint movements has been a long-standing problem in biomechanics, neuroscience and prosthetics. Many empirical studies have uncovered neural, mechanical and energetic aspects of how humans resolve these degrees of freedom to actuate leg joints for common tasks like walking. However, a unifying theoretical framework that explains the many independent empirical observations and predicts individual muscle and tendon contributions to joint actuation is yet to be established. Here we develop a computational framework to address how the ankle joint actuation problem is resolved by the neuromuscular system in walking. Our framework is founded upon the proposal that a consideration of both neural control and leg muscle-tendon morphology is critical to obtain predictive, mechanistic insight into individual muscle and tendon contributions to joint actuation. We examine kinetic, kinematic and electromyographic data from healthy walking subjects to find that human leg muscle-tendon morphology and neural activations enable a metabolically optimal realization of biological ankle mechanics in walking. This optimal realization (a) corresponds to independent empirical observations of operation and performance of the soleus and gastrocnemius muscles, (b) gives rise to an efficient load-sharing amongst ankle muscle-tendon units and (c) causes soleus and gastrocnemius muscle fibers to take on distinct mechanical roles of force generation and power production at the end of stance phase in walking. The framework outlined here suggests that the dynamical interplay between leg structure and neural control may be key to the high walking economy of humans, and has implications as a means to obtain insight into empirically inaccessible features of individual muscle and tendons in biomechanical tasks. PMID:21445231

  17. Effect of Supraspinatus Tendon Injury on Supraspinatus and Infraspinatus Muscle Passive Tension and Associated Biochemistry

    PubMed Central

    Silldorff, Morgan D.; Choo, Alexander D.; Choi, Anthony J.; Lin, Evie; Carr, J. Austin; Lieber, Richard L.; Lane, John G.; Ward, Samuel R.

    2014-01-01

    Background: Injury to the supraspinatus and infraspinatus tendons and the associated atrophic changes to the muscle remain a common clinical problem. Specifically, increased muscle stiffness has been implicated in failure of the repair and poor functional outcomes. We present a comparison of the passive mechanical properties and associated biochemical studies from patients with and without torn supraspinatus tendons. Methods: Muscle biopsy samples (n = 40) were obtained from twenty patients undergoing arthroscopic shoulder surgery. Passive mechanical tests of both individual fibers and fiber bundles as well as analysis of titin molecular weight and collagen content were performed. Results: At the fiber-bundle level, a significant increase in passive modulus was observed between intact supraspinatus samples (mean [and standard error], 237.41 ± 59.78 kPa) and torn supraspinatus samples (515.74 ± 65.48 kPa) (p < 0.05), a finding that was not observed at the single fiber level. Within the torn samples, elastic moduli in the supraspinatus were greater than in the infraspinatus at both the single fiber and the fiber-bundle level. There was a significant positive correlation between bundle elastic modulus and collagen content (r2 = 0.465) in the supraspinatus muscle as well as a significant positive correlation between tear size and bundle elastic modulus (r2 = 0.702) in the torn supraspinatus samples. Conclusions: Supraspinatus muscle passive tension increases in a tendon tear size-dependent manner after tendon injury. The increase in muscle stiffness appears to originate outside the muscle cell, in the extracellular matrix. Clinical Relevance: Muscle stiffness after rotator cuff tendon injury is more severe with large tears. This finding supports the concept of early intervention, when tendon tears are smaller, and interventions targeting the extracellular matrix. PMID:25320205

  18. Control of Organization and Function of Muscle and Tendon by Thrombospondin-4

    PubMed Central

    Frolova, Ella G.; Drazba, Judith; Krukovets, Irene; Kostenko, Volodymyr; Blech, Lauren; Harry, Christy; Vasanji, Amit; Drumm, Carla; Sul, Pavel; Jenniskens, Guido J.; Plow, Edward F.; Stenina-Adognravi, Olga

    2014-01-01

    Thrombospondins (TSP) are multifunctional proteins that are deposited in the extracellular matrix where they directly affect the function of vascular and other cell types. TSP-4, one of the 5 TSP family members, is expressed abundantly in tendon and muscle. We have examined the effect of TSP-4 deficiency on tendon collagen and skeletal muscle morphology and function. In Thbs4−/− mice, tendon collagen fibrils are significantly larger than in wild-type mice, and there is no compensatory over-expression of TSP-3 and TSP-5, the two TSPs most highly homologous to TSP-4, in the deficient mice. TSP-4 is expressed in skeletal muscle, and higher levels of TSP-4 protein are associated with the microvasculature of red skeletal muscle with high oxidative metabolism. Lack of TSP-4 in Medial soleus, red skeletal muscle with predominant oxidative metabolism, is associated with decreased levels of several specific glycosaminoglycan modifications, decreased expression of a TGFβ receptor beta-glycan, decreased activity of lipoprotein lipase, which associates with vascular cell surfaces by binding to glycosaminoglycans, and decreased uptake of VLDL. The soleus muscle is smaller and hind- and fore-limb grip strength is reduced in Thbs4−/− mice compared to wild-type mice. These observations suggest that TSP-4 regulates the composition of the ECM at major sites of its deposition, tendon and muscle, and the absence of TSP-4 alters the organization, composition and physiological functions of these tissues. PMID:24589453

  19. Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis.

    PubMed

    Chiquet, M; Fambrough, D M

    1984-06-01

    Extracellular matrix components are likely to be involved in the interaction of muscle with nonmuscle cells during morphogenesis and in adult skeletal muscle. With the aim of identifying relevant molecules, we generated monoclonal antibodies that react with the endomysium, i.e., the extracellular matrix on the surface of single muscle fibers. Antibody M1, which is described here, specifically labeled the endomysium of chick anterior latissimus dorsi muscle (but neither the perimysium nor, with the exception of blood vessels and perineurium, the epimysium ). Endomysium labeling was restricted to proximal and distal portions of muscle fibers near their insertion points to tendon, but absent from medial regions of the muscle. Myotendinous junctions and tendon fascicles were intensely labeled by M1 antibody. In chick embryos, " myotendinous antigen" (as we tentatively call the epitope recognized by M1 antibody) appeared first in the perichondrium of vertebrae and limb cartilage elements, from where it gradually extended to the premuscle masses. Around day 6, tendon primordia were clearly labeled. The other structures labeled by M1 antibody in chick embryos were developing smooth muscle tissues, especially aorta, gizzard, and lung buds. In general, tissues labeled with M1 antibody appeared to be a subset of the ones accumulating fibronectin. In cell cultures, M1 antibody binds to fuzzy, fibrillar material on the substrate and cell surfaces of living fibroblast and myogenic cells, which confirms an extracellular location of the antigenic site. The appearance of myotendinous antigen during limb morphogenesis and its distribution in adult muscle and tendon are compatible with the idea that it might be involved in attaching muscle fibers to tendon fascicles. Its biochemical characterization is described in the accompanying paper ( Chiquet , M., and D. Fambrough , 1984, J. Cell Biol. 98:1937-1946). PMID:6725406

  20. The Prevalence and Role of Low Lying Peroneus Brevis Muscle Belly in Patients with Peroneal Tendon Pathologies: A Potential Source for Tendon Subluxation

    PubMed Central

    Mirmiran, Roya; Squire, Chad; Wassell, Daniel

    2015-01-01

    A low lying peroneus brevis muscle belly is a rare anomaly. There are few published studies that support presence of this anomaly as an etiology for peroneal tendon tear. However, the association between a low lying peroneus muscle belly (LLMB) and tendon subluxation is not well explored. In this retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing a primary peroneal tendon surgery, in a five year period, were assessed. The sensitivity and specificity of MRI, in comparison to intraoperative findings for identifying peroneal tendon disease was investigated. Presence of associated peroneal tendon pathologies in patients with and without LLMB was compared. Sensitivity of MRI was high in identifying peroneal tenosynovitis (81.58%) and tear (85.71%). Although the sensitivity of MRI for detecting a LLMB (3.23%) and tendon subluxation (10.00%) was low, MRI had high specificity at 94.74% and 100%, respectively. Intraoperatively, LLMB was seen in 62.00% of patients with chronic lateral ankle pain and was associated with 64.52% cases of tenosynovitis, 29.03% cases of tendon subluxation, and 80.65% cases of peroneus brevis tendon tear. While presence of a LLMB did not show any statistically significant association with peroneus brevis tendon subluxation, among the 10 patients with intraoperatively observed tendon subluxation, 9 had a concomitant LLMB. More studies with a larger patient population are needed to better study the role of a low lying muscle belly as a mass occupying lesion resulting in peroneal tendon subluxation. PMID:25998478

  1. The effect of muscle loading on flexor tendon-to-bone healing in a canine model

    PubMed Central

    Thomopoulos, Stavros; Zampiakis, Emmanouil; Das, Rosalina; Silva, Matthew J.; Gelberman, Richard H.

    2008-01-01

    SUMMARY Previous tendon and ligament studies demonstrated a role for mechanical loading in tissue homeostasis and healing. In uninjured musculoskeletal tissues, increased loading leads to an increase in mechanical properties, while decreased loading leads to a decrease in properties. The role of loading on healing tissues is less clear. We studied tendon-to-bone healing in a canine flexor tendon-to-bone injury and repair model. To examine the effect of muscle loading on healing, repaired tendons were either cut proximally to remove all load from the distal phalanx repair site (unloaded group) or left intact proximally (loaded group). All paws were cast post-operatively and subjected to daily passive motion rehabilitation. Specimens were tested to determine functional properties, biomechanical properties, repair-site gapping, and bone mineral density. Loading across the repair site led to improved functional and biomechanical properties (e.g., stiffness for the loaded group was 8.2 ± 3.9 vs. 5.1 ± 2.5 N/mm for the unloaded group). Loading did not affect bone mineral density or gapping. The formation of a gap between the healing tendon and bone correlated with failure properties. Using a clinically relevant model of flexor tendon injury and repair, we found that muscle loading was beneficial to healing. Complete removal of load by proximal transection resulted in tendon-to-bone repairs with less range of motion and lower biomechanical properties compared to repairs in which the muscle-tendon-bone unit was left intact. PMID:18524009

  2. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    PubMed Central

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  3. Exercise protocol induces muscle, tendon, and bone adaptations in the rat shoulder

    PubMed Central

    Rooney, Sarah Ilkhanipour; Loro, Emanuele; Sarver, Joseph J.; Peltz, Cathryn D.; Hast, Michael W.; Tseng, Wei-Ju; Kuntz, Andrew F.; Liu, X. Sherry; Khurana, Tejvir S.; Soslowsky, Louis J.

    2014-01-01

    Summary Background: a rat model of supraspinatus overuse has suggested mechanisms governing tendon degeneration; however, delineating which changes are pathologic or simply physiologic adaptations to increased loading remains a question. The objective of this study was to develop and characterize a rat exercise model that induces systemic and local shoulder adaptations without mechanical injury to the supraspinatus tendon. Methods: exercise rats completed a treadmill training protocol for 12 weeks. Body, fat pad, and heart weights were determined. Supraspinatus tendon collagen content, cross-sectional area, and mechanical properties were measured. Supraspinatus muscle cross-sectional area, weight, and the expression of mitochondrial oxidative phosphorylation (OXPHOS) proteins were measured. Humeri were analyzed with μCT and mechanically tested. Results: exercise decreased fat pad mass. Supraspinatus muscle hypertrophied and had increased OXPHOS proteins. Humerus trabecular bone had increased anisotropic orientation, and cortical bone showed increased bone and tissue mineral density. Importantly, the supraspinatus tendon did not have diminished mechanical properties, indicating that this protocol was not injurious to the tendon. Conclusion: this study establishes the first rat exercise protocol that induces adaptations in the shoulder. Future research can use this as a comparison model to study how the supraspinatus tendon adapts to loading and undergoes degeneration with overuse. PMID:25767777

  4. Ultrasound Changes in Achilles Tendon and Gastrocnemius Medialis Muscle on Squat Eccentric Overload and Running Performance.

    PubMed

    Sanz-López, Fernando; Berzosa Sánchez, César; Hita-Contreras, Fidel; Cruz-Diaz, David; Martínez-Amat, Antonio

    2016-07-01

    Sanz-López, F, Berzosa Sánchez, C, Hita-Contreras, F, Cruz-Diaz, D, and Martínez-Amat, A. Ultrasound changes in Achilles tendon and gastrocnemius medialis muscle on squat eccentric overload and running performance. J Strength Cond Res XX(X): 000-000, 2015-Previous studies have proven the adaptation to load in the Achilles tendon and gastrocnemius muscle after different types of exercise, such as running, heel drop training, and a variety of sports. These findings have been applied to improve performance and in the treatment and prevention of overuse injuries. However, the effects that squat performance may have on the Achilles tendon and gastrocnemius muscle are still unknown. Squats are a widely used training exercise that involves calf-muscle activation. Similarly, no reports have been published regarding the adaptation to load of trained and untrained subjects during several consecutive days of running. The purpose of this study was to analyze changes in the Achilles tendon and in the pennation angles of the gastrocnemius medialis after eccentric overload training and within 3 days of running. Twenty healthy males who volunteered for this study were divided into 2 groups. Subjects in the eccentric overload training (ECC) group performed 6 weeks of eccentric overload training (twice weekly, 4 sets of 7 repetitions in a Yoyo squat device) before the running intervention. All participants, ECC and control (CONT) groups, ran on 3 consecutive days. After the eccentric training, an increase in the cross-sectional area of the Achilles tendon and in the pennation angle was observed. As for the running intervention, the behavior of tissues in both groups was similar. These results suggest that eccentric overload training with squats promotes changes in the Achilles tendon and in the pennation angle of the gastrocnemius medialis muscle. Nevertheless, significant changes in the tissue do not appear between the running performance of trained and untrained subjects. PMID

  5. Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.

    PubMed

    Kistemaker, Dinant A; Van Soest, Arthur J Knoek; Wong, Jeremy D; Kurtzer, Isaac; Gribble, Paul L

    2013-02-01

    Whereas muscle spindles play a prominent role in current theories of human motor control, Golgi tendon organs (GTO) and their associated tendons are often neglected. This is surprising since there is ample evidence that both tendons and GTOs contribute importantly to neuromusculoskeletal dynamics. Using detailed musculoskeletal models, we provide evidence that simple feedback using muscle spindles alone results in very poor control of joint position and movement since muscle spindles cannot sense changes in tendon length that occur with changes in muscle force. We propose that a combination of spindle and GTO afferents can provide an estimate of muscle-tendon complex length, which can be effectively used for low-level feedback during both postural and movement tasks. The feasibility of the proposed scheme was tested using detailed musculoskeletal models of the human arm. Responses to transient and static perturbations were simulated using a 1-degree-of-freedom (DOF) model of the arm and showed that the combined feedback enabled the system to respond faster, reach steady state faster, and achieve smaller static position errors. Finally, we incorporated the proposed scheme in an optimally controlled 2-DOF model of the arm for fast point-to-point shoulder and elbow movements. Simulations showed that the proposed feedback could be easily incorporated in the optimal control framework without complicating the computation of the optimal control solution, yet greatly enhancing the system's response to perturbations. The theoretical analyses in this study might furthermore provide insight about the strong physiological couplings found between muscle spindle and GTO afferents in the human nervous system. PMID:23100138

  6. Prevalence and Role of a Low-Lying Peroneus Brevis Muscle Belly in Patients With Peroneal Tendon Pathologic Features: A Potential Source of Tendon Subluxation.

    PubMed

    Mirmiran, Roya; Squire, Chad; Wassell, Daniel

    2015-01-01

    A peroneus brevis low-lying muscle belly (LLMB) is a rare anomaly. A few published studies have supported the presence of this anomaly as an etiology for a peroneal tendon tear. However, the association between a peroneus brevis LLMB and tendon subluxation has not been well explored. In the present retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing primary peroneal tendon surgery during a 5-year period were assessed. The sensitivity and specificity of MRI compared with the intraoperative findings for identifying peroneal tendon disease were investigated. The presence of associated peroneal tendon pathologic features in patients with and without a peroneus brevis LLMB was also compared. The sensitivity of MRI was high for identifying peroneal tenosynovitis (81.58%) and tear (85.71%). Although the sensitivity of MRI for detecting a peroneus brevis LLMB (3.23%) and tendon subluxation (10.00%) was low, MRI had high specificity at 94.74% and 100%, respectively. Intraoperatively, a peroneus brevis LLMB was seen in 62.00% of the patients with chronic lateral ankle pain and was associated with 64.52% of the patients with tenosynovitis, 29.03% of those with tendon subluxation, and 80.65% of those with a peroneus brevis tendon tear. Although the presence of a peroneus brevis LLMB did not show any statistically significant association with peroneus brevis tendon subluxation, of the 10 patients with intraoperatively observed tendon subluxation, 9 had a concomitant peroneus brevis LLMB. More studies with larger patient populations are needed to better investigate the role of a peroneus brevis LLMB as a mass-occupying lesion resulting in peroneal tendon subluxation. PMID:25998478

  7. ‘Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains

    PubMed Central

    Brukner, Peter; Connell, David

    2016-01-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in ‘muscle strain’. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh ‘muscle strain’. PMID:26519522

  8. Kienbock’s Disease treated with Interposition Arthroplasty using Ipsilateral Palmaris Longus Tendon and Muscle Belly

    PubMed Central

    Dutta, Anshuman; Sipani, Arun Kumar; Agarwala, Vikash; Srikanth, Mudiganty

    2012-01-01

    Introduction: Kienbock’s disease is an osteonecrosis of lunate bone (lunatomalacia) seen more commonly in males in the second to fourth decade of life. The exact etiology is unknown and symptoms include wrist pain and stiffness of wrist. Advanced stages of disease may require lunate excision and filling of the void by various substitutes like silicone implants, tendon grafts etc. We report a case of Kienbock’s disease with lunate excision and filling of defect by coiled palmaris longus muscle and tendon unit. Case Report: An 18 year old male student presented with progressive wrist pain and difficulty in wrist movements. Investigations revealed a diagnosis of grade 4 Kienbock’s disease. Lunate excision by a palmar approach followed by interposition arthroplasty with ipsilateral coiled Palmaris longus muscle belly along with the tendon was done under regional anaesthesia. Nine months post-operatively patient is pain free and wrist movements are full and free. Conclusion: In advanced stages of Keinbock’s disease lunate excision surgery is recommended. Post excision void can be filled with coiled Palmaris longus tendon-muscle unit together to increase the volume of the graft. This achieves snug fit, avoids the need of internal fixation, and also prevent carpal collapse. Our case shows good clinical outcome in short term with no carpal collapse by use of this procedure.

  9. The effects of dynamic stretching on plantar flexor muscle-tendon tissue properties.

    PubMed

    Samukawa, Mina; Hattori, Masaki; Sugama, Naoko; Takeda, Naoki

    2011-12-01

    Dynamic stretching is commonly used in warm-up routines for athletic activities. Even though several positive effects of dynamic stretching on athletic performance have been reported, the effects on the muscle-tendon unit (MTU) itself are still unclear. The objective of this study is to determine the effects of dynamic stretching on the ankle plantar flexor muscle-tendon properties by use of ultrasonography. Twenty healthy male subjects participated in the present study. The subjects were asked to engage in dynamic stretching of plantar flexors for 30 s and to repeat for 5 sets. Ankle dorsiflexion ROM was measured before and after the dynamic stretching. Changes in the displacement of the myotendinous junction (MTJ), pennation angle, and fascicle length were also determined by using ultrasonography. Ankle dorsiflexion ROM increased significantly after the dynamic stretching (p < 0.0001). A significant distal displacement of the MTJ was observed until the second stretching set (p < 0.001) with no significant changes thereafter. Pennation angle, and fascicle length were unaffected by the dynamic stretching. Dynamic stretching was shown to be effective in increasing ankle joint flexibility. Outcomes that could have indicated changes in muscle tissue (such as the pennation angle and fascicle length) were unaltered. However, a significant displacement of the MTJ was found, indicating some change in the tendon tissues. Therefore, dynamic stretching of the plantar flexors was considered an effective means of lengthening the tendon tissues. PMID:21813313

  10. Effects of 12-wk eccentric calf muscle training on muscle-tendon glucose uptake and SEMG in patients with chronic Achilles tendon pain.

    PubMed

    Masood, Tahir; Kalliokoski, Kari; Magnusson, S Peter; Bojsen-Møller, Jens; Finni, Taija

    2014-07-15

    High-load eccentric exercises have been a key component in the conservative management of chronic Achilles tendinopathy. This study investigated the effects of a 12-wk progressive, home-based eccentric rehabilitation program on ankle plantar flexors' glucose uptake (GU) and myoelectric activity and Achilles tendon GU. A longitudinal study design with control (n = 10) and patient (n = 10) groups was used. Surface electromyography (SEMG) from four ankle plantar flexors and GU from the same muscles and the Achilles tendon were measured during submaximal intermittent isometric plantar flexion task. The results indicated that the symptomatic leg was weaker (P < 0.05) than the asymptomatic leg at baseline, but improved (P < 0.001) with eccentric rehabilitation. Additionally, the rehabilitation resulted in greater GU in both soleus (P < 0.01) and lateral gastrocnemius (P < 0.001) in the symptomatic leg, while the asymptomatic leg displayed higher uptake for medial gastrocnemius and flexor hallucis longus (P < 0.05). While both patient legs had higher tendon GU than the controls (P < 0.05), there was no rehabilitation effect on the tendon GU. Concerning SEMG, at baseline, soleus showed more relative activity in the symptomatic leg compared with both the asymptomatic and control legs (P < 0.05), probably reflecting an effort to compensate for the decreased force potential. The rehabilitation resulted in greater SEMG activity in the lateral gastrocnemius (P < 0.01) of the symptomatic leg with no other within- or between-group differences. Eccentric rehabilitation was effective in decreasing subjective severity of Achilles tendinopathy. It also resulted in redistribution of relative electrical activity, but not metabolic activity, within the triceps surae muscle. PMID:24855138

  11. Modulatory effect of gastric pentadecapeptide BPC 157 on angiogenesis in muscle and tendon healing.

    PubMed

    Brcic, L; Brcic, I; Staresinic, M; Novinscak, T; Sikiric, P; Seiwerth, S

    2009-12-01

    Angiogenesis is a natural and complex process controlled by angiogenic and angiostatic molecules, with a central role in healing process. One of the most important modulating factors in angiogenesis is the vascular endothelial growth factor (VEGF). Pentadecapeptide BPC 157 promotes healing demonstrating particular angiogenic/angiomodulatory potential. We correlated the angiogenic effect of BPC 157 with VEGF expression using in vitro (cell culture) and in vivo (crushed muscle and transected muscle and tendon) models. Results revealed that there is no direct angiogenic effect of BPC 157 on cell cultures. On the other hand, immunohistochemical analysis of muscle and tendon healing using VEGF, CD34 and FVIII antibodies showed adequately modulated angiogenesis in BPC 157 treated animals, resulting in a more adequate healing. Therefore the angiogenic potential of BPC 157 seems to be closely related to the healing process in vivo with BPC 157 stimulating angiogenesis by up-regulating VEGF expression. PMID:20388964

  12. Adaptation of physiological cross-sectional area and serial number of sarcomeres after tendon transfer of rat muscle.

    PubMed

    Huijing, P A; Maas, H

    2016-03-01

    Tendon transfer surgery to a new extensor insertion was performed for musculus flexor carpi ulnaris (FCU) of young adult rats, after which animals were allowed to recover. Mechanical properties and adaptive effects on body mass, bone growth, serial number of sarcomeres, and muscle physiological cross-sectional area were studied. Between the transfer and control groups, no differences were found for body mass and forearm length growth. In contrast, transferred muscles had a 19% smaller physiological cross-sectional area and 25% fewer sarcomeres in series within its muscle fibers than control muscles, i.e., a deficit in muscle belly growth is present. Our present results confirm our the length of previous work showing a limited capability of changing the adapted transferred FCU muscle belly, as the muscle-tendon complex is stretched, so that most of the acute FCU length change must originate from the tendon. This should most likely be attributed to surgery-related additional and/or altered connective tissue linkages at the muscle-tendon boundary. The substantially increased FCU tendon length found, after recovery from surgery and adaptation to the conditions of the transferred position, is likely to be related to such enhanced stretching of the FCU tendon. PMID:25693427

  13. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix

    PubMed Central

    Davis, Max E.; Gumucio, Jonathan P.; Sugg, Kristoffer B.; Bedi, Asheesh

    2013-01-01

    The extracellular matrix (ECM) of skeletal muscle and tendon is composed of different types of collagen molecules that play important roles in the transmission of forces throughout the body, and in the repair and regeneration of injured tissues. Fibroblasts are the primary cells in muscle and tendon that maintain, repair, and modify the ECM in response to mechanical loading, injury, and inactivity. Matrix metalloproteinases (MMPs) are enzymes that digest collagen and other structural molecules, which are synthesized and excreted by fibroblasts. MMPs are required for baseline ECM homeostasis, but disruption of MMP regulation due to injury or disease can alter the normal ECM architecture and prevent proper force transmission. Chronic injuries and diseases of muscles and tendons can be severely debilitating, and current therapeutic modalities to enhance healing are quite limited. This review will discuss the mechanobiology of MMPs, and the potential use of MMP inhibitors to improve the treatment of injured and diseased skeletal muscle and tendon tissue. PMID:23640595

  14. Modeling Implantable Passive Mechanisms for Modifying the Transmission of Forces and Movements Between Muscle and Tendons.

    PubMed

    Homayouni, Taymaz; Underwood, Kelsey N; Beyer, Kamin C; Martin, Elon R; Allan, Christopher H; Balasubramanian, Ravi

    2015-09-01

    This paper explores the development of biomechanical models for evaluating a new class of passive mechanical implants for orthopedic surgery. The proposed implants take the form of passive engineered mechanisms, and will be used to improve the functional attachment of muscles to tendons and bone by modifying the transmission of forces and movement inside the body. Specifically, we present how two types of implantable mechanisms may be modeled in the open-source biomechanical software OpenSim. The first implant, which is proposed for hand tendon-transfer surgery, differentially distributes the forces and movement from one muscle across multiple tendons. The second implant, which is proposed for knee-replacement surgery, scales up the forces applied to the knee joint by the quadriceps muscle. This paper's key innovation is that such mechanisms have never been considered before in biomechanical simulation modeling and in surgery. When compared with joint function enabled by the current surgical practice of using sutures to make the attachment, biomechanical simulations show that the surgery with 1) the differential mechanism (tendon network) implant improves the fingers' ability to passively adapt to an object's shape significantly during grasping tasks (2.74× as measured by the extent of finger flexion) for the same muscle force, and 2) the force-scaling implant increases knee-joint torque by 84% for the same muscle force. The critical significance of this study is to provide a methodology for the design and inclusion of the implants into biomechanical models and validating the improvement in joint function they enable when compared with current surgical practice. PMID:25850081

  15. An Artificial Tendon to Connect the Quadriceps Muscle to the Tibia

    PubMed Central

    Melvin, Alan; Litsky, Alan; Mayerson, Joel; Stringer, Keith; Melvin, David; Juncosa-Melvin, Natalia

    2011-01-01

    No permanent, reliable artificial tendon exists clinically. Our group developed the OrthoCoupler™ device as a versatile connector, fixed at one end to a muscle, and adaptable at the other end to inert implants such as prosthetic bones or to bone anchors. The objective of this study was to evaluate four configurations of the device to replace the extensor mechanism of the knee in goats. Within muscle, the four groups had: (A) needle-drawn uncoated bundles, (B) needle-drawn coated bundles, (C) barbed uncoated bundles, and (D) barbed coated bundles. The quadriceps tendon, patella, and patellar tendon were removed from the right hind limb in 24 goats. The four groups (n=6 for each) were randomly assigned to connect the quadriceps muscle to the tibia (with a bone plate). Specimens were collected from each operated leg and contralateral unoperated controls both for mechanical testing and histology at 90 days post-surgery. In strength testing, maximum forces in the operated leg (vs. unoperated control) were 1288±123 N (vs. 1387±118 N) for group A, 1323±144 N (vs. 1396±779 N) for group B, 930±125 N (vs. 1337±126 N) for group C, and 968±109 N (vs. 1528±146 N) for group D (mean ± SEM). The strengths of the OrthoCoupler™ legs in the needled device groups were equivalent to unoperated controls (p=0.6), while both barbed device groups had maximum forces significantly lower than their controls (p=0.001). We believe this technology will yield improved procedures for clinical challenges in orthopaedic oncology, revision arthroplasty, tendon transfer, and tendon injury reconstruction. PMID:21520259

  16. Architecture and functional ecology of the human gastrocnemius muscle-tendon unit.

    PubMed

    Butler, Erin E; Dominy, Nathaniel J

    2016-04-01

    The gastrocnemius muscle-tendon unit (MTU) is central to human locomotion. Structural variation in the human gastrocnemius MTU is predicted to affect the efficiency of locomotion, a concept most often explored in the context of performance activities. For example, stiffness of the Achilles tendon varies among individuals with different histories of competitive running. Such a finding highlights the functional variation of individuals and raises the possibility of similar variation between populations, perhaps in response to specific ecological or environmental demands. Researchers often assume minimal variation in human populations, or that industrialized populations represent the human species as well as any other. Yet rainforest hunter-gatherers, which often express the human pygmy phenotype, contradict such assumptions. Indeed, the human pygmy phenotype is a potential model system for exploring the range of ecomorphological variation in the architecture of human hindlimb muscles, a concept we review here. PMID:26712532

  17. A model of the human triceps surae muscle-tendon complex applied to jumping.

    PubMed

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1986-01-01

    The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m. soleus and m. gastrocnemius. A model was developed of m. triceps surae, incorporating assumptions concerning dimensions, architecture, force-length and force-velocity relationships of muscle fibers, as well as assumptions concerning dimensions and elastic behavior of tendinous tissue in series with the muscle fibers. The velocity with which origin approaches insertion (V OI) was calculated for m. soleus and m. gastrocnemius using cine film data, and served as input of the model. During the last part of the push-off phase EMG-levels were found to be more or less constant, V OI of m. soleus and m. gastrocnemius rapidly increased, and the plantar flexing moment obtained by solving equations concerning a free body diagram of the foot rapidly declined. A similar decline was observed in the plantar flexing moment obtained by multiplying force calculated with help of the model by estimated moment arm at the ankle. As a result of the decline of exerted force tendon length decreases. According to the model the shortening velocity of tendon reaches higher values than that of muscle fibers. The results of a kinetic analysis demonstrate that during the last part of the push-off phase a combination of high angular velocities with relatively large plantar flexing moments is required. It is concluded that without a compliant tendon m. triceps surae would not be able to satisfy this requirement. PMID:3793737

  18. Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy.

    PubMed

    Barber, Lee; Barrett, Rod; Lichtwark, Glen

    2012-10-11

    Individuals with spastic cerebral palsy (CP) typically experience muscle weakness. The mechanisms responsible for muscle weakness in spastic CP are complex and may be influenced by the intrinsic mechanical properties of the muscle and tendon. The purpose of this study was to investigate the medial gastrocnemius (MG) muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic CP. Nine relatively high functioning young adults with spastic CP (GMFCS I, 17±2 years) and 10 typically developing individuals (18±2 years) participated in the study. Active MG torque-length and Achilles tendon properties were assessed under controlled conditions on a dynamometer. EMG was recorded from leg muscles and ultrasound was used to measure MG fascicle length and Achilles tendon length during maximal isometric contractions at five ankle angles throughout the available range of motion and during passive rotations imposed by the dynamometer. Compared to the typically developing group, the spastic CP group had 33% lower active ankle plantarflexion torque across the available range of ankle joint motion, partially explained by 37% smaller MG muscle and 4% greater antagonistic co-contraction. The Achilles tendon slack length was also 10% longer in the spastic CP group. This study confirms young adults with mild spastic CP have altered muscle-tendon mechanical properties. The adaptation of a longer Achilles tendon may facilitate a greater storage and recovery of elastic energy and partially compensate for decreased force and work production by the small muscles of the triceps surae during activities such as locomotion. PMID:22867763

  19. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit

    PubMed Central

    Morse, C I; Degens, H; Seynnes, O R; Maganaris, C N; Jones, D A

    2008-01-01

    Passive stretching is commonly used to increase limb range of movement prior to athletic performance but it is unclear which component of the muscle–tendon unit (MTU) is affected by this procedure. Movement of the myotendinous junction (MTJ) of the gastrocnemius medialis muscle was measured by ultrasonography in eight male participants (20.5 ± 0.9 years) during a standard stretch in which the ankle was passively dorsiflexed at 1 deg s−1 from 0 deg (the foot at right angles to the tibia) to the participants' volitional end range of motion (ROM). Passive torque, muscle fascicle length and pennation angle were also measured. Standard stretch measurements were made before (pre-) and after (post-) five passive conditioning stretches. During each conditioning stretch the MTU was taken to the end ROM and held for 1 min. Pre-conditioning the extension of the MTU during stretch was taken up almost equally by muscle and tendon. Following conditioning, ROM increased by 4.6 ± 1.5 deg (17%) and the passive stiffness of the MTU was reduced (between 20 and 25 deg) by 47% from 16.0 ± 3.6 to 10.2 ± 2.0 Nm deg−1. Distal MTJ displacement (between 0 and 25 deg) increased from 0.92 ± 0.06 to 1.16 ± 0.05 cm, accounting for all the additional MTU elongation and indicating that there was no change in tendon properties. Muscle extension pre-conditioning was explicable by change in length and pennation angle of the fascicles but post-conditioning this was not the case suggesting that at least part of the change in muscle with conditioning stretches was due to altered properties of connective tissue. PMID:17884924

  20. The Masticatory Contractile Load Induced Expression and Activation of Akt1/PKBα in Muscle Fibers at the Myotendinous Junction within Muscle-Tendon-Bone Unit

    PubMed Central

    Korkmaz, Yüksel; Klinz, Franz J.; Moghbeli, Mehrnoush; Addicks, Klaus; Raab, Wolfgang H. -M.; Bloch, Wilhelm

    2010-01-01

    The cell specific detection of enzyme activation in response to the physiological contractile load within muscle-tendon-bone unit is essential for understanding of the mechanical forces transmission from muscle cells via tendon to the bone. The hypothesis that the physiological mechanical loading regulates activation of Akt1/PKBα at Thr308 and at Ser473 in muscle fibers within muscle-tendon-bone unit was tested using quantitative immunohistochemistry, confocal double fluorescence analysis, and immunoblot analysis. In comparison to the staining intensities in peripheral regions of the muscle fibers, Akt1/PKBα was detected with a higher staining intensity in muscle fibers at the myotendinous junction (MTJ) areas. In muscle fibers at the MTJ areas, Akt1/PKBα is dually phosphorylated at Thr308 and Ser473. The immunohistochemical results were confirmed by immunoblot analysis. We conclude that contractile load generated by masticatory muscles induces local domain-dependent expression of Akt1/PKBα as well as activation by dually phosphorylation at Thr308 and Ser473 in muscle fibers at the MTJ areas within muscle-tendon-bone unit. PMID:20454577

  1. Morphometrics of the Anterior Belly and Intermediate Tendon of the Digastric Muscle: Sexual Dimorphism and Implications for Surgery.

    PubMed

    Zdilla, Matthew J; Pancake, Alex R; Lambert, H Wayne

    2016-07-01

    The anterior belly of the digastric muscle (ABDM) is important in a variety of surgeries including submental lipectomy, rhytidectomy, alteration of the cervicomental angle via muscle resection, the "digastric corset" procedure for submental rejuvenation, the submental artery flap, and reanimation of the mouth after facial nerve palsy. Despite its clinical significance, little information exists regarding the morphometrics of the ABDM or its associated intermediate tendon. This study analyzed a total of 35 intact ABDMs and 43 intact intermediate tendons from 23 cadavers. Measurements were taken of the following parameters: muscle belly area, muscle belly length, intermediate tendon length, and intermediate tendon width at mid-tendon. Normative descriptive statistics are included within the report. Males were found to have significantly longer left-sided muscle bellies than right-sided bellies from males (U = 23.0; P = 0.044), left-sided bellies from females (U = 19.0; P = 0.020), and right-sided bellies from females (U = 12.0; P = 0.035). The morphometry, including sexual dimorphism, presented in this report can aid in the surgical planning and execution of numerous operations performed in head and neck, especially digastric muscle transfer surgery. PMID:27258716

  2. Changes in Indirect Markers of Muscle Damage and Tendons After Daily Drop Jumping Exercise with Rapid Load Increase

    PubMed Central

    Paleckis, Vidas; Mickevičius, Mantas; Snieckus, Audrius; Streckis, Vytautas; Pääsuke, Mati; Rutkauskas, Saulius; Steponavičiūtė, Rasa; Skurvydas, Albertas; Kamandulis, Sigitas

    2015-01-01

    The aim of this study was to assess changes in indirect markers of muscle damage and type I collagen degradation, as well as, patellar and Achilles tendon morphological differences during nine daily drop-jumps sessions with constant load alternated with rapid increases in load to test the hypothesis that frequent drop-jump training results in negative muscular and tendon adaptation. Young men (n = 9) performed daily drop jump workouts with progression every 3 days in terms of number of jumps, platform height and squat amplitude. Voluntary and electrically evoked knee extensor torque, muscle soreness, blood plasma creatine kinase (CK) activity and carboxyterminal cross-linked telopeptide (ICTP), patellar and Achilles tendon thickness and cross-sectional area (CSA) were assessed at different time points during the training period and again on days 1, 3, 10 and 17 after the training. The findings were as follows: (1) steady decline in maximal muscle strength with major recovery within 24 hours after the first six daily training sessions; (2) larger decline in electrically induced muscle torque and prolonged recovery during last three training sessions; (3) increase in patellar and Achilles tendons CSA without change in thickness towards the end of training period; (4) increase in jump height but not in muscle strength after whole training period. Our findings suggest that frequent drop-jump sessions with constant load alternated with rapid increases in load do not induce severe muscle damage or major changes in tendons, nonetheless, this type of loading is not advisable for muscle strength improvement. Key points Frequent drop jump training induces activation mode dependent muscle torque depression late in the training period. No significant changes in the thickness of patellar and Achilles tendons are observed during frequent training, while CSA increases towards the end of training period. Longitudinal effect for jump height but not for muscle strength is evident

  3. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    PubMed Central

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-01-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle–tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-β-1 (TGF-β-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague–Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7–9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-β-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-β-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-β-1 in loading-induced collagen synthesis in the muscle–tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus. PMID:17540706

  4. Surgical Intervention for Masticatory Muscle Tendon-Aponeurosis Hyperplasia Based on the Diagnosis Using the Four-Dimensional Muscle Model

    PubMed Central

    Nakaoka, Kazutoshi; Hamada, Yoshiki; Nakatani, Hayaki; Shigeta, Yuko; Hirai, Shinya; Ikawa, Tomoko; Mishima, Akira; Ogawa, Takumi

    2015-01-01

    Objectives: The surgical target of Masticatory muscle tendon-aponeurosis hyperplasia (MMTAH) is the masseter or temporal muscle. In our clinic, the 4-dimentional muscle model (4DMM) has been used to decide if we should approach to the masseter or temporal muscle. The aim of this study is validate the clinical usefulness of 4DMM on the basis of the surgical results. Methods: The 4DMM was constructed from the digital data of 3D-CT and 4-dimentional mandibular movements of the patients. It made us to able to visually observe the expansion rate of masticatory muscles at maximum mouth opening comparing to their length at closed mouth position. Fifteen patients were applied the 4DMM before the surgical treatment and 2 healthy volunteers were enrolled as control group. Results: The expansion rate of temporal muscle at the maximum mouth opening in the patient group was significantly less than that in the control group (P < 0.05). On the other hand, the masseter muscles of all patients were expanded as same as the control group. Therefore the main cause of limitation of mouth-opening was suggested to be a contracture of the temporal muscle. Consequently, we performed successful bilateral coronoidectomy with no surgical intervention to the masseter muscles in all patients. Conclusion: The present 4DMM would be valuable modality to decide the target muscle of surgical treatment for patients with MMTAH. In this pathology, contracture of the temporal muscle seems to be main cause of limited mouth opening. PMID:26352365

  5. Joint Angular Velocity in Spastic Gait and the Influence of Muscle-Tendon Lengthening*

    PubMed Central

    GRANATA, KEVIN P.; ABEL, MARK F.; DAMIANO, DIANE L.

    2006-01-01

    Background Joint angular velocity (the rate of flexion and extension of a joint) is related to the dynamics of muscle activation and force generation during walking. Therefore, the goal of this research was to examine the joint angular velocity in normal and spastic gait and changes resulting from muscle-tendon lengthening (recession and tenotomy) in patients who have spastic cerebral palsy. Methods The gait patterns of forty patients who had been diagnosed with spastic cerebral palsy (mean age, 8.3 years; range, 3.7 to 14.8 years) and of seventy-three age-matched, normally developing subjects were evaluated with three-dimensional motion analysis and electromyography. The patients who had cerebral palsy were evaluated before muscle-tendon lengthening and nine months after treatment. Results The gait patterns of the patients who had cerebral palsy were characterized by increased flexion of the knee in the stance phase, premature plantar flexion of the ankle, and reduced joint angular velocities compared with the patterns of the normally developing subjects. Even though muscle-tendon lengthening altered sagittal joint angles in gait, the joint angular velocities were generally unchanged at the hip and knee. Only the ankle demonstrated modified angular velocities, including reduced dorsiflexion velocity at foot-strike and improved dorsiflexion velocity through midstance, after treatment. Electromyographic changes included reduced amplitude of the gastrocnemius-soleus during the loading phase and decreased knee coactivity (the ratio of quadriceps and hamstring activation) at toe-off. Principal component analyses showed that, compared with joint-angle data, joint angular velocity was better able to discriminate between the gait patterns of the normal and cerebral palsy groups. Conclusions This study showed that muscle-tendon lengthening corrects biomechanical alignment as reflected by changes in sagittal joint angles. However, joint angular velocity and

  6. Force responses to controlled stretches of electrically stimulated human muscle-tendon complex.

    PubMed

    Cook, C S; McDonagh, M J

    1995-05-01

    Human first dorsal interosseus muscle was tetanized using percutaneous electrical stimulation. During the tetanus the muscle was subjected to constant velocity stretches. The stretch produced an enhancement of muscular force of up to 80% during the stretch. The size of the enhancement was dependent on both the amplitude and the velocity of the stretch. During an isometric hold phase after the stretch, the force decayed quickly for the first 100 ms and thereafter much more slowly, reaching a level 30% higher than the isometric force without pre-stretch. The force during this hold phase was dependent on amplitude of stretch but was independent of stretch velocity. The interaction of tendon elasticity and muscle fibre mechanics in producing these responses is discussed. Implications for normal human movements are also explored. PMID:7640012

  7. Improving postural control by applying mechanical noise to ankle muscle tendons.

    PubMed

    Borel, Liliane; Ribot-Ciscar, Edith

    2016-08-01

    The application of subthreshold mechanical vibrations with random frequencies (white mechanical noise) to ankle muscle tendons is known to increase muscle proprioceptive information and to improve the detection of ankle movements. The aim of the present study was to analyze the effect of this mechanical noise on postural control, its possible modulation according to the sensory strategies used for postural control, and the consequences of increasing postural difficulty. The upright stance of 20 healthy young participants tested with their eyes closed was analyzed during the application of four different levels of noise and compared to that in the absence of noise (control) in three conditions: static, static on foam, and dynamic (sinusoidal translation). The quiet standing condition was conducted with the eyes open and closed to determine the subjects' visual dependency to maintain postural stability. Postural performance was assessed using posturographic and motion analysis evaluations. The results in the static condition showed that the spectral power density of body sway significantly decreased with an optimal level of noise and that the higher the spectral power density without noise, the greater the noise effect, irrespective of visual dependency. Finally, noise application was ineffective in the foam and dynamic conditions. We conclude that the application of mechanical noise to ankle muscle tendons is a means to improve quiet standing only. These results suggest that mechanical noise stimulation may be more effective in more impaired populations. PMID:27021075

  8. Changes in hip joint muscle-tendon lengths with mode of locomotion.

    PubMed

    Riley, Patrick O; Franz, Jason; Dicharry, Jay; Kerrigan, D Casey

    2010-02-01

    We have reported that peak hip extension is nearly identical in walking and running, suggesting that anatomical constraints, such as flexor muscle tightness may limit the range of hip extension. To obtain a more mechanistic insight into mobility at the hip and pelvis we examined the lengths of the muscle-tendons units crossing the hip joint. Data defining the three-dimensional kinematics of 26 healthy runners at self-selected walking and running speeds were obtained. These data were used to scale and drive musculoskeletal models using OpenSIM. Muscle-tendon unit (MTU) lengths were calculated for the trailing limb illiacus, rectus femoris, gluteus maximus, and biceps femoris long head and the advancing limb biceps femoris and gluteus maximus. The magnitude and timing of MTU length peaks were each compared between walking and running. The peak length of the right (trailing limb) illiacus MTU, a pure hip flexor, was nearly identical between walking and running, while the maximum length of the rectus femoris MTU, a hip flexor and knee extensor, increased during running. The maximum length of the left (leading limb) biceps femoris was also unchanged between walking and running. Further, the timing of peak illiacus MTU length and peak contralateral biceps femoris MTU length occurred essentially simultaneously during running, at a time during gait when the hamstrings are most vulnerable to stretch injury. This latter finding suggests exploring the role for hip flexor stretching in combination with hamstring stretching to treat and/or prevent running related hamstring injury. PMID:20022251

  9. A 3D bioprinted complex structure for engineering the muscle-tendon unit.

    PubMed

    Merceron, Tyler K; Burt, Morgan; Seol, Young-Joon; Kang, Hyun-Wook; Lee, Sang Jin; Yoo, James J; Atala, Anthony

    2015-09-01

    Three-dimensional integrated organ printing (IOP) technology seeks to fabricate tissue constructs that can mimic the structural and functional properties of native tissues. This technology is particularly useful for complex tissues such as those in the musculoskeletal system, which possess regional differences in cell types and mechanical properties. Here, we present the use of our IOP system for the processing and deposition of four different components for the fabrication of a single integrated muscle-tendon unit (MTU) construct. Thermoplastic polyurethane (PU) was co-printed with C2C12 cell-laden hydrogel-based bioink for elasticity and muscle development on one side, while poly(ϵ-caprolactone) (PCL) was co-printed with NIH/3T3 cell-laden hydrogel-based bioink for stiffness and tendon development on the other. The final construct was elastic on the PU-C2C12 muscle side (E = 0.39 ± 0.05 MPa), stiff on the PCL-NIH/3T3 tendon side (E = 46.67 ± 2.67 MPa) and intermediate in the interface region (E = 1.03 ± 0.14 MPa). These constructs exhibited >80% cell viability at 1 and 7 d after printing, as well as initial tissue development and differentiation. This study demonstrates the versatility of the IOP system to create integrated tissue constructs with region-specific biological and mechanical characteristics for MTU engineering. PMID:26081669

  10. Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion

    PubMed Central

    Robertson, Benjamin D.; Sawicki, Gregory S.

    2015-01-01

    In terrestrial locomotion, there is a missing link between observed spring-like limb mechanics and the physiological systems driving their emergence. Previous modeling and experimental studies of bouncing gait (e.g., walking, running, hopping) identified muscle-tendon interactions that cycle large amounts of energy in series tendon as a source of elastic limb behavior. The neural, biomechanical, and environmental origins of these tuned mechanics, however, have remained elusive. To examine the dynamic interplay between these factors, we developed an experimental platform comprised of a feedback-controlled servo-motor coupled to a biological muscle-tendon. Our novel motor controller mimicked in vivo inertial/gravitational loading experienced by muscles during terrestrial locomotion, and rhythmic patterns of muscle activation were applied via stimulation of intact nerve. This approach was based on classical workloop studies, but avoided predetermined patterns of muscle strain and activation—constraints not imposed during real-world locomotion. Our unconstrained approach to position control allowed observation of emergent muscle-tendon mechanics resulting from dynamic interaction of neural control, active muscle, and system material/inertial properties. This study demonstrated that, despite the complex nonlinear nature of musculotendon systems, cyclic muscle contractions at the passive natural frequency of the underlying biomechanical system yielded maximal forces and fractions of mechanical work recovered from previously stored elastic energy in series-compliant tissues. By matching movement frequency to the natural frequency of the passive biomechanical system (i.e., resonance tuning), muscle-tendon interactions resulting in spring-like behavior emerged naturally, without closed-loop neural control. This conceptual framework may explain the basis for elastic limb behavior during terrestrial locomotion. PMID:26460038

  11. Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion.

    PubMed

    Robertson, Benjamin D; Sawicki, Gregory S

    2015-10-27

    In terrestrial locomotion, there is a missing link between observed spring-like limb mechanics and the physiological systems driving their emergence. Previous modeling and experimental studies of bouncing gait (e.g., walking, running, hopping) identified muscle-tendon interactions that cycle large amounts of energy in series tendon as a source of elastic limb behavior. The neural, biomechanical, and environmental origins of these tuned mechanics, however, have remained elusive. To examine the dynamic interplay between these factors, we developed an experimental platform comprised of a feedback-controlled servo-motor coupled to a biological muscle-tendon. Our novel motor controller mimicked in vivo inertial/gravitational loading experienced by muscles during terrestrial locomotion, and rhythmic patterns of muscle activation were applied via stimulation of intact nerve. This approach was based on classical workloop studies, but avoided predetermined patterns of muscle strain and activation-constraints not imposed during real-world locomotion. Our unconstrained approach to position control allowed observation of emergent muscle-tendon mechanics resulting from dynamic interaction of neural control, active muscle, and system material/inertial properties. This study demonstrated that, despite the complex nonlinear nature of musculotendon systems, cyclic muscle contractions at the passive natural frequency of the underlying biomechanical system yielded maximal forces and fractions of mechanical work recovered from previously stored elastic energy in series-compliant tissues. By matching movement frequency to the natural frequency of the passive biomechanical system (i.e., resonance tuning), muscle-tendon interactions resulting in spring-like behavior emerged naturally, without closed-loop neural control. This conceptual framework may explain the basis for elastic limb behavior during terrestrial locomotion. PMID:26460038

  12. Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion.

    PubMed

    Prilutsky, B I; Herzog, W; Leonard, T R; Allinger, T L

    1996-04-01

    The functional significance of tendons, and the differences in tendon properties among synergistic muscles, is not well established for normal locomotion. Previous studies have suggested that tendons may store mechanical energy during the early phase of support, and then release this energy during the late phase of support. The storage and release of mechanical energy by tendons may modify the velocity of shortening and elongation and the power produced by the muscle belly and the fibers, and may influence the metabolic cost of locomotion. The aims of this study were (1) to estimate the amount of negative and positive work done by the tendon and the muscle belly of the cat soleus (SO), gastrocnemius (GA), and plantaris (PL), and (2) to determine the relative contribution of the elastic energy stored in the tendons to the total mechanical work done by these three muscles during walking and trotting. Forces of SO, GA, and PL muscles were measured using standard force transducers in three cats walking and trotting at speeds of 0.4-1.8 ms-1 on a motor-driven treadmill. Video records and a geometrical model of the cat hindlimb were used for calculating length of the muscle-tendon complexes of SO, GA, and PL during locomotion. Instantaneous lengths of the tendons of SO, GA, and PL during a step cycle were estimated from the stress-strain properties, the effective lengths, the cross-sectional areas, and the instantaneous forces of the tendons. Stress-strain properties for the tendons were obtained experimentally from one animal. The length of the belly was defined as the difference between the muscle-tendon complex length and the tendon length. Mechanical power of the tendon and the muscle belly was calculated as the product of the measured muscle force and the calculated rates of change in tendon and muscle belly lengths, respectively. Mechanical power and work of the tendons and bellies of SO, GA, and PL were calculated for 144 step cycles. During a step cycle, peak

  13. Functional adaptation of tendon and skeletal muscle to resistance training in three patients with genetically verified classic Ehlers Danlos Syndrome

    PubMed Central

    Møller, Mathias Bech; Kjær, Michael; Svensson, René Brüggebusch; Andersen, Jesper Lovind; Magnusson, Stig Peter; Nielsen, Rie Harboe

    2014-01-01

    Summary Background: tendon and skeletal muscle function adapts to physical training of resistive nature, but it is unknown to what extent persons with genetically altered connective tissue – who have a higher than normal tendon extensibility – will obtain any effect upon their tendon and muscle when undergoing muscle strength training. We investigated patients with classical Ehlers Danlos Syndrome (EDS) (collagen type V defect) who display articular hypermobility, skin extensibility and tissue fragility. Methods: subjects underwent strength training 3 times a week for 4 months and were tested before and after intervention in regards to muscle strength, tendon mechanical properties, and muscle function. Results: three subjects completed the scheduled 48 sessions and had no major adverse events. Mean isometric leg extension force and leg extensor power both increased by 8 and 11% respectively (358 to 397 N, and 117 to 123 W). The tendon stiffness was tested and an average increase in response to physical training, from 1795 to 2519 N/mm was found. On average, the training loads both in upper and lower body exercises increased by around 30% over the training period. When testing balance, the average sway-area of the participants decreased by 26% (0.144 to 0.108 m2). On the subscale of CIS20 the participants lowered their average subjective fatigue score from 33 to 25. Conclusion: in this small pilot study, heavy resistance training was both feasible and effective in classic Ehlers Danlos patients, and the results indicated that both tendon and skeletal muscle properties can be improved also in this patient group when they are subjected to resistance training. PMID:25489549

  14. Host-Derived Smooth Muscle Cells Accumulate in Cardiac Allografts: Role of Inflammation and Monocyte Chemoattractant Protein 1

    PubMed Central

    Bojakowski, Krzysztof; Soin, Joanna; Nozynski, Jerzy; Zakliczynski, Michal; Gaciong, Zbigniew; Zembala, Marian; Söderberg-Nauclér, Cecilia

    2009-01-01

    Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs) both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35±2.3% of cells in arterioles (range, 0.08–12.51%). As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41±1.03, p = 0.034) and the number of leukocytes (19.1±12.7 per 20 high-power fields, p = 0.01). The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1) released from leukocytes was crucial for SMC migration. After heart allotransplantion, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts. PMID:19142231

  15. A novel approach using tendon vibration of the human flexor carpi radialis muscle to study spinal reflexes.

    PubMed

    Tsang, Kenneth; de Bruin, Hubert; Archambeault, Mark

    2008-01-01

    Although most muscle spindle investigations have used the cat model and invasive measurement techniques, several investigators have used microneurography to record from the Ia and II fibres in humans during tendon vibration. In these studies the muscle spindle primary endings are stimulated using transverse vibration of the tendon at reflex sub-threshold amplitudes. Others have used low amplitude vibration and the stretch evoked M-wave response to determine reflex properties during both agonist and antagonist voluntary contractions. In the past we have developed a PC based instrument that uses Labview and a linear servomotor to study tendon reflex properties by recording stretch evoked M-wave responses from single tendon taps or electrical stimuli to the afferent nerve. In this paper we describe a further development of this system to provide precise vibrations of the tendon up to 65 Hz with amplitudes up to 4 mm. The resultant M-wave train is extracted from background noise via phase coherent subtractive filtering. Test results from vibrating the human distal flexor carpi radialis tendon at 10 and 30 Hz, for relaxed, slight flexion and slight extension, are also presented. PMID:19163861

  16. Enthesitis of the direct tendon of the rectus femoris muscle in a professional volleyball player: A case report

    PubMed Central

    Bortolotto, C.; Coscia, D.R.; Ferrozzi, G.

    2011-01-01

    Enthesitis of the direct tendon of the rectus femoris muscle is a rare pathology which mainly affects professional athletes, and it is caused by overuse and repetitive microtrauma. Athletic jumping and kicking exert a great stress on the direct tendon of the rectus femoris muscle, and volleyball and football players are therefore most frequently affected. Enthesitis may occur suddenly causing pain and functional impairment possibly associated with partial or complete tendon injuries, or it may be a chronic condition causing non-specific clinical symptoms. We present the case of a professional volleyball player who felt a sudden pain in the left side of the groin area during a training session although she had suffered no accidental injury. The pain was associated with impaired ipsilateral limb function. Tendon rupture was suspected, and magnetic resonance imaging (MRI) was performed. MRI showed a lesion at the myotendinous junction associated with marked inhomogeneity of the direct tendon. Ultrasound (US) examination confirmed the presence of both lesions and allowed a more detailed study of the pathology. This is a typical case of enthesitis which confirms that MRI should be considered the examination of choice in hip pain, particularly when the patient is a professional athlete, thanks to its panoramic visualization. However, also US is an ideal imaging technique for evaluating tendon injuries thanks to its high spatial resolution, and it can therefore be used effectively as a second line of investigation. PMID:23396666

  17. Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering.

    PubMed

    Ladd, Mitchell R; Lee, Sang Jin; Stitzel, Joel D; Atala, Anthony; Yoo, James J

    2011-02-01

    Tissue engineering has had successes developing single tissue types, but there is a need for methods that will allow development of composite tissues. For instance, muscle-tendon junctions (MTJ) require a seamless interface to allow force transfer from muscle to tendon. One challenge in engineering MTJs is designing a continuous scaffold suitable for both tissue types. We aimed to create a dual scaffold that exhibits regional mechanical property differences that mimic the trends seen in native MTJ. Poly(ε-caprolactone)/collagen and poly(l-lactide)/collagen were co-electrospun onto opposite ends of a mandrel to create a scaffold with 3 regions. Scaffolds were characterized with scanning electron microscopy, tensile testing (uniaxial, cyclic, and video strain), for cytocompatibility using MTS, and seeded with C2C12 myoblasts and NIH3T3 fibroblasts. Native porcine diaphragm MTJs were also analyzed with video strain for comparison. Integrated scaffolds were created with fiber diameters from 452-549 nm. Scaffolds exhibited regional variations in mechanical properties with moduli from 4.490-27.62 MPa and generally withstood cyclic testing, although with hysteresis. Video analysis showed scaffold strain profiles exhibited similar trends to native MTJ. The scaffolds were cytocompatible and accommodated cell attachment and myotube formation. The properties engineered into these scaffolds make them attractive candidates for tissue engineering of MTJs. PMID:21093046

  18. Effect of administration of oral contraceptives in vivo on collagen synthesis in tendon and muscle connective tissue in young women.

    PubMed

    Hansen, M; Miller, B F; Holm, L; Doessing, S; Petersen, S G; Skovgaard, D; Frystyk, J; Flyvbjerg, A; Koskinen, S; Pingel, J; Kjaer, M; Langberg, H

    2009-04-01

    Women are at greater risk than men for certain kinds of diseases and injuries, which may at least partly be caused by sex hormonal differences. We aimed to test the influence of estradiol in vivo on collagen synthesis in tendon, bone, and muscle. Two groups of young, healthy women similar in age, body composition, and exercise-training status were included. The two groups were either habitual users of oral contraceptives exposed to a high concentration of synthetic estradiol and progestogens (OC, n = 11), or non-OC-users tested in the follicular phase of the menstrual cycle characterized by low concentrations of estradiol and progesterone (control, n = 12). Subjects performed 1 h of one-legged kicking exercise. The next day collagen fractional synthesis rates (FSR) in tendon and muscle connective tissue were measured after a flooding dose of [(13)C]proline followed by biopsies from the patellar tendon and vastus lateralis in both legs. Simultaneously, microdialysis catheters were inserted in vastus lateralis and in front of the patellar tendon for measurement of insulin-like growth factor I (IGF-I) and its binding proteins. Serum NH(2)-terminal propeptide of type I collagen (PINP) and urine COOH-terminal telopeptides of type-I collagen (CTX-I) were measured as markers for bone synthesis and breakdown, respectively. Tendon FSR and PINP were lower in OC compared with control. An increase in muscle collagen FSR postexercise was only observed in control (P < 0.05). Furthermore, the results indicate a lower bioavailability of IGF-I in OC. In conclusion, synthetic female sex hormones administered as OC had an inhibiting effect on collagen synthesis in tendon, bone, and muscle connective tissue, which may be related to a lower bioavailability of IGF-I. PMID:18845777

  19. Software for determining lower extremity muscle-tendon kinematics and moment arm lengths during flexion/extension movements.

    PubMed

    Hawkins, D

    1992-01-01

    A computer program was developed to calculate lower extremity muscle-tendon (MT) kinematics and flexion/extension moment arm (MA) lengths for any subject performing movements constrained to occur in the sagittal plane. The program requires as input subject anthropometric and time series ankle, knee, and hip angle data. Using these data a lower extremity link-segment model is constructed for each time element. Muscle-tendon attachment data and a straight line muscle model are used to calculate MT and flexion/extension moment arm lengths. A finite difference technique is used to determine MT shortening velocity. The utility of this program is demonstrated by calculating MT kinematics and MA lengths for six muscles of a single subject both as a function of joint angles and during gait. PMID:1572164

  20. Achilles tendon strain energy in distance running: consider the muscle energy cost.

    PubMed

    Fletcher, Jared R; MacIntosh, Brian R

    2015-01-15

    The return of tendon strain energy is thought to contribute to reducing the energy cost of running (Erun). However, this may not be consistent with the notion that increased Achilles tendon (AT) stiffness is associated with a lower Erun. Therefore, the purpose of this study was to quantify the potential for AT strain energy return relative to Erun for male and female runners of different abilities. A total of 46 long distance runners [18 elite male (EM), 12 trained male (TM), and 16 trained female (TF)] participated in this study. Erun was determined by indirect calorimetry at 75, 85, and 95% of the speed at lactate threshold (sLT), and energy cost per stride at each speed was estimated from previously reported stride length (SL)-speed relationships. AT force during running was estimated from reported vertical ground reaction force (Fz)-speed relationships, assuming an AT:ground reaction force moment arm ratio of 1.5. AT elongation was quantified during a maximal voluntary isometric contraction using ultrasound. Muscle energy cost was conservatively estimated on the basis of AT force and estimated cross-bridge mechanics and energetics. Significant group differences existed in sLT (EM > TM > TF; P < 0.001). A significant group × speed interaction was found in the energy storage/release per stride (TM > TF > EM; P < 0.001), the latter ranging from 10 to 70 J/stride. At all speeds and in all groups, estimated muscle energy cost exceeded energy return (P < 0.001). These results show that during distance running the muscle energy cost is substantially higher than the strain energy release from the AT. PMID:25593218

  1. Achilles tendon strain energy in distance running: consider the muscle energy cost

    PubMed Central

    MacIntosh, Brian R.

    2014-01-01

    The return of tendon strain energy is thought to contribute to reducing the energy cost of running (Erun). However, this may not be consistent with the notion that increased Achilles tendon (AT) stiffness is associated with a lower Erun. Therefore, the purpose of this study was to quantify the potential for AT strain energy return relative to Erun for male and female runners of different abilities. A total of 46 long distance runners [18 elite male (EM), 12 trained male (TM), and 16 trained female (TF)] participated in this study. Erun was determined by indirect calorimetry at 75, 85, and 95% of the speed at lactate threshold (sLT), and energy cost per stride at each speed was estimated from previously reported stride length (SL)-speed relationships. AT force during running was estimated from reported vertical ground reaction force (Fz)-speed relationships, assuming an AT:ground reaction force moment arm ratio of 1.5. AT elongation was quantified during a maximal voluntary isometric contraction using ultrasound. Muscle energy cost was conservatively estimated on the basis of AT force and estimated cross-bridge mechanics and energetics. Significant group differences existed in sLT (EM > TM > TF; P < 0.001). A significant group × speed interaction was found in the energy storage/release per stride (TM > TF > EM; P < 0.001), the latter ranging from 10 to 70 J/stride. At all speeds and in all groups, estimated muscle energy cost exceeded energy return (P < 0.001). These results show that during distance running the muscle energy cost is substantially higher than the strain energy release from the AT. PMID:25593218

  2. Timing matters: tuning the mechanics of a muscle-tendon unit by adjusting stimulation phase during cyclic contractions.

    PubMed

    Sawicki, Gregory S; Robertson, Benjamin D; Azizi, Emanuel; Roberts, Thomas J

    2015-10-01

    A growing body of research on the mechanics and energetics of terrestrial locomotion has demonstrated that elastic elements acting in series with contracting muscle are critical components of sustained, stable and efficient gait. Far fewer studies have examined how the nervous system modulates muscle-tendon interaction dynamics to optimize 'tuning' or meet varying locomotor demands. To explore the fundamental neuromechanical rules that govern the interactions between series elastic elements (SEEs) and contractile elements (CEs) within a compliant muscle-tendon unit (MTU), we used a novel work loop approach that included implanted sonomicrometry crystals along muscle fascicles. This enabled us to decouple CE and SEE length trajectories when cyclic strain patterns were applied to an isolated plantaris MTU from the bullfrog (Lithobates catesbeianus). Using this approach, we demonstrate that the onset timing of muscle stimulation (i.e. stimulation phase) that involves a symmetrical MTU stretch-shorten cycle during active force production results in net zero mechanical power output, and maximal decoupling of CE and MTU length trajectories. We found it difficult to 'tune' the muscle-tendon system for strut-like isometric force production by adjusting stimulation phase only, as the zero power output condition involved significant positive and negative mechanical work by the CE. A simple neural mechanism - adjusting muscle stimulation phase - could shift an MTU from performing net zero to net positive (energy producing) or net negative (energy absorbing) mechanical work under conditions of changing locomotor demand. Finally, we show that modifications to the classical work loop paradigm better represent in vivo muscle-tendon function during locomotion. PMID:26232413

  3. Relationship between tendon stiffness and failure: a metaanalysis.

    PubMed

    LaCroix, Andrew S; Duenwald-Kuehl, Sarah E; Lakes, Roderic S; Vanderby, Ray

    2013-07-01

    Tendon is a highly specialized, hierarchical tissue designed to transfer forces from muscle to bone; complex viscoelastic and anisotropic behaviors have been extensively characterized for specific subsets of tendons. Reported mechanical data consistently show a pseudoelastic, stress-vs.-strain behavior with a linear slope after an initial toe region. Many studies report a linear, elastic modulus, or Young's modulus (hereafter called elastic modulus) and ultimate stress for their tendon specimens. Individually, these studies are unable to provide a broader, interstudy understanding of tendon mechanical behavior. Herein we present a metaanalysis of pooled mechanical data from a representative sample of tendons from different species. These data include healthy tendons and those altered by injury and healing, genetic modification, allograft preparation, mechanical environment, and age. Fifty studies were selected and analyzed. Despite a wide range of mechanical properties between and within species, elastic modulus and ultimate stress are highly correlated (R(2) = 0.785), suggesting that tendon failure is highly strain-dependent. Furthermore, this relationship was observed to be predictable over controlled ranges of elastic moduli, as would be typical of any individual species. With the knowledge gained through this metaanalysis, noninvasive tools could measure elastic modulus in vivo and reasonably predict ultimate stress (or structural compromise) for diseased or injured tendon. PMID:23599401

  4. Where do injectable stem cell treatments apply in treatment of muscle, tendon, and ligament injuries?

    PubMed

    Mautner, Kenneth; Blazuk, Joseph

    2015-04-01

    Treatment options for muscle, tendon, and ligament injuries span a constantly evolving spectrum. For years, treatments focused on symptomatic relief. Closer scrutiny of symptomatic treatment suggests that the provision of transient relief of symptoms may have caused more harm than good. Cortisone injections provide a trade-off of short-term relief for poorer long-term outcomes. When conventional treatment failed, patients have faced limited options including surgery, which has increased risk and limited efficacy. Regenerative injections offer a more robust option for soft tissue disease. Basic science and clinical studies show conflicting results to support the use of platelet-rich plasma injections for soft tissue disorders, and even fewer trials have focused on injectable stem cells with limited findings. Additional studies are needed to determine the potential benefits of this regenerative therapy. PMID:25864658

  5. [Muscle-tendon echography in acute cervical sprain traumas. Preliminary results].

    PubMed

    Martino, F; Ettorre, G C; Cafaro, E; Macarini, L; Bancale, R; Sion, E

    1992-03-01

    Acute cervical sprain traumas can be divided into simple and severe, depending on the presence of organic lesions which can be documented by conventional radiologic techniques. Persistent painful symptomatology of the nape and the precise localization of pain, led us to suspect the presence of organic lesions due to tearing of the neck muscles in 94 patients who had suffered a simple cervical sprain. To demonstrate these post-traumatic lesions, the patients were subjected to US examinations of both the nape and the muscles at the base of the neck. In 13 cases (13.8%) muscular tearing lesions were demonstrated, which were characterized by hypoechoic lacunae (6 cases), by hyperechoic stripes (5 cases), and by muscular hernia (1 case); in 1 case, partial disconnection of a muscular insertion was demonstrated. Thus, we believe muscle-tendon US to be a valuable technique for both diagnostic and nosologic purposes, for the method allows simple cervical sprain to be discriminated from sprains which are complicated by organic muscular lesions. We suggest that the cervical sprain traumas where a muscular lesion due to tearing can be demonstrated be defined as "complex" traumas. PMID:1579667

  6. Influence of parallel spring-loaded exoskeleton on ankle muscle-tendon dynamics during simulated human hopping.

    PubMed

    Robertson, Benjamin D; Sawicki, Gregory S

    2011-01-01

    Robotic assistance for rehabilitation and enhancement of human locomotion has become a major goal of biomedical engineers in recent years. While significant progress to this end has been made in the fields of neural interfacing and control systems, little has been done to examine the effects of mechanical assistance on the biomechanics of underlying muscle-tendon systems. Here, we model the effects of mechanical assistance via a passive spring acting in parallel with the triceps surae-Achilles tendon complex during cyclic hopping in humans. We examine system dynamics over a range of biological muscle activation and exoskeleton spring stiffness. We find that, in most cases, uniform cyclic mechanical power production of the coupled system is achieved. Furthermore, unassisted power production can be reproduced throughout parameter space by trading off decreases in muscle activation with increases in ankle exoskeleton spring stiffness. In addition, we show that as mechanical assistance increases the biological muscle-tendon unit becomes less 'tuned' resulting in higher mechanical power output from active components of muscle despite large reductions in required force output. PMID:22254377

  7. Biomechanics of Tendon Transfers.

    PubMed

    Livermore, Andrew; Tueting, Jonathan L

    2016-08-01

    The transfer of tendons in the upper extremity is a powerful technique to restore function to a partially paralyzed hand. The biomechanical principles of muscle tension and tendon excursion dictate motor function both in the native as well as transferred states. Appropriately tensioning transferred tendons to maximize the function of the associated muscle remains an area of focused research. Newer methods of tendon coaptation have proven similar in strength to the standard Pulvertaft weave, affording more options to the surgeon. PMID:27387073

  8. Tendon, tendon healing, hyperlipidemia and statins

    PubMed Central

    Esenkaya, Irfan; Unay, Koray

    2011-01-01

    Summary Both hyperlipidemia and metabolic syndrome have adverse effect on tendon structure. Atorvastatin is most widely used antihyperlipidemic drug. Statins have adverse effects on the tendon. Many studies have analyzed the relationship between atorvastatin and skeletal muscles. Atorvastatin administered after the surgical repair of a ruptured tendon appears to affect revascularization, collagenization, inflammatory cell infiltration, and collagen construction. Therefore, further investigations on the effects of atorvastatin on tendon healing are needed. PMID:23738266

  9. Nonoperative, dynamic treatment of acute achilles tendon rupture: influence of early weightbearing on biomechanical properties of the plantar flexor muscle-tendon complex-a blinded, randomized, controlled trial.

    PubMed

    Barfod, Kristoffer Weisskirchner; Bencke, Jesper; Lauridsen, Hanne Bloch; Dippmann, Christian; Ebskov, Lars; Troelsen, Anders

    2015-01-01

    Acute Achilles tendon rupture alters the biomechanical properties of the plantar flexor muscle-tendon complex that can affect functional performance and the risk of repeat injury. The purpose of the present study was to compare the biomechanical properties of the plantar flexor muscle-tendon complex in patients randomized to early weightbearing or non-weightbearing in the nonoperative treatment of Achilles tendon rupture. A total of 60 patients were randomized to full weightbearing from day 1 of treatment or non-weightbearing for 6 weeks. After 6 and 12 months, the peak passive torque at 20° dorsiflexion, the stiffness during slow stretching, and the maximal strength were measured in both limbs. The stiffness of the plantar flexor muscle-tendon complex in the terminal part of dorsiflexion was significantly increased (p = .024) in the non-weightbearing group at 12 months. The peak passive torque was significantly lower for the affected limb at 6 months (91%; p = .01), and the stiffness was significantly lower for the affected limb during the early part of dorsiflexion at 6 (67%; p < .001) and 12 (77%; p < .001) months. In conclusion, an increased stiffness of the plantar flexor muscle-tendon complex in the terminal part of dorsiflexion was found in the non-weightbearing group. The altered stiffness and strength in the affected limb could affect the coordination of gait and running. PMID:25618802

  10. Muscle-tendon unit stiffness does not independently affect voluntary explosive force production or muscle intrinsic contractile properties.

    PubMed

    Hannah, Ricci; Folland, Jonathan P

    2015-01-01

    This study examined the relationship of muscle-tendon unit (MTU) stiffness and explosive force production during voluntary and evoked contractions of the knee extensors. Thirty-four untrained participants performed a series of explosive voluntary and electrically evoked (octets (8 pulses, 300 Hz) via femoral nerve stimulation) isometric contractions. Maximum voluntary force (MVF) was assessed during maximum voluntary contractions. Explosive force production was assessed as the time taken, from force onset (0 N), to achieve specific levels of absolute (25-300 N) and relative force (5%-75% MVF) during the explosive contractions. Ultrasonic images of the vastus lateralis were recorded during 10-s ramp contractions to assess MTU stiffness, which was expressed in absolute (N · mm(-1)) and relative (to MVF and resting tendon-aponeurosis length) terms. Bivariate correlations suggested that absolute MTU stiffness was associated with voluntary explosive force (time to achieve 150-300 N: r = -0.35 to -0.54, P < 0.05). However, no relationships between stiffness and voluntary explosive force were observed when the influence of MVF was removed, either via partial correlations of absolute values (P ≥ 0.49) or considering relative values (P ≥ 0.14). Similarly, absolute MTU stiffness was related to explosive force during evoked octet contractions (r = -0.41 to -0.64, P < 0.05), but these correlations were no longer present when accounting for the influence of MVF (P ≥ 0.15). Therefore, once maximum strength was considered, MTU stiffness had no independent relationship with voluntary explosive force production or the evoked capacity for explosive force. PMID:25494973

  11. Biologics for tendon repair☆

    PubMed Central

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.

    2015-01-01

    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  12. Exploratory factor analysis for differentiating sensory and mechanical variables related to muscle-tendon unit elongation

    PubMed Central

    Chagas, Mauro H.; Magalhães, Fabrício A.; Peixoto, Gustavo H. C.; Pereira, Beatriz M.; Andrade, André G. P.; Menzel, Hans-Joachim K.

    2016-01-01

    ABSTRACT Background Stretching exercises are able to promote adaptations in the muscle-tendon unit (MTU), which can be tested through physiological and biomechanical variables. Identifying the key variables in MTU adaptations is crucial to improvements in training. Objective To perform an exploratory factor analysis (EFA) involving the variables often used to evaluate the response of the MTU to stretching exercises. Method Maximum joint range of motion (ROMMAX), ROM at first sensation of stretching (FSTROM), peak torque (torqueMAX), passive stiffness, normalized stiffness, passive energy, and normalized energy were investigated in 36 participants during passive knee extension on an isokinetic dynamometer. Stiffness and energy values were normalized by the muscle cross-sectional area and their passive mode assured by monitoring the EMG activity. Results EFA revealed two major factors that explained 89.68% of the total variance: 53.13% was explained by the variables torqueMAX, passive stiffness, normalized stiffness, passive energy, and normalized energy, whereas the remaining 36.55% was explained by the variables ROMMAX and FSTROM. Conclusion This result supports the literature wherein two main hypotheses (mechanical and sensory theories) have been suggested to describe the adaptations of the MTU to stretching exercises. Contrary to some studies, in the present investigation torqueMAX was significantly correlated with the variables of the mechanical theory rather than those of the sensory theory. Therefore, a new approach was proposed to explain the behavior of the torqueMAX during stretching exercises. PMID:27437715

  13. Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading.

    PubMed

    Richards, Christopher T; Sawicki, Gregory S

    2012-11-21

    Frog jumps exceed muscle power limits. To achieve this, a muscle may store elastic energy in tendon before it is released rapidly, producing 'power amplification' as tendon recoil assists the muscle to accelerate the load. Do the musculoskeletal modifications conferring power amplification help or hinder frog swimming? We used a Hill-type mathematical model of a muscle-tendon (MT) with contractile element (CE) and series elastic element (SEE) properties of frogs. We varied limb masses from 0.3 to 30 g, foot-fin areas from 0.005 to 50 cm(2) and effective mechanical advantage (EMA=in-lever/out-lever) from 0.025 to 0.1. 'Optimal' conditions produced power amplification of ~19% greater than the CE limit. Yet, other conditions caused ~80% reduction of MT power (power attenuation) due to SEE recoil absorbing power from (rather than adding to) the CE. The tendency for elastic recoil to cause power amplification vs. attenuation was load dependent: low fluid drag loads, high limb mass and EMA=0.1 caused power amplification whereas high drag, low mass and low EMA (=0.025) caused attenuation. Power amplification emerged when: (1) CE shortening velocity is 1/3V(max), (2) elastic energy storage is neither too high nor too low, and (3). peak inertial-drag force ratio ≥ ~1.5. Excessive elastic energy storage delayed the timing of recoil, causing power attenuation. Thus our model predicts that for fluid loads, the benefit from a compliant tendon is modest, and when the system is 'poorly tuned' (i.e., inappropriate EMA), MT power attenuation can be severe. PMID:22898554

  14. The Prevalence of Absence of the Palmaris Longus Muscle Tendon in the North of Iran: A Comparative Study

    PubMed Central

    Nasiri, Ebrahim; Pourghasem, Mohsen; Moladoust, Hassan

    2016-01-01

    Background: The palmaris longus is a degenerating weak flexor muscle in the anterior of the forearm. Many techniques for clinically determining the presence of the palmaris longus have been described. Ethnic variations in the prevalence of the absence of the palmaris longus are well known. Objectives: This study considered the prevalence of absence of the palmaris longus muscle tendon in the north of Iran. Patients and Methods: The presence of the palmaris longus was clinically determined in 562 men and women from the Guilan population, using the standard technique (Schaeffer’s test). In subjects with an absent palmaris longus, three other tests (Thompson, Pushpakumar and Mishra tests) were performed to confirm the absence. Results: The overall prevalence of right, left, bilateral and total absence of the palmaris longus were 4.1%, 5.2%, 3.9% and 13.2%, respectively. There was no significant difference in its absence with regard to the body side or gender (P > 0.05). Conclusions: This study demonstrated that the presence of the palmaris longus muscle tendon in the Guilan population was considerably higher than the absence of the palmaris longus tendon. The overall prevalence of right, left, bilateral and total absence of the palmaris longus was not significantly different between men and women. The prevalence of the left-absent palmaris longus was more common in the present study. PMID:27247789

  15. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women

    PubMed Central

    Csapo, R.; Malis, V.; Hodgson, J.

    2014-01-01

    The aim of the present study was to test the hypothesis that the age-associated decrease of tendon stiffness would necessitate greater muscle fascicle strains to produce similar levels of force during isometric contraction. Greater fascicle strains could force sarcomeres to operate in less advantageous regions of their force-length and force-velocity relationships, thus impairing the capacity to generate strong and explosive contractions. To test this hypothesis, sagittal-plane dynamic velocity-encoded phase-contrast magnetic resonance images of the gastrocnemius medialis (GM) muscle and Achilles tendon (AT) were acquired in six young (YW; 26.1 ± 2.3 yr) and six senior (SW; 76.7 ± 8.3 yr) women during submaximal isometric contraction (35% maximum voluntary isometric contraction) of the plantar flexor muscles. Multiple GM fascicle lengths were continuously determined by automatically tracking regions of interest coinciding with the end points of muscle fascicles evenly distributed along the muscle's proximo-distal length. AT stiffness and Young's modulus were measured as the slopes of the tendon's force-elongation and stress-strain curves, respectively. Despite significantly lower AT stiffness at older age (YW: 120.2 ± 52.3 N/mm vs. SW: 53.9 ± 44.4 N/mm, P = 0.040), contraction-induced changes in GM fascicle lengths were similar in both age groups at equal levels of absolute muscular force (4–5% fascicle shortening in both groups), and even significantly larger in YW (YW: 11–12% vs. SW: 6–8% fascicle shortening) at equal percentage of maximum voluntary contraction. These results suggest that factors other than AT stiffness, such as age-associated changes in muscle composition or fascicle slack, might serve as compensatory adaptations, limiting the degree of fascicle strains upon contraction. PMID:24505104

  16. Extended Healing Validation of an Artificial Tendon to Connect the Quadriceps Muscle to the Tibia: 180-day Study

    PubMed Central

    Melvin, Alan J.; Litsky, Alan S.; Mayerson, Joel L.; Stringer, Keith; Juncosa-Melvin, Natalia

    2011-01-01

    Whenever a tendon or its bone insertion is disrupted or removed, existing surgical techniques provide a temporary connection or scaffolding to promote healing, but the interface of living to nonliving materials soon breaks down under the stress of these applications, if it must bear the load more than acutely. Patients are thus disabled whose prostheses, defect size, or mere anatomy limit the availability or outcomes of such treatments. Our group developed the OrthoCoupler™ device to join skeletal muscle to prosthetic or natural structures without this interface breakdown. In this study, the goat knee extensor mechanism (quadriceps tendon, patella, and patellar tendon) was removed from the right hind limb in 16 goats. The device connected the quadriceps muscle to a stainless steel bone plate on the tibia. Mechanical testing and histology specimens were collected from each operated leg and contra lateral unoperated control legs at 180 days. Maximum forces in the operated leg (vs. unoperated) were 1400± 93N (vs. 1179± 61 N), linear stiffnesses were 33± 3 N/mm (vs. 37 ± 4N/mm), and elongations at failure were 92.1 ± 5.3 mm (vs. 68.4 ± 3.8 mm; mean ± SEM). Higher maximum forces (p = 0.02) and elongations at failure (p = 0.008) of legs with the device versus unoperated controls were significant; linear stiffnesses were not (p = 0.3). We believe this technology will yield improved procedures for clinical challenges in orthopaedic oncology, revision arthroplasty, tendon transfer, and tendon injury reconstruction. PMID:22179930

  17. Achilles tendon repair

    MedlinePlus

    ... ency/article/007643.htm Achilles tendon repair To use the sharing features on this page, please enable JavaScript. Your Achilles tendon joins your calf muscle to your heel. You can tear your Achilles tendon if you land hard on your heel during sports, from a ...

  18. Acute Patellar Tendon Rupture after Total Knee Arthroplasty Revision

    PubMed Central

    Rhee, Seung Joon; Pham, The Hien

    2015-01-01

    Patellar tendon rupture is a catastrophic complication following total knee arthroplasty (TKA). Though revision TKA has been suspected of being a predisposing factor for the occurrence of patellar tendon rupture, there are few reports on patellar tendon rupture after revision TKA. Here, we present a case of acute patellar tendon rupture that occurred after TKA revision. In the patient, the patellar tendon was so thin and could not be repaired, and accordingly was sutured end to end. We used the anterior tibialis tendon allograft to augment the poor quality patellar tendon tissue. Fixation of the allograft was done by using the bone tunnel created through tibial tuberosity and suturing the allograft to the patellar tendon and quadriceps tendon. The patient was instructed to wear a full extension knee splint and was kept non-weight bearing for 6 weeks after operation. Full knee extension could be achieved 6 weeks postoperatively. PMID:26060612

  19. [Isolated rupture of the distal tendon of the biceps femoris muscle in a sport climber: an uncommon injury].

    PubMed

    Geronikolakis, S; Best, R

    2012-06-01

    An isolated rupture of the distal tendon of the biceps femoris muscle without a direct trauma is an extremely rare injury. To date only a few case reports have been described in the literature. For sport climbers such an injury has never been described before. We report about a 41-year-old male sport climber complaining of such an injury after indoor rock-climbing. Unlike the previously described reports, the rupture occured during a phase of maximum static tension, without acceleration or movement of the knee joint. History and clinical characteristics, sonography and magnetic resonance imaging confirm the diagnosis and should always be performed to exclude other injuries. Early operative treatment with anatomic refixation of the ruptured tendon is necessary to restore function, although there are differences in the type of postoperative treatment. PMID:22415714

  20. Evolution of Skin Temperature after the Application of Compressive Forces on Tendon, Muscle and Myofascial Trigger Point

    PubMed Central

    Magalhães, Marina Figueiredo; Dibai-Filho, Almir Vieira; de Oliveira Guirro, Elaine Caldeira; Girasol, Carlos Eduardo; de Oliveira, Alessandra Kelly; Dias, Fabiana Rodrigues Cancio; Guirro, Rinaldo Roberto de Jesus

    2015-01-01

    Some assessment and diagnosis methods require palpation or the application of certain forces on the skin, which affects the structures beneath, we highlight the importance of defining possible influences on skin temperature as a result of this physical contact. Thus, the aim of the present study is to determine the ideal time for performing thermographic examination after palpation based on the assessment of skin temperature evolution. Randomized and crossover study carried out with 15 computer-user volunteers of both genders, between 18 and 45 years of age, who were submitted to compressive forces of 0, 1, 2 and 3 kg/cm2 for 30 seconds with a washout period of 48 hours using a portable digital dynamometer. Compressive forces were applied on the following spots on the dominant upper limb: myofascial trigger point in the levator scapulae, biceps brachii muscle and palmaris longus tendon. Volunteers were examined by means of infrared thermography before and after the application of compressive forces (15, 30, 45 and 60 minutes). In most comparisons made over time, a significant decrease was observed 30, 45 and 60 minutes after the application of compressive forces (p < 0.05) on the palmaris longus tendon and biceps brachii muscle. However, no difference was observed when comparing the different compressive forces (p > 0.05). In conclusion, infrared thermography can be used after assessment or diagnosis methods focused on the application of forces on tendons and muscles, provided the procedure is performed 15 minutes after contact with the skin. Regarding to the myofascial trigger point, the thermographic examination can be performed within 60 minutes after the contact with the skin. PMID:26070073

  1. More is not always better: modeling the effects of elastic exoskeleton compliance on underlying ankle muscle-tendon dynamics.

    PubMed

    Robertson, Benjamin D; Farris, Dominic J; Sawicki, Gregory S

    2014-01-01

    Development of robotic exoskeletons to assist/enhance human locomotor performance involves lengthy prototyping, testing, and analysis. This process is further convoluted by variability in limb/body morphology and preferred gait patterns between individuals. In an attempt to expedite this process, and establish a physiological basis for actuator prescription, we developed a simple, predictive model of human neuromechanical adaptation to a passive elastic exoskeleton applied at the ankle joint during a functional task. We modeled the human triceps surae-Achilles tendon muscle tendon unit (MTU) as a single Hill-type muscle, or contractile element (CE), and series tendon, or series elastic element (SEE). This modeled system was placed under gravitational load and underwent cyclic stimulation at a regular frequency (i.e. hopping) with and without exoskeleton (Exo) assistance. We explored the effect that both Exo stiffness (kExo) and muscle activation (Astim) had on combined MTU and Exo (MTU + Exo), MTU, and CE/SEE mechanics and energetics. Model accuracy was verified via qualitative and quantitative comparisons between modeled and prior experimental outcomes. We demonstrated that reduced Astim can be traded for increased kExo to maintain consistent MTU + Exo mechanics (i.e. average positive power (P⁺mech) output) from an unassisted condition (i.e. kExo = 0 kN · m⁻¹). For these regions of parameter space, our model predicted a reduction in MTU force, SEE energy cycling, and metabolic rate (Pmet), as well as constant CE P⁺mech output compared to unassisted conditions. This agreed with previous experimental observations, demonstrating our model's predictive ability. Model predictions also provided insight into mechanisms of metabolic cost minimization, and/or enhanced mechanical performance, and we concluded that both of these outcomes cannot be achieved simultaneously, and that one must come at the detriment of the other in a spring-assisted compliant MTU. PMID

  2. Tendon Structure and Composition.

    PubMed

    Thorpe, Chavaunne T; Screen, Hazel R C

    2016-01-01

    Tendons are soft, fibrous tissues that connect muscle to bone. Their main function is to transfer muscle generated force to the bony skeleton, facilitating movement around a joint, and as such they are relatively passive, inelastic structures, able to resist high forces. Tendons are predominantly composed of collagen, which is arranged in a hierarchical manner parallel to the long axis of the tendon, resulting in high tensile strength. Tendon also contains a range of non-collagenous proteins, present in low amounts, which nevertheless have important functional roles. In this chapter, we describe general tendon composition and structure, and discuss how variations in composition and structure at different levels of the tendon hierarchy confer specific mechanical properties, which are related to tendon function. PMID:27535244

  3. Evaluating the Differential Electrophysiological Effects of the Focal Vibrator on the Tendon and Muscle Belly in Healthy People

    PubMed Central

    Lee, Gangpyo; Cho, Yung; Beom, Jaewon; Chun, Changmook; Kim, Choong Hyun

    2014-01-01

    Objective To investigate the electrophysiological effects of focal vibration on the tendon and muscle belly in healthy people. Methods The miniaturized focal vibrator consisted of an unbalanced mass rotating offset and wireless controller. The parameters of vibratory stimulation were adjusted on a flat rigid surface as 65 µm at 70 Hz. Two consecutive tests on the different vibration sites were conducted in 10 healthy volunteers (test 1, the Achilles tendon; test 2, the muscle belly on the medial head of the gastrocnemius). The Hoffman (H)-reflex was measured 7 times during each test. The minimal H-reflex latency, maximal amplitude of H-reflex (Hmax), and maximal amplitude of the M-response (Mmax) were acquired. The ratio of Hmax and Mmax (HMR) and the vibratory inhibition index (VII: the ratio of the Hmax after vibration and Hmax before vibration) were calculated. The changes in parameters according to the time and site of stimulation were analyzed using the generalized estimating equation methods. Results All subjects completed the two tests without serious adverse effects. The minimal H-reflex latency did not show significant changes over time (Wald test: χ2=11.62, p=0.07), and between the two sites (χ2=0.42, p=0.52). The changes in Hmax (χ2=53.74, p<0.01), HMR (χ2=20.49, p<0.01), and VII (χ2=13.16, p=0.02) were significant over time with the adjustment of sites. These parameters were reduced at all time points compared to the baseline, but the decrements reverted instantly after the cessation of stimulation. When adjusted over time, a 1.99-mV decrease in the Hmax (χ2=4.02, p=0.04) and a 9.02% decrease in the VII (χ2=4.54, p=0.03) were observed when the muscle belly was vibrated compared to the tendon. Conclusion The differential electrophysiological effects of focal vibration were verified. The muscle belly may be the more effective site for reducing the H-reflex compared to the tendon. This study provides the neurophysiological basis for a selective and

  4. Triceps tendon rupture: the knowledge acquired from the anatomy to the surgical repair.

    PubMed

    Celli, A

    2015-09-01

    Triceps injuries are relatively uncommon in most traumatic events, and the distal triceps tendon ruptures are rare. Recently, the knowledge of this tendon lesion has increased, and it seems to be related to more precise diagnostic and clinical assessments. The most common mechanism of injury remains a forceful eccentric contraction of the muscle, while several other risk factors have been studied as chronic renal failure, endocrine disorders, metabolic bone diseases as well as steroid use. Olecranon bursitis and local corticosteroid injections may also play a role. The commonest site of rupture is at the tendon's insertion into the olecranon and rarely at the myotendinous junction or intramuscularly. The surgical intervention is recommended in acute complete ruptures, and non-operative treatment is reserved for patients with major comorbidities, as well as for partial ruptures with little functional disability and in low demanding patients. Various techniques and approaches as the direct repair to bone, the tendon augmentation, the anconeus rotation flap and the Achilles tendon allograft have been proposed for the management of these challenging injuries. The goal of surgical management should be an anatomical repair of the injured tendon by selection of a procedure with a low complication rate and one that allows early mobilization. This manuscript focuses the triceps tendon ruptures starting from the anatomy to the diagnosis and entity of the triceps tendon injuries, as well as the indications and guidelines for the management. PMID:25957546

  5. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration

    PubMed Central

    Boesen, A P; Dideriksen, K; Couppé, C; Magnusson, S P; Schjerling, P; Boesen, M; Kjaer, M; Langberg, H

    2013-01-01

    We examined the effect of growth hormone (GH) on connective tissue of tendon and skeletal muscle during immobilisation and re-training in humans. Young men (20–30 years; n= 20) were randomly assigned to daily recombinant human GH (rhGH) (33–50 μg kg−1 day−1) or placebo (Plc), and had one leg immobilised for 2 weeks, followed by 6 weeks of strength training. The cross-sectional area (CSA), maximal muscle strength (maximal voluntary contraction, MVC) and biomechanical properties of the quadriceps muscle and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL1A1/3A1), insulin-like growth factors (IGF-1Ea/Ec), lysyl oxidase (LOX), matrix metalloproteases (MMP-2 and MMP-9), decorin and tenascin-C. Fibril morphology was analysed by transmission electron microscopy (TEM) to detect changes in the fibril diameter distribution. In muscle, CSA and MVC declined with immobilisation and recovered with rehabilitation similarly in both groups. Likewise, both groups showed increased IGF-1Ea/Ec and COL1A1/3A1 expression in muscle during re-training after immobilisation compared with baseline, and the increase was more pronounced when subjects received GH. The tendon CSA did not change during immobilisation, but increased in both groups during 6 weeks of rehabilitation (∼14%). A decline in tendon stiffness after immobilisation was observed only in the Plc group, and an increase during 6 weeks of rehabilitation was observed only in the GH group. IGF-1Ea and COL1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was higher in the GH group than in the Plc group after immobilisation. Both groups showed an increase in MMP-2 with immobilisation, whereas no changes in MMP-9, decorin and tenascin-C were observed. The tendon fibril diameter distribution remained unchanged in both groups. In conclusion, GH stimulates collagen expression in both skeletal muscle and tendon, abolishes the normal inactivity

  6. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration.

    PubMed

    Boesen, A P; Dideriksen, K; Couppé, C; Magnusson, S P; Schjerling, P; Boesen, M; Kjaer, M; Langberg, H

    2013-12-01

    We examined the effect of growth hormone (GH) on connective tissue of tendon and skeletal muscle during immobilisation and re-training in humans. Young men (20-30 years; n = 20) were randomly assigned to daily recombinant human GH (rhGH) (33-50 μg kg(-1) day(-1)) or placebo (Plc), and had one leg immobilised for 2 weeks, followed by 6 weeks of strength training. The cross-sectional area (CSA), maximal muscle strength (maximal voluntary contraction, MVC) and biomechanical properties of the quadriceps muscle and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL1A1/3A1), insulin-like growth factors (IGF-1Ea/Ec), lysyl oxidase (LOX), matrix metalloproteases (MMP-2 and MMP-9), decorin and tenascin-C. Fibril morphology was analysed by transmission electron microscopy (TEM) to detect changes in the fibril diameter distribution. In muscle, CSA and MVC declined with immobilisation and recovered with rehabilitation similarly in both groups. Likewise, both groups showed increased IGF-1Ea/Ec and COL1A1/3A1 expression in muscle during re-training after immobilisation compared with baseline, and the increase was more pronounced when subjects received GH. The tendon CSA did not change during immobilisation, but increased in both groups during 6 weeks of rehabilitation (∼14%). A decline in tendon stiffness after immobilisation was observed only in the Plc group, and an increase during 6 weeks of rehabilitation was observed only in the GH group. IGF-1Ea and COL1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was higher in the GH group than in the Plc group after immobilisation. Both groups showed an increase in MMP-2 with immobilisation, whereas no changes in MMP-9, decorin and tenascin-C were observed. The tendon fibril diameter distribution remained unchanged in both groups. In conclusion, GH stimulates collagen expression in both skeletal muscle and tendon, abolishes the normal inactivity

  7. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.

    PubMed

    Robertson, Benjamin D; Sawicki, Gregory S

    2014-07-21

    We present a simplified Hill-type model of the human triceps surae-Achilles tendon complex working on a gravitational-inertial load during cyclic contractions (i.e. vertical hopping). Our goal was to determine the role that neural control plays in governing muscle, or contractile element (CE), and tendon, or series elastic element (SEE), mechanics and energetics within a compliant muscle-tendon unit (MTU). We constructed a 2D parameter space consisting of many combinations of stimulation frequency and magnitude (i.e. neural control strategies). We compared the performance of each control strategy by evaluating peak force and average positive mechanical power output for the system (MTU) and its respective components (CE, SEE), force-length (F-L) and -velocity (F-V) operating point of the CE during active force production, average metabolic rate for the CE, and both MTU and CE apparent efficiency. Our results suggest that frequency of stimulation plays a primary role in governing whole-MTU mechanics. These include the phasing of both activation and peak force relative to minimum MTU length, average positive power, and apparent efficiency. Stimulation amplitude was primarily responsible for governing average metabolic rate and within MTU mechanics, including peak force generation and elastic energy storage and return in the SEE. Frequency and amplitude of stimulation both played integral roles in determining CE F-L operating point, with both higher frequency and amplitude generally corresponding to lower CE strains, reduced injury risk, and elimination of the need for passive force generation in the CE parallel elastic element (PEE). PMID:24641822

  8. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A; Brown, Nicholas A T; Cresswell, Andrew G

    2016-02-01

    Humans utilise elastic tendons of lower limb muscles to store and return energy during walking, running and jumping. Anuran and insect species use skeletal structures and/or dynamics in conjunction with similarly compliant structures to amplify muscle power output during jumping. We sought to examine whether human jumpers use similar mechanisms to aid elastic energy usage in the plantar flexor muscles during maximal vertical jumping. Ten male athletes performed maximal vertical squat jumps. Three-dimensional motion capture and a musculoskeletal model were used to determine lower limb kinematics that were combined with ground reaction force data in an inverse dynamics analysis. B-mode ultrasound imaging of the lateral gastrocnemius (GAS) and soleus (SOL) muscles was used to measure muscle fascicle lengths and pennation angles during jumping. Our results highlighted that both GAS and SOL utilised stretch and recoil of their series elastic elements (SEEs) in a catapult-like fashion, which likely serves to maximise ankle joint power. The resistance of supporting of body weight allowed initial stretch of both GAS and SOL SEEs. A proximal-to-distal sequence of joint moments and decreasing effective mechanical advantage early in the extension phase of the jumping movement were observed. This facilitated a further stretch of the SEE of the biarticular GAS and delayed recoil of the SOL SEE. However, effective mechanical advantage did not increase late in the jump to aid recoil of elastic tissues. PMID:26685172

  9. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.

    PubMed

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2016-06-14

    Subject-specific musculoskeletal (MS) models of the lower extremity are essential for applications such as predicting the effects of orthopedic surgery. We performed an extensive sensitivity analysis to assess the effects of potential errors in Hill muscle-tendon (MT) model parameters for each of the 56 MT parts contained in a state-of-the-art MS model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by the perturbed MT parts and by all the remaining MT parts, respectively, during a simulated gait cycle. Results indicated that sensitivity of the model depended on the specific role of each MT part during gait, and not merely on its size and length. Tendon slack length was the most sensitive parameter, followed by maximal isometric muscle force and optimal muscle fiber length, while nominal pennation angle showed very low sensitivity. The highest sensitivity values were found for the MT parts that act as prime movers of gait (Soleus: average OSI=5.27%, Rectus Femoris: average OSI=4.47%, Gastrocnemius: average OSI=3.77%, Vastus Lateralis: average OSI=1.36%, Biceps Femoris Caput Longum: average OSI=1.06%) and hip stabilizers (Gluteus Medius: average OSI=3.10%, Obturator Internus: average OSI=1.96%, Gluteus Minimus: average OSI=1.40%, Piriformis: average OSI=0.98%), followed by the Peroneal muscles (average OSI=2.20%) and Tibialis Anterior (average OSI=1.78%) some of which were not included in previous sensitivity studies. Finally, the proposed priority list provides quantitative information to indicate which MT parts and which MT parameters should be estimated most accurately to create detailed and reliable subject-specific MS models. PMID:27131851

  10. Surgical treatment of the adductor longus muscle's distal tendon total rupture in a soccer player.

    PubMed

    Masionis, P; Popov, K; Kurtinaitis, J; Uvarovas, V; Porvaneckas, N

    2016-09-01

    Only a few cases of adductor longus tendon ruptures have been reported in the literature and - there are no clear criteria for conservative or surgical treatment. A case of traumatic rupture of the right distal adductor longus tendon is presented in an elite soccer player, which was surgically repaired. The condition was managed conservatively primarily. However, after 2 months, a palpable mass remained on the medial side of the thigh, and the patient had pain after moderate everyday load and insufficient strength of the right leg during physical exercise. It was decided to explore ruptured tendon surgically and reattach to the femur. Full function of the right leg was achieved at 3 months after surgical repair. At 6 months postoperatively, the patient had returned to soccer at the same level. PMID:27132783

  11. Effect of growth hormone on aging connective tissue in muscle and tendon: gene expression, morphology, and function following immobilization and rehabilitation.

    PubMed

    Boesen, A P; Dideriksen, K; Couppé, C; Magnusson, S P; Schjerling, P; Boesen, M; Aagaard, P; Kjaer, M; Langberg, H

    2014-01-15

    It is unknown whether loss in musculotendinous tissue during inactivity can be counteracted by growth hormone (GH), and whether GH accelerate rehabilitation in aging individuals. Elderly men (65-75 yr; n = 12) had one leg immobilized 2 wk followed by 6 wk of retraining and were randomly assigned to daily injections of recombinant GH (rhGH; n = 6) or placebo (Plc; n = 6). Cross-sectional area (CSA), muscle strength (MVC), and biomechanical properties of m. quadriceps and patellar tendon were determined. Muscle and tendon biopsies were analyzed for gene expressions (mRNA) of collagen (COL1A1/3A1) and insulin-like growth factors (IGF-1Ea/Ec). Fibril morphology was analyzed by transmission electron microscope (TEM). In tendon, CSA and biomechanical properties did not change following immobilization, but an increase in CSA was found after 6 wk of rehabilitation in both groups. The changes were more pronounced when GH was injected. Furthermore, tendon stiffness increased in the GH group. Muscle CSA declined after immobilization in the Plc but not in the GH group. Muscle CSA increased during retraining, with a significantly larger increase in the GH group compared with the Plc group. Both a time and a group effect were seen for IGF-1Ea/Ec and COL1A1/3A1 mRNA expression in muscle, with a difference between GH and Plc. IGF-1Ea/Ec and COL-1A1/3A1 mRNA expression increased in muscle following immobilization and retraining in subjects receiving GH, whereas an increase in IGF-1Ec mRNA expression was seen in the Plc group only after retraining. In conclusion, in elderly humans, GH seems to have a matrix stabilizing effect during inactivity and rehabilitation by stimulating collagen expression in the musculotendinous tissue and increasing tendon CSA and stiffness. PMID:24235105

  12. Allograft Replacement for Absent Native Tissue

    PubMed Central

    Chaudhury, Salma; Wanivenhaus, Florian; Fox, Alice J.; Warren, Russell F.; Doyle, Maureen; Rodeo, Scott A.

    2013-01-01

    Context: Structural instability due to poor soft tissue quality often requires augmentation. Allografts are important biological substitutes that are used for the symptomatic patient in the reconstruction of deficient ligaments, tendons, menisci, and osteochondral defects. Interest in the clinical application of allografts has arisen from the demand to obtain stable anatomy with restoration of function and protection against additional injury, particularly for high-demand patients who participate in sports. Traditionally, allografts were employed to reinforce weakened tissue. However, they can also be employed to substitute deficient or functionally absent tissue, particularly in the sports medicine setting. Objective: This article presents a series of 6 cases that utilized allografts to restore functionally deficient anatomic architecture, rather than just simply augmenting the degenerated or damaged native tissue. Detailed discussions are presented of the use of allografts as a successful treatment strategy to replace functionally weakened tissue, often after failed primary repairs. PMID:24427387

  13. Electromechanical delay of the knee extensor muscles is not altered after harvesting the patellar tendon as a graft for ACL reconstruction: implications for sports performance.

    PubMed

    Georgoulis, A D; Ristanis, S; Papadonikolakis, A; Tsepis, E; Moebius, U; Moraiti, C; Stergiou, N

    2005-09-01

    Although the scar tissue, which heals the donor site defect, has different elasticity from the neighbouring patellar tissue, it remains unclear if this scar tissue can lead to the changes of the electromechanical delay (EMD) of the knee extensor muscles. If such changes do exist, they can possibly affect both the utilization of the stored energy in the series elastic component, as well as the optimal performance of the knee joint movement. The purpose of this study was to investigate the influence of harvesting the patellar tendon during anterior cruciate ligament (ACL) reconstruction and the associated patellar tendon scar tissue development on the EMD of the rectus femoris (RF) and vastus medialis (VM) muscles. Seventeen patients who underwent an ACL reconstruction using the medial third of the patellar tendon were divided in two groups based upon their post-operative time interval. Maximal voluntary contraction from the knee extensors, surface EMG activity, and ultrasonographic measurements of the patellar tendon cross-section area were obtained from both knees. Our results revealed that no significant changes for the maximal voluntary contraction of the knee extensors and for the EMD of the RF and the VM muscles due to patellar scar tissue development after harvesting the tendon for ACL reconstruction. The EMD, as a component of the stretch reflex, is important for the utilization of the stored energy in the series elastic component and thus, optimal sports performance. However, from our results, it can be implied that the ACL reconstruction using a patellar tendon graft would not impair sports performance as far as EMD is concerned. PMID:15968530

  14. Muscles, Ligaments and Tendons Journal – Basic principles and recommendations in clinical and field Science Research: 2016 Update

    PubMed Central

    Padulo, Johnny; Oliva, Francesco; Frizziero, Antonio; Maffulli, Nicola

    2016-01-01

    Summary The proper design and implementation of a study as well as a balanced and well-supported evaluation and interpretation of its main findings are of crucial importance when reporting and disseminating research. Also accountability, funding acknowledgement and adequately declaring any conflict of interest play a major role in science. Since the Muscles, Ligaments and Tendons Journal (MLTJ) is committed to the highest scientific and ethical standards, we encourage all Authors to take into account and to comply, as much as possible, to the contents and issues discussed in this official editorial. This could be useful for improving the quality of the manuscripts, as well as to stimulate interest and debate and to promote constructive change, reflecting upon uses and misuses within our disciplines belonging to the field of “Clinical and Sport - Science Research”. PMID:27331026

  15. Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle.

    PubMed

    Järvinen, Tero A H; Józsa, Lászlo; Kannus, Pekka; Järvinen, Teppo L N; Hurme, Timo; Kvist, Martti; Pelto-Huikko, Markku; Kalimo, Hannu; Järvinen, Markku

    2003-03-01

    Tenascin-C is a hexabrachion-shaped matricellular protein with a very restricted expression in normal musculoskeletal tissues, but it is expressed abundantly during regenerative processes of these tissues and embryogenesis. To examine the importance of mechanical stress for the regulation of tenascin-C expression in the muscle-tendon unit, the effects of various states of mechanical loading (inactivity by cast-immobilization and three-varying intensities of subsequent re-activity by treadmill running) on the expression of tenascin-C were studied using immunohistochemistry and mRNA in situ hybridization at the different locations of the muscle-tendon unit of the rat gastrocnemius muscle, the Achilles tendon complex. This muscle-tendon unit was selected as the study site, because the contracting activity of the gastrocnemius-soleus muscle complex, and thus the mechanical loading-induced stimulation, is easy to block by cast immobilization. Tenascin-C was expressed abundantly in the normal myotendinous and myofascial junctions, as well as around the cells and the collagen fibers of the Achilles tendon. Tenascin-C expression was not found in the normal skeletal muscle, although it was found in blood vessels within the muscle tissue. Following the removal of the mechanical loading-induced stimulation on the muscle-tendon unit by cast immobilization for 3 weeks, the immonoreactivity of tenascin-C substantially decreased or was completely absent in the regions expressing tenascin-C normally. Restitution of the mechanical loading by removing the cast and allowing free cage activity for 8 weeks resulted in an increase in tenascin-C expression, but it could not restore the expression of tenascin-C to the normal level (in healthy contralateral leg). In response to the application of a more strenuous mechanical loading stimulus after the removal of the cast (after 8 weeks of low- and high-intensity treadmill running), the expression of tenascin-C was markedly increased and

  16. Inflamed shoulder tendons (image)

    MedlinePlus

    Tearing and inflammation of the tendons of the shoulder muscles can occur in sports which require the ... pitching, swimming, and lifting weights. Most often the shoulder will heal if a break is taken from ...

  17. Tendon Transfers for Combined Peripheral Nerve Injuries.

    PubMed

    Makarewich, Christopher A; Hutchinson, Douglas T

    2016-08-01

    Combined peripheral nerve injuries present a unique set of challenges to the hand surgeon when considering tendon transfers. They are often associated with severe soft tissue trauma, including lacerations to remaining innervated muscles and tendons, significant scar formation, and substantial sensory loss. In the case of combined nerve injuries, there are typically fewer options for tendon transfers due to fewer tendons of shared function that are expendable as well as associated injuries to tendon or muscle bellies. As such, careful preoperative planning must be performed to make the most of remaining muscle tendon units. PMID:27387081

  18. Effects of a 4-week static stretch training program on passive stiffness of human gastrocnemius muscle-tendon unit in vivo.

    PubMed

    Nakamura, Masatoshi; Ikezoe, Tome; Takeno, Yohei; Ichihashi, Noriaki

    2012-07-01

    Static stretch is commonly used to prevent contracture and to improve joint mobility. However, it is unclear whether the components of the muscle-tendon unit are affected by a static stretch training program. This study investigated the effect of a four-week static stretch training program on the viscoelastic properties of the muscle-tendon unit and muscle. The subjects comprised 18 male participants (mean age 21.4 ± 1.7 years). The range of motion (ROM), passive torque, myotendinous junction (MTJ) displacement and, muscle fascicle length of the gastrocnemius muscle were assessed using both ultrasonography and a dynamometer while the ankle was passively dorsiflexed. After the initial test, the participants were assigned either to a group that stretched for 4 weeks (N = 9) or to a control group (N = 9). The tests were repeated after the static stretch training program. The ROM and MTJ displacement significantly increased, and the passive torque at 30° significantly decreased, in the stretching group after the study period. However, there was no significant increase in muscle fascicle length. These results suggest that a 4-week static stretch training program changes the flexibility of the overall MTU without causing concomitant changes in muscle fascicle length. PMID:22124523

  19. Mechanism of the vibration paradox: excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man

    PubMed Central

    Desmedt, John E.; Godaux, Emile

    1978-01-01

    1. The parameters of presynaptic inhibition of the Ia spindle afferents from soleus muscle by vibration have been investigated. The inhibitory effects increase with the amplitude of vibration, but decrease when the vibration frequency is increased. 2. The monosynaptic reflex threshold of twenty-one single soleus motor units activated in the H (Hoffmann) reflex by a single electrical stimulus to the posterior tibial nerve was estimated quantitatively and expressed in relation to the size of the simultaneously recorded H reflex. 3. A parametric study of the effects of various Achilles tendon vibrations on the reflex threshold of the single soleus motor units indicated that their order of derecruitment is concordant with their rank order for activation in the phasic reflexes of the soleus. The last recruited motoneurones are the most susceptible to being silenced by steady vibration. 4. Muscle vibration progressively recruits single motor units according to the motoneurone size principle through polysynaptic proprioceptive pathways. However the presynaptic inhibition of Ia spindle afferents simultaneously induced by the vibration works in reverse on the same rank order of motoneurones of the soleus spinal pool, thereby limiting the polysynaptic recruitment of units in the tonic vibration reflex while depressing the autogenic phasic proprioceptive reflexes. These mechanisms elucidate the so-called vibration paradox and extend the size principle of Henneman to presynaptic inhibitory effects. PMID:154563

  20. Fresh-frozen Complete Extensor Mechanism Allograft versus Autograft Reconstruction in Rabbits

    PubMed Central

    Chen, Guanyin; Zhang, Hongtao; Ma, Qiong; Zhao, Jian; Zhang, Yinglong; Fan, Qingyu; Ma, Baoan

    2016-01-01

    Different clinical results have been reported in the repair of extensor mechanism disruption using fresh-frozen complete extensor mechanism (CEM) allograft, creating a need for a better understanding of fresh-frozen CME allograft reconstruction. Here, we perform histological and biomechanical analyses of fresh-frozen CEM allograft or autograft reconstruction in an in vivo rabbit model. Our histological results show complete incorporation of the quadriceps tendon into the host tissues, patellar survival and total integration of the allograft tibia, with relatively fewer osteocytes, into the host tibia. Vascularity and cellularity are reduced and delayed in the allograft but exhibit similar distributions to those in the autograft. The infrapatellar fat pad provides the main blood supply, and the lowest cellularity is observed in the patellar tendon close to the tibia in both the allograft and autograft. The biomechanical properties of the junction of quadriceps tendon and host tissues and those of the allograft patellar tendon are completely and considerably restored, respectively. Therefore, fresh-frozen CEM allograft reconstruction is viable, but the distal patellar tendon and the tibial block may be the weak links of the reconstruction. These findings provide new insight into the use of allograft in repairing disruption of the extensor mechanism. PMID:26911538

  1. Influence of muscle-tendon complex geometrical parameters on modeling passive stretch behavior with the Discrete Element Method.

    PubMed

    Roux, A; Laporte, S; Lecompte, J; Gras, L-L; Iordanoff, I

    2016-01-25

    The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It is composed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTC with a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate the behavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could be adapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of a material with a simple discretization scheme and help in understanding the influence of the orientation of fibers on the MTC׳s behavior. The aims of this study were to model the MTC in DEM at the macroscopic scale and to obtain the force/displacement curve during a non-destructive passive tensile test. Another aim was to highlight the influence of the geometrical parameters of the MTC on the global mechanical behavior. A geometrical construction of the MTC was done using discrete element linked by springs. Young׳s modulus values of the MTC׳s components were retrieved from the literature to model the microscopic stiffness of each spring. Alignment and re-orientation of all of the muscle׳s fibers with the tensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. The structure׳s effects, added to the geometrical parameters, highlight the MTC׳s mechanical behavior. It is also highlighted by the heterogeneity of the strain of the MTC׳s components. DEM seems to be a promising method to model the hyper-elastic macroscopic behavior of the MTC with simple elastic microscopic elements. PMID:26708963

  2. The Effect of Stage II Posterior Tibial Tendon Dysfunction on Deep Compartment Muscle Strength: A New Strength Test

    PubMed Central

    Houck, Jeff R.; Nomides, Candace; Neville, Christopher Glenn; Flemister, Adolph Samuel

    2010-01-01

    Background The purpose of this study was to compare isometric subtalar inversion and forefoot adduction strength in subjects with Stage II posterior tibial tendon dysfunction (PTTD) to controls. Materials and Methods Twenty four subjects with Stage II PTTD and fifteen matched controls volunteered for this study. A force transducer (Model SML-200, Interface, Scottsdale, AZ) was connected with a resistance plate and oscilloscope (TDS 410A, Tektronix, Beaverton, OR) to the foot. Via the oscilloscope, subjects were given feedback on the amount of force produced and muscle activation of the anterior tibialis (AT) muscle. Subjects were instructed to maintain a plantar flexion force while performing a maximal voluntary subtalar inversion and forefoot adduction effort. A two-way ANOVA model with the factors including, side (involved/uninvolved) and group (control/PTTD) was used. Results The PTTD group on the involved side showed significantly decreased subtalar inversion and foot adduction strength (0.70 ± 0.24 N/Kg) compared to the uninvolved side (0.94 ± 0.24 N/Kg) and controls (involved side = 0.99 ± 0.24 N/Kg, uninvolved side = 0.97 ± 0.21 N/Kg). The average AT activation was between 11–17% for both groups, however, showing considerable variability in subjects with PTTD. Conclusion These data confirm a subtalar inversion and forefoot adduction strength deficit by 20% to 30% in subjects with Stage II PTTD. Although isolating the PT muscle is difficult, a test specific to subtalar inversion and forefoot adduction demonstrated the weakness in this population. PMID:18778667

  3. Gluteal muscle attachment during proximal femoral reconstruction in a canine model.

    PubMed

    Pluhar, G Elizabeth; Manley, Paul A; Heiner, John P; Vanderby, Ray; Markel, Mark D

    2007-02-01

    In this 18 month in vivo canine study we compared three methods of attaching the gluteal muscles to the proximal femur during hip reconstruction with an allograft-prosthesis composite (APC). All three methods are commonly practiced in human hip revision surgery and data on their effectiveness in dogs is directly relevant to human treatment. The methods compared were host gluteal tendon sutured to allograft tendon, host greater trochanter apposed to allograft using a cable grip system, and host cortical bone shells around the allograft secured with cerclage wires. For each method, we assessed changes in allograft-host bone fusion, weight bearing, gluteal muscle mass, and structural properties through qualitative radiography, gait analysis, histology, and biomechanical testing. Hip reconstruction using the WRAP method resulted in the greatest limb use with complete resolution of gluteal muscle atrophy 18 months after surgery. This method yielded a stronger, more stable hip joint that allowed for more normal limb function. These hips had the more rapid rate of bony union at the host bone-allograft junction and little resorption of the graft. The increased limb use and resultant larger gluteal muscle mass conferred to the WRAP hip composites the greatest tensile strength and stiffness when tested 18 months after reconstruction. There was a large amount of new bone formation on the periosteal surface where the WRAP reconstructions had an overlay of live bone that resulted in a more rapid union and increased cortical width at the level of the osteotomy. New bone also penetrated into the allograft a greater distance from the osteotomy in the WRAP group. PMID:17068814

  4. A comparison of techniques for fixation of the quadriceps muscle-tendon complex for in vitro biomechanical testing of the knee joint in sheep.

    PubMed

    Schöttle, Philip; Goudakos, Ioannis; Rosenstiel, Nikolaus; Hoffmann, Jan-Erik; Taylor, William R; Duda, Georg N; Heller, Markus O

    2009-01-01

    Whilst in vitro testing can contribute to a better understanding of the biomechanical interactions at the knee joint, the application of physiological-like muscle forces in vitro remains challenging. One main difficulty seems to be the adequate fixation of the muscle-tendon complex to the mechanical apparatus that provides the forces in vitro. The goal of this study was to compare the ability of different muscle-tendon fixation mechanisms, including a new technique developed to optimise the interface grip of the soft tissues, to reliably transmit physiological in vivo loads through the muscle-tendon complex to the attached bone. The fixations of three quadriceps components in 16 right knees of skeletally mature female merino sheep were loaded to failure using four different fixation techniques (aluminium clamp, freeze clamp, suture technique and a new extension hull technique). Each technique was tested 12 times: 4 times on each individual quadriceps component. A factorial analysis for repeated measurements was undertaken to examine differences between the different fixation techniques. The extension hull technique and the aluminium clamp performed similarly, exceeding the computationally determined physiological forces in all but one trial and achieved higher failure loads than the suture technique. Although the freeze clamp reached the highest mean load to failure, it also failed more often than the extension hull technique. This comparison of the fixation techniques suggests that the new extension hull technique is a suitable fixation method for applying physiological-like muscle loading in an in vitro set-up. It cannot only be handled in a very simple manner, but also possesses a compact, lightweight construction, providing the possibility for the application of more complex loading conditions that include, e.g. the action of multiple muscles of the knee flexor and extensor group concurrently. PMID:18539516

  5. Correlation between anthropometric data and length and thickness of the tendons of the semitendinosus and gracilis muscles used for grafts in reconstruction of the anterior cruciate ligament☆

    PubMed Central

    Pereira, Rafael Noschang; Karam, Francisco Consoli; Schwanke, Roberto Luís; Millman, Rubens; Foletto, Zilmar Minetto; Schwanke, Carla Helena Augustin

    2016-01-01

    Objective Preoperative estimation of the length and diameter of the semitendinosus (ST) and gracilis (G) tendons can assist surgeons and allow them to have the opportunity to choose alternative grafts. The aim of this study was to investigate whether anthropometric measurements such as height, weight and body mass index (BMI) or the patient's age and sex have any correlation with the thickness and the length of ST and G tendons. Methods Data were gathered from 64 patients who underwent the surgical procedure of anterior cruciate ligament reconstruction using the tendons of the ST and G muscles as grafts, between June 2012 and August 2013. Variables such as age, sex, weight, height, body mass index (BMI) and length and diameter of the tendons of the ST and G muscles were analyzed. Results There was a positive correlation between the height and total diameter of the quadruple graft (r = 0.254; p = 0.043), total length of the ST tendon (r = 0.450; p < 0.01), diameter of the double ST (r = 0.270; p = 0.031), triple ST (r = 0.347; p = 0.005), length of G tendon (r = 0.249; p = 0.047) and diameter of the double-G (r = 0.258; p = 0.039). However, age (r = -0.015; p = 0.908), weight (r = 0.165; p = 0.193) and body mass index (r = 0.012; p = 0.926) showed no correlation. Conclusion Our results show that age, weight and BMI did not correlate with the diameter and length of the graft, while the height had a positive correlation with the total length of the flexor tendons and the diameter of the graft from the flexors (ST and G). PMID:27069886

  6. ARTHROSCOPIC REPAIR OF SMALL AND MEDIUM TEARS OF THE SUPRASPINATUS MUSCLE TENDON: EVALUATION OF THE CLINICAL AND FUNCTIONAL OUTCOMES AFTER TWO YEARS OF FOLLOW-UP

    PubMed Central

    Ikemoto, Roberto Yukio; Murachovsky, Joel; Nascimento, Luís Gustavo Prata; Bueno, Rogério Serpone; Almeida, Luis Henrique; Strose, Eric; Castiglia, Marcello Teixeira

    2015-01-01

    Objective: To evaluate the clinical and functional outcomes from arthroscopic repairs on small and medium-sized tears of the supraspinatus muscle tendon. Methods: 129 cases of isolated small and medium tears of the supraspinatus muscle tendon were evaluated retrospectively. The average duration of pain was 29 months. The average joint range of motion comprised active elevation of 136°, lateral rotation of 58° and medial rotation at T12 level; and the preoperative functional UCLA score averaged 17 points. In all the cases, complete repair could be achieved. Results: The average score on the UCLA functional scale in the postoperative period was 32 points. The average length of follow-up was 39 months. Seventy-five cases (58%) had excellent results and 42 (32%) had good results. The average final active elevation was 156° with an average gain of 20°, and the average final lateral rotation was 57° with an average gain of 9°. Both of these were statistically significant (P < 0.05). The patients who underwent tenotomy of the long head of the biceps (LHB), with or without tenodesis, did not present statistically inferior functional outcomes, in comparison with the patients who only underwent decompression and lesion repair (P = 1.00). Fourteen cases (10.8%) presented complications during the postoperative period. Six (4.6%) developed adhesive capsulitis and four (3.1%) presented re-rupture of the tendon, proven by means of magnetic resonance imaging. Conclusions: Arthroscopic repair of small and medium tears of the supraspinatus muscle tendon provided a functional clinical improvement, with good and excellent results in 90% of the cases. PMID:27047846

  7. Effect of Exercise-Induced Enhancement of the Leg-Extensor Muscle-Tendon Unit Capacities on Ambulatory Mechanics and Knee Osteoarthritis Markers in the Elderly

    PubMed Central

    Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter

    2014-01-01

    Objective Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Methods Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Results Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. Conclusions This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable

  8. Silastic tendon graft: its role in neglected tendon repair.

    PubMed

    LaBarbiera, A P; Solitto, R J

    1990-01-01

    A case history is presented of the repair of a neglected traumatic tendon laceration by the use of a permanent Silastic tendon implant, originally manufactured for hand surgery by a staged procedure. Stage I consists of implantation of the Silastic implant and allowance of a 2- to 3-month period for the production of a pseudosheath. Stage II consists of removal of the implant after using it to guide an auto- or allograft, through the newly formed pseudosheath for attachment to the anastomotic sites. PMID:2258563

  9. RECONSTRUCTION OF THE ANTERIOR CRUCIATE LIGAMENT WITH THE CENTRAL THIRD OF THE QUADRICEPS MUSCLE TENDON: ANALYSIS OF 10-YEAR RESULTS

    PubMed Central

    Guimarães, Marcus Valladares; Junior, Lúcio Honório de Carvalho; Terra, Dalton Lopes

    2015-01-01

    Objective: Assess clinical results using two different protocols, 10 years after ACL reconstruction surgery with the central third of quadriceps muscle tendon (QT). Method: Between November /1997 and April/1998, 25 patients were submitted to 25 ACL reconstructions with QT by transtibial technique. The bone portion of the graft was fixated on femoral tunnel with interference screw and the tendinous portion of tibial tunnel with screw with washer. Two patients injured the new when playing soccer. Six patients were not available for follow-up (24%). Seventeen patients were evaluated, 15 men and two women, with mean age at surgery time of 28.53 ± 6.64 years. All patients were examined at six months, one year, and ten years after surgery. Clinical evaluation was made by the Lysholm scale, and the knee evaluation, with the Hospital for Special Surgery scale. Results: The patients had their injuries operated after 9.87 ± 14.42 months of the accident. According to Lysholm scale, the results at the end of the first year were 98.71 ± 2.47 and, after 10 years, 97.35 ± 3.12. Using the Hospital for Special Surgery scale, the mean score was 95.07 ± 5.23 in one year, and 94.87 ± 4.16 in 10 years. All patients returned to their professional activities with the same previous status. Fifteen (88.24%) patients were able to return to their sports activities, one by modifying the practice, while another one switched to another sport. No patient complained of pain on the donor area in the medium and long term. The sports return rate was excellent, and no changes were found on the femoropatellar joint. PMID:27022511

  10. A non-invasive, 3D, dynamic MRI method for measuring muscle moment arms in vivo: demonstration in the human ankle joint and Achilles tendon.

    PubMed

    Clarke, E C; Martin, J H; d'Entremont, A G; Pandy, M G; Wilson, D R; Herbert, R D

    2015-01-01

    Muscle moment arms are used widely in biomechanical analyses. Often they are measured in 2D or at a series of static joint positions. In the present study we demonstrate a simple MRI method for measuring muscle moment arms dynamically in 3D from a single range-of-motion cycle. We demonstrate this method in the Achilles tendon for comparison with other methods, and validate the method using a custom apparatus. The method involves registration of high-resolution joint geometry from MRI scans of the stationary joint with low-resolution geometries from ultrafast MRI scans of the slowly moving joint. Tibio-talar helical axes and 3D Achilles tendon moment arms were calculated throughout passive rotation for 10 adult subjects, and compared with recently published data. A simple validation was conducted by comparing MRI measurements with direct physical measurements made on a phantom. The moment arms measured using our method and those of others were similar and there was good agreement between physical measurements (mean 41.0mm) and MRI measurements (mean 39.5mm) made on the phantom. This new method can accurately measure muscle moment arms from a single range-of-motion cycle without the need to control rotation rate or gate the scanning. Supplementary data includes custom software to assist implementation. PMID:25466777

  11. Effects of Sacrificing Tensor Tympani Muscle Tendon When Manubrium of Malleus Is Foreshortened in Type I Tympanoplasty

    PubMed Central

    Vadiya, Sohil

    2015-01-01

    The current study aims at observing effects of sacrificing the tensor tympani tendon when manubrium of malleus is foreshortened or retracted on graft uptake, hearing improvement, and occurrence of complications if any during type I tympanoplasty surgery for central perforations. 42 patients were included in group A where the tensor tendon was sectioned and 42 patients were included in group B where the tensor tympani tendon was retained and kept intact. Graft uptake rates are very good in both groups but hearing improvement was found significantly better in group A than group B. No unusual or undesired complications were seen in any of the cases. Sectioning of tensor tympani tendon is safe and effective procedure in cases where manubrium is foreshortened. PMID:26697069

  12. Tibialis Anterior Tendon Transfer.

    PubMed

    Mulhern, Jennifer L; Protzman, Nicole M; Brigido, Stephen A

    2016-01-01

    Tendon transfer procedures are used commonly for the correction of soft tissue imbalances and instabilities. The complete transfer and the split transfer of the tibialis anterior tendon are well-accepted methods for the treatment of idiopathic equinovarus deformity in children and adults. Throughout the literature, complete and split transfer have been shown to yield significant improvements in ankle and foot range of motion and muscle function. At present, there is insufficient evidence to recommend one procedure over the other, although the split procedure has been advocated for consistently achieving inversion to eversion muscle balance without overcorrection. PMID:26590723

  13. Tendon Innervation.

    PubMed

    Ackermann, Paul W; Salo, Paul; Hart, David A

    2016-01-01

    The regulation of tendon metabolism including the responses to loading is far from being well understood. During the last decade, however, accumulating data show that tendon innervation in addition to afferent functions, via efferent pathways has a regulatory role in tendon homeostasis via a wide range of neuromediators, which coordinate metabolic and neuro-inflammatory pathways.Innervation of intact healthy tendons is localized in the surrounding structures, i.e paratenon, endotenon and epitenon, whereas the tendon proper is practically devoid of neuronal supply. This anatomical finding reflects that the tendon metabolism is regulated from the tendon envelope, i.e. interfascicular matrix (see Chap. 1 ).Tendon innervation after injury and during repair, however, is found as extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of different neuronal mediators, which amplify and fine-tune inflammatory and metabolic pathways in tendon regeneration. After healing nerve fibers retract to the tendon envelope.In tendinopathy innervation has been identified to consist of excessive and protracted nerve ingrowth in the tendon proper, suggesting pro-inflammatory, nociceptive and hypertrophic (degenerative) tissue responses.In metabolic disorders such as eg. diabetes impaired tendon healing has been established to be related to dysregulation of neuronal growth factors.Targeted approaches to the peripheral nervous system including neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:27535247

  14. Selective effects of vibration on monosynaptic and late EMG responses in human soleus muscle after stimulation of the posterior tibial nerve or a tendon tap.

    PubMed Central

    Van Boxtel, A

    1979-01-01

    In normal subjects it was possible to evoke tendon and Hoffman reflexes which were followed by late EMG responses with a latency of 150-250 ms after the reflex stimuli. Analysis of the covariations of reflexes and late responses revealed that muscle spindle sensitivity and strength of the preceding twitch are not essential factors in determining the occurrence of the late responses as opposed to excitability changes within the spinal cord. Inhibition of monosynaptic reflexes and facilitation of late EMG responses to vibration indicate a difference in central pathways. A polysynaptic pathway may be involved in the late responses. PMID:159346

  15. Clinical results of a surgical technique using endobuttons for complete tendon tear of pectoralis major muscle: report of five cases

    PubMed Central

    2011-01-01

    Background We herein describe a surgical technique for the repair of complete tear of the pectoralis major (PM) tendon using endobuttons to strengthen initial fixation. Methods Five male patients (3 judo players, 1 martial arts player, and 1 body builder) were treated within 2 weeks of sustaining complete tear of the PM tendon. Average age at surgery and follow-up period were 28.4 years (range, 23-33) and 28.8 months (range, 24-36). A rectangular bone trough (about 1 × 4 cm) was created on the humerus at the insertion of the distal PM tendon. The tendon stump was introduced into this trough, and fixed to the reverse side of the humeral cortex using endobuttons and non-absorbable suture. Clinical assessment of re-tear was examined by MRI. Shoulder range of motion (ROM), outcome of treatment, and isometric power were measured at final follow-up. Results There were no clinical re-tears, and MRI findings also showed continuity of the PM tendon in all cases at final follow-up. Average ROM did not differ significantly between the affected and unaffected shoulders. The clinical outcomes at final follow-up were excellent (4/5 cases) or good (1/5). In addition, postoperative isometric power in horizontal flexion of the affected shoulder showed complete recovery when compared with the unaffected side. Conclusions Satisfactory outcomes could be obtained when surgery using the endobutton technique was performed within 2 weeks after complete tear of the PM tendon. Therefore, our new technique appears promising as a useful method to treat complete tear of the PM tendon. PMID:21955511

  16. Autograft Versus Nonirradiated Allograft Tissue for Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Mariscalco, Michael W.; Magnussen, Robert A.; Mehta, Divyesh; Hewett, Timothy E.; Flanigan, David C.; Kaeding, Christopher C.

    2014-01-01

    Background An autograft has traditionally been the gold standard for anterior cruciate ligament reconstruction (ACLR), but the use of allograft tissue has increased in recent years. While numerous studies have demonstrated that irradiated allografts are associated with increased failure rates, some report excellent results after ACLR with nonirradiated allografts. The purpose of this systematic review was to determine whether the use of nonirradiated allograft tissue is associated with poorer outcomes when compared with autografts. Hypothesis Patients undergoing ACLR with autografts versus nonirradiated allografts will demonstrate no significant differences in graft failure risk, laxity on postoperative physical examination, or differences in patient-oriented outcome scores. Study Design Systematic review. Methods A systematic review was performed to identify prospective or retrospective comparative studies (evidence level 1, 2, or 3) of autografts versus nonirradiated allografts for ACLR. Outcome data included graft failure based on clinical findings and instrumented laxity, postoperative laxity on physical examination, and patient-reported outcome scores. Studies were excluded if they did not specify whether the allograft had been irradiated. Quality assessment and data extraction were performed by 2 examiners. Results Nine studies comparing autografts and nonirradiated allografts were included. Six of the 9 studies compared bone– patellar tendon–bone (BPTB) autografts with BPTB allografts. Two studies compared hamstring tendon autografts to hamstring tendon allografts, and 1 study compared hamstring tendon autografts to tibialis anterior allografts. The mean patient age in 7 of 9 studies ranged from 24.5 to 32 years, with 1 study including only patients older than 40 years and another not reporting patient age. The mean follow-up duration was 24 to 94 months. Six of 9 studies reported clinical graft failure rates, 8 of 9 reported postoperative instrumented

  17. Leiomyoma in a Renal Allograft.

    PubMed

    Li, Yan Jun; Siriwardana, Amila Rohan; Symons, James Lawrence Penn; O'Neill, Gordon Francis; Qiu, Min Ru; Furlong, Timothy John

    2016-01-01

    Leiomyomas are smooth muscle tumours that are rarely found in the kidney. There is one report of a leiomyoma in a kidney transplant in a paediatric recipient. Here, we report an adult renal transplant recipient who developed an Epstein-Barr virus-positive leiomyoma in his allograft 15 years after transplantation. The patient was converted to everolimus for posttransplant immunosuppression management and there was no sign of progression over a year. PMID:27195169

  18. Leiomyoma in a Renal Allograft

    PubMed Central

    Li, Yan Jun; Siriwardana, Amila Rohan; Symons, James Lawrence Penn; O'Neill, Gordon Francis; Qiu, Min Ru; Furlong, Timothy John

    2016-01-01

    Leiomyomas are smooth muscle tumours that are rarely found in the kidney. There is one report of a leiomyoma in a kidney transplant in a paediatric recipient. Here, we report an adult renal transplant recipient who developed an Epstein-Barr virus-positive leiomyoma in his allograft 15 years after transplantation. The patient was converted to everolimus for posttransplant immunosuppression management and there was no sign of progression over a year. PMID:27195169

  19. Posterior Tibial Tendon Transfer.

    PubMed

    Shane, Amber M; Reeves, Christopher L; Cameron, Jordan D; Vazales, Ryan

    2016-01-01

    When performed correctly with the right patient population, a tibialis posterior muscle/tendon transfer is an effective procedure. Many different methods have been established for fixating the tendon, each of which has its' own indications. Passing through the interosseous membrane is the preferred and recommended method and should be used unless this is not possible. Good surgical planning based on patient needs and expectations, along with excellent postoperative care including early range of motion and physical therapy minimizes risk of complications and allows for the optimal outcome to be achieved. PMID:26590722

  20. Cadaver study of the topography of the musculotendinous junction of the finger extensor muscles: applicability to tendon rupture following closed wrist trauma.

    PubMed

    Lepage, D; Tatu, L; Loisel, F; Vuillier, F; Parratte, B

    2015-09-01

    Rupture of the extensor pollicis longus (EPL) tendon in the wrist is a delayed complication that can occur after wrist injury. Several etiology-related hypotheses have been made to explain these ruptures. The one most commonly accepted is necrosis at the musculotendinous junction of the EPL, which is compressed between the extensor retinaculum and dorsal aspect of the radius. To confirm this hypothesis, we performed an anatomical study to show the close relationship between the extensor retinaculum and the musculotendinous junction of the EPL muscle. We calculated the distance between the musculotendinous junction of the various finger extensor muscles and the proximal edge of the extensor retinaculum. We were able to show that this junction is located under the extensor retinaculum for the extensor indicis (EI) and EPL muscles, but the latter is in the third extensor compartment, which is a tight, confined space. Any pressure increase in this space following trauma, for example, can bring about compartment syndrome at this musculotendinous junction, which some authors have found to be poorly vascularized. PMID:25577541

  1. On the mechanical function of tendon.

    PubMed

    Kafka, V; Jírová, J; Smetana, V

    1995-01-01

    A mesoscopic approach is followed for mathematical modelling of the specific deformation properties of tendon. The approach starts from our general concept of modelling mechanical behaviour of heterogeneous media and assumes that the structure of tendon is optimized in such a way that it enables its adjacent muscle to work with a constant performance in the course of increasing loading (acting like a gearbox in a car). The model based on this assumption gives results that are in a very good accordance with observed properties of tendons. Clinical experience reveals that if this function of tendon is violated pathological changes appear in the respective muscle. RELEVANCE: Clarification and mathematical modelling of the mechanical function of tendon is of intellectual interest in its own right, but it is important also for cautioning surgeons against unnecessary violation of this function, and for tissue engineering aspects if tendon must be replaced. PMID:11415531

  2. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running.

    PubMed

    Prilutsky, B I; Zatsiorsky, V M

    1994-01-01

    The amount of mechanical energy transferred by two-joint muscles between leg joints during squat vertical jumps, during landings after jumping down from a height of 0.5 m, and during jogging were evaluated experimentally. The experiments were conducted on five healthy subjects (body height, 1.68-1.86 m; and mass, 64-82 kg). The coordinates of the markers on the body and the ground reactions were recorded by optical methods and a force platform, respectively. By solving the inverse problem of dynamics for the two-dimensional, four-link model of a leg with eight muscles, the power developed by the joint (net muscular) moments and the power developed by each muscle were determined. The energy transferred by two-joint muscles from and to each joint was determined as a result of the time integration of the difference between the power developed at the joint by the joint moment, and the total power of the muscles serving a given joint. It was shown that during a squat vertical jump and in the push-off phase during running, the two-joint muscles (rectus femoris and gastrocnemius) transfer mechanical energy from the proximal joints of the leg to the distal ones. At landing and in the shock-absorbing phase during running, the two-joint muscles transfer energy from the distal to proximal joints. The maximum amount of energy transferred from the proximal joints to distal ones was equal to 178.6 +/- 45.7 J (97.1 +/- 27.2% of the work done by the joint moment at the hip joint) at the squat vertical jump. The maximum amount of energy transferred from the distal to proximal joints was equal to 18.6 +/- 4.2 J (38.5 +/- 36.4% of work done by the joint moment at the ankle joint) at landing. The conclusion was made that the one-joint muscles of the proximal links compensate for the deficiency in work production of the distal one-joint muscles by the distribution of mechanical energy between joints through the two-joint muscles. During the push-off phase, the muscles of the proximal

  3. Tendon repair

    MedlinePlus

    ... Cannon DL. Flexor and extensor tendon injuries. In: Canale ST, Beaty JH, eds. Campbell's Operative Orthopaedics . ... Shoulder Service, UCSF Department of Orthopaedic Surgery, San Francisco, CA. Also reviewed by David Zieve, MD, MHA, ...

  4. Principles of tendon transfers.

    PubMed

    Coulet, B

    2016-04-01

    Tendon transfers are carried out to restore functional deficits by rerouting the remaining intact muscles. Transfers are highly attractive in the context of hand surgery because of the possibility of restoring the patient's ability to grip. In palsy cases, tendon transfers are only used when a neurological procedure is contraindicated or has failed. The strategy used to restore function follows a common set of principles, no matter the nature of the deficit. The first step is to clearly distinguish between deficient muscles and muscles that could be transferred. Next, the type of palsy will dictate the scope of the program and the complexity of the gripping movements that can be restored. Based on this reasoning, a surgical strategy that matches the means (transferable muscles) with the objectives (functions to restore) will be established and clearly explained to the patient. Every paralyzed hand can be described using three parameters. 1) Deficient segments: wrist, thumb and long fingers; 2) mechanical performance of muscles groups being revived: high energy-wrist extension and finger flexion that require strong transfers with long excursion; low energy-wrist flexion and finger extension movements that are less demanding mechanically, because they can be accomplished through gravity alone in some cases; 3) condition of the two primary motors in the hand: extrinsics (flexors and extensors) and intrinsics (facilitator). No matter the type of palsy, the transfer surgery follows the same technical principles: exposure, release, fixation, tensioning and rehabilitation. By performing an in-depth analysis of each case and by following strict technical principles, tendon transfer surgery leads to reproducible results; this allows the surgeon to establish clear objectives for the patient preoperatively. PMID:27117119

  5. ACL reconstruction with BPTB autograft and irradiated fresh frozen allograft*

    PubMed Central

    Sun, Kang; Tian, Shao-qi; Zhang, Ji-hua; Xia, Chang-suo; Zhang, Cai-long; Yu, Teng-bo

    2009-01-01

    Objective: To analyze the clinical outcomes of arthroscopic anterior cruciate ligament (ACL) reconstruction with irradiated bone-patellar tendon-bone (BPTB) allograft compared with non-irradiated allograft and autograft. Methods: All BPTB allografts were obtained from a single tissue bank and the irradiated allografts were sterilized with 2.5 mrad of irradiation prior to distribution. A total of 68 patients undergoing arthroscopic ACL reconstruction were prospectively randomized consecutively into one of the two groups (autograft and irradiated allograft groups). The same surgical technique was used in all operations done by the same senior surgeon. Before surgery and at the average of 31 months of follow-up (ranging from 24 to 47 months), patients were evaluated by the same observer according to objective and subjective clinical evaluations. Results: Of these patients, 65 (autograft 33, irradiated allograft 32) were available for full evaluation. When the irradiated allograft group was compared to the autograft group at the 31-month follow-up by the Lachman test, the anterior drawer test (ADT), the pivot shift test, and KT-2000 arthrometer test, statistically significant differences were found. Most importantly, 87.8% of patients in the autograft group and just only 31.3% in the irradiated allograft group had a side-to-side difference of less than 3 mm according to KT-2000. The failure rate of the ACL reconstruction with irradiated allograft (34.4%) was higher than that with autograft (6.1%). The anterior and rotational stabilities decreased significantly in the irradiated allograft group. According to the overall International Knee Documentation Committee (IKDC), functional and subjective evaluations, and activity level testing, no statistically significant differences were found between the two groups. Besides, patients in the irradiated allograft group had a shorter operation time and a longer duration of postoperative fever. When the patients had a fever, the

  6. Crucial transcription factors in tendon development and differentiation: their potential for tendon regeneration.

    PubMed

    Liu, Huanhuan; Zhu, Shouan; Zhang, Can; Lu, Ping; Hu, Jiajie; Yin, Zi; Ma, Yue; Chen, Xiao; OuYang, Hongwei

    2014-05-01

    Tendons that connect muscles to bone are often the targets of sports injuries. The currently unsatisfactory state of tendon repair is largely attributable to the limited understanding of basic tendon biology. A number of tendon lineage-related transcription factors have recently been uncovered and provide clues for the better understanding of tendon development. Scleraxis and Mohawk have been identified as critical transcription factors in tendon development and differentiation. Other transcription factors, such as Sox9 and Egr1/2, have also been recently reported to be involved in tendon development. However, the molecular mechanisms and application of these transcription factors remain largely unclear and this prohibits their use in tendon therapy. Here, we systematically review and analyze recent findings and our own data concerning tendon transcription factors and tendon regeneration. Based on these findings, we provide interaction and temporal programming maps of transcription factors, as a basis for future tendon therapy. Finally, we discuss future directions for tendon regeneration with differentiation and trans-differentiation approaches based on transcription factors. PMID:24705622

  7. Subtotal Scapulectomy With Scapulothoracic Fusion and Local Tendon Transfer for Management of Chondrosarcoma.

    PubMed

    Schoch, Bradley; Shives, Thomas; Elhassan, Bassem

    2016-06-01

    Scapulectomy can dramatically alter glenohumeral function and the ability of patients to conduct activities of daily living. In oncologic cases, treatment of the tumor can compromise local musculature, making successful reconstruction difficult to achieve. Depending on the resection level, local musculature may be inadequate to restore shoulder range of motion and/or glenohumeral stability. Surgeons have attempted to address these issues via soft-tissue repairs, allograft replacement, and prosthetic replacement, with variable success. Outcomes are better when a greater portion of the scapula is preserved, thus saving functional rotator cuff muscle bellies. However, preservation of significant rotator cuff musculature is not routinely possible. To our knowledge, no authors in the English-language orthopaedic literature have reported on local tendon transfers as a technique to augment and reconstruct the rotator cuff in a patient with previous scapulectomy. PMID:27115794

  8. A coincidental variation of the axillary artery: the brachioradial artery and the aberrant posterior humeral circumflex artery passing under the tendon of the latissimus dorsi muscle

    PubMed Central

    Konarik, Marek; Kachlik, David; Baca, Vaclav

    2014-01-01

    A case of anomalous terminal branching of the axillary artery was encountered and described in a left upper limb of a male cadaver. A series of 214 upper limbs of Caucasian race was dissected. A variant artery, stemming from the very end of the axillary artery followed a superficial course distally. It passed the cubital fossa, ran on the lateral side of the forearm as usual radial artery, crossed ventrally to the palm and terminated in the deep palmar arch. This vessel is a case of the brachioradial artery (incorrectly termed as the “radial artery with high origin”). Moreover, it was associated with another variation, concerning the aberrant posterior humeral circumflex artery passing under the tendon of the latissimus dorsi muscle. The anatomical knowledge of the axillary region is essential for radiodiagnostic, surgical and traumatologic procedures. The superficially located artery brings an elevated danger of heavy bleeding in all unexpected situations, its variant branching can cause problems in radial catheterization procedures and the anomalously coursing other arterial variant poses an elevated danger in surgical procedures concerning the surgical neck of humerus. PMID:25428677

  9. COL6A3 protein deficiency in mice leads to muscle and tendon defects similar to human collagen VI congenital muscular dystrophy.

    PubMed

    Pan, Te-Cheng; Zhang, Rui-Zhu; Markova, Dessislava; Arita, Machiko; Zhang, Yejia; Bogdanovich, Sasha; Khurana, Tejvir S; Bönnemann, Carsten G; Birk, David E; Chu, Mon-Li

    2013-05-17

    Collagen VI is a ubiquitously expressed extracellular microfibrillar protein. Its most common molecular form is composed of the α1(VI), α2(VI), and α3(VI) collagen α chains encoded by the COL6A1, COL6A2, and COL6A3 genes, respectively. Mutations in any of the three collagen VI genes cause congenital muscular dystrophy types Bethlem and Ullrich as well as intermediate phenotypes characterized by muscle weakness and connective tissue abnormalities. The α3(VI) collagen α chain has much larger N- and C-globular domains than the other two chains. Its most C-terminal domain can be cleaved off after assembly into microfibrils, and the cleavage product has been implicated in tumor angiogenesis and progression. Here we characterize a Col6a3 mutant mouse that expresses a very low level of a non-functional α3(VI) collagen chain. The mutant mice are deficient in extracellular collagen VI microfibrils and exhibit myopathic features, including decreased muscle mass and contractile force. Ultrastructurally abnormal collagen fibrils were observed in tendon, but not cornea, of the mutant mice, indicating a distinct tissue-specific effect of collagen VI on collagen I fibrillogenesis. Overall, the mice lacking normal α3(VI) collagen chains displayed mild musculoskeletal phenotypes similar to mice deficient in the α1(VI) collagen α chain, suggesting that the cleavage product of the α3(VI) collagen does not elicit essential functions in normal growth and development. The Col6a3 mouse mutant lacking functional α3(VI) collagen chains thus serves as an animal model for COL6A3-related muscular dystrophy. PMID:23564457

  10. Traumatic flexor tendon injuries.

    PubMed

    Lapegue, F; Andre, A; Brun, C; Bakouche, S; Chiavassa, H; Sans, N; Faruch, M

    2015-12-01

    The flexor system of the fingers consisting of flexor tendons and finger pulleys is a key anatomic structure for the grasping function. Athletes and manual workers are particularly at risk for closed injuries of the flexor system: ruptured pulleys, ruptures of the flexor digitorum profundus from its distal attachment ("jersey finger"), and less frequently, ruptures of the flexor digitorum superficialis and of the lumbrical muscles. Open injuries vary more and their imaging features are more complex since tendons may be torn in several locations, the locations may be unusual, the injuries may be associated with nerve and vascular injuries, fibrosis… Sonography is the best imaging modality to associate with the clinical exam for it allows an experienced physician to make an accurate and early diagnosis, crucial to appropriate early treatment planning. PMID:26564614

  11. Management of Extensor Tendon Injuries

    PubMed Central

    Griffin, M; Hindocha, S; Jordan, D; Saleh, M; Khan, W

    2012-01-01

    Extensor tendon injuries are very common injuries, which inappropriately treated can cause severe lasting impairment for the patient. Assessment and management of flexor tendon injuries has been widely reviewed, unlike extensor injuries. It is clear from the literature that extensor tendon repair should be undertaken immediately but the exact approach depends on the extensor zone. Zone I injuries otherwise known as mallet injuries are often closed and treated with immobilisaton and conservative management where possible. Zone II injuries are again conservatively managed with splinting. Closed Zone III or ‘boutonniere’ injuries are managed conservatively unless there is evidence of displaced avulsion fractures at the base of the middle phalanx, axial and lateral instability of the PIPJ associated with loss of active or passive extension of the joint or failed non-operative treatment. Open zone III injuries are often treated surgically unless splinting enable the tendons to come together. Zone V injuries, are human bites until proven otherwise requires primary tendon repair after irrigation. Zone VI injuries are close to the thin paratendon and thin subcutaneous tissue which strong core type sutures and then splinting should be placed in extension for 4-6 weeks. Complete lacerations to zone IV and VII involve surgical primary repair followed by 6 weeks of splinting in extension. Zone VIII require multiple figure of eight sutures to repair the muscle bellies and static immobilisation of the wrist in 45 degrees of extension. To date there is little literature documenting the quality of repairing extensor tendon injuries however loss of flexion due to extensor tendon shortening, loss of flexion and extension resulting from adhesions and weakened grip can occur after surgery. This review aims to provide a systematic examination method for assessing extensor injuries, presentation and management of all type of extensor tendon injuries as well as guidance on

  12. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  13. Distribution of proteins within different compartments of tendon varies according to tendon type.

    PubMed

    Thorpe, Chavaunne T; Karunaseelan, Kabelan J; Ng Chieng Hin, Jade; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2016-09-01

    Although the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the energetic cost of locomotion. To maximise energy storage and return, energy-storing tendons need to be more extensible and elastic than tendons with a purely positional function. These properties are conferred in part by a specialisation of a specific compartment of the tendon, the interfascicular matrix, which enables sliding and recoil between adjacent fascicles. However, the composition of the interfascicular matrix is poorly characterised and we therefore tested the hypothesis that the distribution of elastin and proteoglycans differs between energy-storing and positional tendons, and that protein distribution varies between the fascicular matrix and the interfascicular matrix, with localisation of elastin and lubricin to the interfascicular matrix. Protein distribution in the energy-storing equine superficial digital flexor tendon and positional common digital extensor tendon was assessed using histology and immunohistochemistry. The results support the hypothesis, demonstrating enrichment of lubricin in the interfascicular matrix in both tendon types, where it is likely to facilitate interfascicular sliding. Elastin was also localised to the interfascicular matrix, specifically in the energy-storing superficial digital flexor tendon, which may account for the greater elasticity of the interfascicular matrix in this tendon. A differential distribution of proteoglycans was identified between tendon types and regions, which may indicate a distinct role for each of these proteins in tendon. These data provide important advances into fully characterising structure-function relationships within tendon. PMID:27113131

  14. Musculoskeletal integration at the wrist underlies the modular development of limb tendons.

    PubMed

    Huang, Alice H; Riordan, Timothy J; Pryce, Brian; Weibel, Jennifer L; Watson, Spencer S; Long, Fanxin; Lefebvre, Veronique; Harfe, Brian D; Stadler, H Scott; Akiyama, Haruhiko; Tufa, Sara F; Keene, Douglas R; Schweitzer, Ronen

    2015-07-15

    The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes. PMID:26062940

  15. Musculoskeletal integration at the wrist underlies the modular development of limb tendons

    PubMed Central

    Huang, Alice H.; Riordan, Timothy J.; Pryce, Brian; Weibel, Jennifer L.; Watson, Spencer S.; Long, Fanxin; Lefebvre, Veronique; Harfe, Brian D.; Stadler, H. Scott; Akiyama, Haruhiko; Tufa, Sara F.; Keene, Douglas R.; Schweitzer, Ronen

    2015-01-01

    The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes. PMID:26062940

  16. Tendon latch

    SciTech Connect

    Watkins, B. J.

    1985-01-01

    A latch connects tendons run from a floating platform to a socket in a foundation on the sea floor. The latch includes a latch body having a plurality of dogs disposed within and urgible outward from the latch body. A piston is releasably disposed within the latch body above the dogs and moves downwardly when released to urge the dogs outwardly from the body into latching engagement with the socket. A trigger mechanism in the latch releases the piston when the latch body lands in the socket and contacts a trigger pin projecting upwardly from the bottom of the socket. A series of wedges are disposed exteriorally on the body and inhibit lateral movement of the body relative to the socket when the tendon is subjected to a cycle bending loads.

  17. Posterior Tibial Tendon Dysfunction

    MedlinePlus

    ... when the posterior tibial tendon becomes inflamed or torn. As a result, the tendon may not be ... repetitive use. Once the tendon becomes inflamed or torn, the arch will slowly fall (collapse) over time. ...

  18. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review

    PubMed Central

    Rio, Ebonie; Kidgell, Dawson; Moseley, G Lorimer; Docking, Sean; Purdam, Craig; Cook, Jill

    2016-01-01

    Tendinopathy can be resistant to treatment and often recurs, implying that current treatment approaches are suboptimal. Rehabilitation programmes that have been successful in terms of pain reduction and return to sport outcomes usually include strength training. Muscle activation can induce analgesia, improving self-efficacy associated with reducing one's own pain. Furthermore, strength training is beneficial for tendon matrix structure, muscle properties and limb biomechanics. However, current tendon rehabilitation may not adequately address the corticospinal control of the muscle, which may result in altered control of muscle recruitment and the consequent tendon load, and this may contribute to recalcitrance or symptom recurrence. Outcomes of interest include the effect of strength training on tendon pain, corticospinal excitability and short interval cortical inhibition. The aims of this concept paper are to: (1) review what is known about changes to the primary motor cortex and motor control in tendinopathy, (2) identify the parameters shown to induce neuroplasticity in strength training and (3) align these principles with tendon rehabilitation loading protocols to introduce a combination approach termed as tendon neuroplastic training. Strength training is a powerful modulator of the central nervous system. In particular, corticospinal inputs are essential for motor unit recruitment and activation; however, specific strength training parameters are important for neuroplasticity. Strength training that is externally paced and akin to a skilled movement task has been shown to not only reduce tendon pain, but modulate excitatory and inhibitory control of the muscle and therefore, potentially tendon load. An improved understanding of the methods that maximise the opportunity for neuroplasticity may be an important progression in how we prescribe exercise-based rehabilitation in tendinopathy for pain modulation and potentially restoration of the corticospinal

  19. Shear Load Transfer in High and Low Stress Tendons

    PubMed Central

    Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray

    2016-01-01

    Background Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructure (helical versus linear) may redistribute loads differently. Method of Approach This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20-60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Results and Conclusions Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. PMID:25700261

  20. Allografts in the treatment of athletic injuries of the shoulder.

    PubMed

    Ho, Jason Y; Miller, Suzanne L

    2007-09-01

    As allogeneic musculoskeletal tissue is readily available, has minimal limitation in size or shape, and carries no donor site morbidity, it has become attractive for use in reconstructive shoulder surgery. Allograft is a viable option for treating osseous defects associated with glenohumeral instability and has been shown to achieve a stable shoulder with good clinical outcomes. Although there are mixed results on the use of allograft as rotator cuff augments or substitutes, new commercially processed materials such as GraftJacket are being tested to address the high failure rates associated with massive rotator cuff repair. Interposition arthroplasty as a treatment for glenohumeral arthritis in the young and active patient is a novel concept in which the arthritic glenoid is biologically resurfaced. Satisfactory results have been described using lateral meniscus and Achilles tendon allograft. Despite the promising reports on the use of allograft in reconstructive shoulder surgery, most of the published literature exists as retrospective, case reports. Additional large, controlled research is needed to prove the efficacy and safety of allograft tissue in the treatment of athletic injuries of the shoulder. PMID:17700375

  1. The development of zebrafish tendon and ligament progenitors.

    PubMed

    Chen, Jessica W; Galloway, Jenna L

    2014-05-01

    Despite the importance of tendons and ligaments for transmitting movement and providing stability to the musculoskeletal system, their development is considerably less well understood than that of the tissues they serve to connect. Zebrafish have been widely used to address questions in muscle and skeletal development, yet few studies describe their tendon and ligament tissues. We have analyzed in zebrafish the expression of several genes known to be enriched in mammalian tendons and ligaments, including scleraxis (scx), collagen 1a2 (col1a2) and tenomodulin (tnmd), or in the tendon-like myosepta of the zebrafish (xirp2a). Co-expression studies with muscle and cartilage markers demonstrate the presence of scxa, col1a2 and tnmd at sites between the developing muscle and cartilage, and xirp2a at the myotendinous junctions. We determined that the zebrafish craniofacial tendon and ligament progenitors are neural crest derived, as in mammals. Cranial and fin tendon progenitors can be induced in the absence of differentiated muscle or cartilage, although neighboring muscle and cartilage are required for tendon cell maintenance and organization, respectively. By contrast, myoseptal scxa expression requires muscle for its initiation. Together, these data suggest a conserved role for muscle in tendon development. Based on the similarities in gene expression, morphology, collagen ultrastructural arrangement and developmental regulation with that of mammalian tendons, we conclude that the zebrafish tendon populations are homologous to their force-transmitting counterparts in higher vertebrates. Within this context, the zebrafish model can be used to provide new avenues for studying tendon biology in a vertebrate genetic system. PMID:24803652

  2. Comparison of Clinical Outcome of Autograft and Allograft Reconstruction for Anterior Cruciate Ligament Tears

    PubMed Central

    Jia, Yu-Hua; Sun, Peng-Fei

    2015-01-01

    Background: Hamstring (HS) autograft and bone-patellar tendon-bone allograft are the most common choice for reconstruction of anterior cruciate ligament (ACL). There was a little report about the clinical outcome and difference of arthroscopic ACL reconstruction using allograft and autograft. This study aimed to compare the clinical outcome of autograft and allograft reconstruction for ACL tears. Methods: A total of 106 patients who underwent surgery because of ACL tear were included in this study. The patients were randomly divided into two groups, including 53 patients in each group. The patients in group I underwent standard ACL reconstruction with HS tendon autografts, while others in group II underwent reconstruction with bone-patellar tendon-bone allograft. All the patients were followed up and analyzed; the mean follow-up was 81 months (range: 28–86 months). Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC), Lysholm scores, physical instability tests, and patient satisfaction questionnaires. The complication rates of both groups were compared. Tibial and femoral tunnel widening were assessed using lateral and anteroposterior radiographs. Results: At the end of follow-up, no significant differences were found between the groups in terms of IKDC, Lysholm scores, physical instability tests, patient satisfaction questionnaires, and incidences of arthrofibrosis. Tibial and femoral tunnel widening was less in the HS tendon autografts. This difference was more significant on the tibial side. Conclusions: In the repair of ACL tears, allograft reconstruction is as effective as the autograft reconstruction, but the allograft can lead to more tunnel widening evidently in the tibial tunnel, particularly. PMID:26612290

  3. [Quadriceps tendon insufficiency and rupture : Treatment options in total knee arthroplasty].

    PubMed

    Thiele, K; von Roth, P; Pfitzner, T; Preininger, B; Perka, C

    2016-05-01

    Quadriceps tendon injuries and insufficiencies in total knee arthroplasty are rare, but are followed by a devastating complication that left untreated leads to a complete loss of function of the knee. This review article summarizes the functional anatomy, risk factors, and the prevalence and diagnosis of quadriceps tendon injuries, in addition to the possible management options for partial and complete ruptures. The treatment options are adapted according to the extent of the loss of function (partial, complete) and the duration of the injury (acute vs chronic). Furthermore, the choice of treatment should take into account the quality and availability of primary tissue, the patient's general health, along with their likely functional requirements. Conservative treatment is often justified in partial ruptures with good results. Complete ruptures require surgical intervention and multiple operative techniques are described. Treatment options for acute ruptures include direct primary repair with autogenous or synthetic tissue augmentation. In the case of chronic insufficiency and a lack of soft-tissue surroundings, reconstruction with the aid of a muscle flap or allograft tissue can be considered. All surgical intervention techniques used so far have been fraught with complications and rarely lead to satisfactory results. A new surgical approach to the reconstruction and augmentation of the extensor mechanism consists of the use of a synthetic mesh. The technique is described here in detail. PMID:27125235

  4. Measuring Regional Changes in Damaged Tendon

    NASA Astrophysics Data System (ADS)

    Frisch, Catherine Kayt Vincent

    Mechanical properties of tendon predict tendon health and function, but measuring these properties in vivo is difficult. An ultrasound-based (US) analysis technique called acoustoelastography (AE) uses load-dependent changes in the reflected US signal to estimate tissue stiffness non-invasively. This thesis explores whether AE can provide information about stiffness alteration resulting from tendon tears both ex vivo and in vivo. An ex vivo ovine infraspinatus tendon model suggests that the relative load transmitted by the different tendon layers transmit different fractions of the load and that ultrasound echo intensity change during cyclic loading decreases, becoming less consistent once the tendon is torn. An in vivo human tibialis anterior tendon model using electrically stimulated twitch contractions investigated the feasibility of measuring the effect in vivo. Four of the five subjects showed the expected change and that the muscle contraction times calculated using the average grayscale echo intensity change compared favorably with the times calculated based on the force data. Finally an AE pilot study with patients who had rotator cuff tendon tears found that controlling the applied load and the US view of the system will be crucial to a successful in vivo study.

  5. Endoscopic adhesiolysis for extensive tibialis posterior tendon and Achilles tendon adhesions following compound tendon rupture

    PubMed Central

    Lui, Tun Hing

    2013-01-01

    Tendon adhesion is one of the most common causes of disability following tendon surgery. A case of extensive peritendinous adhesions of the Achilles tendon and tibialis posterior tendon after compound rupture of the tendons was reported. This was managed by endoscopic adhesiolysis of both tendons. The endoscopic approach allows early postoperative mobilisation which can relieve the tendon adhesion. PMID:24045762

  6. Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs

    PubMed Central

    2010-01-01

    Tendon and ligaments have poor healing capacity and when injured often require surgical intervention. Tissue replacement via autografts and allografts are non-ideal strategies that can lead to future problems. As an alternative, scaffold-based tissue engineering strategies are being pursued. In this review, we describe design considerations and major recent advancements of scaffolds for tendon/ligament engineering. Specifically, we outline native tendon/ligament characteristics critical for design parameters and outcome measures, and introduce synthetic and naturally-derived biomaterials used in tendon/ligament scaffolds. We will describe applications of these biomaterials in advanced tendon/ligament engineering strategies including the utility of scaffold functionalization, cyclic strain, growth factors, and interface considerations. The goal of this review is to compile and interpret the important findings of recent tendon/ligament engineering research in an effort towards the advancement of regenerative strategies. PMID:20727171

  7. Tendon graft substitutes-rotator cuff patches.

    PubMed

    Coons, David A; Alan Barber, F

    2006-09-01

    Over the past few years, many biologic patches have been developed to augment repairs of large or complex tendon tears. These patches include both allograft and xenografts. Regardless of their origins, these products are primarily composed of purified type I collagen. Many factors should be considered when choosing an augmentation patch including tissue origin, graft processing, cross-linking, clinical experience, and physical properties. The purpose of this article is to familiarize the sports medicine community with several tendon augmentation grafts: GraftJacket (Wright Medical Technology, Arlington, TN), CuffPatch (Organogenesis, Canton, MA, licensed to Arthrotek, Warsaw, IN), Restore (Depuy, Warsaw, IN), Zimmer Collagen Repair (Permacol) patch (Tissue Science Laboratories Covington, GA, licensed to Zimmer, Warsaw, IN), TissueMend (TEI Biosciences, Boston, MA, licensed to Stryker Howmedica Osteonics, Kalamazoo, MI), OrthoADAPT (Pegasus Biologics, Irvine, CA), and BioBlanket (Kensey Nash, Exton, PA). PMID:17135966

  8. Immune Privilege of Corneal Allografts

    PubMed Central

    Niederkorn, Jerry Y.; Larkin, D. Frank P.

    2013-01-01

    Corneal transplantation has been performed successfully for over 100 years. Normally, HLA typing and systemic immunosuppressive drugs are not utilized, yet 90% of corneal allografts survive. In rodents, corneal allografts representing maximal histoincompatibility enjoy >50% survival even without immunosuppressive drugs. By contrast, other categories of transplants are invariably rejected in such donor/host combinations. The acceptance of corneal allografts compared to other categories of allografts is called immune privilege. The cornea expresses factors that contribute to immune privilege by preventing the induction and expression of immune responses to histocompatibility antigens on the corneal allograft. Among these are soluble and cell membrane molecules that block immune effector elements and also apoptosis of T lymphocytes. However, some conditions rob the corneal allograft of its immune privilege and promote rejection, which remains the leading cause of corneal allograft failure. Recent studies have examined new strategies for restoring immune privilege to such high-risk hosts. PMID:20482389

  9. The role of mechanobiology in tendon healing.

    PubMed

    Killian, Megan L; Cavinatto, Leonardo; Galatz, Leesa M; Thomopoulos, Stavros

    2012-02-01

    Mechanical cues affect tendon healing, homeostasis, and development in a variety of settings. Alterations in the mechanical environment are known to result in changes in the expression of extracellular matrix proteins, growth factors, transcription factors, and cytokines that can alter tendon structure and cell viability. Loss of muscle force in utero or in the immediate postnatal period delays tendon and enthesis development. The response of healing tendons to mechanical load varies depending on anatomic location. Flexor tendons require motion to prevent adhesion formation, yet excessive force results in gap formation and subsequent weakening of the repair. Excessive motion in the setting of anterior cruciate ligament reconstruction causes accumulation of macrophages, which are detrimental to tendon graft healing. Complete removal of load is detrimental to rotator cuff healing; yet, large forces are also harmful. Controlled loading can enhance healing in most settings; however, a fine balance must be reached between loads that are too low (leading to a catabolic state) and too high (leading to microdamage). This review will summarize existing knowledge of the mechanobiology of tendon development, homeostasis, and healing. PMID:22244066

  10. Pressurized liquid filled tendons

    SciTech Connect

    Burns, G.E.

    1987-05-12

    This patent describes an apparatus for detecting a leak in a tension leg platform tendon, comprising: a fluid-tight tensioned tubular tendon, the tendon connected on its upper end to a buoyant offshore structure and on its lower end to an anchor means. The anchor means is connected to the sea floor; means for supplying liquid to the tendon; means for pressurizing the liquid in excess of the maximum hydrostatic pressure exerted by the sea water on the tendon; and means for monitoring pressure, the means monitoring variations in liquid pressure to the tendon.

  11. A new strategy for the decellularisation of large equine tendons as biocompatible tendon substitutes.

    PubMed

    Bottagisio, M; Pellegata, A F; Boschetti, F; Ferroni, M; Moretti, M; Lovati, A B

    2016-01-01

    Tendon ruptures and/or large losses remain to be a great clinical challenge and often require full replacement of the damaged tissue. The use of auto- and allografts or engineered scaffolds is an established approach to restore severe tendon injuries. However, these grafts are commonly related to scarce biocompatibility, site morbidity, chronic inflammation and poor biomechanical properties. Recently, the decellularisation techniques of allo- or xenografts using specific detergents have been studied and have been found to generate biocompatible substitutes that resemble the native tissue. This study aims to identify a novel decellularisation protocol for large equine tendons that would produce an extracellular matrix scaffold suitable for the regeneration of injured tendons in humans. Specifically, equine tendons were treated either with tri (n-butyl) phosphate alone, or associated to multiple concentrations of peracetic acid (1, 3 and 5 %), which has never before been tested in vitro.Samples were then analysed by histology and with biochemical, biomechanical, and cytotoxicity tests. The best decellularisation protocol, resulting from these examinations, was selected and the chosen scaffold was re-seeded with murine fibroblasts. Resulting grafts were tested for cell viability, histologic analysis, DNA and collagen content. The results identified 1 % tri (n-butyl) phosphate combined with 3 % peracetic acid as the most suitable decellularised matrix in terms of biochemical and biomechanical properties. Moreover, the non-cytotoxic nature of the decellularised matrix allowed for good fibroblast reseeding, thus demonstrating a biocompatible matrix that will be suitable for tendon tissue engineering and hopefully as substitutes in severe tendon damages. PMID:27386840

  12. Transverse Compression of Tendons.

    PubMed

    Samuel Salisbury, S T; Paul Buckley, C; Zavatsky, Amy B

    2016-04-01

    A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon. PMID:26833218

  13. Achilles tendon: US examination

    SciTech Connect

    Fornage, B.D.

    1986-06-01

    Real-time ultrasonography (US) using linear-array probes and a stand-off pad as a ''waterpath'' was performed to evaluate the Achilles tendon in 67 patients (including 24 athletes) believed to have acute or chronic traumatic or inflammatory pathologic conditions. Tendons in 23 patients appeared normal on US scans. The 44 abnormal tendons comprised five complete and four partial ruptures, seven instances of postoperative change, and 28 cases of tendonitis. US depiction of the inner structure of the tendon resulted in the diagnosis of focal abnormalities, including partial ruptures, nodules, and calcifications. Tendonitis was characterized by enlargement and decreased echogenicity of the tendon. The normal US appearance of the Achilles tendon is described.

  14. Extramedullary hematopoiesis in renal allograft

    PubMed Central

    Chen, Guilan; Ali, Reza; Shuldberg, Mark M.; Bastani, Bahar; Brink, David S.

    2013-01-01

    Extramedullary hematopoiesis (EMH), defined as the presence of hematopoietic elements outside of the medullary cavity of bone, has been reported in patients with various hematopoietic neoplasms including myelofibrosis. EMH commonly occurs in the liver and spleen (resulting in hepatosplenomegaly) and uncommonly involves the kidney. EMH involving the allograft kidney has not been reported in English literature. Herein, we report the first case of EMH in allograft kidney in a patient with myelofibrosis. The clinical and pathological findings are described. Through comparison of the medullary neoplastic infiltrate with the renal allograft infiltrate, we postulate the neoplastic nature of the infiltrate in the allograft kidney. PMID:26120442

  15. Allograft Pancreatectomy: Indications and Outcomes.

    PubMed

    Nagai, S; Powelson, J A; Taber, T E; Goble, M L; Mangus, R S; Fridell, J A

    2015-09-01

    This study evaluated the indications, surgical techniques, and outcomes of allograft pancreatectomy based on a single center experience. Between 2003 and 2013, 47 patients developed pancreas allograft failure, excluding mortality with a functioning pancreas allograft. Early graft loss (within 14 days) occurred in 16, and late graft loss in 31. All patients with early graft loss eventually required allograft pancreatectomy. Nineteen of 31 patients (61%) with late graft loss underwent allograft pancreatectomy. The main indication for early allograft pancreatectomy included vascular thrombosis with or without severe pancreatitis, whereas one recipient required urgent allograft pancreatectomy for gastrointestinal hemorrhage secondary to an arterioenteric fistula. In cases of late allograft pancreatectomy, graft failure with clinical symptoms such as abdominal discomfort, pain, and nausea were the main indications (13/19 [68%]), simultaneous retransplantation without clinical symptoms in 3 (16%), and vascular catastrophes including pseudoaneurysm and enteric arterial fistula in 3 (16%). Postoperative morbidity included one case each of pulmonary embolism leading to mortality, formation of pseudoaneurysm requiring placement of covered stent, and postoperative bleeding requiring relaparotomy eventually leading to femoro-femoral bypass surgery 2 years after allograftectomy. Allograft pancreatectomy can be performed safely, does not preclude subsequent retransplantation, and may be lifesaving in certain instances. PMID:25912792

  16. Multiple variations of the tendons of the anatomical snuffbox

    PubMed Central

    Thwin, San San; Zaini, Fazlin; Than, Myo

    2014-01-01

    INTRODUCTION Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. METHODS Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. RESULTS In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3–14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. CONCLUSION Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery. PMID:24452976

  17. Pressurized gas filled tendons

    SciTech Connect

    Silcox, W. H.

    1985-06-04

    Pressurized gas filled tubular tendons provide a means for detecting leaks therein. Filling the tendon with a gaseous fluid provides increased buoyancy and reduces the weight supported by the buoyant structure. The use of a corrosion inhibiting gaseous fluid reduces the corrosion of the interior tendon wall.

  18. Smooth muscle cells of the coronary arterial tunica media express tumor necrosis factor-alpha and proliferate during acute rejection of rabbit cardiac allografts.

    PubMed Central

    Tanaka, H.; Swanson, S. J.; Sukhova, G.; Schoen, F. J.; Libby, P.

    1995-01-01

    Graft coronary arteriosclerosis (GCA) frequently limits the long-term success of cardiac transplantation. The pathogenic mechanisms of and stimuli that provoke GCA remain uncertain. Whatever the initiating factors, deranged control of smooth muscle cells (SMC) proliferation likely contributes to the intimal hyperplasia that produces obstructive lesions. To identify mediators that may contribute to ongoing modulation of SMC functions during acute rejection and to explore the mechanisms of the pathogenesis of graft coronary arteriosclerosis, we studied the kinetics of proliferation and the expression of tumor necrosis factor-alpha (TNF-alpha), a proinflammatory and SMC growth-promoting cytokine, in coronary arterial SMCs in rabbit hearts transplanted heterotopically without immunosuppression. Hearts were harvested at 2 (n = 5), 5 (n = 5), and 8.2 +/- 0.4 (mean +/- SD, n = 5) days after transplantation, just before graft failure as judged clinically. SMC proliferation was assessed by continuous bromodeoxyuridine labeling (BrdU 10 mg/kg/d. s.q.). Whole heart cross sections were stained immunohistochemically with monoclonal antibodies that recognize TNF-alpha, BrdU, and SMCs (muscle alpha-actin). Major epicardial coronary arteries (five to nine profiles in each animal) were evaluated. Histological rejection grades by the International Society for Heart and Lung Transplantation scale at 2, 5, and 10 days were 1.6 +/- 0.9, 2.8 +/- 1.1, and 4.0 +/- 0.0, respectively. Medial SMCs in normal hearts and 2 days after transplant expressed little or no TNF-alpha and displayed negligible BrdU incorporation. At 5 days after transplantation, some medial SMCs stained for TNF-alpha and had a low BrdU labeling index (0.5 +/- 0.8%). At 8.2 days after transplant, almost all medial SMCs expressed TNF-alpha intensely and had a high labeling index (29.8 +/- 8.0%). These results demonstrate that acute rejection activates medial SMCs in coronary arteries to express TNF-alpha and that SMC

  19. Increased Risk of Revision after ACL Reconstruction with Soft Tissue Allograft Compared to Autograft

    PubMed Central

    Maletis, Gregory; Chen, Jason; Inacio, Maria Carolina Secorun; Love, Rebecca; Funahashi, Tadashi Ted

    2016-01-01

    Objectives: The use of allograft tissue for anterior cruciate ligament reconstruction (ACLR) remains controversial. Numerous meta-analysis and systematic reviews of small clinical studies have not found differences between autograft and allograft outcomes but large registry studies have shown an increased risk of revision with allografts. The purpose of this study was to compare the risk of aseptic revision between bone-patellar tendon-bone (BPTB) autografts, hamstring tendon autografts and soft tissue allografts. Methods: A retrospective cohort study of prospectively collected data was conducted using an US ACLR Registry. A cohort of primary unilateral ACLR cases reconstructed with BPTB autografts, hamstring autografts and soft tissue allografts (from any site) was identified. Aseptic revision was the end point of the study. Type of graft and allograft processing methods (non-processed, <1.8Mrads with and without chemical processing (Allowash or AlloTrue methods), >1.8 Mrads irradiation with and without chemical processing, and chemical processing alone (BioCleanse)) were the exposures of interest evaluated. Time from surgery was evaluated as an effect modifier. All analyses were adjusted for age, gender, and race. Kaplan-Meier curves and Cox proportional hazard models were employed. Hazard ratios (HR), 95% confidence intervals (CI) are provided. Results: The cohort had 14015 cases, 8924 (63.7%) were male, 6397 (45.6%) were White, 4557 (32.5%) cases used BPTB autograft, 3751 (26.8%) cases used soft tissue allograft and 5707 (40.7%) cases used hamstring autograft. The median age was 34.6 years-old (IQR 24.1-43.2) for allograft cases and 24.3 years-old (IQR 17.7-33.8) for hamstring autograft cases, and 22.0 years-old (IQR 17.6-30.0) for BPTB autograft cases. Compared to hamstring tendon autografts, an increased risk of revision was found in allografts processed with >1.8Mrads without chemical processing after 2.5 years (HR: 3.88 95%CI 1.48-10.12), and >1.8Mrads with

  20. A 3-Dimensional Anatomic Study of the Distal Biceps Tendon

    PubMed Central

    Walton, Christine; Li, Zhi; Pennings, Amanda; Agur, Anne; Elmaraghy, Amr

    2015-01-01

    Background Complete rupture of the distal biceps tendon from its osseous attachment is most often treated with operative intervention. Knowledge of the overall tendon morphology as well as the orientation of the collagenous fibers throughout the musculotendinous junction are key to intraoperative decision making and surgical technique in both the acute and chronic setting. Unfortunately, there is little information available in the literature. Purpose To comprehensively describe the morphology of the distal biceps tendon. Study Design Descriptive laboratory study. Methods The distal biceps terminal musculature, musculotendinous junction, and tendon were digitized in 10 cadaveric specimens and data reconstructed using 3-dimensional modeling. Results The average length, width, and thickness of the external distal biceps tendon were found to be 63.0, 6.0, and 3.0 mm, respectively. A unique expansion of the tendon fibers within the distal muscle was characterized, creating a thick collagenous network along the central component between the long and short heads. Conclusion This study documents the morphologic parameters of the native distal biceps tendon. Reconstruction may be necessary, especially in chronic distal biceps tendon ruptures, if the remaining tendon morphology is significantly compromised compared with the native distal biceps tendon. Knowledge of normal anatomical distal biceps tendon parameters may also guide the selection of a substitute graft with similar morphological characteristics. Clinical Relevance A thorough description of distal biceps tendon morphology is important to guide intraoperative decision making between primary repair and reconstruction and to better select the most appropriate graft. The detailed description of the tendinous expansion into the muscle may provide insight into better graft-weaving and suture-grasping techniques to maximize proximal graft incorporation. PMID:26665092

  1. Tendon grafts: their natural history, biology and future development.

    PubMed

    Wong, R; Alam, N; McGrouther, A D; Wong, J K F

    2015-09-01

    The use of tendon grafts has diminished as regimes of primary repairs and rehabilitation have improved, but they remain important in secondary reconstruction. Relatively little is known about the cellular biology of grafts, and the general perception is that they have little biological activity. The reality is that there is a wealth of cellular and molecular changes occurring with the process of engraftment that affect the quality of the repair. This review highlights the historical perspectives and modern concepts of graft take, reviews the different attachment techniques and revisits the biology of pseudosheath formation. In addition, we discuss some of the future directions in tendon reconstruction by grafting, which include surface modification, vascularized tendon transfer, allografts, biomaterials and cell-based therapies. PMID:26264585

  2. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  3. EGR1 and EGR2 involvement in vertebrate tendon differentiation.

    PubMed

    Lejard, Véronique; Blais, Frédéric; Guerquin, Marie-Justine; Bonnet, Aline; Bonnin, Marie-Ange; Havis, Emmanuelle; Malbouyres, Maryline; Bidaud, Christelle Bonod; Maro, Géraldine; Gilardi-Hebenstreit, Pascale; Rossert, Jérome; Ruggiero, Florence; Duprez, Delphine

    2011-02-18

    The molecules involved in vertebrate tendon formation during development remain largely unknown. To date, only two DNA-binding proteins have been identified as being involved in vertebrate tendon formation, the basic helix-loop-helix transcription factor Scleraxis and, recently, the Mohawk homeobox gene. We investigated the involvement of the early growth response transcription factors Egr1 and Egr2 in vertebrate tendon formation. We established that Egr1 and Egr2 expression in tendon cells was correlated with the increase of collagen expression during tendon cell differentiation in embryonic limbs. Vertebrate tendon differentiation relies on a muscle-derived FGF (fibroblast growth factor) signal. FGF4 was able to activate the expression of Egr genes and that of the tendon-associated collagens in chick limbs. Egr gene misexpression experiments using the chick model allowed us to establish that either Egr gene has the ability to induce de novo expression of the reference tendon marker scleraxis, the main tendon collagen Col1a1, and other tendon-associated collagens Col3a1, Col5a1, Col12a1, and Col14a1. Mouse mutants for Egr1 or Egr2 displayed reduced amounts of Col1a1 transcripts and a decrease in the number of collagen fibrils in embryonic tendons. Moreover, EGR1 and EGR2 trans-activated the mouse Col1a1 proximal promoter and were recruited to the tendon regulatory regions of this promoter. These results identify EGRs as novel DNA-binding proteins involved in vertebrate tendon differentiation by regulating type I collagen production. PMID:21173153

  4. Regional variation of tibialis anterior tendon mechanics is lost following denervation.

    PubMed

    Arruda, Ellen M; Calve, Sarah; Dennis, Robert G; Mundy, Kevin; Baar, Keith

    2006-10-01

    Denervation or inactivity is known to decrease the mass and alter the phenotype of muscle. The mechanical response of tendon to inactivity that has been determined experimentally differs from what is reported by patients. We investigated the hypothesis that this difference was the result of artifacts of the testing process and did not represent what occurred in vivo. To test this hypothesis, a novel approach was used to determine the mechanical properties of the tibialis anterior (TA) tendon by optically measuring the end-to-end mechanical strains as well as the local strains at specific regions of excised TA tendon units. When the end-to-end strain of normal TA tendon is determined, stress-strain response curves show considerably more extensibility than when strain is measured across only the midsection of the tendon (mid-tendon). The strain experienced by the region close to the muscle (muscle tendon) is five times greater than the strain in either the mid-tendon or near the bone (bone-tendon). Five weeks of denervation decreased muscle mass by 67%; increased tendon mass by 10%; and changed the entire shape of the nonlinear response curve, including a loss in regional variation in strain, a 3.9-fold increase in end-to-end tangent modulus, and a 70% reduction in the toe region, as a result of a drastic reduction of the extensibility in the muscle-tendon region. The stress-strain response in the mid-tendon region of a normal TA tendon is therefore not indicative of its overall ability to deform in vivo as it transmits forces from muscle to bone. PMID:16728516

  5. Should tendon and aponeurosis be considered in series?

    PubMed

    Epstein, Marcelo; Wong, Max; Herzog, Walter

    2006-01-01

    Fibres, aponeuroses, and tendons are often considered mechanically "in series" in skeletal muscles. This notion has led to oversimplified calculations of fibre forces from tendon forces, to incorrect derivations of constitutive laws for aponeuroses, and to misinterpretations of the recovery of elastic energy in stretch-shortening cycles of muscles. Here, we demonstrate theoretically, using examples of increasing complexity, that tendon and aponeurosis are not in series in a muscle fibre-aponeurosis-tendon complex. We then demonstrate that assuming the tendon and aponeurosis to be in series can lead to the appearance of mechanical work creation in these passive viscoelastic structures, a result that is mechanically impossible. Finally, we explain the mechanical role of the incompressible muscle matrix in force transmission from fibres to aponeuroses and tendon, and emphasize that incompressibility necessitates the introduction of extra forces necessary to maintain this constraint. Unfortunately, this requirement eliminates, for all but the simplest cases, a theoretical approach of muscle modeling based on intuitive free-body diagrams. PMID:16085074

  6. Structure of the tendon connective tissue.

    PubMed

    Kannus, P

    2000-12-01

    Tendons consist of collagen (mostly type I collagen) and elastin embedded in a proteoglycan-water matrix with collagen accounting for 65-80% and elastin approximately 1-2% of the dry mass of the tendon. These elements are produced by tenoblasts and tenocytes, which are the elongated fibroblasts and fibrocytes that lie between the collagen fibers, and are organized in a complex hierarchical scheme to form the tendon proper. Soluble tropocollagen molecules form cross-links to create insoluble collagen molecules which then aggregate progressively into microfibrils and then into electronmicroscopically clearly visible units, the collagen fibrils. A bunch of collagen fibrils forms a collagen fiber, which is the basic unit of a tendon. A fine sheath of connective tissue called endotenon invests each collagen fiber and binds fibers together. A bunch of collagen fibers forms a primary fiber bundle, and a group of primary fiber bundles forms a secondary fiber bundle. A group of secondary fiber bundles, in turn, forms a tertiary bundle, and the tertiary bundles make up the tendon. The entire tendon is surrounded by a fine connective tissue sheath called epitenon. The three-dimensional ultrastructure of tendon fibers and fiber bundles is complex. Within one collagen fiber, the fibrils are oriented not only longitudinally but also transversely and horizontally. The longitudinal fibers do not run only parallel but also cross each other, forming spirals. Some of the individual fibrils and fibril groups form spiral-type plaits. The basic function of the tendon is to transmit the force created by the muscle to the bone, and, in this way, make joint movement possible. The complex macro- and microstructure of tendons and tendon fibers make this possible. During various phases of movements, the tendons are exposed not only to longitudinal but also to transversal and rotational forces. In addition, they must be prepared to withstand direct contusions and pressures. The above

  7. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration

    PubMed Central

    Youngstrom, Daniel W.; Barrett, Jennifer G.

    2016-01-01

    Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems. PMID:26839559

  8. Engineering Tendon: Scaffolds, Bioreactors, and Models of Regeneration.

    PubMed

    Youngstrom, Daniel W; Barrett, Jennifer G

    2016-01-01

    Tendons bridge muscle and bone, translating forces to the skeleton and increasing the safety and efficiency of locomotion. When tendons fail or degenerate, there are no effective pharmacological interventions. The lack of available options to treat damaged tendons has created a need to better understand and improve the repair process, particularly when suitable autologous donor tissue is unavailable for transplantation. Cells within tendon dynamically react to loading conditions and undergo phenotypic changes in response to mechanobiological stimuli. Tenocytes respond to ultrastructural topography and mechanical deformation via a complex set of behaviors involving force-sensitive membrane receptor activity, changes in cytoskeletal contractility, and transcriptional regulation. Effective ex vivo model systems are needed to emulate the native environment of a tissue and to translate cell-matrix forces with high fidelity. While early bioreactor designs have greatly expanded our knowledge of mechanotransduction, traditional scaffolds do not fully model the topography, composition, and mechanical properties of native tendon. Decellularized tendon is an ideal scaffold for cultivating replacement tissue and modeling tendon regeneration. Decellularized tendon scaffolds (DTS) possess high clinical relevance, faithfully translate forces to the cellular scale, and have bulk material properties that match natural tissue. This review summarizes progress in tendon tissue engineering, with a focus on DTS and bioreactor systems. PMID:26839559

  9. A non-invasive method of tendon force measurement.

    PubMed

    Pourcelot, Philippe; Defontaine, Marielle; Ravary, Bérangère; Lemâtre, Mickaël; Crevier-Denoix, Nathalie

    2005-10-01

    The ability to measure the forces exerted in vivo on tendons and, consequently, the forces produced by muscles on tendons, offers a unique opportunity to investigate questions in disciplines as varied as physiology, biomechanics, orthopaedics and neuroscience. Until now, tendon loads could be assessed directly only by means of invasive sensors implanted within or attached to these collagenous structures. This study shows that the forces acting on tendons can be measured, in a non-invasive way, from the analysis of the propagation of an acoustic wave. Using the equine superficial digital flexor tendon as a model, it is demonstrated that the velocity of an ultrasonic wave propagating along the main axis of a tendon increases with the force applied to this tendon. Furthermore, we show that this velocity measurement can be performed even in the presence of skin overlying the tendon. To validate this measurement technique in vivo, the ultrasonic velocity plots obtained in the Achilles tendon at the walk were compared to the loads plots reported by other authors using invasive transducers. PMID:16084214

  10. Tendon synovial cells secrete fibronectin in vivo and in vitro

    SciTech Connect

    Banes, A.J.; Link, G.W.; Bevin, A.G.; Peterson, H.D.; Gillespie, Y.; Bynum, D.; Watts, S.; Dahners, L.

    1988-01-01

    The chemistry and cell biology of the tendon have been largely overlooked due to the emphasis on collagen, the principle structural component of the tendon. The tendon must not only transmit the force of muscle contraction to bone to effect movement, but it must also glide simultaneously over extratendonous tissues. Fibronectin is classified as a cell attachment molecule that induces cell spreading and adhesion to substratum. The external surface of intact avian flexor tendon stained positively with antibody to cellular fibronectin. However, if the surface synovial cells were first removed with collagenase, no positive reaction with antifibronectin antibody was detected. Analysis of immunologically stained frozen sections of tendon also revealed fibronectin at the tendon synovium, but little was associated with cells internal in tendon. The staining pattern with isolated, cultured synovial cells and fibroblasts from the tendon interior substantiated the histological observations. Analysis of polyacrylamide gel profiles of /sup 35/S-methionine-labeled proteins synthesized by synovial cells and internal fibroblasts indicated that fibronectin was synthesized principally by synovial cells. Fibronectin at the tendon surface may play a role in cell attachment to prevent cell removal by the friction of gliding. Alternatively, fibronectin, with its binding sites for hyaluronic acid and collagen, may act as a complex for boundary lubrication.

  11. Sterilisation of canine anterior cruciate allografts by gamma irradiation in argon. Mechanical and neurohistological properties retained one year after transplantation.

    PubMed

    Goertzen, M J; Clahsen, H; Bürrig, K F; Schulitz, K P

    1995-03-01

    Bone-ACL-bone allograft transplantation is a potential solution to the problem of reconstruction of the anterior cruciate ligament (ACL), but sterilisation by gamma irradiation or ethylene oxide causes degradation of the graft. We have studied the biomechanical and histological properties of deep-frozen canine bone-ACL-bone allografts sterilised by gamma irradiation (2.5 Mrad) under argon gas protection. Particular attention was paid to their collagen structure and neuroanatomy compared with those of non-irradiated allografts. We used 60 skeletally mature foxhounds. In 30 animals one ACL was replaced by an irradiated allograft and in the other 30 a non-irradiated graft was used. In both groups the graft was augmented by a Kennedy Ligament Augmentation Device. Examination of the allografts at 3, 6 and 12 months after implantation included mechanical testing, histology, collagen morphometry, neuroanatomical morphology (silver and gold chloride stain) and studies of the microvasculature (modified Spalteholz technique). At 12 months the irradiated ACL allografts failed at a mean maximum load of 718.3 N, 63.8% of the strength of the normal canine ACL. The non-irradiated allografts failed at 780.1 N, 69.1% of normal. All the allografts showed a well-orientated collagen structure one year after transplantation and there was no difference between the irradiated grafts and the others. The silver staining technique demonstrated Golgi tendon organs and free nerve endings within both groups of allografts. As in the normal ACL these structures were most commonly found near the surface of the graft and at its bony attachments. At 12 months the irradiated allografts showed slight hypervascularity compared with the non-irradiated grafts.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7706332

  12. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  13. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons

    PubMed Central

    Thorpe, Chavaunne T.; Godinho, Marta S.C.; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R.C.

    2015-01-01

    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. PMID:25958330

  14. In vivo tendon forces correlate with activity level and remain bounded: evidence in a rabbit flexor tendon model.

    PubMed

    Malaviya, P; Butler, D L; Korvick, D L; Proch, F S

    1998-11-01

    While some tendons and ligaments in the lower extremity develop peak forces proportional to the intensity of activity (Komi 1990; Komi et al., 1992; Korvick et al., 1996), others maintain a steady force regardless of activity level (Herzog et al., 1993; Prilutsky et al., 1994). Investigators (Biewener et al., 1988; Korvick et al., 1996) have also shown that peak knee and ankle tendon forces approach one-quarter to one-third of ultimate or failure force values. In the rabbit flexor digitorum profundus (FDP) tendon model we tested several hypotheses, chiefly that peak in vivo forces not only increase with increasing activity but do not exceed one-third of their ultimate or failure values. The FDP tendon was instrumented in three animals, and each rabbit subjected to an experimental design involving three activity levels. Peak tensile forces and rates of rise and fall in tendon force increased significantly with increasing activity (p < 0.01). Further, the tendon maintained a non-zero force level throughout all trials. For the most vigorous activity, inclined hopping, tensile forces and stresses were, on average, within 30% of the tendon's ultimate force and stress values, respectively. Such in vivo measurements in different tendon systems should help investigators better understand the recruitment and contribution of important muscle-tendon units to joint stability and gait. PMID:9880061

  15. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.

    PubMed

    Thorpe, Chavaunne T; Godinho, Marta S C; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2015-12-01

    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. PMID:25958330

  16. Use of the semitendinosus tendon for foot and ankle tendon reconstructions☆☆☆

    PubMed Central

    Lutti Guerra de Aguiar Zink, Frederico; Glória Mendonça, Danilo; Kelly Bittar, Cintia; Luís Amim Zabeu, José; Salomão, Osny; Egydio de Carvalho Junior, Antonio; Tarso Torquato, Marcelo; Cerqueira de Moraes Filho, Décio

    2014-01-01

    Objective To demonstrate the results obtained from foot and ankle tendon reconstructions using the tendon of the semitendinosus muscle. The clinical results, the patient's degree of satisfaction and complications in the graft donor and recipient areas were evaluated. Methods This was a retrospective study in which the medical files of 38 patients who underwent this surgical procedure between 2006 and 2010 were surveyed. The functional results from this technique, the complications in the donor and recipient areas and the patients’ degree of satisfaction were evaluated. Results Three patients presented complications in the recipient area (skin necrosis); one patient showed complications in the donor area (pain and insensitivity); and all patients had satisfactory functional results, with complete range of motion. Conclusion The semitendinosus muscle is a good option for treatments for foot and ankle tendon injuries. PMID:26229856

  17. The treatment of peripheral nerve injuries using irradiated allografts and temporary host immunosuppression (in a rat model)

    SciTech Connect

    Easterling, K.J.; Trumble, T.E. )

    1990-10-01

    Irradiation of allografts prior to transplantation and host immunosuppression with cyclosporin-A were studied separately and in combination as means of lessening the rejection of transplanted peripheral nerve tissue. Lewis and Brown Norway rats were used in the animal model, as they differ at both major and minor histocompatibility loci. Sciatic nerve grafts (2.5 cm) were used and the animals were followed for 16 weeks after nerve grafting. The outcome was studied by functional measurements (sensory testing, gait analysis, joint flexion contracture, and muscle weight), as well as by measurements of biochemical and histologic parameters (hydroxyproline concentration and axon counts, respectively). Sensory testing was not reliable because of crossover innervation by the saphenous nerve. Evaluation by standard gait-testing techniques was found to be unsatisfactory. However, the allografted animals receiving cyclosporin-A had significantly smaller flexion contractures, compared to the allografted animals without immunosuppression (17 degrees +/- 12 degrees vs. 44 degrees +/- 13 degrees and 51 degrees +/- 13 degrees, p less than 0.005). Allografted animals receiving short-term cyclosporin-A had contractures that were not significantly different from those seen in isografted control animals (17 degrees +/- 12 degrees vs. 22 degrees +/- 15 degrees, NS). Muscle hydroxyproline concentration analysis revealed a lower hydroxyproline concentration among the allografted groups that received irradiated allografts, compared to groups receiving nonirradiated allogeneic grafts. The studies of muscle hydroxyproline concentration and muscle weight both showed substantial reinnervation, even in allografted animals without pretreatment of the grafts or immunosuppression of the recipient animal.

  18. Principles of Tendon Transfer.

    PubMed

    Wilbur, Danielle; Hammert, Warren C

    2016-08-01

    Tendon transfers provide a substitute, either temporary or permanent, when function is lost due to neurologic injury in stroke, cerebral palsy or central nervous system lesions, peripheral nerve injuries, or injuries to the musculotendinous unit itself. This article reviews the basic principles of tendon transfer, which are important when planning surgery and essential for an optimal outcome. In addition, concepts for coapting the tendons during surgery and general principles to be followed during the rehabilitation process are discussed. PMID:27387072

  19. Variant course of extensor pollicis longus tendon in the second wrist extensor compartment.

    PubMed

    Kim, Young Jun; Lee, Jae Hoon; Baek, Jong Hun

    2016-05-01

    Among the muscles involved in thumb movement, the extensor pollicis longus (EPL) tendon of the hand is considered the most consistent structure with the least variation among individuals. There have been a few reports regarding different types of supernumerary tendons; however, an abnormal course of the EPL tendon is extremely rare. We describe a case of a variant course of a single EPL tendon appearing in the second extensor compartment of the wrist. This case was observed incidentally during wrist surgery, and demonstrates a unique variation of tendon course, which has not been reported previously. The knowledge of this anatomic variation is helpful in surgical planning and for making accurate diagnoses. PMID:26253859

  20. Tendon and ligament imaging

    PubMed Central

    Hodgson, R J; O'Connor, P J; Grainger, A J

    2012-01-01

    MRI and ultrasound are now widely used for the assessment of tendon and ligament abnormalities. Healthy tendons and ligaments contain high levels of collagen with a structured orientation, which gives rise to their characteristic normal imaging appearances as well as causing particular imaging artefacts. Changes to ligaments and tendons as a result of disease and injury can be demonstrated using both ultrasound and MRI. These have been validated against surgical and histological findings. Novel imaging techniques are being developed that may improve the ability of MRI and ultrasound to assess tendon and ligament disease. PMID:22553301

  1. Riser and tendon management system

    SciTech Connect

    Devlin, P.V.

    1992-02-18

    This patent describes a riser and tendon management system. It comprises means to set nominal conditions for the risers and tendons; means to measure actual riser and tendon conditions; means to compare the actual and nominal conditions of the risers and tendons; and means responsive to a differential between the actual and nominal riser and tendon conditions, which difference exceeds specified limits, and recommending corrective action to bring the risers and tendons back to within nominal conditions.

  2. Use of Contrast-Enhanced Ultrasonography to Evaluate Chronic Allograft Nephropathy in Rats and Correlations between Time-Intensity Curve Parameters and Allograft Fibrosis.

    PubMed

    Zhang, Qiang; Yu, Zexing; Xu, Yue; Zeng, Song; Zhang, Zijian; Xue, Wenrui; Wang, Wei; Zhang, Xiaodong; Hu, Xiaopeng

    2016-07-01

    This study quantitatively analyzed changes in the hemodynamic characteristics of renal allografts at different stages in a rat chronic allograft nephropathy (CAN) model as well as the relationship between hemodynamic parameters and renal allograft fibrosis using contrast-enhanced ultrasonography (CEUS). The experimental group used a CAN rat model (n = 30), and the control group used an orthotopic syngeneic renal transplant model (n = 30). After surgery, creatinine clearance rates were regularly monitored every 2 wk. The checking times were set at 4, 12 and 24 wk after surgery, which represent early, middle and late stage of CAN, respectively. At different stages of CAN, eight rats from each group were randomly selected for CEUS examination. Time-intensity curve (TIC) parameters, including rise time, peak intensity, mean transit time, area under the curve, wash-in slope, time-to-peak and α-smooth muscle actin (α-SMA) expression; Vimentin expression; and chronic allograft damage index scores were evaluated by linear correlation analysis. Before the creatinine clearance rate showed significant abnormalities, the renal allografts in the experimental group had already presented pathologic changes associated with CAN. In the early stage after surgery, compared to the TIC curve of the control group, the experimental group showed increased rise time, mean transit time, area under the curve and time-to-peak, and decreased wash-in slope (p < 0.05). Chronic allograft damage index scores and the expression levels of α-SMA and Vimentin proteins in renal allografts were correlated with TIC parameters (p < 0.05). Compared to creatinine clearance rate, CEUS can detect CAN at earlier stages. The correlations between TIC-related parameters and the expression levels of α-SMA and Vimentin in renal allografts indicate that CEUS is a feasible way to assess the degree of renal allograft fibrosis quantitatively. PMID:27056611

  3. Response of rabbit Achilles tendon to chronic repetitive loading.

    PubMed

    Archambault, J M; Hart, D A; Herzog, W

    2001-01-01

    The objective of this work was to assess the response of tendon to chronic repetitive loading. Controlled muscle stimulation was used to load the rabbit Achilles tendon at a frequency of 1.25 Hz for two hours per day, three days per week for a period of 11 weeks. Average peak tendon force was 26 N during the protocol. The loading protocol did not modify the gross morphology of the tissue, nor its water content or cellularity. Increases in mRNA expression of collagen Type III and MMPs were observed, but no signs of injury were detected by histologic examination of tendon and paratenon structures. The lack of a detectable injury response suggests that the tendons were not loaded beyond their capacity for repair. Factors additional to mechanical loading such as aging, illness or stress may be necessary to produce pathology. PMID:11696985

  4. Specialisation of extracellular matrix for function in tendons and ligaments

    PubMed Central

    Birch, Helen L.; Thorpe, Chavaunne T.; Rumian, Adam P.

    2013-01-01

    Summary Tendons and ligaments are similar structures in terms of their composition, organisation and mechanical properties. The distinction between them stems from their anatomical location; tendons form a link between muscle and bone while ligaments link bones to bones. A range of overlapping functions can be assigned to tendon and ligaments and each structure has specific mechanical properties which appear to be suited for particular in vivo function. The extracellular matrix in tendon and ligament varies in accordance with function, providing appropriate mechanical properties. The most useful framework in which to consider extracellular matrix differences therefore is that of function rather than anatomical location. In this review we discuss what is known about the relationship between functional requirements, structural properties from molecular to gross level, cellular gene expression and matrix turnover. The relevance of this information is considered by reviewing clinical aspects of tendon and ligament repair and reconstructive procedures. PMID:23885341

  5. Spontaneous medial dislocation of the tendon of the long biceps brachii. An anatomic study of prevalence and pathomechanics.

    PubMed

    Petersson, C J

    1986-10-01

    Medial displacement of the tendon of the long biceps brachii muscle was analyzed in a dissection study on autopsy in 77 subjects, 42 men and 35 women. The tendon was found to be medially displaced in five shoulders in five different subjects (6.5%). Medial displacement of the tendon was always found in connection with full-thickness supraspinatus tendon ruptures. It is a common belief that the tendon is always displaced medially to the lesser tubercle riding over the subscapularis tendon. In the present series, this condition was found only in one case; in the other shoulders the tendon had slipped medially to the lesser tubercle under the subscapularis tendon, which was partially internally ruptured. In patients with rotator cuff lesions, medial displacement of the long biceps tendon might be one reason for pain over the front of the shoulder. PMID:3769261

  6. Changes in the Achilles tendon reflexes following Skylab missions

    NASA Technical Reports Server (NTRS)

    Baker, J. T.; Nicogossian, A. E.; Hoffler, G. W.; Johnson, R. L.; Hordinsky, J. R.

    1977-01-01

    Postflight measurements of Achilles tendon reflex duration on Skylab crewmen indicate a state of disequilibrium between the flexor and extensor muscle groups with an initial decrease in reflex duration. As the muscles regain strength and mass there occurs an overcompensation reflected by increased reflex duration. Finally, when a normal neuromuscular state is reached the reflex duration returns to baseline value.

  7. Nonlinear optical imaging characteristics in rat tail tendon

    NASA Astrophysics Data System (ADS)

    Liu, N. R.; Zhang, X. Z.; Qiu, Y. S.; Chen, R.

    2013-04-01

    The aim of this study was to examine the characteristics of skeletal muscle fibers in tail tendons, explore the content of intrinsic components at different depths and ascertain the optimum excitation wavelength, which will help to establish a relationship between diagnosis and therapy and the tendon injury. A multiphoton microscopic imaging system was used to achieve the images and spectra via an imaging mode and a Lambda mode, respectively. This work demonstrates that the skeletal muscle fibers of the tail tendon are in good order. Second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) signals originating from certain intrinsic components are varied with depth, and the SHG/TPEF intensity ratios are varied at different excitation wavelengths. Below 800 nm is the optimum for cell TPEF, while above 800 nm is the optimum for SHG. With the development of imaging techniques, a nonlinear optical imaging system will be helpful to represent the functional behaviors of tissue related to tendon injury.

  8. Functional Outcomes of Primary Anterior Cruciate Ligament Reconstruction with Tibialis Anterior Allograft

    PubMed Central

    Başar, Selda; Büyükafşar, Enes; Hazar, Zeynep; Ataoğlu, Baybars; Kanatlı, Ulunay

    2014-01-01

    Objectives: Allografts have potential advantages in primary anterior cruciate ligament reconstruction (ACLR), including the absence of donor site morbidity, shorter operative times, improved cosmesis, and easier rehabilitation. There is limited and conflicting outcome data for ACLR with tibialis anterior allograft. The purpose of this study was to evaluate the functional outcomes of ACLR with tibialis anterior allograft. Methods: We retrospectively evaluated patients underwent ACLR using with tibialis anterior allograft between 2005 and 2013. Totally 12 patients who were performed suspensory fixation technique were included in this study (range: 25-43 years). Exclusion criteria included double bundle, bone tendon bone technique and revision surgery. Clinical outcomes were measured by subject part of International Knee Documentation Committee (IKDC) and Lysholm scores. Results: A significant increase was reported in all the clinical scores. In particular, the IKDC-subjective score increased from a basal value of 45.5±12.7 to 84.3±5.50 at the 12 months' evaluation (p<0.05). The Lysholm score revealed a significant improvement from 49.7±14.2 to 83.5±20.5 at the 12 months' evaluation (p<0.05). Conclusion: ACLR with tibialis anterior allograft is an effective treatment for correcting loss of function and increasing quality of life.

  9. Fatigue loading of tendon

    PubMed Central

    Shepherd, Jennifer H; Screen, Hazel R C

    2013-01-01

    Tendon injuries, often called tendinopathies, are debilitating and painful conditions, generally considered to develop as a result of tendon overuse. The aetiology of tendinopathy remains poorly understood, and whilst tendon biopsies have provided some information concerning tendon appearance in late-stage disease, there is still little information concerning the mechanical and cellular events associated with disease initiation and progression. Investigating this in situ is challenging, and numerous models have been developed to investigate how overuse may generate tendon fatigue damage and how this may relate to tendinopathy conditions. This article aims to review these models and our current understanding of tendon fatigue damage. We review the strengths and limitations of different methodologies for characterizing tendon fatigue, considering in vitro methods that adopt both viable and non-viable samples, as well as the range of different in vivo approaches. By comparing data across model systems, we review the current understanding of fatigue damage development. Additionally, we compare these findings with data from tendinopathic tissue biopsies to provide some insights into how these models may relate to the aetiology of tendinopathy. Fatigue-induced damage consistently highlights the same microstructural, biological and mechanical changes to the tendon across all model systems and also correlates well with the findings from tendinopathic biopsy tissue. The multiple testing routes support matrix damage as an important contributor to tendinopathic conditions, but cellular responses to fatigue appear complex and often contradictory. PMID:23837793

  10. Peroneal Tendon Injuries

    MedlinePlus

    ... ACFAS | Información en Español Advanced Search Home » Foot & Ankle Conditions » Peroneal Tendon Injuries Text Size Print Bookmark ... foot run side-by-side behind the outer ankle bone. One peroneal tendon attaches to the outer ...

  11. Tendon Transfers for Tetraplegia.

    PubMed

    Bednar, Michael S

    2016-08-01

    It is estimated that 65% to 75% of patients with cervical spinal cord injuries could benefit from upper extremity tendon transfer surgery. The goals of surgery are to restore elbow extension, as well as hand pinch, grasp, and release. Patients who have defined goals, actively participate in therapy, and understand expected outcomes, appear to have the highest satisfaction following tendon transfer procedures. PMID:27387082

  12. Rupture of the triceps tendon - A case series.

    PubMed

    Jaiswal, Atin; Kacchap, Naiman-Deep; Tanwar, Yashwant-Singh; Kumar, Devendra; Kumar, Birendra

    2016-08-01

    Triceps rupture is the least common among all tendon injuries. The usual mechanism of injury is a fall on an outstretched hand, although direct contact injuries have also been reported to cause this injury. The diagnosis of acute triceps tendon rupture may be missed, which can result in prolonged disability and delayed operative management. We presented three cases of acute triceps tendon rupture each at different site showing the spectrum of injury to the muscle and mechanism of injury and management were also discussed. PMID:27578383

  13. A rare knee extensor mechanism injury: Vastus intermedius tendon rupture

    PubMed Central

    Cetinkaya, Engin; Aydin, Canan Gonen; Akman, Yunus Emre; Gul, Murat; Arikan, Yavuz; Aycan, Osman Emre; Kabukcuoglu, Yavuz Selim

    2015-01-01

    Introduction Quadriceps tendon injuries are rare. There is a limited number of studies in the literature, reporting partial quadriceps tendon ruptures. We did not find any study reporting an isolated vastus intermedius tendon injury in the literature. Presentation of case A 22 years old professional rugby player with the complaints of pain in the right lower limb, decreased range of motion in right knee and a mass in the mid-anterior of the right thigh applied following an overloading on his hyperflexed knee during a rugby match. T2 sequence magnetic resonance images revealed discontinuity in the vastus intermedius tendon and intramuscular hematoma. The patient has been conservatively treated. Discussion Quadriceps tendon ruptures generally occur after the 4th decade in the presence of degenerative changes. Our case is a young professional rugby player. Isolated vastus intermedius tendon rupture is unusual. Conservative treatment is performed as the intermedius tendon is in the deepest layer of the quadriceps muscle. Conclusion We report the first case of isolated rupture of the vastus intermedius tendon in the literature and we claim that disorder may be succesfully treated with conservative treatment and adequate physiotheraphy. PMID:26298093

  14. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model

    PubMed Central

    Soejima, T.; Murakami, H.; Noguchi, K.; Shiba, N.; Nagata, K.

    2016-01-01

    Objectives The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10

  15. Is there significant variation in the material properties of four different allografts implanted for ACL reconstruction.

    PubMed

    Penn, David; Willet, Thomas L; Glazebrook, Mark; Snow, Martyn; Stanish, William D

    2009-03-01

    The aims of our study were to: (1) determine if there are differences in the material properties of tendon obtained from implanted tibialis anterior, achilles, bone-patella- bone and tibialis posterior allografts; (2) determine the variability in material properties between the implanted specimens. A total of 60 specimens were collected from fresh frozen allografts implanted at ACL reconstruction. Specimens collected included 15 tibialis anterior, 15 tibialis posterior, 15 achilles and 15 bone-patella-bone tendons. Each specimen was mounted in a custom made cryogrip. The mounted specimens were loaded onto a MTS Testline servo-hydraulic testing machine in a uni-axial tensile test configuration. Specimens were subjected to a strain rate of 5% per second until the ultimate tensile stress (UTS), failure strain and high strain modulus was calculated for each specimen after being normalized for specimen dimensions. Individual material properties were tested using one way analysis of variance (ANOVA) and post hoc Tukey's B test with a P value of <0.05 considered significant. Homogeneity of variance was assessed using the Levene's test. As a result, no significant difference was found between all four grafts with regards to UTS, failure strain or high strain linear modulus. The UTS was plotted against the modulus demonstrating a linear relationship which is typical of soft tissues. Significant variability in the results were observed. In conclusion, there was no significant statistical difference between the material properties of the four tendon allografts tested. But significant variability in results was observed within groups and between groups, which may provide one explanation for the range of results in allograft ACL reconstruction reported in the literature. PMID:19039574

  16. Unsuccessful regeneration of the semitendinosus tendon harvested for anterior cruciate ligament reconstruction: report of two cases.

    PubMed

    Nakamae, A; Ochi, M; Deie, M; Adachi, N

    2012-12-01

    Recent magnetic resonance imaging (MRI) and three-dimensional (3D) computed tomography (CT) analyses have demonstrated that semitendinosus tendon can regenerate at a high rate following harvesting the tendon for anterior cruciate ligament (ACL) reconstruction. Although it is known that the regeneration of the semitendinosus tendon does not occur in all the patients, the reason for this unsuccessful regeneration of the tendon in certain patients remains unknown. We recently encountered two cases in which regeneration of the semitendinosus tendon was unsuccessful because of apparent reasons. These patients experienced a sudden sharp pain in the posterior aspect of their thighs when their hamstring muscles were subjected to aggressive load at 3 and 4 weeks after surgery. At the follow-up examination conducted after 12 months, 3D CT imaging revealed unsuccessful regeneration of the semitendinosus tendons in both cases. Severe proximal retraction of the semitendinosus muscle belly was also confirmed. PMID:23123037

  17. Rehabilitating psoas tendonitis: a case report.

    PubMed

    Edelstein, Jaime

    2009-02-01

    This case report describes the examination and physical therapy intervention for a woman with anterior hip pain whose medical diagnosis following magnetic resonance imaging (MRI) was bilateral labral tears and psoas tendinitis. Her physical therapy evaluation revealed findings consistent with psoas tendonitis. Utilizing theories of neuromuscular patterning and knowledge of normal muscle function, the patient was successfully treated in physical therapy following six physical therapy sessions, once a week for 6 weeks. The patient was found to have an overactive psoas muscle, as indicated by hip flexion being the primary mover in her movement patterns, and dysfunctional abdominal and pelvic floor muscles. Functionally based therapeutic exercise and electrical stimulation were used to reeducate the muscles of the abdomen, pelvic floor, and hips in order to create muscular balance and correct muscle dysfunction. PMID:19048347

  18. Rehabilitating Psoas Tendonitis: A Case Report

    PubMed Central

    2008-01-01

    This case report describes the examination and physical therapy intervention for a woman with anterior hip pain whose medical diagnosis following magnetic resonance imaging (MRI) was bilateral labral tears and psoas tendinitis. Her physical therapy evaluation revealed findings consistent with psoas tendonitis. Utilizing theories of neuromuscular patterning and knowledge of normal muscle function, the patient was successfully treated in physical therapy following six physical therapy sessions, once a week for 6 weeks. The patient was found to have an overactive psoas muscle, as indicated by hip flexion being the primary mover in her movement patterns, and dysfunctional abdominal and pelvic floor muscles. Functionally based therapeutic exercise and electrical stimulation were used to reeducate the muscles of the abdomen, pelvic floor, and hips in order to create muscular balance and correct muscle dysfunction. PMID:19048347

  19. How Obesity Affects Tendons?

    PubMed

    Abate, Michele; Salini, Vincenzo; Andia, Isabel

    2016-01-01

    Several epidemiological and clinical observations have definitely demonstrated that obesity has harmful effects on tendons. The pathogenesis of tendon damage is multi-factorial. In addition to overload, attributable to the increased body weight, which significantly affects load-bearing tendons, systemic factors play a relevant role. Several bioactive peptides (chemerin, leptin, adiponectin and others) are released by adipocytes, and influence tendon structure by means of negative activities on mesenchymal cells. The ensuing systemic state of chronic, sub-clinic, low-grade inflammation can damage tendon structure. Metabolic disorders (diabetes, impaired glucose tolerance, and dislipidemia), frequently associated with visceral adiposity, are concurrent pathogenetic factors. Indeed, high glucose levels increase the formation of Advanced Glycation End-products, which in turn form stable covalent cross-links within collagen fibers, modifying their structure and functionality.Sport activities, so useful for preventing important cardiovascular complications, may be detrimental for tendons if they are submitted to intense acute or chronic overload. Therefore, two caution rules are mandatory: first, to engage in personalized soft training program, and secondly to follow regular check-up for tendon pathology. PMID:27535258

  20. Surgical Treatment of Neglected Traumatic Quadriceps Tendon Rupture with Knee Ankylosis

    PubMed Central

    Lee, Seung-Hun; Seon, Jong-Keun; Woo, Seong-Hwan

    2016-01-01

    Quadriceps tendon rupture is an uncommon injury. This disabling condition is the result of direct or indirect trauma. It requires surgical repair to avoid poor outcomes in cases of neglected or chronic rupture. In most acute cases, simple tendon suture or reinsertion is suitable for an extensor mechanism reconstruction of the knee joint. However, chronic lesions often require a tendon graft or flap reconstruction. We report a case of a 15-year-old male who was diagnosed with a chronic quadriceps rupture with a patellar superior pole fracture. We performed quadriceps reconstruction using tibialis anterior allograft tendon and additional screw fixation to reconstruct the extensor mechanism and recover knee joint range of motion to prevent a high-level functional restriction. The treatment was difficult and limited due to neglect for 9-months that led to ankylosis accompanied with nonunion of tibial fracture. Our surgical treatment using allograft tendon resulted in a very good outcome after 30 months of follow-up. PMID:27274474

  1. Aortic valve allografts in sheep

    PubMed Central

    Borrie, John; Hill, G. L.

    1968-01-01

    Some of the mechnical and biological problems surrounding the use of fresh allograft inverted aortic valves as mitral valve substitutes are described. Certain aspects of the problem have been studied experimentally. In three sheep `fresh' aortic valve allografts were inserted, using cardiopulmonary bypass, into the main pulmonary artery, and were observed from 5 to 7 months after operation. The animals survived normally. Their normal pulmonary valves remained in situ. The technique is described. At subsequent necropsy, macroscopically the valves were found to be free from vegetation, and the cusps were pliable and apparently normal. Microscopically, the supporting allograft myocardium showed necrosis and early calcification. The valve cusp showed hyalinization of collagen, although beneath the endocardium this hyalinized collagen contained moderate numbers of fibroblasts with no evidence of proliferation. The endocardium and arterial intima of the allograft showed evidence of ingrowth from adjacent normal host endocardial tissues. The allograft itself was invested in a loose layer of fibro-fatty tissue, which, in view of the necrotic state of the graft myocardium, could well have been a reparative reaction rather than a homograft reaction. It is concluded that, although the cusps could function normally, the necrosis of the myocardium might in time lead to late failure of the graft. Further studies with the valve inserted at mitral level are indicated. Images PMID:5656757

  2. Osteochondral Allograft of the Talus

    PubMed Central

    Bisicchia, Salvatore; Rosso, Federica; Amendola, Annunziato

    2014-01-01

    Osteochondral lesions of the talus are being recognized as an increasingly common injury. They are most commonly located postero-medially or antero-laterally, while centrally located lesions are uncommon. Large osteochondral lesions have significant biomechanical consequences and often require resurfacing with osteochondral autograft transfer, mosaicplasty, autologous chondrocyte implantation (or similar methods) or osteochondral allograft transplantation. Allograft procedures have become popular due to inherent advantages over other resurfacing techniques. Cartilage viability is one of the most important factors for successful clinical outcomes after transplantation of osteochondral allografts and is related to storage length and intra-operative factors. While there is abundant literature about osteochondral allograft transplantation in the knee, there are few papers about this procedure in the talus. Failure of non-operative management, initial debridement, curettage or microfractures are an indication for resurfacing. Patients should have a functional ankle motion, closed growth plates, absence of cartilage lesions on the tibial side. This paper reviews the published literature about osteochondral allograft transplantation of the talus focusing on indications, pre-operative planning, surgical approaches, postoperative management, results and complications of this procedure. PMID:25328456

  3. Triple drug immunosuppression significantly reduces immune activation and allograft arteriosclerosis in cytomegalovirus-infected rat aortic allografts and induces early latency of viral infection.

    PubMed Central

    Lemström, K. B.; Bruning, J. H.; Bruggeman, C. A.; Lautenschlager, I. T.; Häyry, P. J.

    1994-01-01

    The effect of triple drug immunosuppression (cyclosporine A 10 mg/kg/day+methylprednisolone 0.5 mg/kg/day+azathioprine 2 mg/kg/day) on rat cytomegalovirus (RCMV)-enhanced allograft arteriosclerosis was investigated applying WF (AG-B2, RT1v) recipients of DA (AG-B4, RT1a) aortic allografts. The recipients were inoculated intraperitoneally with 10(5) plaque-forming units of RCMV 1 day after transplantation or left noninfected. The grafts were removed on 7 and 14 days, and at 1, 3, and 6 months after transplantation. The presence of viral infection was demonstrated by plaque assays, cell proliferation by [3H]thymidine autoradiography, and vascular wall alterations by quantitative histology and immunohistochemistry. Triple drug immunosuppression reduced the presence of infectious virus in plaque assays and induced early latency of viral infection. It significantly reduced the peak adventitial inflammatory response (P < 0.05) and reduced and delayed intimal nuclear intensity and intimal thickening (P < 0.05) in RCMV-infected allografts. The proliferative response of smooth muscle cells was reduced by triple drug immunosuppression to 50% of that observed in nonimmunosuppressed RCMV-infected allografts, but still the proliferative peak response was seen at 1 month. Only low level immune activation, ie, the expression of interleukin-2 receptor (P < 0.05) and MHC class II, was observed under triple drug immunosuppression in the adventitia of RCMV-infected allografts, whereas there was no substantial change in the phenotypic distribution of inflammatory cells. In conclusion, although RCMV infection significantly enhances allograft arteriosclerosis also in immunosuppressed allografts, triple drug immunosuppression has no additional detrimental effect but rather a protective one on vascular wall histology. These results further suggest that RCMV-enhanced allograft arteriosclerosis may be an immunopathological condition linked to the host immune response toward the graft and

  4. Bilateral Congenital Agenesis of the Long Head of the Biceps Tendon: The Beginning

    PubMed Central

    Rego Costa, Francisco; Esteves, Cátia; Melão, Lina

    2016-01-01

    The biceps brachii muscle is prone to variants but absence of the long head of the biceps (LHB) tendon is an exceptionally rare anomaly. This report concerns the fourth case of bilateral congenital absence of the LHB tendon and presents the ultrasonography (US) and magnetic resonance (MR) findings. Our case has the peculiarity of being the first in which bilateral LHB tendon agenesis is not associated with rotator cuff or labral tears. PMID:26904345

  5. The role of hind limb tendons in gibbon locomotion: springs or strings?

    PubMed

    Vereecke, Evie E; Channon, Anthony J

    2013-11-01

    Tendon properties have an important effect on the mechanical behaviour of muscles, with compliant tendons allowing near-isometric muscle contraction and facilitating elastic energy storage and recoil. Stiff tendons, in contrast, facilitate rapid force transfer and precise positional control. In humans, the long Achilles tendon contributes to the mechanical efficiency of running via elastic energy storage and recovery, and its presence has been linked to the evolution of habitual bipedalism. Gibbons also possess relatively long hind limb tendons; however, their role is as yet unknown. Based on their large dimensions, and inferring from the situation in humans, we hypothesize that the tendons in the gibbon hind limb will facilitate elastic energy storage and recoil during hind-limb-powered locomotion. To investigate this, we determined the material properties of the gibbon Achilles and patellar tendon in vitro and linked this with available kinematic and kinetic data to evaluate their role in leaping and bipedalism. Tensile tests were conducted on tendon samples using a material testing machine and the load-displacement data were used to calculate stiffness, Young's modulus and hysteresis. In addition, the average stress-in-life and energy absorption capacity of both tendons were estimated. We found a functional difference between the gibbon Achilles and patellar tendon, with the Achilles tendon being more suitable for elastic energy storage and release. The patellar tendon, in contrast, has a relatively high hysteresis, making it less suitable to act as elastic spring. This suggests that the gibbon Achilles tendon might fulfil a similar function as in humans, contributing to reducing the locomotor cost of bipedalism by acting as elastic spring, while the high stiffness of the patellar tendon might favour fast force transfer upon recoil and, possibly, enhance leaping performance. PMID:23868842

  6. Characterization of mechanical and biochemical properties of developing embryonic tendon

    PubMed Central

    Marturano, Joseph E.; Arena, Jeffrey D.; Schiller, Zachary A.; Georgakoudi, Irene; Kuo, Catherine K.

    2013-01-01

    Tendons have uniquely high tensile strength, critical to their function to transfer force from muscle to bone. When injured, their innate healing response results in aberrant matrix organization and functional properties. Efforts to regenerate tendon are challenged by limited understanding of its normal development. Consequently, there are few known markers to assess tendon formation and parameters to design tissue engineering scaffolds. We profiled mechanical and biological properties of embryonic tendon and demonstrated functional properties of developing tendon are not wholly reflected by protein expression and tissue morphology. Using force volume-atomic force microscopy, we found that nano- and microscale tendon elastic moduli increase nonlinearly and become increasingly spatially heterogeneous during embryonic development. When we analyzed potential biochemical contributors to modulus, we found statistically significant but weak correlation between elastic modulus and collagen content, and no correlation with DNA or glycosaminoglycan content, indicating there are additional contributors to mechanical properties. To investigate collagen cross-linking as a potential contributor, we inhibited lysyl oxidase-mediated collagen cross-linking, which significantly reduced tendon elastic modulus without affecting collagen morphology or DNA, glycosaminoglycan, and collagen content. This suggests that lysyl oxidase-mediated cross-linking plays a significant role in the development of embryonic tendon functional properties and demonstrates that changes in cross-links alter mechanical properties without affecting matrix content and organization. Taken together, these data demonstrate the importance of functional markers to assess tendon development and provide a profile of tenogenic mechanical properties that may be implemented in tissue engineering scaffold design to mechanoregulate new tendon regeneration. PMID:23576745

  7. Achilles Tendon Disorders

    MedlinePlus

    ... after periods of rest, then improves somewhat with motion but later worsens with increased activity. Tenderness, or ... foot and ankle and evaluate the range of motion and condition of the tendon. The extent of ...

  8. Biomechanical properties of bone allografts

    SciTech Connect

    Pelker, R.R.; Friedlaender, G.E.; Markham, T.C.

    1983-04-01

    The biomechanical properties of allograft bone can be altered by the methods chosen for its preservation and storage. These effects are minimal with deep-freezing or low-level radiation. Freeze-drying, however, markedly diminishes the torsional and bending strength of bone allografts but does not deleteriously affect the compressive or tensile strength. Irradiation of bone with more than 3.0 megarad or irradiation combined with freeze-drying appears to cause a significant reduction in breaking strength. These factors should be considered when choosing freeze-dried or irradiated allogeneic bone that will be subjected to significant loads following implantation.

  9. Subrupture Tendon Fatigue Damage

    PubMed Central

    Laudier, Damien M.; Shine, Jean H.; Basta-Pljakic, Jelena; Jepsen, Karl J.; Schaffler, Mitchell B.; Flatow, Evan L.

    2016-01-01

    The mechanical and microstructural bases of tendon fatigue, by which damage accumulates and contributes to degradation, are poorly understood. To investigate the tendon fatigue process, rat flexor digitorum longus tendons were cyclically loaded (1–16 N) until reaching one of three levels of fatigue damage, defined as peak clamp-to-clamp strain magnitudes representing key intervals in the fatigue life: i) Low (6.0%–7.0%); ii) Moderate (8.5%–9.5%); and iii) High (11.0%–12.0%). Stiffness, hysteresis, and clamp-to-clamp strain were assessed diagnostically (by cyclic loading at 1–8 N) before and after fatigue loading and following an unloaded recovery period to identify mechanical parameters as measures of damage. Results showed that tendon clamp-to-clamp strain increased from pre- to post-fatigue loading significantly and progressively with the fatigue damage level (p≤0.010). In contrast, changes in both stiffness and hysteresis were significant only at the High fatigue level (p≤0.043). Correlative microstructural analyses showed that Low level of fatigue was characterized by isolated, transverse patterns of kinked fiber deformations. At higher fatigue levels, tendons exhibited fiber dissociation and localized ruptures of the fibers. Histomorphometric analysis showed that damage area fraction increased significantly with fatigue level (p≤0.048). The current findings characterized the sequential, microstructural events that underlie the tendon fatigue process and indicate that tendon deformation can be used to accurately assess the progression of damage accumulation in tendons. PMID:18683881

  10. Whole-body vibration training induces hypertrophy of the human patellar tendon.

    PubMed

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-08-01

    Animal studies suggest that regular exposure to whole-body vibration (WBV) induces an anabolic response in bone and tendon. However, the effects of this type of intervention on human tendon properties and its influence on the muscle-tendon unit function have never been investigated. The aim of this study was to investigate the effect of WBV training on the patellar tendon mechanical, material and morphological properties, the quadriceps muscle architecture and the knee extension torque-angle relationship. Fifty-five subjects were randomized into either a vibration, an active control, or an inactive control group. The active control subjects performed isometric squats on a vibration platform without vibration. Muscle and tendon properties were measured using ultrasonography and dynamometry. Vibration training induced an increase in proximal (6.3%) and mean (3.8%) tendon cross-sectional area, without any appreciable change in tendon stiffness and modulus or in muscle architectural parameters. Isometric torque at a knee angle of 90° increased in active controls (6.7%) only and the torque-angle relation remained globally unchanged in all groups. The present protocol did not appreciably alter knee extension torque production or the musculo-tendinous parameters underpinning this function. Nonetheless, this study shows for the first time that WBV elicits tendon hypertrophy in humans. PMID:26173589

  11. Middle-aged adults exhibit altered spatial variations in Achilles tendon wave speed

    PubMed Central

    Slane, Laura Chernak; DeWall, Ryan; Martin, Jack; Lee, Kenneth; Thelen, Darryl G.

    2016-01-01

    The purpose of this study was to investigate spatial variations in measured wave speed in the relaxed and stretched Achilles tendons of young and middle-aged adults. Wave speed was measured from the distal Achilles tendon, soleus aponeurosis, medial gastrocnemius aponeurosis and medial gastrocnemius muscle in healthy young (n = 15, aged 25 ± 4 years) and middle-aged (n = 10, aged 49 ± 4 years) adults in resting, dorsiflexed and plantarflexed postures. In both age groups, Achilles tendon wave speed decreased proximally, with the lowest wave speed measured in the gastrocnemius aponeurosis. Measured wave speed increased with passive dorsiflexion, reflecting the strain-stiffening behavior of tendons. There were no significant aging effects on wave speed in the free tendon or soleus aponeurosis. However, a significant, inverse relationship between gastrocnemius aponeurosis wave speed and age was observed in the dorsiflexed posture. We also observed significantly lower wave speeds in the gastrocnemius muscles of middle-aged adults when compared with young adults. These results suggest that Achilles tendon compliance increases in a distal-to-proximal pattern, with middle-aged adults exhibiting greater compliance in the distal gastrocnemius muscle and tendinous structures. An age-related change in the spatial variation in Achilles tendon compliance could affect localised tissue deformation patterns and injury potential within the triceps surae muscle-tendon units. PMID:26020294

  12. Supraspinatus Intramuscular Calcified Hematoma or Necrosis Associated with Tendon Tear

    PubMed Central

    Lädermann, Alexandre; Genevay, Muriel; Abrassart, Sophie; Schwitzguébel, Adrien Jean-Pierre

    2015-01-01

    Introduction. Rotator cuff intramuscular calcification is a rare condition usually caused by heterotopic ossification and myositis ossificans. Case Presentation. We describe a patient with voluminous calcified mass entrapped in supraspinatus muscle associated with corresponding tendon tear. Histological examination corresponded to a calcified hematoma or necrosis. Patient was surgically managed with open excision of the calcified hematoma and rotator cuff arthroscopic repair. At 6 months, supraspinatus muscle was healed, and functional outcome was good. Discussion and Conclusion. We hypothesized that supraspinatus intramuscular calcified hematoma was responsible for mechanical stress on the tendon. This association has never been described. PMID:26380138

  13. Rat model of Achilles tendon disorder. A pilot study.

    PubMed

    Messner, K; Wei, Y; Andersson, B; Gillquist, J; Räsänen, T

    1999-01-01

    Three-month-old male rats were subjected 3 times weekly for 1 h to eccentric exercise of one triceps surae muscle (30 stimulations/min) under general anesthesia in order to induce Achilles tendon disorder corresponding to paratenonitis and tendinosis in man. Net muscle work during the sessions ranged between 0.67 and 4.37 mJ (mean 1.72, SD 0.77). After 9 and 13 sessions, respectively, 2 rats started to show gait alterations during the functional test which was performed 2-3 times weekly. These rats were killed after additional sessions which showed a worsening of the limp. The other trained rats and controls did not limp and were killed after 7-11 weeks. Histologic evaluation of the Achilles tendons from the exercised limb showed in the majority of the cases hypervascularization, increased number of nerve filaments and increased immunoreactivity for substance P and calcitonin gene-related peptide. The tendons from the nonstimulated limb looked normal. The distribution of collagen types I and II appeared normal in the tendon and its insertion to the calcaneus. Inflammation of the epi- and paratenon could be provoked in the rat, but tendon changes corresponding to chronic tendinosis did not develop within 11 weeks with the used training regime. The clinical relevance of this model for chronic tendon disease needs to be evaluated further. PMID:10460971

  14. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy.

    PubMed

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient's tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient's tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient's tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  15. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy

    PubMed Central

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  16. Emphysema in the renal allograft

    SciTech Connect

    Potter, J.L.; Sullivan, B.M.; Fluornoy, J.G.; Gerza, C.

    1985-04-01

    Two diabetic patients in whom emphysematous pyelonephritis developed after renal transplantation are described. Clinical recognition of this unusual and serious infection is masked by the effects of immunosuppression. Abdominal radiographic, ultrasound, and computed tomography findings are discussed. The clinical presentation includes urinary tract infection, sepsis, and acute tubular malfunction of the allograft in insulin-dependent diabetics.

  17. Allograft pancreas: pale acinar nodules.

    PubMed

    Troxell, Megan L; Drachenberg, Cinthia

    2016-08-01

    Microscopic pale-staining acinar nodules were characterized in native pancreas in the 1980s under a variety of names but have been infrequently reported since. We retrospectively studied the frequency and characteristics of pale acinar nodules in allograft pancreas biopsies, as compared to a sampling of native pancreas specimens at our center. Pale acinar nodules were present in 13% (9/69) of allograft biopsies from 22% (7/32) of transplant patients, and 23% (5/22) of native pancreas surgical specimens, although more nodules per pancreas area were present in allograft needle biopsies. Acinar nodules had size of 100 to 700 μm, were periodic acid-Schiff pale, were synaptophysin negative, stained more weakly with keratin CAM 5.2 compared to surrounding parenchyma, and had a low proliferative rate. Ultrastructural evaluation revealed paucity of zymogen granules with dilated cistern-like structures. In our experience, pale acinar nodules have similar features in allograft and native pancreas specimens, yet remain of uncertain etiology and significance. PMID:27063474

  18. Systemic overexpression of matricellular protein CCN1 exacerbates obliterative bronchiolitis in mouse tracheal allografts.

    PubMed

    Raissadati, Alireza; Nykänen, Antti I; Tuuminen, Raimo; Syrjälä, Simo O; Krebs, Rainer; Arnaudova, Ralica; Rouvinen, Eeva; Wang, Xiaomin; Poller, Wolfgang; Lemström, Karl B

    2015-12-01

    Obliterative bronchiolitis (OB) involves airway epithelial detachment, fibroproliferation, and inflammation, resulting in chronic rejection and transplant failure. Cysteine-rich 61 (CCN1) is an integrin receptor antagonist with a context-dependent role in inflammatory and fibroproliferative processes. We used a mouse tracheal OB model to investigate the role of CCN1 in the development of lung allograft OB. C57Bl/6 mice received a systemic injection of CCN1-expressing adenoviral vectors 2 days prior to subcutaneous implantation of tracheal allografts from major MHC-mismatched BALB/c mice. We treated another group of tracheal allograft recipients with cyclic arginine-glycine-aspartic acid peptide to dissect the role of αvβ3-integrin signaling in mediating CCN1 effects in tracheal allografts. Allografts were removed 4 weeks after transplantation and analyzed for luminal occlusion, inflammation, and vasculogenesis. CCN1 overexpression induced luminal occlusion (P < 0.05), fibroproliferation, and smooth muscle cell proliferation (P < 0.05). Selective activation of αvβ3-integrin receptor failed to mimic the actions of CCN1, and blocking failed to inhibit the effects of CCN1 in tracheal allografts. In conclusion, CCN1 exacerbates tracheal OB by enhancing fibroproliferation via an αvβ3-integrin-independent pathway. Further experiments are required to uncover its potentially harmful role in the development of OB after lung transplantation. PMID:26174800

  19. Reconstruction of chronic patellar tendon rupture with contralateral BTB autograft: a case report.

    PubMed

    Milankov, Miroslav Z; Miljkovic, Natasa; Stankovic, Milan

    2007-12-01

    Chronic patellar tendon rupture is a rare disabling injury that is technically difficult to repair. Many different surgical methods have been reported for the reconstruction of chronic patellar tendon ruptures. We are reporting the use of contralateral bone-tendon-bone (BTB) autograft for chronic patellar tendon rupture reconstruction followed by double-wire loop reinforcement and without postoperative immobilization. One year after the operation, our patient had full knee extension and up to 130 degrees of flexion. He had good quadriceps strength, and isokinetic muscle testing showed no deficit comparing to his right leg. Patient returned to playing basketball in his spare time, without having any limitation. PMID:17579835

  20. Hyperuricemia in Tendons.

    PubMed

    Andia, Isabel; Abate, Michele

    2016-01-01

    Hyperuricemia, particularly gout, and the immune inflammatory response are highly integrated. Both, long standing hyperuricemia and monosodium urate (MSU) crystal deposition can challenge tendon homeostasis because of their potential to cause inflammation to the host. Knowledge is emerging from clinical imaging research depicting where MSU crystals deposit, including patellar tendon, triceps and quadriceps tendons. Remarkably, subclinical tendon inflammation and damage are also present in asymptomatic hyperuricemia. Monosodium urate crystals act as danger activating molecular patterns (DAMPs), activating the inflammasome and inducing the secretion of IL-1beta, a key mediator of the inflammatory response. The crucial role of IL-1beta in driving the inflammatory events during gout attacks is supported by the clinical efficacy of IL-1beta blockade. Some data implicating IL-1beta as an initiator of tendinopathy exist, but the link between hyperuricemia and the development of tendinopathy remains to be validated. Further knowledge about the interactions of uric acid with both innate immune and tendon cells, and their consequences may help to determine if there is a subclass of hyperuricemic-tendinopathy. PMID:27535254

  1. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C.

    PubMed

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-05-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the (14)C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of (14)C, produced by nuclear bomb tests in 1955-1963, which is reflected in all living organisms. Levels of (14)C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945-1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of (14)C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of (14)C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, (14)C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue. PMID:23401563

  2. Elastic properties of the cat soleus tendon and their functional importance.

    PubMed Central

    Rack, P M; Westbury, D R

    1984-01-01

    A new method has been used to measure the stiffness of the entire tendinous component of the soleus muscle of the cat. During sinusoidal stretching of the muscle-tendon combination, the motor nerves were stimulated repetitively in such a way that the force of contraction offset the movement, and the muscle fibres remained at constant length. The afferent endings of muscle spindles were used to detect extension of the muscle fibres. In this null situation, when the spindles did not 'see' any movement, all of the applied movement was assumed to have been taken up in the tendinous components, and measurements of the movement and force allowed the stiffness to be calculated. Precautions were taken to avoid the effects of fusimotor stimulation. The stiffness of the entire tendinous component increased with increasing muscle force by approximately 2 N/mm per Newton mean force from 2 N/mm at low force to about 25 N/mm at 11 N; the method could not be used for larger forces. Independent measurements of the stiffness of the external part of the tendon were made by both static and dynamic methods. The entire tendinous component was much less stiff than the external tendon. Measurements of the dimensions of the tendon allowed Young's modulus for the tendon to be calculated. It increased from about 250 N/mm2 at 2.5 N to about 450 N/mm2 at 10 N mean force. Measurements of dissected muscles allowed comparisons to be made between the stiffness of the external tendon and the stiffness of the entire tendinous component in the muscles. Scaling of the stiffness of the external part of the tendon to the length of the entire tendinous component gave a value of stiffness which was similar to that measured by the spindle null method. The compliance of tendons has implications for the control of movement which are discussed. PMID:6231373

  3. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  4. Fractionation of 50kGy electron beam irradiation: effects on biomechanics of human flexor digitorum superficialis tendons treated with ascorbate.

    PubMed

    Wei, Wei; Liu, Yujie; Yang, Xu; Tian, Shaoqi; Liu, Chao; Zhang, Yang; Xu, Zhaoning; Hu, Baiqiang; Tian, Zhen; Sun, Kang

    2013-02-22

    The electron beam (Ebeam) irradiation has begun to be considered as an efficient alternative to gamma irradiation in the sterilization of allografts in the reconstruction of anterior cruciate ligament. The purpose of this study was to evaluate the biomechanical properties of human tendons after exposure to electron beam and free radical scavenger ascorbate. Forty human flexor digitorum superficialis tendons were prepared from five fresh cadavers and divided randomly into four groups: A, fresh (0kGy); B, 50kGy Ebeam irradiation; C, fractionated 50kGy Ebeam irradiation; D, fractionated 50kGy Ebeam on ascorbate-treated tendons. The fractionation of 50kGy was achieved by repeated irradiation of 2.5kGy for 20 repetitions. Biomechanical properties were analyzed during load-to-failure testing. The fresh tendons were found to be significant different in ultimate load, ultimate elongation relative to tendons in group B. Statistical differences were found between group B and C in ultimate load. No differences were detected between group A and C in all the parameters. Compare tendons in group C and D, significant differences were found in ultimate load and ultimate stress. It is recommended that fractionated 50kGy electron beam irradiation and free radical scavenger ascorbate should be applied in the sterilization of allografts tendons. PMID:23261247

  5. Distal Triceps Tendon Injuries.

    PubMed

    Keener, Jay D; Sethi, Paul M

    2015-11-01

    Acute triceps ruptures are an uncommon entity, occurring mainly in athletes, weight lifters (especially those taking anabolic steroids), and following elbow trauma. Accurate diagnosis is made clinically, although MRI may aid in confirmation and surgical planning. Acute ruptures are classified on an anatomic basis based on tear location and the degree of tendon involvement. Most complete tears are treated surgically in medically fit patients. Partial-thickness tears are managed according to the tear severity, functional demands, and response to conservative treatment. We favor an anatomic footprint repair of the triceps to provide optimal tendon to bone healing and, ultimately, functional outcome. PMID:26498552

  6. Outcome following addition of peroneus brevis tendon transfer to treatment of acquired posterior tibial tendon insufficiency.

    PubMed

    Song, S J; Deland, J T

    2001-04-01

    The flexor digitorum longus, the tendon most often used for transfer in posterior tibial tendon insufficiency, is one-half to one-third the size of the posterior tibial tendon. Occasionally it may be particularly small or may have been previously used for transfer. In these cases, the senior author has felt that the addition of a transfer of the Peroneus Brevis (PBr) tendon may be helpful in maintaining sufficient tendon and muscle mass to rebalance the foot. Thirteen patients who underwent this procedure were retrospectively identified and matched by age and length of follow-up to patients who underwent a more standard tendon transfer operation minus the addition of the PBr transfer. Pain and functional status were then assessed by the American Orthopaedic Foot and Ankle Society's ankle/hindfoot rating scale. Each patient was tested by an independent physical therapist to evaluate inversion and eversion strength. The mean duration of follow-up was 20.6 months (12 to 34 months). The average AOFAS score of the PBr group was 75.8 compared to 71.5 for the standard control group. There was no significant difference between the groups when inversion or eversion strengths were compared. Inversion strength and eversion strength was rated good or excellent (4 or 5) in 12 out of 13 of the PBr transfer group patients. No major complications were encountered in either group. Although it does not increase inversion strength, a PBr transfer can be used to augment a small FDL without causing significant eversion weakness. This can be useful when the FDL is particularly small or in revision surgery. PMID:11354442

  7. Computed tomography in the evaluation of Brown syndrome of the superior oblique tendon sheath

    SciTech Connect

    Mafee, M.F.; Folk, E.R.; Langer, B.G.; Miller, M.T.; Lagouros, P.; Mittleman, D.

    1985-03-01

    Computed tomographic (CT) findings in 4 patients with superior oblique tendon sheath syndrome (congenital or acquired Brown syndrome) are described. When the inferior oblique muscle moves the eye upward, the superior oblique muscle normally relaxes, while its tendon lengthens and slides freely through the trochlea. In Brown syndrome this process is somehow restricted, which is most apparent during attempts at elevation when the eye is adducted, resulting in an apparent inferior oblique palsy (pseudopalsy). CT is a valuable tool in understanding the pathophysiology and management of acquired Brown syndrome, showing thickening and inflammatory changes of the reflected portion of the superior oblique tendon.

  8. A Case of the Bilateral Duplicate Palmaris Longus Muscles Coupled with the Palmaris Profundus Muscle

    PubMed Central

    Takanashi, Yuichi; Eda, Masaki; Kaidoh, Toshiyuki; Inoué, Takao

    2012-01-01

    The palmaris longus muscle is one of the most variable muscles in human anatomy. During a routine anatomical dissection for medical students at Tottori University, we found duplicate palmaris longus muscles in the bilateral forearms together with the palmaris profundus muscle in the right forearm. The bilateral aberrant palmaris longus muscles were observed at the ulnar side of the palmaris longus muscle and their distal tendons were attached to the flexor retinaculum. The palmaris profundus muscle found in the right forearm was located at the radial side of the flexor digitorum superficialis muscle. The proximal tendon was originated from the anterior surface in the middle of the radius, while the distal tendon coursed radial to the median nerve through the carpal tunnel, finally inserting into the distal part of the flexor retinaculum. Both the palmaris longus and aberrant palmaris longus muscles were innervated by the median nerve. The palmaris profundus muscle was presumably supplied by the median nerve. PMID:24031143

  9. One-year results from cryopreserved mitral allograft transplantation into the tricuspid position in a sheep experimental model.

    PubMed

    Mokracek, A; Canadyova, J; Simunkova, Z; Fiala, R; Hmirak, M; Sulda, M; Burkert, J; Tintera, J; Kobylka, P; Spatenka, J

    2015-01-01

    Mitral allografts are still used only exceptionally in the mitral or tricuspid position. The main indication remains infectious endocarditis of atrioventricular valves for its flexibility and low risk of infection. The aim of our study was to evaluate 1-year results of mitral allografts transplantation into the tricuspid position in a sheep model. Mitral allografts were processed, cryopreserved, and transplanted into the tricuspid position anatomically (Group I - 11 animals) or antianatomically (Group II - 8 animals). All survivors (4 from Group I, and 3 from Group II) were checked at 3, 6, and 12 months by echocardiography with the exception of one survivor from Group II (which was examinated only visually). Examination throughout follow-up included for mitral allograft regurgitation and annuli dilatation. At postmortem, the papillary muscles were healed and firmly anchored to the right ventricular wall in all subjects. Transventricular fixation of the papillary muscles with buttressed sutures was proven to be a stable, reproducible, and safe method for anchoring mitral allograft leaflets. There were no significant differences between the two implantation methods. Annulus support of mitral allografts might be very useful in this type of operation and could prevent annular dilatation. PMID:26047374

  10. Should we think about wrist extensor after flexor tendon repair?

    PubMed Central

    Ferreira, Aline M; Tanaka, Denise M; Barbosa, Rafael I; Marcolino, Alexandre M; Elui, Valeria MC; Mazzer, Nilton

    2013-01-01

    Objective: To evaluate the activity of wrist extensor muscle, correlating with wrist motion during gripping after flexor tendon repair. Design: Cross-sectional clinical measurement study. Setting: Laboratory for biomechanics and rehabilitation. Subjects: A total of 11 patients submitted to rehabilitation by early passive motion of the fingers with wrist flexion position were evaluated after 8 weeks of fingers flexor tendon repair and 11 healthy volunteers, all ranging from 20 to 37 years of age. Intervention: Volunteers performed an isometric standardized gripping task. Main measures: We used electrogoniometry to analyze wrist range of motion and surface electromyography, considering 100% maximum voluntary contraction to represent the amplitude of electromyographic activity of the extensor carpi radialis and flexor digitorum superficialis. Results: Patients with flexor tendon repair showed co-activation deficit between wrist extensor (extensor carpi radialis) and flexor finger muscles (flexor digitorum superficialis) during gripping in the intermediate phase of rehabilitation, despite some recovering mobility for wrist extension (p ≤ 0.05). A moderate correlation between range of motion and extensor carpi radialis was present only for injured group (r = 0.32). Total active motion score, which represents finger active excursion, was regular or poor in 65% of cases, all with nerve repair associated. Conclusion: Wrist extensors have an important synergist role at handgrip, although some imbalance can be present after flexor tendon repair. These preliminary findings suggest that emphasis could be directed to add synergistic wrist motion in rehabilitation protocols after flexor tendon repair. Future studies with early active rehabilitation are necessary. PMID:26770674

  11. Tendon-to-Bone Attachment: From Development to Maturity

    PubMed Central

    Zelzer, Elazar; Blitz, Einat; Killian, Megan L.; Thomopoulos, Stavros

    2014-01-01

    The attachment between tendon and bone occurs across a complex transitional tissue that minimizes stress concentrations and allows for load transfer between muscles and skeleton. This unique tissue cannot be reconstructed following injury, leading to high incidence of recurrent failure and stressing the need for new clinical approaches. This review describes the current understanding of the development and function of the attachment site between tendon and bone. The embryonic attachment unit, namely, the tip of the tendon and the bone eminence into which it is inserted, was recently shown to develop modularly from a unique population of Sox9- and Scx-positive cells, which are distinct from tendon fibroblasts and chondrocytes. The fate and differentiation of these cells is regulated by transforming growth factor beta and bone morphogenetic protein signaling, respectively. Muscle loads are then necessary for the tissue to mature and mineralize. Mineralization of the attachment unit, which occurs postnatally at most sites, is largely controlled by an Indian hedgehog/parathyroid hormone-related protein feedback loop. A number of fundamental questions regarding the development of this remarkable attachment system require further study. These relate to the signaling mechanism that facilitates the formation of an interface with a gradient of cellular and extracellular phenotypes, as well as to the interactions between tendon and bone at the point of attachment. PMID:24677726

  12. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review

    PubMed Central

    Fouré, Alexandre

    2016-01-01

    The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376

  13. Pectoralis major tendon rupture. Surgical procedures review.

    PubMed Central

    Merolla, Giovanni; Paladini, Paolo; Campi, Fabrizio; Porcellini, Giuseppe

    2012-01-01

    Summary Pectoralis major (PM) muscle is the powerful dynamic stabiliser of the shoulder that acts as a flexor, adductor and internal rotator. The rupture of the PM tendon is a relatively rare injury that was firstly described in a French boy by Patissier in 1822 and later, in 1861, by Letenneur who reported another similiar case. To date, over 200 cases have been published. In this article we describe the clinical anatomy and the mechanism of injuries of PM and we review the surgical procedures for acute and chronic ruptures. PMID:23738281

  14. Tendon Transfers for the Hypoplastic Thumb.

    PubMed

    Wall, Lindley B; Goldfarb, Charles A

    2016-08-01

    Thumb hypoplasia is a component of radial longitudinal deficiency. The severity of hypoplasia can range from a slightly smaller thumb to a complete absence. Types II and IIIA hypoplastic thumbs are candidates for reconstruction to improve function, stability, and strength. There are 2 commonly used tendon transfers that can augment thumb opposition strength: the Huber abductor digiti minimi muscle transfer and the flexor digitorum superficialis opposition transfer. Both transfers use ulnar-sided structures to augment the thenar musculature. The Huber opposition transfer increases thenar bulk, but does not provide additional tissue for metacarpophalangeal stability. PMID:27387085

  15. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.

    PubMed

    Lai, Adrian; Schache, Anthony G; Lin, Yi-Chung; Pandy, Marcus G

    2014-09-01

    The human ankle plantar-flexors, the soleus and gastrocnemius, utilize tendon elastic strain energy to reduce muscle fiber work and optimize contractile conditions during running. However, studies to date have considered only slow to moderate running speeds up to 5 m s(-1). Little is known about how the human ankle plantar-flexors utilize tendon elastic strain energy as running speed is advanced towards maximum sprinting. We used data obtained from gait experiments in conjunction with musculoskeletal modeling and optimization techniques to calculate muscle-tendon unit (MTU) work, tendon elastic strain energy and muscle fiber work for the ankle plantar-flexors as participants ran at five discrete steady-state speeds ranging from jogging (~2 m s(-1)) to sprinting (≥8 m s(-1)). As running speed progressed from jogging to sprinting, the contribution of tendon elastic strain energy to the positive work generated by the MTU increased from 53% to 74% for the soleus and from 62% to 75% for the gastrocnemius. This increase was facilitated by greater muscle activation and the relatively isometric behavior of the soleus and gastrocnemius muscle fibers. Both of these characteristics enhanced tendon stretch and recoil, which contributed to the bulk of the change in MTU length. Our results suggest that as steady-state running speed is advanced towards maximum sprinting, the human ankle plantar-flexors continue to prioritize the storage and recovery of tendon elastic strain energy over muscle fiber work. PMID:24948642

  16. Allografts in Soft Tissue Reconstructive Procedures

    PubMed Central

    Giedraitis, Andrius; Arnoczky, Steven P.; Bedi, Asheesh

    2014-01-01

    Context Allografts offer several important advantages over autografts in musculoskeletal reconstructive procedures, such as anterior cruciate ligament reconstruction. Despite growing widespread use of allograft tissue, serious concerns regarding safety and functionality remain. We discuss the latest knowledge of the potential benefits and risks of allograft use and offer a critical review of allograft tissue regulation, management, and sterilization to enable the surgeon to better inform athletes considering reconstructive surgery options. Evidence Acquisition A review of sources published in the past 10 years is the primary basis of this research. Study Design: Observational analysis (cohort study). Level of Evidence: Level 3. Results Comparable outcome data for autografts and allografts do not support universal standards for anterior cruciate ligament reconstruction, and physician recommendation and bias appear to significantly influence patient preference and satisfaction. Sterilization by gamma and electron-beam irradiation diminishes the biomechanical integrity of allograft tissue, but radioprotective agents such as collagen cross-linking and free radical scavengers appear to have potential in mitigating the deleterious effects of irradiation and preserving tissue strength and stability. Conclusion Allografts offer greater graft availability and reduced morbidity in orthopaedic reconstructive procedures, but greater expansion of their use by surgeons is challenged by the need to maintain tissue sterility and biomechanical functionality. Advances in the radioprotection of irradiated tissue may lessen concerns regarding allograft safety and structural stability. PMID:24790696

  17. The influence of vascularization of transplanted processed allograft nerve on return of motor function in rats.

    PubMed

    Giusti, Guilherme; Lee, Joo-Yup; Kremer, Thomas; Friedrich, Patricia; Bishop, Allen T; Shin, Alexander Y

    2016-02-01

    Processed nerve allografts have become an alternative to repair segmental nerve defects, with results comparable with autografts regarding sensory recovery; however, they have failed to reproduce comparable motor recovery. The purpose of this study was to determine how revascularizaton of processed nerve allograft would affect motor recovery. Eighty-eight rats were divided in four groups of 22 animals each. A unilateral 10-mm sciatic nerve defect was repaired with allograft (group I), allograft wrapped with silicone conduit (group II), allograft augmented with vascular endothelial growth factor (group III), or autograft (group IV). Eight animals from each group were sacrificed at 3 days, and the remaining animals at 16 weeks. Revascularization was evaluated by measuring the graft capillary density at 3 days and 16 weeks. Measurements of ankle contracture, compound muscle action potential, tibialis anterior muscle weight and force, and nerve histomorphometry were performed at 16 weeks. All results were normalized to the contralateral side. The results of capillary density at 3 days were 0.99% ± 1.3% for group I, 0.33% ± 0.6% for group II, 0.05% ± 0.1% for group III, and 75.6% ± 45.7% for group IV. At 16 weeks, the results were 69.9% ± 22.4% for group I, 37.0% ± 16.6% for group II, 84.6% ± 46.6% for group III, and 108.3% ± 46.8% for group IV. The results of muscle force were 47.5% ± 14.4% for group I, 21.7% ± 13.5% for group II, 47.1% ± 7.9% for group III, and 54.4% ± 10.6% for group IV. The use of vascular endothelial growth factor in the fashion used in this study improved neither the nerve allograft short-term revascularization nor the functional motor recovery after 16 weeks. Blocking allograft vascularization from surrounding tissues was detrimental for motor recovery. The processed nerve allografts used in this study showed similar functional motor recovery compared with that of the autograft. PMID

  18. Myofascial force transmission between transferred rat flexor carpi ulnaris muscle and former synergistic palmaris longus muscle

    PubMed Central

    Maas, Huub; Huijing, Peter A.

    2011-01-01

    Summary We investigated the extent of mechanical interaction between rat flexor carpi ulnaris (FCU) and palmaris longus (PL) muscles following transfer of FCU to the distal tendons of extensor carpi radialis brevis and longus (ECRB/L) muscles. Five weeks after recovery from surgery, isometric forces exerted at the distal tendons of FCU and PL were quantified at various FCU lengths. PL was kept at a constant length. Changing the muscle-tendon complex length of transferred FCU (by maximally 3.5 mm) decreased PL force significantly (by 7%). A linear relationship was found between changes in FCU muscle belly length, being a measure of muscle relative positions, and PL force. These results indicate that despite transfer of FCU muscle to the extensor side of the forearm, changing FCU length still affects force transmission of its, now, antagonistic PL muscle. We conclude that a transferred muscle may still be mechanically linked to its former synergistic muscles. PMID:23738260

  19. Mechanical properties of the patellar tendon in adults and children.

    PubMed

    O'Brien, Thomas D; Reeves, Neil D; Baltzopoulos, Vasilios; Jones, David A; Maganaris, Constantinos N

    2010-04-19

    It is not currently known how the mechanical properties of human tendons change with maturation in the two sexes. To address this, the stiffness and Young's modulus of the patellar tendon were measured in men, women, boys and girls (each group, n=10). Patellar tendon force (F(pt)) was calculated from the measured joint moment during a ramped voluntary isometric knee extension contraction, the antagonist knee extensor muscle co-activation quantified from its electromyographical activity, and the patellar tendon moment arm measured from magnetic resonance images. Tendon elongation was imaged using the sagittal-plane ultrasound scans throughout the contraction. Tendon cross-sectional area was measured at rest from ultrasound scans in the transverse plane. Maximal F(pt) and tendon elongation were (mean+/-SE) 5453+/-307 N and 5+/-0.5 mm for men, 3877+/-307 N and 4.9+/-0.6 mm for women, 2017+/-170 N and 6.2+/-0.5 mm for boys and 2169+/-182 N and 5.9+/-0.7 mm for girls. In all groups, tendon stiffness and Young's modulus were examined at the level that corresponded to the maximal 30% of the weakest participant's F(pt) and stress, respectively; these were 925-1321 N and 11.5-16.5 MPa, respectively. Stiffness was 94% greater in men than boys and 84% greater in women than girls (p<0.01), with no differences between men and women, or boys and girls (men 1076+/-87 N/mm; women 1030+/-139 N/mm; boys 555+/-71 N/mm and girls 561.5+/-57.4 N/mm). Young's modulus was 99% greater in men than boys (p<0.01), and 66% greater in women than girls (p<0.05). There were no differences in modulus between men and women, or boys and girls (men 597+/-49 MPa; women 549+/-70 MPa; boys 255+/-42 MPa and girls 302+/-33 MPa). These findings indicate that the mechanical stiffness of tendon increases with maturation due to an increased Young's modulus and, in females due to a greater increase in tendon cross-sectional area than tendon length. PMID:20045111

  20. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-01-01

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon. PMID:25415472

  1. Non-Uniform Displacements within the Achilles Tendon observed during Passive and Eccentric Loading

    PubMed Central

    Slane, Laura Chernak; Thelen, Darryl G.

    2014-01-01

    The goal of this study was to investigate Achilles tendon tissue displacement patterns under passive and eccentric loading conditions. Nine healthy young adults were positioned prone on an examination table with their foot secured to a rotating footplate aligned with the ankle. Subjects cyclically rotated their ankle over a 25 deg range of motion at 0.5 Hz. An inertial load geared to the footplate induced eccentric plantarflexor contractions with dorsiflexion. Passive cyclic ankle motion was also performed over the same angular range of motion. An ultrasound transducer positioned over the distal Achilles tendon was used to collect radiofrequency (RF) images at 70 frames/sec. Two-dimensional ultrasound elastographic analysis of the RF data was used to track tendon tissue displacements throughout the cyclic motion. Non-uniform tissue displacement patterns were observed in all trials, with the deeper portions of the Achilles tendon consistently exhibiting larger displacements than the superficial tendon (average of 0.9–2.6 mm larger). Relative to the passive condition, eccentric loading consistently induced smaller tissue displacements in all tendon regions, except for the superficial tendon in a flexed knee posture. Significantly greater overall tissue displacement was observed in a more extended knee posture (30 deg) relative to a flexed knee posture (90 deg). These spatial- and posture-dependent displacement patterns suggest that the tendon undergoes nonuniform deformation under in vivo loading conditions. Such behavior could reflect relative sliding between the distinct tendon fascicles that arise from the gastrocnemius and soleus muscles. PMID:25150898

  2. Diabetes alters mechanical properties and collagen fiber re-alignment in multiple mouse tendons.

    PubMed

    Connizzo, Brianne K; Bhatt, Pankti R; Liechty, Kenneth W; Soslowsky, Louis J

    2014-09-01

    Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber re-alignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load. PMID:24833253

  3. Diabetes Alters Mechanical Properties and Collagen Fiber Re-Alignment in Multiple Mouse Tendons

    PubMed Central

    Connizzo, Brianne K.; Bhatt, Pankti R.; Liechty, Kenneth W.; Soslowsky, Louis J.

    2014-01-01

    Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber realignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load. PMID:24833253

  4. Osteochondral Allografts in the Ankle Joint

    PubMed Central

    Vannini, Francesca; Buda, Roberto; Ruffilli, Alberto; Cavallo, Marco; Giannini, Sandro

    2013-01-01

    Purpose: The aim of this systematic review is to report about the clinical use of partial and total fresh osteochondral allograft in the ankle joint. The state of the art of allografts with regard to basic science, procurement and storage methods, immunogenicity, generally accepted indications and contraindications, and the rationale of the allografting procedure have been described. Methods: All studies published in PubMed from 2000 to January 2012 addressing fresh osteochondral allograft procedures in the ankle joint were identified, including those that fulfilled the following criteria: (a) level I-IV evidence addressing the areas of interest outlined above; (b) measures of functional, clinical, or imaging outcome; and (c) outcome related to ankle cartilage lesions or ankle arthritis treated by allografts. Results: The analysis showed a progressively increasing number of articles from 2000. The number of selected articles was 14; 9 of those focused on limited dimension allografts (plugs, partial) and 5 on bipolar fresh osteochondral allografts. The evaluation of evidence level showed 14 case series and no randomized studies. Conclusions: Fresh osteochondral allografts are now a versatile and suitable option for the treatment of different degrees of osteochondral disease in the ankle joint and may even be used as total joint replacement. Fresh osteochondral allografts used for total joint replacement are still experimental and might be considered as a salvage procedure in otherwise unsolvable situations. A proper selection of the patients is therefore a key point. Moreover, the patients should be adequately informed about the possible risks, benefits, and alternatives to the allograft procedure. PMID:26069666

  5. [Diseases of the Achilles tendon].

    PubMed

    Schönbauer, H R

    1986-01-01

    In this report diseases of the Achilles tendon are discussed. First an anatomical survey of this region is presented including anatomical variations together with the results of the author's own investigations on corpses. Certain positions and insertions of the plantaris tendon with respect to the Achilles tendon may have pathological influence. Pathological aspects are discussed after a review of the physiology of the Achilles tendon, including functional and tensile tests. The clinical picture changes according to the location of the pathological disorder--tendon, paratenon, insertion and bursae--and whether the disease is acute or chronic. There are various reasons for degenerative changes in the tendon, which can even lead to rupture. Surgical and non-surgical treatment and their indications are presented. In conclusion treatment methods and their results for 36 cases are given. PMID:3087066

  6. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  7. Tribological characteristics of healthy tendon.

    PubMed

    Theobald, Peter S; Dowson, Duncan; Khan, Ilyas M; Jones, Michael D

    2012-07-26

    Tendons transfer muscular forces efficiently and painlessly, facilitating joint motion. Whilst the tribology of articular cartilage is constantly explored, a poorer understanding remains of tendon lubrication and friction. This study reports experimental data describing the tribological characteristics of tendon and its surrounding tissue, before presenting an arithmetic solution to facilitate numerical modelling. The experimental characteristics of the tensile (i.e. mid-substance) and compressive (i.e. fibrocartilaginous) regions of bovine flexor tendon were investigated using a pin-on-plate tribometer, with immunofluroscence analysis describing the relative intensity and distribution of surface-bound lubricin. Arithmetic analysis considering the digital extensor tendon determined that, in physiological conditions, the tensile tendon region was able to generate elastohydrodynamic lubrication (EHL). The equivalent region of compressive tendon exhibited a higher intensity of surface-bound lubricin which, it is hypothesised, serves to minimise the increased frictional resistance due to generating only mixed or boundary lubrication regimes. Arithmetic analysis indicates that, given a more favourable biomechanical environment, this region can also generate EHL. Whilst acknowledging the limitations of transferring data from an animal model to a clinical environment, by providing the first data and equations detailing the film thicknesses and lubrication regime for these two tendon regions it is hoped that clinicians, engineers and scientists can consider improved clinical strategies to tackle both tendinopathy and tendon rupture. PMID:22704825

  8. Slipped and lost extraocular muscles.

    PubMed

    Lenart, T D; Lambert, S R

    2001-09-01

    A slipped or lost muscle should be considered in the differential diagnosis of a patient presenting with a marked limitation of duction and inability to rotate the eye beyond the midline. Loss of a rectus muscle can occur after strabismus surgery, trauma, paranasal sinus surgery, orbital surgery, or retinal detachment surgery. The extraocular rectus muscle most frequently slipped or lost is the medial rectus muscle. Forced ductions, active force generation, saccadic velocity studies, differential intraocular pressure measurements, and orbital imaging studies may aid in identifying a slipped or lost muscle. However, no single diagnostic test provides absolute reliability for determining a lost muscle. Slipped muscles develop when the muscular capsule is imbricated without including the muscle or muscle tendon during strabismus surgery. When the capsule is reattached to the sclera, the tendon and muscle are then free to slip posteriorally from the site of attachment. Slipped muscles are retrieved by following the thin avascular muscle capsule posteriorally until the muscle is identified. A lost muscle can be found using a traditional conjunctival approach, by an external orbitotomy, or by an endoscopic transnasal approach. Although many diagnostic maneuvers are useful in identifying a lost rectus muscle, the oculocardiac reflex is the most important. Once the lost muscle is identified, the muscle should be imbricated with a nonabsorbable synthetic suture and securely reattached to the globe. PMID:11705143

  9. [Changes in bones of the foot and development of inserting tendons of the lower leg musculature in tibial aplasia].

    PubMed

    Selke, B; Bogusch, G

    1989-01-01

    Skeleton, muscles and tendons were investigated in 3 lower legs with aplasia of the tibia. The tibiofibular joint appears to be rather a syndesmosis than a diarthrosis. In all 3 cases, talus and calcaneus are connected by a synostosis. Also in the other parts of the skeleton of the feet, synarthroses with different extensions are found. The muscles, normally originating from the tibia, have shifted their origin to the fibula. The proximal part of the inserting tendons under the retinacula is quite normal. Also, their distal part in the region of the metatarsalia and of the digits exhibits no alterations. In the region of the tarsus in which already alterations in bone formation are found, the tendons of the flexor muscles of the toes exhibit some variations. Often the muscles show a new, strong insertion into the bones of the tarsus. The normal connection between the proximal and distal parts of the tendons is sometimes still indicated by a thin bundle of collagenous fibers. In all 3 cases, the tibialis anterior muscle inserts into the distal part of the tendons of the flexor muscles of the toes, indicating that there are also connections between tendons of muscles from different blastemas. PMID:2816255

  10. Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: a long term study with high clinical relevance

    PubMed Central

    2013-01-01

    Background Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. The major limitations to manage these injuries are poor healing response and development of peritendinous adhesions in the injured area. This study investigated the effectiveness of a novel collagen implant on tendon healing in rabbits. Results Seventy five mature White New-Zealand rabbits were divided into treated (n = 55) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. The defects of the treated animals were filled with collagen implants and repaired with sutures, but in control rabbits the defects were sutured similarly but the gap was left untreated. Changes in the injured and normal contralateral tendons were assessed weekly by measuring the diameter, temperature and bioelectrical characteristics of the injured area. Clinical examination was done and scored. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 and 60 (n = 5 at each time interval) and the remainder (n = 20) and the control animals at 120 days post injury (DPI). The lesions of all animals were examined at macroscopic and microscopic levels and the dry matter content, water delivery and water uptake characteristics of the lesions and normal contralateral tendons of both groups were analyzed at 120 DPI. No sign of rejection was seen in the treated lesions. The collagen implant was invaded by the inflammatory cells at the inflammatory phase, followed by fibroplasia phase in which remnant of the collagen implant were still present while no inflammatory reaction could be seen in the lesions. However, the collagen implant was completely absorbed in the remodeling phase and the newly regenerated tendinous tissue filled the gap. Compared to the controls, the treated lesions showed improved tissue alignment and less peritendinous adhesion, muscle atrophy and fibrosis

  11. Meniscal allograft transplantation in rabbit.

    PubMed

    Vilela, Liana M; Del Carlo, Ricardo J; Melo Filho, Edson V; Favarato, Lukiya S C; Duarte, Tatiana S; Pontes, Kelly C S; Cunha, Daise N Q

    2015-01-01

    This study evaluated the technique for meniscal allograft transplantation using allografts preserved in glycerin 98% in rabbits. Euthanasia was performed at 70 days to compare the transplanted (TM1 to TM16) versus the contralateral meniscus (OM1 to OM16). Sixteen menisci, 8 transplanted and 8 contralateral, were submitted to gross examination, histomorphometric analysis for identification and quantification of cellular type, and for quantification and distribution of collagen fibers. A revascularization study was conducted in all of the other samples. Lengths of the OM varied from 0.9 to 1.0 cm and two TM were smaller. All TM were completely attached to the synovial membrane, except for one case that presented partial fixation. Both, TM and OM had similar amounts of chondrocytes, fibroblasts and fibrocytes, and at the horns, chondrocytes were predominant. The collagen fibers in TM were well organized throughout the body, and disorganized at the horns. These fibers in OM were organized. The amounts of collagen type I and III, and the vascularization of the perimeniscal tissue and of the edge were similar in OM and TM. These results demonstrated graft integration and thus this transplantation technique and preservation method may be recommended. PMID:26648544

  12. Radiation sterilization of skin allograft

    NASA Astrophysics Data System (ADS)

    Kairiyama, E.; Horak, C.; Spinosa, M.; Pachado, J.; Schwint, O.

    2009-07-01

    In the treatment of burns or accidental loss of skin, cadaveric skin allografts provide an alternative to temporarily cover a wounded area. The skin bank facility is indispensable for burn care. The first human skin bank was established in Argentina in 1989; later, 3 more banks were established. A careful donor selection is carried out according to the national regulation in order to prevent transmissible diseases. As cadaveric human skin is naturally highly contaminated, a final sterilization is necessary to reach a sterility assurance level (SAL) of 10 -6. The sterilization dose for 106 batches of processed human skin was determined on the basis of the Code of Practice for the Radiation Sterilization of Tissue Allografts: Requirements for Validation and Routine Control (2004) and ISO 11137-2 (2006). They ranged from 17.6 to 33.4 kGy for bioburdens of >10-162.700 CFU/100 cm 2. The presence of Gram negative bacteria was checked for each produced batch. From the analysis of the experimental results, it was observed that the bioburden range was very wide and consequently the estimated sterilization doses too. If this is the case, the determination of a tissue-specific dose per production batch is necessary to achieve a specified requirement of SAL. Otherwise if the dose of 25 kGy is preselected, a standardized method for substantiation of this dose should be done to confirm the radiation sterilization process.

  13. Preserved saphenous vein allografts for vascular access.

    PubMed

    Piccone, V A; Sika, J; Ahmed, N; LeVeen, H H; DiScala, V

    1978-09-01

    Preserved venous allografts were used as an alternate access procedure in 70 patients receiving dialysis during a three year period. The clinical experience with allograft fistulas revealed an extremely high initial patency rate; absence of infection postoperatively and during three years of dialysis; suitability for dialysis a week after implantation, thus greatly obviating the need for Silastic shunts; a low long term thrombosis rate and the weakly antigenic allograft veins produced no accelerated rejection of subsequently transplanted kidneys. Surviving patients average 172 dialysis treatments per allograft. Allograft fistulas constituted 45 per cent of the last 100 vascular procedures, an indication of the extent of usage. Microscopic examination of grafts retrieved from patients who died during the late follow-up period demonstrated that structural components of the wall of the vein were still identifiable. Allograft venous fistulas offer dependable, safe vascular access, especially in the infection prone patient with diabetes who is receiving dialysis treatment. The clinical results of allograft fistulas suggests a major role for this technique in vascular access operations. PMID:684591

  14. Mechanisms of collagen fibril alignment in tendon injury: from tendon regeneration to artificial tendon.

    PubMed

    Torigoe, Kojun; Tanaka, Hirohito F; Yonenaga, Kazumichi; Ohkochi, Hiroki; Miyasaka, Muneo; Sato, Ryota; Kuzumaki, Toru; Yoshida, Kazuharu; Yoshida, Toshiko

    2011-12-01

    The process by which collagen fibrils are aligned following tendon injury remains unknown. Therefore, we analyzed the process of tendon regeneration by transmission electron microscopy, using a film model method. In mice, the Achilles tendon of medial head was transected. On day 3, after only the proximal end of the transected tendon was placed on film and kept in vivo, a translucent substance containing granules, called tendon gel, was secreted. On day 5, the granules assembled in a loose (L) layer, and coalesced tightly in a dense (D) layer, forming an L-D-L layered pattern. On day 10, granules showed high electron density in H layers, which developed into D-H-D layers on day 13. The distal end was placed on film to face the proximal end. On day 10, the tendon gel showed a D-H-D layer pattern. On day 11, mechanical stress from muscular constriction changed the tendon gel to aligned collagen fibrils (6 ± 2 nm in diameter). Thereafter, the diameter of the fibrils increased. Tendon gel harvested on day 5 or day 10 was pulled manually or by hanging weights (about 0.6 MPa). Aligned collagen fibrils (32 ± 7 nm in diameter) were created by traction using tendon gel harvested on day 10. PMID:21618275

  15. Future of allografts in sports medicine.

    PubMed

    Harner, Christopher D; Lo, Marvin Y

    2009-04-01

    Allografts play a prominent role in sports medicine, and their usage has increased dramatically over the past few decades, but the role of allograft in the future of sports medicine largely depends on several factors: (1) the ability of the tissue banking industry to convince both surgeons and the general population that tissue procurement is safe and nearly disease-free, (2) the ability to sterilize tissue with minimal compromise to tissue integrity, (3) successful clinical outcomes with allograft, and (4) the advent of artificial scaffolds and ligaments that function as well. PMID:19306738

  16. Shear loads induce cellular damage in tendon fascicles.

    PubMed

    Kondratko-Mittnacht, Jaclyn; Lakes, Roderic; Vanderby, Ray

    2015-09-18

    Tendon is vital to musculoskeletal function, transferring loads from muscle to bone for joint motion and stability. It is an anisotropic, highly organized, fibrous structure containing primarily type I collagen in addition to tenocytes and other extracellular matrix components contributing to maintenance and function. Tendon is generally loaded via normal stress in a longitudinal direction. However, certain situations, including fiber breakage, enzymatic remodeling, or tendon pathology may introduce various degrees of other loading modalities, such as shear-lag at the fiber level, potentially affecting cellular response and subsequent function. Fascicles from rat tail tendon were dissected and placed in one of three paired groups: intact, single laceration, or double laceration. Each pair had a mechanically tested and control specimen. Single laceration fascicles contained one transverse laceration to mimic a partial tear. Double laceration fascicles had overlapping, longitudinally separated lacerations on opposite sides to cause intra-fascicular shear transfer to be the primary mechanism of loading. Elastic properties of the fascicle, e.g. peak load, steady state load, and stiffness, decreased from intact to single laceration to double laceration groups. Surprisingly, 45% of the intact strength was maintained when shear was the primary internal load transfer mechanism. Cellular viability decreased after mechanical testing in both laceration groups; cell death appeared primarily in a longitudinal plane where high shear load transfer occurred. This cell death extended far from the injury site and may further compromise an already damaged tendon via enzymatic factors and subsequent remodeling associated with cell necrosis. PMID:26162546

  17. Tendon Mechanobiology: Current Knowledge and Future Research Opportunities

    PubMed Central

    Lavagnino, Michael; Wall, Michelle E.; Little, Dianne; Banes, Albert J.; Guilak, Farshid; Arnoczky, Steven P.

    2015-01-01

    Tendons mainly function as load-bearing tissues in the muscloskeletal system, transmitting loads from muscle to bone. Tendons are dynamic structures that respond to the magnitude, direction, frequency, and duration of physiologic as well as pathologic mechanical loads via complex interactions between cellular pathways and the highly specialized extracellular matrix. This paper reviews the evolution and current knowledge of mechanobiology in tendon development, homeostasis, disease, and repair. In addition, we review several novel mechanotransduction pathways that have been identified recently in other tissues and cell types, providing potential research opportunities in the field of tendon mechanobiology. We also highlight current methods, models, and technologies being used in a wide variety of mechanobiology research that could be investigated in the context of their potential applicability for answering some of the fundamental unanswered questions in this field. The article concludes with a review of the major questions and future goals discussed during the recent ORS/ISMMS New Frontiers in Tendon Research Conference held September 10–11, 2014 in New York City. PMID:25763779

  18. Skeletal muscle recovery after tenotomy and 7-day delayed muscle length restoration.

    PubMed

    Abrams, R A; Tsai, A M; Watson, B; Jamali, A; Lieber, R L

    2000-05-01

    Rabbit extensor digitorum longus (EDL) tendons were cut with the muscle active (active tenotomy, AT) or with the EDL at rest (passive tenotomy, PT). One, 7, and 21 days after tenotomy, contractile testing was performed. A second experiment was performed in which EDL tendons underwent PT and, after a 7-day delay, muscle-tendon units were restored to their original length. Maximum isometric tension dropped precipitously 1 day after either AT or PT to approximately 50% of normal and continued to decline by day 7. In contrast to PT, where peak tension (P(0)) decreased further by 21 days, after AT, P(0) partially recovered. Differences in muscle mass, cross-sectional area, fiber type, and sarcomere number did not explain the differential response. One day after length restoration of muscles, P(0) rapidly increased by approximately 40%. These observations have implications for understanding the outcome of muscle-tendon unit injury and surgical repair. PMID:10797393

  19. NERVE ENDINGS AND VASCULAR SUPPLY IN SEMITENDINOSUS TENDON OF CEREBRAL PALSY CHILDREN

    PubMed Central

    Grzegorzewski, Andrzej; Synder, Marek; Modrzewski, Tadeusz; Drobniewski, Marek; Polguj, Michał; Sibiński, Marcin

    2015-01-01

    ABSTRACT Objective: To evaluate the distribution of SP (substance P) and S-100 peptide immunoreactivity, as well as the vascular supply of tissues commonly used as grafts for anterior cruciate ligament (ACL) reconstruction. A second aim was to compare the above mentioned distribution in the semitendinosus muscle tendons of cerebral palsy (CP) patients with the semitendinosus muscle tendons and patellar tendons of patients without CP. Methods: The first group consisted of 14 children with cerebral palsy with a mean age of 11.7 years old. At the time of hamstring lengthening operation, a sample of semitendinosus muscle was taken for analysis. The second group comprised 20 patients treated for isolated ACL rupture of the knee (mean age 32 years old). Group three comprised ten patients in the mean age of 14.3 years old treated for recurrent lateral patellar dislocation, and from whom a sample of patellar tendon was obtained. Results: No statistically significant differences were demonstrated with regard to the amount of immunopositive nerve fibers expressing SP or S-100 in all 3 groups of patients. A significant difference was noted in the number of blood vessels between the adult and child semitendinosus muscles, but not between the semitendinosus muscles and patellar tendon of children. Conclusion: The number of nociceptors as well as proprioceptive fibers is similar in patients with CP and patients from a neurologically healthy population. Level of Evidence IV, Cases Series. PMID:26981034

  20. Early changes in Achilles tendon behaviour in vivo following downhill backwards walking.

    PubMed

    Joseph, C W; Bradshaw, E J; Furness, T P; Kemp, J; Clark, R A

    2016-07-01

    Downhill backwards walking causes repeated, cyclical loading of the muscle-tendon unit. The effect this type of repeated loading has on the mechanical behaviour of the Achilles tendon is presently unknown. This study aimed to investigate the biomechanical response of the Achilles tendon aponeurosis complex following a downhill backwards walking protocol. Twenty active males (age: 22.3 ± 3.0 years; mass: 74.7 ± 5.6 kg; height: 1.8 ± 0.7 m) performed 60 min of downhill (8.5°), backwards walking on a treadmill at -0.67 m · s(-1). Data were collected before, immediately post, and 24-, 48- and 168-h post-downhill backwards walking. Achilles tendon aponeurosis elongation, strain and stiffness were measured using ultrasonography. Muscle force decreased immediately post-downhill backward walking (P = 0.019). There were increases in Achilles tendon aponeurosis stiffness at 24-h post-downhill backward walking (307 ± 179.6 N · mm(-1), P = 0.004), and decreases in Achilles tendon aponeurosis strain during maximum voluntary contraction at 24 (3.8 ± 1.7%, P = 0.008) and 48 h (3.9 ± 1.8%, P = 0.002) post. Repeated cyclical loading of downhill backwards walking affects the behaviour of the muscle-tendon unit, most likely by altering muscle compliance, and these changes result in tendon stiffness increases. PMID:26512914

  1. The Paratenon Contributes to Scleraxis-Expressing Cells during Patellar Tendon Healing

    PubMed Central

    Dyment, Nathaniel A.; Liu, Chia-Feng; Kazemi, Namdar; Aschbacher-Smith, Lindsey E.; Kenter, Keith; Breidenbach, Andrew P.; Shearn, Jason T.; Wylie, Christopher; Rowe, David W.; Butler, David L.

    2013-01-01

    The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair. PMID:23555841

  2. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.

    PubMed

    Dyment, Nathaniel A; Liu, Chia-Feng; Kazemi, Namdar; Aschbacher-Smith, Lindsey E; Kenter, Keith; Breidenbach, Andrew P; Shearn, Jason T; Wylie, Christopher; Rowe, David W; Butler, David L

    2013-01-01

    The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair. PMID:23555841

  3. Acromioclavicular joint reconstruction using a tendon graft: a biomechanical study comparing a novel “sutured throughout” tendon graft to a standard tendon graft

    PubMed Central

    Naziri, Qais; Williams, Nadine; Hayes, Westley; Kapadia, Bhaveen H.; Chatterjee, Dipal; Urban, William P.

    2016-01-01

    Background: With a recurrence rate of over 30%, techniques that offer stronger acromioclavicular (AC) joint reconstruction through increased graft strength may provide longevity. The purpose of our study was to determine the biomechanical strength of a novel tendon graft sutured throughout compared to a native tendon graft in Grade 3 anatomical AC joint reconstruction. Methods: For this in vitro experiment, nine paired (n = 18) embalmed cadaveric AC joints of three males and six females (age 86 years, range 51–94 years) were harvested. Anatomic repair with fresh bovine Achilles tendon grafts without bone block was simulated. Specimens were divided into two groups; with group 1 using grafts with ultra-high molecular-weight polyethylene (UHMWPE) suture ran throughout the entire length. In group 2, reconstruction with only native allografts was performed. The distal scapula and humerus were casted in epoxy compound and mounted on the mechanical testing machine. Tensile tests were performed using a mechanical testing machine at the rate of 50 mm/min. Maximum load and displacement to failure were collected. Results: The average load to failure was significantly higher for group 1 compared to group 2, with mean values of 437.5 N ± 160.7 N and 94.4 N ± 43.6 N, (p = 0.001). The average displacement to failure was not significantly different, with 29.7 mm ± 10.6 mm in group 1 and 25 mm ± 9.1 mm in group 2 (p = 0.25). Conclusion: We conclude that a UHMWPE suture reinforced graft can provide a 3.6 times stronger AC joint reconstruction compared to a native graft. PMID:27163106

  4. Radiation sterilization of tissue allografts: A review.

    PubMed

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-04-28

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts. PMID:27158422

  5. Renal allograft rejection: sonography and scintigraphy

    SciTech Connect

    Singh, A.; Cohen, W.N.

    1980-07-01

    A total of 30 renal allograft patients who had sonographic B scanning and radionuclide studies of the transplant was studied as to whether: (1) the allograft rejection was associated with any consistent and reliable sonographic features and (2) the sonograms complemented the radionuclide studies. Focal areas of decreased parenchymal echogenicity were the most striking and consistent sonographic finding in chymal echogenicity were the most striking and consistens sonographic finding in allograft rejection. This was observed in most of the patients exhibiting moderate or severe rejection, but was frequently absent with mild rejection. Areas of decreased parenchymal echogenicity were not seen during episodes of acute tubular necrosis. Therefore, sonography showing zones of decreased parenchymal echogenicity was complementary to radionuclide studies in the diagnosis of allograft rejection versus acute tubular necrosis. Corticomedullary demarcation was difficult to interpret because of technical variables, and was inconsistently related to rejection in this series.

  6. Infectious Triggers of Chronic Lung Allograft Dysfunction.

    PubMed

    Gregson, Aric L

    2016-07-01

    Survival after lung transplantation is limited in large part due to the high incidence of chronic rejection, known as chronic lung allograft dysfunction (CLAD). Pulmonary infections are a frequent complication in lung transplant recipients, due both to immunosuppressive medications and constant exposure of the lung allograft to the external environment via the airways. Infection is a recognized risk factor for the development of CLAD, and both acute infection and chronic lung allograft colonization with microorganisms increase the risk for CLAD. Acute infection by community acquired respiratory viruses, and the bacteria Pseudomonas aeruginosa and Staphylococcus aureus are increasingly recognized as important risk factors for CLAD. Colonization by the fungus Aspergillus may also augment the risk of CLAD. Fostering this transition from healthy lung to CLAD in each of these infectious episodes is the persistence of an inflammatory lung allograft environment. PMID:27221821

  7. Radiation sterilization of tissue allografts: A review

    PubMed Central

    Singh, Rita; Singh, Durgeshwer; Singh, Antaryami

    2016-01-01

    Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues. Tissues like bone, skin, amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body. Allograft tissues from human donor provide an excellent alternative to autografts. However, major concern with the use of allografts is the risk of infectious disease transmission. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues. This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts. PMID:27158422

  8. TLP tendon bottom connector

    SciTech Connect

    Owens, H.S.

    1986-09-16

    This patent describes a bottom connector for connecting a tendon segment of a tension leg platform to a subsea template which includes a receptacle for the connector comprising: a first body member adapted to be received within an anchor receptacle, a second body member connected to the first body member through a flexible joint for universally pivotal movement and adapted to be connected to the tendon segment, a latch carrier movable with respect to the first body member and having latch segments pivotally connected to the latch carrier, the latch segments being such that in one position of the latch carrier, the latch segments engage both a recess in the receptacle and the first body member when the connector is inserted into the receptacle a sufficient distance so that the latch segments and carrier will react to the recess and such that when the latch carrier is in another position, the latch segments are clear of the recess to enable the connector to move further into the receptacle or to allow the bottom connector to be removed from the receptacle, and release means operative to maintain the carrier in the other position if a decision is made to remove the connector from the receptacle.

  9. Relative Echogenicity of Tendons and Ligaments of the Palmar Metacarpal Region in Foals from Birth to 4 Months of Age: A Longitudinal Study

    PubMed Central

    Britti, Domenico; Loprete, Giovanni; Musella, Vincenzo; Romagnoli, Noemi; Vilar, Jose M.; Valentini, Simona

    2016-01-01

    The objective of this study was to evaluate relative echogenicity of superficial and deep digital flexor tendons, the accessory ligament of the deep digital flexor tendon and interosseous muscle of the metacarpal region in foals ages 1 week to 4 months; and assess the association between echogenicity and sex or side/laterality. Seven Standardbred trotter foals were examined. Right and left metacarpal regions (palmar surface) were ultrasonographically investigated, and four regions of interest were assessed. A significant increase in echogenicity was seen in superficial and deep digital flexor tendons, accessory ligament of deep digital flexor tendon, and interosseous muscle during growth from 1 week to 4 months of age. Echogenicity of examined tendons and ligaments was not influenced by gender nor laterality. Reference values for tendon and ligament echogenicity could function as a tool to discriminate between physiological and abnormal conditions such as congenital contractural conditions. PMID:27441630

  10. Relative Echogenicity of Tendons and Ligaments of the Palmar Metacarpal Region in Foals from Birth to 4 Months of Age: A Longitudinal Study.

    PubMed

    Spinella, Giuseppe; Britti, Domenico; Loprete, Giovanni; Musella, Vincenzo; Romagnoli, Noemi; Vilar, Jose M; Valentini, Simona

    2016-01-01

    The objective of this study was to evaluate relative echogenicity of superficial and deep digital flexor tendons, the accessory ligament of the deep digital flexor tendon and interosseous muscle of the metacarpal region in foals ages 1 week to 4 months; and assess the association between echogenicity and sex or side/laterality. Seven Standardbred trotter foals were examined. Right and left metacarpal regions (palmar surface) were ultrasonographically investigated, and four regions of interest were assessed. A significant increase in echogenicity was seen in superficial and deep digital flexor tendons, accessory ligament of deep digital flexor tendon, and interosseous muscle during growth from 1 week to 4 months of age. Echogenicity of examined tendons and ligaments was not influenced by gender nor laterality. Reference values for tendon and ligament echogenicity could function as a tool to discriminate between physiological and abnormal conditions such as congenital contractural conditions. PMID:27441630

  11. [Effects of Gravity on Attachment of Tendon to Bone

    NASA Technical Reports Server (NTRS)

    Johnson, Roger B.

    1997-01-01

    We have received and processed all samples for either light or scanning electron microscopic analysis and have completed the histomorphometric analysis. We have characterized the changes caused by spaceflight to tendon attachments to the calcaneus, tibia, fibula and femur and compared them to hindlimbs and forelimbs from NIH.RZ. Soleus muscle histomorphometry has also been completed. Our results suggest severe osteoporosis in the femur, fibula and tibia of animals coincident to spaceflight, which had not resolved after 4-5 days following return to earth. This was evident at all sites, including sites of tendon attachments. This atrophy was not evident in the calcaneus. No muscle atrophy was evident. Comparison of scanning photomicrographs of flight animals with other lactating animals demonstrated structural similarities and suggested that it might be worthwhile to assess whether lactation is a factor in development of the osteoporosis in the spaceflight animals. In addition, evaluation of total calcium utilization by spaceflight animals would be beneficial.

  12. Osmotic pressure induced tensile forces in tendon collagen

    PubMed Central

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone. PMID:25608644

  13. Osmotic pressure induced tensile forces in tendon collagen

    NASA Astrophysics Data System (ADS)

    Masic, Admir; Bertinetti, Luca; Schuetz, Roman; Chang, Shu-Wei; Metzger, Till Hartmut; Buehler, Markus J.; Fratzl, Peter

    2015-01-01

    Water is an important component of collagen in tendons, but its role for the function of this load-carrying protein structure is poorly understood. Here we use a combination of multi-scale experimentation and computation to show that water is an integral part of the collagen molecule, which changes conformation upon water removal. The consequence is a shortening of the molecule that translates into tensile stresses in the range of several to almost 100 MPa, largely surpassing those of about 0.3 MPa generated by contractile muscles. Although a complete drying of collagen would be relevant for technical applications, such as the fabrication of leather or parchment, stresses comparable to muscle contraction already occur at small osmotic pressures common in biological environments. We suggest, therefore, that water-generated tensile stresses may play a role in living collagen-based materials such as tendon or bone.

  14. A Systematic Review of Failed Anterior Cruciate Ligament Reconstruction With Autograft Compared With Allograft in Young Patients

    PubMed Central

    Wasserstein, David; Sheth, Ujash; Cabrera, Alison; Spindler, Kurt P.

    2015-01-01

    Context: The advantages of allograft anterior cruciate ligament reconstruction (ACLR), which include shorter surgical time, less postoperative pain, and no donor site morbidity, may be offset by a higher risk of failure. Previous systematic reviews have inconsistently shown a difference in failure prevalence by graft type; however, such reviews have never been stratified for younger or more active patients. Objective: To determine whether there is a different ACLR failure prevalence of autograft compared with allograft in young, active patients. Data Sources: EMBASE, MEDLINE, Cochrane trials registry. Study Selection: Comparative studies of allograft versus autograft primary ACL reconstruction in patients <25 years of age or of high-activity level (military, Marx activity score >12 points, collegiate or semiprofessional athletes). Study Design: Systematic review with meta-analysis. Level of Evidence: Level 3. Data Extraction: Manual extraction of available data from eligible studies. Quantitative synthesis of failure prevalence and Lysholm score (outcomes in ≥3 studies) and I2 test for heterogeneity. Assessment of study quality using CLEAR NPT and Newcastle-Ottawa Scale (NOS). Results: Seven studies met inclusion criteria (1 level 1; 2 level 2, 4 level 3), including 788 patients treated with autograft tissue and 228 with various allografts. The mean age across studies was 21.7 years (64% male), and follow-up ranged between 24 and 51 months. The pooled failure prevalence was 9.6% (76/788) for autografts and 25.0% (57/228) for allografts (relative risk, 0.36; 95% CI, 0.24-0.53; P < 0.00001; I2 = 16%). The number needed to benefit to prevent 1 failure by using autograft was 7 patients (95% CI, 5-10). No difference between hamstrings autograft and patella tendon autograft was noted. Lysholm score was reported in 3 studies and did not differ between autograft and allograft. Conclusion: While systematic reviews comparing allograft and autograft ACLR have been equivocal

  15. Isolated tear of the tendon to the medial head of gastrocnemius presenting as a painless lump in the calf

    PubMed Central

    Watura, Christopher; Harries, William

    2009-01-01

    We report on a case of isolated tear of the medial head of gastrocnemius tendon. The patient presented with a painless lump in the right calf and denied any prior history of trauma or strain to the leg. A longitudinal split of the tendon was demonstrated at ultrasound and magnetic resonance imaging (MRI). There were no other abnormalities and the gastrocnemius muscle was normal. There are no reports in the literature of isolated gastrocnemius tendon tear. To date the calf muscle complex injury described in this area is tearing of the medial head of gastrocnemius muscle, sometimes referred to as “tennis leg”. We conclude that an isolated tear of the tendon to the medial head of gastrocnemius should be considered in the differential diagnosis of a lump or swelling in the upper medial area of the calf and we recommend ultrasound or MRI as the investigations of choice. PMID:21687013

  16. General Overview and Summary of Concepts Regarding Tendon Disease Topics Addressed Related to Metabolic Disorders.

    PubMed

    Ackermann, Paul W; Hart, David A

    2016-01-01

    Painful and non-healing musculoskeletal disorders, eg. tendinopathy, pose a tremendous burden on society and the quality of life for patients. New advances in the understanding of connective tissue disorders such as tendinopathy reveal that common health problems such as obesity, atherosclerosis, hormonal dysfunctions and diabetes mellitus are closely linked to the metabolism of components of the musculoskeletal system, particularly tendons. As tendons function as multi-component "organ systems" (Muscle-TMJ-Tendon-Enthesis to Bone), tendons can be influenced directly, or indirectly via, for instance, alterations to muscle. However, this volume/set of chapters focus mainly on the tendon.Emerging findings in musculoskeletal research have established important new links in our understanding of tendon metabolism. Thereby, the function of the neuroendocrine/-immune axis, as well as supply of neuro-vascular factors, can be directly linked to the quality of tendon metabolism.Since some conditions, eg. atherosclerosis and diabetes mellitus, are more common in individuals as they age, and aging can also affect pain and tissue repair, convergence of such complications will potentially exert an increasingly significant impact on tendons as the demographics of many societies change with expanding percentages of the populations >60-65 years of age.Comorbidities related to metabolic dysfunction have to be identified early in patients with musculoskeletal disorders, such as acute tendon injuries or chronic tendinopathy, for therapeutic considerations regarding both operative and non-operative treatment protocols. Necessary interactions between researchers and clinicians with different subspecialties have to be initiated in order to optimize tissue metabolism for improved healing potentials. PMID:27535271

  17. MRI of the tibioastragalus anticus of Gruber muscle: a rare accessory muscle and normal anatomical variant.

    PubMed

    Berkowitz, Yaron; Mushtaq, Nadeem; Amiras, Dimitri

    2016-06-01

    We present the case of a 31-year-old man who sustained a hyperplantar flexion injury of his right ankle, and was evaluated using computed tomography and MRI to assess for osseous and ligamentous injury. The MRI and CT studies demonstrated a tibioastragalus anticus of Gruber (TAAG) muscle in the lower limb's anterior compartment. To our knowledge, the imaging of this muscle has not been previously described. The TAAG muscle arises from the lower third of the anterolateral tibia and the interosseous membrane. Its tendon passes laterally, deep to the tibialis anterior and extensor hallucis longus tendons, and inserts onto the anterior superolateral neck of the talus in a fan-like manner. Knowledge and recognition of this tendon are important for both diagnostic accuracy and surgical planning, and could potentially be used as a tendon transfer or graft in the appropriate clinical setting. The presence of this accessory muscle should not be confused with a pathological condition. PMID:27037809

  18. Mechanoreceptors of the ligaments and tendons around the knee.

    PubMed

    Çabuk, Haluk; Kuşku Çabuk, Fatmagül

    2016-09-01

    Proprioceptive inputs from the joints and limbs arise from mechanoreceptors in the muscles, ligaments and tendons. The knee joint has a wide range of movements, and proper neuroanatomical organization is critical for knee stability. Four ligaments (the anterior (ACL) and posterior (PCL) cruciate ligaments and the medial (MCL) and lateral (LCL) collateral ligaments) and four tendons (the semitendinosus (STT), gracilis (GT), popliteal (PoT), and patellar (PaT) tendons) from eight fresh frozen cadavers were harvested. Each harvested tissue was divided into its bone insertion side and its tendinous part for immunohistochemical examination using S100 staining. Freeman-Wyke's classification was used to identify the mechanoreceptors. The mechanoreceptors were usually located close to the bone insertion. Free nerve endings followed by Ruffini endings were the most common mechanoreceptors overall. No Pacini corpuscles were observed; free nerve endings and Golgi-like endings were most frequent in the PCL (PCL-PaT: P = 0.0.1, PCL-STT: P = 0.00), and Ruffini endings in the popliteal tendon (PoT-PaT: P = 0.00, Pot-STT: P = 0.00, PoT-LCL: P = 0.00, PoT-GT: P = 0.00, PoT-ACL: P = 0.09). The cruciate ligaments had more mechanoreceptors than the medial structures (MS) or the patellar tendon (CR-Pat: P = 0.000, CR-MS: P = 0.01). The differences in mechanoreceptor distributions between the ligaments and tendons could reflect the different roles of these structures in the dynamic coordination of knee motion. Clin. Anat. 29:789-795, 2016. © 2016 Wiley Periodicals, Inc. PMID:27376635

  19. Partial Tendon Release for Treatment of a Symptomatic Snapping Biceps Femoris Tendon

    PubMed Central

    Crow, Scott A.; Quach, Tony; McAllister, David R.

    2009-01-01

    Snapping of the biceps femoris tendon over the fibular head is an uncommon condition. Reported causes include an anomalous insertion of the tendon, trauma at the insertion site of the tendon, and an abnormality of the fibular head. This article reports a case of a painful snapping biceps femoris tendon in a patient without an anomalous tendon insertion or an abnormality of the fibular head. Partial release of the superior aspect of the tendon resulted in resolution of symptoms. PMID:23015904

  20. POSTERIOR CRUCIATE LIGAMENT RECONSTRUCTION WITH AUTOGRAFT OF THE DOUBLE SEMITENDINOSUS MUSCLES AND MIDDLE THIRD OF THE QUADRICEPS TENDON WITH DOUBLE FEMORAL AND SINGLE TIBIAL TUNNELS: CLINICAL RESULTS IN TWO YEARS FOLLOW UP

    PubMed Central

    Cury, Ricardo de Paula Leite; Severino, Nilson Roberto; Camargo, Osmar Pedro Arbix; Aihara, Tatsuo; de Oliveira, Victor Marques; Avakian, Roger

    2015-01-01

    Objective: To evaluate the surgical aspects that may offer good anatomic and functional results in posterior cruciate ligament (PCL) reconstruction using an autologous graft of the quadriceps tendon and double semitendinosus through a double femoral tunnel. Methods: Fourteen patients with isolated PCL lesions, instability and pain were operated on by arthroscopy and evaluated according to the International Knee Documentation Committee (IKDC) and Lysholm scales. Posterior knee laxity was examined with a KT1000 arthrometer. Results: The mean postoperative posterior side-to-side difference was between 0-2 mm in 57.1% of patients and between 3 and 5 mm in 35.7% of cases. The average Lysholm score was 93 points in the final follow-up. In the IKDC evaluation, 3 patients were graded A, 10 were graded B, and 1 patient was graded C. Conclusions: Double bundle arthroscopic PCL reconstruction based on the anatomical positioning of the tunnels, with double semitendinosus tendon and single quadriceps, provides a clinically evident reduction in symptoms and restores satisfactory stability, although no statistically significant difference was found due to the small sample. PMID:27027083

  1. Hyaluronic acid and tendon lesions

    PubMed Central

    Kaux, Jean-François; Samson, Antoine; Crielaard, Jean-Michel

    2015-01-01

    Summary Introduction recently, the viscoelastic properties of hyaluronic acid (HA) on liquid connective tissue have been proposed for the treatment of tendinopathies. Some fundamental studies show encouraging results on hyaluronic acid’s ability to promote tendon gliding and reduce adhesion as well as to improve tendon architectural organisation. Some observations also support its use in a clinical setting to improve pain and function. This literature review analyses studies relating to the use of hyaluronic acid in the treatment of tendinopathies. Methods this review was constructed using the Medline database via Pubmed, Scopus and Google Scholar. The key words hyaluronic acid, tendon and tendinopathy were used for the research. Results in total, 28 articles (in English and French) on the application of hyaluronic acid to tendons were selected for their relevance and scientific quality, including 13 for the in vitro part, 7 for the in vivo animal part and 8 for the human section. Conclusions preclinical studies demonstrate encouraging results: HA permits tendon gliding, reduces adhesions, creates better tendon architectural organisation and limits inflammation. These laboratory observations appear to be supported by limited but encouraging short-term clinical results on pain and function. However, controlled randomised studies are still needed. PMID:26958533

  2. Radionuclide surveillance of the allografted pancreas

    SciTech Connect

    George, E.A.; Salimi, Z.; Carney, K.; Castaneda, M.; Garvin, P.J.

    1988-04-01

    To determine the value of scintigraphy to detect posttransplantation complications of the allografted pancreas, we retrospectively reviewed 209 scintigrams obtained with /sup 99m/Tc-sulfur colloid (/sup 99m/Tc-SC) and /sup 99m/Tc-glucoheptonate (/sup 99m/Tc-GH). The scintigraphic studies were performed in 37 recipients of simultaneous renal and pancreatic allografts harvested from the same donor. /sup 99m/Tc-SC was used as an indicator of thrombotic vasculitis; pancreatic perfusion and blood-pool parameters were monitored with /sup 99m/Tc-GH. In 11 of the 37 recipients, scintigraphic abnormalities suggested posttransplantation infarction. Recurrent episodes of acute rejection of the pancreatic allograft, which always coincided with acute rejection of the renal allograft, were monitored in 24 recipients. Rejection-induced ischemic pancreatitis was suggested in 12 of the 24 recipients and persisted in 10 recipients for several weeks after improvement of renal allograft rejection. Pancreatic atrophy was suggested scintigraphically in 16 of the 24 recipients with recurrent episodes of rejection. Spontaneous pancreatic-duct obstruction and obstructive pancreatitis were associated with a scintigraphic pattern similar to that of rejection-induced ischemic pancreatitis. We concluded that the specific radionuclides used in this series are useful for the surveillance and assessment of posttransplantation pancreatic infarction, acute rejection, pancreatitis, and atrophy

  3. Inhibitory mechanisms following electrical stimulation of tendon and cutaneous afferents in the lower limb.

    PubMed

    Khan, Serajul I; Burne, John A

    2010-01-13

    Electrical stimulation of the Achilles tendon (TES) produced strong reflex depression (duration>250 ms) of a small background contraction in both heads of gastrocnemius (GA) via large diameter electrodes localized to the tendon. The inhibitory responses were produced without electrical (M wave) or mechanical (muscle twitch) signs of direct muscle stimulation. In this study, the contribution of presynaptic and postsynaptic mechanisms to the depression was investigated by studying conditioning effects of tendon afferent stimulation on the mechanical tendon reflex (TR) and magnetic motor evoked potential (MEP). TES completely inhibited the TR over an ISI of 300 ms that commenced before and continued during and after the period of voluntary EMG depression. Tendon afferent conditioning stimuli also partially inhibited the MEP, but over a short time course confined to the period of voluntary EMG depression. The strength and extended time course of tendon afferent conditioning of the TR and its failure to produce a similar depression of the MEP are consistent with a mechanism involving presynaptic inhibition of Ia terminals. Cutaneous (sural nerve) afferent conditioning partially inhibited the TR and MEP over a short time course (ISI <100 ms) resembling the inhibition seen in the voluntary EMG. This was consistent with the postsynaptic origin of cutaneous inhibition of the motoneurons. PMID:19850015

  4. Tendon structure and extracellular matrix components are affected by spasticity in cerebral palsy patients.

    PubMed

    Gagliano, Nicoletta; Menon, Alessandra; Martinelli, Carla; Pettinari, Letizia; Panou, Artemisia; Milzani, Aldo; Dalle-Donne, Isabella; Portinaro, Nicola Marcello

    2013-01-01

    We studied the effect of spasticity-induced overload on tendons from the gracilis and semitendinosus muscles from cerebral palsy (CP) and healthy subjects (CT) stained with haematoxylineosin, Sirius red and Alcian blue. Vascularity was also characterized using an anti-CD34 antibody. Light microscopy analysis of haematoxylin-eosin stained sections revealed that the overall structure of tendons was maintained, characterized by parallel and slightly wavy collagen fibers in both CT and CP tendons. However, hypercellularity, cell rounding, increased vascularity and lipoid degeneration were observed in CP samples. Sirius red stained collagen fibers were more evident in CP tendons, suggesting an increased collagen content induced by spasticity. Alcian blue staining revealed an overall increase of glycosaminoglycans in CP tendons as observed in tendinopathy. Our results suggest that CP-induced spasticity may be considered as a chronic, persisting and repetitive loading of tendons, inducing ECM remodeling as adaptive response to increased functional demand. At the same time, the evidence of some tendinopathic-like markers in CP tendons suggests that the chronic nature of the CP condition could represent a pathologic condition, possibly leading to a transient weakness of the tissue making it more susceptible to damage from cumulative loading until an overt tendinopathy develops. PMID:23885344

  5. Radiofrequency preserves histoarchitecture and enhances collagen synthesis in experimental tendon injury.

    PubMed

    Akamatsu, Flavia Emi; Saleh, Samir Omar; Hojaij, Flávio; Martinez, Carlos Augusto Real; Andrade, Mauro; Teodoro, Walcy Rosolia; Jacomo, Alfredo Luiz

    2016-05-01

    We investigated the action of radiofrequency (RF) on the healing process after inducing experimental lesions of the Achilles tendon in rats. Wistar rats were surgically subjected to bilateral partial transverse sectioning of the Achilles tendon. The right tendon was treated with radiofrequency (RFT), whereas the left tendon served as a control (CT). On the third postoperative day, the rats were divided into three experimental groups consisting of ten rats each, which were treated with monopolar radiofrequency (Tonederm™) until they were sacrificed on the 7th, 14th or 28th days. The histological specimens were studied for inflammatory cell content, collagen types I and III, immunostaining and morphometry. Total collagen were biochemically analyzed and to evalute fibroblast and myofibroblast proliferation by vimentin and α-actin smooth muscle immunohistochemistry methods. Statistical analysis was performed using the Student's t-test, the sign test and the Kruskal-Wallis test to compare tendons treated with radiofrequency with the non-treated tendons (α=5%; α=10%). Larger amounts of collagen I with hydroxyproline content and myofibroblast cells were clearly evident within 7 days (p<0.05). No difference was observed in the inflammatory cell content between the groups. We found better collagen arrangement with RF administration across the entire time studied. Radiofrequency administration preserves histoarchitecture and enhances collagen synthesis during the initial phases of cicatrization, suggesting that the treatment can provide improved stiffness during the most vulnerable phases of tendon healing. Clinical studies may include RF among the therapeutic tools in tendinous lesion management. PMID:26337455

  6. The tendon network of the fingers performs anatomical computation at a macroscopic scale.

    PubMed

    Valero-Cuevas, Francisco J; Yi, Jae-Woong; Brown, Daniel; McNamara, Robert V; Paul, Chandana; Lipson, Hood

    2007-06-01

    Current thinking attributes information processing for neuromuscular control exclusively to the nervous system. Our cadaveric experiments and computer simulations show, however, that the tendon network of the fingers performs logic computation to preferentially change torque production capabilities. How this tendon network propagates tension to enable manipulation has been debated since the time of Vesalius and DaVinci and remains an unanswered question. We systematically changed the proportion of tension to the tendons of the extensor digitorum versus the two dorsal interosseous muscles of two cadaver fingers and measured the tension delivered to the proximal and distal interphalangeal joints. We find that the distribution of input tensions in the tendon network itself regulates how tensions propagate to the finger joints, acting like the switching function of a logic gate that nonlinearly enables different torque production capabilities. Computer modeling reveals that the deformable structure of the tendon networks is responsible for this phenomenon; and that this switching behavior is an effective evolutionary solution permitting a rich repertoire of finger joint actuation not possible with simpler tendon paths. We conclude that the structural complexity of this tendon network, traditionally oversimplified or ignored, may in fact be critical to understanding brain-body coevolution and neuromuscular control. Moreover, this form of information processing at the macroscopic scale is a new instance of the emerging principle of nonneural "somatic logic" found to perform logic computation such as in cellular networks. PMID:17549909

  7. In-vitro tensile testing machine for vibration study of fresh rabbit Achilles tendon

    NASA Astrophysics Data System (ADS)

    Revel, Gian M.; Scalise, Alessandro; Scalise, Lorenzo; Pianosi, Antonella

    2001-10-01

    A lot of people, overall athletic one suffer from tendinitis or complete rupture of the Achilles tendon. This structure becomes inflamed and damaged mainly from a variety of mechanical forces and sometimes due to metabolic problems, such as diabetes or arthritis. Over the past three decades extensive studies have been performed on the structural and mechanical properties of Achilles tendon trying to explain the constitutive equations to describe and foresee tendon behavior. Among the various mechanical parameters, the vibrational behavior is also of interest. Several investigations are performed in order to study how the Achilles tendon vibrations influence the response of the muscle proprioception and human posture. The present article describes how in vitro tensile experiments can be performed, taking into account the need to simulate physiological condition of Achilles tendon and thus approaching some opened problems in the design of the experimental set-up. A new system for evaluating tendon vibrations by non contact techniques is proposed. Preliminary simple elongation tests are made extracting the main mechanical parameters: stress and strain at different fixed stretches, in order to characterize the tissue. Finally, a vibration study is made at each pretensioned tendon level evaluating the oscillating curves caused by a small hammer.

  8. [Isokinetic assessment with two years follow-up of anterior cruciate ligament reconstruction with patellar tendon or hamstring tendons].

    PubMed

    Condouret, J; Cohn, J; Ferret, J-M; Lemonsu, A; Vasconcelos, W; Dejour, D; Potel, J-F

    2008-12-01

    This retrospective multicentric study was designed to assess the outcome of quadriceps and hamstrings muscles two years after Anterior Cruciate Ligament (ACL) reconstruction and compare muscles recovery depending on the type of graft and individual variables like age, gender, level of sport, but also in terms of discomfort, pain and functional score. The results focused on the subjective and objective IKDC scores, SF36, the existence or not of subjective disorders and their location. The review included isokinetic muscle tests concentric and eccentric extensors/flexors but also internal rotators/external rotators with analysis of mean work and mean power. One hundred and twenty-seven patients were included with an average age 29 years (+/-10). They all had an ACL reconstruction with patellar tendon or hamstring tendon with single or double bundles. In the serie, the average muscles deficit at two years was 10% for the flexors and extensors but with a significant dispersion. Significant differences were not noted in the mean values of all parameters in term of sex or age (over 30 years or not), neither the type of sport, nor of clinical assessment (Class A and B of objective IKDC score), nor the existence of anterior knee pain. There was a relationship between the level of extensor or flexor recovery and the quality of functional results with minimal muscle deficits close to 5% if the IKDC score was over 90 and deficits falling to 15% in the group with IKDC score less than 90. The type of reconstruction (patellar tendon versus hamstrings) had an influence on the muscle deficit. For extensors, the recovery was the same in the two groups, more than 90% at two years and the distribution of these two populations by level of deficit was quite the same. For flexors, residual deficits were significantly higher in the hamstrings group on the three studied parameters whatever the speed and the type of contraction (concentric or eccentric) with an average deficit of 14 to 18

  9. Trichinella spiralis infection changes immune response in mice performed abdominal heterotopic cardiac transplantation and prolongs cardiac allograft survival time.

    PubMed

    Deng, Gengguo; Deng, Ronghai; Yao, Jianping; Liao, Bing; Chen, Yinghua; Wu, Zhongdao; Hu, Hongxing; Zhou, Xingwang; Ma, Yi

    2016-01-01

    Allograft rejection has been an obstacle for long-term survival of patients for many years. Current strategies for transplant rejection are not as optimal as we expected, especially for long-term treatments. Trichinella spiralis, a nematode parasitized in mammalian muscle and as an invader, maintains harmonious with host in the long term by evading host immune attack. To determine whether T. spiralis infection impacts on allograft rejection, we performed mice cardiac allograft transplantation model by using BALB/c (H-2(b)) mice as donors and C57BL/6 (H-2(b)) mice orally infected with 300 muscle larvae for 28 days as recipients. Graft survival was monitored by daily palpation of the abdomen; histologic change was observed by H&E stain; and CD4(+), CD8(+), CD4(+)IFN-γ(+), and CD4(+)IL-17(+) T cells and regulatory T cells were examined with the use of flow cytometry. Serum cytokine levels were measured by Luminex. Finally, we found that mean survival time of cardiac allografts in T. spiralis group was 23.40 ± 1.99 days, while the vehicle control group was 10.60 ± 0.75 days. Furthermore, we observed alleviated histological changes in the heart allograft, decreased corresponding CD8(+) T cells, suppressed Th1 and Th17 responses, and increased regulatory T cell frequency in a murine cardiac transplantation model at day 7 post-transplantation in experimental group. These data suggest that T. spiralis infection resulted in prolonged allograft survival following murine cardiac transplantation, with suppressed Th1/Th17 responses and augmented regulatory T cells. PMID:26481486

  10. Force estimation from ensembles of Golgi tendon organs

    NASA Astrophysics Data System (ADS)

    Mileusnic, M. P.; Loeb, G. E.

    2009-06-01

    Golgi tendon organs (GTOs) located in the skeletal muscles provide the central nervous system with information about muscle tension. The ensemble firing of all GTO receptors in the muscle has been hypothesized to represent a reliable measure of the whole muscle force but the precision and accuracy of that information are largely unknown because it is impossible to record activity simultaneously from all GTOs in a muscle. In this study, we combined a new mathematical model of force sampling and transduction in individual GTOs with various models of motor unit (MU) organization and recruitment simulating various normal, pathological and neural prosthetic conditions. Our study suggests that in the intact muscle the ensemble GTO activity accurately encodes force information according to a nonlinear, monotonic relationship that has its steepest slope for low force levels and tends to saturate at the highest force levels. The relationship between the aggregate GTO activity and whole muscle tension under some pathological conditions is similar to one seen in the intact muscle during rapidly modulated, phasic excitation of the motor pool (typical for many natural movements) but quite different when the muscle is activated slowly or held at a given force level. Substantial deviations were also observed during simulated functional electrical stimulation.

  11. Risk factors of cardiac allograft vasculopathy

    PubMed Central

    Szczurek, Wioletta; Gąsior, Mariusz; Zembala, Marian

    2015-01-01

    Despite advances in prevention and treatment of heart transplant rejection, development of cardiac allograft vasculopathy (CAV) remains the leading factor limiting long-term survival of the graft. Cardiac allograft vasculopathy etiopathogenesis is not fully understood, but a significant role is attributed to endothelial cell damage, caused by immunological and non-immunological mechanisms. Immunological factors include the differences between the recipient's and the donor's HLA systems, the presence of alloreactive antibodies and episodes of acute rejection. Among the non-immunological factors the most important are the age of the donor, ischemia-reperfusion injury and cytomegalovirus infection. The classical cardiovascular risk factors (diabetes, hypertension, obesity and hyperlipidemia) are also important. This study presents an up-to-date overview of current knowledge on the vasculopathy etiopathogenesis and the role played by endothelium and inflammatory processes in CAV, and it also investigates the factors which may serve as risk markers of cardiac allograft vasculopathy. PMID:26855649

  12. Pectoralis Major Muscle Rupture Repair: Technique Using Unicortical Buttons

    PubMed Central

    Metzger, Paul D.; Bailey, James R.; Filler, Robert D.; Waltz, Robert A.; Provencher, Matthew T.; Dewing, Christopher B.

    2012-01-01

    Over the past few decades, there has been increased awareness of pectoralis major muscle injuries necessitating further evaluation of management options and, in particular, surgical repair. Injury typically occurs when an eccentric load is applied to the muscle, such as with bench pressing, and failure usually occurs through the tendon. Although nonoperative management is sometimes appropriate, given the injury's propensity for young, active male patients, surgical intervention is often warranted. Because the injury typically occurs at the muscle-tendon interface, surgery focuses on repair of the avulsed tendon into its anatomic attachment site. We describe the use of a unicortical suture button to repair the ruptured tendon. This technique achieves the goals of strong fixation and anatomic repair of the tendon back into its native footprint. PMID:23766966

  13. Using a Posterior Compartment Fasciotomy and Paratenon Closure in Acute Achilles Tendon Repair.

    PubMed

    Saper, David; Lybrand, Kyle; Creevy, William; Li, Xinning

    2016-07-01

    Soft tissue management, dissection, and handling are of paramount importance during Achilles tendon repair. Although surgical repairs of Achilles tendons have predictably excellent outcomes, complications including wound infection and stiffness are not uncommon. The authors' surgical technique for Achilles tendon repair includes tagging the posterior paratenon for later layered repair and incising the posterior fascia, exposing the flexor hallucis longus muscle belly. This posterior compartment fasciotomy allows for both hematoma evacuation away from the tenuous posterior skin and mobilization of the posterior paratendon for complete closure over the repaired Achilles tendon. With this modified technique, the authors report a 1% infection rate and a 1% failure rate. [Orthopedics. 2016; 39(4):e790-e793.]. PMID:27158828

  14. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    PubMed Central

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  15. A Case of Reverse Palmaris Longus Muscle- An Additional Muscle in the Anterior Compartment of the Forearm

    PubMed Central

    Bhat, Ashwini Lagadamane Sathynarayana; Gadahad, Mohandas Rao Kappettu

    2016-01-01

    It is uncommon to have additional muscles in the upper limb. Some of them may restrict the movements or compress the nerves and vessels, while others may go unnoticed. During the routine dissection for undergraduate medical students, we observed an additional muscle in the anterior compartment of the forearm in about 60-year-old male cadaver. The muscle had a prominent belly and a long tendon. Distally, it was attached to the flexor retinaculum by a short and thick tendon. Proximally, long tendon of the muscle passed between the flexor carpi ulnaris and palmaris longus and was attached to the common aponeurosis shared by the extensor carpi ulnaris and flexor digitorum profundus muscles. The additional muscle belly was supplied by a branch from the anterior interosseous nerve. The ulnar nerve and artery was passing deep to the fleshy belly of the muscle. The muscle reported here might compress the ulnar nerve and artery and may produce neurovascular symptoms. On the other hand, the tendon and fleshy belly of the muscle could be useful in muscle/tendon grafts. The observations made by us in the present case will supplement our knowledge of variations of the muscles in this region which could be useful for surgeons during the forearm and hand surgeries. PMID:27134851

  16. A Case of Reverse Palmaris Longus Muscle- An Additional Muscle in the Anterior Compartment of the Forearm.

    PubMed

    Marpalli, Sapna; Bhat, Ashwini Lagadamane Sathynarayana; Gadahad, Mohandas Rao Kappettu

    2016-03-01

    It is uncommon to have additional muscles in the upper limb. Some of them may restrict the movements or compress the nerves and vessels, while others may go unnoticed. During the routine dissection for undergraduate medical students, we observed an additional muscle in the anterior compartment of the forearm in about 60-year-old male cadaver. The muscle had a prominent belly and a long tendon. Distally, it was attached to the flexor retinaculum by a short and thick tendon. Proximally, long tendon of the muscle passed between the flexor carpi ulnaris and palmaris longus and was attached to the common aponeurosis shared by the extensor carpi ulnaris and flexor digitorum profundus muscles. The additional muscle belly was supplied by a branch from the anterior interosseous nerve. The ulnar nerve and artery was passing deep to the fleshy belly of the muscle. The muscle reported here might compress the ulnar nerve and artery and may produce neurovascular symptoms. On the other hand, the tendon and fleshy belly of the muscle could be useful in muscle/tendon grafts. The observations made by us in the present case will supplement our knowledge of variations of the muscles in this region which could be useful for surgeons during the forearm and hand surgeries. PMID:27134851

  17. Extensive Loss of Tibialis Anterior Tendon: Surgical Repair With Split Tendon Transfer of Tibialis Posterior Tendon: A Case Report.

    PubMed

    Miyazaki, Tsuyoshi; Uchida, Kenzo; Kokubo, Yasuo; Inukai, Tomoo; Sakamoto, Takumi; Yamagishi, Atsushi; Kitade, Makoto; Baba, Hisatoshi

    2016-01-01

    Extensive damage of the tibialis anterior tendon is rare and mainly caused by trauma. Surgical treatment of these injuries can become challenging owing to the limited availability of autogenous graft resources for reconstruction of the defect. In the present case report, we describe a large defect in the midfoot soft tissue after a traffic injury, which included complete loss of the tibialis anterior tendon. The tendon was reconstructed by split tendon transfer of the tibialis posterior tendon without sacrificing function, which was confirmed by the follow-up examination at 6 years after injury. We believe split tendon transfer of the tibialis posterior tendon can be one of the treatment options for patients with extensive disruption of the tibialis anterior tendon. PMID:26213163

  18. Autograft Substitutes: Conduits and Processed Nerve Allografts.

    PubMed

    Safa, Bauback; Buncke, Gregory

    2016-05-01

    Manufactured conduits and allografts are viable alternatives to direct suture repair and nerve autograft. Manufactured tubes should have gaps less than 10 mm, and ideally should be considered as an aid to the coaptation. Processed nerve allograft has utility as a substitute for either conduit or autograft in sensory nerve repairs. There is also a growing body of evidence supporting their utility in major peripheral nerve repairs, gap repairs up to 70 mm in length, as an alternative source of tissue to bolster the diameter of a cable graft, and for the management of neuromas in non-reconstructable injuries. PMID:27094886

  19. Meniscal allograft transplantation: rationale for treatment.

    PubMed

    Smith, N A; Costa, M L; Spalding, T

    2015-05-01

    The anatomy and microstructure of the menisci allow the effective distribution of load across the knee. Meniscectomy alters the biomechanical environment and is a potent risk factor for osteoarthritis. Despite a trend towards meniscus-preserving surgery, many tears are irreparable, and many repairs fail. Meniscal allograft transplantation has principally been carried out for pain in patients who have had a meniscectomy. Numerous case series have reported a significant improvement in patient-reported outcomes after surgery, but randomised controlled trials have not been undertaken. It is scientifically plausible that meniscal allograft transplantation is protective of cartilage, but this has not been established clinically to date. PMID:25922450

  20. Achilles tendon rupture rehabilitation

    PubMed Central

    Kearney, R. S.; Parsons, N.; Underwood, M.; Costa, M. L.

    2015-01-01

    Objectives The evidence base to inform the management of Achilles tendon rupture is sparse. The objectives of this research were to establish what current practice is in the United Kingdom and explore clinicians’ views on proposed further research in this area. This study was registered with the ISRCTN (ISRCTN68273773) as part of a larger programme of research. Methods We report an online survey of current practice in the United Kingdom, approved by the British Orthopaedic Foot and Ankle Society and completed by 181 of its members. A total of ten of these respondents were invited for a subsequent one-to-one interview to explore clinician views on proposed further research in this area. Results The survey showed wide variations in practice, with patients being managed in plaster cast alone (13%), plaster cast followed by orthoses management (68%), and orthoses alone (19%). Within these categories, further variation existed regarding the individual rehabilitation facets, such as the length of time worn, the foot position within them and weight-bearing status. The subsequent interviews reflected this clinical uncertainty and the pressing need for definitive research. Conclusions The gap in evidence in this area has resulted in practice in the United Kingdom becoming varied and based on individual opinion. Future high-quality randomised trials on this subject are supported by the clinical community. Cite this article: Bone Joint Res 2015;4:65–9 PMID:25868938

  1. Dynamic creep and pre-conditioning of the Achilles tendon in-vivo.

    PubMed

    Hawkins, David; Lum, Corey; Gaydos, Diane; Dunning, Russell

    2009-12-11

    Warm-up exercises are often advocated prior to strenuous exercise, but the warm-up duration and effect on muscle-tendon behavior are not well defined. The gastrocnemius-Achilles tendon complexes of 18 subjects were studied to quantify the dynamic creep response of the Achilles tendon in-vivo and the warm-up dose required for the Achilles tendon to achieve steady-state behavior. A custom testing chamber was used to determine each subject's maximum voluntary contraction (MVC) during an isometric ankle plantar flexion effort. The subject's right knee and ankle were immobilized for one hour. Subjects then performed over seven minutes of cyclic isometric ankle plantar flexion efforts equal to 25-35% of their MVC at a frequency of 0.75 Hz. Ankle plantar flexion effort and images from dual ultrasound probes located over the gastrocnemius muscle-Achilles tendon and the calcaneus-Achilles tendon junction were acquired for eight seconds at the start of each sequential minute of the activity. Ultrasound images were analyzed to quantify the average relative Achilles tendon strain at 25% MVC force (epsilon(25%MVC)) for each minute. The epsilon(25%MVC) increased from 0.3% at the start of activity to 3.3% after seven minutes, giving a total dynamic creep of ~3.0%. The epsilon(25%MVC) increased by more than 0.56% per minute for the first five minutes and increased by less than 0.13% per minute thereafter. Therefore, following a period of inactivity, a low intensity warm-up lasting at least six minutes or producing 270 loading cycles is required for an Achilles tendon to reach a relatively steady-state behavior. PMID:19762028

  2. The effects of test environment and cyclic stretching on the failure properties of human patellar tendons

    SciTech Connect

    Haut, R.C.; Powlison, A.C. )

    1990-07-01

    There is a need to document the mechanical properties of patellar tendon allografts used for reconstructive surgery of the damaged anterior cruciate ligament, especially the effects of irradiation sterilization. The purpose of this study was to investigate the influences of in vitro test environment and low-level cyclic stretching prior to failure tests on nonirradiated and irradiated human graft tissues. Bilateral patellar tendons were split and each half processed accordingly. Some graft tissues were stretched cyclically at 2.5 mm deformation before failure. Experiments were performed in a 37 degrees C saline bath or with tissues moistened with a drip of the same. The irradiated grafts relaxed less and generated less slack length in the drip environment than the nonirradiated controls. Cyclic stretching did not alter failure characteristics of either graft tissue. While no significant differences in the tensile responses or failure characteristics were noted for irradiated and nonirradiated grafts in the drip, in the bath environment the nonirradiated tissues had greater strength and modulus. This resulted in there being a significant difference between irradiated and nonirradiated tissue responses in a heated saline bath environment. These experimental results exemplify the need to control in vitro test environments in the evaluation of various sterilization and preservation protocols for soft tissue allografts.

  3. [Proximal and distal ruptures of the biceps brachii tendon].

    PubMed

    Klonz, A; Loitz, D; Reilmann, H

    2003-09-01

    Proximal ruptures. Ruptures of the long head of the M. biceps humeri are commonly caused by degenerative changes within the tendon. Non-operative treatment gives good results, the loss of power regarding elbow flexion and supination amounts to only 8-21%. Refixation may be indicated for cosmetic reasons and offers a small but evident improvement of flexion and supination power. Deformity of the slipped muscle can be corrected effectively. Residual complaints after conservative treatment often result from associated subacromial problems. Distal ruptures. Ruptures of the distal tendon should be treated operatively. The loss of power after conservative treatment is evident (30-40% for flexion, >50% for supination). Extra-anatomical tenodesis to the brachialis muscle or anatomical fixation to the radial tuberosity can be applied. Flexion power and cosmesis can be addressed by both techniques. If supination strength is to be restored, the tendon has to be fixed anatomically. Preparation of the tuberosity bears the risk of heterotopic ossification or nerve damage. Mini-open techniques, using only a limited anterior approach, may decrease risks. PMID:14959750

  4. Common Disorders of the Achilles Tendon

    MedlinePlus

    ... stress on the tendon too quickly, leading to micro-injury of the tendon fibers. Due to this ... with over-pronation or gait abnormalities, custom orthotic devices may be prescribed. Night splints. Night splints help ...

  5. Lineage Tracing of Resident Tendon Progenitor Cells during Growth and Natural Healing

    PubMed Central

    Dyment, Nathaniel A.; Hagiwara, Yusuke; Matthews, Brya G.; Li, Yingcui; Kalajzic, Ivo; Rowe, David W.

    2014-01-01

    Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth and natural healing is poorly characterized. Therefore, we utilized 1) an inducible Cre driven by alpha smooth muscle actin (SMACreERT2), that identifies mesenchymal progenitors, 2) a constitutively active Cre driven by growth and differentiation factor 5 (GDF5Cre), a critical regulator of joint condensation, in combination with 3) an Ai9 Cre reporter to permanently label SMA9 and GDF5-9 populations and their progeny. In growing mice, SMA9+ cells were found in peritendinous structures and scleraxis-positive (ScxGFP+) cells within the tendon midsubstance and myotendinous junction. The progenitors within the tendon midsubstance were transiently labeled as they displayed a 4-fold expansion from day 2 to day 21 but reduced to baseline levels by day 70. SMA9+ cells were not found within tendon entheses or ligaments in the knee, suggesting a different origin. In contrast to the SMA9 population, GDF5-9+ cells extended from the bone through the enthesis and into a portion of the tendon midsubstance. GDF5-9+ cells were also found throughout the length of the ligaments, indicating a significant variation in the progenitors that contribute to tendons and ligaments. Following tendon injury, SMA9+ paratenon cells were the main contributors to the healing response. SMA9+ cells extended over the defect space at 1 week and differentiated into ScxGFP+ cells at 2 weeks, which coincided with increased collagen signal in the paratenon bridge. Thus, SMA9-labeled cells represent a unique progenitor source that contributes to the tendon midsubstance, paratenon, and myotendinous junction during growth and natural healing, while GDF5 progenitors contribute to tendon enthesis and ligament development. Understanding the mechanisms that regulate the expansion and differentiation of these progenitors may prove crucial to improving future repair strategies. PMID:24759953

  6. Allograft rejection in cattle with bovine leukocyte adhesion deficiency.

    PubMed

    Müller, K E; Rutten, V P; Becker, C K; Hoek, A; Bernadina, W E; Wentink, G H; Figdor, C G

    1995-09-01

    In the present investigation cell-mediated immunity in animals with bovine leukocyte adhesion deficiency (BLAD) was studied by means of skin transplantation experiments. Autograft and allograft behaviour in animals with BLAD was compared with the behaviour of simultaneously transplanted autografts and allografts in healthy controls. Allograft survival time was prolonged in three BLAD cattle (28, 30, and 72 days) compared to six healthy controls (12-14 days). When transplantations were repeated on one animal with BLAD using skin grafts from the same donor, accelerated rejection was observed (allograft survival time decreased from 72 days at primary to 35 days at secondary and to 21 days at tertiary transplantation), suggesting the development of immunological memory. Graft-infiltrating lymphocytes that were obtained from allograft biopsies during the period of rejection, were shown to be from recipient origin (beta 2-integrin negative). Our findings demonstrate that, although prolonged allograft survival is observed in cattle with BLAD, skin allografts are ultimately rejected. PMID:8533316

  7. A Flowable Placental Tissue Matrix Allograft in Lower Extremity Injuries: A Pilot Study.

    PubMed

    Lullove, Eric

    2015-06-01

    Damaged connective tissue commonly leads to lower extremity injuries. These injuries can result in inflammation, reduced mobility, and chronic pain. Conservative treatment may include orthotics, offloading the injury, physical therapy, and/or NSAIDs. If conservative treatment fails, surgical intervention may be required. Even after successful surgery, these procedures often result in reduced joint mobility and tendon or ligament strength. A novel flowable tissue matrix allograft, derived from human placental connective tissue, has recently been made available for minimally invasive treatment of damaged or inadequate tissue  (PX50®, Human Regenerative Technologies LLC, Redondo Beach, CA). Based on the universal role of connective tissue in the body, and its reported antimicrobial, anti-adhesive, and anti-inflammatory properties, we assessed the effects of using this placental tissue matrix in the treatment of a series of lower extremity injuries. In this pilot study, 9 of 10 patients reported pain levels of 2 or less by week four using the VAS pain scale. This short-term pilot study effectively shows that injectable, flowable amniotic allografts can be used for orthopedic sports injuries of the lower extremities. PMID:26180699

  8. The Impact of Infection on Chronic Allograft Dysfunction and Allograft Survival After Solid Organ Transplantation.

    PubMed

    Martin-Gandul, C; Mueller, N J; Pascual, M; Manuel, O

    2015-12-01

    Infectious diseases after solid organ transplantation (SOT) are a significant cause of morbidity and reduced allograft and patient survival; however, the influence of infection on the development of chronic allograft dysfunction has not been completely delineated. Some viral infections appear to affect allograft function by both inducing direct tissue damage and immunologically related injury, including acute rejection. In particular, this has been observed for cytomegalovirus (CMV) infection in all SOT recipients and for BK virus infection in kidney transplant recipients, for community-acquired respiratory viruses in lung transplant recipients, and for hepatitis C virus in liver transplant recipients. The impact of bacterial and fungal infections is less clear, but bacterial urinary tract infections and respiratory tract colonization by Pseudomonas aeruginosa and Aspergillus spp appear to be correlated with higher rates of chronic allograft dysfunction in kidney and lung transplant recipients, respectively. Evidence supports the beneficial effects of the use of antiviral prophylaxis for CMV in improving allograft function and survival in SOT recipients. Nevertheless, there is still a need for prospective interventional trials assessing the potential effects of preventive and therapeutic strategies against bacterial and fungal infection for reducing or delaying the development of chronic allograft dysfunction. PMID:26474168

  9. Irxl1 mutant mice show reduced tendon differentiation and no patterning defects in musculoskeletal system development.

    PubMed

    Kimura, Wataru; Machii, Masashi; Xue, XiaoDong; Sultana, Nishat; Hikosaka, Keisuke; Sharkar, Mohammad T K; Uezato, Tadayoshi; Matsuda, Masashi; Koseki, Haruhiko; Miura, Naoyuki

    2011-01-01

    Irxl1 (Iroquois-related homeobox like-1) is a newly identified three amino-acid loop extension (TALE) homeobox gene, which is expressed in various mesoderm-derived tissues, particularly in the progenitors of the musculoskeletal system. To analyze the roles of Irxl1 during embryonic development, we generated mice carrying a null allele of Irxl1. Mice homozygous for the targeted allele were viable, fertile, and showed reduced tendon differentiation. Skeletal morphology and skeletal muscle weight in Irxl1-knockout mice appeared normal. Expression patterns of several marker genes for cartilage, tendon, and muscle progenitors in homozygous mutant embryos were unchanged. These results suggest that Irxl1 is required for the tendon differentiation but dispensable for the patterning of the musculoskeletal system in development. PMID:21254332

  10. Madelung Deformity and Extensor Tendon Rupture.

    PubMed

    Shahcheraghi, Gholam Hossain; Peyman, Maryam; Mozafarian, Kamran

    2015-07-01

    Extensor tendon rupture in chronic Madelung deformity, as a result of tendon attrition on the dislocated distal ulna, is a rare occurrence. It is, however, seen more often in rheumatoid arthritis. There are few case reports in the English-language literature on this issue. We report a case of multiple tendon ruptures in a previously undiagnosed Madelung deformity. PMID:26161772

  11. Rerouting extensor pollicis longus tendon transfer.

    PubMed

    Colantoni Woodside, Julie; Bindra, Randip R

    2015-04-01

    Following radial nerve palsy, loss of the extensor pollicis longus (EPL), abductor pollicis longus and extensor pollicis brevis tendons results in loss of thumb extension and radial abduction. Multiple tendon transfers are described to address the loss of thumb extension following radial palsy utilizing the palmaris longus or flexor digitorum sublimis transferred to the EPL tendon. Owing to its ulnar vector of pull, the EPL tendon is a secondary adductor of the thumb, and in order to mitigate the tendency for thumb adduction, the EPL tendon is divided at the wrist and brought subcutaneously to the radial side of the wrist for repair to the donor tendon to improve the line of pull for the donor tendon. We describe the use of a technique to reroute the EPL tendon through the first compartment in a retrograde fashion prior to repair with the donor tendon on the radial side of the wrist. The use of the first dorsal compartment provides a pulley to maintain the position of the transfer and to prevent potential bowstringing of the tendon as wrist flexion and thumb extension are attempted. because the repair is performed proximal to the extensor retinaculum, the donor tendon length is not compromised. Because the tendon is redirected through the first dorsal compartment and inserts into the distal phalanx, a single transfer attempts to restores both thumb extension and radial abduction. PMID:25746145

  12. Staged tendon grafts and soft tissue coverage

    PubMed Central

    Elliot, David

    2011-01-01

    The objective of the two-staged flexor tendon method is to improve the predictability of final results in difficult problems dealing with tendon reconstruction. This article reviews the evolution and benefits of this procedure. It also considers the use of the technique to help deal with problems requiring pulley and skin reconstruction simultaneously with re-constituting the flexor tendon system. PMID:22022043

  13. Tenascin-C and human tendon degeneration.

    PubMed Central

    Riley, G. P.; Harrall, R. L.; Cawston, T. E.; Hazleman, B. L.; Mackie, E. J.

    1996-01-01

    We investigated the distribution of tenascin in supraspinatus tendons to determine whether an alteration in tenascin expression was associated with human tendon degeneration. Tenascin was present in all of the tendons studied, although with two distinct patterns of expression. First, tenascin was associated with organized, fibrous regions of the tendon matrix that were typical of the normal tendon structure. This distribution is consistent with a role for tenascin in collagen fibril organization, perhaps maintaining the interface between fibrils and adjacent structures. Second, although tenascin was generally absent from poorly organized matrix in degenerate tendons, it was strongly associated with some rounded cells in disorganized fibrocartilaginous regions that were more abundant in pathological specimens. Tenascin was also found around infiltrating blood vessels, with more intense staining associated with a mononuclear cell infiltrate. Western blotting of tendon extracts showed differences in tenascin isoform expression, with only the small (200-kd) tenascin isoform found in normal tendons. Degenerate tendons also expressed the 300-kd isoform, consistent with a role for the larger tenascin isoform in tendon disease, potentially stimulating tenocyte proliferation, cell rounding, and fibrocartilaginous change. Proteolytic fragments of tenascin were detected but only in ruptured tendons, an indication of matrix remodeling in degenerate tendons, with fragment sizes consistent with the activity of matrix metalloproteinase enzymes. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8780397

  14. Tendon tissue engineering: Adipose 1 derived stem cell and GDF-5 mediated regeneration using electrospun matrix systems

    PubMed Central

    James, R; Kumbar, S G; Laurencin, C T; Balian, G; Chhabra, A B

    2011-01-01

    Tendon tissue engineering with a biomaterial scaffold that mimics the tendon extracellular matrix (ECM) and is biomechanically suitable when combined with readily available autologous cells may provide successful regeneration of defects in tendon. Current repair strategies using suitable autografts and freeze-dried allografts lead to a slow repair process that is sub-optimal and fails to restore function, particularly in difficult clinical situations such as zone II flexor tendon injuries of the hand. We have investigated the effect of GDF-5 on cell proliferation and gene expression by primary rat adipose-derived stromal cells (ADSCs) that were cultured on poly(DL-lactide-co-glycolide) PLAGA fiber scaffold and compared to PLAGA 2D film scaffold. The electrospun scaffold mimics the collagen fiber bundles present in native tendon tissue, and supports the adhesion and proliferation of multipotent ADSCs. Gene expression of scleraxis, the neotendon marker was upregulated 7 – 8 fold at 1 week with GDF-5 treatment when cultured on 3D electrospun scaffold, and was significantly higher at 2 weeks compared to 2D films with or without GDF-5 treatment. Expression of the genes that encode the major tendon ECM protein, collagen type I, was increased by 4 fold starting at 1 week on treatment with 100ng/mL GDF-5, and at all time points the expression was significantly higher compared to 2D films irrespective of GDF-5 treatment. Thus stimulation with GDF-5 can modulate primary ADSCs on PLAGA fiber scaffold to produce a soft, collagenous musculoskeletal tissue that fulfills the need for tendon regeneration. PMID:21436509

  15. Meniscal Allograft Transplantation: State of the Art.

    PubMed

    Trentacosta, Natasha; Graham, William C; Gersoff, Wayne K

    2016-06-01

    Meniscal allograft transplantation has evolved over the years to provide a state-of-the-art technique for the sports medicine surgeon to utilize in preserving contact mechanics and function of the knee in irreparable meniscal pathology. However, this procedure continues to spark considerable debate on proper tissue processing techniques, acceptable indications, methods of implantation, and potential long-term outcomes. PMID:27135295

  16. Achilles tendon reflex measuring system

    NASA Astrophysics Data System (ADS)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  17. Effects of resistance training on tendon mechanical properties and rapid force production in prepubertal children

    PubMed Central

    Waugh, C. M.; Korff, T.; Fath, F.

    2014-01-01

    Children develop lower levels of muscle force, and at slower rates, than adults. Although strength training in children is expected to reduce this differential, a synchronous adaptation in the tendon must be achieved to ensure forces continue to be transmitted to the skeleton with efficiency while minimizing the risk of strain-related tendon injury. We hypothesized that resistance training (RT) would alter tendon mechanical properties in children concomitantly with changes in force production characteristics. Twenty prepubertal children (age 8.9 ± 0.3 yr) were equally divided into control (nontraining) and experimental (training) groups. The training group completed a 10-wk RT intervention consisting of 2–3 sets of 8–15 plantar flexion contractions performed twice weekly on a recumbent calf-raise machine. Achilles tendon properties (cross-sectional area, elongation, stress, strain, stiffness, and Young's modulus), electromechanical delay (EMD; time between the onset of muscle activity and force), rate of force development (RFD; slope of the force-time curve), and rate of electromyographic (EMG) increase (REI; slope of the EMG time curve) were measured before and after RT. Tendon stiffness and Young's modulus increased significantly after RT in the experimental group only (∼29% and ∼25%, respectively); all other tendon properties were not significantly altered, although there were mean decreases in both peak tendon strain and strain at a given force level (14% and 24%, respectively; not significant) which may have implications for tendon injury risk and muscle fiber mechanics. A decrease of ∼13% in EMD was found after RT for the experimental group, which paralleled the increase in tendon stiffness (r = −0.59); however, RFD and REI were unchanged. The present data show that the Achilles tendon adapts to RT in prepubertal children and is paralleled by a change in EMD, although the magnitude of this change did not appear to be sufficient to influence RFD

  18. Synthesis, development, characterization and effectiveness of bovine pure platelet gel-collagen-polydioxanone bioactive graft on tendon healing.

    PubMed

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid

    2015-06-01

    Bovine platelet gel (BPG) is an accessible and cost-effective source of growth factors which may have a value in tendon regenerative medicine. We produced a collagen implant (CI) as a tendon proper, covered it with polydioxanone (PDS) sheath to simulate paratenon and finally embedded the BPG as an active source of growth factor within the bioimplant to test whether BPG would be able to accelerate and enhance tendon regeneration and repair. After in vitro characterization of the bioactive grafts, the grafts were implanted in rabbit large tendon defect model. Untreated tendons and tendons treated with either CI or CI-PDS were served as controls for the CI-PDS-BPG. The animals were investigated clinically, ultrasonographically and haematologically for 120 days. After euthanasia, dry matter content, water uptake and delivery characteristics and also gross morphological, histopathological and scanning electron microscopic features of the healing tendons were assessed. In vitro, the activated platelets in the scaffold, released their growth factors significantly more than the controls. BPG also increased cell viability, and enhanced cellular differentiation, maturation and proliferation inside the CI-PDS compared with the controls. In vivo, the BPG modulated inflammation, increased quality and rate of fibroplasia and produced a remodelled tendon that had significantly higher collagen content and superior collagen fibril and fibre differentiation than controls. Treatment also significantly improved tendon water uptake and delivery characteristics, animals' serum PDGF level, CI-PDS biocompatibility and biodegradability and reduced peritendinous adhesions, muscle fibrosis and atrophy. BPG was effective on tendon healing and CI-PDS-BPG may be a valuable bioscaffold in tendon reconstructive surgery. PMID:25702535

  19. Synthesis, development, characterization and effectiveness of bovine pure platelet gel-collagen-polydioxanone bioactive graft on tendon healing

    PubMed Central

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid

    2015-01-01

    Bovine platelet gel (BPG) is an accessible and cost-effective source of growth factors which may have a value in tendon regenerative medicine. We produced a collagen implant (CI) as a tendon proper, covered it with polydioxanone (PDS) sheath to simulate paratenon and finally embedded the BPG as an active source of growth factor within the bioimplant to test whether BPG would be able to accelerate and enhance tendon regeneration and repair. After in vitro characterization of the bioactive grafts, the grafts were implanted in rabbit large tendon defect model. Untreated tendons and tendons treated with either CI or CI-PDS were served as controls for the CI-PDS-BPG. The animals were investigated clinically, ultrasonographically and haematologically for 120 days. After euthanasia, dry matter content, water uptake and delivery characteristics and also gross morphological, histopathological and scanning electron microscopic features of the healing tendons were assessed. In vitro, the activated platelets in the scaffold, released their growth factors significantly more than the controls. BPG also increased cell viability, and enhanced cellular differentiation, maturation and proliferation inside the CI-PDS compared with the controls. In vivo, the BPG modulated inflammation, increased quality and rate of fibroplasia and produced a remodelled tendon that had significantly higher collagen content and superior collagen fibril and fibre differentiation than controls. Treatment also significantly improved tendon water uptake and delivery characteristics, animals’ serum PDGF level, CI-PDS biocompatibility and biodegradability and reduced peritendinous adhesions, muscle fibrosis and atrophy. BPG was effective on tendon healing and CI-PDS-BPG may be a valuable bioscaffold in tendon reconstructive surgery. PMID:25702535

  20. Implantation of a Novel Biologic and Hybridized Tissue Engineered Bioimplant in Large Tendon Defect: An In Vivo Investigation

    PubMed Central

    Oryan, Ahmad; Moshiri, Ali; Parizi, Abdolhamid Meimandi

    2014-01-01

    Surgical reconstruction of large Achilles tendon defects is technically demanding. There is no standard method, and tissue engineering may be a valuable option. We investigated the effects of 3D collagen and collagen-polydioxanone sheath (PDS) implants on a large tendon defect model in rabbits. Ninety rabbits were divided into three groups: control, collagen, and collagen-PDS. In all groups, 2 cm of the left Achilles tendon were excised and discarded. A modified Kessler suture was applied to all injured tendons to retain the gap length. The control group received no graft, the treated groups were repaired using the collagen only or the collagen-PDS prostheses. The bioelectrical characteristics of the injured areas were measured at weekly intervals. The animals were euthanized at 60 days after the procedure. Gross, histopathological and ultrastructural morphology and biophysical characteristics of the injured and intact tendons were investigated. Another 90 pilot animals were also used to investigate the inflammatory response and mechanism of graft incorporation during tendon healing. The control tendons showed severe hyperemia and peritendinous adhesion, and the gastrocnemius muscle of the control animals showed severe atrophy and fibrosis, with a loose areolar connective tissue filling the injured area. The tendons receiving either collagen or collagen-PDS implants showed lower amounts of peritendinous adhesion, hyperemia and muscle atrophy, and a dense tendon filled the defect area. Compared to the control tendons, application of collagen and collagen-PDS implants significantly improved water uptake, water delivery, direct transitional electrical current and tissue resistance to direct transitional electrical current. Compared to the control tendons, both prostheses showed significantly increased diameter, density and alignment of the collagen fibrils and maturity of the tenoblasts at ultrastructure level. Both prostheses influenced favorably tendon healing

  1. Achilles tendon mechanical properties after both prolonged continuous running and prolonged intermittent shuttle running in cricket batting.

    PubMed

    Houghton, Laurence; Dawson, Brian; Rubenson, Jonas

    2013-08-01

    Effects of prolonged running on Achilles tendon properties were assessed after a 60 min treadmill run and 140 min intermittent shuttle running (simulated cricket batting innings). Before and after exercise, 11 participants performed ramp-up plantar flexions to maximum-voluntary-contraction before gradual relaxation. Muscle-tendon-junction displacement was measured with ultrasonography. Tendon force was estimated using dynamometry and a musculoskeletal model. Gradients of the ramp-up force-displacement curves fitted between 0-40% and 50-90% of the preexercise maximal force determined stiffness in the low- and high-force-range, respectively. Hysteresis was determined using the ramp-up and relaxation force-displacement curves and elastic energy storage from the area under the ramp-up curve. In simulated batting, correlations between tendon properties and shuttle times were also assessed. After both protocols, Achilles tendon force decreased (4% to 5%, P < .050), but there were no changes in stiffness, hysteresis, or elastic energy. In simulated batting, Achilles tendon force and stiffness were both correlated to mean turn and mean sprint times (r = -0.719 to -0.830, P < .050). Neither protocol resulted in fatigue-related changes in tendon properties, but higher tendon stiffness and plantar flexion force were related to faster turn and sprint times, possibly by improving force transmission and control of movement when decelerating and accelerating. PMID:22923384

  2. Peroneus Tertius Tendon Tear: A Rare Cause of Lateral Ankle Pain.

    PubMed

    Derrick, Edward; Flores, Miguel; Scherer, Kurt; Bancroft, Laura

    2016-01-01

    The peroneus tertius (PT) muscle is a variably present muscle, uncommonly found in humans. Injury to the PT tendon is rare with virtually no cases reported in the literature. As a consequence of the rarity of this injury, there is little clinical information regarding injury or rupture of the PT muscle and tendon. We present a case of injury involving this rare anatomical variant. Magnetic resonance (MR) imaging demonstrates a short segment longitudinal split tear adjacent to the tendinous insertion of the peroneus tertius muscle. Knowledge of this rare anatomic variant and the potential for associated pathology is critical in the management of the patient. Directing the orthopedic surgeon, or podiatrist, to this finding is critical for directing intervention. PMID:27226938

  3. Peroneus Tertius Tendon Tear: A Rare Cause of Lateral Ankle Pain

    PubMed Central

    Flores, Miguel; Scherer, Kurt; Bancroft, Laura

    2016-01-01

    The peroneus tertius (PT) muscle is a variably present muscle, uncommonly found in humans. Injury to the PT tendon is rare with virtually no cases reported in the literature. As a consequence of the rarity of this injury, there is little clinical information regarding injury or rupture of the PT muscle and tendon. We present a case of injury involving this rare anatomical variant. Magnetic resonance (MR) imaging demonstrates a short segment longitudinal split tear adjacent to the tendinous insertion of the peroneus tertius muscle. Knowledge of this rare anatomic variant and the potential for associated pathology is critical in the management of the patient. Directing the orthopedic surgeon, or podiatrist, to this finding is critical for directing intervention.  PMID:27226938

  4. Adipose-Derived Stromal Cells Promote Allograft Tolerance Induction

    PubMed Central

    Anam, Khairul; Lazdun, Yelena; Gimble, Jeffrey M.; Elster, Eric A.

    2014-01-01

    Amputations and unsalvageable injuries with devastating tissue loss are common in the combat wounded. Reconstructive transplantation in the civilian setting using vascular composite allotransplants (VCAs) with multiple tissues (skin, muscle, nerve, bone) combined with long-term multidrug immunosuppression has been encouraging. However, skin rejection remains a critical complication. Adipose-derived stromal/stem cells (ASCs) are easily obtained from normal individuals in high numbers, precluding ex vivo expansion. The reparative function and paracrine immunomodulatory capacity of ASCs has gained considerable attention. The present study investigated whether ASCs facilitate long-term skin allograft survival. ASCs were isolated from fresh human subcutaneous adipose lipoaspirate. Full-thickness skin grafts from BALB/c mice were transplanted onto the dorsal flanks of C57BL/6 mice treated with five doses of anti-CD4/CD8 monoclonal antibodies (10 mg/kg) on days 0, +2, +5, +7, and +14 relative to skin grafting. A single nonmyeloablative low dose of busulfan (5 mg/kg) was given on day +5. Seven days after skin transplantation, ASCs (3 × 106) were infused i.v. with or without donor bone marrow cells (BMCs; 5 × 105). ASC+BMC coinfusion with minimal conditioning led to stable lymphoid and myeloid macrochimerism, deletion of alloreactive T cells, expansion of regulatory T cells, and long-term allograft survival (>200 days). ASCs constitutively produced high levels of anti-inflammatory/immunoregulatory factors such as prostaglandin E2, indoleamine 2,3-dioxygenase, APO-1/Fas (CD95), and programmed cell death-1 ligand-2. These findings serve as a foundation for developing a translational advanced VCA protocol, embodying both ASCs and low-dose donor BMCs, in nonhuman primates, with the goal of enhancing functional outcomes and eliminating the complications associated with long-term immunosuppression. PMID:25411475

  5. Tibialis Anterior Tendon Transfer for Posterior Tibial Tendon Insufficiency.

    PubMed

    Ramanujam, Crystal L; Stapleton, John J; Zgonis, Thomas

    2016-01-01

    The Cobb procedure is useful for addressing stage 2 posterior tibial tendon dysfunction and is often accompanied by a medial displacement calcaneal osteotomy and/or lateral column lengthening. The Cobb procedure can also be combined with selected medial column arthrodesis and realignment osteotomies along with equinus correction when indicated. PMID:26590721

  6. Bilateral spontaneous patellar tendon rupture in the absence of concomitant systemic disease or steroid use.

    PubMed

    Greenbaum, B; Perry, J; Lee, J

    1994-11-01

    A case of bilateral patellar tendon rupture in an otherwise healthy 41-year-old man is presented. This is the 15th case reported in the literature. The mechanism of injury is attributed to a flexion moment coupled with a contraction of the quadriceps muscle in nearly all reported cases. Surgical repair produces excellent results. PMID:7854842

  7. Three-dimensional morphology and strain of the human Achilles free tendon immediately following eccentric heel drop exercise.

    PubMed

    Obst, Steven J; Newsham-West, Richard; Barrett, Rod S

    2015-12-01

    Our understanding of the immediate effects of exercise on Achilles free tendon transverse morphology is limited to single site measurements acquired at rest using 2D ultrasound. The purpose of this study was to provide a detailed 3D description of changes in Achilles free tendon morphology immediately following a single clinical bout of exercise. Freehand 3D ultrasound was used to measure Achilles free tendon length, and regional cross-sectional area (CSA), medio-lateral (ML) diameter and antero-posterior (AP) diameter in healthy young adults (N=14) at rest and during isometric muscle contraction, immediately before and after 3×15 eccentric heel drops. Post-exercise reductions in transverse strain were limited to CSA and AP diameter in the mid-proximal region of the Achilles free tendon during muscle contraction. The change in CSA strain during muscle contraction was significantly correlated to the change in longitudinal strain (r=-0.72) and the change in AP diameter strain (r=0.64). Overall findings suggest the Achilles free tendon experiences a complex change in 3D morphology following eccentric heel drop exercise that manifests under contractile but not rest conditions, is most pronounced in the mid-proximal tendon and is primarily driven by changes in AP diameter strain and not ML diameter strain. PMID:26519510

  8. Informed consent is not routinely documented for procedures using allografts.

    PubMed

    Porter, Scott E; Stull, Douglass; Kneisl, Jeffrey S; Frick, Steven L

    2004-06-01

    Patients who receive musculoskeletal allografts may have severe postoperative infections develop. Media reports have heightened public awareness of the risk of allograft use. Explaining these risks to patients preoperatively has become more important as attention to informed consent issues has increased. This study retrospectively investigated the patterns of informed consent for allograft bone used during elective orthopaedic procedures at a major teaching hospital. Forty-seven (32%) of 148 patients had preoperative discussions of allograft risks and benefits documented with a signed preoperative consent. In nearly 70% of the cases in which structural allograft was used, preoperative consent was documented. Only 8% of cases in which nonstructural, highly processed allograft was used had documented preoperative consent. Forty-eight (32%) of 148 patients were treated with allograft and autograft. Consent was obtained for the harvesting and use of autograft from 90% of these patients. In none of these patients was consent obtained for the allograft used. Although risks of disease transmission vary widely with the degree of allograft processing and the source of its procurement, informed consent for any allograft use should be a routine part of preoperative discussions of risks and benefits in elective orthopaedic surgeries. PMID:15232464

  9. Tendon Ruptures Associated With Corticosteroid Therapy

    PubMed Central

    Halpern, Alan A.; Horowitz, Bruce G.; Nagel, Donald A.

    1977-01-01

    In five patients, tendon ruptures occurred in association with corticosteroid therapy, either systemic or local infiltration. The chronic nature of the pain in all of these patients suggests that what we often call tendinitis may in fact be early or partial ruptures of tendons. Patients who receive local infiltration of corticosteroids should perhaps be advised of the risk of a ruptured tendon. In addition, particularly when the Achilles tendon is involved, immobilization should be utilized initially for a presumed tendinitis or early rupture, to protect the tendon from further injury. ImagesFigure 1.Figure 2. PMID:919538

  10. Free Flap Functional Muscle Transfers.

    PubMed

    Garcia, Ryan M; Ruch, David S

    2016-08-01

    Free functional muscle transfers remain a powerful reconstructive tool to restore upper extremity function when other options such as tendon or nerve transfers are not available. This reconstructive technique is commonly used for patients following trauma, ischemic contractures, and brachial plexopathies. Variable outcomes have been reported following free functional muscle transfers that are related to motor nerve availability and reinnervation. This article highlights considerations around donor motor nerve selection, dissection, and use of the gracilis muscle, and the surgical approach to performing a free functional muscle transfer to restore elbow flexion and/or digit flexion. PMID:27387083

  11. [Spasm of the adductor muscles, pre-dislocations and dislocations of the hip joints in children and adolescents with cerebral palsy. Clinical observations on aetiology, pathogenesis, therapy and rehabilitation. Part II. The importance of the iliopsoas tendon, its tenotomy, of the coxa valga antetorta, and correction through osteotomy turning the hip into varus (author's transl)].

    PubMed

    Fettweis, E

    1979-02-01

    The following factors besides spasm and contraction of the adductor muscles contribute to the occurrence of dislocations of the hip in spastic paralysis: Spasm and contraction of the iliopsoas muscle and enhanced valgus position and antetorsion. The author holds the opinion that in case of malformation of the proximal end of the femur, it is not only the indirect action of the spastic musculature via the proximal femur-epiphyseal cartilage which is responsible for this phenomen in accordance with the law on functional adaption through longitudinal growth (Pauwels), but also the direct traction of the iliopsoas tendon. A clue in this direction is the often very pronounced elongation or enlargement of the trochanter minor. The author demonstrates the pathogenetic importance of iliopsoas contracture and malpositioning of the neck of the femur by means of analyses of the course in two patients. The following principles of treatment are postulated for spastic dislocation of the hip: Elimination of the pathogenetic factors through myotenotomy of the adductor muscles and complete resection of the obturator nerve, with observation of strict aftertreatment criteria, tenotomy of the iliopsoas, repositioning and osteotomy with turning into varus. Osteotomy without previous elimination of the pathogenetically acting muscular forces does not appear useful. Likewise, permanent re-positioning by means of muscle-relaxing operation cannot be sufficiently safe-guarded without additional osteotomy once the dislocation has taken place. In twelve patients with spastic dislocation of the hip, treated in accordance with these guidelines (two without osteotomy) aged 6 6/12 and 19 5/12 years, a roentgenologically good result was obtained in half of the cases, whereas the functional result was satisfactory not only with these patients but also with part of the other patients. If surgical treatment is instituted early enough, and if the experiences described here are taken into consideration

  12. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Evaluation of muscle... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.56 Evaluation of muscle disabilities. (a) An open comminuted fracture with muscle or tendon damage will be rated as a severe injury...

  13. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Evaluation of muscle... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.56 Evaluation of muscle disabilities. (a) An open comminuted fracture with muscle or tendon damage will be rated as a severe injury...

  14. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Evaluation of muscle... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.56 Evaluation of muscle disabilities. (a) An open comminuted fracture with muscle or tendon damage will be rated as a severe injury...

  15. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Evaluation of muscle... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.56 Evaluation of muscle disabilities. (a) An open comminuted fracture with muscle or tendon damage will be rated as a severe injury...

  16. 38 CFR 4.56 - Evaluation of muscle disabilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Evaluation of muscle... FOR RATING DISABILITIES Disability Ratings The Musculoskeletal System § 4.56 Evaluation of muscle disabilities. (a) An open comminuted fracture with muscle or tendon damage will be rated as a severe injury...

  17. Bioreactor Design for Tendon/Ligament Engineering

    PubMed Central

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  18. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair

    PubMed Central

    Guerquin, Marie-Justine; Charvet, Benjamin; Nourissat, Geoffroy; Havis, Emmanuelle; Ronsin, Olivier; Bonnin, Marie-Ange; Ruggiu, Mathilde; Olivera-Martinez, Isabel; Robert, Nicolas; Lu, Yinhui; Kadler, Karl E.; Baumberger, Tristan; Doursounian, Levon; Berenbaum, Francis; Duprez, Delphine

    2013-01-01

    Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1–/– mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro–engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-β2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies. PMID:23863709

  19. Effects of wrist tendon vibration on arm tracking in people poststroke.

    PubMed

    Conrad, Megan O; Scheidt, Robert A; Schmit, Brian D

    2011-09-01

    The goal of this study was to evaluate the influence of wrist tendon vibration on a multijoint elbow/shoulder tracking task. We hypothesized that tendon vibration applied at the wrist musculature would improve upper arm tracking performance in chronic stroke survivors through increased, Ia-afferent feedback to the central nervous system (CNS). To test this hypothesis, 10 chronic stroke and 5 neurologically intact subjects grasped the handle of a planar robot as they tracked a target through a horizontal figure-8 pattern. A total of 36 trials were completed by each subject. During the middle trials, 70-Hz tendon vibration was applied at the wrist flexor tendons. Position, velocity, and electromyography data were evaluated to compare the quality of arm movements before, during, and after trials with concurrent vibration. Despite tracking a target that moved at a constant velocity, hand trajectories appeared to be segmented, displaying alternating intervals of acceleration and deceleration. Segments were identifiable in tangential velocity data as single-peaked, bell-shaped speed pulses. When tendon vibration was applied at the wrist musculature, stroke subjects experienced improved tracking performance in that hand path lengths and peak speed variability decreased, whereas movement smoothness increased. These performance improvements were accompanied by decreases in the muscle activity during movement. Possible mechanisms behind improved movement control in response to tendon vibration may include improved sensorimotor integration or improved cortical modulation of spinal reflex activity. PMID:21697444

  20. Posterior Tibial Tendon Dysfunction (PTTD)

    MedlinePlus

    ... ACFAS | Información en Español Advanced Search Home » Foot & Ankle Conditions » Posterior Tibial Tendon Dysfunction (PTTD) Text Size ... the arch, and an inward rolling of the ankle. As the condition progresses, the symptoms will change. ...

  1. Factors Predicting Meniscal Allograft Transplantation Failure

    PubMed Central

    Parkinson, Ben; Smith, Nicholas; Asplin, Laura; Thompson, Peter; Spalding, Tim

    2016-01-01

    Background: Meniscal allograft transplantation (MAT) is performed to improve symptoms and function in patients with a meniscal-deficient compartment of the knee. Numerous studies have shown a consistent improvement in patient-reported outcomes, but high failure rates have been reported by some studies. The typical patients undergoing MAT often have multiple other pathologies that require treatment at the time of surgery. The factors that predict failure of a meniscal allograft within this complex patient group are not clearly defined. Purpose: To determine predictors of MAT failure in a large series to refine the indications for surgery and better inform future patients. Study Design: Cohort study; Level of evidence, 3. Methods: All patients undergoing MAT at a single institution between May 2005 and May 2014 with a minimum of 1-year follow-up were prospectively evaluated and included in this study. Failure was defined as removal of the allograft, revision transplantation, or conversion to a joint replacement. Patients were grouped according to the articular cartilage status at the time of the index surgery: group 1, intact or partial-thickness chondral loss; group 2, full-thickness chondral loss 1 condyle; and group 3, full-thickness chondral loss both condyles. The Cox proportional hazards model was used to determine significant predictors of failure, independently of other factors. Kaplan-Meier survival curves were produced for overall survival and significant predictors of failure in the Cox proportional hazards model. Results: There were 125 consecutive MATs performed, with 1 patient lost to follow-up. The median follow-up was 3 years (range, 1-10 years). The 5-year graft survival for the entire cohort was 82% (group 1, 97%; group 2, 82%; group 3, 62%). The probability of failure in group 1 was 85% lower (95% CI, 13%-97%) than in group 3 at any time. The probability of failure with lateral allografts was 76% lower (95% CI, 16%-89%) than medial allografts at

  2. Hyperuricemic PRP in tendon cells.

    PubMed

    Andia, I; Rubio-Azpeitia, E; Maffulli, N

    2014-01-01

    Platelet-rich plasma (PRP) is injected within tendons to stimulate healing. Metabolic alterations such as the metabolic syndrome, diabetes, or hyperuricemia could hinder the therapeutic effect of PRP. We hypothesise that tendon cells sense high levels of uric acid and this could modify their response to PRP. Tendon cells were treated with allogeneic PRPs for 96 hours. Hyperuricemic PRP did not hinder the proliferative actions of PRP. The gene expression pattern of inflammatory molecules in response to PRP showed absence of IL-1b and COX1 and modest expression of IL6, IL8, COX2, and TGF-b1. IL8 and IL6 proteins were secreted by tendon cells treated with PRP. The synthesis of IL6 and IL8 proteins induced by PRP is decreased significantly in the presence of hyperuricemia (P = 0.017 and P = 0.012, resp.). Concerning extracellular matrix, PRP-treated tendon cells displayed high type-1 collagen, moderate type-3 collagen, decorin, and hyaluronan synthase-2 expression and modest expression of scleraxis. Hyperuricemia modified the expression pattern of extracellular matrix proteins, upregulating COL1 (P = 0.036) and COMP (P = 0.012) and downregulating HAS2 (P = 0.012). Positive correlations between TGF-b1 and type-1 collagen (R = 0.905, P = 0.002) and aggrecan (R = 0.833, P = 0.010) and negative correlations between TGF-b1 and IL6 synthesis (R = -0.857, P = 0.007) and COX2 (R = -0.810, P = 0.015) were found. PMID:25276832

  3. A study of the relationship between mineral content and mechanical properties of turkey gastrocnemius tendon

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Librizzi, J. J.; Dunn, M. G.; Silver, F. H.

    1995-01-01

    The vertebrate skeletal system undergoes adaptation in response to external forces, but the relation between the skeletal changes and such forces is not understood. In this context, the variation in the amount and location of calcification has been compared with changes in mechanical properties of the normally mineralizing turkey gastrocnemius tendon using ash weight measurements, X-ray radiography, and mechanical testing. Radiographic evidence from 12- to 17-week-old birds showed calcification in only portions of gastrocnemius tendons proximal to the tarsometatarsal joint. Mechanical testing of these dissected proximal regions demonstrated an increased ultimate stress and modulus and a decreased maximum strain that appeared to parallel calcification. Further, stress-strain curves of portions of uncalcified turkey gastrocnemius tendon were shaped similar to those of other typical unmineralized tendon curves while highly calcified tendons yielded curves resembling those of bone. The proximal portions of the gastrocnemius where mineralization begins were observed to have a decreased tendon cross-sectional area compared with distal portions which do not mineralize. Based on the resultant measures of mineral content and location and mechanical properties, it is hypothesized that increased calcification is a result of increased stresses at certain locations of the tendon, perhaps the consequence of the natural forces exerted by the large leg muscles of the bird into which the gastrocnemius inserts. More specifically, tendon calcification may be the result of stress-induced exposure of charged sites on the surfaces of collagen molecules, fibrils, or fibers so that deposition of mineral and subsequent mechanical reinforcement occur in the tissue.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Tendon insertion at the base of the proximal phalanx of the hallux: surgical implications.

    PubMed

    Becerro de Bengoa Vallejo, Ricardo; Losa Iglesias, Marta Elena; Jules, Kevin T

    2012-01-01

    Hallux valgus, limitus, and rigidus are conditions affecting the first metatarsophalangeal joint that can be treated by arthroplasty. Excessive arthroplasty can compromise the insertion of the tendons at the base of the proximal phalanx of the hallux, leading to first metatarsophalangeal joint plantarflexion weakness, cock-up toe deformity, and altered forefoot loading. The present study investigated the anatomic length of insertion of the medial and lateral flexor hallucis brevis, extensor hallucis brevis, abductor hallucis, and adductor hallucis tendons into the base of the hallux proximal phalanx and the amount of bone that can be safely resected without compromising the insertional limits. A total of 43 specimens (22 right and 21 left) from 22 embalmed cadavers (11 male and 11 female) were dissected. The insertion lengths of the 5 tendons were measured, along with the dimensions of the hallux proximal phalanx. No statistically significant differences were found in any proximal phalanx measurements or tendon insertion lengths according to side (p > .05). Significant differences were found between the genders in most dimensions of the hallux proximal phalanx (p < .05). The medial insertion site, where the medial flexor brevis tendon and distal abductor hallucis muscle join, was longer than the lateral site (p < .001). To preserve the tendon's insertion, hallux proximal phalanx resection should not exceed 3 mm. Resection of the tendons is ensured by removal of more than 7.88 mm and 9.37 mm in females and males, respectively. When performing hallux arthroplasty of the first metatarsophalangeal joint, we recommend calculating the length of the tendon insertions, instead of the length of the hallux proximal phalanx. PMID:22789484

  5. Tendon Tissue Engineering and Its Role on Healing of the Experimentally Induced Large Tendon Defect Model in Rabbits: A Comprehensive In Vivo Study

    PubMed Central

    Meimandi-Parizi, Abdolhamid; Oryan, Ahmad; Moshiri, Ali

    2013-01-01

    Healing of large tendon defects is challenging. We studied the role of collagen implant with or without polydioxanone (PDS) sheath on the healing of a large Achilles tendon defect model, in rabbits. Sixty rabbits were divided into three groups. A 2 cm gap was created in the left Achilles tendon of all rabbits. In the control lesions, no implant was used. The other two groups were reconstructed by collagen and collagen-PDS implants respectively. The animals were clinically examined at weekly intervals and their lesions were observed by ultrasonography. Blood samples were obtained from the animals and were assessed for hematological analysis and determination of serum PDGF level, at 60 days post injury (DPI). The animals were then euthanized and their lesions were assessed for gross and histopathology, scanning electron microscopy, biomechanical testing, dry matter and hydroxyproline content. Another 65 pilot animals were also studied grossly and histopathologically to define the host implant interaction and graft incorporation at serial time points. The treated animals gained significantly better clinical scoring compared to the controls. Treatment with collagen and collagen-PDS implants significantly increased the biomechanical properties of the lesions compared to the control tendons at 60DPI (P<0.05). The tissue engineered implants also reduced peritendinous adhesion, muscle fibrosis and atrophy, and increased ultrasonographical echogenicity and homogenicity, maturation and differentiation of the collagen fibrils and fibers, tissue alignment and volume of the regenerated tissue compared to those of the control lesions (P<0.05). The implants were gradually absorbed and substituted by the new tendon. Implantation of the bioimplants had a significant role in initiating tendon healing and the implants were biocompatible, biodegradable and safe for application in tendon reconstructive surgery. The results of the present study may be valuable in clinical practice. PMID

  6. Histopathology of cell mediated immune reaction in mouse colon--allograft rejection.

    PubMed Central

    Holden, R J; Ferguson, A

    1976-01-01

    Grafts of mouse fetal colon, implanted beneath the renal capsule of adult hosts, have been used to study the growth and development of colonic isografts and the rejection of colonic allografts. Isografts grew normally and maintained a structure similar to normal colon. Grafts between strains with H2 histocompatibility differences were rejected by 13 days after transplantation. Early progressive infiltration of the grafts by lymphoid cells was followed by increasing damage to, and subsequent loss of, the epithelial cell layer and destruction of the underlying muscle, changes which parallel those seen in rejection of skin and small bowel. The increase in survival time which is seen in allografts between strains with H2 identity was longer in the colon than has been seen in the skin or small bowel; none of the allografts of colon were completely rejected before 30 days, and some remained viable at 50 days. Comparison of the appearances of rejection in the colon with those of ulcerative colitis and colonic Crohn's disease does not show the striking similarity which is seen between small bowel rejection and coeliac disease. Many of the individual features of these diseases are, however, present in the course of colonic rejection. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:976806

  7. Pectoralis Major Tendon Repair

    PubMed Central

    Cordasco, Frank A.; Degen, Ryan; Mahony, Gregory Thomas; Tsouris, Nicholas

    2016-01-01

    Objectives: Systematic reviews of the literature have identified 365 reported cases of Pectoralis Major Tendon (PMT) injuries. While surgical treatment has demonstrated improved outcomes compared to non-operative treatment, there is still relatively limited data on the functional outcome, return to sport and need for 2nd surgery in athletes following PMT repair. This study comprises the largest series of athletes following PMT repair reported to date. The Objective is to report on the functional outcomes, return to sport and need for 2nd surgery in a consecutive series of PMT tears. Methods: From 2009, 81 patients with PMT tears were enrolled in this prospective series. Baseline evaluation included patient demographics, mechanism of injury, physical examination and PMT specific MRI for confirmation of the diagnosis and analysis of the extent of injury. Each patient underwent surgical repair by the senior author utilizing a previously published surgical technique. Patients were then followed at 2 weeks, 6 weeks, 3 months and 6 months and further follow-up was conducted annually thereafter with functional outcome scores and adduction strength testing. The return to sport and incidence of 2nd surgery data were recorded. This study includes the first 40 athletes to reach the 2-year post-operative period. Results: All athletes were male, with an average age of 34.4 years (range 23-59). The patient cohort consisted of 4 professional NFL players and 36 recreational athletes. Average follow-up duration was 2.5 years (range 2 - 6.0 years). The most common mechanisms of injury occurred during the bench press (n=26) and contact sport participation (n=14). Sixteen injuries were complete avulsions involving both the clavicular and sternocostal heads, while 24 were isolated sternocostal head avulsions. Average pre-injury bench press of 396 lbs (range 170-500 lbs) was restored to 241 lbs post-operatively (range 140-550 lbs). Single Assessment Numeric Evaluation (SANE) scores

  8. Comparison of frozen and freeze-dried particulate bone allografts.

    PubMed

    Malinin, Theodore; Temple, H Thomas

    2007-10-01

    Freeze-dried and frozen particulate bone allografts are used interchangeably on the assumption that the biologic behavior of these grafts is similar. Dissimilarities in biologic behavior and differences in the rate and extent of bone incorporation of freeze-dried and frozen particulate grafts were demonstrated in a comparative study using a non-human primate model. Freeze-dried particulate allografts induced new bone formation and healing of the osseous defects much faster than the frozen allografts. PMID:17658506

  9. [Extensor mechanism allograft reconstruction after total knee replacement].

    PubMed

    Bürde, C; Sweeney, Patrick

    2007-04-01

    We present three cases in which we used a complete extensor mechanism allograft for the reconstruction of an insufficient extensor mechanism after total knee arthroplasty (and failed reconstruction with local tissue in two of these cases). Early results are encouraging. Allograft reconstruction can be taken into consideration as an alternative to arthrodesis in those "worst-case scenarios". Late failure may occur in about 20%, probably due to a lack of revitalisation in the centre of the allograft. PMID:17262182

  10. Nerve allograft transplantation for functional restoration of the upper extremity: case series

    PubMed Central

    Elkwood, Andrew I.; Holland, Neil R.; Arbes, Spiros M.; Rose, Michael I.; Kaufman, Matthew R.; Ashinoff, Russell L.; Parikh, Mona A.; Patel, Tushar R.

    2011-01-01

    Background Major trauma to the spinal cord or upper extremity often results in severe sensory and motor disturbances from injuries to the brachial plexus and its insertion into the spinal cord. Functional restoration with nerve grafting neurotization and tendon transfers is the mainstay of treatment. Results may be incomplete due to a limited supply of autologous material for nerve grafts. The factors deemed most integral for success are early surgical intervention, reconstruction of all levels of injury, and maximization of the number of axonal conduits per nerve repair. Objective To report the second series of nerve allograft transplantation using cadaveric nerve graft and our experience with living-related nerve transplants. Participants Eight patients, seven men and one woman, average age 23 years (range 18–34), with multi-level brachial plexus injuries were selected for transplantation using either cadaveric allografts or living-related donors. Methods Grafts were harvested and preserved in the University of Wisconsin Cold Storage Solution at 5°C for up to 7 days. The immunosuppressive protocol was initiated at the time of surgery and was discontinued at approximately 1 year, or when signs of regeneration were evident. Parameters for assessment included mechanism of injury, interval between injury and treatment, level(s) of deficit, post-operative return of function, pain relief, need for revision surgery, complications, and improvement in quality of life. Results Surgery was performed using living-related donor grafts in six patients, and cadaveric grafts in two patients. Immunosuppression was tolerated for the duration of treatment in all but one patient in whom early termination occurred due to non-compliance. There were no cases of graft rejection as of most recent follow-up. Seven patients showed signs of regeneration, demonstrated by return of sensory and motor function and/or a migrating Tinel's sign. One patient was non-compliant with the post

  11. Mechanisms of allograft rejection of corneal endothelium

    SciTech Connect

    Tagawa, Y.; Silverstein, A.M.; Prendergast, R.A.

    1982-07-01

    The local intraocular graft-vs.-host (GVH) reaction, involving the destruction of the corneal endothelial cells of the rabbit host by sensitized donor lymphoid cells, has been used to study the mechanism of corneal allograft rejection. Pretreatment of donor cells with a specific mouse monoclonal hybridoma anti-T cell antibody and complement suppresses the destructive reaction, suggesting that a cellular-immune mechanism is primarily involved. Pretreatment of donor cells with mitomycin-C completely abolishes the local GVH reaction, indicating that the effector lymphocytes must undergo mitosis within the eye before they can engage in target cell destruction. Finally, studies of the local GVH reaction in irradiated leukopenic recipients or in preinflamed rabbit eyes suggest that host leukocytes may contribute nonspecifically to enhance the destructive process. These studies show that the local ocular GVH reaction may provide a useful model for the study of the mechanisms involved in the rejection of corneal allografts.

  12. Reflex responses at the human ankle: the importance of tendon compliance.

    PubMed Central

    Rack, P M; Ross, H F; Thilmann, A F; Walters, D K

    1983-01-01

    Subjects with active stretch reflexes responded to an imposed sinusoidal movement of the ankle joint with a reflex force whose amplitude and timing varied widely with changes in the frequency of movement. At some frequency between 6 and 8 Hz, the reflex force tended to offset the non-reflex component of resistance, and thus to reduce the total resistance to movement. At this frequency the reflex response was particularly vigorous, with a deep modulation of electromyogram (e.m.g.) activity and a displacement of the joint stiffness vectors far from their high frequency values. The total resistance to movement might then be small, or it might be zero, or the reflex might actually assist the movement. As the frequency of movement was decreased through this critical range, the timing of the reflex response to movement changed rapidly with an abrupt advancement of the triceps surae e.m.g. signal, and a wide separation of the joint stiffness vectors as they passed close to the origin. This result was attributed to a changing distribution of the movement between the muscle fibres and an elastic Achilles tendon. It was assumed that at most frequencies the muscle fibres resisted extension, so that a major part of the imposed movement went into stretching the tendon; when, however, at 6-8 Hz, the reflex response was so timed as to reduce or abolish the resistance of the muscle fibres, more of the movement would take place in them. The muscle spindles would 'see' this larger movement of the muscle fibres, and generate correspondingly more reflex activity. A simplified model of the muscle-tendon combination behaves in a way that supports this view, and the available information about the human Achilles tendon indicates that it is sufficiently compliant for such an explanation. Therefore, movements imposed on the ankle joint would not necessarily be 'seen' by the muscle spindles, since they would be modified by transmission through a compliant tendon. By assuming a value for the

  13. Zygomycosis in a renal allograft recipient

    PubMed Central

    Lakshminarayana, G.; Rajesh, R.; Kurian, G.; Unni, V. N.

    2009-01-01

    Invasive fungal infections can cause considerable morbidity and mortality in immunocompromised patients. Zygomycosis is a type of invasive fungal infection with a rapid course and grave prognosis. Renal transplant recipients with concomitant diabetes mellitus are most susceptible to this infection. We report here a case of disseminated zygomycosis (Rhizopus sp.) in a renal allograft recipient with posttransplant diabetes mellitus (PTDM). This is the first reported case of zygomycosis caused by Rhizopus species. PMID:20352010

  14. Procurement of hand and arm allografts.

    PubMed

    Cetrulo, Curtis L; Kovach, Stephen J

    2013-12-01

    Upper extremity transplantation has been at the forefront of vascularized composite allotransplantation. There have been more hand and upper extremity transplants than any other kinds of vascularized composite allotransplantation. However, it is a new and evolving field. Reconstructive surgeons are relative newcomers to the field of transplantation, and the procurement of upper extremity allografts has many subtleties that will differ depending on the intended recipient. However, there are certain principles that can be adhered to that this review serves to elucidate. PMID:24310234

  15. Urinary Calprotectin and Posttransplant Renal Allograft Injury

    PubMed Central

    Bistrup, Claus; Marcussen, Niels; Pagonas, Nikolaos; Seibert, Felix S.; Arndt, Robert; Zidek, Walter; Westhoff, Timm H.

    2014-01-01

    Objective Current methods do not predict the acute renal allograft injury immediately after kidney transplantation. We evaluated the diagnostic performance of urinary calprotectin for predicting immediate posttransplant allograft injury. Methods In a multicenter, prospective-cohort study of 144 incipient renal transplant recipients, we postoperatively measured urinary calprotectin using an enzyme-linked immunosorbent assay and estimated glomerular filtration rate (eGFR) after 4 weeks, 6 months, and 12 months. Results We observed a significant inverse association of urinary calprotectin concentrations and eGFR 4 weeks after transplantation (Spearman r = −0.33; P<0.001). Compared to the lowest quartile, patients in the highest quartile of urinary calprotectin had an increased risk for an eGFR less than 30 mL/min/1.73 m2 four weeks after transplantation (relative risk, 4.3; P<0.001; sensitivity, 0.92; 95% CI, 0.77 to 0.98; specificity, 0.48; 95% CI, 0.31 to 0.66). Higher urinary calprotectin concentrations predicted impaired kidney function 4 weeks after transplantation, as well as 6 months and 12 months after transplantation. When data were analyzed using the urinary calprotectin/creatinine-ratio similar results were obtained. Urinary calprotectin was superior to current use of absolute change of plasma creatinine to predict allograft function 12 months after transplantation. Urinary calprotectin predicted an increased risk both in transplants from living and deceased donors. Multivariate linear regression showed that higher urinary calprotectin concentrations and older donor age predicted lower eGFR four weeks, 6 months, and 12 months after transplantation. Conclusions Urinary calprotectin is an early, noninvasive predictor of immediate renal allograft injury after kidney transplantation. PMID:25402277

  16. Mechanisms of tendon injury and repair

    PubMed Central

    Thomopoulos, Stavros; Parks, William C.; Rifkin, Daniel B.; Derwin, Kathleen A.

    2015-01-01

    Tendon disorders are common and lead to significant disability, pain, healthcare cost, and lost productivity. A wide range of injury mechanisms exist leading to tendinopathy or tendon rupture. Tears can occur in healthy tendons that are acutely overloaded (e.g., during a high speed or high impact event) or lacerated (e.g., a knife injury). Tendinitis or tendinosis can occur in tendons exposed to overuse conditions (e.g., an elite swimmer’s training regimen) or intrinsic tissue degeneration (e.g., age-related degeneration). The healing potential of a torn or pathologic tendon varies depending on anatomic location (e.g., Achilles vs. rotator cuff) and local environment (e.g., intrasynovial vs. extrasynovial). Although healing occurs to varying degrees, in general healing of repaired tendons follows the typical wound healing course, including an early inflammatory phase, followed by proliferative and remodeling phases. Numerous treatment approaches have been attempted to improve tendon healing, including growth factor- and cell-based therapies and rehabilitation protocols. This review will describe the current state of knowledge of injury and repair of the three most common tendinopathies-- flexor tendon lacerations, Achilles tendon rupture, and rotator cuff disorders-- with a particular focus on the use of animal models for understanding tendon healing. PMID:25641114

  17. Normal values of patellar and ankle tendon reflex latencies.

    PubMed

    Frijns, C J; Laman, D M; van Duijn, M A; van Duijn, H

    1997-02-01

    The clinical value of latency measurement of tendon reflexes in neurological patients has been reported by several authors. However, normal values are not readily comparable. In the present study, latencies and amplitudes of patellar (PTR) and ankle tendon reflexes (ATR) were measured at rest and after facilitation in 102 normal controls. A manually operated reflex hammer, tipped with electrically conductive rubber, ensured an immediate start of the sweep of the oscilloscope. Latencies showed a significant correlation with height (r = 0.70 for PTR and r = 0.72 for ATR, P < 0.0001) and to a lesser degree with age (r = 0.16 and r = 0.30, P < 0.0001). While amplitudes were highly variable, rendering them less useful for diagnostic purposes, latencies showed minimal intra-individual variability (CV 1.5 and 0.8%, respectively). Correlation of ATR-latency with the H-reflex latency of the soleus muscle was very high (r = 0.97, P < 0.0001). Comparison with three other hammer types yielded corresponding results with a hammer supplied with a piezo-electric element; however, significantly shorter latencies were found with a hammer with a microswitch, and with another hammer with a spring-contact, due to a delay from the tap on the tendon until the start of the sweep of the monitor. PMID:9107465

  18. Mechanical Actuation Systems for the Phenotype Commitment of Stem Cell-Based Tendon and Ligament Tissue Substitutes.

    PubMed

    Govoni, Marco; Muscari, Claudio; Lovecchio, Joseph; Guarnieri, Carlo; Giordano, Emanuele

    2016-04-01

    High tensile forces transmitted by tendons and ligaments make them susceptible to tearing or complete rupture. The present standard reparative technique is the surgical implantation of auto- or allografts, which often undergo failure.Currently, different cell types and biomaterials are used to design tissue engineered substitutes. Mechanical stimulation driven by dedicated devices can precondition these constructs to a remarkable degree, mimicking the local in vivo environment. A large number of dynamic culture instruments have been developed and many appealing results collected. Of the cells that have been used, tendon stem cells are the most promising for a reliable stretch-induced tenogenesis, but their reduced availability represents a serious limitation to upscaled production. Biomaterials used for scaffold fabrication include both biological molecules and synthetic polymers, the latter being improved by nanotechnologies which reproduce the architecture of native tendons. In addition to cell type and scaffold material, other variables which must be defined in mechanostimulation protocols are the amplitude, frequency, duration and direction of the applied strain. The ideal conditions seem to be those producing intermittent tension rather than continuous loading. In any case, all physical parameters must be adapted to the specific response of the cells used and the tensile properties of the scaffold. Tendon/ligament grafts in animals usually have the advantage of mechanical preconditioning, especially when uniaxial cyclic forces are applied to cells engineered into natural or decellularized scaffolds. However, due to the scarcity of in vivo research, standard protocols still need to be defined for clinical applications. PMID:26661573

  19. The Effects of Glucocorticoid on Tendon and Tendon Derived Cells.

    PubMed

    Dean, Benjamin John Floyd; Carr, Andrew Jonathan

    2016-01-01

    Glucocorticoids are generally used to relieve pain and/or inflammation in a wide variety of musculoskeletal disorders including osteoarthritis, inflammatory arthritis, tendinopathy and degenerative spine disease. Glucocorticoids reduce tendon derived cell proliferation in vitro and reduce extracellular matrix synthesis both in vitro and in vivo, in particular type I collagen synthesis. Glucocorticoids also appear to result in acute deleterious changes in healthy in vivo tendon including collagen necrosis, collagen disorganisation and inflammatory cell infiltration; while the overall effect of glucocorticoid administration on the mechanical properties of healthy in vivo tendon are generally negative. Overall the existing in vitro and in vivo evidence suggests that glucocorticoids should be used with caution in treating painful tendinopathy. Certainly a real need exists to follow up the long term clinical effects of glucocorticoid in treating tendinopathy, as there is currently a paucity of evidence in this area. However in this context while the short term benefits are clear, glucocorticoids remain a useful treatment option provided they are used in the right patients in sensible moderation. PMID:27535266

  20. The Enhancement of Bone Allograft Incorporation by the Local Delivery of the Sphingosine 1-phosphate Receptor Targeted Drug FTY720

    PubMed Central

    Aronin, Caren E Petrie; Shin, Soo J; Naden, Kimberly B; Rios, Peter D; Sefcik, Lauren S; Zawodny, Sarah R; Bagayoko, Namory D; Cui, Quanjun; Khan, Yusuf

    2010-01-01

    Poor vascularization coupled with mechanical instability is the leading cause of post-operative complications and poor functional prognosis of massive bone allografts. To address this limitation, we designed a novel continuous polymer coating system to provide sustained localized delivery of pharmacological agent, FTY720, a selective agonist for sphingosine 1-phosphate receptors, within massive tibial defects. In vitro drug release studies validated 64% loading efficiency with complete release of compound following 14 days. Mechanical evaluation following six weeks of healing suggested significant enhancement of mechanical stability in FTY720 treatment groups compared with unloaded controls. Furthermore, superior osseous integration across the host-graft interface, significant enhancement in smooth muscle cell investment, and reduction in leukocyte recruitment was evident in FTY720 treated groups compared with untreated groups. Using this approach, we can capitalize on the existing mechanical and biomaterial properties of devitalized bone, add a controllable delivery system while maintaining overall porous structure, and deliver a small molecule compound to constitutively target vascular remodeling, osseous remodeling, and minimize fibrous encapsulation within the allograft-host bone interface. Such results support continued evaluation of drug-eluting allografts as a viable strategy to improve functional outcome and long-term success of massive cortical allograft implants. PMID:20621764

  1. Use of a Lucas-Kanade-Based Template Tracking Algorithm to Examine In Vivo Tendon Excursion during Voluntary Contraction Using Ultrasonography.

    PubMed

    Karamanidis, Kiros; Travlou, Artemis; Krauss, Peter; Jaekel, Uwe

    2016-07-01

    Ultrasound imaging can be used to study tendon movement during muscle contraction to estimate the tendon force-length relationship in vivo. Traditionally, such tendon displacement measurements are made manually (time consuming and subjective). Here we evaluated a Lucas-Kanade-based tracking algorithm with an optic flow extension that accounts for tendon movement characteristics between consecutive frames of an ultrasound image sequence. Eleven subjects performed 12 voluntary isometric plantar flexion contractions on a dynamometer. Simultaneously, the gastrocnemius medialis tendon was visualized via ultrasonography. Tendon displacement was estimated manually and by using two different automatic tracking algorithms. Maximal tendon elongation (manual: 17.9 ± 0.3 mm, automatic: 17.0 ± 0.3 mm) and tendon stiffness (209 ± 4 N/mm, 218 ± 5 N/mm) generated by the developed algorithm correlated with those obtained with the manual method (0.87 ≤ R ≤ 0.91), with no differences between methods. Our results suggest that optical flow methods can potentially be used for automatic estimation of tendon movement during contraction in ultrasound images, which is further improved by adding a penalty function. PMID:27117630

  2. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration☆

    PubMed Central

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-01-01

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7–21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  3. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration.

    PubMed

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-12-15

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7-21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  4. Tensile mechanical properties of human forearm tendons.

    PubMed

    Weber, J F; Agur, A M R; Fattah, A Y; Gordon, K D; Oliver, M L

    2015-09-01

    Previous studies of the mechanical properties of tendons in the upper limb have used embalmed specimens or sub-optimal methods of measurement. The aim of this study was to determine the biomechanical properties of all tendons from five fresh frozen cadaveric forearms using updated methodology. The cross-sectional area of tendons was accurately measured using a laser reflectance system. Tensile testing was done in a precision servo-hydraulic device with cryo-clamp fixation. We determined that the cross-sectional area of some tendons is variable and directly influences the calculated material properties; visual estimation of this is unreliable. Data trends illustrate that digital extensor tendons possess the greatest tensile strength and a higher Young's modulus than other tendon types. PMID:25940499

  5. Dynamic behavior of tendons in random seas

    SciTech Connect

    Niedzwecki, J.M.; Rijken, O.R.; Soemantri, D.S.

    1995-12-31

    The dynamic behavior of large scale (1:55) undistorted models of TLP tendons were investigated. The tendons modeled were for a TLP designed to be deployed in a water depth of 914 m. The tendon motions were studied without the presence of the hull, In the study reported, the tendon models were subjected to three quite different design seas and the single and paired tendon configurations were compared under identical wave conditions. The main objective of this study was to examine the dynamic response of TLP tendons under controlled environmental conditions in order to better quantify the observed dynamic behavior. Underwater video tracking techniques were utilized in the experiments to obtain direct measurement of the inline and transverse displacements. Envelopes characterizing the extreme displacement behavior, spatial variations in response and collision behavior are presented and discussed.

  6. Nutrient pathways of flexor tendons in primates

    SciTech Connect

    Manske, P.R.; Lesker, P.A.

    1982-09-01

    The perfusion and diffusion pathways to the flexor profundus tendons of 40 monkeys were investigated by measuring the uptake of tritiated proline by various tendon segments. In the absence of all vascular connections, the process of diffusion provides nutrients to all areas of flexor tendon and in this study the process of diffusion was greater. The distal segment of tendon was observed to be profused most rapidly. The proximal tendon segment is perfused from both the muscular-tendinous junction and the vinculum longus; vincular segment perfusion is via the vinculum longus vessels alone; central segment perfusion is shared by the vinculum longus and vinculum brevis vasculature. The distal segment uptake is by both the process of diffusion or vinculum brevis perfusion. The osseous attachment at the distal phalanx contributes little to tendon nutrition.

  7. Single dose of inducible nitric oxide synthase inhibitor induces prolonged inflammatory cell accumulation and fibrosis around injured tendon and synovium.

    PubMed

    Darmani, Homa; Crossan, James C; Curtis, Adam

    2004-06-01

    The aim of the current study was to investigate the effect of inhibition of nitric oxide (NO) production after injury on inflammatory cell accumulation and fibrosis around digital flexor tendon and synovium. A standard crush injury was applied to the flexor tendons of the middle digit of the hindpaw and the overlying muscle and synovium of female Wistar rats. Thirty animals received an intraperitoneal injection of either isotonic saline or N(G)-nitro-l-arginine methyl ester (L-NAME; 5 mg/kg) immediately following the crush injury, and five animals were then sacrificed at various intervals and the paws processed for histology. Another group of five animals was sacrificed after 3 days for nitrite determinations. The results showed that nitrite production and hence NO synthase activity is doubled at the acute phase of tendon wound healing, and we can prevent this by administering a single dose of L-NAME immediately after injury. The incidence and severity of fibrocellular adhesions between tendon and synovium was much more marked in animals treated with L-NAME. Treatment with L-NAME elicited a chronic inflammatory response characterised by a persistent and extraordinarily severe accumulation of large numbers of inflammatory cells in the subcutaneous tissues, in muscle and in tendon. These findings indicate that in the case of injured tendon and synovium, NO could act to protect the healing tissue from an uncontrolled inflammatory response. PMID:15223606

  8. Posterior Deltoid-to-Triceps Tendon Transfer for Elbow Extension in a Tetraplegia Patient: A Case Report

    PubMed Central

    Jeong, Ji Hun; Ahn, Dong Heun; Kim, Yong Rok; Hong, Mi Jin; Lee, Yung Jin; Park, Chang-il; Heo, Youn Moo

    2016-01-01

    In tetraplegia patients, activities of daily living are highly dependent on the remaining upper limb functions. In other countries, upper limb reconstruction surgery to improve function has been applied to diverse cases, but few cases have been reported in Korea. The current authors experienced a case of posterior deltoid-to-triceps tendon transfer and rehabilitation in a complete spinal cord injury with a C6 neurologic level, and we introduce the case—a 36-year-old man—with a literature review. The patient's muscle strength in C5 C6 muscles were normal, but C7 muscles were trace, and the Spinal Cord Independence Measure III (SCIM III) score was 24. The tendon of the posterior deltoid was transferred to the triceps brachii muscle, and then the patient received comprehensive rehabilitative treatment. His C7 muscle strength in the right upper extremity was enhanced from trace to fair, and his SCIM III score improved to 29. PMID:27152287

  9. Ulnar Nerve Injury after Flexor Tendon Grafting.

    PubMed

    McCleave, Michael John

    2016-10-01

    A 43-year-old female is presented who underwent a two-stage tendon reconstruction and developed a low ulnar nerve palsy postoperatively. Exploration found that the tendon graft was passing through Guyon's canal and that the ulnar nerve was divided. This is a previously unreported complication. The reconstruction is discussed, the literature reviewed and a guide is given on how to identify the correct tissue plane when passing a tendon rod. PMID:27595967

  10. Use of a strontium-enriched calcium phosphate cement in accelerating the healing of soft-tissue tendon graft within the bone tunnel in a rabbit model of anterior cruciate ligament reconstruction.

    PubMed

    Kuang, G M; Yau, W P; Lu, W W; Chiu, K Y

    2013-07-01

    We investigated whether strontium-enriched calcium phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results in accelerated healing within the bone tunnel in reconstruction of the anterior cruciate ligament (ACL). A total of 30 single-bundle ACL reconstructions using tendo Achillis allograft were performed in 15 rabbits. The graft on the tested limb was treated with Sr-CPC, whereas that on the contralateral limb was untreated and served as a control. At timepoints three, six, nine, 12 and 24 weeks after surgery, three animals were killed for histological examination. At six weeks, the graft-bone interface in the control group was filled in with fibrovascular tissue. However, the gap in the Sr-CPC group had already been completely filled in with new bone, and there was evidence of the early formation of Sharpey fibres. At 24 weeks, remodelling into a normal ACL-bone-like insertion was found in the Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft leads to accelerated graft healing within the bone tunnel in a rabbit model of ACL reconstruction using Achilles tendon allograft. PMID:23814244

  11. The Effect of Antagonist Muscle Sensory Input on Force Regulation

    PubMed Central

    Onushko, Tanya; Schmit, Brian D.; Hyngstrom, Allison

    2015-01-01

    The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years), healthy subjects performed constant isometric knee flexion contractions (agonist) at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback) during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%), subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40%) between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical) are likely involved. PMID:26186590

  12. Cortical projection of afferent information from tendon organs in the cat.

    PubMed Central

    McIntyre, A K; Proske, U; Rawson, J A

    1984-01-01

    In cats anaesthetized with chloralose, evidence has been sought for the projection of information from tendon organs to the sensory receiving areas of the cerebral cortex. Selective stimulation of afferent fibres from tendon organs has been achieved by raising the threshold to electrical stimulation of the fibres from primary endings of muscle spindles. The method uses longitudinal vibration at 200-250 Hz to elicit, over a period of 20 min, one impulse for each excursion of the vibrator from all of the spindles in the test muscle, soleus or medial gastrocnemius. The accumulated post-spike positivities following passage of the impulses are thought to be responsible for the rise in threshold. Segmental monosynaptic reflex testing after a bout of vibration was used to confirm that the residual Group I volley no longer contained impulses from muscle spindles. The volley in response to stimulating the nerve of the test muscle was timed to facilitate the monosynaptic reflex of a synergist. Before vibration 5- to 10-fold facilitation of reflex amplitude could be produced; however, after vibration, if all the spindle primary endings had been effectively engaged by the stimulus, no detectable facilitation remained. This test was found to be sensitive and reproducible. An afferent volley containing only activity of tendon organ afferents evoked small-amplitude potentials from the post-sigmoid gyrus of the contralateral pericruciate cortex. The field was highly localized and lay caudal to the main receiving area for activity from the sural nerve and from afferents of hip flexor muscles. Recordings with tungsten micro-electrodes revealed that the surface-evoked activity took origin in cellular discharges in the internal pyramidal layer of area 3a. Recent psychophysical experiments have provided evidence for a sense of muscle tension, as distinct from a sense of effort, and the tendon organ has been suggested as the likely receptor of origin. Our electrophysiological

  13. High axial load termination for TLP tendons

    SciTech Connect

    Salama, M.M.

    1992-03-03

    This patent describes a hollow high axial load termination for a composite tubular tendon. It comprises: a curved hollow termination body open at one end wit a circular opening and connected at the opposite curved end with an elongated hollow member of lesser diameter than the diameter of the circular opening of the termination body, a composite tubular tendon containing axial fibers and helical fibers laid on an inner hollow liner; fibers of the composite tubular tendon extending over and covering the termination body from the abutment with the composite tubular tendon to the elongated member of lesser diameter than the termination body.

  14. Suture-bridge subscapularis tendon repair technique using low anterior portals.

    PubMed

    Park, Jin-Young; Park, Jun-Suk; Jung, Jae-Kyung; Kumar, Praveen; Oh, Kyung-Soo

    2011-02-01

    A suture-bridge technique has been introduced to facilitate fixation procedures and to achieve increased holding strength in posterosuperior rotator cuff. Based on biomechanical studies, this technique has been suggested as an effective method that could optimize rotator cuff tendon-footprint contact area and mean pressure, as well as holding strength. In this technique, the suture-bridge creation is adapted for arthroscopic subscapularis repair to attain the ideal cuff integrity and footprint restoration. To obtain enough working portals and space, two accessory portals were made on the anterior aspect of the shoulder and use an elevator to retract the conjoined tendons and deltoid muscle. This technique could be useful for the repair of subscapularis tears, which are not easily approached using other arthroscopic techniques. From a biomechanical point of view, the subscapularis tendon could be restored more ideally using the suture-bridge technique. PMID:20890701

  15. Use of local allograft irradiation following renal transplantation

    SciTech Connect

    Halperin, E.C.; Delmonico, F.L.; Nelson, P.W.; Shipley, W.U.; Cosimi, A.B.

    1984-07-01

    Over a 10 year period, 67 recipients of 71 renal allografts received graft irradiation following the diagnosis of rejection. The majority of kidneys were treated with a total dose of 600 rad, 150 rad per fraction, in 4 daily fractions. Fifty-three kidneys were irradiated following the failure of standard systemic immunosuppression and maximally tolerated antirejection measures to reverse an episode of acute rejection. Twenty-two (42%) of these allografts were noted to have stable (i.e. no deterioration) or improved function 1 month following the treatment with irradiation. Eleven (21%) of these allografts maintained function 1 year following transplantation. Biopsies were obtained of 41 allografts. Of the 24 renal allografts with predominantly cellular rejection, 10 (42%) had the process reversed or stabilized at 1 month following irradiation. Five (21%) of these allografts were functioning at 1 year following irradiation. Rejection was reversed or stabilized in 6 of 17 (35%) allografts at 1 month when the histologic features of renal biopsy suggested predominantly vascular rejection. Local graft irradiation has helped maintain a limited number of allografts in patients whose rejection has failed to respond to systemic immunosuppression. Irradiation may also benefit patients with ongoing rejection in whom further systemic immunosuppression is contra-indicated.

  16. Disruption of Murine Cardiac Allograft Acceptance by Latent Cytomegalovirus

    PubMed Central

    Cook, Charles H.; Bickerstaff, Alice A.; Wang, Jiao-Jing; Zimmerman, Peter D.; Forster, Meghan R.; Nadasdy, Tibor; Colvin, Robert B.; Hadley, Gregg A.; Orosz, Charles G.

    2008-01-01

    Cytomegalovirus (CMV) reactivation is a well described complication of solid organ transplantation. These studies were performed to 1.) determine if cardiac allograft transplantation of latently infected recipients results in reactivation of CMV, and 2.) determine what impact CMV might have on development of graft acceptance/tolerance. BALB/c cardiac allografts were transplanted into C57BL/6 mice with/without latent murine CMV (MCMV). Recipients were treated with gallium nitrate induction and monitored for graft survival, viral immunity, and donor reactive DTH responses. Latently infected allograft recipients had ∼80% graft loss by 100 days after transplant, compared with ∼8% graft loss in naïve recipients. PCR evaluation demonstrated that MCMV was transmitted to cardiac grafts in all latently infected recipients, and 4/8 allografts had active viral transcription compared to 0/6 isografts. Latently infected allograft recipients showed intragraft IFN-α expression consistent with MCMV reactivation, but MCMV did not appear to negatively influence regulatory gene expression. Infected allograft recipients had disruption of splenocyte DTH regulation, but recipient splenocytes remained unresponsive to donor antigen even after allograft losses. These data suggest that transplantation in an environment of latent CMV infection may reactivate virus, and that intragraft responses disrupt development of allograft acceptance. PMID:18976295

  17. Lovastatin-Mediated Changes in Human Tendon Cells.

    PubMed

    Kuzma-Kuzniarska, Maria; Cornell, Hannah R; Moneke, Michael C; Carr, Andrew J; Hulley, Philippa A

    2015-10-01

    Statins are among the most widely prescribed drugs worldwide. Numerous studies have shown their beneficial effects in prevention of cardiovascular disease through cholesterol-lowering and anti-atherosclerotic properties. Although some statin patients may experience muscle-related symptoms, severe side effects of statin therapy are rare, primarily due to extensive first-pass metabolism in the liver. Skeletal muscles appear to be the main site of side effects; however, recently some statin-related adverse effects have been described in tendon. The mechanism behind these side effects remains unknown. This is the first study that explores tendon-specific effects of statins in human primary tenocytes. The cells were cultured with different concentrations of lovastatin for up to 1 week. No changes in cell viability or morphology were observed in tenocytes incubated with therapeutic doses. Short-term exposure to lovastatin concentrations outside the therapeutic range had no effect on tenocyte viability; however, cell migration was reduced. Simvastatin and atorvastatin, two other drug family members, also reduced the migratory properties of the cells. Prolonged exposure to high concentrations of lovastatin induced changes in cytoskeleton leading to cell rounding and decreased levels of mRNA for matrix proteins, but increased BMP-2 expression. Gap junctional communication was impaired but due to cell shape change and separation rather than direct gap junction inhibition. These effects were accompanied by inhibition of prenylation of Rap1a small GTPase. Collectively, we showed that statins in a dose-dependent manner decrease migration of human tendon cells, alter their expression profile and impair the functional network, but do not inhibit gap junction function. PMID:25846724

  18. Tendon Transfers in the Rheumatoid Hand for Reconstruction.

    PubMed

    O'Sullivan, Michael Brody; Singh, Hardeep; Wolf, Jennifer Moriatis

    2016-08-01

    Long-standing rheumatoid arthritis can result in spontaneous tendon rupture caused by attrition of the tendons. Ruptures of the ulnar-sided extensor tendons, flexor pollicis longus, and the flexor digitorum profundus can be seen. Primary repair of these tendon ruptures is frequently not possible because of delayed presentation and tendon damage by the disease process. Tendon transfers are the preferred method of treatment in patients with rheumatoid arthritis. At surgery, it is critical to address the underlying cause of rupture to prevent future tendon ruptures. Rates of tendon rupture may decrease due to improved medications for rheumatoid arthritis. PMID:27387084

  19. Surgical techniques and radiological findings of meniscus allograft transplantation.

    PubMed

    Lee, Hoseok; Lee, Sang Yub; Na, Young Gon; Kim, Sung Kwan; Yi, Jae Hyuck; Lim, Jae Kwang; Lee, So Mi

    2016-08-01

    Meniscus allograft transplantation has been performed over the past 25 years to relieve knee pain and improve knee function in patients with an irreparable meniscus injury. The efficacy and safety of meniscus allograft transplantation have been established in numerous experimental and clinical researches. However, there is a lack of reviews to aid radiologists who are routinely interpreting images and evaluating the outcome of the procedures, and also meniscus allograft transplantation is not widely performed in most hospitals. This review focuses on the indications of the procedure, the different surgical techniques used for meniscus allograft transplantation according to the involvement of the lateral and medial meniscus, and the associated procedures. The postoperative radiological findings and surgical complications of the meniscus allograft transplantation are also described in detail. PMID:27423673

  20. Longitudinal and transverse deformation of human Achilles tendon induced by isometric plantar flexion at different intensities.

    PubMed

    Iwanuma, Soichiro; Akagi, Ryota; Kurihara, Toshiyuki; Ikegawa, Shigeki; Kanehisa, Hiroaki; Fukunaga, Tetsuo; Kawakami, Yasuo

    2011-06-01

    The present study determined in vivo deformation of the entire Achilles tendon in the longitudinal and transverse directions during isometric plantar flexions. Twelve young women and men performed isometric plantar flexions at 0% (rest), 30%, and 60% of the maximal voluntary contraction (MVC) while a series of oblique longitudinal and cross-sectional magnetic resonance (MR) images of the Achilles tendon were taken. At the distal end of the soleus muscle belly, the Achilles tendon was divided into the aponeurotic (ATapo) and the tendinous (ATten) components. The length of each component was measured in the MR images. The widths of the Achilles tendon were determined at 10 regions along ATapo and at four regions along ATten. Longitudinal and transverse strains were calculated as changes in relative length and width compared with those at rest. The ATapo deformed in both longitudinal and transverse directions at 30%MVC and 60%MVC. There was no difference between the strains of the ATapo at 30%MVC and 60%MVC either in the longitudinal (1.1 and 1.6%) or transverse (5.0∼11.4 and 5.0∼13.9%) direction. The ATten was elongated longitudinally (3.3%) to a greater amount than ATapo, while narrowing transversely in the most distal region (-4.6%). The current results show that the magnitude and the direction of contraction-induced deformation of Achilles tendon are different for the proximal and distal components. This may be related to the different functions of Achilles tendon, i.e., force transmission or elastic energy storage during muscle contractions. PMID:21415176

  1. Pseudo-hyperelastic model of tendon hysteresis from adaptive recruitment of collagen type I fibrils.

    PubMed

    Ciarletta, Pasquale; Dario, Paolo; Micera, Silvestro

    2008-02-01

    Understanding the functional relationship between the viscoelasticity and the morphology of soft collagenous tissues is fundamental for many applications in bioengineering science. This work presents a pseudo-hyperelastic constitutive theory aiming at describing the time-dependant hysteretic response of tendons subjected to uniaxial tensile loads. A macroscopic tendon is modeled as a composite homogeneous tissue with the anisotropic reinforcement of collagen type I fibrils. The tissue microstructure is considered as an adaptive network of fibrillar units connected in temporary junctions. The processes of breakage and reformation of active fibrils are thermally activated, and are occurring at random times. An internal softening variable and a dissipation energy function account for the adaptive arrangement of the fibrillar network in the pseudo-hyperelastic model. Cyclic uniaxial tensile tests have been performed in vitro on porcine flexor digital tendons. The theoretical predictions fit accurately the experimental stress-strain data both for the loading and the unloading processes. The hysteresis behavior reflects the improvement in the efficiency and performance of the motion of the muscle-tendon unit at high strain rates. The results of the model demonstrate the microstructural importance of proteoglycans in determining the functional viscoelastic adaptability of the macroscopic tendon. PMID:17997481

  2. Massage-induced morphological changes of dense connective tissue in rat's tendon.

    PubMed

    Kassolik, Krzysztof; Andrzejewski, Waldemar; Dziegiel, Piotr; Jelen, Michal; Fulawka, Lukasz; Brzozowski, Marcin; Kurpas, Donata; Gworys, Bohdan; Podhorska-Okolow, Marzenna

    2013-01-01

    The aim of the experiment was to determine if possible changes in connective tissue induced by massage could have a positive effect justifing the use of massage in all post-traumatic connective tissue conditions, e.g. tendon injuries. The investigations were performed in a group of 18 Buffalo rats. The rats were divided into two groups (experimental and control). To standardize the massage procedure, it was performed with an algometer probe of 0.5 cm2 with constant pressure force of 1 kG (9,81 N). To analyse the number and diameter of collagen fibrils, two electron micrographs were performed for each rat of the collected segments of tendons of rat tail lateral extensor muscle. After image digitalization and calibration, the measurements were carried out using iTEM 5.0 software. The number of fibrils, their diameter and area were measured in a cross-sectional area. An increase of the number of collagen fibrils was observed in the tendons of massaged animals compared to the control group. Our study demonstrated that massage may cause a beneficial effect on metabolic activity of tendon's fibroblasts and, in consequence, may be applied for more effective use of massage for the prevention of tendon injury as well as after the injury has occurred. (Folia Histochemica et Cytobiologica 2013, Vol. 51, No. 1, 103-106). PMID:23690224

  3. Graft vasculopathy in the skin of a human hand allograft: implications for diagnosis of rejection of vascularized composite allografts.

    PubMed

    Kanitakis, Jean; Karayannopoulou, Georgia; Lanzetta, Marco; Petruzzo, Palmina

    2014-11-01

    Whereas vascularized composite allografts often undergo acute rejections early in the postgraft period, rejection manifesting with severe vascular changes (graft vasculopathy) has only been observed on three occasions in humans. We report a hand-allografted patient who developed severe rejection following discontinuation of the immunosuppressive treatment. It manifested clinically with erythematous maculopapules on the skin and pathologically with graft vasculopathy that affected both large vessels and smaller cutaneous ones. The observation that graft vasculopathy can affect skin vessels shows that it is amenable to diagnosis with usual skin biopsy as recommended for the follow-up of these allografts. Graft vasculopathy developing in the setting of vascularized composite allografts likely represents chronic rejection due to under-immunosuppression and, if confirmed, should be included in a future update of the Banff classification of vascularized composite allograft rejection. PMID:25041139

  4. Simultaneous and spontaneous bilateral quadriceps tendons rupture.

    PubMed

    Celik, Evrim Coşkun; Ozbaydar, Mehmet; Ofluoglu, Demet; Demircay, Emre

    2012-07-01

    Simultaneous and spontaneous bilateral quadriceps tendon rupture is an uncommon injury that is usually seen in association with multiple medical conditions and some medications. We report a case of simultaneous and spontaneous bilateral quadriceps tendon rupture that may be related to the long-term use of a statin. PMID:22561379

  5. Ultrasonographic assessment of the equine palmar tendons

    PubMed Central

    Padaliya, N. R.; Ranpariya, J. J.; Kumar, Dharmendra; Javia, C. B.; Barvalia, D. R.

    2015-01-01

    Aim: The present study was conducted to evaluate the equine palmar tendon by ultrasonography (USG) in standing the position. Materials and Methods: USG of palmar tendons was performed in 40 adult horses using linear transducer having frequency of 10-18 MHz (e-soate, My Lab FIVE) and L52 linear array transducer (Titan, SonoSite) with frequencies ranging from 8 to 10 MHz. Palmar tendon was divided into 7 levels from distal to accessory carpal bone up to ergot in transverse scanning and 3 levels in longitudinal scanning. Results: The USG evaluation was very useful for diagnosis of affections of the conditions such as chronic bowed tendon, suspensory ligament desmitis, carpal sheath tenosynovitis and digital sheath effusions. The mean cross-sectional area (cm2) of affected tendons was significantly increased in affected than normal tendons. The echogenicity was also found reduced in affected tendons and ligaments along with disorganization of fiber alignment depending on the severity of lesion and injury. Conclusion: USG proved ideal diagnostic tool for diagnosis and post-treatment healing assessment of tendon injuries in horses. PMID:27047074

  6. Augmentation of tendon-to-bone healing.

    PubMed

    Atesok, Kivanc; Fu, Freddie H; Wolf, Megan R; Ochi, Mitsuo; Jazrawi, Laith M; Doral, M Nedim; Lubowitz, James H; Rodeo, Scott A

    2014-03-19

    Tendon-to-bone healing is vital to the ultimate success of the various surgical procedures performed to repair injured tendons. Achieving tendon-to-bone healing that is functionally and biologically similar to native anatomy can be challenging because of the limited regeneration capacity of the tendon-bone interface. Orthopaedic basic-science research strategies aiming to augment tendon-to-bone healing include the use of osteoinductive growth factors, platelet-rich plasma, gene therapy, enveloping the grafts with periosteum, osteoconductive materials, cell-based therapies, biodegradable scaffolds, and biomimetic patches. Low-intensity pulsed ultrasound and extracorporeal shockwave treatment may affect tendon-to-bone healing by means of mechanical forces that stimulate biological cascades at the insertion site. Application of various loading methods and immobilization times influence the stress forces acting on the recently repaired tendon-to-bone attachment, which eventually may change the biological dynamics of the interface. Other approaches, such as the use of coated sutures and interference screws, aim to deliver biological factors while achieving mechanical stability by means of various fixators. Controlled Level-I human trials are required to confirm the promising results from in vitro or animal research studies elucidating the mechanisms underlying tendon-to-bone healing and to translate these results into clinical practice. PMID:24647509

  7. Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq

    PubMed Central

    Liu, Han; Xu, Jingyue; Liu, Chia-Feng; Lan, Yu; Wylie, Christopher; Jiang, Rulang

    2015-01-01

    Tendons are fibrous connective tissues that transmit force between muscle and bone. Whereas the molecular and cellular mechanisms of bone and muscle development have been well studied, that of tendon development is poorly understood. Using the Scx-GFP transgenic mice, we isolated GFP+ cells from the developing mouse limbs at E11.5, E13.5, and E15.5, respectively, and carried out whole transcriptome RNA-seq analysis. Comparing the gene expression profiles of GFP+ and GFP− cells in the E13.5 limb isolated over 1500 genes that exhibited enrichment of mRNA expression by at least 1.5-fold in the GFP+ cells. Of these, 778 genes showed expression up-regulated by more than 1.5-fold from E11.5 to E13.5 and 516 genes showed expression up-regulated by more than 1.5-fold from E13.5 to E15.5 in the GFP+ cell population. Interestingly, over 30 genes encoding transcription factors are among the early-activated genes in the GFP+ cells. Whole mount and section in situ hybridization analyses showed that many of these transcription factor genes have distinct patterns of expression during limb development and identified Foxf2 expression as a specific marker for differentiated dorsal limb tendon cells. Together, these data provide a valuable resource for further investigation of the molecular mechanisms regulating tendon development. PMID:25729011

  8. A group of patients with Marfan's syndrome, who have finger and toe contractures, displays tendons' alterations upon an ultrasound examination: are these features common among classical Marfan patients?

    PubMed

    Melchiorre, Daniela; Pratelli, Elisa; Torricelli, Elena; Sofi, Francesco; Abbate, Rosanna; Matucci-Cerinic, Marco; Gensini, GianFranco; Pepe, Guglielmina

    2016-08-01

    The involvement of the musculoskeletal system with other mild pleiotropic manifestations represents a clinical criterion, called "systemic features," to d iagnose Marfan's syndrome. We aimed to investigate the features of the hands and feet redressable contractures present in a group of Marfan patients. In 13 patients with previously diagnosed Marfan's syndrome, an accurate clinical examination was performed. In particular the characterization of the musculoskeletal system by visual analogic scale to measure muscle pain (VAS) and muscle strength (MRC system) was carried out; the Beighton scale score was used to evaluate the articular hypermobility. Ultrasound examination (US) was performed to detect deep-superficial flexor tendons and extensor tendons of both hands, and the short and long flexor and extensor tendons of the fingers and toes in static and dynamic positions. The ImageJ program was adopted to measure a profile of tendon echo-intensity. A reduction of the thickness of all tendons was detected by US in our patients; the VAS and Beighton scale scores were in normal ranges. The profile of tendon echo-intensity showed different textural details in all Marfan patients. This study provides evidence for other contractures' localization, and for altered findings of the tendons in patients with Marfan syndrome and finger/toe contractures. These changes may be associated with structural modifications in connective tissue. PMID:26899731

  9. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking

    PubMed Central

    Markowitz, Jared; Herr, Hugh

    2016-01-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle. PMID:27175486

  10. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    PubMed

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle. PMID:27175486

  11. Blood supply of the Achilles tendon.

    PubMed

    Ahmed, I M; Lagopoulos, M; McConnell, P; Soames, R W; Sefton, G K

    1998-09-01

    The Achilles tendon is one of the most common sites of injury and rupture as a result of overuse. Evidence suggests that the pathogenesis of rupture could involve the pattern of its blood supply. With use of angiographic and histological techniques, the blood supply of the Achilles tendon was investigated in 12 human cadaveric specimens. Angiography confirmed Mayer's 1916 finding that the blood supply to the tendon is from three areas: the musculotendinous and osseotendinous junctions and the paratenon, with the posterior tibial artery providing the major contribution. However, qualitative and quantitative histological analyses in this study showed that the Achilles tendon has a poor blood supply throughout its length, as determined by the small number of blood vessels per cross-sectional area, which do not in general vary significantly along its length. In light of these findings, it is suggested that poor vascularity may prevent adequate tissue repair following trauma, leading to further weakening of the tendon. PMID:9820283

  12. Tendon Vasculature in Health and Disease

    PubMed Central

    Tempfer, Herbert; Traweger, Andreas

    2015-01-01

    Tendons represent a bradytrophic tissue which is poorly vascularized and, compared to bone or skin, heal poorly. Usually, a vascularized connective scar tissue with inferior functional properties forms at the injury site. Whether the increased vascularization is the root cause of tissue impairments such as loss of collagen fiber orientation, ectopic formation of bone, fat or cartilage, or is a consequence of these pathological changes remains unclear. This review provides an overview of the role of tendon vasculature in healthy and chronically diseased tendon tissue as well as its relevance for tendon repair. Further, the nature and the role of perivascular tendon stem/progenitor cells residing in the vascular niche will be discussed and compared to multipotent stromal cells in other tissues. PMID:26635616

  13. Secondary repair of flexor tendon injuries.

    PubMed

    Battiston, B; Triolo, P F; Bernardi, A; Artiaco, S; Tos, P

    2013-03-01

    Tendon adhesions or even secondary ruptures causing severe hand functional impairment still represent a frequent complication after repair of flexor tendon injuries. Secondary treatment of these problems includes tenolysis, one or two stages flexor tendons reconstruction by grafts or even the use of tendon prosthesis. The mechanism and severity of injury, the status of the surrounding tissues and injured finger, the presence of associated lesions, the age of the patient, post-operative management, patient motivation and the surgeon's skill, may all have implications in the final outcome of the tendon reconstruction. A correct evaluation of the problem by means of classifications such as the one described by Boyes, may help the surgeon in choosing the appropriate technique. PMID:23347767

  14. Mathematical modeling of ligaments and tendons.

    PubMed

    Woo, S L; Johnson, G A; Smith, B A

    1993-11-01

    Ligaments and tendons serve a variety of important functions in maintaining the structure of the human body. Although abundant literature exists describing experimental investigations of these tissues, mathematical modeling of ligaments and tendons also contributes significantly to understanding their behavior. This paper presents a survey of developments in mathematical modeling of ligaments and tendons over the past 20 years. Mathematical descriptions of ligaments and tendons are identified as either elastic or viscoelastic, and are discussed in chronological order. Elastic models assume that ligaments and tendons do not display time dependent behavior and thus, they focus on describing the nonlinear aspects of their mechanical response. On the other hand, viscoelastic models incorporate time dependent effects into their mathematical description. In particular, two viscoelastic models are discussed in detail; quasi-linear viscoelasticity (QLV), which has been widely used in the past 20 years, and the recently proposed single integral finite strain (SIFS) model. PMID:8302027

  15. Ultrasonic evaluation of flood gate tendons

    SciTech Connect

    Thomas, G.; Brown, A.

    1997-10-01

    Our water resources infrastructure is susceptible to aging degradation just like the rest of this country`s infrastructure. A critical component of the water supply system is the flood gate that controls the outflow from dams.Long steel rods called tendons attach these radial gates to the concrete in the dam. The tendons are typically forty feet long and over one inch in diameter. Moisture may seep into the grout around the tendons and cause corrosion. Lawrence Livermore National Laboratory is working with the California Department of Water Resources to develop advanced ultrasonic techniques for nondestructively inspecting their tendons. A unique transducer was designed and fabricated to interrogate the entire tendon. A robust,portable unit was assembled that included a computer controlled data acquisition system and specialized data processing software to analyze the ultrasonic signals. This system was tested on laboratory specimens and is presently being fielded at two dam sites.

  16. Subscapularis Tendon Repair Using Suture Bridge Technique

    PubMed Central

    Park, Yong Bok; Park, Young Eun; Koh, Kyoung Hwan; Lim, Tae Kang; Shon, Min Soo; Yoo, Jae Chul

    2015-01-01

    The subscapularis tendon plays an essential role in shoulder function. Although subscapularis tendon tears are less common than other rotator cuff tears, tears of the subscapularis tendon have increasingly been recognized with the advent of magnetic resonance imaging and arthroscopy. A suture bridge technique for the treatment of posterosuperior rotator cuff tears has provided the opportunity to improve the pressurized contact area and mean footprint pressure. However, suture bridge fixation of subscapularis tendon tears appears to be technically challenging. We describe an arthroscopic surgical technique for suture bridge repair of subscapularis tendon tears that obtains ideal cuff integrity and footprint restoration. Surgery using such a suture bridge technique is indicated for large tears, such as tears involving the entire first facet or more, tears with a disrupted lateral sling, and combined medium to large supraspinatus/infraspinatus tears. PMID:26052489

  17. Combination of hormone replacement therapy and high physical activity is associated with differences in Achilles tendon size in monozygotic female twin pairs.

    PubMed

    Finni, T; Kovanen, V; Ronkainen, P H A; Pöllänen, E; Bashford, G R; Kaprio, J; Alén, M; Kujala, U M; Sipilä, S

    2009-04-01

    Estrogen concentration has been suggested to play a role in tendon abnormalities and injury. In physically active postmenopausal women, hormone replacement therapy (HRT) has been suggested to decrease tendon diameter. We hypothesized that HRT use and physical activity are associated with Achilles tendon size and tissue structure. The study applied cotwin analysis of fourteen 54- to 62-yr-old identical female twin pairs with current discordance for HRT use for an average of 7 yr. Achilles tendon thickness and cross-sectional areas were determined by ultrasonography, and tendon structural organization was analyzed from the images using linear discriminant analysis (LDA). Maximal voluntary and twitch torques from plantar flexor muscles were measured. Serum levels of estradiol, estrone, testosterone, and sex hormone binding globulin were analyzed. Total daily metabolic equivalent score (MET-h/day) was calculated from physical activity questionnaires. Results showed that, in five physically active (MET > 4) pairs, the cotwins receiving HRT had greater estradiol level (P = 0.043) and smaller tendon cross-sectional area than their sisters (63 vs. 71 mm(2), P = 0.043). Among all pairs, Achilles tendon thickness and cross-sectional area did not significantly differ between HRT using and nonusing twin sisters. Intrapair correlation for Achilles tendon thickness was high, despite HRT use discordance (r = 0.84, P < 0.001). LDA distinguished different tendon structure only from two of six examined twin pairs who had a similar level of physical activity. In conclusion, the effect of HRT on Achilles tendon characteristics independent of genetic confounding may be present only in the presence of sufficient physical activity. In physically active twin pairs, the higher level of estrogen seems to be associated with smaller tendon size. PMID:19164771

  18. Proximal coracobrachialis tendon rupture, subscapularis tendon rupture, and medial dislocation of the long head of the biceps tendon in an adult after traumatic anterior shoulder dislocation.

    PubMed

    Saltzman, Bryan M; Harris, Joshua D; Forsythe, Brian

    2015-01-01

    Rupture of the coracobrachialis is a rare entity, in isolation or in combination with other muscular or tendinous structures. When described, it is often a result of direct trauma to the anatomic area resulting in rupture of the muscle belly. The authors present a case of a 57-year-old female who suffered a proximal coracobrachialis tendon rupture from its origin at the coracoid process, with concomitant subscapularis tear and medial dislocation of the long head of biceps tendon after first time traumatic anterior shoulder dislocation. Two weeks after injury, magnetic resonance imaging suggested the diagnosis, which was confirmed during combined arthroscopic and open technique. Soft-tissue tenodesis of coracobrachialis to the intact short head of the biceps, tenodesis of the long head of biceps to the intertubercular groove, and double-row anatomic repair of the subscapularis were performed. The patient did well postoperatively, and ultimately at 6 months follow-up, she was without pain, and obtained 160° of active forward elevation, 45° of external rotation, internal rotation to T8, 5/5 subscapularis and biceps strength. Scoring scales had improved from the following preoperative to final follow-up: American Shoulder and Elbow Surgeons, 53.33-98.33; constant, 10-100; visual analogue scale-pain, 4-0. DASH score was 5. PMID:25937715

  19. Proximal coracobrachialis tendon rupture, subscapularis tendon rupture, and medial dislocation of the long head of the biceps tendon in an adult after traumatic anterior shoulder dislocation

    PubMed Central

    Saltzman, Bryan M.; Harris, Joshua D.; Forsythe, Brian

    2015-01-01

    Rupture of the coracobrachialis is a rare entity, in isolation or in combination with other muscular or tendinous structures. When described, it is often a result of direct trauma to the anatomic area resulting in rupture of the muscle belly. The authors present a case of a 57-year-old female who suffered a proximal coracobrachialis tendon rupture from its origin at the coracoid process, with concomitant subscapularis tear and medial dislocation of the long head of biceps tendon after first time traumatic anterior shoulder dislocation. Two weeks after injury, magnetic resonance imaging suggested the diagnosis, which was confirmed during combined arthroscopic and open technique. Soft-tissue tenodesis of coracobrachialis to the intact short head of the biceps, tenodesis of the long head of biceps to the intertubercular groove, and double-row anatomic repair of the subscapularis were performed. The patient did well postoperatively, and ultimately at 6 months follow-up, she was without pain, and obtained 160° of active forward elevation, 45° of external rotation, internal rotation to T8, 5/5 subscapularis and biceps strength. Scoring scales had improved from the following preoperative to final follow-up: American Shoulder and Elbow Surgeons, 53.33-98.33; constant, 10-100; visual analogue scale-pain, 4-0. DASH score was 5. PMID:25937715

  20. Minimizing the risk of chronic allograft nephropathy.

    PubMed

    Weir, Matthew R; Wali, Ravinder K

    2009-04-27

    Chronic allograft nephropathy, now defined as interstital fibrosis and tubular atrophy not otherwise specified, is a near universal finding in transplant kidney biopsies by the end of the first decade posttransplantation. After excluding death with functioning graft, caused by cardiovascular disease or malignancy, chronic allograft nephropathy is the leading cause of graft failure. Original assumptions were that this was not a modifiable process but inexorable, likely due to past kidney injuries. However, newer understandings suggest that acute or subacute processes are involved, and with proper diagnosis, appropriate interventions can be instituted. Our method involved a review of the primary and secondary prevention trials in calcineurin inhibitor withdrawal. Some of the more important causes of progressive graft deterioration include subclinical cellular or humoral rejection, and chronic calcineurin inhibitor toxicity. Early graft biopsy, assessment of histology, and changes in immunosuppression may be some of the most important measures available to protect graft function. The avoidance of clinical inertia in pursuing subtle changes in graft function is critical. Modification in maintenance immunosuppression may benefit many patients with early evidence of graft deterioration. PMID:19384181

  1. The Role of Detraining in Tendon Mechanobiology

    PubMed Central

    Frizziero, Antonio; Salamanna, Francesca; Della Bella, Elena; Vittadini, Filippo; Gasparre, Giuseppe; Nicoli Aldini, Nicolò; Masiero, Stefano; Fini, Milena

    2016-01-01

    Introduction: Several conditions such as training, aging, estrogen deficiency and drugs could affect the biological and anatomo-physiological characteristics of the tendon. Additionally, recent preclinical and clinical studies examined the effect of detraining on tendon, showing alterations in its structure and morphology and in tenocyte mechanobiology. However, few data evaluated the importance that cessation of training might have on tendon. Basically, we do not fully understand how tendons react to a phase of training followed by sudden detraining. Therefore, within this review, we summarize the studies where tendon detraining was examined. Materials and Methods: A descriptive systematic literature review was carried out by searching three databases (PubMed, Scopus and Web of Knowledge) on tendon detraining. Original articles in English from 2000 to 2015 were included. In addition, the search was extended to the reference lists of the selected articles. A public reference manager (www.mendeley.com) was adopted to remove duplicate articles. Results: An initial literature search yielded 134 references (www.pubmed.org: 53; www.scopus.com: 11; www.webofknowledge.com: 70). Fifteen publications were extracted based on the title for further analysis by two independent reviewers. Abstracts and complete articles were after that reviewed to evaluate if they met inclusion criteria. Conclusions: The revised literature comprised four clinical studies and an in vitro and three in vivo reports. Overall, the results showed that tendon structure and properties after detraining are compromised, with an alteration in the tissue structural organization and mechanical properties. Clinical studies usually showed a lesser extent of tendon alterations, probably because preclinical studies permit an in-depth evaluation of tendon modifications, which is hard to perform in human subjects. In conclusion, after a period of sudden detraining (e.g., after an injury), physical activity should

  2. Iontophoresis as a means of delivering antibiotics into allograft bone.

    PubMed

    Day, R E; Megson, S; Wood, D

    2005-11-01

    Allograft bone is widely used in orthopaedic surgery, but peri-operative infection of the graft remains a common and disastrous complication. The efficacy of systemic prophylactic antibiotics is unproven, and since the graft is avascular it is likely that levels of antibiotic in the graft are low. Using an electrical potential to accelerate diffusion of antibiotics into allograft bone, high levels were achieved in specimens of both sheep and human allograft. In human bone these ranged from 187.1 mg/kg in endosteal (sd 15.7) to 124.6 (sd 46.2) in periosteal bone for gentamicin and 31.9 (sd 8.9) in endosteal and 2.9 (sd 1.1) in periosteal bone for flucloxacillin. The antibiotics remained active against bacteria in vitro after iontophoresis and continued to elute from the allograft for up to two weeks. Structural allograft can be supplemented directly with antibiotics using iontophoresis. The technique is simple and inexpensive and offers a potential means of reducing the rate of peri-operative infection in allograft surgery. Iontophoresis into allograft bone may also be applicable to other therapeutic compounds. PMID:16260682

  3. Targeting Sirtuin-1 prolongs murine renal allograft survival and function.

    PubMed

    Levine, Matthew H; Wang, Zhonglin; Xiao, Haiyan; Jiao, Jing; Wang, Liqing; Bhatti, Tricia R; Hancock, Wayne W; Beier, Ulf H

    2016-05-01

    Current immunosuppressive medications used after transplantation have significant toxicities. Foxp3(+) T-regulatory cells can prevent allograft rejection without compromising protective host immunity. Interestingly, inhibiting the class III histone/protein deacetylase Sirtuin-1 can augment Foxp3(+) T-regulatory suppressive function through increasing Foxp3 acetylation. Here we determined whether Sirtuin-1 targeting can stabilize biological allograft function. BALB/c kidney allografts were transplanted into C57BL/6 recipients with a CD4-conditional deletion of Sirtuin-1 (Sirt1(fl/fl)CD4(cre)) or mice treated with a Sirtuin-1-specific inhibitor (EX-527), and the native kidneys removed. Blood chemistries and hematocrit were followed weekly. Sirt1(fl/fl)CD4(cre) recipients showed markedly longer survival and improved kidney function. Sirt1(fl/fl)CD4(cre) recipients exhibited donor-specific tolerance, accepted BALB/c, but rejected third-party C3H cardiac allografts. C57BL/6 recipients of BALB/c renal allografts that were treated with EX-527 showed improved survival and renal function at 1, but not 10 mg/kg/day. Pharmacologic inhibition of Sirtuin-1 also improved renal allograft survival and function with dosing effects having relevance to outcome. Thus, inhibiting Sirtuin-1 can be a useful asset in controlling T-cell-mediated rejection. However, effects on non-T cells that could adversely affect allograft survival and function merit consideration. PMID:27083279

  4. An experimental model for studying the biomechanics of embryonic tendon: Evidence that the development of mechanical properties depends on the actinomyosin machinery

    PubMed Central

    Kalson, Nicholas S.; Holmes, David F.; Kapacee, Zoher; Otermin, Iker; Lu, Yinhui; Ennos, Roland A.; Canty-Laird, Elizabeth G.; Kadler, Karl E.

    2010-01-01

    Tendons attach muscles to bone and thereby transmit tensile forces during joint movement. However, a detailed understanding of the mechanisms that establish the mechanical properties of tendon has remained elusive because of the practical difficulties of studying tissue mechanics in vivo. Here we have performed a study of tendon-like constructs made by culturing embryonic tendon cells in fixed-length fibrin gels. The constructs display mechanical properties (toe–linear–fail stress–strain curve, stiffness, ultimate tensile strength, and failure strain) as well as collagen fibril volume fraction and extracellular matrix (ECM)/cell ratio that are statistically similar to those of embryonic chick metatarsal tendons. The development of mechanical properties during time in culture was abolished when the constructs were treated separately with Triton X-100 (to solubilise membranes), cytochalasin (to disassemble the actin cytoskeleton) and blebbistatin (a small molecule inhibitor of non-muscle myosin II). Importantly, these treatments had no effect on the mechanical properties of the constructs that existed prior to treatment. Live-cell imaging and 14C-proline metabolic labeling showed that blebbistatin inhibited the contraction of the constructs without affecting cell viability, procollagen synthesis, or conversion of procollagen to collagen. In conclusion, the mechanical properties per se of the tendon constructs are attributable to the ECM generated by the cells but the improvement of mechanical properties during time in culture was dependent on non-muscle myosin II-derived forces. PMID:20736063

  5. Functional Tissue Engineering of Tendon: Establishing Biological Success Criteria for Improving Tendon Repair

    PubMed Central

    Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L

    2013-01-01

    Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: 1) scleraxis-expressing cells; 2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and 3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. PMID:24200342

  6. Is higher serum cholesterol associated with altered tendon structure or tendon pain? A systematic review

    PubMed Central

    Tilley, Benjamin J; Cook, Jill L; Docking, Sean I; Gaida, James E

    2015-01-01

    Background Tendon pain occurs in individuals with extreme cholesterol levels (familial hypercholesterolaemia). It is unclear whether the association with tendon pain is strong with less extreme elevations of cholesterol. Objective To determine whether lipid levels are associated with abnormal tendon structure or the presence of tendon pain. Methods We conducted a systematic review and meta-analysis. Relevant articles were found through an electronic search of 6 medical databases—MEDLINE, Cochrane, AMED, EMBASE, Web of Science and Scopus. We included all case–control or cross-sectional studies with data describing (1) lipid levels or use of lipid-lowering drugs and (2) tendon structure or tendon pain. Results 17 studies (2612 participants) were eligible for inclusion in the review. People with altered tendon structure or tendon pain had significantly higher total cholesterol, low-density lipoprotein cholesterol and triglycerides, as well as lower high-density lipoprotein cholesterol; with mean difference values of 0.66, 1.00, 0.33, and −0.19 mmol/L, respectively. Conclusions The results of this review indicate that a relationship exists between an individual’s lipid profile and tendon health. However, further longitudinal studies are required to determine whether a cause and effect relationship exists between tendon structure and lipid levels. This could lead to advancement in the understanding of the pathoaetiology and thus treatment of tendinopathy. PMID:26474596

  7. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair.

    PubMed

    Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L

    2014-06-27

    Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. PMID:24200342

  8. Achilles tendon: US diagnosis of pathologic conditions. Work in progress

    SciTech Connect

    Blei, C.L.; Nirschl, R.P.; Grant, E.G.

    1986-06-01

    Twenty-three patients were prospectively examined with ultra-sound (US) for acute or recurrent Achilles tendon symptoms. Three types of pathologic conditions of the Achilles tendon were found: tendinitis/tenosynovitis, acute tendon trauma, and postoperative changes. US appears to enable differentiation of these conditions and to contribute to the diagnosis of a broad range of Achilles tendon disorders.

  9. Virtual muscle: a computational approach to understanding the effects of muscle properties on motor control.

    PubMed

    Cheng, E J; Brown, I E; Loeb, G E

    2000-09-15

    This paper describes a computational approach to modeling the complex mechanical properties of muscles and tendons under physiological conditions of recruitment and kinematics. It is embodied as a software package for use with Matlab and Simulink that allows the creation of realistic musculotendon elements for use in motor control simulations. The software employs graphic user interfaces (GUI) and dynamic data exchange (DDE) to facilitate building custom muscle model blocks and linking them to kinetic analyses of complete musculoskeletal systems. It is scalable in complexity and accuracy. The model is based on recently published data on muscle and tendon properties measured in feline slow- and fast-twitch muscle, and incorporates a novel approach to simulating recruitment and frequency modulation of different fiber-types in mixed muscles. This software is distributed freely over the Internet at http://ami.usc.edu/mddf/virtualmuscle. PMID:10996372

  10. Acute and Chronic Allograft Dysfunction in Kidney Transplant Recipients.

    PubMed

    Goldberg, Ryan J; Weng, Francis L; Kandula, Praveen

    2016-05-01

    Allograft dysfunction after a kidney transplant is often clinically asymptomatic and is usually detected as an increase in serum creatinine level with corresponding decrease in glomerular filtration rate. The diagnostic evaluation may include blood tests, urinalysis, transplant ultrasonography, radionuclide imaging, and allograft biopsy. Whether it occurs early or later after transplant, allograft dysfunction requires prompt evaluation to determine its cause and subsequent management. Acute rejection, medication toxicity from calcineurin inhibitors, and BK virus nephropathy can occur early or later. Other later causes include transplant glomerulopathy, recurrent glomerulonephritis, and renal artery stenosis. PMID:27095641

  11. Tendon rupture associated with simvastatin/ezetimibe therapy.

    PubMed

    Pullatt, Raja C; Gadarla, Mamatha Reddy; Karas, Richard H; Alsheikh-Ali, Alawi A; Thompson, Paul D

    2007-07-01

    A case of spontaneous biceps tendon rupture in a physician during therapy with the combination of simvastatin and ezetimibe (Vytorin) is reported. Rechallenge produced tendinopathy in the contralateral biceps tendon that abated with drug discontinuation. Tendon rupture generally occurs in injured tendons. Physiological repair of an injured tendon requires degradation and remodeling of the extracellular matrix through matrix metalloproteinases (MMPs). Statins are known to inhibit MMPs. It was hypothesized that statins may increase the risk of tendon rupture by altering MMP activity. In conclusion, statins may increase the risk of tendon rupture by altering MMP activity. PMID:17599460

  12. Flexing computational muscle: modeling and simulation of musculotendon dynamics.

    PubMed

    Millard, Matthew; Uchida, Thomas; Seth, Ajay; Delp, Scott L

    2013-02-01

    Muscle-driven simulations of human and animal motion are widely used to complement physical experiments for studying movement dynamics. Musculotendon models are an essential component of muscle-driven simulations, yet neither the computational speed nor the biological accuracy of the simulated forces has been adequately evaluated. Here we compare the speed and accuracy of three musculotendon models: two with an elastic tendon (an equilibrium model and a damped equilibrium model) and one with a rigid tendon. Our simulation benchmarks demonstrate that the equilibrium and damped equilibrium models produce similar force profiles but have different computational speeds. At low activation, the damped equilibrium model is 29 times faster than the equilibrium model when using an explicit integrator and 3 times faster when using an implicit integrator; at high activation, the two models have similar simulation speeds. In the special case of simulating a muscle with a short tendon, the rigid-tendon model produces forces that match those generated by the elastic-tendon models, but simulates 2-54 times faster when an explicit integrator is used and 6-31 times faster when an implicit integrator is used. The equilibrium, damped equilibrium, and rigid-tendon models reproduce forces generated by maximally-activated biological muscle with mean absolute errors less than 8.9%, 8.9%, and 20.9% of the maximum isometric muscle force, respectively. When compared to forces generated by submaximally-activated biological muscle, the forces produced by the equilibrium, damped equilibrium, and rigid-tendon models have mean absolute errors less than 16.2%, 16.4%, and 18.5%, respectively. To encourage further development of musculotendon models, we provide implementations of each of these models in OpenSim version 3.1 and benchmark data online, enabling others to reproduce our results and test their models of musculotendon dynamics. PMID:23445050

  13. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure.

    PubMed

    Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M

    2014-02-01

    The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. PMID:24080228

  14. Viscoelasticity of Tendons Under Transverse Compression.

    PubMed

    Paul Buckley, C; Samuel Salisbury, S T; Zavatsky, Amy B

    2016-10-01

    Tendons are highly anisotropic and also viscoelastic. For understanding and modeling their 3D deformation, information is needed on their viscoelastic response under off-axis loading. A study was made, therefore, of creep and recovery of bovine digital extensor tendons when subjected to transverse compressive stress of up to ca. 100 kPa. Preconditioned tendons were compression tested between glass plates at increasing creep loads. The creep response was anomalous: the relative rate of creep reduced with the increasing stress. Over each ca. 100 s creep period, the transverse creep deformation of each tendon obeyed a power law dependence on time, with the power law exponent falling from ca. 0.18 to an asymptote of ca. 0.058 with the increasing stress. A possible explanation is stress-driven dehydration, as suggested previously for the similar anomalous behavior of ligaments. Recovery after removal of each creep load was also anomalous. Relative residual strain reduced with the increasing creep stress, but this is explicable in terms of the reducing relative rate of creep. When allowance was made for some adhesion occurring naturally between tendon and the glass plates, the results for a given load were consistent with creep and recovery being related through the Boltzmann superposition principle (BSP). The tendon tissue acted as a pressure-sensitive adhesive (PSA) in contact with the glass plates: explicable in terms of the low transverse shear modulus of the tendons. PMID:27496279

  15. Determinants of aponeurosis shape change during muscle contraction.

    PubMed

    Arellano, Christopher J; Gidmark, Nicholas J; Konow, Nicolai; Azizi, Emanuel; Roberts, Thomas J

    2016-06-14

    Aponeuroses are sheet-like elastic tendon structures that cover a portion of the muscle belly and act as insertion sites for muscle fibers while free tendons connect muscles to bones. During shortening contractions, free tendons are loaded in tension and lengthen due to the force acting longitudinally along the muscle׳s line of action. In contrast, aponeuroses increase in length and width, suggesting that aponeuroses are loaded in directions along and orthogonal to the muscle׳s line of action. Because muscle fibers are isovolumetric, they must expand radially as they shorten, potentially generating a force that increases aponeurosis width. We hypothesized that increases in aponeurosis width result from radial expansion of shortening muscle fibers. We tested this hypothesis by combining in situ muscle-tendon measurements with high-speed biplanar fluoroscopy measurements of the turkey׳s lateral gastrocnemius (n=6) at varying levels of isotonic muscle contractions. The change in aponeurosis width during periods of constant force depended on both the amount of muscle shortening and the magnitude of force production. At low to intermediate forces, aponeurosis width increased in direct proportion to fiber shortening. At high forces, aponeurosis width increased to a lesser extent or in some cases, decreased slightly during fiber shortening. Our results demonstrate that forces generated from radial expansion of shortening muscle fibers tend to drive increases in aponeurosis width, whereas longitudinal forces tend to decrease aponeurosis width. Ultimately, it is these two opposing forces that drive changes in aponeurosis width and alter series elastic stiffness during a muscle contraction. PMID:27155748

  16. Imaging and simulation of Achilles tendon dynamics: Implications for walking performance in the elderly.

    PubMed

    Franz, Jason R; Thelen, Darryl G

    2016-06-14

    The Achilles tendon (AT) is a complex structure, consisting of distinct fascicle bundles arising from each triceps surae muscle that may act as mechanically independent structures. Advances in tissue imaging are rapidly accelerating our understanding of the complexities of functional Achilles tendon behavior, with potentially important implications for musculoskeletal injury and performance. In this overview of our recent contributions to these efforts, we present the results of complementary experimental and computational approaches to investigate AT behavior during walking and its potential relevance to reduced triceps surae mechanical performance due to aging. Our experimental evidence reveals that older tendons exhibit smaller differences in tissue deformations than young adults between regions of the AT presumed to arise from the gastrocnemius and soleus muscles. These observations are consistent with a reduced capacity for inter-fascicle sliding within the AT, which could have implications for the mechanical independence of the triceps surae muscles. More uniform AT deformations are also correlated with hallmark biomechanical features of elderly gait - namely, a loss of net ankle moment, power, and positive work during push-off. Simulating age-related reductions in the capacity for inter-fascicle sliding in the AT during walking predicts detriments in gastrocnemius muscle-tendon mechanical performance coupled with underlying shifts in fascicle kinematics during push-off. AT compliance, also suspected to vary due to age, systematically modulates those effects. By integrating in vivo imaging with computational modeling, we have gained theoretical insight into multi-scale biomechanical changes due to aging, hypotheses regarding their functional effects, and opportunities for experiments that validate or invalidate these assertions. PMID:27209552

  17. Your Muscles

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Muscles KidsHealth > For Kids > Your Muscles Print A A ... and skeletal (say: SKEL-uh-tul) muscle. Smooth Muscles Smooth muscles — sometimes also called involuntary muscles — are ...

  18. Variability in Hoffmann and tendon reflexes in healthy male subjects

    NASA Technical Reports Server (NTRS)

    Good, E.; Do, S.; Jaweed, M.

    1992-01-01

    There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.

  19. Thoracic epaxial muscles in living archosaurs and ornithopod dinosaurs.

    PubMed

    Organ, Christopher Lee

    2006-07-01

    Crocodylians possess the same thoracic epaxial muscles as most other saurians, but M. transversospinalis is modified by overlying osteoderms. Compared with crocodylians, the thoracic epaxial muscles of birds are reduced in size, disrupted by the synsacrum, and often modified by intratendinous ossification and the notarium. A phylogenetic perspective is used to determine muscle homologies in living archosaurs (birds and crocodylians), evaluate how the apparent disparity evolved, and reconstruct the thoracic epaxial muscles in ornithopod dinosaurs. The avian modifications of the epaxial musculoskeletal system appear to have coevolved with the synsacrum and notarium. The lattice of ossified tendons in iguanodontoidean dinosaurs (Hadrosauridae and Iguanodontidae) is homologized to M. transversospinalis in crocodylians and M. longus colli dorsalis, pars thoracica in birds. Birds have an arrangement of tendons within M. longus colli dorsalis, pars thoracica identical to that observed in the epaxial ossified tendons of iguanodontoid dinosaurs. Moreover, many birds (such as grebes and turkeys) ossify these tendons, resulting in a two- or three-layered lattice of ossified tendons, a morphology also seen in iguanodontoid dinosaurs. Although the structure of M. transversospinalis appears indistinguishable between birds and iguanodontoid dinosaurs, intratendinous ossification within this epaxial muscle evolved convergently. PMID:16779820

  20. Les plaies du tendon patellaire

    PubMed Central

    Mechchat, Atif; Elidrissi, Mohammed; Mardy, Abdelhak; Elayoubi, Abdelghni; Shimi, Mohammed; Elibrahimi, Abdelhalim; Elmrini, Abdelmajid

    2014-01-01

    Les plaies du tendon patellaire sont peu fréquentes et sont peu rapportés dans la littérature, contrairement aux ruptures sous cutanées. Les sections du tendon patellaire nécessitent une réparation immédiate afin de rétablir l'appareil extenseur et de permettre une récupération fonctionnelle précoce. A travers ce travail rétrospectif sur 13 cas, nous analysons les aspects épidémiologiques, thérapeutiques et pronostiques de ce type de pathologie en comparant différents scores. L’âge moyen est de 25 ans avec une prédominance masculine. Les étiologies sont dominées par les accidents de la voie publique (68%) et les agressions par agent tranchant (26%) et contendant (6 %). Tous nos patients ont bénéficié d'un parage chirurgical avec suture tendineuse direct protégée par un laçage au fils d'aciers en légère flexion. La rééducation est débutée après sédation des phénomènes inflammatoires. Au dernier recul les résultats sont excellents et bon à 92%. Nous n'avons pas noté de différence de force musculaire et d'amplitude articulaire entre le genou sain et le genou lésé. Les lésions ouvertes du tendon patellaire est relativement rare. La prise en charge chirurgicale rapide donne des résultats assez satisfaisants. La réparation est généralement renforcée par un semi-tendineux, synthétique ou métallique en forme de cadre de renfort pour faciliter la réadaptation et réduire le risque de récidive après la fin de l'immobilisation. PMID:25170379

  1. Relevance of activated hepatic stellate cells in predicting the development of pediatric liver allograft fibrosis.

    PubMed

    Venturi, Carla; Reding, Raymond; Quinones, Jorge Abarca; Sokal, Etienne; Rahier, Jacques; Bueno, Javier; Sempoux, Christine

    2016-06-01

    Activated hepatic stellate cells (HSCs) are the main collagen-producing cells in liver fibrogenesis. With the purpose of analyzing their presence and relevance in predicting liver allograft fibrosis development, 162 liver biopsies of 54 pediatric liver transplantation (LT) recipients were assessed at 6 months, 3 years, and 7 years after LT. The proportion of activated HSCs, identified by α-smooth muscle actin (ASMA) immunostaining, and the amount of fibrosis, identified by picrosirius red (PSR%) staining, were determined by computer-based morphometric analysis. Fibrosis was also staged by using the semiquantitative liver allograft fibrosis score (LAFSc), specifically designed to score fibrosis in the pediatric LT population. Liver allograft fibrosis displayed progression over time by PSR% (P < 0.001) and by LAFSc (P < 0.001). The ASMA expression decreased in the long term, with inverse evolution with respect to fibrosis (P < 0.01). Patients with ASMA-positive HSCs area ≥ 8% at 6 months (n = 20) developed a higher fibrosis proportion compared to those with ASMA-positive HSCs area ≤ 8% (n = 34) at the same period of time and in the long term (P = 0.03 and P < 0.01, respectively), but not at 3 years (P = 0.8). ASMA expression ≥ 8% at 6 months was found to be an independent risk factor for 7-year fibrosis development by PSR% (r(2) = 0.5; P < 0.01) and by LAFSc (r(2) = 0.3; P = 0.03). Furthermore, ASMA expression ≥ 8% at 3 years showed an association with the development of fibrosis at 7 years (P = 0.02). In conclusion, there is a high proportion of activated HSCs in pediatric LT recipients. ASMA ≥ 8% at 6 months seems to be a risk factor for early and longterm fibrosis development. In addition, activated HSCs showed inverse evolution with respect to fibrosis in the long term. Liver Transplantation 22 822-829 2016 AASLD. PMID:26851053

  2. Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces

    PubMed Central

    Conrad, Megan O.; Gadhoke, Bani; Scheidt, Robert A.; Schmit, Brian D.

    2015-01-01

    Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity. PMID:26633892

  3. Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces.

    PubMed

    Conrad, Megan O; Gadhoke, Bani; Scheidt, Robert A; Schmit, Brian D

    2015-01-01

    Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity. PMID:26633892

  4. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  5. Osteochondral Allograft Transplantation in the Knee.

    PubMed

    Zouzias, Ioannis C; Bugbee, William D

    2016-06-01

    The technique of osteochondral allograft (OCA) transplantation has been used to treat a wide spectrum of cartilage deficiencies in the knee. Its use has been supported by basic science and clinical studies that show it is a safe and effective treatment option. What sets fresh OCA transplantation apart from other cartilage procedures in the knee, is the ability to treat large defects with mature hyaline cartilage. Studies looking at transplantation of fresh OCAs in the general population have shown reliable pain relief and return to activities of daily living. Reports of cartilage injuries in athletes have risen over the years and more research is needed in evaluating the successfulness of OCA transplantation in the athletic population. PMID:27135291

  6. Dysplasia Epiphysealis Hemimelica Treated with Osteochondral Allograft: A Case Report

    PubMed Central

    Anthony, Chris A.; Wolf, Brian R.

    2015-01-01

    Background Dysplasia epiphysealis hemimelica (DEH), or Trevor's disease, is a developmental disorder of the pediatric skeleton characterized by asymmetric osteochondral overgrowth. Methods We present the case of a five year old boy with a two year history of right knee pain and evidence of DEH on imaging who underwent initial arthroscopic resection of his lesion with subsequent recurrence. The patient then underwent osteochondral allograft revision surgery and was asymptomatic at two year follow-up with a congruent joint surface. Results To our knowledge, this is the first reported case of a DEH lesion treated with osteochondral allograft and also the youngest reported case of osteochondral allograft placement in the literature. Conclusions Osteochondral allograft may be a viable option in DEH and other deformities of the pediatric knee. Level of Evidence Level V PMID:26361443

  7. Effects of Spaceflight on the Attachment of Muscle to the Tibia, Fibula and Calcaneus

    NASA Technical Reports Server (NTRS)

    Johnson, R. B.; Tsao, A. K.; St.John, K. R.; Betcher, R. A.; Tucci, M. A.; Parsell, D. E.; Dai, X.; Zardiackas, L. D.; Benghuzzi, H. A.

    1999-01-01

    Microgravity significantly reduces transmission of ground-reaction forces to bones, promoting atrophy. There is little information available concerning the effects of microgravity on bones at sites where anti-gravity muscles are attached (tendon-bone junctions). This study evaluates the effects of microgravity on the origin and insertion sites of anti-gravity muscles on the rat tibia, fibula and calcaneus. Changes in the strength of those tendon-bone junctions could predispose the animal to injury following spaceflight.

  8. Tendon-Holding Capacities of Two Newly Designed Implants for Tendon Repair: An Experimental Study on the Flexor Digitorum Profundus Tendon of Sheep

    PubMed Central

    Ağır, İsmail; Aytekin, Mahmut Nedim; Başçı, Onur; Çaypınar, Barış; Erol, Bülent

    2014-01-01

    Background: Two main factors determine the strength of tendon repair; the tensile strength of material and the gripping capacity of a suture configuration. Different repair techniques and suture materials were developed to increase the strength of repairs but none of techniques and suture materials seem to provide enough tensile strength with safety margins for early active mobilization. In order to overcome this problem tendon suturing implants are being developed. We designed two different suturing implants. The aim of this study was to measure tendon-holding capacities of these implants biomechanically and to compare them with frequently used suture techniques Materials and Methods: In this study we used 64 sheep flexor digitorum profundus tendons. Four study groups were formed and each group had 16 tendons. We applied model 1 and model 2 implant to the first 2 groups and Bunnell and locking-loop techniques to the 3rd and 4th groups respectively by using 5 Ticron sutures. Results: In 13 tendons in group 1 and 15 tendons in group 2 and in all tendons in group 3 and 4, implants and sutures pulled out of the tendon in longitudinal axis at the point of maximum load. The mean tensile strengths were the largest in group 1 and smallest in group 3. Conclusion: In conclusion, the new stainless steel tendon suturing implants applied from outside the tendons using steel wires enable a biomechanically stronger repair with less tendon trauma when compared to previously developed tendon repair implants and the traditional suturing techniques. PMID:25067965

  9. Biomechanical and tissue handling property comparison of decellularized and cryopreserved tibialis anterior tendons following extreme incubation and rehydration.

    PubMed

    Nyland, J; Larsen, N; Burden, R; Chang, H; Caborn, D N M

    2009-01-01

    Little is known regarding the biomechanical profiles and tissue handling properties of decellularized and cryopreserved human tibialis anterior tendons prepared as allografts for ACL reconstruction. This study compared allografts prepared using two extremes of the same cryoprotectant incubation and rehydration technique with a standardly prepared control group. Porcine tibiae with similar apparent BMD were randomly divided into three groups of ten specimens. Paired tendons were randomly divided into two experimental groups: Group 1 = 8 h incubation/15 min rehydration; Group 2 = 2 h incubation/1 h rehydration. Group 3 (control) consisted of ten standardly prepared tendons with 20 min rehydration. Tissue handling properties were graded during allograft preparation using a modified visual analog scale. Similar diameter allografts were fixed in matched diameter extraction drilled tibial tunnels with 35 mm long, 1 mm > tunnel diameter bioabsorbable interference screws. Potted constructs were mounted in a servo hydraulic device, pretensioned between 10-50 N at 0.1 Hz (10 cycles), and isometric pretensioned at 50 N for 1 min, prior to 500 submaximal loading cycles (50-250 N) at 0.5 Hz, and load to failure testing (20 mm/min). Constructs prepared under extreme conditions generally displayed comparable biomechanical properties to the control condition. Group 1 (8 h incubation/15 min rehydration)(-34 +/- 35 ms) and Group 2 (2 h incubation/1 h rehydration) (-22 +/- 38 ms) displayed smaller mean displacement-load peak phase timing differences over the initial ten cycles compared to Group 3 (control)(-42 +/- 49 ms), P = 0.004, suggesting greater relative construct stiffness. Group 1 (8 h incubation/15 min rehydration) (234.9 +/- 34 N/mm) and Group 2 (2 h incubation/1 h rehydration)(231.3 +/- 43 N/mm) displayed lower construct stiffness during load to failure testing than Group 3 (control)(284.5 +/- 25.2 N/mm), P = 0.003. Group 1 (8 h incubation/15 min rehydration) differed from

  10. Recurrent Hepatitis C in Liver Allografts

    PubMed Central

    Demetris, A. J.; Eghtesad, B.; Marcos, A.; Ruppert, K.; Nalesnik, M. A.; Randhawa, P.; Wu, T.; Krasinskas, A.; Fontes, P.; Cacciarelli, T.; Shakil, A. O.; Murase, N.; Fung, J. J.; Starzl, T. E.

    2010-01-01

    Rationale and Design The accuracy of a prospective histopathologic diagnosis of rejection and recurrent hepatitis C (HCV) was determined in 48 HCV RNA-positive liver allograft recipients enrolled in an “immunosuppression minimization protocol” between July 29, 2001 and January 24, 2003. Prospective entry of all pertinent treatment, laboratory, and histopathology results into an electronic database enabled a retrospective analysis of the accuracy of histopathologic diagnoses and the pathophysiologic relationship between recurrent HCV and rejection. Results Time to first onset of acute rejection (AR) (mean, 107 days; median, 83 days; range, 7–329 days) overlapped with the time to first onset of recurrent HCV (mean, 115 days; median, 123 days; range, 22–315 days), making distinction between the two difficult. AR and chronic rejection (CR) with and without co-existent HCV showed overlapping but significantly different liver injury test profiles. One major and two minor errors occurred (positive predictive values for AR = 91%; recurrent HCV = 100%); all involved an overdiagnosis of AR in the context of recurrent HCV. Retrospective analysis of the mistakes showed that major errors can be avoided altogether and the impact of unavoidable minor errors can be minimized by strict adherence to specific histopathologic criteria, close clinicopathologic correlation including examination of HCV RNA levels, and a conservative approach to the use of additional immunosuppression. In addition, histopathologic diagnoses of moderate and severe AR and CR were associated with relatively low HCV RNA levels, whereas relatively high HCV RNA levels were associated with a histopathologic diagnosis of hepatitis alone, particularly the cholestatic variant of HCV. Conclusions Liver allograft biopsy interpretation can rapidly and accurately distinguish between recurrent HCV and AR/CR. In addition, the histopathologic observations suggest that the immune mechanism responsible for HCV

  11. Skeletal muscle adaptations and muscle genomics of performance horses.

    PubMed

    Rivero, José-Luis L; Hill, Emmeline W

    2016-03-01

    Skeletal muscles in horses are characterised by specific adaptations, which are the result of the natural evolution of the horse as a grazing animal, centuries of selective breeding and the adaptability of this tissue in response to training. These adaptations include an increased muscle mass relative to body weight, a great locomotor efficiency based upon an admirable muscle-tendon architectural design and an adaptable fibre-type composition with intrinsic shortening velocities greater than would be predicted from an animal of comparable body size. Furthermore, equine skeletal muscles have a high mitochondrial volume that permits a higher whole animal aerobic capacity, as well as large intramuscular stores of energy substrates (glycogen in particular). Finally, high buffer and lactate transport capacities preserve muscles against fatigue during anaerobic exercise. Many of these adaptations can improve with training. The publication of the equine genome sequence in 2009 has provided a major advance towards an improved understanding of equine muscle physiology. Equine muscle genomics studies have revealed a number of genes associated with elite physical performance and have also identified changes in structural and metabolic genes following exercise and training. Genes involved in